WO2023066153A1 - 一种包含大粒径溶胶的催化裂化催化剂及其应用 - Google Patents

一种包含大粒径溶胶的催化裂化催化剂及其应用 Download PDF

Info

Publication number
WO2023066153A1
WO2023066153A1 PCT/CN2022/125358 CN2022125358W WO2023066153A1 WO 2023066153 A1 WO2023066153 A1 WO 2023066153A1 CN 2022125358 W CN2022125358 W CN 2022125358W WO 2023066153 A1 WO2023066153 A1 WO 2023066153A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry
weight
zeolite
sol
particle size
Prior art date
Application number
PCT/CN2022/125358
Other languages
English (en)
French (fr)
Inventor
于善青
严加松
袁帅
张杰潇
李家兴
Original Assignee
中国石油化工股份有限公司
中石化石油化工科学研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111208155.0A external-priority patent/CN115990505A/zh
Priority claimed from CN202111208517.6A external-priority patent/CN115990496A/zh
Application filed by 中国石油化工股份有限公司, 中石化石油化工科学研究院有限公司 filed Critical 中国石油化工股份有限公司
Priority to AU2022373550A priority Critical patent/AU2022373550A1/en
Publication of WO2023066153A1 publication Critical patent/WO2023066153A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention belongs to the field of oil refining industry. Specifically, the invention relates to a catalytic cracking catalyst containing a large particle size sol and a preparation method thereof.
  • catalytic cracking is one of the key technologies for maximizing the production of low-carbon olefins from crude oil.
  • C4 olefins come from catalytic cracking units, and the technology of producing C4 olefin fractions from catalytic cracking units has the advantages of low investment and low cost.
  • Many companies are trying to obtain a larger amount of C4 from the catalytic cracking process Olefin yield, catalytic cracking catalyst or additive is the most direct and economical method to increase the yield of carbon four olefins.
  • the main active components of catalytic cracking catalysts or additives for increasing the production of carbon tetraolefins include Y-type molecular sieves, ZSM-5 molecular sieves, and beta zeolites. Among them, ⁇ zeolite is used as the main active component of the catalyst for increasing the production of carbon tetraolefins due to its special structure, both acid catalytic properties and structural selectivity.
  • the binder is also one of the main components of the catalytic cracking catalyst or additive. While ensuring the wear resistance of the catalyst, it can work synergistically with the active components to improve the activity and hydrothermal stability of the catalyst. The most commonly used binder is There are aluminum sol, silica sol, acidified pseudo-boehmite, etc.
  • US6355591 discloses a catalytic cracking additive containing 4-20% by weight of aluminum phosphate, 1-40% by weight of ZSM-5, Beta zeolite and their mixture, and 40-90% by weight of clay, which can increase the output of liquefied gas.
  • CN1055105C discloses a cracking catalyst that can produce more isobutene and isopentene, including 6-30% by weight of five-membered ring silicalite containing phosphorus and rare earth, 5-20% by weight of USY zeolite, 1-5% by weight of zeolite beta, and clay 30-60% by weight and 15-30% by weight of inorganic oxide, the catalyst has the characteristics of producing more isobutene and isopentene under the technological conditions of catalytic cracking, and can co-produce high-octane gasoline at the same time.
  • CN103785456A discloses a cracking aid for increasing the concentration of low-carbon olefins, which contains modified ⁇ molecular sieves, phosphorus-aluminum inorganic binders containing the first clay, other inorganic binders and Group VIII metal additives, with or without the second Clay;
  • the phosphorus-aluminum inorganic binder containing the first clay includes an aluminum component, a phosphorus component and the first clay;
  • the phosphorus and transition metal modified ⁇ molecular sieve, the phosphorus content is calculated as P2O5 It accounts for 1-10% by weight, and the metal content accounts for 0.5-10% by weight based on the metal oxide.
  • the cracking catalyst composition is applied to the catalytic cracking of petroleum hydrocarbons, which can increase the yield of catalytic cracking liquefied gas, increase the concentration of low-carbon olefins in the liquefied gas, especially the concentration of isobutene, increase the ratio of ethylene to dry gas, and increase the octane number of gasoline , the heavy oil conversion ability of the main catalyst will not be affected when a large proportion of additives are blended.
  • the object of the present invention is to provide a catalytic cracking catalyst/auxiliary with rich mesopore structure and its preparation method, so as to further improve the yield and selectivity of carbon tetraolefins.
  • the present invention provides a large particle size sol, which (on a dry basis) contains 10-40% by weight of Al 2 O 3 , 50-85% by weight of P 2 O 5 and 0.2-10% by weight of SiO 2 , wherein the mass ratio of P 2 O 5 : Al 2 O 3 is (1.5-5.0): 1, and the mass ratio of SiO 2 : Al 2 O 3 is (0.01-0.3): 1, preferably (0.05-0.3): 1,
  • the average particle diameter of the large particle diameter sol is in the range of 20-50 nm, for example, the large particle diameter sol with the average particle diameter distribution in the range of 20-50 nm accounts for more than 60% of the total amount.
  • the present invention also provides a catalytic cracking catalyst comprising the large particle size sol that is prolific in producing low-carbon olefins, which comprises (based on the dry basis weight of the catalytic cracking catalyst) 15 to 50% by weight of zeolite beta and/or ZSM- 5 zeolite, 10-75% by weight of clay, and 10-50% by weight of the large particle size sol.
  • the pore distribution is measured by low-temperature nitrogen adsorption method, the total pore volume of the catalytic cracking catalyst is not less than 0.200mL/g, and the pore volume of mesopores with a pore diameter of 4-50nm accounts for more than 60% of the total pore volume.
  • the catalytic cracking catalyst of the present invention can be used as a catalytic cracking aid.
  • the catalytic cracking catalyst according to the present invention contains 20-40% by weight of beta zeolite, 20-65% by weight of clay and 15-45% by weight of large particle size sol.
  • the catalytic cracking catalyst contains 20-50% by weight of ZSM-5 zeolite, 10-70% by weight of clay, and 10-45% by weight of large particle size sol.
  • the catalytic cracking catalyst according to the present invention contains 25-45% by weight of ZSM-5 zeolite, 20-60% by weight of clay and 15-40% by weight of large particle size sol.
  • the large particle size sol contains 15-35% by weight of Al 2 O 3 , 55-80% by weight of P 2 O 5 and 0.5-8.0% by weight of SiO 2 , wherein P 2 O 5 : Al 2 O mass ratio is (2.0-4.5): 1, SiO 2 : Al 2 O 3 mass ratio is (0.05-0.25): 1, the large particle size sol with average particle size distribution in the range of 25-45nm accounts for the total More than 60% of the quantity.
  • the total pore volume of the catalytic cracking catalyst is 0.200-0.300 mL/g.
  • the pore volume of 4-50 nm mesopores accounts for 65-85% of the total pore volume.
  • the zeolite beta is selected from hydrogen-type zeolite beta, sodium-type zeolite beta, phosphorus-modified zeolite beta, metal-modified zeolite beta, or any combination thereof, and SiO 2 and Al 2 in the zeolite beta
  • the molar ratio of O 3 is 20-50.
  • the zeolite beta is the hydrogen form of zeolite beta.
  • the metal in the metal-modified zeolite beta is selected from La, Ce, Pr, Zr, Ti, Fe, Cu, Mg.
  • the ZSM-5 zeolite is selected from HZSM-5 zeolite, ZSM-5 zeolite containing phosphorus and/or iron, ZSM-5 zeolite containing phosphorus and/or rare earth, modified ZSM-5 zeolite or any combination of them.
  • the modified ZSM-5 zeolite is selected from Zn, Cu, Mg, Zr, Ti or B modified ZSM-5 zeolites.
  • the clay is selected from kaolin, retort clay, diatomaceous earth, montmorillonite, bentonite, sepiolite or any combination thereof.
  • the present invention provides a kind of preparation method of catalytic cracking catalyst of the present invention, comprises the steps:
  • the mass ratio of the phosphorus source in terms of P 2 O 5 to the amount of the aluminum source is (1.5-5.0): 1, and the amount of the silica sol in terms of SiO 2 and the amount of the aluminum source in terms of Al 2 O 3 The mass ratio is (0.01 ⁇ 0.3):1;
  • the solid content of the obtained fourth slurry is 10 to 50% by weight, and the fourth slurry is sprayed to form, dry and roast to obtain the aforementioned catalytic cracking catalyst, wherein, on a dry weight basis, the beta zeolite and/or ZSM
  • the weight ratio of -5 zeolite, the clay, and the large particle size sol is (15-50):(10-75):(10-50).
  • the weight ratio of the ZSM-5 zeolite, the clay, and the large particle size sol is (20-50): (10-70): (10-45 ).
  • step (1a) the mixing and stirring is carried out for 30-60 min.
  • step (1b) is carried out at a temperature of 35-55° C., and the mixing and stirring are carried out for 30-90 minutes.
  • step (1c) is carried out at a temperature of 35-55° C., and the mixing and stirring are carried out for 30-90 minutes.
  • the aluminum source is selected from one or more of pseudoboehmite, alumina, boehmite, gibbsite and gibbsite kind.
  • the phosphorus source is selected from one or more of phosphoric acid, phosphorous acid and hypophosphorous acid.
  • the clay is selected from one or more of kaolin, retort clay, diatomaceous earth, montmorillonite, bentonite and sepiolite.
  • the zeolite beta is selected from hydrogen-type zeolite beta, sodium-type zeolite beta, phosphorus-modified zeolite beta, metal-modified zeolite beta or any combination thereof
  • the The molar ratio of SiO 2 to Al 2 O 3 in the zeolite beta is 20-50.
  • the ZSM-5 zeolite is selected from HZSM-5 zeolite, ZSM-5 zeolite containing phosphorus and/or iron, ZSM-5 containing phosphorus and/or rare earth 5 zeolite, modified ZSM-5 zeolite or any combination thereof.
  • the modified ZSM-5 zeolite is selected from Zn, Cu, Mg, Zr, Ti or B modified ZSM-5 zeolite.
  • the present invention provides a large particle size sol, which contains 10-40% by weight of Al 2 O 3 , 50-85% by weight of P 2 O 5 and 0.2-10% by weight of SiO 2 , where the mass ratio of P 2 O 5 : Al 2 O 3 is (1.5-5.0): 1, the mass ratio of SiO 2 : Al 2 O 3 is (0.01-0.3): 1, and its average particle size is 20-50nm , preferred, and prepared as follows:
  • the catalytic cracking catalyst prepared according to the method of the present invention contains a sol with a large particle size, and a rich mesopore structure is formed by the accumulation of colloidal particles with a large particle size and uniform distribution. Therefore, when the catalytic cracking catalyst containing the large particle size sol of the present invention is used in the catalytic cracking process, the yield of low-carbon olefins is relatively high, and the low-carbon olefins can diffuse out quickly through the rich mesopore structure of the catalyst, thereby avoiding its continued secondary olefins. secondary reaction, so as to realize the improvement of yield and selectivity of light olefins.
  • the large particle size sol contained in the catalytic cracking catalyst of the present invention is distributed on the molecular sieve and clay, which can further improve the bonding performance and improve the wear resistance, that is, the strength, of the catalyst.
  • FIG. 1 is a TEM photo of catalytic cracking catalyst A1 prepared according to Example 1.
  • FIG. 2 is a TEM photo of the catalytic cracking catalyst DA3 prepared according to Comparative Example 3.
  • FIG. 3 is a pore size distribution diagram of catalytic cracking catalysts prepared according to Example and Comparative Example 3.
  • FIG. 3 is a pore size distribution diagram of catalytic cracking catalysts prepared according to Example and Comparative Example 3.
  • Fig. 4 is a TEM photo of catalytic cracking catalyst ZA1 prepared according to Example Z1.
  • Fig. 5 is a graph showing the pore size distribution of catalytic cracking catalysts prepared according to Example Z2 and Comparative Example Z3.
  • the present invention provides a kind of catalytic cracking catalyst of prolific low-carbon olefins, based on the dry weight of catalytic cracking catalyst, said catalytic cracking catalyst contains 15-50% by weight of beta zeolite, 10-75% by weight clay, 10 to 50% by weight of large particle size sol, the large particle size sol contains 10 to 40% by weight of Al 2 O 3 , 50 to 85% by weight of P 2 O 5 and 0.2 to 10% by weight of SiO 2 , wherein the mass ratio of P 2 O 5 : Al 2 O is (1.5-5.0): 1, the mass ratio of SiO 2 : Al 2 O 3 is (0.01-0.3): 1, and the average particle size distribution is in the range of 20-50nm
  • the large particle size sol accounts for more than 60% of the total amount, and the pore distribution is measured by the low-temperature nitrogen adsorption method.
  • the total pore volume of the catalytic cracking catalyst is not less than 0.200mL/g, and the pore volume of the 4-50nm mesopores accounts for the total More than 60% of the pore volume.
  • the catalytic cracking catalyst has obvious effects in producing more carbon tetraolefins.
  • the catalytic cracking catalyst according to the present invention preferably contains 20-40% by weight of beta zeolite, 20-65% by weight of clay and 15-45% by weight of large particle size sol.
  • the large particle size sol preferably contains 15-35% by weight of Al 2 O 3 , 55-80% by weight of P 2 O 5 and 0.5-8.0% by weight of SiO 2 , wherein the mass ratio of P 2 O 5 : Al 2 O It is preferably (2.0-4.5):1, and the mass ratio of SiO 2 :Al 2 O 3 is preferably (0.05-0.25):1.
  • the large particle size sol whose average particle size distribution is in the range of 25-45nm can account for more than 60% of the total amount.
  • the total pore volume of the catalytic cracking catalyst according to the present invention can reach 0.200-0.300mL/g, wherein the pore volume of 4-50nm mesopores can account for 65-85% of the total pore volume.
  • the beta zeolite contained in the catalytic cracking catalyst of the present invention is selected from hydrogen type beta zeolite, sodium type beta zeolite, phosphorus modified beta zeolite, metal modified beta zeolite or any combination thereof, preferably hydrogen type beta zeolite.
  • the metal contained in the metal-modified zeolite beta included in the catalytic cracking catalyst of the present invention may be, for example, rare earth metals, etc., for example, may be selected from La, Ce, Pr, Zr, Ti, Fe, Cu, Mg.
  • the clay contained in the catalytic cracking catalyst of the present invention can be various clays suitable for catalyst preparation well known to those skilled in the art, for example, can be selected from kaolin, retort earth, diatomite, montmorillonite, bentonite , meerschaum, or any combination thereof.
  • the present invention provides a catalytic cracking catalyst that produces more light olefins, based on the dry basis weight of the catalytic cracking catalyst, the catalytic cracking catalyst contains 20 to 50% by weight of ZSM-5 zeolite, 10 to 70% by weight of clay, 10-45% by weight of large-particle sol; the large-particle sol contains 10-40% by weight of Al 2 O 3 , 50-85% by weight of P 2 O 5 and 0.2-10% by weight of SiO 2 , wherein the mass ratio of P 2 O 5 : Al 2 O 3 is (1.5-5.0): 1, and the mass ratio of SiO 2 : Al 2 O 3 is (0.01-0.3): 1,
