WO2023065872A1 - 柔性变刚度驱动器以及虚拟现实交互设备 - Google Patents

柔性变刚度驱动器以及虚拟现实交互设备 Download PDF

Info

Publication number
WO2023065872A1
WO2023065872A1 PCT/CN2022/117604 CN2022117604W WO2023065872A1 WO 2023065872 A1 WO2023065872 A1 WO 2023065872A1 CN 2022117604 W CN2022117604 W CN 2022117604W WO 2023065872 A1 WO2023065872 A1 WO 2023065872A1
Authority
WO
WIPO (PCT)
Prior art keywords
variable stiffness
engaging
base
driver
engaging portion
Prior art date
Application number
PCT/CN2022/117604
Other languages
English (en)
French (fr)
Inventor
王党校
王子琦
张玉茹
周湘杰
张凯
Original Assignee
华为技术有限公司
北京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司, 北京航空航天大学 filed Critical 华为技术有限公司
Publication of WO2023065872A1 publication Critical patent/WO2023065872A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/20Input arrangements for video game devices
    • A63F13/24Constructional details thereof, e.g. game controllers with detachable joystick handles
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/25Output arrangements for video game devices
    • A63F13/28Output arrangements for video game devices responding to control signals received from the game device for affecting ambient conditions, e.g. for vibrating players' seats, activating scent dispensers or affecting temperature or light
    • A63F13/285Generating tactile feedback signals via the game input device, e.g. force feedback
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer

Definitions

  • the embodiments of the present application relate to the technical field of terminals, and in particular to a flexible variable stiffness driver and a virtual reality interaction device.
  • Virtual reality technology (Virtual Reality, VR) is a new practical technology developed in the 20th century.
  • Virtual reality technology includes computer, electronic information, and simulation technology. Its basic implementation method is to simulate a virtual environment by computer to give people a sense of environmental immersion.
  • Virtual reality technology is the use of data in real life, electronic signals generated by computer technology, and combining them with various output devices to transform them into phenomena that people can feel. These phenomena can be real objects in reality. , it can also be a substance invisible to our naked eyes, which is represented by a three-dimensional model. Because these phenomena are not what we can see directly, but the real world simulated by computer technology, it is called virtual reality.
  • virtual reality technology makes it possible for users to interact with virtual environments. Users can experience the most real feelings in the virtual reality world, and the authenticity of its simulated environment can be close to reality. At the same time, the virtual reality world can have all the sensory functions that human beings have, such as auditory, visual, tactile, taste, olfactory and other sensory systems. During the operation of virtual reality, users can obtain environmental feedback similar to reality.
  • Embodiments of the present application provide a flexible variable stiffness driver and a virtual reality interactive device.
  • a flexible and variable stiffness driver Through the flexible and variable stiffness driver, users can feel the force or the degree of softness and hardness generated during the interaction of virtual objects, so as to obtain the same or similar experience as the real world, which is conducive to improving the immersion and realism of the user's interaction with the virtual reality world. feel.
  • the first aspect of the present application provides a flexible variable stiffness driver, which at least includes a variable stiffness component and a drive component.
  • the variable stiffness component includes an engaging portion and a bendable base. Two or more substrates are stacked. In at least some of the base bodies, an engaging portion is provided on a surface of one of two adjacent base bodies facing the other.
  • the driving assembly is used to drive two adjacent bases provided with engaging parts, so that the engaging part on one and the engaging part on the other are at least switched from a separated state to an engaged state.
  • the variable stiffness assembly as a whole has a first stiffness.
  • the variable stiffness assembly as a whole has a second stiffness. Wherein, the second stiffness is greater than the first stiffness.
  • the flexible variable stiffness driver of the embodiment of the present application includes a variable stiffness component and a drive component.
  • the overall stiffness of the variable stiffness component can be adjusted.
  • the variable stiffness component includes more than two bendable substrates. Each base itself has a predetermined rigidity. When an external force is applied to a single substrate, the substrate can bend and deform.
  • two adjacent base bodies are respectively provided with engaging parts.
  • the driving assembly is used to drive two adjacent bases provided with engaging parts, so that the engaging part on one and the engaging part on the other are at least switched from a separated state to an engaged state.
  • the variable stiffness component may have a first stiffness.
  • Each matrix is relatively loose and free, so that the variable stiffness component is relatively easy to bend and deform as a whole.
  • the driving assembly drives each base body close to each other, and in two adjacent base bodies provided with engaging parts, when the engaging parts on the two base bodies are switched from a separated state to an engaged state, the variable stiffness assembly has a second stiffness. Wherein, the second stiffness is greater than the first stiffness. At this time, the individual substrates are pressed against each other. Compared with the variable stiffness component with the first stiffness, the variable stiffness component with the second stiffness is relatively difficult to bend and deform as a whole.
  • variable stiffness driver when bending a variable stiffness component with a first stiffness and a variable stiffness component with a second stiffness to the same extent, bending the variable stiffness component with the second stiffness requires more force than bending the variable stiffness component with the second stiffness
  • the force by which a component bends When the flexible and variable stiffness driver is applied to a virtual reality interactive device with force feedback function, the flexible and variable stiffness driver can be set on at least one of the user's body, such as fingers and palms.
  • the variable stiffness component has a first stiffness, and when at least one of the user's fingers and palms is bent and deformed, a scene in which the grasped or held virtual object produces less or softer force can be simulated through the flexible variable stiffness driver.
  • the variable stiffness component has a second stiffness, and when at least one of the user's fingers and palms is bent and deformed, the flexible variable stiffness driver can simulate a scene in which the force generated by the grasped or held virtual object is relatively large or hard.
  • the flexible and variable stiffness driver can feel the force generated during the interaction process of the virtual object or its softness and hardness, so as to obtain the same or similar feeling as the real world, which is conducive to improving the immersion and sense of interaction between the user and the virtual reality world. realism.
  • the flexible variable stiffness driver of the embodiment of the present application is compact in structure, small in size and light in weight, so it is beneficial to improve wearing comfort during use.
  • the hardness of the engaging portion is greater than that of the base body.
  • the structure in which the hardness of the engaging portion is greater than that of the base body can be beneficial to increase the adjustment range of the stiffness change of the variable stiffness component.
  • the base body and the engaging part are integrally formed, so that, on the one hand, it is beneficial to improve the connection strength between the base body and the engaging part, so that the engaging part can bear a relatively large squeeze during the bending process of the base body. Compressive stress without separation from the base; on the other hand, no additional connecting parts, such as adhesive parts, are required between the base and the engaging part, which is conducive to reducing the stiffness adjustment accuracy of the variable stiffness component caused by setting a connecting part with a predetermined thickness Possibility of being adversely affected.
  • both the material of the base body and the material of the engaging part are selected from resin, rubber or silicone.
  • the substrate is flexible and easy to bend and deform.
  • the base body and the engaging part are light in weight, which is conducive to the lightweight design of the variable stiffness component.
  • the base body and the engaging part are a separate assembly structure.
  • the base body and the engaging part are manufactured separately, and then the base body and the engaging part are connected by assembly, so that on the one hand, the overall processing difficulty of the variable stiffness component can be reduced; on the other hand, it can be flexibly adjusted according to the stiffness of the variable stiffness component.
  • the material of the matrix is selected from resin, rubber or silica gel.
  • the material of the engaging portion is selected from resin, plastic, diamond or corundum.
  • the shape of the engaging portion may be spherical, herringbone or bar.
  • variable stiffness component further includes protrusions.
  • the size of the protrusion is smaller than the size of the engaging portion.
  • a plurality of protrusions are provided on the side walls of at least some of the engaging portions.
  • variable stiffness component further includes protrusions.
  • the base body of the engagement part On the base body of the engagement part, the base body has an exposed area between two adjacent engagement parts. At least a portion of the exposed area is provided with a plurality of protrusions. Under the condition that the depths of the engagement portions inserted into the corresponding gaps are the same, the engagement portion provided with protrusions needs to overcome greater frictional resistance than the engagement portion without protrusions.
  • the engaging part with protrusions is not easy to engage and requires greater compressive stress to achieve the same engaging state
  • switching from the state where the engaging part is separated to the state where the engaging part is fully engaged makes the compressive stress applied to the base and the engaging part
  • the limit value is larger, so that the value range of the force applied to the meshing part is wider, and the precision of the force applied to the meshing part is higher, which is conducive to improving the accuracy of the depth of the meshing part inserted into the corresponding gap, and then It is beneficial to improve the stiffness variation range of the variable stiffness component and improve the stiffness control precision of the variable stiffness component.
  • the engaging part with protrusion needs to overcome greater frictional resistance when switching from the engaged state to the disengaged state, so that the engaging part with protrusion is not easy to switch from the engaged state to the disengaged state , can realize the gradual switching of the meshing part to the disengaged state, and reduce the possibility of sudden stress changes in the meshing part when the meshing part switches from the meshing state to the disengaged state because the separation speed is too fast.
  • the shape of the protrusion is spherical or bar-shaped.
  • one base body includes an exposed area located between two adjacent engaging parts.
  • the variable stiffness assembly also includes a recess.
  • the concave part is set correspondingly to the exposed area.
  • the matrix includes more than two connected layer structures. Along the thickness direction of the substrate, two or more layer structures are stacked. The hardness of two adjacent layer structures is different.
  • the material of the matrix has a major influence on the stiffness of the matrix itself, so that the stiffness of the matrix itself formed of one material has a small variation range.
  • the matrix of multi-layer structure can realize the overall stiffness adjustment of the variable stiffness component by adjusting the hardness of each layer, which can help to increase the overall stiffness variation range of the variable stiffness component and increase the variable stiffness. The range of values that the component can simulate for stiffness.
  • the materials of two adjacent layer structures are different.
  • the hardness of two adjacent layer structures can be different to form a matrix with different rigidities, which is conducive to the use of different materials to form a matrix that meets the requirements of different stiffness changes.
  • the hardness of the outermost layer structure is greater than the hardness of the remaining layer structures. Therefore, the outermost layer structure can be used as a constraining structure, which can make the overall size of the matrix difficult to change without affecting the bending of the matrix, and reduce the stiffness change of the variable stiffness component due to the stretching of the matrix during the bending process. Potential for adverse effects on accuracy.
  • the outermost layer structure is a structural member that is bendable and deformable and resistant to stretching.
  • the matrix includes more than two connected block structures. Along the direction perpendicular to the thickness direction of the matrix, more than two block structures are successively distributed. The hardness of two adjacent block structures is different.
  • the material of the base body has a major influence on the stiffness of the base body itself, so that the stiffness of the base body itself formed by integral molding of one material has a small variation range.
  • the base body including multiple block structures can adjust the stiffness of the variable stiffness component as a whole by adjusting the hardness at different positions, which can help increase the overall stiffness variation range of the variable stiffness component and increase The value range of the stiffness can be simulated to realize the stiffness feedback of different regions on the variable stiffness component.
  • the materials of the two adjacent block structures are different, so that the hardness of the two adjacent block structures can be different by selecting the materials of each block structure, which is beneficial to the use of different materials to form composites that meet the requirements. Substrates with varying stiffness requirements.
  • the thickness of the base body is different from the height at which the engaging portion protrudes from the base body.
  • the matrix is an elastic structure.
  • the base body is configured to release its own elastic recovery force and drive the engaging part to switch from the engaged state to the disengaged state.
  • the matrix itself can provide an active force for switching the engagement parts from the engagement state to the disengagement state, so as to ensure the smooth separation of the engagement parts.
  • variable stiffness component further includes an elastic member.
  • the engaging parts on two adjacent base bodies are in the engaged state, the engaging parts press the elastic part to deform.
  • the elastic member releases the elastic recovery force and applies compressive stress to the engaging part.
  • the elastic member releases the elastic restoring force and applies compressive stress to the engaging parts, thereby pushing the engaging parts to separate from each other.
  • the elastic member can provide additional force to the meshing parts when they are separated, so that the meshing parts can be separated relatively easily, which is beneficial to reduce the possibility that the meshing parts are still engaged with each other and fail to separate when switching from the meshed state to the separated state .
  • the elastic member is an elastic sheet.
  • an elastic member is arranged between the engaging part on one and the engaging part on the other.
  • an elastic member is provided on an exposed area of the base body between two adjacent engaging parts.
  • the variable stiffness assembly includes more than three base bodies, wherein, in a part of the number of base bodies, an engaging portion is provided on a surface of one of two adjacent base bodies facing the other. In a part of the number of substrates, the surface of one of the two adjacent substrates is in surface contact with the surface of the other.
  • the contact mode between the various substrates can be set to be different, so that the different stiffness feedback on the variable stiffness component can be realized by flexibly setting the contact mode of the matrix.
  • an engaging portion is provided on a surface of one of two adjacent base bodies facing the other.
  • the driving assembly includes an air bag.
  • the variable stiffness component is arranged in the airbag.
  • the outermost matrix is connected to the inner wall of the airbag.
  • the airbag is used to drive two adjacent base bodies provided with engaging parts.
  • the driving component includes a first electrode and a second electrode. Both the first electrode and the second electrode are connected with the variable stiffness component, and are used to drive two adjacent substrates provided with engaging parts.
  • the driving assembly includes a first electromagnet and a second electromagnet with opposite polarities. Both the first electromagnet and the second electromagnet are connected with the variable stiffness assembly, and are used to drive two adjacent base bodies provided with engaging parts.
  • the second aspect of the embodiment of the present application provides a virtual reality interaction device, which includes the flexible variable stiffness driver as in the above embodiment.
  • the flexible variable stiffness driver at least includes a variable stiffness component and a drive component.
  • the variable stiffness component includes an engaging portion and a bendable base. More than two substrates are stacked.
  • an engaging portion is provided on a surface of one of two adjacent base bodies facing the other.
  • the driving assembly is used to drive two adjacent bases provided with engaging parts, so that the engaging part on one and the engaging part on the other are at least switched from a separated state to an engaged state.
  • the variable stiffness assembly as a whole has a first stiffness.
  • the variable stiffness assembly as a whole has a second stiffness. Wherein, the second stiffness is greater than the first stiffness.
  • the hardness of the engaging portion is greater than that of the base body.
  • the structure in which the hardness of the engaging portion is greater than that of the base body can be beneficial to increase the adjustment range of the stiffness change of the variable stiffness component.
  • the base body and the engaging part are integrally formed, so that, on the one hand, it is beneficial to improve the connection strength between the base body and the engaging part, so that the engaging part can bear a relatively large squeeze during the bending process of the base body. Compressive stress without separation from the base; on the other hand, no additional connecting parts, such as adhesive parts, are required between the base and the engaging part, which is conducive to reducing the stiffness adjustment accuracy of the variable stiffness component caused by setting a connecting part with a predetermined thickness Possibility of being adversely affected.
  • both the material of the base body and the material of the engaging part are selected from resin, rubber or silicone.
  • the substrate is flexible and easy to bend and deform.
  • the base body and the engaging part are light in weight, which is conducive to the lightweight design of the variable stiffness component.
  • the base body and the engaging part are a separate assembly structure.
  • the base body and the engaging part are manufactured separately, and then the base body and the engaging part are connected by assembly, so that on the one hand, the overall processing difficulty of the variable stiffness component can be reduced; on the other hand, it can be flexibly adjusted according to the stiffness of the variable stiffness component.
  • the material of the matrix is selected from resin, rubber or silica gel.
  • the material of the engaging portion is selected from resin, plastic, diamond or corundum.
  • the shape of the engaging portion may be spherical, herringbone or bar.
  • variable stiffness component further includes protrusions.
  • the size of the protrusion is smaller than the size of the engaging portion.
  • a plurality of protrusions are provided on the side walls of at least some of the engaging portions.
  • variable stiffness component further includes protrusions.
  • the base body of the engagement part On the base body of the engagement part, the base body has an exposed area between two adjacent engagement parts. At least a portion of the exposed area is provided with a plurality of protrusions. Under the condition that the depths of the engagement portions inserted into the corresponding gaps are the same, the engagement portion provided with protrusions needs to overcome greater frictional resistance than the engagement portion without protrusions.
  • the engaging part with protrusions is not easy to engage and requires greater compressive stress to achieve the same engaging state
  • switching from the state where the engaging part is separated to the state where the engaging part is fully engaged makes the compressive stress applied to the base and the engaging part
  • the limit value is larger, so that the value range of the force applied to the meshing part is wider, and the precision of the force applied to the meshing part is higher, which is conducive to improving the accuracy of the depth of the meshing part inserted into the corresponding gap, and then It is beneficial to improve the stiffness variation range of the variable stiffness component and improve the stiffness control precision of the variable stiffness component.
  • the engaging part with protrusion needs to overcome greater frictional resistance when switching from the engaged state to the disengaged state, so that the engaging part with protrusion is not easy to switch from the engaged state to the disengaged state , can realize the gradual switching of the meshing part to the disengaged state, and reduce the possibility of sudden stress changes in the meshing part when the meshing part switches from the meshing state to the disengaged state because the separation speed is too fast.
  • the shape of the protrusion is spherical or bar-shaped.
  • one base body includes an exposed area located between two adjacent engaging parts.
  • the variable stiffness assembly also includes a recess.
  • the concave part is set correspondingly to the exposed area.
  • the matrix includes more than two connected layer structures. Along the thickness direction of the substrate, two or more layer structures are stacked. The hardness of two adjacent layer structures is different.
  • the material of the matrix has a major influence on the stiffness of the matrix itself, so that the stiffness of the matrix itself formed of one material has a small variation range.
  • the matrix of multi-layer structure can realize the overall stiffness adjustment of the variable stiffness component by adjusting the hardness of each layer, which can help to increase the overall stiffness variation range of the variable stiffness component and increase the variable stiffness. The range of values that the component can simulate for stiffness.
  • the materials of two adjacent layer structures are different.
  • the hardness of two adjacent layer structures can be different to form a matrix with different rigidities, which is conducive to the use of different materials to form a matrix that meets the requirements of different stiffness changes.
  • the hardness of the outermost layer structure is greater than the hardness of the remaining layer structures. Therefore, the outermost layer structure can be used as a constraining structure, which can make the overall size of the matrix difficult to change without affecting the bending of the matrix, and reduce the stiffness change of the variable stiffness component due to the stretching of the matrix during the bending process. Potential for adverse effects on accuracy.
  • the outermost layer structure is a structural member that is bendable and deformable and resistant to stretching.
  • the matrix includes more than two connected block structures. Along the direction perpendicular to the thickness direction of the matrix, more than two block structures are successively distributed. The hardness of two adjacent block structures is different.
  • the material of the base body has a major influence on the stiffness of the base body itself, so that the stiffness of the base body itself formed by integral molding of one material has a small variation range.
  • the base body including multiple block structures can adjust the stiffness of the variable stiffness component as a whole by adjusting the hardness at different positions, which can help increase the overall stiffness variation range of the variable stiffness component and increase The value range of the stiffness can be simulated to realize the stiffness feedback of different regions on the variable stiffness component.
  • the materials of the two adjacent block structures are different, so that the hardness of the two adjacent block structures can be different by selecting the materials of each block structure, which is beneficial to the use of different materials to form composites that meet the requirements. Substrates with varying stiffness requirements.
  • the thickness of the base body is different from the height at which the engaging portion protrudes from the base body.
  • the base body is an elastic structure, and the base body is configured to release its own elastic recovery force and drive the engaging part to switch from the engaged state to the disengaged state.
  • the matrix itself can provide an active force for switching the engagement parts from the engagement state to the disengagement state, so as to ensure the smooth separation of the engagement parts.
  • variable stiffness component further includes an elastic member.
  • the engaging parts on two adjacent base bodies are in the engaged state, the engaging parts press the elastic part to deform.
  • the elastic member releases the elastic recovery force and applies compressive stress to the engaging part.
  • the elastic member releases the elastic restoring force and applies compressive stress to the engaging parts, thereby pushing the engaging parts to separate from each other.
  • the elastic member can provide additional force to the meshing parts when they are separated, so that the meshing parts can be separated relatively easily, which is beneficial to reduce the possibility that the meshing parts are still engaged with each other and fail to separate when switching from the meshed state to the separated state .
  • the elastic member is an elastic sheet.
  • an elastic member is arranged between the engaging part on one and the engaging part on the other.
  • an elastic member is provided on an exposed area of the base body between two adjacent engaging parts.
  • the variable stiffness assembly includes more than three base bodies, wherein, in a part of the number of base bodies, an engaging portion is provided on a surface of one of two adjacent base bodies facing the other. In a part of the number of substrates, the surface of one of the two adjacent substrates is in surface contact with the surface of the other.
  • the contact mode between the various substrates can be set to be different, so that the different stiffness feedback on the variable stiffness component can be realized by flexibly setting the contact mode of the matrix.
  • an engaging portion is provided on a surface of one of two adjacent base bodies facing the other.
  • the driving assembly includes an air bag.
  • the variable stiffness component is arranged in the airbag.
  • the outermost matrix is connected to the inner wall of the airbag.
  • the airbag is used to drive two adjacent base bodies provided with engaging parts.
  • the driving component includes a first electrode and a second electrode. Both the first electrode and the second electrode are connected with the variable stiffness component, and are used to drive two adjacent substrates provided with engaging parts.
  • the driving assembly includes a first electromagnet and a second electromagnet. Both the first electromagnet and the second electromagnet are connected with the variable stiffness assembly, and are used to drive two adjacent base bodies provided with engaging parts.
  • FIG. 1 is a schematic structural diagram of a flexible variable stiffness driver provided in an embodiment of the present application
  • FIG. 2 is a schematic diagram of a partial exploded structure of the flexible variable stiffness driver provided by the embodiment of the present application;
  • Fig. 3 is a partial cross-sectional structural schematic diagram of the flexible variable stiffness driver provided by the embodiment of the present application in which the engaging parts are in a separated state;
  • Fig. 4 is a partial cross-sectional structural schematic diagram of the fully engaged state of the engaging part in the flexible variable stiffness driver provided by the embodiment of the present application;
  • Fig. 5 is a partial cross-sectional structural schematic diagram of the flexible variable stiffness driver of the embodiment shown in Fig. 3 in a bending state;
  • Fig. 6 is a schematic diagram of the application scene of the flexible variable stiffness driver provided by the embodiment of the present application.
  • Fig. 7 is a partial cross-sectional structural schematic diagram of the flexible variable stiffness driver of the embodiment shown in Fig. 4 in a bending state;
  • Fig. 8 is a partial cross-sectional structural schematic diagram of the engaging part in the partially engaged state of the flexible variable stiffness driver provided by the embodiment of the present application;
  • Fig. 9 is a schematic diagram of an exploded structure of a variable stiffness component provided by an embodiment of the present application.
  • Fig. 10 is a schematic diagram of an exploded structure of a variable stiffness component provided in another embodiment of the present application.
  • Fig. 11 is a schematic diagram of an exploded structure of a variable stiffness component provided in another embodiment of the present application.
  • Fig. 12 is a schematic diagram of a partial structure of a variable stiffness component provided by an embodiment of the present application.
  • Fig. 13 is a schematic diagram of a partial structure of a variable stiffness component provided in another embodiment of the present application.
  • Fig. 14 is a partial structural schematic diagram of a variable stiffness component provided in another embodiment of the present application.
  • Fig. 15 is a schematic diagram of a partial structure of a variable stiffness component provided by another embodiment of the present application.
  • Fig. 16 is a schematic diagram of a partial structure of a variable stiffness component provided in yet another embodiment of the present application.
  • Fig. 17 is an enlarged schematic diagram of place A in Fig. 16;
  • Fig. 18 is a schematic diagram of an exploded structure of a variable stiffness component provided in another embodiment of the present application.
  • Fig. 19 is a schematic diagram of an exploded structure of a variable stiffness component provided in yet another embodiment of the present application.
