WO2023088361A1 - 触觉反馈装置及虚拟现实交互设备 - Google Patents
触觉反馈装置及虚拟现实交互设备 Download PDFInfo
- Publication number
- WO2023088361A1 WO2023088361A1 PCT/CN2022/132554 CN2022132554W WO2023088361A1 WO 2023088361 A1 WO2023088361 A1 WO 2023088361A1 CN 2022132554 W CN2022132554 W CN 2022132554W WO 2023088361 A1 WO2023088361 A1 WO 2023088361A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- feedback
- unit
- tactile feedback
- area
- feedback unit
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/016—Input arrangements with force or tactile feedback as computer generated output to the user
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T19/00—Manipulating 3D models or images for computer graphics
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T19/00—Manipulating 3D models or images for computer graphics
- G06T19/006—Mixed reality
Definitions
- the present application relates to the technical field of terminal products, in particular to a tactile feedback device and a virtual reality interactive device.
- Virtual Reality (VR) technology is a new practical technology developed in the 20th century.
- Virtual reality technology includes computer, electronic information, and simulation technology. Its basic implementation method is to simulate a virtual environment by computer to give people a sense of environmental immersion.
- Virtual reality technology is the use of data in real life, electronic signals generated by computer technology, and combining them with various output devices to transform them into phenomena that people can feel. These phenomena can be real objects in reality. , it can also be a substance invisible to our naked eyes, which is represented by a three-dimensional model. Because these phenomena are not what we can see directly, but the real world simulated by computer technology, it is called virtual reality.
- Haptic feedback is considered to be an important part of achieving full immersion in virtual reality, and is an important measure to enhance user immersion.
- the tactile feedback device is attached to the corresponding area of the human skin, and can provide force feedback, temperature feedback, friction feedback, texture feedback, etc. to the corresponding area.
- At least one type of tactile feedback in feedback or vibration feedback is beneficial to improve the sense of immersion and realism in the interaction process between the user and the virtual reality world.
- the tactile feedback device is usually fixed on the carrier of the device.
- the tactile feedback device When the device is worn on the human body, the tactile feedback device is always attached to the user's skin.
- the tactile feedback device may hinder the user's actions, for example, the user's fingers may not be able to bend to pick up the mobile phone.
- the process of removing the whole device from the human body is too cumbersome, and the time may be too late, the above reasons make the current use of the tactile feedback device not flexible enough to meet the needs of different scenarios, which is not conducive to users. Interaction experience when haptic feedback is required.
- the present application provides a tactile feedback device and a virtual reality interactive device, which can meet the usage requirements in different scenarios, and help to improve the user's interactive experience when no tactile feedback is required.
- a tactile feedback device is provided, the tactile feedback device is used in a virtual reality interactive device, and the virtual reality interactive device is used to be worn on a human body, and the tactile feedback device includes: a first feedback unit configured to The first area attached to the human skin provides tactile feedback to the first area; the driving unit is used to drive the first feedback unit away from the first area, so as to weaken or eliminate the first feedback unit Tactile feedback to the first area; the driving unit includes a flexible bladder, and the flexible bladder expands or contracts to drive the first feedback unit away from the first area.
- the first feedback unit can be attached to the human body for tactile feedback in a normal use state, thereby enhancing the user's real experience.
- the application sets the drive unit to drive the first feedback unit away from the area where tactile feedback is required on the human body, so that the first feedback unit can be weakened or eliminated without taking off the virtual reality interaction device.
- the tactile feedback in this area avoids the first feedback unit from hindering the user's actions when the tactile feedback is not needed, so that the user has a better free experience. At this time, the user can smoothly perform other operations such as making and receiving calls.
- the tactile feedback device provided by the embodiment of the present application has high flexibility in use, can meet the use requirements in different scenarios, and is conducive to improving the user's interactive experience when no tactile feedback is required.
- the application can facilitate the use of users, improve the experience of users, and help to improve the competitiveness of products.
- the flexible capsule has the advantages of simple structure, convenient installation, small size, and simple transmission mode.
- This application utilizes the expansion or contraction of the flexible capsule to drive the first feedback unit to move. It is beneficial to reduce the volume of the entire tactile feedback device, and can also ensure that the tactile feedback device has sufficient stability in use, and ensures that the drive unit can still reliably drive the first feedback unit to move after a long period of repeated use without failure. Therefore, the tactile feedback device has high operating stability.
- the driving unit drives the first feedback unit away from the first area along a normal direction of the first area.
- the flexible capsule can be set in a flat shape, and by setting the flexible capsule to drive the first feedback unit away from the first area along the normal direction, the structure is simple and easy to implement, and it is beneficial to improve the operation stability of the tactile feedback device.
- the flexible bladder can be made of elastic materials such as elastic resin, elastic silicone, elastic rubber, etc., for example, can be cast from elastic silicone.
- the flexible capsule is flat and covers the first region.
- the flexible bladder has an outer wall and an inner wall oppositely arranged, and the outer wall of the inner wall faces the first region; the first feedback unit is connected to the outer wall of the outer wall.
- the flexible bladder expands to drive the first feedback unit away from the first area; or, the first feedback unit is connected to the inner wall or the outer wall of the inner wall, The flexible capsule shrinks to drive the first feedback unit away from the first area.
- the driving unit further includes a power pump, and the power pump is used for injecting gas or liquid into the flexible bladder to expand the flexible bladder.