  • the number of colloidal particles with an average particle size in the range of 20-50nm in the large particle size sol accounts for more than 60% of the total number, and the total pore volume of the catalytic cracking catalyst is not less than 0.200mL/ g, wherein the pore volume of 4-50 nm mesopores accounts for more than
  • the catalytic cracking catalyst according to the second aspect of the present invention preferably contains 25 to 45% by weight of ZSM-5 zeolite, 20 to 60% by weight of clay and 15 to 40% by weight of large particle size sol; On a dry basis, it preferably contains 15-35% by weight of Al 2 O 3 , 55-80% by weight of P 2 O 5 and 0.5-8.0% by weight of SiO 2 , wherein the mass ratio of P 2 O 5 : Al 2 O 3 is preferably is (2.0 ⁇ 4.5):1, and the mass ratio of SiO 2 : Al 2 O 3 is preferably (0.05 ⁇ 0.25):1;
  • the total amount is more than 60%; the total pore volume of the catalytic cracking catalyst can reach 0.200-0.300mL/g, wherein the pore volume of 4-50nm mesopores can account for 65-85% of the total pore volume.
  • the ZSM-5 zeolite contained in the catalytic cracking catalyst according to the second aspect of the present invention may be selected from HZSM-5 zeolite, ZSM-5 zeolite containing phosphorus and/or iron, ZSM-5 containing phosphorus and/or rare earth Zeolite, modified ZSM-5 zeolite or any combination thereof, wherein the modified ZSM-5 zeolite can be selected from modified ZSM-5 zeolite such as Zn, Cu, Mg, Zr, Ti or B.
  • the clay contained in the catalytic cracking catalyst of the present invention can be various clays suitable for catalyst preparation well known to those skilled in the art, for example, can be selected from kaolin, retort earth, diatomite, montmorillonite, bentonite , meerschaum, or any combination thereof.
  • the present invention provides a kind of preparation method of aforementioned catalytic cracking catalyst, comprises the steps:
  • the mass ratio of the phosphorus source in terms of P 2 O 5 to the amount of the aluminum source is (1.5-5.0): 1, and the amount of the silica sol in terms of SiO 2 and the amount of the aluminum source in terms of Al 2 O 3 The mass ratio is (0.01 ⁇ 0.3):1;
  • the solid content of the fourth slurry obtained is 10 to 50% by weight, and the first The four slurries are spray-molded, dried and roasted to obtain the aforementioned catalytic cracking catalyst, wherein, on a dry weight basis, the weight ratio of the zeolite beta and/or the ZSM-5 zeolite, the clay, and the large particle size sol is ( 15 ⁇ 50):(10 ⁇ 75):(10 ⁇ 50).
  • the aluminum source used in step (1a) is selected from pseudoboehmite, alumina, aluminum nitrate, aluminum isopropoxide, and boehmite , one or more of gibbsite and gibbsite.
  • the time for mixing and stirring the aluminum source and the deionized water is preferably in the range of 30-60 minutes.
  • the phosphorus source used in step (1b) is selected from one or more of phosphoric acid, phosphorous acid and hypophosphorous acid.
  • the first slurry prepared in step (1a) and the phosphorus source are mixed and stirred at a temperature of 35-55° C., and the mixing and stirring time is preferably 30-90 minutes.
  • the selected aluminum source in the preparation method of the present invention, can interact with the selected phosphorus source to form aluminum phosphate in different forms.
  • step (1c) is preferably carried out at a temperature of 35 to 55°C, and the time for mixing and stirring the second slurry prepared in step (1b) with the silica sol is preferably 30 ⁇ 90min.
  • the OH on the surface of the aluminum source absorbs the H+ in the phosphoric acid to form positively charged colloidal particles, which is conducive to the formation of a large amount of average particle Colloidal particles with a diameter of 20-50nm.
  • Adding silica sol particles is beneficial to inhibit further aggregation of colloidal particles and improve the stability of colloidal structure.
  • the selection of the clay and zeolite beta used in step (2) is as described above for the catalytic cracking catalyst of the present invention.
  • the described molding drying that step (2) carries out refers to the granulation shaping and drying of catalyst
  • the catalytic cracking catalyst is the technology well known to those skilled in the art, the catalytic cracking catalyst
  • the preparation generally uses spray molding drying, and the temperature of the spray tail gas is controlled at 100-250°C.
  • Calcination treatment is also well known to those skilled in the art, for example, it can be carried out in a muffle furnace.
  • the following roasting treatment conditions are adopted: the temperature is 350-800° C., preferably 400-650° C., and the roasting time is 0.5-6 hours, preferably 1-4 hours.
  • Baking can be performed in any atmosphere, such as air or an inert atmosphere, the inert atmosphere contains an inert gas, and the inert gas may include nitrogen, helium, argon, and the like.
  • the catalytic cracking catalyst according to the present invention When used in the catalytic cracking process, it can be added to the catalytic cracking reactor alone or mixed with other catalytic cracking catalysts.
  • the catalytic cracking catalyst of the present invention can be used as a catalytic cracking aid.
  • the amount of the catalytic cracking catalyst of the present invention is preferably 1-50% by weight, more preferably 5-40% by weight.
  • Said other catalytic cracking catalyst may, for example, be a catalytic cracking catalyst containing Y-type molecular sieves.
  • the catalytic cracking catalyst of the present invention has a rich mesopore structure, and the pore volume of 4-50nm mesopores accounts for more than 60% of the total pore volume , used in the catalytic cracking process, is conducive to improving the diffusion capacity of raw material molecules and product molecules, thereby significantly improving the yield and selectivity of low-carbon olefins.
  • the abundant mesoporous structure of the catalytic cracking catalyst according to the present invention is mainly derived from the pore structure generated by the accumulation of colloidal particles of the large-diameter sol contained in its composition.
  • the large particle size sol that catalytic cracking catalyst of the present invention comprises has the function of at least two aspects: on the one hand, be distributed on the surface of zeolite molecular sieve and clay, give full play to bonding performance, strengthen the strength of catalyst; On the other hand, between colloidal particles Pile up to form a pore structure. Since the colloidal particle size of the large particle size sol contained in the present invention is concentrated in the range of 20-50 nm, the large particle size particles can be piled up to form a rich mesopore structure.
  • conventional sols such as aluminum sol and acidified pseudo-boehmite generally have a particle size less than 5nm, and the accumulation of smaller particles cannot form a rich mesopore structure, and even block the pore structure of molecular sieves.
  • the particle size distribution of the conventional aluminum phosphate sol prepared according to the prior art is uneven and the particle size is small, usually less than 10nm.
  • the large particle size sol prepared in the preparation method of the present invention has a large particle size (20-50nm) and uniform distribution, thereby overcoming the problem that the existing aluminum phosphate sol has a small particle size and uneven distribution.
  • the problem that the mesopore structure is not obvious.
  • Kaolin is from Suzhou Kaolin Company, and its solid content is 76% by weight;
  • Pseudoboehmite comes from Shandong Aluminum Plant, and its solid content is 62% by weight;
  • Hydrogen type ZSM-5 zeolite Hydrogen type ZSM-5 zeolite, the molar ratio of SiO 2 to Al 2 O 3 is 42, the Na 2 O content is 3.5% by weight, and the solid content is 80% by weight;
  • Phosphorus-modified ZSM-5 zeolite the molar ratio of SiO 2 to Al 2 O 3 is 45, the content of Na 2 O is 0.12% by weight, the content of P 2 O 5 is 2.1% by weight, and the solid content is 83% by weight.
  • Phosphoric acid comes from Beijing Chemical Plant, the specification is analytically pure, and the mass concentration is 85%.
  • Measurement of colloidal particle size analysis by JEM-2000FX-II transmission electron microscope of Japan Electronics Company.
  • the average particle size of the colloidal particles is obtained by randomly measuring the projections of 50 colloidal particles in the TEM image of the sample, and taking the average value of the diameter of the largest circumscribed circle.
  • Catalyst strength Put the catalyst in a fixed device and blow it under constant air flow for 5 hours. Except for the first hour, the average wear percentage in the last four hours is called the wear index of the catalyst, and the unit is % per hour.
  • the method and standard are: air lift method Q/SYLS0518-2002.
  • Catalytic cracking catalyst evaluation The catalytic cracking catalyst is pre-aged on a fixed bed aging device at 800 ° C and 100 volume % water vapor for 17 hours, and then evaluated on an ACE device.
  • the properties of the reaction raw material oil are shown in Table 4, and the reaction temperature is 500 ° C , when the agent-oil weight ratio is 6, and the mass space velocity is 16s -1 .
  • conversion rate gasoline yield+liquefied gas yield+dry gas yield+coke yield
  • C4-olefin selectivity C4-olefin yield/conversion rate.
  • Comparative sol was prepared according to the method of Example 1, except that no silica sol was added.
  • the comparative sol was prepared according to the method of Example 1, except that no aging treatment was performed.
  • the comparison sol was prepared according to the method of Example 1 in CN1417296A, the difference from the above Examples 1-5 was that no silica sol was added and no aging treatment was performed.
  • the particle size of the sol obtained according to the preparation method of the present invention is larger and uniformly distributed, thereby helping to form a mesoporous structure and improving the production of carbon tetraolefins. rate and selectivity.
  • the following examples 6-10 are the preparation examples of the catalytic cracking catalyst containing the large particle size sol of the present invention.
  • 349g kaolin and 976g decationized water are added in the beating tank, beating for 60min, then adding 289g of the large particle size sol (A2) obtained in the above-mentioned Example 2, continuing to stir for 60min, and finally adding 329g of H ⁇ zeolite slurry (wherein the slurry is Containing 167g of H ⁇ zeolite, the solid content of the slurry is 38% by weight), stirred for 30min, and the solid content of the total slurry obtained is 25.7% by weight. Then the obtained slurry was spray-molded and dried, and calcined at 550° C. for 1.5 h to obtain the catalytic cracking catalyst C2 containing the large particle size sol of the present invention.
  • H ⁇ zeolite slurry (wherein the slurry contains 253g of H ⁇ zeolite, and the solid content of the slurry is 35% by weight), 500g of the large particle size sol (A4) obtained in the above-mentioned Example 4, and stir for 60min.
  • 800 g of kaolin slurry (wherein the slurry contains 211 g of kaolin, and the solid content of the slurry is 20% by weight) was added to the above slurry, and the stirring was continued for 60 min, and the solid content of the obtained slurry was 27.1% by weight.
  • the obtained slurry is spray-molded and dried, and calcined at 500° C. for 2 hours to obtain the catalytic cracking catalyst C4 containing the large particle size sol of the present invention.
  • the total pore volume of the catalytic cracking catalyst containing the large particle size sol prepared according to the method of the present invention is significantly increased, that is, it has a rich pore structure, and the proportion of 4-50nm mesopores is Significantly improved, reaching more than 60% of the total pore volume.
  • Examples 11 to 15 and Comparative Examples 7 to 9 respectively evaluate the catalytic cracking performance and the capacity of increasing the production of carbon tetraolefins of the catalyst containing the large particle size sol of the present invention and the comparative catalyst.
  • the catalytic cracking catalyst comprising the large particle size sol prepared in the examples of the present invention, when used in the catalytic cracking reaction of hydrocarbon oil, improved the production of carbon tetraolefins in the catalytic cracking reaction product. rate, and the selectivity of carbon tetraolefins was significantly improved.
  • the comparative sol was prepared according to the method of Example Z2, except that no silica sol was added.
  • the comparative sol was prepared according to the method of Example Z2, except that no aging treatment was performed.
  • the comparative sol was prepared according to the method of Example 1 in CN1417296A, and the difference from the above-mentioned examples Z1-Z5 was that no silica sol was added and no aging treatment was performed.
  • the particle size of the sol obtained according to the preparation method of the present invention is larger and evenly distributed, thereby helping to form a mesopore structure and not easy to block the molecular sieve channel, This enables rapid diffusion of propylene and avoids secondary reactions, thereby improving the yield and selectivity of propylene.
  • the following examples Z6-Z10 are the preparation examples of the catalytic cracking catalyst containing the large particle size sol of the present invention.
  • 66g kaolin and 247g deionized water are added in the beating tank, beating for 60min, then adding 714g of ZSM-5 zeolite slurry (wherein the slurry contains 313g of ZSM-5 zeolite, and the slurry solid content is 35% by weight), stirred for 30min, and finally Add 870 g of the large particle size sol (ZA5) obtained in the above example Z5, stir for 30 min, and the solid content of the obtained slurry is 26.5% by weight. Then the obtained slurry was spray-molded and dried, and calcined at 450° C. for 2 hours to obtain the catalytic cracking catalyst ZC5 containing the large particle size sol of the present invention.
  • ZSM-5 zeolite slurry wherein the slurry contains 313g of ZSM-5 zeolite, and the slurry solid content is 35% by weight
  • Add 870 g of the large particle size sol (ZA5) obtained in the above example Z5 stir for 30 min, and the solid content
  • the total pore volume of the catalytic cracking catalyst containing the large particle size sol prepared according to the method of the present invention is significantly increased, that is, it has a rich pore structure, and the proportion of pores in the range of 4 to 50 nm is Significantly improved, reaching more than 60% of the total pore volume.
  • Catalysts ZC1 ⁇ ZC5 comprising large particle size sols prepared according to the method of the present invention, catalysts DZC1 ⁇ DZC3 prepared in comparative examples, and HSC industrial catalysts (provided by Sinopec Catalyst Qilu Branch, see Table Z3 for main properties), according to 5:
  • the mass ratio of 95 was mixed into a catalyst mixture, and the catalyst mixture was subjected to 800° C. and 100% water vapor aging for 17 hours on a fixed-bed aging device.
  • the evaluation was carried out on the ACE device, and the properties of the raw oil used in the evaluation are shown in Table Z4.
  • Propylene Selectivity Propylene Yield/Conversion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