  • Fig. 20 is a partial cross-sectional structural schematic diagram of the engaging part in the separated state of the flexible variable stiffness driver provided by an embodiment of the present application;
  • Fig. 21 is a partial cross-sectional structural schematic diagram of the engaging part in the engaged state of the flexible variable stiffness driver of the embodiment shown in Fig. 20;
  • Fig. 22 is a partial cross-sectional structural schematic diagram of the engaging part in the separated state of the flexible variable stiffness driver provided by another embodiment of the present application;
  • Fig. 23 is a partial cross-sectional structural schematic diagram of the engaging part in the engaged state of the flexible variable stiffness driver of the embodiment shown in Fig. 22;
  • Fig. 24 is a partial cross-sectional structural schematic diagram of the engaging part in the separated state of the flexible variable stiffness driver provided by another embodiment of the present application.
  • Fig. 25 is a partial cross-sectional structural schematic diagram of the engaging part in the separated state of the flexible variable stiffness driver provided by another embodiment of the present application.
  • Fig. 26 is a partial cross-sectional structural schematic diagram of the engaging part in the separated state of the flexible variable stiffness driver provided by another embodiment of the present application;
  • Fig. 27 is a schematic structural diagram of a flexible variable stiffness driver provided by an embodiment of the present application.
  • Fig. 28 is a schematic structural diagram of a flexible variable stiffness driver provided in another embodiment of the present application.
  • Fig. 29 is a schematic structural diagram of a flexible variable stiffness driver provided in another embodiment of the present application.
  • Fig. 30 is a partial cross-sectional structural schematic diagram of the engaging part in the separated state of the flexible variable stiffness driver provided by another embodiment of the present application;
  • Fig. 31 is a partial cross-sectional structural schematic diagram of the meshing part in the separated state of the flexible variable stiffness driver provided by another embodiment of the present application;
  • FIG. 32 is a schematic diagram of an application scenario of a virtual reality interaction device provided in yet another embodiment of the present application.
  • Airbag 21. Airbag
  • Control module
  • Virtual reality interactive devices include wearable devices.
  • Wearable devices may include force feedback gloves, so that users can wear them on their hands conveniently, and control hand movements in the virtual reality world through hand movements, such as successfully completing actions such as grasping or holding corresponding objects.
  • some wearable device development institutions have developed and designed commercial force feedback gloves.
  • the force feedback glove is driven by a rope, and the mechanical structure including the driver and the transmission mechanism is installed on the back of the user's hand.
  • the transmission mechanism on the power feedback glove is pulled by the driver and the rope, so that when the user's fingers are bent, a feedback force is provided to each finger, thereby simulating the user's hand to grab or hold the corresponding object.
  • the driver and transmission mechanism of the force feedback glove mainly adopts a rigid structure, which results in a large weight and volume of the force feedback glove and poor portability.
  • the current force feedback gloves add more mechanical structures such as drivers and transmission mechanisms on the back of the user's hand, resulting in low comfort for the user to wear for a long time. Therefore, current force feedback gloves cannot be well suited for virtual reality interaction.
  • the embodiment of the present application provides a flexible variable stiffness driver 1 .
  • the flexible variable stiffness driver 1 can realize the variation of stiffness. By controlling the stiffness of the flexible variable stiffness driver 1 , it is possible to simulate the force or the degree of hardness or softness generated during the process of grasping or holding different objects by the user. Through the flexible and variable stiffness driver 1, the user can feel the force or the degree of softness and hardness generated during the interaction of the virtual object, so as to obtain the same or similar feeling as the real world, which is conducive to improving the immersion and sense of interaction between the user and the virtual reality world. realism.
  • the flexible variable stiffness driver 1 of the embodiment of the present application is light in weight and small in size, so when applied to wearable devices such as force feedback gloves, the overall weight of the wearable device can be reduced, which is conducive to improving wearing comfort.
  • the flexible variable stiffness driver 1 of the embodiment of the present application includes a variable stiffness component 10 and a drive component 20 .
  • Variable stiffness means that the stiffness can vary. The magnitude of the stiffness affects how easily the variable stiffness component 10 can undergo bending deformation. The smaller the overall stiffness of the variable stiffness component 10 is, the easier it is to bend and deform. The greater the overall stiffness of the variable stiffness component 10 is, the harder it is to bend and deform.
  • the variable stiffness component 10 includes a base body 11 and an engaging portion 12 .
  • the base body 11 is a bendable and deformable structure. Bending and deforming means that the base body 11 is flexible and can bend and change shape when subjected to external force.
  • the base 11 has a predetermined thickness. Along the thickness direction X of the base body 11 , two or more base bodies 11 are stacked. In at least part of the base bodies 11 , an engaging portion 12 is provided on a surface of one of two adjacent base bodies 11 facing the other.
  • the driving assembly 20 is used to drive two adjacent bases 11 provided with engaging portions 12 , so that the engaging portion 12 on one and the engaging portion 12 on the other at least switch from a disengaged state to an engaged state.
  • the driving assembly 20 can be used to drive two adjacent bases 11 provided with engaging parts 12 to approach each other, so that the engaging part 12 on one and the engaging part 12 on the other are switched from a separated state to an engaged state.
  • the driving assembly 20 can also be used to drive two adjacent bases 11 provided with engaging portions 12 away from each other, so that the engaging portion 12 on one and the engaging portion 12 on the other are switched from an engaged state to a separated state.
  • the separated state refers to two adjacent bases 11 provided with engaging portions 12 , where the engaging portions 12 on one are located on the other two adjacent groups of engaging portions 12 between the outside of the gap 13.
  • the engaged state refers to two adjacent substrates 11 provided with engaging portions 12 , the engaging portion 12 on one is at least partially inserted between two adjacent groups of engaging portions 12 on the other. In the gap 13 between.
  • variable stiffness assembly 10 In two adjacent base bodies 11 provided with engaging parts 12 , when the engaging parts 12 on the two base bodies 11 are separated, the variable stiffness assembly 10 as a whole has a first stiffness. In two adjacent base bodies 11 provided with engaging parts 12 , when the engaging parts 12 on the two base bodies 11 are in an engaged state, the variable stiffness assembly 10 as a whole has a second stiffness. The second stiffness is greater than the first stiffness. The ability of the variable stiffness assembly 10 with the first stiffness to resist bending deformation is weaker than that of the variable stiffness assembly 10 with the second stiffness. Therefore, if the variable stiffness component 10 is bent to the same shape, the external force acting on the variable stiffness component 10 with the second stiffness needs to be greater than the external force acting on the variable stiffness component 10 with the first stiffness.
  • variable stiffness assembly 10 has a relatively small first stiffness against bending deformation.
  • the variable stiffness component 10 is bent under force, the resistance to be overcome by the external force is small, and the variable stiffness component 10 can easily undergo bending deformation.
  • the flexible and variable stiffness driver 1 when the flexible and variable stiffness driver 1 is applied to a virtual reality interactive device with force feedback function, the flexible and variable stiffness driver 1 can be set on at least one of the user's fingers and palms.
  • the flexible and variable stiffness driver 1 can simulate a scene in which the grasped or held virtual object produces less or softer force.
  • the virtual reality interaction device includes a force feedback glove that can be worn on the user's hand.
  • the force feedback glove includes a flexible variable stiffness driver 1 .
  • the virtual reality interaction device may also be force feedback clothes and the like.
  • the force feedback clothing includes a flexible variable stiffness driver 1 .
  • variable stiffness assembly 10 has a relatively large second stiffness against bending deformation, making it relatively difficult for the variable stiffness assembly 10 to undergo bending deformation.
  • the resistance to be overcome by the external force is large.
  • the flexible and variable stiffness driver 1 when the flexible and variable stiffness driver 1 is applied to a virtual reality interactive device with force feedback function, the flexible and variable stiffness driver 1 can be set on at least one of the user's fingers and palms. When at least one of the user's finger and palm is bent and deformed, the flexible and variable stiffness driver 1 can simulate a scene in which the force generated by the grasped or held virtual object is relatively large or relatively hard.
  • variable stiffness assembly 10 when the variable stiffness assembly 10 is applied to at least one of the user's fingers and palms, the user grasps or holds a wire ball and grabs or holds a metal ball of the same size in the virtual reality world.
  • the degree of bending of the user's fingers and palm may be the same, but the user's force or perception of softness and hardness of the user's fingers and palm are different. If the user's perception is set to be lighter and softer when grasping or holding a string ball, then in contrast, the user's perception setting is heavier and harder when grasping or holding a metal ball.
  • variable stiffness component 10 when grabbing or holding a string ball in a virtual reality world, the variable stiffness component 10 may have a first stiffness to simulate a small force and a soft texture.
  • variable stiffness component 10 When grabbing or holding a metal ball in the virtual reality world, the variable stiffness component 10 may have a second stiffness to simulate a large force and a relatively hard texture.
  • the flexible variable stiffness driver 1 of the embodiment of the present application includes a variable stiffness component 10 and a drive component 20 .
  • the overall stiffness of the variable stiffness component 10 can be adjusted.
  • the variable stiffness component 10 includes more than two bases 11 that can be bent and deformed. Each base body 11 itself has a predetermined rigidity. When an external force is applied to a single base 11, the base 11 can bend and deform. In at least part of the base bodies 11 , two adjacent base bodies 11 are respectively provided with engaging portions 12 .
  • the driving assembly 20 is used to drive two adjacent bases 11 provided with engaging portions 12 , so that the engaging portion 12 on one and the engaging portion 12 on the other at least switch from a disengaged state to an engaged state.
  • variable stiffness component 10 may have a first stiffness.
  • Each matrix 11 is relatively loose and free, so that the whole variable stiffness assembly 10 is relatively easy to bend and deform.
  • the driving assembly 20 can drive each base body 11 close to each other, and in two adjacent base bodies 11 provided with engaging parts 12, when the engaging parts 12 on the two base bodies 11 are switched from a separated state to an engaged state, the variable stiffness assembly 10 has a second Two stiffness. Wherein, the second stiffness is greater than the first stiffness. At this time, the respective substrates 11 are pressed against each other.
  • variable stiffness component 10 with the second stiffness is relatively difficult to bend and deform as a whole.
  • the bending force of the variable stiffness component 10 with the second stiffness is greater than that of bending the variable stiffness component 10 with the second stiffness.
  • the variable stiffness assembly 10 undergoes a bending force.
  • the flexible and variable stiffness driver 1 When the flexible and variable stiffness driver 1 is applied to a virtual reality interactive device with force feedback function, the flexible and variable stiffness driver 1 can be set on at least one of the user's body, such as fingers and palms.
  • the variable stiffness component 10 has a first stiffness, and when at least one of the user's finger and palm is bent and deformed, the force generated during the process of grasping or holding the virtual object can be simulated by the flexible variable stiffness driver 1. Small or soft scene.
  • the variable stiffness component 10 has a second stiffness, and when at least one of the user's fingers and palms is bent and deformed, the flexible variable stiffness driver 1 can simulate the greater or harder force generated during the process of grabbing or holding a virtual object scene.
  • the flexible variable stiffness driver 1 Through the flexible and variable stiffness driver 1, the user can feel the force or the degree of softness and hardness generated during the interaction of the virtual object, so as to obtain the same or similar feeling as the real world, which is conducive to improving the immersion and sense of interaction between the user and the virtual reality world. realism.
  • the flexible variable stiffness driver 1 of the embodiment of the present application is compact in structure, small in size and light in weight, so it is beneficial to improve wearing comfort during use.
  • the driving assembly 20 applies a force to the variable stiffness assembly 10, and drives two or more substrates 11 to approach each other along the thickness direction X, so that in two adjacent substrates 11 provided with engaging portions 12, The engaging portion 12 on one is switched from the disengaged state to the engaged state with the engaging portion 12 on the other.
  • the engaging portions 12 on one are at least partially inserted into the gap between two adjacent groups of engaging portions 12 on the other. 13, so that the engaging portions 12 on the two base bodies 11 are engaged with each other.
  • the depth of insertion of the engagement portion 12 on one of the corresponding gaps 13 is different, so the stiffness of the variable stiffness component 10 is different.
  • the greater the insertion depth of the engaging portion 12 into the gap 13, the greater the overall stiffness of the variable stiffness assembly 10, that is, the greater the value of the second stiffness.
  • the value of the second stiffness of the variable stiffness assembly 10 as a whole can be controlled, thereby facilitating the realization of the stepless stiffness of the entire variable stiffness assembly 10 Adjust to increase the stiffness variation range, so that more stress value points can be simulated.
  • the engaging portions 12 on one are completely inserted between the adjacent two groups of engaging portions 12 on the other. In gap 13.
  • the engaging portion 12 on one is partially inserted into the gap 13 between two adjacent groups of engaging portions 12 on the other. middle.
  • the engaging portions 12 on the two base bodies 11 when they are engaged with each other, they have different engaging states.
  • the first meshing state one-third of the meshing portion 12 on one is inserted into the gap 13 between two adjacent groups of meshing portions 12 on the other.
  • the second meshing state half of the meshing portion 12 on one is inserted into the gap 13 between two adjacent groups of meshing portions 12 on the other.
  • the third meshing state the meshing portion 12 on one is completely inserted into the gap 13 between two adjacent groups of meshing portions 12 on the other.
  • the stiffness of the variable stiffness assembly 10 is different in the above three different meshing states. Relatively, in the first meshing state, the stiffness of the variable stiffness assembly 10 is minimum, and in the third meshing state, the stiffness of the variable stiffness assembly 10 is maximum.
  • variable stiffness assembly 10 when the variable stiffness assembly 10 is applied to at least one of the user's finger or palm, more than two groups of engaging portions 12 are arranged at intervals along the bending direction of the finger or palm.
  • the arrangement direction of more than two groups of engaging portions 12 is the same as the length direction of the finger.
  • the arrangement direction of more than two groups of engaging parts 12 is the same as the direction from the wrist to the fingers.
  • the arrangement direction of more than two groups of engaging parts 12 is the same as the direction from the wrist to the fingertips.
  • base 11 may be a structure having a predetermined length and width.
  • more than two groups of engaging portions 12 are arranged at intervals.
  • the arrangement direction of more than two groups of engaging portions 12 is the same as the longitudinal direction Y of the base body 11 .
  • Each set of engaging parts 12 may include one or more than two engaging parts 12 .
  • more than two groups of engaging portions 12 are evenly spaced.
  • the distance L between two adjacent gaps 13 ranges from 1 mm to 3 mm, for example, but not limited to 2 mm.
  • the hardness of the base body 11 is different from that of the engaging portion 12 .
  • the hardness of the engaging portion 12 is greater than that of the base body 11 .
  • the stiffness of the base body 11 itself is the main factor affecting the stiffness of the variable stiffness assembly 10 , so the stiffness of the variable stiffness assembly 10 is relatively small and easy to bend.
  • the engaging parts 12 are in the engaged state, the engaging parts 12 with higher hardness are engaged with each other, and the rigidity of the variable stiffness assembly 10 is relatively large. Therefore, when the engaging part 12 is in the disengaged state, the variable stiffness component 10 can simulate a force feedback with a small force or a soft texture generated during the interaction of the virtual object.
  • variable stiffness component 10 can Simulate the force feedback generated during the interaction of virtual objects with greater force or harder texture; Possibility of skewing and loss of good mesh.
  • the structure in which the hardness of the engaging portion 12 is greater than that of the base body 11 can be beneficial to increase the adjustment range of the stiffness change of the variable stiffness component 10 .
  • the base 11 and the engaging portion 12 are integrally formed, so that, on the one hand, it is beneficial to improve the connection strength between the base 11 and the engaging portion 12, so that the engaging portion 12 can be used during the bending of the base 11. Bear a large extrusion stress without being separated from the base 11; on the other hand, there is no need to additionally arrange connecting parts, such as adhesive parts, between the base body 11 and the engaging part 12, which is conducive to reducing the loss caused by setting a connecting part with a predetermined thickness. This leads to the possibility that the stiffness adjustment accuracy of the variable stiffness assembly 10 is adversely affected.
  • the integral molding structure refers to the continuous transition between the base body 11 and the engaging portion 12, and there is no need for a connecting piece between the two, but when the base body 11 and the engaging portion 12 need to be separated, one of the base body 11 and the engaging portion 12 needs to be destroyed. structure of the reader.
  • the material of the base body 11 is the same as that of the engaging portion 12 .
  • the base body 11 is a single-layer structure. Both the material of the base body 11 and the material of the engaging portion 12 are selected from resin, rubber or silicone.
  • the base body 11 is flexible and easy to bend and deform.
  • the base body 11 and the engaging portion 12 are light in weight, which is beneficial to the lightweight design of the variable stiffness component 10 .
  • machining may be used to remove material from the blank to form the base body 11 and the engaging portion 12 .
  • the base body 11 and the engaging portion 12 may be manufactured in an additive manner by using a 3D printing process.
  • the base body 11 may be formed using silica gel with a hardness of 40A
  • the engaging portion 12 may be formed using silica gel with a hardness of 95A through a 3D printing process.
  • the base body 11 and the engaging portion 12 are separate assembly structures.
  • the base body 11 and the engaging portion 12 are manufactured separately, and then the base body 11 and the engaging portion 12 are connected by assembly, so that on the one hand, the overall processing difficulty of the variable stiffness component 10 can be reduced; on the other hand, the variable stiffness component 10 can be According to the rigidity adjustment requirements, the materials of the base body 11 and the engaging part 12 can be flexibly selected.
  • the substrate 11 is a single-layer structure.
  • the material of the base body 11 and the material of the engaging portion 12 may be the same, for example, both may be selected from resin, rubber or silicone.
  • the engagement portion 12 is connected to the base body 11 by bonding or hot-melt welding.
  • the substrate 11 is a single-layer structure.
  • the material of the base body 11 and the material of the engaging portion 12 can be different, for example, the material of the base body 11 can be selected from resin, rubber or silicone.
  • the material of the engagement part 12 may be selected from plastic, diamond or corundum.
  • the material of the engaging portion 12 may be brown fused alumina.
  • the hardness of the engaging portion 12 is greater than that of the base body 11 .
  • the engagement part 12 can be connected to the base body 11 by adhesive.
  • the shape of the engaging portion 12 may be herringbone.
  • the engagement portion 12 includes two intersecting extensions.
  • the value range of the included angle between the two extension sections may be 100° to 160°.
  • the shape of the engaging portion 12 may be a spherical shape, for example, a hemispherical shape.
  • Each set of engaging portions 12 may include a plurality of spherical engaging portions 12 arranged at intervals.
  • the engaging portion 12 on one base body 11 may be in contact with four engaging portions 12 on the other base body 11 .
  • the shape of the engaging portion 12 may be a strip.
  • the engaging portion 12 extends in a straight line.
  • the engagement portion 12 extends along the width direction Z of the base body 11 . Both the thickness direction X and the length direction Y are perpendicular to the width direction Z.
  • the surface of the engagement portion 12 facing away from the base 11 is a curved surface. More than two engaging portions 12 form a wave-like structure.
  • the shape of the engaging portion 12 in the present application is not limited to the above-mentioned shapes, and other shapes that can realize the mutual engagement of the engaging portions 12 are within the protection scope of the present application.
  • the variable stiffness assembly 10 further includes a protrusion 14 .
  • the size of the protrusion 14 is smaller than that of the engaging portion 12 .
  • at least some of the side walls 121 of the engaging portion 12 are provided with a plurality of protrusions 14 .
  • the side wall 121 of the engagement portion 12 refers to a surface facing the gap 13 and used for engagement.
  • the engagement portion 12 provided with the protrusion 14 needs to overcome greater frictional resistance than the engagement portion 12 without the protrusion 14 . Since the engagement portion 12 where the protrusion 14 is provided is not easy to engage and requires greater compressive stress to achieve the same engagement state, it is switched from the disengaged state of the engagement portion 12 to the fully engaged state of the engagement portion 12, so that the applied force on the base 11 and the engagement portion The upper limit of the compressive stress of 12 is larger, so that the value range of the force applied to the engaging part 12 is wider, and the precision of the force applied to the engaging part 12 is higher, which is conducive to improving the insertion of the engaging part 12.
  • the engagement portion 12 with the protrusion 14 needs to overcome greater frictional resistance when switching from the engaged state to the disengaged state, so that the engagement portion 12 with the protrusion 14 is not easy to move from Switching from the engaged state to the disengaged state can realize the gradual switching of the engaging part 12 to the disengaged state, reducing the possibility of sudden stress changes in the engaging part 12 due to the excessively fast separation speed.
  • the friction force of the side wall 121 can be adjusted and changed.
  • the height of the engaging portion 12 protruding from the base 11 may range from 0.5 mm to 3 mm, for example, but not limited to 1 mm.
  • the height of the protrusion 14 protruding from the sidewall 121 may range from 5 microns to 500 microns.
  • the sidewalls 121 of a certain number of engaging parts 12 are provided with a plurality of protrusions 14 , while the sidewalls 121 of the remaining number of engaging parts 12 are not provided with protrusions 14 . Therefore, different types of engaging parts 12 can be provided at different positions on one base 11, so that the difference in stiffness variation effects at different positions on the variable stiffness component 10 can be realized, so as to better simulate the user's grasping or gripping. keep the experience.
  • the base body 11 has an exposed area 11 a located between two adjacent engaging portions 12 .
  • the number of exposed regions 11a is plural.
  • the variable stiffness assembly 10 includes a concave portion 15 .
  • the concave portion 15 is provided corresponding to the exposed area 11a.
  • At least part of the exposed areas 11 a are correspondingly provided with recesses 15 .
  • the recess 15 is recessed in the thickness direction X of the base body 11 .
  • the engaging portion 12 on a base 11 When the engaging portion 12 on a base 11 is inserted into the corresponding recess 15, the engaging portion 12 will be limited by the side wall of the recess 15, so that the engaging portion 12 is not easy to move along the width direction Z of the base 11, and the engaging portion 12 is lowered along the width direction Z.
  • the movement of the base body 11 in the width direction Z may reduce the engagement area with the engagement portions 12 on both sides of the concave portion 15 .
  • the part of the engaging portion 12 on one base body 11 for inserting into the corresponding recess 15 matches the shape of the recess 15 .
  • the number of recesses 15 is one.
  • the concave portion 15 is not disposed through the base body 11 .
  • the base body 11 has a plurality of exposed regions 11 a located between two adjacent engaging portions 12 .
  • a plurality of protrusions 14 are provided on at least a partial number of the exposed areas 11a. After the protrusion 14 is provided on the exposed area 11a, the frictional force of the exposed area 11a can be increased.
  • the frictional force between the surface of the engaging portion 12 facing the exposed area 11a and the exposed area 11a where the protrusion 14 is provided is relatively large, so that the engaging portion 12 is not easy to face the exposed area 11a Movement occurs.
  • variable stiffness component 10 Under the condition that the variable stiffness component 10 is bent to the same degree, the bending force of the variable stiffness component 10 comprising the base 11 provided with the protrusion 14 is greater than that of the variable stiffness component 10 comprising the base 11 not provided with the protrusion 14 The force of bending occurs, so that the protrusion 14 is provided in the exposed area 11 a, which is beneficial to improve the stiffness variation range of the variable stiffness component 10 .
  • the protrusion 14 is provided on the side wall 121 of the engagement portion 12 and the exposed area 11 a of the base 11 at the same time.
  • the top wall 122 of the engagement portion 12 may also be provided with a protrusion 14 .
  • the protrusion 14 is spherical in shape, such as a semicircular spherical shape.
  • the shape of the protrusion 14 can be the same as that of the engaging portion 12, and a plurality of protrusions 14 are arranged at intervals on at least one of the side wall 121 of the engaging portion 12 and the exposed area 11a on the base 11 .
  • the engaging portion 12 is herringbone-shaped or strip-shaped, a plurality of protrusions 14 are arranged at intervals on at least one of the sidewall 121 of the engaging portion 12 and the exposed area 11 a on the base 11 .
  • the shape of the protrusion 14 is a bar.
  • the engaging portion 12 is herringbone, strip or spherical
  • the protrusion 14 extends along the width direction Z of the base 11 .
  • a plurality of protrusions 14 are disposed at intervals on at least one of the sidewall 121 of the engagement portion 12 and the exposed area 11 a on the base 11 .
  • the shape of the protrusion 14 in the present application is not limited to the shapes illustrated above, and other shapes of the protrusion 14 that can achieve the same function are within the protection scope of the present application.
  • a part of exposed areas 11 a are provided with a plurality of protrusions 14 , while the remaining exposed areas 11 a are not provided with protrusions 14 . Therefore, different types of exposed areas 11a can be set at different positions on a substrate 11, so that the difference in stiffness variation effects at different positions on the variable stiffness component 10 can be realized, so as to better simulate the grasping or holding experience of the user. .