- the driving unit further includes a control unit and a pressure sensor
- the pressure sensor is used to monitor the pressure value in the flexible capsule
- the control unit is used to adjust the The displacement of the first feedback unit is controlled.
- the pressure value fed back by the pressure sensor can accurately control the pressure in the flexible capsule, and the pressure value in the flexible capsule is positively correlated with the displacement of the outer wall, so that the precise control of the displacement of the flexible bladder to the outer wall can be realized according to the pressure value , that is to realize precise control of the displacement of the first feedback unit.
- the pressure sensor may be an air pressure sensor or a hydraulic pressure sensor.
- a tactile feedback device for a virtual reality interaction device, the virtual reality interaction device is used to be worn on a human body, and the tactile feedback device includes: a first feedback unit for being attached to a human body A first area of the skin to provide tactile feedback to the first area; a driving unit for driving the first feedback unit away from the first area along the normal direction and/or tangential direction of the first area , so as to weaken or eliminate the tactile feedback of the first feedback unit (100) to the first region (S1).
- the first feedback unit can be attached to the human body for tactile feedback in a normal use state, thereby enhancing the real experience of the user.
- the application sets the drive unit to drive the first feedback unit away from the area where tactile feedback is required on the human body, so that the first feedback unit can be weakened or eliminated without taking off the virtual reality interaction device.
- the tactile feedback in this area avoids the first feedback unit from hindering the user's actions when the tactile feedback is not needed, so that the user has a better free experience. At this time, the user can smoothly perform other operations such as making and receiving calls.
- the tactile feedback device provided by the embodiment of the present application has high flexibility in use, can meet the use requirements in different scenarios, and is conducive to improving the user's interactive experience when no tactile feedback is required.
- the application can facilitate the use of users, improve the experience of users, and help to improve the competitiveness of products.
- the tactile feedback device provided by the embodiment of the present application can be applied to virtual reality interactive devices, can provide tactile feedback to the human body, and provide users with a tactile experience that cannot be provided in the field of visual virtual reality, so that users can fully access visual virtual reality.
- Objects can create a more immersive feeling, which is conducive to improving the immersion and realism of the user's interaction with the virtual reality world.
- the driving unit includes a flexible capsule, and the flexible capsule expands or contracts to drive the first feedback unit away from the first area.
- the flexible capsule has the advantages of simple structure, convenient installation, small size, and simple transmission mode.
- This application utilizes the expansion or contraction of the flexible capsule to drive the first feedback unit to move. It is beneficial to reduce the volume of the entire tactile feedback device, and can also ensure that the tactile feedback device has sufficient stability in use, and ensures that the drive unit can still reliably drive the first feedback unit to move after a long period of repeated use without failure. Therefore, the tactile feedback device has high operating stability.
- the flexible bladder has an outer wall and an inner wall oppositely arranged, and the outer wall of the inner wall faces the first region; the first feedback unit is connected to the outer wall of the outer wall.
- the flexible bladder expands to drive the first feedback unit away from the first area; or, the first feedback unit is connected to the inner wall or the outer wall of the inner wall, The flexible capsule shrinks to drive the first feedback unit away from the first area.
- the driving unit further includes a power pump, and the power pump is used for injecting gas or liquid into the flexible bladder to expand the flexible bladder.
- the drive unit includes an electrical drive assembly
- the electrical drive assembly includes a first electrical element and a second electrical element that are oppositely arranged, and the first electrical element is in an electrified state
- An attractive or repulsive force that drives the first feedback unit away from the first area is generated between the second electrical element and the second electrical element.
- the second electrical element is located between the first electrical element and the first region; the first feedback unit is arranged on the second electrical element, so An attractive force is generated between the first electrical element and the second electrical element to drive the first feedback unit away from the first area; or, the first feedback unit is set on the first electrical On the element, a repulsive force is generated between the first electrical element and the second electrical element to drive the first feedback unit away from the first area.
- the first electrical element is a first electrode, and the second electrical element is a second electrode; or, the first electrical element is a first electromagnet, and the first electrical element is a first electrode.
- the second electric element is the second electromagnet.
- the drive unit includes a first motor and a first traction rope, and the first motor drives the first feedback unit away from the first area through the first traction rope.
- the first feedback unit is driven to move by the motor and the traction rope, the structure is simple and easy to implement, it is beneficial to reduce the overall volume of the tactile feedback device, and it has high operating stability.
- the drive unit further includes a second motor and a second traction rope, and the second motor drives the first feedback unit to approach and adhere to the first feedback unit through the second traction rope. over an area.
- the drive unit includes artificial muscles.
- the driving unit is also used to drive the first feedback unit to approach and attach to the first area.
- the tactile feedback device further includes: an elastic reset member, configured to drive the first feedback unit to approach and stick to the first region after the driving force of the driving unit disappears above.
- the first feedback unit is automatically reset by setting an elastic reset member with a simple structure, without setting other power structures to reset the first feedback unit, thereby simplifying the structure of the entire tactile feedback device, saving production costs, and effectively It is beneficial to reduce the overall volume of the tactile feedback device, and has high running stability.
- the elastic return member can be any spring (such as a torsion spring, tension spring or compression spring), a spring (such as a metal spring), a rubber band, or an elastic plastic strip that can achieve elastic return, but is not limited thereto.
- a spring such as a torsion spring, tension spring or compression spring
- a spring such as a metal spring
- a rubber band such as a rubber band
- an elastic plastic strip that can achieve elastic return, but is not limited thereto.