一种包含大粒径溶胶的催化裂化催化剂及其制法,按其总重量计含15~50重量%的β沸石、10~75重量%的粘土和10~50重量%的大粒径溶胶,用低温氮吸附法测定孔分布,总孔体积不低于0.200mL/g,其中4~50nm中孔的孔体积占总孔体积的60%以上,所述大粒径溶胶含有10~40重量%的Al 2O3、50~85重量%的P2O5和0.2~10重量%的SiO2,其中P2O5∶Al2O质量比为(1.5~5.0)∶1,SiO2∶Al2O3质量比为(0.01~0.3)∶1,溶胶平均粒径分布集中在20~50nm。所述制法包括:先将铝源和去离子水混合得到第一浆液,将第一浆液与磷源混合得到第二浆液,在第二浆液中加入硅溶胶得到第三浆液,将第三浆液老化处理,得到大粒径溶胶。将大粒径溶胶与粘土和β沸石均匀混合得到第四浆液并喷雾干燥和焙烧。所述催化剂应用于催化裂化过程,可显著提高碳四烯烃产率和选择性。

Description

一种包含大粒径溶胶的催化裂化催化剂及其应用 技术领域
本发明属于炼油工业领域,具体而言,本发明涉及一种包含大粒径溶胶的催化裂化催化剂及其制备方法。
背景技术
炼油向烯烃和芳烃等基本化工原料转型已成为行业主流,催化裂化是原油最大化生产低碳烯烃的关键技术之一。据统计,全球近70%的碳四烯烃来自催化裂化装置,并且由催化裂化装置生产碳四烯烃馏分技术具有投资少、成本低的优势,不少公司试图从催化裂化过程获取更大量的碳四烯烃产率,催化裂化催化剂或助剂是增加碳四烯烃产率最直接和经济的方法。
增产碳四烯烃催化裂化催化剂或助剂的主要活性组元有Y型分子筛、ZSM-5分子筛及β沸石等。其中,β沸石由于其结构的特殊性,兼具酸催化特性和结构选择性,被作为增产碳四烯烃催化剂的主要活性组元。粘结剂也是催化裂化催化剂或助剂的主要组元之一,在保证催化剂耐磨性能的同时,可以与活性组元协同作用,提高催化剂的活性和水热稳定性,最常用的粘结剂有铝溶胶、硅溶胶、酸化拟薄水铝石等。
US6355591公开了一种催化裂化助剂,含有4~20重量%磷酸铝,1~40重量%的ZSM-5、Beta沸石及其混合物,40~90重量%的粘土,可以提高液化气产量。
CN1055105C公开了一种多产异丁烯和异戊烯的裂化催化剂,含有磷和稀土的五元环高硅沸石6~30重量%,USY沸石5~20重量%,β沸石1~5重量%,粘土30~60重量%和无机氧化物15~30重量%,该催化剂在催化裂化的工艺条件下具有多产异丁烯和异戊烯的特点,同时可联产高辛烷值汽油。
CN103785456A公开了一种提高低碳烯烃浓度的裂化助剂,含有改性β分子筛、含第一粘土的磷铝无机粘结剂、其它无机粘结剂和VIII族金属添加剂,含或不含第二粘土;所述的含第一粘土的磷铝无机粘结剂包括铝组分、磷组分以及以第一粘土;所述的磷和过渡金属改性β分子筛,以P 2O 5计磷含量占1~10重量%,以金属氧化物计金属含量占0.5~10 重量%。该裂化催化剂组合物应用于石油烃的催化裂化,能增加催化裂化液化气产率,提高液化气中低碳烯烃浓度,尤其是异丁烯浓度,同时提高乙烯与干气之比,提高汽油辛烷值,大比例掺混助剂时不影响主催化剂的重油转化能力。
尽管现有增产低碳烯烃催化裂化催化剂或者催化剂,在一定程度上可以达到增产碳四烯烃的目的,但仍存在以下问题:主要依靠增加液化气产率来增加碳四烯烃产率,而液化气中碳四烯烃浓度变化不大,碳四烯烃选择性较低;催化剂或者催化剂缺乏丰富的中大孔结构,不利于催化裂化过程生成的碳四烯烃快速扩散出来,导致碳四烯烃等低碳烯烃继续二次反应,使得其产率和选择性下降。
因而,为解决上述问题,本发明的目的是提供一种具有丰富中孔结构的催化裂化催化剂/助剂及其制备方法,以进一步-提高碳四烯烃的产率和选择性。
发明内容
一方面,本发明提供一种大粒径溶胶,其(以干基计)含有10~40重量%的Al 2O 3、50~85重量%的P 2O 5和0.2~10重量%的SiO 2,其中P 2O 5∶Al 2O 3质量比为(1.5~5.0)∶1,SiO 2∶Al 2O 3质量比为(0.01~0.3)∶1,优选(0.05~0.3)∶1,所述大粒径溶胶的平均粒径在20~50nm范围内,例如,平均粒径分布在20~50nm范围内的大粒径溶胶占总数量的60%以上。
本发明还提供了包含所述大粒径溶胶的多产低碳烯烃的催化裂化催化剂,其包含(以催化裂化催化剂的干基重量为基准)15~50重量%的β沸石和/或ZSM-5沸石、10~75重量%的粘土、10~50重量%的所述大粒径溶胶。用低温氮吸附法测定孔分布,所述催化裂化催化剂的总孔体积不低于0.200mL/g,其中孔径为4~50nm的中孔的孔体积占总孔体积的60%以上。
在一种实施方式中,本发明所述催化裂化催化剂可用作催化裂化助剂。
在一种实施方式中,根据本发明的催化裂化催化剂含有20~40重量%的β沸石、20~65重量%的粘土和15~45重量%的大粒径溶胶。
在一种实施方式中,所述催化裂化催化剂含有20~50重量%的ZSM-5沸石、10~70重量%的粘土、10~45重量%的大粒径溶胶。
在一种实施方式中,根据本发明的催化裂化催化剂含有25~45重量%的ZSM-5沸石、20~60重量%的粘土和15~40重量%的大粒径溶胶。
在一种实施方式中,所述大粒径溶胶含有15~35重量%的Al 2O 3、55~80重量%的P 2O 5和0.5~8.0重量%的SiO 2,其中P 2O 5∶Al 2O质量比为(2.0~4.5)∶1,SiO 2∶Al 2O 3质量比为(0.05~0.25)∶1,平均粒径分布在25~45nm范围内的大粒径溶胶占总数量的60%以上。
在一种实施方式中,所述催化裂化催化剂的总孔体积为0.200~0.300mL/g。
在一种实施方式中,根据本发明的催化裂化催化剂中,4~50nm中孔的孔体积占总孔体积的65~85%。
在一种实施方式中,所述β沸石选自氢型β沸石、钠型β沸石、磷改性β沸石、金属改性β沸石或者它们的任意组合,所述β沸石中SiO 2与Al 2O 3的摩尔比为20~50。
在一种实施方式中,所述β沸石为氢型β沸石。
在一种实施方式中,所述金属改性β沸石中的金属选自La、Ce、Pr、Zr、Ti、Fe、Cu、Mg。
在一种实施方式中,所述ZSM-5沸石选自HZSM-5沸石、含磷和/或铁的ZSM-5沸石、含磷和/或稀土的ZSM-5沸石、改性ZSM-5沸石或者它们的任意组合。
在一种实施方式中,所述改性ZSM-5沸石选自Zn、Cu、Mg、Zr、Ti或B改性ZSM-5沸石。
在一种实施方式中,所述粘土选自高岭土、累托土、硅藻土、蒙脱土、膨润土、海泡石或者它们的任意组合。
另一方面,本发明提供一种本发明所述催化裂化催化剂的制备方法,包括如下步骤:
(1)首先,制备大粒径溶胶,步骤如下:
(1a)在室温下,将铝源和去离子水混合搅拌30min以上,得到第一浆液,所得第一浆液的固含量为5~25重量%;
(1b)在不高于60℃的温度下,将所述第一浆液与磷源混合搅拌30min以上,得到第二浆液,所得第二浆液的固含量为15~50重量%;
(1c)在不高于60℃的温度下,在所述第二浆液中加入硅溶胶, 混合搅拌30min以上,得到第三浆液,所得第三浆液的固含量为15~50重量%;
(1d)将所述第三浆液置于20~60℃下静置1~72小时,进行老化处理,得到所述大粒径溶胶;
其中,所述磷源以P 2O 5计与所述铝源用量的质量比为(1.5~5.0)∶1,所述硅溶胶以SiO 2计与所述铝源以Al 2O 3计用量的质量比为(0.01~0.3)∶1;
(2)然后,将粘土、β沸石和所述大粒径溶胶充分混合均匀,得到第四浆液,
所得第四浆液的固含量为10~50重量%,将所述第四浆液进行喷雾以成型干燥和焙烧,得到前述催化裂化催化剂,其中,以干基重量计,所述β沸石和/或ZSM-5沸石、所述粘土、所述大粒径溶胶的重量比为(15~50)∶(10~75)∶(10~50)。
在一种实施方式中,以干基重量计,所述ZSM-5沸石、所述粘土、所述大粒径溶胶的重量比为(20~50)∶(10~70)∶(10~45)。
在一种实施方式中,根据本发明的制备方法,其中,在步骤(1a)中,所述混合搅拌进行30~60min。
在一种实施方式中,根据本发明的制备方法,其中,步骤(1b)在35~55℃的温度下进行,所述混合搅拌进行30~90min。
在一种实施方式中,根据本发明的制备方法,其中,步骤(1c)在35~55℃的温度下进行,所述混合搅拌进行30~90min。
在一种实施方式中,根据本发明的制备方法,其中,所述铝源选自拟薄水铝石、氧化铝、薄水铝石、三水铝石和一水铝石中的一种或多种。
在一种实施方式中,根据本发明的制备方法,其中,所述磷源选自磷酸、亚磷酸和次磷酸中的一种或多种。
在一种实施方式中,根据本发明的制备方法,其中,所述粘土选自高岭土、累托土、硅藻土、蒙脱土、膨润土和海泡石中的一种或者多种。
在一种实施方式中,根据本发明的制备方法,其中,所述β沸石选自氢型β沸石、钠型β沸石、磷改性β沸石、金属改性β沸石或者它们的任意组合,所述β沸石中SiO 2与Al 2O 3的摩尔比为20~50。
在一种实施方式中,根据本发明的制备方法,其中,所述ZSM-5沸石选自HZSM-5沸石、含磷和/或铁的ZSM-5沸石、含磷和/或稀土的ZSM-5沸石、改性ZSM-5沸石或者它们的任意组合。
在一种实施方式中,根据本发明的制备方法,其中,所述改性ZSM-5沸石选自Zn、Cu、Mg、Zr、Ti或B改性ZSM-5沸石。
再一方面,本发明提供一种大粒径溶胶,以其干基重量计,含有10~40重量%的Al 2O 3、50~85重量%的P 2O 5和0.2~10重量%的SiO 2,其中P 2O 5∶Al 2O 3质量比为(1.5~5.0)∶1,SiO 2∶Al 2O 3质量比为(0.01~0.3)∶1,其平均粒径为20~50nm,优选的,并且按如下方法制备:
(1a)在室温下,将铝源和去离子水混合搅拌30min以上,得到第一浆液,所得第一浆液的固含量为5~25重量%;
(1b)在不高于60℃的温度下,将所述第一浆液与磷源混合搅拌30min以上,得到第二浆液,所得第二浆液的固含量为15~50重量%;
(1c)在不高于60℃的温度下,在所述第二浆液中加入硅溶胶,混合搅拌30min以上,得到第三浆液,所得第三浆液的固含量为15~50重量%;及