  • the base body 11 includes more than two connected layer structures 11 b.
  • two or more layer structures 11b are stacked.
  • the hardness of two adjacent layer structures 11b is different.
  • the base body 11 is a single-layer structure 11b, the material of the base body 11 has a major influence on the stiffness of the base body 11 itself, so the stiffness of the base body 11 itself formed of one material has a small variation range.
  • the base 11 of the multi-layer structure 11b can adjust the hardness of each layer to realize the overall stiffness adjustment of the variable stiffness component 10, which can help increase the overall stiffness of the variable stiffness component 10. range, increasing the value range of the stiffness that can be simulated by the variable stiffness component 10 .
  • the materials of two adjacent layer structures 11b are the same.
  • the two layer structures 11b made of the same material can be directly connected to each other, and the connection is realized by heat fusion welding, so that no additional intermediate connectors are required, so that the structure of the variable stiffness assembly 10 is compact, which is conducive to reducing the cost of the variable stiffness assembly 10. weight.
  • the base body 11 includes two connected layer structures 11b.
  • the material of the layer structure 11b away from the engaging portion 12 and the material of the layer structure 11b close to the engaging portion 12 can be silicone, rubber or resin.
  • the materials of two adjacent layer structures 11b are different.
  • the hardness of two adjacent layer structures 11b can be different to form a matrix 11 with different rigidities, which facilitates the use of different materials to compound and form the matrix 11 that meets the requirements of different stiffness changes.
  • Two adjacent layer structures 11b can be connected by means of adhesive.
  • the base body 11 includes two connected layer structures 11b. Of the two layer structures 11b, the hardness of the layer structure 11b farther from the engagement portion 12 is greater than that of the layer structure 11b closer to the engagement portion 12.
  • the material of the layer structure 11b remote from the engaging portion 12 may be paper or plastic.
  • the material of the layer structure 11b adjacent to the engaging portion 12 may be silicone, rubber or resin.
  • the base body 11 includes three connected layer structures 11b. Among the three layer structures 11b, the materials of the respective layer structures 11b are different.
  • the hardness of the outermost layer structure 11 b is greater than the hardness of the remaining layer structures 11 b. Therefore, the outermost layer structure 11b can be used as a constraining structure, which can keep the overall size of the base 11 from changing without affecting the bending of the base 11, and reduce the stiffness of the base 11 due to stretching and elongation during the bending process. Possibility of adversely affecting the accuracy of the stiffness variation of the assembly 10 .
  • the outermost layer structure 11b can be a bendable and stretch-resistant structural member, so that the outermost layer structure 11b itself can be bent and deformed, and at the same time, it is not easily stretched and deformed when bearing tensile stress.
  • the outermost layer structure 11b is a plastic sheet or a paper product. Paper products can be, for example, kraft paper made using kraft and wood pulp.
  • the base body 11 comprises two layer structures 11b.
  • the material of the layer structure 11b connected to the engaging portion 12 may be resin.
  • the material of the outermost layer structure 11b may be a paper product.
  • the layer structure 11b connected to the engagement portion 12 is glued to the outermost layer structure 11b.
  • the layer structure 11b connected to the engaging portion 12 is bonded to the outermost layer structure 11b by an adhesive member 11c.
  • the bonding member 11c may be epoxy glue.
  • the base body 11 has a flat structure.
  • the material of the layer structure 11 b adjoining the engagement part 12 and the material of the engagement part 12 are the same.
  • the layer structure 11b connected to the engaging portion 12 and the engaging portion 12 are integrally formed.
  • the shape of the engaging portion 12 is herringbone.
  • the base body 11 includes more than two connected block structures 11d.
  • more than two block structures 11d are successively distributed.
  • the direction perpendicular to the thickness direction X of the base body 11 may be the direction in which two or more sets of engaging portions 12 are arranged.
  • the hardness of two adjacent block structures 11d is different.
  • the region with higher hardness of the block structure 11d has stronger bending resistance.
  • the less rigid regions of the block structure 11d are relatively easy to bend.
  • the material of the base body 11 has a major influence on the rigidity of the base body 11 itself, so that the rigidity of the base body 11 formed by integral molding of one material has a small variation range.
  • the base body 11 including a plurality of block structures 11d can adjust the hardness of different positions to realize the adjustment of the overall stiffness of the variable stiffness component 10, which is beneficial to increase the overall stiffness of the variable stiffness component 10
  • the variation range increases the value range of the simulated stiffness to realize the stiffness feedback of different regions on the variable stiffness component 10 .
  • each block structure 11d itself has the same length, width and thickness.
  • two or more block structures 11 d are successively distributed along the length direction Y of the base body 11 .
  • the materials of two adjacent block structures 11d can be different, so that the hardness of two adjacent block structures 11d can be made different by selecting the material of each block structure 11d, which is beneficial to use different materials
  • Composite forms the matrix 11 that meets different rigidity variation requirements.
  • the materials of the respective block structures 11d are different.
  • two adjacent block structures 11d can be connected by bonding.
  • the material of one block structure 11d may be plastic, and the material of the other block structure 11d may be silicone, rubber or resin.
  • the material of one block structure 11d may be silica gel, and the material of the other block structure 11d may be rubber or resin.
  • the thickness of the base body 11 is different from the height at which the engaging portion 12 protrudes from the base body 11 .
  • the thickness of the base body 11 has a major influence on the rigidity of the base body 11 itself. The greater the thickness of the base body 11, the greater its own rigidity.
  • the height of the engagement portion 12 protruding from the base 11 has a major influence on the size of the overlapping area of the two engagement portions 12 after engagement. The larger the overlapping area of the two engaging parts 12 is, the stronger the bending deformation resistance of the overlapping area will be. Therefore, by setting the thickness of the base body 11 differently from the height at which the engaging portion 12 protrudes from the base body 11 , the stiffness variation range of the variable stiffness assembly 10 can be flexibly adjusted.
  • the thickness of the base body 11 is greater than the height of the engaging portion 12 protruding from the base body 11 .
  • the thickness of the substrate 11 may range from 0.5 mm to 3 mm, for example, but not limited to 2 mm.
  • the height of the engaging portion 12 protruding from the base 11 may range from 0.5 mm to 3 mm, for example, but not limited to 1 mm.
  • the engaging part 12 on one substrate 11 and the engaging part 12 on the other substrate 11 switch from the engaged state to the disengaged state, if the engaging part 12 is not separated in time or completely , will cause the meshing part 12 to still be in the engaged state, so that when the variable stiffness component 10 needs to be switched to the first stiffness, the variable stiffness component 10 remains at the second stiffness, affecting the stiffness adjustment accuracy and simulation accuracy of the variable stiffness component 10 .
  • the driving assembly 20 can apply a force to the variable stiffness assembly 10 to drive two or more substrates 11 away from each other along the thickness direction X, so that two adjacent substrates 11 provided with engaging parts 12 , the engaging portion 12 on one and the engaging portion 12 on the other are switched from an engaged state to a disengaged state.
  • the base 11 in order to ensure that the engaging portion 12 can smoothly switch from the engaged state to the disengaged state, the base 11 can be an elastic structure and itself can be flexible.
  • the base body 11 can release its own elastic recovery force and drive the engaging portion 12 to switch from the engaged state to the disengaged state.
  • the base body 11 itself can provide an active force for switching the engagement portion 12 from the engagement state to the disengagement state, so as to further ensure the smooth separation of the engagement portion 12 .
  • the driving assembly 20 can apply force to the variable stiffness assembly 10, and at the same time, the base body 11 can release its own elastic recovery force, so as to drive two or more base bodies 11 away from each other along the thickness direction X, so that the engaging portion 12 can move from The engaged state is switched to the disengaged state.
  • the variable stiffness assembly 10 further includes an elastic member 16 .
  • the engaging portions 12 on two adjacent substrates 11 When the engaging portions 12 on two adjacent substrates 11 are in an engaged state, the engaging portions 12 press the elastic member 16 to deform, so that the elastic member 16 accumulates elastic potential energy.
  • the elastic member 16 releases the elastic restoring force and applies compressive stress to the engaging parts 12, thereby pushing the engaging parts 12 to separate from each other.
  • the elastic member 16 can additionally provide an active force for the engagement part 12 when separating, so that the engagement part 12 can be separated relatively easily, which is beneficial to reduce the possibility that the engagement parts 12 still remain engaged with each other and fail to occur when switching from the engaged state to the disengaged state. possibility of separation.
  • the driving assembly 20 can apply force to the variable stiffness assembly 10, and at the same time, the base body 11 and the elastic member 16 can release their own elastic restoring force, so as to drive two or more base bodies 11 away from each other along the thickness direction X, so that The engaging portion 12 is switched from an engaged state to a disengaged state.
  • the elastic member 16 is an elastic sheet.
  • an elastic member 16 is disposed between the engaging portion 12 on one and the engaging portion 12 on the other.
  • the elastic member 16 can cover all the engaging parts 12 on the base body 11 .
  • the engagement portions 12 on the two base bodies 11 engage, the engagement portions 12 on the two base bodies 11 will simultaneously press the elastic member 16 .
  • a part of the elastic member 16 is pressed into the corresponding gap 13 by the engaging portion 12 .
  • the engaging portion 12 withdraws from the corresponding gap 13 , the portion of the elastic member 16 located in the gap 13 rebounds to push the engaging portion 12 .
  • the material of the elastic member 16 can be selected from plastics, so that the elastic member 16 has good flexibility, so that after the elastic member 16 is repeatedly squeezed and rebounded, it is not easy to appear indentation and cause the possibility of failure of the elastic member 16 .
  • the thickness of the elastic member 16 is smaller than the height of the engaging portion 12 protruding from the base 11 .
  • the thickness of the elastic member 16 may range from 20 microns to 100 microns.
  • an elastic member 16 is provided on the exposed area 11 a between two adjacent engaging portions 12 on the base body 11 .
  • the elastic member 16 is located in the gap 13 between two adjacent engaging parts 12 .
  • the engaging portion 12 on one base body 11 will press the elastic member 16 in the corresponding gap 13 .
  • the elastic member 16 rebounds to push the engaging portion 12 .
  • the height of the elastic member 16 is smaller than the height of the engaging portion 12 protruding from the base 11 .
  • the elastic member 16 may be a spring, such as a coil spring.
  • the elastic member 16 may be a cylinder made of elastic material.
  • the variable stiffness component 10 includes more than three substrates 11 .
  • the engagement portion 12 is provided on the surface of one of two adjacent base bodies 11 facing the other.
  • the surface of one of the two adjacent substrates 11 is in surface contact with the surface of the other.
  • the engaging portions 12 on the two base bodies 11 provided with the engaging portion 12 can engage with each other, while the surfaces between the two base bodies 11 not provided with the engaging portion 12 are in contact with each other.
  • the contact modes between the base bodies 11 can be set differently, so that different stiffness feedbacks on the variable stiffness component 10 can be realized by flexibly setting the contact mode of the base bodies 11 .
  • the engagement mode and the surface contact mode may be arranged alternately.
  • variable stiffness assembly 10 includes four bases 11 . Referring to the position shown in FIG. 24 , the upper first base body 11 and the second base body 11 are each provided with an engaging portion 12 .
  • the lower third base body 11 and the fourth base body 11 are respectively provided with engaging parts 12 .
  • No engagement portion 12 is provided on the surface of the second base body 11 facing the third base body 11
  • no engagement portion 12 is provided on the surface of the third base body 11 facing the second base body 11 .
  • the respective engaging portions 12 of the first base body 11 and the second base body 11 can engage with each other.
  • the respective engaging portions 12 of the third base body 11 and the fourth base body 11 can engage with each other. There is surface contact between the second base body 11 and the third base body 11 .
  • variable stiffness component 10 includes more than three base bodies 11 .
  • an engaging portion 12 is provided on the surface of one of two adjacent base bodies 11 facing the other.
  • variable stiffness assembly 10 includes three bases 11 . Referring to the position shown in FIG. 25 , the first base body 11 , the second base body 11 and the third base body 11 are each provided with an engaging portion 12 . An engagement portion 12 is provided on the surface of the second base body 11 facing the first base body 11 . An engagement portion 12 is provided on the surface of the second base body 11 facing the third base body 11 . The engagement portions 12 of the first base body 11 and the third base body 11 can respectively engage with the engagement portions 12 of the second base body 11 .
  • variable stiffness assembly 10 includes four bases 11 . Referring to the position shown in FIG. 26 , the first base body 11 , the second base body 11 , the third base body 11 and the fourth base body 11 are each provided with an engaging portion 12 .
  • An engagement portion 12 is provided on the surface of the second base body 11 facing the first base body 11 .
  • An engagement portion 12 is provided on the surface of the second base body 11 facing the third base body 11 .
  • An engagement portion 12 is provided on the surface of the third base body 11 facing the second base body 11 .
  • An engagement portion 12 is provided on the surface of the third base body 11 facing the fourth base body 11 .
  • the engaging portions 12 of the first base body 11 and the third base body 11 can engage with the engaging portions 12 of the second base body 11 respectively.
  • the engaging portions 12 of the second base body 11 and the fourth base body 11 can engage with the engaging portion 12 of the third base body 11 respectively.
  • the driving assembly 20 includes an airbag 21 .
  • the variable stiffness component 10 is disposed in the airbag 21 .
  • the outermost base 11 is connected to the inner wall of the airbag 21 .
  • the airbag 21 can be directly arranged on the body part and in direct contact with the skin, or a carrier can be arranged outside the airbag 21 and be arranged on the body part through the carrier.
  • the internal pressure of the airbag 21 can be adjusted by degassing or inflating.
  • the airbag 21 When the airbag 21 is in a negative pressure state, the airbag 21 is compressed and deformed under the action of atmospheric pressure, and the two opposite walls of the airbag 21 are close to each other, so that the airbag 21 exerts compressive stress on the variable stiffness component 10 to make the base 11 close to each other.
  • the engaging portions 12 are switched from a separated state to an engaged state.
  • the airbag 21 When the airbag 21 is connected to the atmospheric environment and is in a normal pressure state or the airbag 21 is in a positive pressure state, the two opposite walls of the airbag 21 are far away from each other, so that the airbag 21 pulls the base 11 away from each other, so that the engaging portion 12 on the base 11 is separated from the other.
  • the engaged state switches to the disengaged state.
  • the outer surface of the base body 11 may be adhesively connected to the inner wall of the airbag 21 .
  • the driving assembly 20 further includes a vacuum pump 22 , a first valve body 23 and a second valve body 24 .
  • the vacuum pump 22 and the air bag 21 are connected through a pipeline, and the first valve body 23 is arranged on the pipeline.
  • the first valve body 23 is used to open or close the pipeline. When the first valve body 23 is opened, the air in the airbag 21 can be drawn out by the vacuum pump 22, so that the airbag 21 is in a negative pressure state. When the first valve body 23 is closed, the air bag 21 is maintained at a predetermined negative pressure state.
  • the second valve body 24 is disposed in another pipeline.
  • the pipeline is used to communicate with the airbag 21 and the external atmosphere.
  • the second valve body 24 is used to open or close the pipeline.
  • the air bag 21 can be kept in a negative pressure state of a predetermined pressure.
  • the air bag 21 communicates with the atmospheric environment and inhales air to switch from a negative pressure state to a normal pressure state.
  • the driving assembly 20 further includes an air pump 25 .
  • the second valve body 24 is disposed in another pipeline.
  • the pipeline is used to communicate with the air bag 21 and the air pump 25 .
  • the second valve body 24 is used to open or close the pipeline.
  • the air bag 21 can be kept in a negative pressure state of a predetermined pressure.
  • the air bag 21 is connected with the air pump 25, so that the air pump 25 can fill the air bag 21 with gas, so that the air bag 21 is switched from a negative pressure state to a positive pressure state .
  • the first valve body 23 may be a solenoid valve.
  • the second valve body 24 may be a solenoid valve.
  • the drive assembly 20 also includes an air pressure sensor 26 .
  • the air pressure sensor 26 is used for monitoring the pressure value in the air bag 21 .
  • the pressure value fed back by the air pressure sensor 26 can precisely control the air pressure in the air bag 21, so that the precise control of the compressive stress exerted by the air bag 21 on the substrate 11 can be realized, and then the depth of the engagement part 12 inserted into the corresponding gap 13 can be realized. Precise control.
  • the drive assembly 20 also includes a control module 27 .
  • the vacuum pump 22, the first valve body 23, the second valve body 24, the air pump 25 and the air pressure sensor 26 are all communicated with the control module 27, so that automatic control can be realized, which is beneficial to improve control accuracy.
  • the control module 27 may be a single-chip microcomputer.
  • the driving assembly 20 includes a first electrode 201 and a second electrode 202 .
  • the first electrode 201 and the second electrode 202 are energized, the first electrode 201 and the second electrode 202 are set to have opposite polarities, so that the first electrode 201 and the second electrode 202 generate an adsorption force to apply pressure to the variable stiffness component 10 Stress, so that in two adjacent substrates 11 provided with the engaging portion 12, the engaging portion 12 switches from the separated state to the engaged state.
  • the first electrode 201 and the second electrode 202 When the first electrode 201 and the second electrode 202 are energized, the first electrode 201 and the second electrode 202 are set to have the same polarity, so that the first electrode 201 and the second electrode 202 generate a repulsive force to apply a pull to the variable stiffness component 10 Stress, so that in two adjacent substrates 11 provided with the engaging portion 12, the engaging portion 12 switches from the engaged state to the disengaged state.
  • the adsorption force of the first electrode 201 and the second electrode 202 is zero, and at this time at least one of the base 11 and the elastic member 16 can release its own elastic recovery force , thereby driving two or more substrates 11 away from each other along the thickness direction X, so that the engaging portion 12 is switched from the engaged state to the separated state.
  • the first electrode 201 and the second electrode 202 are arranged at intervals, and the variable stiffness component 10 is arranged between the first electrode 201 and the second electrode 202 .
  • the two outermost substrates 11 can be bonded to the first electrode 201 and the second electrode 202 respectively.
  • the first electrode 201 and the second electrode 202 are sheet-like structures.
  • one of the two outermost substrates 11 on the variable stiffness component 10 is provided with a first electrode 201 inside, and the other is provided with a second electrode 202 inside.
  • the first electrode 201 and the second electrode 202 are sheet-like structures.
  • a DC voltage may be applied to the first electrode 201 and the second electrode 202 .
  • the driving assembly 20 includes a first electromagnet 20a and a second electromagnet 20b. Under the energized state of the first electromagnet 20a and the second electromagnet 20b, the first electromagnet 20a and the second electromagnet 20b are set to opposite polarities, so that the first electromagnet 20a and the second electromagnet 20b generate an adsorption force to The variable stiffness component 10 applies compressive stress, so that in two adjacent substrates 11 provided with the engaging portion 12, the engaging portion 12 is switched from a separated state to an engaged state.
  • the first electromagnet 20a and the second electromagnet 20b are set to have the same polarity, so that the first electromagnet 20a and the second electromagnet 20b generate a repulsive force to
  • the variable stiffness component 10 applies tensile stress, so that the engaging portions 12 switch from an engaged state to a disengaged state in two adjacent substrates 11 provided with the engaging portion 12 .
  • the adsorption force of the first electrode 201 and the second electrode 202 is zero, and at this time at least one of the base 11 and the elastic member 16 can release its own elasticity
  • the restoring force drives the two or more substrates 11 away from each other along the thickness direction X, so that the engaging portion 12 switches from the engaged state to the separated state.
  • the first electromagnet 20 a and the second electromagnet 20 b are arranged at intervals, and the variable stiffness assembly 10 is arranged between the first electromagnet 20 a and the second electromagnet 20 b.
  • the two outermost substrates 11 can be bonded to the first electromagnet 20a and the second electromagnet 20b respectively.
  • the first electromagnet 20a and the second electromagnet 20b are sheet-like structures.
  • the first electromagnet 20 a is arranged inside one of the two outermost bases 11 on the variable stiffness assembly 10
  • the second electromagnet 20 b is arranged inside the other.
  • the first electromagnet 20a and the second electromagnet 20b are sheet-like structures.
  • the embodiment of the present application also provides a virtual reality interaction device 100 .
  • the virtual reality interaction device 100 includes the flexible variable stiffness driver 1 of the above-mentioned embodiments.
  • the flexible variable stiffness driver 1 can be installed on various parts that need to provide different stiffness feedback, such as the hand, wrist, arm, waist or leg of a human body, or the hand, wrist, arm, waist or leg of a robot.
  • the virtual reality interactive device 100 can use the flexible and variable stiffness driver 1 to simulate the force generated when the hand grabs or holds an object in the virtual reality world or its softness and hardness. In order to obtain the same or similar experience as the real world, it is beneficial to improve the immersion and realism of the user's interaction with the virtual reality world.
  • the flexible variable stiffness driver 1 can be arranged on the inner side of the hand.
  • the flexible variable stiffness driver 1 can be disposed on at least one of the user's finger and palm.
  • the flexible variable stiffness actuator 1 can be adhered to the skin. Alternatively, it is bound to at least one of the fingers and the palm by a strap.
  • variable stiffness component 10 in the flexible variable stiffness driver 1 can be in the shape of a rectangle, an ellipse or a circle.
  • the overall shape of the variable stiffness component 10 of the present application is not limited to the above-mentioned exemplified shapes, and other shapes that can achieve the same function are within the protection scope of the present application.
  • the virtual reality interaction device 100 further includes a carrier 101 .
  • the flexible and variable stiffness driver 1 is arranged on the carrier 101.
  • the carrier 101 of the virtual reality interaction device 100 may be set on at least one of the user's finger and palm.
  • carrier 101 may be a glove.
  • the flexible variable stiffness driver 1 is disposed on the carrier 101 to form a force feedback glove. At least one of the finger area and the palm area of the carrier 101 is provided with a flexible variable stiffness driver 1 .
  • the user can wear the carrier 101 on his hand.
  • the fingers of the user's hand correspond to the finger area of the carrier 101
  • the palm corresponds to the palm area of the carrier 101 .
  • the flexible variable stiffness driver 1 can be bonded to the carrier 101 .
  • the flexible variable stiffness driver 1 can be sewn on the carrier 101 .
  • the carrier body 101 has a receiving portion, and the flexible variable stiffness driver 1 is loaded into the receiving portion.
  • At least one of the user's fingers and palm needs to be bent, so as to control the hand in the virtual reality world to perform related actions.
  • an active force will be applied to the carrier 101 and the corresponding flexible variable stiffness driver 1 to make the carrier 101 and the corresponding flexible variable stiffness driver 1 bend.
  • variable stiffness component 10 in the flexible variable stiffness driver 1 controls the variable stiffness component 10 in the flexible variable stiffness driver 1 to switch between the first stiffness and the second stiffness, the resistance that the variable stiffness component 10 needs to overcome when bending is different, and the user’s fingers and palms
  • the magnitude of the force feedback felt by at least one of the objects is different, so as to simulate the force or the degree of softness and hardness of the corresponding object grasped or held in the virtual reality world.
  • variable stiffness component 10 When the variable stiffness component 10 has the first stiffness, the variable stiffness component 10 is easy to bend, and at least one of the fingers and the palm outputs a smaller force to the variable stiffness component 10, thereby simulating the grasping or holding in the virtual reality world. Scenes with less force or softer textures generated by virtual objects.
  • variable stiffness component 10 When the variable stiffness component 10 has the second stiffness, the variable stiffness component 10 is relatively difficult to bend, and at least one of the fingers and the palm outputs a larger force to the variable stiffness component 10, thereby simulating grasping or holding in a virtual reality world Scenes with large force or hard texture generated by virtual objects.
  • the force feedback glove formed by the carrier body 101 and the flexible variable stiffness driver 1 does not require additional complex and heavy external mechanical mechanisms, so the overall mass of the force feedback glove is smaller, and it is easier to get close to the hand, which is suitable for users' daily life and virtual reality world for interactive use.
  • the carrier 101 can be manufactured using soft materials such as fabric or leather, so that the carrier 101 itself can be soft, light and comfortable to wear.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a An indirect connection through an intermediary may be an internal communication between two elements or an interaction relationship between two elements.
  • plural herein means two or more.
  • the term “and/or” in this article is just an association relationship describing associated objects, which means that there can be three relationships, for example, A and/or B can mean: A exists alone, A and B exist simultaneously, and there exists alone B these three situations.
  • the character "/" in this paper generally indicates that the contextual objects are an “or” relationship; in the formula, the character "/" indicates that the contextual objects are a "division" relationship.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the order of execution of the processes should be determined by their functions and internal logic, and should not be used in the implementation of this application.
  • the implementation of the examples constitutes no limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Micromachines (AREA)