- the driving unit is also used to drive the second area of the first feedback unit attached to the human skin to provide tactile feedback to the second area, and the second area is connected to the second area.
- the first area is different.
- the tactile feedback device provided by the embodiment of the present application can cover multiple areas of the human body through one tactile feedback unit, and realize tactile feedback on multiple areas through one tactile feedback unit, so that users can fully access the visual virtual world.
- Objects in reality produce a more immersive feeling, which is conducive to improving the immersion and realism of the user's interaction with the virtual reality world.
- the above reasons also make the virtual reality interactive products installed with the tactile feedback device provided by the embodiment of the present application have higher usability and make the products more competitive.
- the tactile feedback device further includes: a second feedback unit; the drive unit is also used to drive the second feedback unit to approach and attach to the first area, so as to The first area provides tactile feedback, and the second feedback unit provides tactile feedback different from that provided by the first feedback unit.
- the tactile feedback device provided by the embodiment of the present application is more practical, and can provide different tactile feedback to the same skin area through different tactile feedback units, that is, it can provide multiple (different types) to the user through the first area.
- the tactile feedback allows users to have a rich experience of multi-tactile fusion feedback, so that users can have a more realistic tactile experience, which is conducive to improving the immersion and realism of the user's interaction with the virtual reality world.
- the second feedback unit is connected to the first feedback unit, and the driving unit drives the second feedback unit while driving the first feedback unit away from the first area close to and attached to the first area.
- the overall structure of the driving unit can be simplified, making the driving of the above two feedback units simpler and more convenient, which is beneficial to reducing the volume of the entire tactile feedback device and improving the stability of use.
- the movement of the first feedback unit and the second feedback unit are synchronized, and the second feedback unit seamlessly covers the first area when the first feedback unit leaves the first area, enabling users to have a more realistic tactile experience , which is conducive to improving the immersion and realism of the user's interaction with the virtual reality world.
- the tactile feedback device further includes: a flexible piece connected to the first feedback unit; the driving unit drives the first feedback unit away from the first area The flexible sheet is close to and attached to the first area.
- the first feedback unit can be covered on the first area; when the user does not need to provide tactile feedback, the drive unit can drive the flexible sheet to cover the first area, the flexible sheet has flexibility, It will not cause too much hindrance to the user's actions, and at this time, the user's experience can be relatively free. At this time, the user's fingers can be bent enough to perform other operations such as making and receiving calls.
- the flexible sheet is connected with the first feedback unit to realize synchronous driving, which can simplify the overall structure of the driving unit, help reduce the volume of the entire tactile feedback device, and improve the stability of use.
- synchronous driving can simplify the overall structure of the driving unit, help reduce the volume of the entire tactile feedback device, and improve the stability of use.
- the gap left after the first feedback unit leaves can be filled in time, and the wearing comfort of the tactile feedback device will not be adversely affected.
- the tactile feedback includes at least one of the following feedbacks: force feedback, temperature feedback, friction feedback, texture feedback or vibration feedback.
- the first feedback unit includes a flexible variable stiffness driver for providing force feedback.
- the flexible variable stiffness driver at least includes: a variable stiffness component, including an engaging portion and a bendable substrate, and more than two substrates are stacked, and at least part of the substrates,
- the engaging portion is provided on the surface of one of the two adjacent bases facing the other;
- the driving assembly is used to drive the two adjacent bases provided with the engaging portion, so that one of the bases
- the engaging portion of the one and the engaging portion on the other switch at least from a disengaged state to an engaged state; wherein, when the engaging portion is in the disengaged state, the variable stiffness assembly has a first stiffness as a whole, and the When the engaging portion is in the engaging state, the variable stiffness component as a whole has a second stiffness, and the second stiffness is greater than the first stiffness.
- the flexible variable stiffness driver of the embodiment of the present application includes a variable stiffness component and a drive component.
- the overall stiffness of the variable stiffness component can be adjusted.
- the variable stiffness component includes more than two bendable substrates. Each base itself has a predetermined rigidity. When an external force is applied to a single substrate, the substrate can bend and deform.
- two adjacent base bodies are respectively provided with engaging parts.
- the driving assembly is used to drive two adjacent bases provided with engaging parts, so that the engaging part on one and the engaging part on the other are at least switched from a separated state to an engaged state.
- the variable stiffness component may have a first stiffness.
- the driving assembly drives each base body close to each other, and in two adjacent base bodies provided with engaging parts, when the engaging parts on the two base bodies are switched from a separated state to an engaged state, the variable stiffness assembly has a second stiffness. Wherein, the second stiffness is greater than the first stiffness.
- variable stiffness component with the second stiffness is relatively difficult to bend and deform as a whole.
- bending the variable stiffness component with the second stiffness requires more force than bending the variable stiffness component with the second stiffness The force by which a component bends.
- the flexible and variable stiffness driver can be set on at least one of the user's body, such as fingers and palms.
- the variable stiffness component has a first stiffness, and when at least one of the user's fingers and palms is bent and deformed, a scene in which the grasped or held virtual object produces less or softer force can be simulated through the flexible variable stiffness driver.
- the variable stiffness component has a second stiffness, and when at least one of the user's fingers and palms is bent and deformed, the flexible variable stiffness driver can simulate a scene in which the force generated by the grasped or held virtual object is relatively large or hard.