(1d)将所述第三浆液置于20~60℃下静置1~72小时,进行老化处理,得到所述大粒径溶胶。
根据本发明方法制备的催化裂化催化剂,如前所述,包含大粒径溶胶,由粒径尺寸较大且分布均匀的胶粒堆积从而形成丰富的中孔结构。因而,将本发明包含大粒径溶胶的催化裂化催化剂用于催化裂化过程,低碳烯烃产率较高,低碳烯烃可通过所述催化剂丰富的中孔结构快速扩散出来,进而避免其继续二次反应,从而实现低碳烯烃产率和选择性的提高。另外,本发明的催化裂化催化剂包含的大粒径溶胶分布于分子筛及粘土之上,还可进一步提高粘结性能,改善催化剂的耐磨性即强度。
附图说明
图1为根据实施例1制备的催化裂化催化剂A1的TEM照片。
图2为根据对比例3制备的催化裂化催化剂DA3的TEM照片。
图3为根据实施例和对比例3制备的催化裂化催化剂的孔径分布图。
图4为根据实施例Z1制备的催化裂化催化剂ZA1的TEM照片。
图5为根据实施例Z2和对比例Z3制备的催化裂化催化剂的孔径分布图。
具体实施方式
下面通过附图和实施例对本发明进一步详细说明。通过这些说明,本发明的特点和优点将变得更为清楚明确。
此外,下面所描述的本发明不同实施方式中涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
一方面,本发明提供了一种多产低碳烯烃的催化裂化催化剂,以催化裂化催化剂的干基重量为基准,所述催化裂化催化剂含有15~50重量%的β沸石、10~75重量%的粘土、10~50重量%的大粒径溶胶,所述大粒径溶胶含有10~40重量%的Al 2O 3、50~85重量%的P 2O 5和0.2~10重量%的SiO 2,其中P 2O 5∶Al 2O质量比为(1.5~5.0)∶1,SiO 2∶Al 2O 3质量比为(0.01~0.3)∶1,平均粒径分布在20~50nm范围内的大粒径溶胶占总数量的60%以上,用低温氮吸附法测定孔分布,所述催化裂化催化剂的总孔体积不低于0.200mL/g,其中4~50nm中孔的孔体积占总孔体积的60%以上。该催化裂化催化剂在多产碳四烯烃方面效果明显。
根据本发明的催化裂化催化剂优选含有20~40重量%的β沸石、20~65重量%的粘土和15~45重量%的大粒径溶胶。所述大粒径溶胶优选含有15~35重量%的Al 2O 3、55~80重量%的P 2O 5和0.5~8.0重量%的SiO 2,其中P 2O 5∶Al 2O质量比优选为(2.0~4.5)∶1,SiO 2∶Al 2O 3质量比优选为(0.05~0.25)∶1。平均粒径分布在25~45nm范围内的大粒径溶胶可占总数量的60%以上。根据本发明的催化裂化催化剂的总孔体积可达到0.200~0.300mL/g,其中,4~50nm中孔的孔体积可占总孔体积的65~85%。
本发明的催化裂化催化剂中所包含的所述β沸石选自氢型β沸石、钠型β沸石、磷改性β沸石、金属改性β沸石或者它们的任意组合,优选为氢型β沸石。本发明的催化裂化催化剂中所包含的所述金属改性β沸石中的金属例如可为稀土金属等,例如可选自La、Ce、Pr、Zr、Ti、Fe、Cu、Mg。本发明的催化裂化催化剂中所包含的所述粘土可为本领域技术人员所熟知的适用于催化剂制备的各种粘土,例如可选自高岭 土、累托土、硅藻土、蒙脱土、膨润土、海泡石或者它们的任意组合。
第二方面,本发明提供了一种多产低碳烯烃的催化裂化催化剂,以催化裂化催化剂的干基重量为基准,所述催化裂化催化剂含有20~50重量%的ZSM-5沸石、10~70重量%的粘土、10~45重量%的大粒径溶胶;所述大粒径溶胶按自身干基重量计含有10~40重量%的Al 2O 3、50~85重量%的P 2O 5和0.2~10重量%的SiO 2,其中P 2O 5∶Al 2O 3质量比为(1.5~5.0)∶1,SiO 2∶Al 2O 3质量比为(0.01~0.3)∶1,所述大粒径溶胶中平均粒径在20~50nm范围内的胶粒数量占总数量的60%以上,用低温氮吸附法测定,所述催化裂化催化剂的总孔体积不低于0.200mL/g,其中4~50nm中孔的孔体积占总孔体积的60%以上。该催化剂可以多产丙烯。
根据本发明第二方面的催化裂化催化剂优选含有25~45重量%的ZSM-5沸石、20~60重量%的粘土和15~40重量%的大粒径溶胶;所述大粒径溶胶按自身干基重量计优选含有15~35重量%的Al 2O 3、55~80重量%的P 2O 5和0.5~8.0重量%的SiO 2,其中P 2O 5∶Al 2O 3质量比优选为(2.0~4.5)∶1,SiO 2∶Al 2O 3质量比优选为(0.05~0.25)∶1;所述大粒径溶胶中平均粒径在25~45nm范围内的胶粒数量可占总数量60%以上;所述催化裂化催化剂的总孔体积可达到0.200~0.300mL/g,其中,4~50nm中孔的孔体积可占总孔体积的65~85%。
根据本发明第二方面的催化裂化催化剂中所包含的所述ZSM-5沸石可选自HZSM-5沸石、含磷和/或铁的ZSM-5沸石、含磷和/或稀土的ZSM-5沸石、改性ZSM-5沸石或者它们的任意组合,其中所述改性ZSM-5沸石可选自Zn、Cu、Mg、Zr、Ti或B等改性的ZSM-5沸石。本发明的催化裂化催化剂中所包含的所述粘土可为本领域技术人员所熟知的适用于催化剂制备的各种粘土,例如可选自高岭土、累托土、硅藻土、蒙脱土、膨润土、海泡石或者它们的任意组合。
另一方面,本发明提供了一种前述催化裂化催化剂的制备方法,包括如下步骤:
(1)首先,制备大粒径溶胶,步骤如下:
(1a)在室温下,将铝源和去离子水混合搅拌30min以上,得到第一浆液,所得第一浆液的固含量为5~25重量%;
(1b)在不高于60℃的温度下,将所述第一浆液与磷源混合搅拌30min以上,得到第二浆液,所得第二浆液的固含量为15~50重量 %;
(1c)在不高于60℃的温度下,在所述第二浆液中加入硅溶胶,混合搅拌30min以上,得到第三浆液,所得第三浆液的固含量为15~50重量%;
(1d)将所述第三浆液置于20~60℃下静置1~72小时,进行老化处理,得到所述大粒径溶胶;
其中,所述磷源以P 2O 5计与所述铝源用量的质量比为(1.5~5.0)∶1,所述硅溶胶以SiO 2计与所述铝源以Al 2O 3计用量的质量比为(0.01~0.3)∶1;
(2)然后,将粘土、β沸石和/或ZSM-5沸石和所述大粒径溶胶充分混合均匀得到第四浆液,所得第四浆液的固含量为10~50重量%,将所述第四浆液进行喷雾成型干燥和焙烧,得到前述催化裂化催化剂,其中,以干基重量计,所述β沸石和/或ZSM-5沸石、所述粘土、所述大粒径溶胶的重量比为(15~50)∶(10~75)∶(10~50)。
根据本发明的一个实施方案,在本发明的制备方法中,步骤(1a)所使用的所述铝源选自拟薄水铝石、氧化铝、硝酸铝、异丙醇铝、薄水铝石、三水铝石和一水铝石中的一种或多种。所述铝源与去离子水混合搅拌的时间优选在30~60min范围内。
根据本发明的一个实施方案,在本发明的制备方法中,步骤(1b)所使用的所述磷源选自磷酸、亚磷酸和次磷酸中的一种或多种。优选在35~55℃的温度下将步骤(1a)制得的第一浆液与所述磷源进行混合搅拌,混合搅拌的时间优选为30~90min。
根据本发明的一个实施方案,在本发明的制备方法中,优选所选择的铝源能与所选择的磷源相互作用,以形成不同形态的磷酸铝。
根据本发明的一个实施方案,在本发明的制备方法中,步骤(1c)优选在35~55℃的温度下进行,步骤(1b)制得的第二浆液与硅溶胶混合搅拌的时间优选为30~90min。
根据本发明的一个实施方案,在本发明的制备方法中,不受限于任何已知理论,据信铝源表面的OH吸收磷酸中的H+形成正电荷胶粒,其有利于大量形成平均粒径为20~50nm胶粒。加入硅溶胶粒子,有利于抑制胶粒的进一步聚集,提高胶体结构的稳定性。
根据本发明的一个实施方案,在本发明的制备方法中,步骤(2)所 使用的粘土与β沸石的选择如前述针对本发明催化裂化催化剂所述。
根据本发明的一个实施方案,在本发明的制备方法中,步骤(2)进行的所述成型干燥是指催化剂的造粒成型和干燥,为本领域技术人员所公知的技术,催化裂化催化剂的制备一般使用喷雾成型干燥,喷雾尾气温度控制在100~250℃。焙烧处理也为本领域技术人员所熟知,例如可在马弗炉中进行。采用如下焙烧处理条件:温度为350~800℃,优选为400~650℃,焙烧时间为0.5~6小时,优选为1~4小时。焙烧可在任何气氛中进行,例如在空气或惰性气氛中进行,惰性气氛中含有惰性气体,惰性气体可包括氮气、氦气、氩气等。
根据本发明的催化裂化催化剂用于催化裂化过程时,可单独向催化裂化反应器中添加,也可与其它催化裂化催化剂混合后使用,例如本发明的催化裂化催化剂可作为催化裂化助剂使用。与其它催化裂化催化剂混合使用时,以本发明催化裂化催化剂和其它催化裂化催化剂的总量为基准,本发明催化裂化催化剂的用量优选为1~50重量%,更优选为5~40重量%。所述其它催化裂化催化剂可以例如为含有Y型分子筛的催化裂化催化剂。
总体而言,与现有技术相比,通过使用本发明的大粒径溶胶,本发明的催化裂化催化剂具有丰富的中孔结构,4~50nm中孔的孔体积占总孔体积的60%以上,用于催化裂化过程,有利于提高原料分子和产物分子的扩散能力,从而,显著提高低碳烯烃的产率和选择性。
具体而言,根据本发明的催化裂化催化剂所具有的丰富中孔结构主要来源于其组成中所包含的大粒径溶胶的胶体粒子堆积产生的孔隙结构。根据本发明的催化裂化催化剂所包含的大粒径溶胶具有至少两方面的功能:一方面分布在沸石分子筛和粘土表面,充分发挥粘结性能,增强催化剂的强度;另一方面,胶体粒子之间堆积形成孔隙结构,由于本发明所含大粒径溶胶的胶体粒径尺寸集中分布在20~50nm范围内,从而所述大粒径粒子堆积能够形成丰富的中孔结构。相比之下,常规溶胶例如铝溶胶和酸化拟薄水铝石的粒径一般小于5nm,较小粒径粒子堆积无法形成丰富的中孔结构,甚至堵塞分子筛的孔道结构。
进一步而言,由图1、2、4所示TEM照片及平均粒径分布可知,根据现有技术制备的常规磷酸铝溶胶的粒径大小分布不均且粒径尺寸较小,通常小于10nm。与之相比,在本发明制备方法中制得的大粒径 溶胶粒径尺寸较大(20~50nm)且分布均匀,从而克服了现有磷酸铝溶胶粒径较小且分布不均导致催化剂中孔结构不明显的问题。