Abstract

本申请实施例提供一种柔性变刚度驱动器以及虚拟现实交互设备。柔性变刚度驱动器至少包括变刚度组件和驱动组件。变刚度组件包括啮合部和可弯曲变形的基体。两个以上的基体层叠设置。至少部分数量的基体中,相邻两个基体中的一者面向另一者的表面上设置啮合部。驱动组件用于驱动相邻两个设置有啮合部的基体,以使一者上的啮合部与另一者上的啮合部至少从分离状态切换为啮合状态。啮合部处于分离状态时,变刚度组件具有第一刚度。啮合部处于啮合状态时,变刚度组件具有第二刚度。其中,第二刚度大于第一刚度。通过柔性变刚度驱动器感受到虚拟物体交互过程中产生的作用力或者其软硬程度,提高交互过程的沉浸感和真实感。

Description

柔性变刚度驱动器以及虚拟现实交互设备
本申请要求于2021年10月22日提交中国专利局、申请号为202111236263.9、申请名称为“柔性变刚度驱动器以及虚拟现实交互设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及终端技术领域,特别涉及一种柔性变刚度驱动器以及虚拟现实交互设备。
背景技术
虚拟现实技术(Virtual Reality,VR))是20世纪发展起来的一项全新的实用技术。虚拟现实技术囊括计算机、电子信息、仿真技术,其基本实现方式是计算机模拟虚拟环境从而给人以环境沉浸感。虚拟现实技术是利用现实生活中的数据,通过计算机技术产生的电子信号,将其与各种输出设备结合使其转化为能够让人们感受到的现象,这些现象可以是现实中真真切切的物体,也可以是我们肉眼所看不到的物质,通过三维模型表现出来。因为这些现象不是我们直接所能看到的,而是通过计算机技术模拟出来的现实中的世界,故称为虚拟现实。
随着社会生产力和科学技术的不断发展,各行各业对虚拟现实技术的需求日益旺盛。虚拟现实技术的发展让用户与虚拟环境的交互成为可能。用户可以在虚拟现实世界体验到最真实的感受,其模拟环境的真实性可以接近现实。同时,虚拟现实世界里可以具有一切人类所拥有的感知功能,比如听觉、视觉、触觉、味觉、嗅觉等感知系统。用户在虚拟现实的操作过程中,可以获得类似现实的环境反馈。
目前,有很多公司的虚拟现实交互设备可以提供高分辨率的视觉信息,但用户输入设备仅限于传统的游戏控制器和现有的手势操作输入方式,这些设备让用户可以低层级地触摸他们可以看到的物体并简单地操纵虚拟对象。大多数商用消费输入设备均未能提供用户在与真实世界中的物体进行交互作用时所经历的高保真力和触觉反馈。这样就会导致在虚拟现实体验中出现诸多不真实感,例如,用户能做到用手抓取虚拟现实中的虚拟物体,却无法体会到虚拟物体的交互过程中产生的作用力或者其软硬程度,影响用户与虚拟现实世界交互过程的沉浸感和真实感。
发明内容
本申请实施例提供一种柔性变刚度驱动器以及虚拟现实交互设备。通过柔性变刚度驱动器,用户可以感受到虚拟物体交互过程中产生的作用力或者软硬程度,从而获得与现实世界相同或相近的感受,有利于提高用户与虚拟现实世界交互过程的沉浸感和真实感。
本申请第一方面提供一种柔性变刚度驱动器,其至少包括变刚度组件和驱动组件。变刚度组件包括啮合部以及可弯曲变形的基体。两个以上的基体层叠设置。至少部分数量的 基体中,相邻两个基体中的一者面向另一者的表面上设置啮合部。驱动组件用于驱动相邻两个设置有啮合部的基体,以使一者上的啮合部与另一者上的啮合部至少从分离状态切换为啮合状态。啮合部处于分离状态时,变刚度组件整体具有第一刚度。啮合部处于啮合状态时,变刚度组件整体具有第二刚度。其中,第二刚度大于第一刚度。
本申请实施例的柔性变刚度驱动器包括变刚度组件和驱动组件。变刚度组件整体刚度可以调节。变刚度组件包括两个以上的可弯曲变形的基体。每个基体自身具有预定刚度。对单独的一个基体施加外力时,该基体可以弯曲变形。至少部分数量的基体中,相邻两个基体上各自设置有啮合部。驱动组件用于驱动相邻两个设置有啮合部的基体,以使一者上的啮合部与另一者上的啮合部至少从分离状态切换为啮合状态。相邻两个设置有啮合部的基体中,两个基体上的啮合部处于分离状态时,变刚度组件可以具有第一刚度。各个基体相对松散自由,使得变刚度组件整体相对容易弯曲变形。驱动组件驱动各个基体彼此靠近,并且相邻两个设置有啮合部的基体中,两个基体上的啮合部从分离状态切换为啮合状态时,变刚度组件具有第二刚度。其中,第二刚度大于第一刚度。此时,各个基体相互抵压。相对于具有第一刚度的变刚度组件,具有第二刚度的变刚度组件整体相对难以弯曲变形。例如,在将具有第一刚度的变刚度组件和具有第二刚度的变刚度组件弯曲至相同程度时,使具有第二刚度的变刚度组件发生弯曲的作用力大于使具有第二刚度的变刚度组件发生弯曲的作用力。将柔性变刚度驱动器应用于具有力反馈功能的虚拟现实交互设备时,用户的身体一部分,例如手指和手掌中至少一者上可以设置柔性变刚度驱动器。变刚度组件具有第一刚度,并且用户手指和手掌中至少一者弯曲变形时,可以通过柔性变刚度驱动器模拟出抓取或握持的虚拟物体产生的作用力较小或较软的场景。变刚度组件具有第二刚度,并且用户手指和手掌中至少一者弯曲变形时,可以通过柔性变刚度驱动器模拟出抓取或握持的虚拟物体产生的作用力较大或较硬的场景。通过柔性变刚度驱动器,用户可以感受到虚拟物体交互过程中产生的作用力或者其软硬程度,从而获得与现实世界相同或相近的感受,有利于提高用户与虚拟现实世界交互过程的沉浸感和真实感。本申请实施例的柔性变刚度驱动器结构紧凑、体积小、质量轻,因此在使用过程中有利于提升佩戴舒适度。
在一种可能的实施方式中,啮合部的硬度大于基体的硬度。硬度较大的啮合部相互啮合,并且变刚度组件发生弯曲时,硬度较大的啮合部自身抗变形能力较强,受力后不易发生倾斜变形,从而一方面,变刚度组件可以模拟感受到虚拟物体交互过程中产生的作用力较大或质地较硬的力反馈;另一方面,可以降低相邻两个啮合部沿基体的长度方向相互挤压而导致两个啮合部发生倾斜变形并脱离良好啮合状态的可能性。啮合部的硬度大于基体的硬度的结构,可以有利于增大变刚度组件的刚度变化调节范围。
在一种可能的实施方式中,基体和啮合部为一体成型结构,从而一方面,可以有利于提高基体和啮合部两者连接强度,使得基体在弯曲过程中,啮合部可以承载较大的挤压应力而不与基体分离;另一方面,基体和啮合部之间不需要额外设置连接件,例如粘接件,有利于降低因设置具有预定厚度的连接件而导致变刚度组件的刚度调节精度受到不良影响的可能性。
在一种可能的实施方式中,基体的材料和啮合部的材料均选自树脂、橡胶或硅胶。基体具有柔性,易于弯曲变形。基体和啮合部自身重量轻,有利于变刚度组件的轻量化设计。
在一种可能的实施方式中,基体和啮合部为分体组装结构。基体和啮合部分别单独加 工制造,然后通过组装的方式将基体和啮合部相连,从而一方面,可以降低变刚度组件的整体加工难度;另一方面,可以根据变刚度组件的刚度调节要求,灵活选择基体和啮合部的材料。
在一种可能的实施方式中,基体的材料选自树脂、橡胶或硅胶。啮合部的材料选自树脂、塑料、金刚石或刚玉。
在一种可能的实施方式中,啮合部的形状可以是球形、人字形或条形。
在一种可能的实施方式中,变刚度组件还包括凸起。凸起的尺寸小于啮合部的尺寸。至少部分数量的啮合部的侧壁设置多个凸起。
在一种可能的实施方式中,变刚度组件还包括凸起。设置啮合部的基体上,基体具有位于相邻两个啮合部之间的外露区域。至少部分数量的外露区域设置多个凸起。在啮合部插入对应间隙的深度相同的情况下,相对于未设置凸起的啮合部,设置凸起的啮合部需要克服更大的摩擦阻力。由于设置凸起的啮合部不易啮合并且需要更大的压应力实现相同的啮合状态,因此从啮合部处于分离状态切换至啮合部完全啮合状态,使得所施加于基体和啮合部的压应力的上限值更大,从而使得施加于啮合部上的作用力的取值范围更宽,施加于啮合部上的作用力大小精度更高,有利于提高啮合部插入对应间隙内的深度的精度,进而有利于提高变刚度组件的刚度变化范围,提高变刚度组件的刚度控制精度。对应地,相对于未设置凸起的啮合部,设置凸起的啮合部从啮合状态切换至分离状态时需要克服更大的摩擦阻力,使得设置凸起的啮合部不易从啮合状态切换至分离状态,可以实现啮合部逐渐切换至分离状态,降低啮合部从啮合状态切换至分离状态因分离速度过快而出现应力突变的可能性。
在一种可能的实施方式中,凸起的形状为球形或条形。
在一种可能的实施方式中,相邻两个设置有啮合部的基体中,一个基体包括位于相邻两个啮合部之间的外露区域。变刚度组件还包括凹部。凹部与外露区域对应设置。相邻两个基体上的啮合部处于啮合状态时,另一个基体上的啮合部的至少部分插入凹部。一个基体上的啮合部插入对应的凹部时,该啮合部会受到凹部的侧壁限位,从而该啮合部不易沿基体的宽度方向移动,降低该啮合部沿基体的宽度方向移动而导致与凹部两侧的啮合部之间的啮合区域减小的可能性。
在一种可能的实施方式中,基体包括相连的两个以上的层结构。沿基体的厚度方向,两个以上的层结构层叠设置。相邻两个层结构的硬度不同。基体为单层结构时,基体的材料对基体自身的刚度具有主要影响,从而由一种材料形成的基体自身的刚度变化范围小。相对于基体为单层结构,多个层结构的基体可以通过调节各层的硬度以实现变刚度组件整体的刚度调节,从而可以有利于增大变刚度组件的整体刚度变化范围,增大变刚度组件可模拟刚度的取值范围。
在一种可能的实施方式中,相邻两个层结构的材料不同。可以通过选择不同层结构的材料,使得相邻两个层结构的硬度不同,形成具有不同刚度的基体,从而有利于使用不同的材料复合形成满足不同刚度变化要求的基体。
在一种可能的实施方式中,远离啮合部的方向上,最外侧的层结构的硬度大于其余层结构的硬度。因此,最外侧的层结构可以作为约束结构,在不影响基体发生弯曲的情况下可以使得基体保持整体尺寸不易发生变化,降低基体在弯曲过程中被拉伸变长而对变刚度 组件的刚度变化精度产生不良影响的可能性。
在一种可能的实施方式中,最外侧的层结构为可弯曲变形并且抗拉伸的结构件。
在一种可能的实施方式中,基体包括相连的两个以上的块结构。沿与基体的厚度方向相垂直的方向,两个以上的块结构相继分布。相邻两个块结构的硬度不同。基体为一体成型结构时,基体的材料对基体自身的刚度具有主要影响,从而由一种材料一体成型加工形成的基体自身的刚度变化范围小。相对于基体为一体成型结构,包括多个块结构的基体可以通过调节不同位置的硬度,以实现变刚度组件整体的刚度调节,从而可以有利于增大变刚度组件的整体刚度变化范围,增大可模拟刚度的取值范围,实现变刚度组件上不同区域的刚度反馈。
在一种可能的实施方式中,相邻两个块结构的材料不同,从而可以通过选择各个块结构的材料,使得相邻两个块结构的硬度不同,进而有利于使用不同的材料复合形成满足不同刚度变化要求的基体。
在一种可能的实施方式中,基体的厚度与啮合部凸出基体的高度不同。通过基体的厚度与啮合部凸出基体的高度设置为不同,可以灵活调整变刚度组件的刚度变化范围。
在一种可能的实施方式中,基体为弹性结构。基体被配置为释放自身的弹性回复力并带动啮合部从啮合状态切换成分离状态。基体自身可以提供使啮合部从啮合状态切换成分离状态的作用力,从而有利于保证啮合部顺利地实现分离。
在一种可能的实施方式中,变刚度组件还包括弹性件。相邻两个基体上的啮合部处于啮合状态时,啮合部挤压弹性件变形。啮合部从啮合状态切换为分离状态时,弹性件释放弹性回复力并向啮合部施加压应力。啮合部从啮合状态切换为分离状态时,弹性件释放弹性回复力并向啮合部施加压应力,从而推动啮合部相互分离。弹性件可以额外向啮合部提供分离时的作用力,以使啮合部相对容易地发生分离,有利于降低从啮合状态切换为分离状态时,啮合部仍然保持相互啮合而未能发生分离的可能性。
在一种可能的实施方式中,弹性件为弹性片。相邻两个设置有啮合部的基体中,一者上的啮合部与另一者上的啮合部之间设置弹性件。
在一种可能的实施方式中,相邻两个设置有啮合部的基体中,基体位于相邻两个啮合部之间的外露区域设置弹性件。
在一种可能的实施方式中,变刚度组件包括三个以上的基体,其中,一部分数量的基体中,相邻两个基体中的一者面向另一者的表面上设置啮合部。一部分数量的基体中,相邻两个基体中的一者的表面与另一者的表面之间为面接触。变刚度组件中,各个基体之间的接触方式可以设置为不同,从而可以通过灵活设置基体的接触方式,以实现变刚度组件上不同的刚度反馈。
在一种可能的实施方式中,全部数量的基体中,相邻两个基体中的一者面向另一者的表面上设置啮合部。
在一种可能的实施方式中,驱动组件包括气囊。变刚度组件设置于气囊内。位于最外侧的基体与气囊的内壁相连。气囊用于驱动相邻两个设置有啮合部的基体。
在一种可能的实施方式中,驱动组件包括第一电极和第二电极。第一电极和第二电极均与变刚度组件相连,并且用于驱动相邻两个设置有啮合部的基体。
在一种可能的实施方式中,驱动组件包括极性相反的第一电磁体和第二电磁体。第一 电磁体和第二电磁体均与变刚度组件相连,并且用于驱动相邻两个设置有啮合部的基体。
本申请实施例第二方面提供一种虚拟现实交互设备,其包括如上述实施例的柔性变刚度驱动器。柔性变刚度驱动器至少包括变刚度组件和驱动组件。变刚度组件包括啮合部以及可弯曲变形的基体。两个以上的基体层叠设置。至少部分数量的基体中,相邻两个基体中的一者面向另一者的表面上设置啮合部。驱动组件用于驱动相邻两个设置有啮合部的基体,以使一者上的啮合部与另一者上的啮合部至少从分离状态切换为啮合状态。啮合部处于分离状态时,变刚度组件整体具有第一刚度。啮合部处于啮合状态时,变刚度组件整体具有第二刚度。其中,第二刚度大于第一刚度。
在一种可能的实施方式中,啮合部的硬度大于基体的硬度。硬度较大的啮合部相互啮合,并且变刚度组件发生弯曲时,硬度较大的啮合部自身抗变形能力较强,受力后不易发生倾斜变形,从而一方面,变刚度组件可以模拟交互过程中产生的作用力较大或质地较硬的力反馈;另一方面,可以降低相邻两个啮合部沿基体的长度方向相互挤压而导致两个啮合部发生倾斜变形并脱离良好啮合状态的可能性。啮合部的硬度大于基体的硬度的结构,可以有利于增大变刚度组件的刚度变化调节范围。
在一种可能的实施方式中,基体和啮合部为一体成型结构,从而一方面,可以有利于提高基体和啮合部两者连接强度,使得基体在弯曲过程中,啮合部可以承载较大的挤压应力而不与基体分离;另一方面,基体和啮合部之间不需要额外设置连接件,例如粘接件,有利于降低因设置具有预定厚度的连接件而导致变刚度组件的刚度调节精度受到不良影响的可能性。
在一种可能的实施方式中,基体的材料和啮合部的材料均选自树脂、橡胶或硅胶。基体具有柔性,易于弯曲变形。基体和啮合部自身重量轻,有利于变刚度组件的轻量化设计。
在一种可能的实施方式中,基体和啮合部为分体组装结构。基体和啮合部分别单独加工制造,然后通过组装的方式将基体和啮合部相连,从而一方面,可以降低变刚度组件的整体加工难度;另一方面,可以根据变刚度组件的刚度调节要求,灵活选择基体和啮合部的材料。
在一种可能的实施方式中,基体的材料选自树脂、橡胶或硅胶。啮合部的材料选自树脂、塑料、金刚石或刚玉。
在一种可能的实施方式中,啮合部的形状可以是球形、人字形或条形。
在一种可能的实施方式中,变刚度组件还包括凸起。凸起的尺寸小于啮合部的尺寸。至少部分数量的啮合部的侧壁设置多个凸起。
在一种可能的实施方式中,变刚度组件还包括凸起。设置啮合部的基体上,基体具有位于相邻两个啮合部之间的外露区域。至少部分数量的外露区域设置多个凸起。在啮合部插入对应间隙的深度相同的情况下,相对于未设置凸起的啮合部,设置凸起的啮合部需要克服更大的摩擦阻力。由于设置凸起的啮合部不易啮合并且需要更大的压应力实现相同的啮合状态,因此从啮合部处于分离状态切换至啮合部完全啮合状态,使得所施加于基体和啮合部的压应力的上限值更大,从而使得施加于啮合部上的作用力的取值范围更宽,施加于啮合部上的作用力大小精度更高,有利于提高啮合部插入对应间隙内的深度的精度,进而有利于提高变刚度组件的刚度变化范围,提高变刚度组件的刚度控制精度。对应地,相对于未设置凸起的啮合部,设置凸起的啮合部从啮合状态切换至分离状态时需要克服更大 的摩擦阻力,使得设置凸起的啮合部不易从啮合状态切换至分离状态,可以实现啮合部逐渐切换至分离状态,降低啮合部从啮合状态切换至分离状态因分离速度过快而出现应力突变的可能性。
在一种可能的实施方式中,凸起的形状为球形或条形。
在一种可能的实施方式中,相邻两个设置有啮合部的基体中,一个基体包括位于相邻两个啮合部之间的外露区域。变刚度组件还包括凹部。凹部与外露区域对应设置。相邻两个基体上的啮合部处于啮合状态时,另一个基体上的啮合部的至少部分插入凹部。一个基体上的啮合部插入对应的凹部时,该啮合部会受到凹部的侧壁限位,从而该啮合部不易沿基体的宽度方向移动,降低该啮合部沿基体的宽度方向移动而导致与凹部两侧的啮合部之间的啮合区域减小的可能性。
在一种可能的实施方式中,基体包括相连的两个以上的层结构。沿基体的厚度方向,两个以上的层结构层叠设置。相邻两个层结构的硬度不同。基体为单层结构时,基体的材料对基体自身的刚度具有主要影响,从而由一种材料形成的基体自身的刚度变化范围小。相对于基体为单层结构,多个层结构的基体可以通过调节各层的硬度以实现变刚度组件整体的刚度调节,从而可以有利于增大变刚度组件的整体刚度变化范围,增大变刚度组件可模拟刚度的取值范围。
在一种可能的实施方式中,相邻两个层结构的材料不同。可以通过选择不同层结构的材料,使得相邻两个层结构的硬度不同,形成具有不同刚度的基体,从而有利于使用不同的材料复合形成满足不同刚度变化要求的基体。
在一种可能的实施方式中,远离啮合部的方向上,最外侧的层结构的硬度大于其余层结构的硬度。因此,最外侧的层结构可以作为约束结构,在不影响基体发生弯曲的情况下可以使得基体保持整体尺寸不易发生变化,降低基体在弯曲过程中被拉伸变长而对变刚度组件的刚度变化精度产生不良影响的可能性。
在一种可能的实施方式中,最外侧的层结构为可弯曲变形并且抗拉伸的结构件。
在一种可能的实施方式中,基体包括相连的两个以上的块结构。沿与基体的厚度方向相垂直的方向,两个以上的块结构相继分布。相邻两个块结构的硬度不同。基体为一体成型结构时,基体的材料对基体自身的刚度具有主要影响,从而由一种材料一体成型加工形成的基体自身的刚度变化范围小。相对于基体为一体成型结构,包括多个块结构的基体可以通过调节不同位置的硬度,以实现变刚度组件整体的刚度调节,从而可以有利于增大变刚度组件的整体刚度变化范围,增大可模拟刚度的取值范围,实现变刚度组件上不同区域的刚度反馈。
在一种可能的实施方式中,相邻两个块结构的材料不同,从而可以通过选择各个块结构的材料,使得相邻两个块结构的硬度不同,进而有利于使用不同的材料复合形成满足不同刚度变化要求的基体。
在一种可能的实施方式中,基体的厚度与啮合部凸出基体的高度不同。通过基体的厚度与啮合部凸出基体的高度设置为不同,可以灵活调整变刚度组件的刚度变化范围。
在一种可能的实施方式中,基体为弹性结构,基体被配置为释放自身的弹性回复力并带动啮合部从啮合状态切换成分离状态。基体自身可以提供使啮合部从啮合状态切换成分离状态的作用力,从而有利于保证啮合部顺利地实现分离。
在一种可能的实施方式中,变刚度组件还包括弹性件。相邻两个基体上的啮合部处于啮合状态时,啮合部挤压弹性件变形。啮合部从啮合状态切换为分离状态时,弹性件释放弹性回复力并向啮合部施加压应力。啮合部从啮合状态切换为分离状态时,弹性件释放弹性回复力并向啮合部施加压应力,从而推动啮合部相互分离。弹性件可以额外向啮合部提供分离时的作用力,以使啮合部相对容易地发生分离,有利于降低从啮合状态切换为分离状态时,啮合部仍然保持相互啮合而未能发生分离的可能性。
在一种可能的实施方式中,弹性件为弹性片。相邻两个设置有啮合部的基体中,一者上的啮合部与另一者上的啮合部之间设置弹性件。
在一种可能的实施方式中,相邻两个设置有啮合部的基体中,基体位于相邻两个啮合部之间的外露区域设置弹性件。
在一种可能的实施方式中,变刚度组件包括三个以上的基体,其中,一部分数量的基体中,相邻两个基体中的一者面向另一者的表面上设置啮合部。一部分数量的基体中,相邻两个基体中的一者的表面与另一者的表面之间为面接触。变刚度组件中,各个基体之间的接触方式可以设置为不同,从而可以通过灵活设置基体的接触方式,以实现变刚度组件上不同的刚度反馈。
在一种可能的实施方式中,全部数量的基体中,相邻两个基体中的一者面向另一者的表面上设置啮合部。
在一种可能的实施方式中,驱动组件包括气囊。变刚度组件设置于气囊内。位于最外侧的基体与气囊的内壁相连。气囊用于驱动相邻两个设置有啮合部的基体。
在一种可能的实施方式中,驱动组件包括第一电极和第二电极。第一电极和第二电极均与变刚度组件相连,并且用于驱动相邻两个设置有啮合部的基体。
在一种可能的实施方式中,驱动组件包括第一电磁体和第二电磁体。第一电磁体和第二电磁体均与变刚度组件相连,并且用于驱动相邻两个设置有啮合部的基体。
附图说明
图1为本申请实施例提供的柔性变刚度驱动器的结构示意图;
图2为本申请实施例提供的柔性变刚度驱动器的局部分解结构示意图;
图3为本申请实施例提供的柔性变刚度驱动器中的啮合部处于分离状态的局部剖视结构示意图;
图4为本申请实施例提供的柔性变刚度驱动器中的啮合部处于完全啮合状态的局部剖视结构示意图;
图5为图3所示实施例的柔性变刚度驱动器处于弯曲状态的局部剖视结构示意图;
图6为本申请实施例提供的柔性变刚度驱动器的应用场景示意图;
图7为图4所示实施例的柔性变刚度驱动器处于弯曲状态的局部剖视结构示意图;
图8为本申请实施例提供的柔性变刚度驱动器中的啮合部处于部分啮合状态的局部剖视结构示意图;
图9为本申请一实施例提供的变刚度组件的分解结构示意图;
图10为本申请又一实施例提供的变刚度组件的分解结构示意图;
图11为本申请又一实施例提供的变刚度组件的分解结构示意图;
图12为本申请一实施例提供的变刚度组件的局部结构示意图;
图13为本申请又一实施例提供的变刚度组件的局部结构示意图;
图14为本申请又一实施例提供的变刚度组件的局部结构示意图;
图15为本申请另一实施例提供的变刚度组件的局部结构示意图;
图16为本申请再一实施例提供的变刚度组件的局部结构示意图;
图17为图16中A处放大示意图;
图18为本申请又一实施例提供的变刚度组件的分解结构示意图;
图19为本申请再一实施例提供的变刚度组件的分解结构示意图;