- the flexible variable stiffness driver Through the flexible variable stiffness driver, the user can feel the force generated during the interaction process of the virtual object or its softness and hardness, so as to obtain the same or similar feeling as the real world, which is conducive to improving the immersion and sense of interaction between the user and the virtual reality world. realism.
- the flexible variable stiffness driver of the embodiment of the present application is compact in structure, small in size and light in weight, so it is beneficial to improve wearing comfort during use.
- the hardness of the engaging portion is greater than the hardness of the base body.
- the structure in which the hardness of the engaging portion is greater than that of the base body can be beneficial to increase the adjustment range of the stiffness change of the variable stiffness component.
- the base body and the engaging portion are integrally formed.
- the material of the base body and the material of the engaging part are both selected from resin, rubber or silicone.
- the base body and the engaging portion are separate assembly structures.
- the material of the base is selected from resin, rubber or silica gel
- the material of the engaging part is selected from resin, plastic, diamond or corundum.
- the shape of the engaging portion may be spherical, herringbone or bar.
- variable stiffness assembly further includes a protrusion, the size of which is smaller than that of the engaging portion, and at least part of the side walls of the engaging portion are provided with a plurality of the protrusions .
- variable stiffness component further includes a protrusion disposed on the base of the engaging portion, and the base has an exposed area between two adjacent engaging portions, at least partially A plurality of said protrusions are provided for a number of said exposed areas.
- the engagement portion provided with protrusions needs to overcome greater frictional resistance than the engagement portion without protrusions. Since the engaging part with protrusions is not easy to engage and requires greater compressive stress to achieve the same engaging state, switching from the state where the engaging part is separated to the state where the engaging part is fully engaged makes the compressive stress applied to the base and the engaging part
- the limit value is larger, so that the value range of the force applied to the meshing part is wider, and the precision of the force applied to the meshing part is higher, which is conducive to improving the accuracy of the depth of the meshing part inserted into the corresponding gap, and then It is beneficial to improve the stiffness variation range of the variable stiffness component and improve the stiffness control precision of the variable stiffness component.
- the engaging part with protrusion needs to overcome greater frictional resistance when switching from the engaged state to the disengaged state, so that the engaging part with protrusion is not easy to switch from the engaged state to the disengaged state , can realize the gradual switching of the meshing part to the disengaged state, and reduce the possibility of a sudden stress change in the meshing part when the meshing part switches from the meshing state to the disengaged state due to too fast separation speed.
- the protrusion is spherical or bar-shaped.
- the base body includes two or more connected layer structures, and more than two layer structures are stacked along the thickness direction of the base body, and the hardness of two adjacent layer structures different.
- the material of the matrix has a major influence on the stiffness of the matrix itself, so that the stiffness of the matrix itself formed of one material has a small variation range.
- the matrix of multi-layer structure can realize the overall stiffness adjustment of the variable stiffness component by adjusting the hardness of each layer, which can help to increase the overall stiffness variation range of the variable stiffness component and increase the variable stiffness.
- the materials of two adjacent layer structures are different.
- the hardness of two adjacent layer structures can be different to form a matrix with different stiffness, which is conducive to the use of different materials to form a matrix that meets the requirements of different stiffness changes.
- the hardness of the outermost layer structure is greater than that of the rest of the layer structures.
- the outermost layer structure can be used as a constraining structure, which can make the overall size of the matrix difficult to change without affecting the bending of the matrix, and reduce the stiffness change of the variable stiffness component due to the stretching and lengthening of the matrix during the bending process. Potential for adverse effects on accuracy.
- the outermost layer structure is a structural member that is deformable by bending and resists stretching.
- the base body is an elastic structure, and the base body is configured to release its own elastic recovery force and drive the engaging part to switch from the engaged state to the disengaged state.
- the matrix itself can provide an active force for switching the engagement parts from the engagement state to the disengagement state, so as to ensure the smooth separation of the engagement parts.
- variable stiffness assembly further includes an elastic member.
- the engaging part presses the elastic member to deform, and the When the engaging part switches from the engaging state to the disengaging state, the elastic member releases the elastic recovery force and applies compressive stress to the engaging part.
- the elastic member When the engaging parts switch from the engaged state to the disengaged state, the elastic member releases the elastic restoring force and applies compressive stress to the engaging parts, thereby pushing the engaging parts to separate from each other.
- the elastic member can provide additional force to the meshing parts when they are separated, so that the meshing parts can be separated relatively easily, which is beneficial to reduce the possibility that the meshing parts are still engaged with each other and fail to separate when switching from the meshed state to the separated state .
- the elastic member is an elastic sheet, and among two adjacent bases provided with the engaging portion, the engaging portion on one is connected to the engaging portion on the other.
- the elastic parts are arranged between them.
- the drive assembly includes an air bag.
- the variable stiffness component is arranged in the airbag.
- the outermost matrix is connected to the inner wall of the airbag.
- the airbag is used to drive two adjacent base bodies provided with engaging parts.
- the driving component includes a first electrode and a second electrode. Both the first electrode and the second electrode are connected with the variable stiffness component, and are used to drive two adjacent substrates provided with engaging parts.
- the driving assembly includes a first electromagnet and a second electromagnet with opposite polarities. Both the first electromagnet and the second electromagnet are connected with the variable stiffness assembly, and are used to drive two adjacent base bodies provided with engaging parts.
- a virtual reality interaction device including the tactile feedback device provided by any possible design in the aforementioned first aspect or second aspect.