以下通过实施例对本发明作进一步说明,旨在有助于本领域技术人员更好地理解本发明的实质所在和所带来的有益效果,但不应理解为对本发明的可实施范围构成任何限定。
实施例
对以下各实施例及对比例中所用原料说明如下:
高岭土来自苏州高岭土公司,固含量为76重量%;
拟薄水铝石来自山东铝厂,固含量为62重量%;
硅溶胶的固含量27重量%,pH=2~3;
氢型β沸石的固含量75重量%,SiO 2/Al 2O 3摩尔比=25,Na 2O含量为0.15重量%;
氢型ZSM-5沸石,SiO 2与Al 2O 3的摩尔比为42,Na 2O含量为3.5重量%,固含量为80重量%;
磷改性ZSM-5沸石,SiO 2与Al 2O 3的摩尔比为45,Na 2O含量为0.12重量%,P 2O 5含量为2.1重量%,固含量为83重量%。
磷酸来自北京化工厂,规格为分析纯,质量浓度85%。
比表面积和孔体积分析:采用美国Micromeritics公司ASAP2405N V1.01自动吸附仪,通过低温静态氮吸附容量法测量。样品在1.33×10 -2Pa、300℃下抽真空脱气4h,以N 2为吸附介质,在77.4K下测定样品的吸附-脱附等温线。根据BET公式计算样品的比表面,测定相对压力p/p 0=0.98时样品吸附N 2的体积,将其换算为液氮体积,即总孔体积,根据t-plot法计算微孔体积,二者差值为2~100nm中大孔体积,其中4~50nm中孔的孔体积采用分峰拟合的方法得到。孔径分布采用BJH脱附孔径分布数据计算。
胶体粒径大小的测量:采用日本电子公司JEM-2000FX-II透射电镜分析。胶粒的平均粒径是通过随机测量样品TEM图中50个的胶粒投影,取其最大外接圆直径的平均值得来。
催化剂强度:将催化剂放入固定装置中,在恒定气流下吹磨5h,除第一小时外,后四小时的平均磨损百分数称为催化剂的磨损指数,单位为%每小时。方法及标准为:气升法Q/SYLS0518-2002。
催化裂化催化剂评价:将催化裂化催化剂预先在固定床老化装置上进行800℃、100体积%水蒸汽老化17小时,然后在ACE装置上进行评价,反应原料油性质见表4,反应温度为500℃,剂油重量比为6,质量空速16s -1时。其中,转化率=汽油收率+液化气收率+干气收率+焦炭收率,碳四烯烃选择性=碳四烯烃产率/转化率。
以下实施例1~5为根据本发明方法制备大粒径溶胶的实例。
实施例1
首先,将493g拟薄水铝石和1546g去离子水室温(25℃)下混合,搅拌60min,得到第一浆液,其固含量为15重量%。然后,向第一浆液中加入727g浓度85重量%的磷酸溶液,45℃下搅拌60min,得到第二浆液,其固含量为33重量%。接着,向第二浆液中加入283g硅溶胶,45℃下持续搅拌45min,得到第三浆液,其固含量为33重量%。最后,将第三浆液置于45℃下静置48h,即根据本发明方法制得大粒径溶胶A1。
实施例2
首先,将413g拟薄水铝石和868g去离子水室温下混合,搅拌90min,得到第一浆液,其固含量为15重量%。然后,向第一浆液中加入839g浓度85重量%的磷酸溶液,50℃下搅拌60min,得到第二浆液,其固含量为38重量%。接着,向第二浆液中加入114g硅溶胶,50℃下持续搅拌30min,得到第三浆液,其固含量为38重量%。最后,将第三浆液置于50℃下静置12h,即根据本发明方法制得大粒径溶胶A2。
实施例3
首先,将363g拟薄水铝石和1888g去离子水室温下混合,搅拌60min,得到第一浆液,其固含量为10重量%。然后,向第一浆液中加入885g浓度85重量%的磷酸溶液,55℃下搅拌60min,得到第二浆液,其固含量为31重量%。接着,向第二浆液中加入83g硅溶胶,55℃下持续搅拌60min,得到第三浆液,其固含量为31重量%。将第三浆液置于40℃下静置24h,即根据本发明方法制得大粒径溶胶A3。
实施例4
首先,将299g拟薄水铝石和2017g去离子水室温下混合,搅拌45min,得到第一浆液,其固含量为8重量%。然后,向第一浆液中加入911g浓度85重量%的磷酸溶液,50℃下搅拌90min,得到第二浆液,其固含量为30重量%。接着,向第二浆液中加入151g硅溶胶,50℃下持续搅拌30min,得到第三浆液,其固含量为30重量%。将第三浆液置于35℃下静置24h,即根据本发明方法制得大粒径溶胶A4。
实施例5
首先,将268g拟薄水铝石和3059g去离子水室温下混合,搅拌60min,得到第一浆液,其固含量为5重量%。然后,向第一浆液中加入979g浓度85重量%的磷酸溶液,60℃下搅拌90min,得到第二浆液,其固含量为23重量%。接着,向第二浆液中加入6g硅溶胶,60℃下持续搅拌30min,得到第三浆液,其固含量为23重量%。将第三浆液置于60℃下静置12h,即根据本发明方法制得大粒径溶胶A5。
对比例1
按照实施例1的方法制备对比溶胶,不同之处在于未加入硅溶胶。
首先,将534g拟薄水铝石和1674g去离子水室温下混合,搅拌60min,得到第一浆液,其固含量为15重量%。然后,向第一浆液中加入787g浓度85重量%的磷酸溶液,45℃下搅拌60min,得到第二浆液,其固含量为33重量%。将第二浆液置于45℃下静置48h,即得对比溶胶DA1。
对比例2
按照实施例1的方法制备对比溶胶,不同之处在于不进行老化处理。
首先,将493g拟薄水铝石和1546g去离子水室温下混合,搅拌60min,得到第一浆液,其固含量为15重量%。然后,向第一浆液中加入727g浓度85重量%的磷酸溶液,45℃下搅拌60min,得到第二浆液,其固含量为33重量%。接着,向第二浆液中加入283g硅溶胶,45℃下持续搅拌45min,得到第三浆液,其固含量为33重量%,即得 对比溶胶DA2。
对比例3
按照CN1417296A中实施例1的方法制备对比溶胶,与上述实施例1~5的不同之处在于未加入硅溶胶且不进行老化处理。
将534g拟薄水铝石和1674g去离子水室温下混合,搅拌30min,搅拌下往浆液中加入787g浓度85重量%的磷酸溶液,70℃下搅拌45min,即制得无色透明的含磷铝溶胶,即对比溶胶DA3。
实施例1~5及对比例1~3所得溶胶的物化性质见表1。实施例1和对比例3所得溶胶的TEM照片见图1和图2。
表1实施例1~5及对比例1~3所得溶胶的组成和性质
溶胶名称 A1 A2 A3 A4 A5 DA1 DA2 DA3
P 2O 5,重量% 61.8 71.3 75.2 77.4 83.2 66.9 61.8 66.9
Al 2O 3,重量% 30.6 25.6 22.5 18.5 16.6 33.1 30.6 33.1
SiO 2,重量% 7.6 3.1 2.3 4.1 0.2 0.0 7.6 0.0
平均粒径,nm 35 40 38 30 25 12 15 5
由表1及图1和2可见,与对比例相比,按照本发明的制备方法得到的溶胶粒径尺寸较大,并且分布均匀,从而有助于形成中孔结构,提升碳四烯烃的产率和选择性。
以下实施例6~10为本发明包含大粒径溶胶的催化裂化催化剂的制备实例。
实施例6
将428g高岭土与1604g脱阳离子水加入到打浆罐中,打浆60min,然后加入286g的Hβ沸石浆液(其中浆液中含H(氢型)β沸石167g,浆液固含量为35重量%),搅拌30min,最后加入上述实施例1中得到的大粒径溶胶(A1)227g,搅拌15min,所得浆液固含量为19.7重量%。然后将得到的浆液喷雾成型干燥,于500℃焙烧2h,得到本发明包含大粒径溶胶的催化裂化催化剂C1。
实施例7
将349g高岭土与976g脱阳离子水加入到打浆罐中,打浆60min,然后加入289g上述实施例2中得到的大粒径溶胶(A2),继续搅拌60min,最后加入329g的Hβ沸石浆液(其中浆液中含Hβ沸石167g,浆液固含量为38重量%),搅拌30min,所得总浆液固含量为25.7重量%。然后将得到的浆液喷雾成型干燥,于550℃焙烧1.5h,得到本发明包含大粒径溶胶的催化裂化催化剂C2。
实施例8
将296g高岭土、403g上述实施例3中得到的大粒径溶胶(A3)和647g脱阳离子水混合打浆,搅拌90min。然后在上述浆液中加入500g的Hβ沸石浆液(其中浆液中含Hβ沸石200g,浆液固含量为30重量%),搅拌60min,所得总浆液固含量为32.3重量%。然后将得到的浆液喷雾成型干燥,于600℃焙烧1.0h,得到本发明包含大粒径溶胶的催化裂化催化剂C3。
实施例9
将543g的Hβ沸石浆液(其中浆液中含Hβ沸石253g,浆液固含量为35重量%)、500g上述实施例4中得到的大粒径溶胶(A4)混合,搅拌60min。然后在上述浆液中加入800g的高岭土浆液(其中浆液中含高岭土211g,浆液固含量为20重量%),继续搅拌60min,所得浆液固含量为27.1重量%。然后将得到的浆液喷雾成型干燥,于500℃焙烧2h,得到本发明包含大粒径溶胶的催化裂化催化剂C4。
实施例10
将99g高岭土与276g脱阳离子水加入到打浆罐中,打浆60min,然后加入643g的Hβ沸石浆液(其中浆液中含Hβ沸石300g,浆液固含量为35重量%),搅拌30min,最后加入上述实施例5中得到的大粒径溶胶(A5)870g,搅拌30min,所得浆液固含量为26.5重量%。然后将得到的浆液喷雾成型干燥,于450℃焙烧2h,得到本发明包含大粒径溶胶的催化裂化催化剂C5。
对比例4~6
按照实施例6的方法制备催化裂化催化剂,不同之处在于对比例4~6分别使用对比例1制备的溶胶(DA1)、对比例2制备的溶胶(DA2)、对比例3制备的溶胶(DA3)代替实施例6中所使用的实施例1制备的大粒径溶胶(A1),相应得到对比催化裂化催化剂DC1~DC3。
实施例6~10及对比例4~6所得到的催化剂的物化性质见表2。催化剂的孔径分布见图3。
表2实施例6~10及对比例4~6所得催化裂化催化剂的组成和性质
Figure PCTCN2022125358-appb-000001
由表2及图3可见,与对比例相比,根据本发明方法制备的包含大粒径溶胶的催化裂化催化剂总孔体积明显增加,即具有丰富的孔隙结构,并且4~50nm中孔占比明显提高,达到总孔体积的60%以上。
实施例11~15及对比例7~9
以下实施例11~15及对比例7~9分别对本发明包含大粒径溶胶的催化剂及对比催化剂的催化裂化性能和碳四烯烃增产能力进行测评。