图20为本申请一实施例提供的柔性变刚度驱动器中的啮合部处于分离状态的局部剖视结构示意图;
图21为图20所示实施例的柔性变刚度驱动器中的啮合部处于啮合状态的局部剖视结构示意图;
图22为本申请又一实施例提供的柔性变刚度驱动器中的啮合部处于分离状态的局部剖视结构示意图;
图23为图22所示实施例的柔性变刚度驱动器中的啮合部处于啮合状态的局部剖视结构示意图;
图24为本申请又一实施例提供的柔性变刚度驱动器中的啮合部处于分离状态的局部剖视结构示意图;
图25为本申请又一实施例提供的柔性变刚度驱动器中的啮合部处于分离状态的局部剖视结构示意图;
图26为本申请又一实施例提供的柔性变刚度驱动器中的啮合部处于分离状态的局部剖视结构示意图;
图27为本申请一实施例提供的柔性变刚度驱动器的结构示意图;
图28为本申请又一实施例提供的柔性变刚度驱动器的结构示意图;
图29为本申请再一实施例提供的柔性变刚度驱动器的结构示意图;
图30为本申请又一实施例提供的柔性变刚度驱动器中的啮合部处于分离状态的局部剖视结构示意图;
图31为本申请再一实施例提供的柔性变刚度驱动器中的啮合部处于分离状态的局部剖视结构示意图;
图32为本申请再一实施例提供的虚拟现实交互设备的应用场景示意图。
附图标记说明:
1、柔性变刚度驱动器;
10、变刚度组件;
11、基体;11a、外露区域;11b、层结构;11c、粘接件;11d、块结构;
12、啮合部;121、侧壁;122、顶壁;
13、间隙;
14、凸起;
15、凹部;
16、弹性件;
20、驱动组件;
21、气囊;
22、真空泵;
23、第一阀体;
24、第二阀体;
25、充气泵;
26、气压传感器;
27、控制模块;
201、第一电极;
202、第二电极;
20a、第一电磁体;
20b、第二电磁体;
100、虚拟现实交互设备;
101、承载体;
X、厚度方向;
Y、长度方向;
Z、宽度方向。
具体实施方式
用户在使用虚拟现实交互设备在虚拟现实世界中进行相应操作时,希望可以获得类似现实场景下的真实反馈。例如,在现实世界中,用户如果通过手部抓取或握持相应的真实物体时,可以通过手部反馈的应力大小来感知真实物体的重量或软硬程度。例如,用户在现实世界中,手部分别抓取或握持相同尺寸的线球和金属球,所感知的是线球较轻、较软,而金属球较重、较硬。因此,用户在虚拟现实世界中通过虚拟现实交互设备抓取或握持相应的虚拟物体时,也希望可以感受到虚拟物体交互过程中产生的作用力或者其软硬程度,从而获得与现实世界相同或相近的感受,有利于提高用户与虚拟现实世界交互过程的沉浸感和真实感。
虚拟现实交互设备包括可穿戴设备。可穿戴设备可以包括力反馈手套,从而可以方便用户佩戴于手部,并且通过手部动作来控制虚拟现实世界中的手部动作,例如顺利完成抓取或握持相应的物体等动作。目前,为了提高虚拟现实世界的沉浸感和真实感,一些可穿戴设备开发机构开发设计出商用力反馈手套。例如,力反馈手套采用绳驱动的方式,将包括驱动器和传动机构的机械结构安装在用户的手背侧。通过驱动器和绳索拉动力反馈手套上的传动机构,从而在用户的手指弯曲时,向每个手指提供反馈力,从而模拟用户手部抓取或握持相应的物体。然而,力反馈手套的驱动器和传动机构主要采用刚性结构,从而导致力反馈手套的重量和体积都较大,便携性差。目前的力反馈手套,在用户手背部添加了较多的驱动器和传动机构等机械结构,导致用户长时间佩戴使用的舒适感较低。因此,目前的力反馈手套无法很好的适用于虚拟现实交互。
基于此,本申请实施例提供一种柔性变刚度驱动器1。柔性变刚度驱动器1可以实现刚 度的变化。通过对柔性变刚度驱动器1的刚度控制,可以模拟用户抓取或握持不同物体的过程中产生的作用力或其软硬程度。通过柔性变刚度驱动器1,用户可以感受到虚拟物体交互过程中产生的作用力或者软硬程度,从而获得与现实世界相同或相近的感受,有利于提高用户与虚拟现实世界交互过程的沉浸感和真实感。本申请实施例的柔性变刚度驱动器1质量轻、体积小,因此在应用于力反馈手套等可穿戴设备时,可以降低可穿戴设备整体的重量,有利于提升佩戴舒适度。
下面对本申请实施例提供的柔性变刚度驱动器1的实现方式进行阐述。
参见图1和图2所示,本申请实施例的柔性变刚度驱动器1包括变刚度组件10和驱动组件20。变刚度指的是刚度大小可以发生变化。刚度的大小影响变刚度组件10可以发生弯曲变形的难易程度。变刚度组件10整体刚度越小,越容易地弯曲变形。变刚度组件10整体刚度越大,越难以弯曲变形。变刚度组件10包括基体11和啮合部12。基体11为可弯曲变形的结构。可弯曲变形指的是基体11具有柔性,受到外力作用时可以弯曲,改变形状。基体11具有预定厚度。沿基体11的厚度方向X,两个以上的基体11层叠设置。至少部分数量的基体11中,相邻两个基体11中的一者面向另一者的表面上设置啮合部12。驱动组件20用于驱动相邻两个设置有啮合部12的基体11,以使一者上的啮合部12与另一者上的啮合部12至少从分离状态切换为啮合状态。驱动组件20可以用于驱动相邻两个设置有啮合部12的基体11彼此靠近,以使一者上的啮合部12与另一者上的啮合部12从分离状态切换为啮合状态。驱动组件20也可以用于驱动相邻两个设置有啮合部12的基体11彼此远离,以使一者上的啮合部12与另一者上的啮合部12从啮合状态切换为分离状态。
需要说明的是,参见图3所示,分离状态指的是相邻两个设置有啮合部12的基体11中,一者上的啮合部12位于另一者上的相邻两组啮合部12之间的间隙13的外部。参见图4所示,啮合状态指的是相邻两个设置有啮合部12的基体11中,一者上的啮合部12至少部分地插入到另一者上的相邻两组啮合部12之间的间隙13中。
相邻两个设置有啮合部12的基体11中,两个基体11上的啮合部12处于分离状态时,变刚度组件10整体具有第一刚度。相邻两个设置有啮合部12的基体11中,两个基体11上的啮合部12处于啮合状态时,变刚度组件10整体具有第二刚度。第二刚度大于第一刚度。具有第一刚度的变刚度组件10抵抗弯曲变形的能力弱于具有第二刚度的变刚度组件10抵抗弯曲变形的能力。因此,如果将变刚度组件10弯曲至相同形状时,作用于具有第二刚度的变刚度组件10的外力需要大于作用于具有第一刚度的变刚度组件10的外力。
参见图5所示,相邻两个设置有啮合部12的基体11中,两个基体11上的啮合部12处于分离状态时,两个基体11各自独立,处于相对松散自由的状态。因此,变刚度组件10具有较小的抗弯曲变形的第一刚度。在变刚度组件10受力弯曲时,外力需要克服的阻力小,变刚度组件10可以容易地发生弯曲变形。示例性地,参见图6所示,将柔性变刚度驱动器1应用于具有力反馈功能的虚拟现实交互设备时,用户的手指和手掌中至少一者上可以设置柔性变刚度驱动器1。用户手指和手掌中至少一者弯曲变形时可以通过柔性变刚度驱动器1模拟出抓取或握持的虚拟物体产生的作用力较小或较软的场景。示例性地,虚拟现实交互设备包括可以佩戴于用户手部的力反馈手套。力反馈手套包括柔性变刚度驱动器1。在一些实施例中,虚拟现实交互设备还可以是力反馈衣服等。力反馈衣服包括柔性变刚度驱动器1。
参见图7所示,相邻两个设置有啮合部12的基体11中,两个基体11上的啮合部12处于啮合状态时,两个基体11各自通过啮合部12相结合,从而两个基体11相互限位约束,使得两个基体11的相对位置不易发生移动。因此,变刚度组件10具有较大的抗弯曲变形的第二刚度,使得变刚度组件10相对难以发生弯曲变形。相对于具有第一刚度的变刚度组件10,在具有第二刚度的变刚度组件10受力弯曲时,外力需要克服的阻力大。示例性地,将柔性变刚度驱动器1应用于具有力反馈功能的虚拟现实交互设备时,用户手指和手掌中至少一者上可以设置柔性变刚度驱动器1。用户手指和手掌中至少一者弯曲变形时可以通过柔性变刚度驱动器1模拟出抓取或握持的虚拟物体产生的作用力较大或较硬的场景。
示例性地,在变刚度组件10应用于用户的手指和手掌中的至少一者时,用户在虚拟现实世界中抓取或握持一个线球以及抓取或握持一个相同尺寸的金属球的两种情况下,用户的手指和手掌的弯曲程度可以是相同的,但用户的手指和手掌的作用力或软硬感知是不同的。如果抓取或握持一个线球时,用户的感知设定为较轻、较软,那么相对地,抓取或握持一个金属球时,用户的感知设定为较重、较硬。相对应地,抓取或握持一个虚拟现实世界中的线球时,变刚度组件10可以具有第一刚度,以模拟作用力小、质地较软。抓取或握持一个虚拟现实世界中的金属球时,变刚度组件10可以具有第二刚度,以模拟作用力大、质地较硬。
本申请实施例的柔性变刚度驱动器1包括变刚度组件10和驱动组件20。变刚度组件10整体刚度可以调节。变刚度组件10包括两个以上的可弯曲变形的基体11。每个基体11自身具有预定刚度。对单独的一个基体11施加外力时,该基体11可以弯曲变形。至少部分数量的基体11中,相邻两个基体11上各自设置有啮合部12。驱动组件20用于驱动相邻两个设置有啮合部12的基体11,以使一者上的啮合部12与另一者上的啮合部12至少从分离状态切换为啮合状态。相邻两个设置有啮合部12的基体11中,两个基体11上的啮合部12处于分离状态时,变刚度组件10可以具有第一刚度。各个基体11相对松散自由,使得变刚度组件10整体相对容易弯曲变形。驱动组件20可以驱动各个基体11彼此靠近,并且相邻两个设置有啮合部12的基体11中,两个基体11上的啮合部12从分离状态切换为啮合状态时,变刚度组件10具有第二刚度。其中,第二刚度大于第一刚度。此时,各个基体11相互抵压。
相对于具有第一刚度的变刚度组件10,具有第二刚度的变刚度组件10整体相对难以弯曲变形。例如,在将具有第一刚度的变刚度组件10和具有第二刚度的变刚度组件10弯曲至相同程度时,使具有第二刚度的变刚度组件10发生弯曲的作用力大于使具有第二刚度的变刚度组件10发生弯曲的作用力。
将柔性变刚度驱动器1应用于具有力反馈功能的虚拟现实交互设备时,用户的身体一部分,例如手指和手掌中至少一者上可以设置柔性变刚度驱动器1。变刚度组件10具有第一刚度,并且用户手指和手掌中至少一者弯曲变形时,可以通过柔性变刚度驱动器1模拟出抓取或握持的虚拟物体过程中产生的作用力较小或较软的场景。变刚度组件10具有第二刚度,并且用户手指和手掌中至少一者弯曲变形时,可以通过柔性变刚度驱动器1模拟出抓取或握持的虚拟物体过程中产生的作用力较大或较硬的场景。通过柔性变刚度驱动器1,用户可以感受到虚拟物体交互过程中产生的作用力或者软硬程度,从而获得与现实世界相同或相近的感受,有利于提高用户与虚拟现实世界交互过程的沉浸感和真实感。本申 请实施例的柔性变刚度驱动器1结构紧凑、体积小、质量轻,因此在使用过程中有利于提升佩戴舒适度。
在一些可实现的方式中,驱动组件20向变刚度组件10施加作用力,驱动两个以上的基体11沿厚度方向X彼此靠近,以使相邻两个设置有啮合部12的基体11中,一者上的啮合部12与另一者上的啮合部12从分离状态切换为啮合状态。
在一些可实现的方式中,相邻两个设置有啮合部12的基体11中,一者上的啮合部12至少部分地插入到另一者上的相邻两组啮合部12之间的间隙13中,从而实现两个基体11上的啮合部12相互啮合。一者上的啮合部12插入对应的间隙13内的深度不同,则变刚度组件10的刚度不同。啮合部12插入间隙13内的深度越小,则变刚度组件10整体的刚度越小,也即第二刚度的取值越小。啮合部12插入间隙13内的深度越大,则变刚度组件10整体的刚度越大,也即第二刚度的取值越大。因此,通过控制一者上的啮合部12插入对应的间隙13内的深度,可以控制变刚度组件10整体的第二刚度的取值大小,从而有利于实现变刚度组件10整体的刚度的无级调节,增大刚度变化范围,从而可以模拟的应力取值点更多。
在一些示例中,参见图4所示,相邻两个设置有啮合部12的基体11中,一者上的啮合部12的完全插入另一者上的相邻两组啮合部12之间的间隙13内。或者,参见图8所示,相邻两个设置有啮合部12的基体11中,一者上的啮合部12部分地插入到另一者上的相邻两组啮合部12之间的间隙13中。
在一些示例中,两个基体11上的啮合部12相互啮合时,具有不同的啮合状态。示例性地,第一种啮合状态:一者上的啮合部12的三分之一插入另一者上的相邻两组啮合部12之间的间隙13内。第二种啮合状态:一者上的啮合部12的二分之一插入另一者上的相邻两组啮合部12之间的间隙13内。第三种啮合状态:一者上的啮合部12的完全插入另一者上的相邻两组啮合部12之间的间隙13内。变刚度组件10在上述三种不同啮合状态下的刚度大小不同。相对地,在第一种啮合状态时,变刚度组件10的刚度最小,而在第三种啮合状态时,变刚度组件10的刚度最大。
在一些可实现的方式中,在变刚度组件10应用于用户的手指和手掌中的至少一者时,沿手指或手掌的弯曲方向,两组以上的啮合部12间隔设置。示例性地,在变刚度组件10应用于用户的手指时,两组以上的啮合部12的排列方向与手指的长度方向相同。在变刚度组件10应用于用户的手掌时,两组以上的啮合部12的排列方向与从手腕至手指的方向相同。在变刚度组件10应用于用户的手指和手掌时,两组以上的啮合部12的排列方向与从手腕至指尖的方向相同。在一些示例中,基体11可以是具有预定长度和宽度的结构。沿基体11的长度方向Y,两组以上的啮合部12间隔设置。两组以上的啮合部12的排列方向与基体11的长度方向Y相同。每组啮合部12可以包括一个或两个以上的啮合部12。
示例性地,参见图3所示,两组以上的啮合部12均匀间隔设置。相邻两个间隙13之间的距离L取值范围为1毫米至3毫米,例如可以但不限定为2毫米。
在一些可实现的方式中,基体11的硬度和啮合部12的硬度不同。啮合部12的硬度大于基体11的硬度。当啮合部12处于分离状态,此时硬度较小的基体11自身的刚度为变刚度组件10的刚度大小的主要影响因素,因此变刚度组件10的刚度相对较小,易于弯曲。啮合部12处于啮合状态时,硬度较大的啮合部12相互啮合,变刚度组件10的刚度相对 较大。因此,啮合部12处于分离状态时,变刚度组件10可以模拟虚拟物体交互过程中产生的作用力较小或质地较软的力反馈。硬度较大的啮合部12相互啮合,并且变刚度组件10发生弯曲时,硬度较大的啮合部12自身抗变形能力较强,受力后不易发生倾斜变形,从而一方面,变刚度组件10可以模拟虚拟物体交互过程中产生的作用力较大或质地较硬的力反馈;另一方面,可以降低相邻两个啮合部12沿基体11的长度方向Y相互挤压而导致两个啮合部12发生倾斜变形并脱离良好啮合状态的可能性。啮合部12的硬度大于基体11的硬度的结构,可以有利于增大变刚度组件10的刚度变化调节范围。
在一些可实现的方式中,基体11和啮合部12为一体成型结构,从而一方面,可以有利于提高基体11和啮合部12两者连接强度,使得基体11在弯曲过程中,啮合部12可以承载较大的挤压应力而不与基体11分离;另一方面,基体11和啮合部12之间不需要额外设置连接件,例如粘接件,有利于降低因设置具有预定厚度的连接件而导致变刚度组件10的刚度调节精度受到不良影响的可能性。一体成型结构指的是基体11和啮合部12之间连续过渡,两者之间不需要设置连接件,而需要将基体11和啮合部12分离时,需要破坏基体11和啮合部12中的一者的结构。
示例性地,基体11的材料和啮合部12的材料相同。例如,基体11为单层结构。基体11的材料和啮合部12的材料均选自树脂、橡胶或硅胶。基体11具有柔性,易于弯曲变形。基体11和啮合部12自身重量轻,有利于变刚度组件10的轻量化设计。示例性地,可以采用机械加工方式对坯料进行材料去除以形成基体11和啮合部12。或者,可以采用3D打印工艺以增料的方式加工制造形成基体11和啮合部12。例如,可以通过3D打印工艺使用硬度为40A的硅胶形成基体11,而使用硬度为95A的硅胶形成啮合部12。
在一些可实现的方式中,基体11和啮合部12为分体组装结构。基体11和啮合部12分别单独加工制造,然后通过组装的方式将基体11和啮合部12相连,从而一方面,可以降低变刚度组件10的整体加工难度;另一方面,可以根据变刚度组件10的刚度调节要求,灵活选择基体11和啮合部12的材料。
在一些示例中,基体11为单层结构。基体11的材料和啮合部12的材料可以相同,例如两者可以均选自树脂、橡胶或硅胶。啮合部12通过粘接或热熔焊接的方式与基体11相连。在另一些示例中,基体11为单层结构。基体11的材料和啮合部12的材料可以不同,例如基体11的材料可以选自树脂、橡胶或硅胶。啮合部12的材料可以选自塑料、金刚石或刚玉。例如,啮合部12的材料可以是棕刚玉。啮合部12的硬度大于基体11的硬度。啮合部12可以通过粘接方式与基体11相连。
在一些可实现的方式中,啮合部12的形状可以是人字形。啮合部12包括相交的两个延伸段。两个延伸段之间的夹角取值范围可以是100°至160°。
在一些可实现的方式中,参见图9所示,啮合部12的形状可以是球形,例如可以是半圆球形。每组啮合部12中可以包括多个间隔设置的球形的啮合部12。示例性地,啮合状态下,一个基体11上的啮合部12可以和另一个基体11上的四个啮合部12相接触。
在一些可实现的方式中,参见图10所示,啮合部12的形状可以是条形。啮合部12沿直线延伸。基体11具有预定宽度时,啮合部12沿基体11的宽度方向Z延伸。厚度方向X和长度方向Y均与宽度方向Z相垂直。
在一些可实现的方式中,参见图11所示,啮合部12背向基体11的表面为曲面。两个 以上的啮合部12形成波浪形结构。
本申请啮合部12的形状不限定于上述所示例的形状,其他可以实现啮合部12相互啮合的形状均在本申请的保护范围内。
在一些可实现的方式中,参见图12所示,变刚度组件10还包括凸起14。凸起14的尺寸小于啮合部12的尺寸。参见图13所示,至少部分数量的啮合部12的侧壁121设置多个凸起14。啮合部12的侧壁121指的是面向间隙13并且用于啮合的表面。啮合部12的侧壁121上设置凸起14后,可以增加侧壁121的摩擦力。在两个基体11上的啮合部12相互啮合时,两个基体11上的啮合部12受到较大的摩擦力而不易啮合。在啮合部12插入对应间隙13的深度相同的情况下,相对于未设置凸起14的啮合部12,设置凸起14的啮合部12需要克服更大的摩擦阻力。由于设置凸起14的啮合部12不易啮合并且需要更大的压应力实现相同的啮合状态,因此从啮合部12处于分离状态切换至啮合部12完全啮合状态,使得所施加于基体11和啮合部12的压应力的上限值更大,从而使得施加于啮合部12上的作用力的取值范围更宽,施加于啮合部12上的作用力大小精度更高,有利于提高啮合部12插入对应间隙13内的深度的精度,进而有利于提高变刚度组件10的刚度变化范围,提高变刚度组件10的刚度控制精度。对应地,相对于未设置凸起14的啮合部12,设置凸起14的啮合部12从啮合状态切换至分离状态时需要克服更大的摩擦阻力,使得设置凸起14的啮合部12不易从啮合状态切换至分离状态,可以实现啮合部12逐渐切换至分离状态,降低啮合部12从啮合状态切换至分离状态因分离速度过快而出现应力突变的可能性。
在一些示例中,通过调节凸起14的尺寸,可以调整改变侧壁121的摩擦力。示例性地,啮合部12凸出基体11的高度取值范围可以是0.5毫米至3毫米,例如可以但不限定为1毫米。凸起14凸出侧壁121的高度取值范围可以是5微米至500微米。
在一些示例中,一部分数量的啮合部12的侧壁121设置多个凸起14,而其余数量的啮合部12的侧壁121未设置凸起14。因此,一个基体11上可以在不同的位置设置不同类型的啮合部12,从而可以实现变刚度组件10上不同位置的刚度变化效果的差异化,以有利于更好地模拟用户的抓取或握持体验。
在一些可实现的方式中,参见图13所示,基体11上具有位于相邻两个啮合部12之间的外露区域11a。外露区域11a的数量为多个。参见图14所示,变刚度组件10包括凹部15。凹部15与外露区域11a对应设置。至少部分数量的外露区域11a对应设置有凹部15。凹部15沿基体11的厚度方向X凹陷。在两个基体11上的啮合部12相互啮合时,一个基体11上的啮合部12的至少部分可以插入对应的凹部15。一个基体11上的啮合部12插入对应的凹部15时,该啮合部12会受到凹部15的侧壁限位,从而该啮合部12不易沿基体11的宽度方向Z移动,降低该啮合部12沿基体11的宽度方向Z移动而导致与凹部15两侧的啮合部12之间的啮合区域减小的可能性。示例性,一个基体11上的啮合部12用于插入对应凹部15的部分与凹部15的形状相匹配。示例性地,凹部15的数量为一个。沿基体11的宽度方向Z,凹部15不贯穿基体11设置。
在一些可实现的方式中,参见图15所示,基体11上具有多个位于相邻两个啮合部12之间的外露区域11a。至少部分数量的外露区域11a上设置多个凸起14。外露区域11a上设置凸起14后,可以增加外露区域11a的摩擦力。在两个基体11上的啮合部12相互啮合 时,啮合部12上面向外露区域11a的表面与设置凸起14的外露区域11a之间的摩擦力较大,从而啮合部12不易相对外露区域11a发生移动。在变刚度组件10弯曲至相同程度的情况下,使包括设置有凸起14的基体11的变刚度组件10发生弯曲的作用力大于使包括未设置有凸起14的基体11的变刚度组件10发生弯曲的作用力,从而外露区域11a设置凸起14,有利于提高变刚度组件10的刚度变化范围。
在一些可实现的方式中,啮合部12的侧壁121以及基体11的外露区域11a上同时设置凸起14。啮合部12的顶壁122也可以设置凸起14。
在一些可实现的方式中,凸起14的形状为球形,例如可以是半圆球形。啮合部12为球形时,凸起14的形状可以与啮合部12的形状相同,并且多个凸起14间隔设置于啮合部12的侧壁121以及基体11上的外露区域11a中的至少一者。啮合部12为人字形或条形时,多个凸起14间隔设置于啮合部12的侧壁121以及基体11上的外露区域11a中的至少一者。
在一些可实现的方式中,参见图16和图17所示,凸起14的形状为条形。啮合部12为人字形、条形或球形时,凸起14沿基体11的宽度方向Z延伸。多个凸起14间隔设置于啮合部12的侧壁121以及基体11上的外露区域11a中的至少一者。
本申请凸起14的形状不限于上述所示例的形状,其他可以实现相同功能的凸起14的形状均在本申请的保护范围内。