- the virtual reality interactive device adopts the tactile feedback device provided by the aforementioned first aspect or the second aspect, the virtual reality interactive device also has the technical effect corresponding to the tactile feedback device, which will not be repeated here.
- Figure 1 is a schematic diagram of the interaction between a tactile feedback device and a human skin surface.
- FIG. 2 is a schematic structural diagram of an example of a tactile feedback device provided by an embodiment of the present application.
- FIG. 3 is a schematic diagram comparing different usage states of the tactile feedback device shown in FIG. 2 .
- Fig. 4 is a schematic structural diagram of another example of the tactile feedback device provided by the embodiment of the present application.
- FIG. 5 is a schematic diagram comparing different usage states of the tactile feedback device shown in FIG. 4 .
- Fig. 6 is a schematic structural diagram of another example of the tactile feedback device provided by the embodiment of the present application.
- FIG. 7 is a schematic diagram of comparison of different usage states of the tactile feedback device shown in FIG. 6 .
- Fig. 8 is a schematic structural diagram of another example of the tactile feedback device provided by the embodiment of the present application.
- FIG. 9 is a schematic diagram comparing different usage states of the tactile feedback device shown in FIG. 8 .
- Fig. 10 is a schematic structural diagram of another example of the tactile feedback device provided by the embodiment of the present application.
- FIG. 11 is a schematic diagram comparing different usage states of the tactile feedback device shown in FIG. 10 .
- Fig. 12 is a schematic structural diagram of another example of the tactile feedback device provided by the embodiment of the present application.
- FIG. 13 is a schematic diagram comparing different usage states of the tactile feedback device shown in FIG. 12 .
- Fig. 14 is a schematic structural diagram of another example of the tactile feedback device provided by the embodiment of the present application.
- FIG. 15 is a comparison diagram of different usage states of the tactile feedback device shown in FIG. 14 .
- Fig. 16 is a schematic structural diagram of another example of the tactile feedback device provided by the embodiment of the present application.
- FIG. 17 is a comparative schematic diagram of different usage states of the tactile feedback device shown in FIG. 16 .
- Fig. 18 is a schematic structural diagram of another example of the tactile feedback device provided by the embodiment of the present application.
- FIG. 19 is a comparison diagram of different usage states of the tactile feedback device shown in FIG. 18 .
- Fig. 20 is a schematic structural diagram of another example of the tactile feedback device provided by the embodiment of the present application.
- FIG. 21 is a comparative schematic diagram of different usage states of the tactile feedback device shown in FIG. 20 .
- Fig. 22 is a schematic structural diagram of a flexible variable stiffness driver provided by an embodiment of the present application.
- Fig. 23 is a schematic diagram of a partially exploded structure of the flexible variable stiffness driver provided by the embodiment of the present application.
- Fig. 24 is a partial cross-sectional structural schematic diagram of the engaging part in the separated state of the flexible variable stiffness driver provided by the embodiment of the present application.
- Fig. 25 is a partial cross-sectional structural schematic diagram of the fully engaged state of the engaging part in the flexible variable stiffness driver provided by the embodiment of the present application.
- Fig. 26 is a schematic diagram of an exploded structure of a variable stiffness component provided by an embodiment of the present application.
- Fig. 27 is a schematic diagram of an exploded structure of a variable stiffness component provided in another embodiment of the present application.
- Fig. 28 is a schematic diagram of an exploded structure of a variable stiffness component provided in another embodiment of the present application.
- Fig. 29 is a schematic diagram of a partial structure of a variable stiffness component provided by an embodiment of the present application.
- Fig. 30 is a schematic diagram of a partial structure of a variable stiffness component provided in another embodiment of the present application.
- Fig. 31 is a schematic diagram of a partial structure of a variable stiffness component provided by another embodiment of the present application.
- Fig. 32 is a schematic diagram of an exploded structure of a variable stiffness component provided in another embodiment of the present application.
- Fig. 33 is a partial cross-sectional structural schematic diagram of the engaging part in the separated state of the flexible variable stiffness driver provided by an embodiment of the present application.
- Fig. 34 is a partial cross-sectional structural schematic diagram of the engaging part in the flexible variable stiffness driver of the embodiment shown in Fig. 33 in an engaged state.
- Fig. 35 is a schematic structural diagram of a flexible variable stiffness driver provided by an embodiment of the present application.
- Fig. 36 is a schematic structural diagram of a flexible variable stiffness driver provided by another embodiment of the present application.
- Fig. 37 is a schematic diagram of an overall structure of an example of a virtual reality interaction device provided by an embodiment of the present application.
- Fig. 38 is a schematic diagram of the overall structure of another example of the virtual reality interaction device provided by the embodiment of the present application.
- Fig. 39 is a schematic diagram of the overall structure of another example of the virtual reality interaction device provided by the embodiment of the present application.
- the first force feedback unit 2. The second force feedback unit;
- the first feedback unit
- 210 flexible bladder; 211, first side wall; 212, second side wall; 213, power pump; 214, first valve; 215, second valve; 216, control unit; 217, pressure sensor; 218, power supply Unit; 219, pressure relief pump; 220, electrical drive assembly; 221, first electrical component; 222, second electrical component; 223, position detection sensor; 230, first motor; 231, first traction rope; 232, the second motor; 233, the second traction rope; 234, the first fixing part; 235, the second fixing part; 240, the first artificial muscle; 241, the second artificial muscle;
- X thickness direction
- Y length direction
- Z width direction
- a tactile feedback device 1000.