分别将根据本发明方法制备的包含大粒径溶胶的催化剂C1~C5、对比例制备的催化剂DC1~DC3与工业催化剂(牌号HSC,中国石化催化剂有限公司齐鲁分公司提供,主要性质见表3),按照2∶8的质量比混合成催化剂混合物,将催化剂混合物在固定床老化装置上进行800℃,100%水汽老化17h。然后在ACE装置上进行评价,评价所用原料油性质见表4。反应温度、剂油比、重时空速和评价结果列于表5。其中,转化率=汽油收率+液化气收率+干气收率+焦炭收率;碳四烯烃选择性=碳四烯烃收率/转化率。
表3 HSC工业催化剂的性质
Figure PCTCN2022125358-appb-000002
表4原料油性质
Figure PCTCN2022125358-appb-000003
Figure PCTCN2022125358-appb-000004
由表5可见,与对比例相比,本发明实施例中制得的包含大粒径溶胶的催化裂化催化剂,用于烃油催化裂化反应时,提高了催化裂化反应产物中碳四烯烃的产率,并且碳四烯烃选择性显著提高。
实施例Z1
首先,将483g拟薄水铝石和1514g去离子水室温下混合,搅拌60min,得到第一浆液,其固含量为15重量%。然后,向第一浆液中加入736g浓度85重量%的磷酸溶液,45℃下搅拌60min,得到第二浆液,其固含量为34重量%。接着,向第二浆液中加入277g硅溶胶,45℃下持续搅拌45min,得到第三浆液,其固含量为33重量%。最后,将第三浆液置于45℃下静置24h,即根据本发明方法制得的大粒径溶胶ZA1。
实施例Z2
首先,将399g拟薄水铝石和1250g去离子水室温下混合,搅拌90min,得到第一浆液,其固含量为15重量%。然后,向第一浆液中加入851g浓度85重量%的磷酸溶液,50℃下搅拌60min,得到第二浆液,其固含量为39重量%。接着,向第二浆液中加入110g硅溶胶,50℃下持续搅拌60min,得到第三浆液,其固含量为38重量%。最后,将第三浆液置于50℃下静置24h,即根据本发明方法制得的大粒径溶胶ZA2。
实施例Z3
首先,将352g拟薄水铝石和1831g去离子水室温下混合,搅拌60min,得到第一浆液,其固含量为10重量%。然后,向第一浆液中加入894g浓度85重量%的磷酸溶液,55℃下搅拌60min,得到第二浆液,其固含量为31重量%。接着,向第二浆液中加入81g硅溶胶,55℃下持续搅拌60min,得到第三浆液,其固含量31重量%。最后,将第三浆液置于40℃下静置24h,即根据本发明方法制得的大粒径溶胶ZA3。
实施例Z4
首先,将291g拟薄水铝石和1967g去离子水室温下混合,搅拌45min,得到第一浆液,其固含量为8重量%。然后,向第一浆液中加入917g浓度85重量%的磷酸溶液,50℃下搅拌90min,得到第二浆液,其固含量为30重量%。接着,向第二浆液中加入147g硅溶胶,50℃下持续搅拌30min,得到第三浆液,其固含量为30重量%。最后,将第三浆液置于35℃下静置48h,即根据本发明方法制得的大粒径溶胶ZA4。
实施例Z5
首先,将277g拟薄水铝石和3163g去离子水室温下混合,搅拌60min,得到第一浆液,其固含量为5重量%。然后,向第一浆液中加入972g浓度85重量%的磷酸溶液,60℃下搅拌90min,得到第二浆液,其固含量为23重量%。接着,向第二浆液中加入6g硅溶胶,60℃下持续搅拌30min,得到第三浆液,其固含量为23重量%。最后,将第三浆液置于60℃下静置12h,即根据本发明方法制得的大粒径溶胶ZA5。
对比例Z1
按照实施例Z2的方法制备对比溶胶,不同之处在于未加入硅溶胶。
首先,将411g拟薄水铝石和1288g去离子水室温下混合,搅拌60min,得到第一浆液,其固含量为15%。然后,向第一浆液中加入877g浓度85%的磷酸溶液,45℃下搅拌60min,得到第二浆液,其固含量为39%。将第二浆液置于45℃下静置48h,即得对比溶胶DZA1。
对比例Z2
按照实施例Z2的方法制备对比溶胶,不同之处在于不进行老化处理。
首先,将386g拟薄水铝石和1211g去离子水室温下混合,搅拌60min,得到第一浆液,其固含量为15%。然后,向第一浆液中加入824g浓度85%的磷酸溶液,45℃下搅拌60min,得到第二浆液,其固含量为39%。接着,向第二浆液中加入222g硅溶胶,45℃下持续搅拌45min,得到第三浆液,其固含量为38%,即得对比溶胶DZA2。
对比例Z3
参考上述对比例3的制备方法,按照CN1417296A中实施例1的方法制备对比溶胶,与上述实施例Z1~Z5的不同之处在于未加入硅溶胶且不进行老化处理。
将534g拟薄水铝石和1674g去离子水室温下混合,搅拌30min,搅拌下往浆液中加入787g浓度85%的磷酸溶液,70℃下搅拌45min,即制得无色透明的含磷铝溶胶,溶胶固含量为33%,即对比溶胶DZA3。
实施例Z1~Z5及对比例Z1~Z3所得溶胶的物化性质见表Z1。实施例Z1和对比例Z3所得溶胶的TEM照片分别见图4和图2。
表Z1实施例Z1~Z5及对比例Z1~Z3所得溶胶的组成和性质
Figure PCTCN2022125358-appb-000005
由表Z1及图4和图2可见,与对比例相比,按照本发明的制备方法得到的溶胶粒径尺寸较大,并且分布均匀,从而有助于形成中孔结构且不易堵塞分子筛通道,使得丙烯可快速扩散,避免二次反应,进而提升丙烯的产率和选择性。
以下实施例Z6~Z10为本发明包含大粒径溶胶的催化裂化催化剂的制备实例。
实施例Z6
将355g高岭土与1145g去离子水加入到打浆罐中,打浆60min,然后加入,400g的HZSM-5沸石浆液(其中浆液中含HZSM-5沸石175g,浆液固含量为35重量%),搅拌30min,最后加入上述实施例Z1中得到的大粒径溶胶(ZA1)273g,搅拌15min,所得浆液固含量为23.0 重量%。然后将得到的浆液喷雾成型干燥,于500℃焙烧2h,得到本发明包含大粒径溶胶的催化裂化催化剂ZC1。
实施例Z7
将237g高岭土与888g去离子水加入到打浆罐中,打浆60min,然后加入368g上述实施例Z2中得到的大粒径溶胶(ZA2),继续搅拌60min,最后加入474g的HZSM-5沸石浆液(其中浆液中含HZSM-5沸石225g,浆液固含量为38重量%),搅拌30min,所得总浆液固含量为25.4重量%。然后将得到的浆液喷雾成型干燥,于550℃焙烧1.5h,得到本发明包含大粒径溶胶的催化裂化催化剂ZC2。
实施例Z8
将197g高岭土、469g上述实施例Z3中得到的大粒径溶胶(ZA3)和683g去离子水混合打浆,搅拌90min。然后在上述浆液中加入667g的磷改性ZSM-5沸石浆液(其中浆液中含磷改性ZSM-5沸石241g,浆液固含量为30重量%),搅拌60min,所得总浆液固含量为31.4重量%。然后将得到的浆液喷雾成型干燥,于600℃焙烧1.0h,得到本发明包含大粒径溶胶的催化裂化催化剂ZC3。
实施例Z9
将643g的磷改性ZSM-5沸石浆液(其中浆液中含磷改性ZSM-5沸石271g,浆液固含量为35重量%)、583g上述实施例Z4中得到的大粒径溶胶(ZA4)混合,搅拌60min。然后在上述浆液中加入500g的高岭土浆液(其中浆液中含高岭土132g,浆液固含量为20重量%),继续搅拌60min,所得浆液固含量为29.0重量%。然后将得到的浆液喷雾成型干燥,于500℃焙烧2h,得到本发明包含大粒径溶胶的催化裂化催化剂ZC4。
实施例Z10
将66g高岭土与247g去离子水加入到打浆罐中,打浆60min,然后加入714g的ZSM-5沸石浆液(其中浆液中含ZSM-5沸石313g,浆液固含量为35重量%),搅拌30min,最后加入上述实施例Z5中得 到的大粒径溶胶(ZA5)870g,搅拌30min,所得浆液固含量为26.5重量%。然后将得到的浆液喷雾成型干燥,于450℃焙烧2h,得到本发明包含大粒径溶胶的催化裂化催化剂ZC5。
对比例Z4~对比例Z6
按照实施例Z7的方法制备催化裂化催化剂,不同之处在于对比例Z4~6分别使用对比例Z1制备的溶胶(DZA1)、对比例Z2制备的溶胶(DZA2)、对比例Z3制备的溶胶(DZA3)代替实施例Z7中所使用的实施例Z2制备的大粒径溶胶(ZA2)。相应得到对比催化裂化催化剂DZC1~DZC3。
实施例Z6~Z10及对比例Z4~Z6所得到的催化剂的物化性质见表Z2。催化剂的孔径分布见图5。
表Z2实施例Z6~Z10及对比例Z4~Z6所得催化裂化催化剂的组成和性质
Figure PCTCN2022125358-appb-000006
由表Z2及图5可见,与对比例相比,根据本发明方法制备的包含大粒径溶胶的催化裂化催化剂总孔体积明显增加,即具有丰富的孔隙结构,并且4~50nm中孔占比明显提高,达到总孔体积的60%以上。
实施例Z11~Z15及对比例Z7~Z9
以下实施例Z11~Z15及对比例Z7~Z9分别对本发明包含大粒径溶胶的催化剂及对比催化剂的催化裂化性能及增产丙烯的能力进行测评。
分别将根据本发明方法制备的包含大粒径溶胶的催化剂ZC1~ZC5、对比例制备的催化剂DZC1~DZC3与HSC工业催化剂(中国石化催化剂齐鲁分公司提供,主要性质见表Z3),按照5∶95的质量比混合成催化剂混合物,将催化剂混合物在固定床老化装置上进行800℃,100%水汽老化17h。然后在ACE装置上进行评价,评价所用原料油性质见表Z4。反应温度、剂油比和评价结果列于表Z5。其中,转化率=汽油收率+液化气收率+干气收率+焦炭收率。丙烯选择性=丙烯收率/转化率。
表Z3 HSC工业催化剂的性质
Figure PCTCN2022125358-appb-000007
表Z4原料油性质
Figure PCTCN2022125358-appb-000008
表Z5评价结果
Figure PCTCN2022125358-appb-000009
由表Z5可见,与对比例相比,以本发明实施例中制得的包含大粒径溶胶的催化裂化催化剂,用于烃油催化裂化反应时,提高了催化裂化反应产物中丙烯的产率,并且丙烯选择性显著提高。
以上结合了优选实施方式对本发明进行了说明,这些实施方式仅为范例性起到说明性作用。在此基础上,可对本申请进行多种替换和改进,均落入本发明保护范围内。