在一些示例中,参见图16所示,一部分数量的外露区域11a设置多个凸起14,而其余数量的外露区域11a未设置凸起14。因此,一个基体11上可以在不同的位置设置不同类型的外露区域11a,从而可以实现变刚度组件10上不同位置的刚度变化效果的差异化,以更好地模拟用户的抓取或握持体验。
在一些可实现的方式中,参见图18所示,基体11包括相连的两个以上的层结构11b。沿基体11的厚度方向X,两个以上的层结构11b层叠设置。相邻两个层结构11b的硬度不同。基体11为单层结构11b时,基体11的材料对基体11自身的刚度具有主要影响,从而由一种材料形成的基体11自身的刚度变化范围小。相对于基体11为单层结构11b,多个层结构11b的基体11可以通过调节各层的硬度以实现变刚度组件10整体的刚度调节,从而可以有利于增大变刚度组件10的整体刚度变化范围,增大变刚度组件10可模拟刚度的取值范围。
在一些可实现的方式中,相邻两个层结构11b的材料相同。使用相同材料制造的两个层结构11b彼此可以直接连接,通过热熔焊接的方式实现连接,从而可以不需要额外设置中间连接件,使得变刚度组件10结构紧凑,有利于降低变刚度组件10的重量。
在一些示例中,基体11包括相连的两个层结构11b。两个层结构11b中,远离啮合部12的层结构11b的材料以及靠近啮合部12的层结构11b的材料均可以是硅胶、橡胶或树脂。
在一些可实现的方式中,相邻两个层结构11b的材料不同。可以通过选择不同层结构11b的材料,使得相邻两个层结构11b的硬度不同,形成具有不同刚度的基体11,从而有利于使用不同的材料复合形成满足不同刚度变化要求的基体11。相邻两个层结构11b可以采用粘接方式实现连接。
在一些示例中,基体11包括相连的两个层结构11b。两个层结构11b中,远离啮合部 12的层结构11b的硬度大于靠近啮合部12的层结构11b的硬度。示例性地,远离啮合部12的层结构11b的材料可以是纸制品或塑料。靠近啮合部12的层结构11b的材料可以是硅胶、橡胶或树脂。
在另一些示例中,基体11包括相连的三个层结构11b。三个层结构11b中,各个层结构11b的材料不相同。
在另一些示例中,远离啮合部12的方向上,最外侧的层结构11b的硬度大于其余层结构11b的硬度。因此,最外侧的层结构11b可以作为约束结构,在不影响基体11发生弯曲的情况下可以使得基体11保持整体尺寸不易发生变化,降低基体11在弯曲过程中被拉伸变长而对变刚度组件10的刚度变化精度产生不良影响的可能性。
示例性地,最外侧的层结构11b可以为可弯曲变形并且抗拉伸的结构件,从而最外侧的层结构11b自身可以弯曲变形,同时在承载拉伸应力时,自身不易被拉伸变形。示例性地,最外侧的层结构11b为塑料片或纸制品。纸制品例如可以是使用硫酸盐和木浆制成的牛皮纸。
示例性地,基体11包括两个层结构11b。与啮合部12相连的层结构11b的材料可以是树脂。最外侧的层结构11b的材料可以是纸制品。与啮合部12相连的层结构11b粘接于最外侧的层结构11b。例如,与啮合部12相连的层结构11b通过粘接件11c粘接于最外侧的层结构11b。粘接件11c可以是环氧树脂胶。
示例性地,基体11呈扁平状的结构。与啮合部12相连的层结构11b的材料以及啮合部12的材料相同。与啮合部12相连的层结构11b以及啮合部12为一体成型结构。啮合部12的形状呈人字形。
在一些可实现的方式中,参见图19所示,基体11包括相连的两个以上的块结构11d。沿与基体11的厚度方向X相垂直的方向,两个以上的块结构11d相继分布。例如,与基体11的厚度方向X相垂直的方向可以是两组以上的啮合部12的排列方向。相邻两个块结构11d的硬度不同。块结构11d的硬度较大的区域,抗弯曲能力较强。块结构11d的硬度较小的区域,相对易于弯曲。基体11为一体成型结构时,基体11的材料对基体11自身的刚度具有主要影响,从而由一种材料一体成型加工形成的基体11自身的刚度变化范围小。相对于基体11为一体成型结构,包括多个块结构11d的基体11可以通过调节不同位置的硬度,以实现变刚度组件10整体的刚度调节,从而可以有利于增大变刚度组件10的整体刚度变化范围,增大可模拟刚度的取值范围,实现变刚度组件10上不同区域的刚度反馈。
在一些示例中,各个块结构11d自身的长度、宽度和厚度均相同。基体11为具有预定长度的结构时,沿基体11的长度方向Y,两个以上的块结构11d相继分布。
在一些可实现的方式中,相邻两个块结构11d的材料可以不同,从而可以通过选择各个块结构11d的材料,使得相邻两个块结构11d的硬度不同,进而有利于使用不同的材料复合形成满足不同刚度变化要求的基体11。
在一些示例中,相邻的三个块结构11d中,各个块结构11d的材料不同。
在一些示例中,相邻两个块结构11d可以采用粘接方式实现连接。示例性地,相邻两个块结构11d中,一个块结构11d的材料可以是塑料,另一个块结构11d的材料可以是硅胶、橡胶或树脂。或者,相邻两个块结构11d中,一个块结构11d的材料可以是硅胶,另一个块结构11d的材料可以是橡胶或树脂。
在一些可实现的方式中,基体11的厚度与啮合部12凸出基体11的高度不同。基体11的厚度大小对基体11自身的刚度具有主要影响。基体11的厚度越大,自身刚度越大。啮合部12凸出基体11的高度对啮合后的两个啮合部12的重叠区域大小具有主要影响。两个啮合部12的重叠区域越大,重叠区域的抗弯曲变形能力越强。因此,通过基体11的厚度与啮合部12凸出基体11的高度设置为不同,可以灵活调整变刚度组件10的刚度变化范围。在一些示例中,基体11的厚度大于啮合部12凸出基体11的高度。对于一个基体11,基体11的厚度取值范围可以是0.5毫米至3毫米,例如可以但不限定为2毫米。啮合部12凸出基体11的高度取值范围可以是0.5毫米至3毫米,例如可以但不限定为1毫米。
本申请实施例的两个基体11中,一个基体11上的啮合部12和另一个基体11上的啮合部12从啮合状态切换至分离状态的过程中,如果啮合部12分离不及时或者不完全,会导致啮合部12仍处于啮合状态,从而在需要变刚度组件10切换至第一刚度时,变刚度组件10却仍然保持在第二刚度,影响变刚度组件10的刚度调节精度和模拟准确度。
在一些可实现的方式中,驱动组件20可以向变刚度组件10施加作用力,驱动两个以上的基体11沿厚度方向X彼此远离,以使相邻两个设置有啮合部12的基体11中,一者上的啮合部12与另一者上的啮合部12从啮合状态切换为分离状态。
在另一些可实现的方式中,为了保证啮合部12可以顺利地从啮合状态切换至分离状态,基体11可以为弹性结构,自身可以具有柔性。在需要变刚度组件10从第二刚度切换至第一刚度时,基体11可以释放自身的弹性回复力并带动啮合部12从啮合状态切换成分离状态。基体11自身可以提供使啮合部12从啮合状态切换成分离状态的作用力,从而有利于进一步保证啮合部12顺利地实现分离。
在一些示例中,驱动组件20可以向变刚度组件10施加作用力,同时基体11可以释放自身的弹性回复力,以此驱动两个以上的基体11沿厚度方向X彼此远离,使啮合部12从啮合状态切换成分离状态。
在另一些可实现的方式中,参见图20所示,变刚度组件10还包括弹性件16。相邻两个基体11上的啮合部12处于啮合状态时,啮合部12挤压弹性件16变形,以使弹性件16积蓄弹性势能。啮合部12从啮合状态切换为分离状态时,弹性件16释放弹性回复力并向啮合部12施加压应力,从而推动啮合部12相互分离。弹性件16可以额外向啮合部12提供分离时的作用力,以使啮合部12相对容易地发生分离,有利于降低从啮合状态切换为分离状态时,啮合部12仍然保持相互啮合而未能发生分离的可能性。
在一些示例中,驱动组件20可以向变刚度组件10施加作用力,同时基体11以及弹性件16可以释放自身的弹性回复力,以此驱动两个以上的基体11沿厚度方向X彼此远离,使啮合部12从啮合状态切换成分离状态。
在一些示例中,参见图20和图21所示,弹性件16为弹性片。相邻两个设置有啮合部12的基体11中,一者上的啮合部12与另一者上的啮合部12之间设置弹性件16。弹性件16可以覆盖基体11上的所有数量的啮合部12。两个基体11上的啮合部12啮合时,两个基体11上的啮合部12会同时挤压弹性件16。弹性件16的一部分被啮合部12压入对应的间隙13中。在啮合部12从对应的间隙13中退出时,弹性件16中位于间隙13中的部分发生回弹,以推动啮合部12。示例性地,弹性件16的材料可以选自塑料,从而弹性件16具有良好的柔韧性,使得弹性件16经过反复挤压、回弹后,不易出现压痕而导致弹性 件16失效的可能性。示例性地,弹性件16的厚度小于啮合部12凸出基体11的高度。例如,弹性件16的厚度取值范围可以为20微米至100微米。
在另一些示例中,参见图22和图23所示,对于一个基体11,基体11上位于相邻两个啮合部12之间的外露区域11a设置弹性件16。弹性件16位于相邻两个啮合部12之间的间隙13内。两个基体11上的啮合部12啮合时,一个基体11上的啮合部12会挤压对应的间隙13中的弹性件16。在啮合部12从对应的间隙13中退出时,弹性件16发生回弹,以推动啮合部12。弹性件16的高度小于啮合部12凸出基体11的高度。示例性地,弹性件16可以是弹簧,例如螺旋弹簧。或者,弹性件16可以是弹性材料制成的柱体。
在一些可实现的方式中,参见图24所示,变刚度组件10包括三个以上的基体11。一部分数量的基体11中,相邻两个基体11中的一者面向另一者的表面上设置啮合部12。一部分数量的基体11中,相邻两个基体11中的一者的表面与另一者的表面之间为面接触。设置有啮合部12的两个基体11上的啮合部12可以相互啮合,而未设置啮合部12的两个基体11之间的表面相互接触。变刚度组件10中,各个基体11之间的接触方式可以设置为不同,从而可以通过灵活设置基体11的接触方式,以实现变刚度组件10上不同的刚度反馈。示例性地,变刚度组件10的各个基体11中,啮合方式和面接触的方式可以交替设置。
在一些示例中,变刚度组件10包括四个基体11。以图24所示位置为参照,上方的第一个基体11和第二个基体11上各自设置有啮合部12。下方的第三个基体11和第四个基体11上各自设置有啮合部12。第二个基体11面向第三个基体11的表面上未设置啮合部12,而第三个基体11面向第二个基体11的表面上也未设置啮合部12。第一个基体11和第二基体11各自的啮合部12可以相互啮合。第三个基体11和第四个基体11各自的啮合部12可以相互啮合。第二个基体11和第三个基体11之间为面接触。
在另一些可实现的方式中,变刚度组件10包括三个以上的基体11。全部数量的基体11中,相邻两个基体11中的一者面向另一者的表面上设置啮合部12。
在一些示例中,变刚度组件10包括三个基体11。以图25所示位置为参照,第一个基体11、第二个基体11以及第三个基体11上各自设置有啮合部12。第二个基体11上面向第一个基体11的表面设置啮合部12。第二个基体11上面向第三个基体11的表面设置啮合部12。第一个基体11和第三基体11各自的啮合部12可以分别与第二个基体11的啮合部12相互啮合。
在另一些示例中,变刚度组件10包括四个基体11。以图26所示位置为参照,第一个基体11、第二个基体11、第三个基体11以及第四个基体11上各自设置有啮合部12。第二个基体11上面向第一个基体11的表面设置啮合部12。第二个基体11上面向第三个基体11的表面设置啮合部12。第三个基体11上面向第二个基体11的表面设置啮合部12。第三个基体11上面向第四个基体11的表面设置啮合部12。第一个基体11和第三基体11各自的啮合部12分别与第二个基体11的啮合部12可以相互啮合。第二个基体11和第四个基体11各自的啮合部12分别与第三个基体11的啮合部12可以相互啮合。
在一些可实现的方式中,参见图27所示,驱动组件20包括气囊21。变刚度组件10设置于气囊21内。变刚度组件10中,位于最外侧的基体11与气囊21的内壁相连。在柔性变刚度驱动器1应用于用户的身体部位时,可以将气囊21直接设置于身体部位并与皮肤直接接触,也可以在气囊21外部设置承载体,并通过承载体设置于身体部位。可以通 过排气或充气的方式调节气囊21的内部压力。气囊21处于负压状态时,气囊21在大气压的作用下压缩变形,而气囊21相对的两个壁部相互靠近,从而气囊21对变刚度组件10施加压应力,以使基体11相互靠近。相邻两个设置有啮合部12的基体11中,啮合部12从分离状态切换至啮合状态。气囊21与大气环境相连通呈常压状态或者气囊21处于正压状态时,气囊21相对的两个壁部相互远离,从而气囊21拉动基体11相互远离,以使基体11上的啮合部12从啮合状态切换至分离状态。
在一些示例中,基体11的外表面可以与气囊21的内壁粘接连接。
在一些示例中,参见图28所示,驱动组件20还包括真空泵22、第一阀体23和第二阀体24。真空泵22和气囊21通过管线相连通,而第一阀体23设置于管线上。第一阀体23用于打开或关闭管线。第一阀体23打开时,可以通过真空泵22抽出气囊21内的气体,以使气囊21处于负压状态。第一阀体23关闭时,气囊21保持在预定压力的负压状态。
第二阀体24设置于另一条管线。管线用于连通气囊21和外部大气环境。第二阀体24用于打开或关闭管线。第一阀体23关闭,第二阀体24关闭时,气囊21可以保持在预定压力的负压状态。第一阀体23关闭,第二阀体24打开时,气囊21与大气环境连通并吸入空气,以从负压状态切换至常压状态。
或者,参见图29所示,驱动组件20还包括充气泵25。第二阀体24设置于另一条管线。管线用于连通气囊21和充气泵25。第二阀体24用于打开或关闭管线。第一阀体23关闭,第二阀体24关闭时,气囊21可以保持在预定压力的负压状态。第一阀体23关闭,第二阀体24打开时,气囊21与充气泵25相连通,从而充气泵25可以向气囊21内充入气体,以使气囊21从负压状态切换至正压状态。
示例性地,第一阀体23可以为电磁阀。第二阀体24可以为电磁阀。
驱动组件20还包括气压传感器26。气压传感器26用于监测气囊21内的压力值。通过气压传感器26反馈的压力值可以对气囊21内的气压实现精准控制,从而可以实现气囊21对基体11所施加的压应力大小的精准控制,进而实现对啮合部12插入对应间隙13的深度实现精准控制。
驱动组件20还包括控制模块27。真空泵22、第一阀体23、第二阀体24、充气泵25和气压传感器26均与控制模块27通信连接,从而可以实现自动化控制,有利于提高控制精度。示例性地,控制模块27可以是单片机。
在一些可实现的方式中,参见图30所示,驱动组件20包括第一电极201和第二电极202。第一电极201和第二电极202通电状态下,第一电极201和第二电极202设置为极性相反,从而第一电极201和第二电极202产生吸附力,以对变刚度组件10施加压应力,以使设置有啮合部12的相邻两个基体11中,啮合部12从分离状态切换至啮合状态。
第一电极201和第二电极202通电状态下,第一电极201和第二电极202设置为极性相同,从而第一电极201和第二电极202产生排斥力,以对变刚度组件10施加拉应力,以使设置有啮合部12的相邻两个基体11中,啮合部12从啮合状态切换至分离状态。或者,第一电极201和第二电极202断电状态下,第一电极201和第二电极202吸附力为零,此时基体11和弹性件16中的至少一者可以释放自身的弹性回复力,以此驱动两个以上的基体11沿厚度方向X彼此远离,使啮合部12从啮合状态切换成分离状态。
在一些示例中,沿基体11的厚度方向X,第一电极201和第二电极202间隔设置,而 变刚度组件10设置于第一电极201和第二电极202之间。变刚度组件10中,两个位于最外侧的基体11可以分别与第一电极201和第二电极202粘接。第一电极201和第二电极202为片状结构。在另一些示例中,变刚度组件10上两个位于最外侧的基体11中的一者内部设置第一电极201,另一者内部设置第二电极202。第一电极201和第二电极202为片状结构。
在一些示例中,第一电极201和第二电极202通电状态时,第一电极201和第二电极202上可以施加直流电压。
在一些可实现的方式中,参见图31所示,驱动组件20包括第一电磁体20a和第二电磁体20b。第一电磁体20a和第二电磁体20b通电状态下,第一电磁体20a和第二电磁体20b设置为极性相反,从而第一电磁体20a和第二电磁体20b产生吸附力,以对变刚度组件10施加压应力,以使设置有啮合部12的相邻两个基体11中,啮合部12从分离状态切换至啮合状态。
第一电磁体20a和第二电磁体20b通电状态下,第一电磁体20a和第二电磁体20b设置为极性相同,从而第一电磁体20a和第二电磁体20b产生排斥力,以对变刚度组件10施加拉应力,以使设置有啮合部12的相邻两个基体11中,啮合部12从啮合状态切换至分离状态。或者,第一电磁体20a和第二电磁体20b断电状态下,第一电极201和第二电极202吸附力为零,此时基体11和弹性件16中的至少一者可以释放自身的弹性回复力,以此驱动两个以上的基体11沿厚度方向X彼此远离,使啮合部12从啮合状态切换成分离状态。
在一些示例中,沿基体11的厚度方向X,第一电磁体20a和第二电磁体20b间隔设置,而变刚度组件10设置于第一电磁体20a和第二电磁体20b之间。变刚度组件10中,两个位于最外侧的基体11可以分别与第一电磁体20a和第二电磁体20b粘接。第一电磁体20a和第二电磁体20b为片状结构。在另一些示例中,变刚度组件10上两个位于最外侧的基体11中的一者内部设置第一电磁体20a,另一者内部设置第二电磁体20b。第一电磁体20a和第二电磁体20b为片状结构。
参见图32所示,本申请实施例还提供一种虚拟现实交互设备100。虚拟现实交互设备100包括上述实施例的柔性变刚度驱动器1。柔性变刚度驱动器1可以安装于需要提供不同刚度反馈的各个部位,例如人体的手部、手腕、胳膊、腰部或腿部,或者,机器人的手部、手腕、胳膊、腰部或腿部。以柔性变刚度驱动器1设置于人体的手部为例,虚拟现实交互设备100可以通过柔性变刚度驱动器1模拟在虚拟现实世界中手部抓取或握持物体时产生的作用力或者其软硬程度,从而获得与现实世界相同或相近的感受,有利于提高用户与虚拟现实世界交互过程的沉浸感和真实感。柔性变刚度驱动器1可以设置于手部的内侧。
在一些可实现的方式中,柔性变刚度驱动器1可以设置于用户的手指和手掌中的至少一者上。示例性地,柔性变刚度驱动器1可以粘接于皮肤上。或者,通过束带绑缚于手指和手掌中的至少一者上。
在一些可实现的方式中,柔性变刚度驱动器1中的变刚度组件10的整体可以呈矩形、椭圆形或圆形。本申请变刚度组件10的整体形状不限定于上述所示例的形状,其他可以实现相同功能的形状均在本申请的保护范围内。
在一些可实现的方式中,虚拟现实交互设备100还包括承载体101。柔性变刚度驱动 器1设置于承载体101。虚拟现实交互设备100的承载体101可以设置于用户的手指和手掌中的至少一者上。
在一些示例中,承载体101可以是手套。柔性变刚度驱动器1设置于承载体101上以形成力反馈手套。承载体101的手指区和手掌区中的至少一者上设置柔性变刚度驱动器1。在用户需要体验虚拟现实世界时,用户可以将承载体101佩戴于自身的手部。用户手部的手指与承载体101的手指区对应,而手掌与承载体101的手掌区相对应。
在一些示例中,柔性变刚度驱动器1可以粘接于承载体101。或者,柔性变刚度驱动器1可以缝制于承载体101。或者,承载体101上具有容纳部,而柔性变刚度驱动器1装入该容纳部内。
用户需要在虚拟现实世界中抓取或握持相应物体时,用户的手指和手掌中的至少一者需要发生弯曲,以控制虚拟现实世界中的手部执行相关动作。用户的手指和手掌中的至少一者发生弯曲时,会向承载体101以及对应设置的柔性变刚度驱动器1施加作用力,以使承载体101以及对应设置的柔性变刚度驱动器1发生弯曲。此时,可以通过控制柔性变刚度驱动器1中的变刚度组件10在第一刚度和第二刚度切换,从而使得变刚度组件10弯曲时所需要克服的阻力大小不同,进而用户的手指和手掌中的至少一者所感受到的力反馈大小不同,以此模拟出虚拟现实世界中抓取或握持的相应物体的作用力或者其软硬程度。
变刚度组件10具有第一刚度时,变刚度组件10易于弯曲,手指和手掌中的至少一者向变刚度组件10输出的作用力较小,从而可以模拟虚拟现实世界中抓取或握持的虚拟物体产生的作用力较小或质地较软的场景。变刚度组件10具有第二刚度时,变刚度组件10相对难以弯曲,手指和手掌中的至少一者向变刚度组件10输出的作用力较大,从而可以模拟虚拟现实世界中抓取或握持的虚拟物体产生的作用力较大或质地较硬的场景。
承载体101和柔性变刚度驱动器1形成的力反馈手套整体不需要额外设置复杂、繁重的外部机械机构,从而力反馈手套整体质量较小,更加容易地贴近手部,适合用户日常与虚拟现实世界进行交互使用。承载体101可以使用织物或皮革等柔软质地的材料加工制造,从而可以使得承载体101自身柔软、轻巧,佩戴舒适。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应作广义理解,例如,可以是固定连接,也可以是通过中间媒介间接相连,可以是两个元件内部的连通或者两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
在本申请实施例或者暗示所指的装置或者元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。在本申请实施例的描述中,“多个”的含义是两个或两个以上,除非是另有精确具体地规定。
本申请实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请实施例的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本文中的术语“多个”是指两个或两个以上。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;在公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。
可以理解的是,在本申请的实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施例的实施过程构成任何限定。