- the terms “installation” and “connection” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integrated Ground connection; it can be mechanical connection, electrical connection or mutual communication; it can be direct connection or indirect connection through an intermediary, and it can be the internal communication of two components or the interaction relationship between two components.
- installation and “connection” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integrated Ground connection; it can be mechanical connection, electrical connection or mutual communication; it can be direct connection or indirect connection through an intermediary, and it can be the internal communication of two components or the interaction relationship between two components.
- virtual reality technology makes it possible for users to interact with virtual environments. Users can experience the most real feelings in the virtual reality world, and the authenticity of its simulated environment can be close to reality. At the same time, the virtual reality world can have all the sensory functions that human beings have, such as auditory, visual, tactile, taste, olfactory and other sensory systems. During the operation of virtual reality, users can obtain environmental feedback similar to reality.
- Virtual reality interactive devices include wearable devices.
- Wearable devices may include tactile feedback gloves, so that users can wear them on their hands conveniently, and control hand movements in the virtual reality world through hand movements, such as successfully completing actions such as grabbing or holding corresponding objects.
- the tactile feedback glove When the tactile feedback glove is worn on the human hand, the tactile feedback device is attached to the skin of the hand, and can provide at least one of force feedback, temperature feedback, friction feedback, texture feedback, or vibration feedback to the hand skin.
- a type of haptic feedback that enhances the user's real-life experience.
- Figure 1 is a schematic diagram of the interaction between a tactile feedback device and a human skin surface.
- the tactile feedback glove has a first force feedback unit 1 and a second force feedback unit 2 which are fixedly mounted on a carrier (such as a glove body) and have a certain rigidity.
- a carrier such as a glove body
- the first force feedback unit 1 is attached to the user's palm to provide force feedback to the user's palm
- the second force feedback unit 2 is attached to the user's wrist to provide feedback to the user's palm.
- the wrist provides force feedback.
- the first force feedback unit 1 and the second force feedback unit 2 are always closely attached to the skin of the user's hand.
- the first force feedback unit 1 and the second force feedback unit 2 need to apply sufficient force to bend and deform them due to their rigidity, so that the first force feedback unit
- the feedback unit 1 and the second force feedback unit 2 may hinder the user's actions, for example, the user's fingers and/or wrist may not be bent to pick up the mobile phone.
- the embodiment of the present application provides a tactile feedback device and a virtual reality interactive device.
- the feedback unit can be attached to the human body for tactile feedback, thereby enhancing the user's real experience.
- the present application can drive the feedback unit away from the area where the human body needs tactile feedback by setting the drive unit, thereby reducing or eliminating the feedback unit’s impact on the area without taking off the virtual reality interaction device.
- Haptic feedback prevents the feedback unit from hindering the user's actions when the tactile feedback is not needed, so that the user has a better free experience. At this time, the user can smoothly perform other operations such as making and receiving calls.
- the tactile feedback device provided by the embodiment of the present application has high flexibility in use, can meet the use requirements in different scenarios, and is conducive to improving the user's interactive experience when no tactile feedback is required.
- FIG. 2 is a schematic structural diagram of an example of the tactile feedback device provided in the embodiment of the present application.
- FIG. 3 is a schematic diagram comparing different usage states of the tactile feedback device shown in FIG. 2 .
- the tactile feedback device provided by the embodiment of the present application includes a first feedback unit 100 and a driving unit 200 .
- the tactile feedback device provided by the embodiment of the present application can be installed and applied on a virtual reality interactive device.
- the first feedback unit 100 can be attached to the first area S1 of the human skin. In order to provide tactile feedback to the first area S1.
- the first feedback unit 100 can be installed on the carrier (i.e. the main structure) 700 of the virtual reality interactive device, and has an initial installation position.
- the first feedback unit 100 just sticks to the The first area S1 is suitable for the human body to provide tactile feedback.
- the virtual reality interactive device may be a tactile feedback glove (at this time the carrier 700 is the glove body), the first area S1 may be the knuckle area of the user's palm, when the tactile feedback glove is worn on the hand , the first feedback unit 100 provides tactile feedback to the knuckle area of the user's palm.
- the virtual reality interaction device may also be other wearable devices, and provide tactile feedback to other body parts of the user, which is not limited in this application.
- the virtual reality interactive device in the embodiment of the present application can also be worn on the wrist, arm, waist, abdomen, neck or legs of the human body and other arbitrary parts, that is, the virtual reality interactive device can provide tactile feedback wristbands, knee pads, clothes, trousers, belts, shoes or neck rings and other wearable devices, the first area S1 at this time may be the wrist joint area, elbow joint area, shoulder joint area, hip joint area, knee joint area, Any body part such as the ankle area or the neck area.
- the tactile feedback provided by the first feedback unit 100 to the first region S1 includes at least one of force feedback, temperature feedback, friction feedback, texture feedback, or vibration feedback.
- the first feedback unit 100 can provide force feedback to the first region S1
- the first feedback unit 100 can be a flexible and variable stiffness driver (for example, the flexible and variable stiffness driver shown in Figures 22-36 below, which will not be discussed here for the time being).
- the flexible variable stiffness driver can be a variable stiffness driver based on the degree of engagement, a granular or layered variable stiffness driver based on the blocking principle, and a soft variable stiffness driver, etc., but is not limited thereto.