Claims (19)

  1. 一种大粒径溶胶;其以该大粒径溶胶的干基重量计含有10~40重量%的Al 2O 3、50~85重量%的P 2O 5和0.2~10重量%的SiO 2,并且P 2O 5∶Al 2O 3质量比为(1.5~5.0)∶1,SiO 2∶Al 2O 3质量比为(0.05~0.3)∶1,所述大粒径溶胶的平均粒径在20~50nm范围内。
  2. 根据权利要求1所述的大粒径溶胶,其以干基计含有15~35重量%的Al 2O 3、55~80重量%的P 2O 5和0.5~8.0重量%的SiO 2,并且P 2O 5∶Al 2O质量比为(2.0~4.5)∶1,SiO 2∶Al 2O 3质量比为(0.05~0.25)∶1。
  3. 根据权利要求1所述的大粒径溶胶,其平均粒径分布在25~45nm范围内。
  4. 一种用于催化裂化的组合物,以其干基重量为基准,含有15~50重量%的β沸石和/或ZSM-5沸石、10~75重量%的粘土、和10~50重量%的权利要求1-3任一项所述的大粒径溶胶。
  5. 根据权利要求4所述的组合物,其中以其干基重量为基准,含有20~40重量%的β沸石、20~65重量%的粘土和15~45重量%的大粒径溶胶。
  6. 根据权利要求4所述的组合物,其中,所述β沸石选自氢型β沸石、钠型β沸石、磷和/或金属改性β沸石、金属改性β沸石或者它们的任意组合,优选为氢型β沸石,且所述β沸石中SiO 2与Al 2O 3的摩尔比为20~50。
  7. 根据权利要求6所述的组合物,其中,所述金属改性β沸石中的金属选自La、Ce、Pr、Zr、Ti、Fe、Cu、Mg中的一种或多种。
  8. 根据权利要求4所述的组合物,其中,所述ZSM-5沸石选自HZSM-5沸石、含磷和/或铁的ZSM-5沸石、含磷和/或稀土的ZSM-5沸石、和改性ZSM-5沸石,且所述改性ZSM-5沸石选自Zn、Cu、Mg、Zr、Ti或B改性ZSM-5沸石。
  9. 根据权利要求4所述的组合物,其中,所述粘土选自高岭土、累托土、硅藻土、蒙脱土、膨润土、海泡石中的一种或者多种。
  10. 一种催化裂化催化剂,其由权利要求4-9中任一项所述的组合物通过干燥和焙烧制得;其中用低温氮吸附法测定孔分布,所述催化裂化催化剂的总孔体积不低于0.200mL/g,且其中孔径为4~50nm的 中孔的孔体积占总孔体积的60%或以上。
  11. 根据权利要求10所述的催化裂化催化剂,其中,用低温氮吸附法测定孔分布,所述催化裂化催化剂的总孔体积为0.200~0.300mL/g。
  12. 根据权利要求10所述的催化裂化催化剂,其中,所述催化裂化催化剂中孔径为4~50nm的中孔的孔体积占总孔体积的65~85%。
  13. 一种使用权利要求4-9中任一项所述的组合物制备权利要求10-12中任一项所述的催化裂化催化剂的方法,包括以下步骤:
    (1)制备大粒径溶胶,步骤如下:
    (1a)在室温下,将铝源和去离子水混合搅拌30min以上,得到第一浆液,所得第一浆液的固含量为5~25重量%;
    (1b)在不高于60℃的温度下,将所述第一浆液与磷源混合搅拌30min以上,得到第二浆液,所得第二浆液的固含量为15~50重量%;
    (1c)在不高于60℃的温度下,在所述第二浆液中加入硅溶胶,混合搅拌30min以上,得到第三浆液,所得第三浆液的固含量为15~50重量%;
    (1d)将所述第三浆液置于20~60℃下静置1~72小时,进行老化处理,得到所述大粒径溶胶;
    其中,所述磷源以P 2O 5计与所述铝源用量的质量比为(1.5~5.0)∶1,所述硅溶胶以SiO 2计与所述铝源以Al 2O 3计用量的质量比为(0.05~0.3)∶1;
    (2)将粘土、β沸石和/或ZSM-5沸石与所述大粒径溶胶混合均匀,得到第四浆液,所得第四浆液的固含量为10~50重量%,将所述第四浆液进行喷雾成型干燥和焙烧,得到所述催化裂化催化剂,其中,以干基重量计,所述β沸石、所述粘土、所述大粒径溶胶的重量比为(15~50)∶(10~75)∶(10~50);或者以干基重量计,所述ZSM-5沸石、所述粘土、所述大粒径溶胶的重量比为(20~50)∶(10~70)∶(10~45)。
  14. 根据权利要求13所述的方法,其中,在步骤(1a)中,所述混合搅拌进行30~60min。
  15. 根据权利要求13所述的方法,其中,步骤(1b)在35~55℃的温度下进行,所述混合搅拌进行30~90min。
  16. 根据权利要求13所述的方法,其中,步骤(1c)在35~55℃的温度下进行,所述混合搅拌进行30~90min。
  17. 根据权利要求13所述的方法,其中,所述铝源选自拟薄水铝石、氧化铝、薄水铝石、三水铝石和一水铝石中的一种或多种;所述磷源选自磷酸、亚磷酸和次磷酸中的一种或多种;及所述粘土选自高岭土、累托土、硅藻土、蒙脱土、膨润土和海泡石中的一种或者多种。
  18. 根据权利要求13所述的方法,其中,所述β沸石选自氢型β沸石、钠型β沸石、磷改性β沸石、金属改性β沸石或者它们的任意组合,所述β沸石中SiO 2与Al 2O 3的摩尔比为20~50;和所述ZSM-5沸石选自HZSM-5沸石、含磷和/或铁的ZSM-5沸石、含磷和/或稀土的ZSM-5沸石、改性ZSM-5沸石或者它们的任意组合;其中所述改性ZSM-5沸石选自Zn、Cu、Mg、Zr、Ti或B改性ZSM-5沸石。
  19. 一种大粒径溶胶,以其干基重量计,含有10~40重量%的Al 2O 3、50~85重量%的P 2O 5和0.2~10重量%的SiO 2,其中P 2O 5∶Al 2O 3质量比为(1.5~5.0)∶1,SiO 2∶Al 2O 3质量比为(0.01~0.3)∶1,其平均粒径为20~50nm,按如下方法制备:
    (1a)在室温下,将铝源和去离子水混合搅拌30min以上,得到第一浆液,所得第一浆液的固含量为5~25重量%;
    (1b)在不高于60℃的温度下,将所述第一浆液与磷源混合搅拌30min以上,得到第二浆液,所得第二浆液的固含量为15~50重量%;
    (1c)在不高于60℃的温度下,在所述第二浆液中加入硅溶胶,混合搅拌30min以上,得到第三浆液,所得第三浆液的固含量为15~50重量%;及
    (1d)将所述第三浆液置于20~60℃下静置1~72小时,进行老化处理,得到所述大粒径溶胶。
PCT/CN2022/125358 2021-10-18 2022-10-14 一种包含大粒径溶胶的催化裂化催化剂及其应用 WO2023066153A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2022373550A AU2022373550A1 (en) 2021-10-18 2022-10-14 Catalytic cracking catalyst comprising large-particle-size sol and application thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111208155.0A CN115990505A (zh) 2021-10-18 2021-10-18 一种包含大粒径溶胶的催化裂化助剂及其制备方法
CN202111208155.0 2021-10-18
CN202111208517.6 2021-10-18
CN202111208517.6A CN115990496A (zh) 2021-10-18 2021-10-18 一种包含大粒径溶胶的催化裂化助剂及其制备方法