Claims (24)

  1. 一种柔性变刚度驱动器(1),用于虚拟现实交互设备,其特征在于,所述柔性变刚度驱动器(1)至少包括:
    变刚度组件(10),包括啮合部(12)以及可弯曲变形的基体(11),两个以上的所述基体(11)层叠设置,至少部分数量的所述基体(11)中,相邻两个所述基体(11)中的一者面向另一者的表面上设置所述啮合部(12);
    驱动组件(20),用于驱动相邻两个设置有所述啮合部(12)的所述基体(11),以使一者上的所述啮合部(12)与另一者上的所述啮合部(12)至少从分离状态切换为啮合状态;
    其中,所述啮合部(12)处于所述分离状态时,所述变刚度组件(10)整体具有第一刚度,所述啮合部(12)处于所述啮合状态时,所述变刚度组件(10)整体具有第二刚度,所述第二刚度大于所述第一刚度。
  2. 根据权利要求1所述的柔性变刚度驱动器(1),其特征在于,所述啮合部(12)的硬度大于所述基体(11)的硬度。
  3. 根据权利要求1或2所述的柔性变刚度驱动器(1),其特征在于,所述基体(11)和所述啮合部(12)为一体成型结构。
  4. 根据权利要求3所述的柔性变刚度驱动器(1),其特征在于,所述基体(11)的材料和所述啮合部(12)的材料均选自树脂、橡胶或硅胶。
  5. 根据权利要求1或2所述的柔性变刚度驱动器(1),其特征在于,所述基体(11)和所述啮合部(12)为分体组装结构。
  6. 根据权利要求5所述的柔性变刚度驱动器(1),其特征在于,所述基体(11)的材料选自树脂、橡胶或硅胶,所述啮合部(12)的材料选自树脂、塑料、金刚石或刚玉。
  7. 根据权利要求1至6任一项所述的柔性变刚度驱动器(1),其特征在于,所述啮合部(12)的形状可以是球形、人字形或条形。
  8. 根据权利要求1至7任一项所述的柔性变刚度驱动器(1),其特征在于,所述变刚度组件(10)还包括凸起(14),所述凸起(14)的尺寸小于所述啮合部(12)的尺寸,至少部分数量的所述啮合部(12)的侧壁设置多个所述凸起(14)。
  9. 根据权利要求1至8任一项所述的柔性变刚度驱动器(1),其特征在于,所述变刚度组件(10)还包括凸起(14),设置所述啮合部(12)的所述基体(11)上,所述基体(11)具有位于相邻两个所述啮合部(12)之间的外露区域(11a),至少部分数量的所述外露区域(11a)设置多个所述凸起(14)。
  10. 根据权利要求8或9所述的柔性变刚度驱动器(1),其特征在于,所述凸起(14)的形状为球形或条形。
  11. 根据权利要求1至8任一项所述的柔性变刚度驱动器(1),其特征在于,相邻两个设置有所述啮合部(12)的所述基体(11)中,一个所述基体(11)包括位于相邻两个所述啮合部(12)之间的外露区域(11a),所述变刚度组件(10)还包括凹部(15),所述凹部(15)与所述外露区域(11a)对应设置,相邻两个所述基体(11)上的所述啮合部(12)处于啮合状态时,另一个所述基体(11)上的所述啮合部(12)的至少部分插入所述凹部(15)。
  12. 根据权利要求1至11任一项所述的柔性变刚度驱动器(1),其特征在于,所述基体(11)包括相连的两个以上的层结构(11b),沿所述基体(11)的厚度方向(X),两个以上的所述层结构(11b)层叠设置,相邻两个所述层结构(11b)的硬度不同。
  13. 根据权利要求12所述的柔性变刚度驱动器(1),其特征在于,相邻两个所述层结构(11b)的材料不同。
  14. 根据权利要求12或13所述的柔性变刚度驱动器(1),其特征在于,远离所述啮合部(12)的方向上,最外侧的所述层结构(11b)的硬度大于其余所述层结构(11b)的硬度。
  15. 根据权利要求14所述的柔性变刚度驱动器(1),其特征在于,最外侧的所述层结构(11b)为可弯曲变形并且抗拉伸的结构件。
  16. 根据权利要求1至11任一项所述的柔性变刚度驱动器(1),其特征在于,所述基体(11)包括相连的两个以上的块结构(11d),沿与所述基体(11)的厚度方向(X)相垂直的方向,两个以上的所述块结构(11d)相继分布,相邻两个所述块结构(11d)的硬度不同。
  17. 根据权利要求16所述的柔性变刚度驱动器(1),其特征在于,相邻两个所述块结构(11d)的材料不同。
  18. 根据权利要求1至17任一项所述的柔性变刚度驱动器(1),其特征在于,所述基体(11)的厚度与所述啮合部(12)凸出所述基体(11)的高度不同。
  19. 根据权利要求1至18任一项所述的柔性变刚度驱动器(1),其特征在于,所述基体(11)为弹性结构,所述基体(11)被配置为释放自身的弹性回复力并带动所述啮合部(12)从所述啮合状态切换成所述分离状态。
  20. 根据权利要求1至18任一项所述的柔性变刚度驱动器(1),其特征在于,所述变刚度组件(10)还包括弹性件(16),相邻两个所述基体(11)上的所述啮合部(12)处于啮合状态时,所述啮合部(12)挤压所述弹性件(16)变形,所述啮合部(12)从啮合状态切换为分离状态时,所述弹性件(16)释放弹性回复力并向所述啮合部(12)施加压应力。
  21. 根据权利要求20所述的柔性变刚度驱动器(1),其特征在于:
    所述弹性件(16)为弹性片,相邻两个设置有所述啮合部(12)的所述基体(11)中,一者上的所述啮合部(12)与另一者上的所述啮合部(12)之间设置所述弹性件(16);或者,
    相邻两个设置有所述啮合部(12)的所述基体(11)中,至少一个所述基体(11)上位于相邻两个所述啮合部(12)之间的外露区域(11a)设置所述弹性件(16)。
  22. 根据权利要求1至21任一项所述的柔性变刚度驱动器(1),其特征在于:
    所述变刚度组件(10)包括三个以上的所述基体(11),其中,一部分数量的所述基体(11)中,相邻两个所述基体(11)中的一者面向另一者的表面上设置所述啮合部(12),一部分数量的所述基体(11)中,相邻两个所述基体(11)中的一者的表面与另一者的表面之间为面接触;或者,全部数量的所述基体(11)中,相邻两个所述基体(11)中的一者面向另一者的表面上设置所述啮合部(12)。
  23. 根据权利要求1至22任一项所述的柔性变刚度驱动器(1),其特征在于:
    所述驱动组件(20)包括气囊(21),所述变刚度组件(10)设置于所述气囊(21)内,位于最外侧的所述基体(11)与所述气囊(21)的内壁相连,所述气囊(21)用于驱动相邻两个设置有所述啮合部(12)的所述基体(11);或者,
    所述驱动组件(20)包括第一电极(201)和第二电极(202),所述第一电极(201)和所述第二电极(202)均与所述变刚度组件(10)相连,并且用于驱动相邻两个设置有所述啮合部(12)的所述基体(11);或者,
    所述驱动组件(20)包括第一电磁体(20a)和第二电磁体(20b),所述第一电磁体(20a)和所述第二电磁体(20b)均与所述变刚度组件(10)相连,并且用于驱动相邻两个设置有所述啮合部(12)的所述基体(11)。
  24. 一种虚拟现实交互设备(100),其特征在于,包括如权利要求1至23任一项所述的柔性变刚度驱动器(1)。
PCT/CN2022/117604 2021-10-22 2022-09-07 柔性变刚度驱动器以及虚拟现实交互设备 WO2023065872A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111236263.9A CN116009684A (zh) 2021-10-22 2021-10-22 柔性变刚度驱动器以及虚拟现实交互设备
CN202111236263.9 2021-10-22

Publications (1)

Publication Number Publication Date
WO2023065872A1 true WO2023065872A1 (zh) 2023-04-27

Family

ID=86030444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117604 WO2023065872A1 (zh) 2021-10-22 2022-09-07 柔性变刚度驱动器以及虚拟现实交互设备

Country Status (2)

Country Link
CN (1) CN116009684A (zh)
WO (1) WO2023065872A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109247638A (zh) * 2018-09-25 2019-01-22 北京航空航天大学 一种基于软体变刚度关节驱动器的力反馈手套
US20200260934A1 (en) * 2017-11-17 2020-08-20 Olympus Corporation Variable stiffness device, variable stiffness system, endoscope, and stiffness varying method
CN111571636A (zh) * 2020-06-01 2020-08-25 山东科技大学 一种变刚度柔性驱动器
US20210249719A1 (en) * 2018-06-15 2021-08-12 Amogreentech Co., Ltd. Flexible battery and method for forming pattern of flexible battery
CN113440376A (zh) * 2021-07-15 2021-09-28 安徽索骥智能科技有限公司 一种具有变刚度功能的人体上肢康复训练装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200260934A1 (en) * 2017-11-17 2020-08-20 Olympus Corporation Variable stiffness device, variable stiffness system, endoscope, and stiffness varying method
US20210249719A1 (en) * 2018-06-15 2021-08-12 Amogreentech Co., Ltd. Flexible battery and method for forming pattern of flexible battery
CN109247638A (zh) * 2018-09-25 2019-01-22 北京航空航天大学 一种基于软体变刚度关节驱动器的力反馈手套
CN111571636A (zh) * 2020-06-01 2020-08-25 山东科技大学 一种变刚度柔性驱动器
CN113440376A (zh) * 2021-07-15 2021-09-28 安徽索骥智能科技有限公司 一种具有变刚度功能的人体上肢康复训练装置

Also Published As

Publication number Publication date
CN116009684A (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
Yin et al. Wearable soft technologies for haptic sensing and feedback
Hinchet et al. Dextres: Wearable haptic feedback for grasping in vr via a thin form-factor electrostatic brake
Pacchierotti et al. Wearable haptic systems for the fingertip and the hand: taxonomy, review, and perspectives
US10779583B2 (en) Actuated tendon pairs in a virtual reality device
Zubrycki et al. Novel haptic device using jamming principle for providing kinaesthetic feedback in glove-based control interface
Prattichizzo et al. Towards wearability in fingertip haptics: a 3-dof wearable device for cutaneous force feedback
US20110148607A1 (en) System,device and method for providing haptic technology
US20180335842A1 (en) Haptic feedback glove
EP3977239A1 (en) Haptic feedback apparatus worn on a hand
CN103052927B (zh) 提供三维触觉反馈的系统、设备和方法
US20210284525A1 (en) Electrostatic zipper
KR101524906B1 (ko) 촉각 생성장치, 고분자 유전체 기반 구동기, 이를 이용한 촉각 액추에이터, 촉감 액추에이터, 인터페이스 장치, 촉각 피드백 제공장치
US10546471B1 (en) Pneumatically controlled haptic mechanisms for haptic feedback
Muramatsu et al. Perception of tactile sensation using vibrotactile glove interface
CN101211190B (zh) 可动装置
EP3821322A1 (en) Electrostatic brake-based haptic device
Hinchet et al. Glove‐and Sleeve‐Format Variable‐Friction Electrostatic Clutches for Kinesthetic Haptics
WO2023065872A1 (zh) 柔性变刚度驱动器以及虚拟现实交互设备
WO2018212971A1 (en) Haptic feedback glove
KR102234776B1 (ko) 햅틱 휠을 이용한 vr 또는 게임 컨트롤러 및 그 제어 방법, 이를 구비한 vr 시스템
Michikawa et al. A Multi-DoF Exoskeleton Haptic Device for the Grasping of a Compliant Object Adapting to a User's Motion Using Jamming Transitions
US10540870B1 (en) Pneumatically controlled haptic mechanisms with curling internal structures for haptic feedback
US11627418B1 (en) Multilayer membranes for haptic devices
WO2023088361A1 (zh) 触觉反馈装置及虚拟现实交互设备
US20230263687A1 (en) Fluid-actuated haptic device and methods for using thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882487

Country of ref document: EP

Kind code of ref document: A1