- the variable stiffness performance of the driver can be used to provide users with different degrees of force feedback experience.
- the flexible variable stiffness driver can realize changes in stiffness.
- the stiffness control of the flexible variable stiffness driver the force generated during the process of grasping or holding different objects by the user or the degree of softness or hardness can be simulated.
- the user can feel the force or the degree of softness and hardness generated during the interaction of the virtual object, so as to obtain the same or similar feeling as the real world, which is conducive to improving the immersion and realism of the user's interaction with the virtual reality world. .
- the first feedback unit 100 can provide temperature feedback to the first region S1.
- the first feedback unit 100 can include temperature-regulating elements such as Peltier elements or heating resistance wires.
- Temperature provides users with different degrees of temperature feedback experience, allowing users to perceive the temperature of objects or the temperature of the environment in virtual reality.
- the first feedback unit 100 may provide friction feedback to the first region S1.
- the first feedback unit 100 may be a friction feedback sheet capable of changing surface roughness, which can bring realistic friction tactile feedback to the user.
- the first feedback unit 100 may provide texture feedback to the first region S1.
- the first feedback unit 100 may be a texture feedback sheet that can change the shape and/or depth of the internal texture, and can bring realistic texture to the user. Haptic feedback.
- the first feedback unit 100 can provide vibration feedback to the first area S1.
- the first feedback unit 100 can be a vibration motor (such as a linear vibration motor) capable of changing the vibration frequency and vibration amplitude
- a vibration piece such as a pressure point Vibrators such as ceramic chips
- the first feedback unit 100 can also provide two or more types of tactile feedback to the first region S1, so that the user can have a rich experience of multi-tactile fusion feedback, which increases the user's interaction with the user. Immersion in virtual reality interactions.
- the first feedback unit 100 may be a combination of stiffness and temperature, and may provide force feedback and temperature feedback to the first region S1 at the same time, thereby providing a more realistic tactile feedback experience to the user.
- the first feedback unit 100 has an initial installation position.
- the first feedback unit 100 When the virtual reality interaction device is worn on the human body, the first feedback unit 100 just fits on the first area S1 of the human body where tactile feedback is required.
- the first feedback unit 100 attached to the first region S1 of the human skin may be directly attached or indirectly attached, which is not limited in this application.
- the first feedback unit 100 When the first feedback unit 100 is directly attached to the human skin, the surface of the first feedback unit 100 is in direct contact with the skin surface. At this time, the tactile feedback effect of the first feedback unit 100 on the first region S1 is more efficient and obvious.
- the first feedback unit 100 When the first feedback unit 100 is attached to the skin of the human body indirectly, the first feedback unit 100 is attached to the skin surface through an intermediate medium (such as a cloth layer or a fiber layer of the glove body), and the intermediate medium will not affect the first feedback unit 100.
- the tactile feedback provided by a feedback unit 100 is hindered, and at this time, the first feedback unit 100 can be more comfortably worn on the human body.
- the shape of the first feedback unit 100 is adapted to the shape of the first region S1, for example, the shape of the first feedback unit 100 is the same as that of the first region S1, and the size of the first feedback unit 100 is slightly larger than the size of the first region S1, Thus, a reliable tactile feedback effect can be ensured.
- the first feedback unit 100 may be a sheet-like or plate-like structure, and its shape may be any regular or irregular shape such as a circle, triangle, rectangle, trapezoid, rhombus, or ellipse.
- the tactile feedback device further includes a driving unit 200, and the first feedback unit 100 is held on the carrier 700 in an adjustable position (movable),
- the drive unit 200 can drive the first feedback unit 100 to move on the carrier 700 to move away from the first area S1, thereby weakening or eliminating the tactile feedback of the first feedback unit 100 to the first area S1, and avoiding the need to obtain tactile feedback.
- the first feedback unit 100 hinders the user's actions, so that the user has a better free experience.
- the driving unit 200 can drive the first feedback unit 100 to move away from the first area S1.
- the driving unit 200 may include a power source and a transmission mechanism.
- the power source outputs power and transmits it to the first feedback unit 100 through the transmission mechanism, thereby enabling the first feedback unit 100 to move.
- the power source can be various types of power pumps, motors, motors, hydraulic cylinders, pneumatic cylinders, electrical drive components (electrode sheets or electromagnets), shape memory alloys, piezoelectric materials, artificial muscles, magnetorheological fluids Wait for any power mechanism.
- the driving unit 200 may drive the first feedback unit 100 to move in any manner such as pneumatic driving, hydraulic driving, rope driving or motor driving.
- the transmission mechanism may include any number of different components (gears, racks, cams, eccentric wheels, sliders, belts, rotating shafts, hinges, transmission ropes, air bags, liquid bags, connecting rods, slide bars or swing bars, etc.) 1.
- Mutual cooperation of different connection relationships butt, hinge, sliding connection, meshing connection, belt connection, rope connection, etc.), so as to realize the transmission of the power output by the power source to the first feedback unit 100 .
- the driving unit 200 drives the first feedback unit 100 away from the first region S1 along the normal direction F1 of the first region S1 .
- the first feedback unit 100 can move away from the first area S1 along the normal direction F1, so that the distance between the first feedback unit 100 and the first area S1 is increased, so that the first feedback unit 100 can be weakened or eliminated.
- the tactile feedback of the first area S1 by a feedback unit 100 reduces or avoids hindering the user's actions, so that the user has a better free experience.