Publications (1)

Publication Number Publication Date
WO2023066153A1 true WO2023066153A1 (zh) 2023-04-27

Family

ID=86058813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125358 WO2023066153A1 (zh) 2021-10-18 2022-10-14 一种包含大粒径溶胶的催化裂化催化剂及其应用

Country Status (3)

Country Link
AU (1) AU2022373550A1 (zh)
TW (1) TW202317476A (zh)
WO (1) WO2023066153A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102049284A (zh) * 2009-10-30 2011-05-11 中国石油天然气股份有限公司 一种催化裂化丙烯助剂及其制备方法
US20170151554A1 (en) * 2015-11-30 2017-06-01 Indian Oil Corporation Limited Composition and process for preparation of attrition resistant additive suitable for cracking hydrocarbon feed
CN107303507A (zh) * 2016-04-18 2017-10-31 中国石油天然气股份有限公司 一种含磷和硅氧化铝的制备方法
CN108025298A (zh) * 2015-07-23 2018-05-11 雅宝公司 Fcc催化剂添加剂和粘合剂
CN109675616A (zh) * 2017-10-18 2019-04-26 中国石油化工股份有限公司 一种多产丁烯的催化转化催化剂以及制备方法和多产丁烯的催化转化方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102049284A (zh) * 2009-10-30 2011-05-11 中国石油天然气股份有限公司 一种催化裂化丙烯助剂及其制备方法
CN108025298A (zh) * 2015-07-23 2018-05-11 雅宝公司 Fcc催化剂添加剂和粘合剂
US20170151554A1 (en) * 2015-11-30 2017-06-01 Indian Oil Corporation Limited Composition and process for preparation of attrition resistant additive suitable for cracking hydrocarbon feed
CN107303507A (zh) * 2016-04-18 2017-10-31 中国石油天然气股份有限公司 一种含磷和硅氧化铝的制备方法
CN109675616A (zh) * 2017-10-18 2019-04-26 中国石油化工股份有限公司 一种多产丁烯的催化转化催化剂以及制备方法和多产丁烯的催化转化方法

Also Published As

Publication number Publication date
TW202317476A (zh) 2023-05-01
AU2022373550A1 (en) 2024-05-02

Similar Documents

Publication Publication Date Title
JP5847582B2 (ja) 超メソ多孔性yゼオライト
US4968405A (en) Fluid catalytic cracking using catalysts containing monodispersed mesoporous matrices
CN1332757C (zh) 一种裂化催化剂及其应用
CN107971011B (zh) 一种催化裂解催化剂及其制备方法
CN107971001B (zh) 一种含有富含介孔的Beta分子筛的催化裂化助剂及其制备方法
CN107971003B (zh) 一种含有含磷和负载金属的Beta分子筛的催化裂化助剂及其制备方法
WO2020078434A1 (zh) 一种富含介孔的mfi结构分子筛、制备方法和含该分子筛的催化剂及其应用
JP7437412B2 (ja) 接触分解触媒およびその調製方法
WO2020078437A1 (zh) 富含介孔的含磷和稀土的mfi结构分子筛、制备方法和含该分子筛的催化剂及其应用
CN112138711A (zh) 一种催化裂解助剂及其制备方法及烃油催化裂解的方法
CN107971000B (zh) 一种含有含磷Beta分子筛的催化裂化助剂及其制备方法
CN113546672B (zh) 催化裂解催化剂及其制备方法和应用及催化裂解的方法
WO2023066153A1 (zh) 一种包含大粒径溶胶的催化裂化催化剂及其应用
CN109746039B (zh) 一种多级孔硅铝催化材料及其制备方法和应用
CN114130426B (zh) 一种加氢lco多产低碳烯烃的催化裂解催化剂及其制备方法与应用
CN102031139B (zh) 一种烃油催化裂化方法
CN115518678B (zh) 一种轻烃催化裂解催化剂及其制备方法与应用
TW202200266A (zh) 一種催化裂解助劑及其製備方法和應用
CN113797960B (zh) 一种催化裂化助剂及其制备方法和应用
TW202142488A (zh) 一種改性β沸石、催化裂解催化劑及其製備方法和用途
WO2023056863A1 (zh) 一种具有丰富中孔结构的催化裂化催化剂及其制备方法
CN107971022B (zh) 一种增产丙烯的催化裂化助剂及其制备方法
CN115990496A (zh) 一种包含大粒径溶胶的催化裂化助剂及其制备方法
CN115990505A (zh) 一种包含大粒径溶胶的催化裂化助剂及其制备方法
CN114425405B (zh) 一种用于提高丙烯浓度的催化裂化助剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882760

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: AU2022373550

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2401002356

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 2022373550

Country of ref document: AU

Date of ref document: 20221014

Kind code of ref document: A