- the driving unit 200 may also drive the first feedback unit 100 away from the first region S1 along the tangential direction F2 of the first region S1 .
- the first feedback unit 100 can be moved in a direction away from the first area S1 close to the skin surface, such as moving the first feedback unit 100 up, down, left, or right, so that the impact of the first feedback unit 100 on the skin surface can be weakened or eliminated.
- the tactile feedback of the first area S1 reduces or avoids obstruction to the user's actions, so that the user has a better free experience.
- the driving unit 200 drives the first feedback unit 100 away from the first region S1 along the normal direction F1 and the tangential direction F2 of the first region S1 . At this time, the driving unit 200 may drive the first feedback unit 100 to move obliquely in a direction away from the first area S1.
- the first feedback unit 100 can be attached to the human body for tactile feedback in a normal use state, thereby enhancing the user's real experience.
- the present application sets the driving unit 200 to drive the first feedback unit 100 away from the area where tactile feedback is required on the human body, thereby weakening or eliminating the first feedback without taking off the virtual reality interaction device.
- the feedback unit 100 provides tactile feedback to the area, avoiding the first feedback unit 100 from hindering the user's actions when no tactile feedback is required, so that the user has a better free experience, and at this time the user can smoothly make and receive calls, etc. other operations.
- the tactile feedback device provided by the embodiment of the present application has high flexibility in use, can meet the use requirements in different scenarios, and is conducive to improving the user's interactive experience when no tactile feedback is required.
- the application can facilitate the use of users, improve the experience of users, and help to improve the competitiveness of products.
- the tactile feedback device provided by the embodiment of the present application can be applied to virtual reality interactive devices, can provide tactile feedback to the human body, and provide users with a tactile experience that cannot be provided in the field of visual virtual reality, so that users can fully access visual virtual reality.
- Objects can create a more immersive feeling, which is conducive to improving the immersion and realism of the user's interaction with the virtual reality world.
- the drive unit 200 includes a flexible capsule 210, which is in transmission connection with the first feedback unit 100, and the expansion or contraction of the flexible capsule 210 can drive the first feedback The unit 100 is away from the first area S1. Conversely, the contraction or expansion of the flexible bladder 210 can bring the first feedback unit 100 close to the first area S1.
- the flexible capsule 210 has the advantages of simple structure, convenient installation, compact size, and simple transmission mode.
- the expansion or contraction of the flexible capsule 210 is used to drive the first feedback unit 100 to move.
- the overall structure is not conducive to reducing the volume of the entire tactile feedback device, and can also ensure that the tactile feedback device has sufficient stability in use, ensuring that the drive unit 200 can still reliably drive the first feedback unit 100 to move after multiple uses for a long time And it is not easy to break down, so that the tactile feedback device has high operation stability.
- the flexible capsule 210 may be made of elastic materials such as elastic resin, elastic silicone, elastic rubber, etc., for example, may be cast from elastic silicone.
- the flexible bladder 210 is flat and covers the first area S1 .
- the flexible bladder 210 has an outer side wall 211 and an inner side wall 212 oppositely arranged. When worn, the outer wall 211 and the inner wall 212 are approximately parallel to the surface of the first area S1 of human skin, the outer wall 211 is located on the side away from the first area S1, and the inner wall 212 is adjacent to the first area S1.
- the wall 212 is located between the outer wall 211 and the first region S1 , that is, the outer wall of the inner wall 212 faces the first region S1 .
- Part (a) in FIG. 3 is a structural schematic diagram of the first feedback unit 100 at an initial position
- part (b) in FIG. 3 is a structural schematic diagram of the first feedback unit 100 after being removed.
- the first feedback unit 100 can be connected with the carrier 700, and fixed and pasted on the outer wall surface of the outer side wall 211 by means of gluing or the like, and the carrier 700 is made of a flexible material (such as cloth) , can support a certain amount of deformation, and will not hinder the movement of the first feedback unit 100 .
- the flexible capsule 210 has a contracted state.
- the first feedback unit 100 is close to the first region S1 of the human body, and at this time can transmit
- the flexible capsule 210 provides tactile feedback (such as force feedback, temperature feedback or vibration feedback, etc.) to the first region S1.
- the flexible bladder 210 has an expanded state, and when the flexible bladder 210 is in the expanded state, the first feedback unit 100 is away from the first region S1 of the human body. That is to say, by inflating the flexible bladder 210, the outer wall 211 can be moved away from the first area S1, thereby driving the first feedback unit 100 away from the first area S1.
- the tactile feedback in a region S1 is weakened or eliminated, which can prevent the first feedback unit 100 from hindering the user's actions when no tactile feedback is required, and provide a better free experience for the user's fingers.
- the driving unit 200 further includes a power pump 213 for injecting gas or liquid into the flexible bladder 210 to expand the flexible bladder 210 .
- the power pump 213 can be an air pump, and can inject gas such as air into the flexible bladder 210 to inflate the flexible bladder 210, and the flexible bladder 210 is an air bag at this time.
- the power pump 213 can also be a liquid pump, which can inject liquid such as water into the flexible bladder 210 to expand the flexible bladder 210.
- the flexible bladder 210 is a liquid bladder
- the driving unit 200 can also include a liquid storage device for storing liquid. cavity.
- the power pump 213 and the flexible bladder 210 are connected through a pipeline, and a first valve 214 is arranged on the pipeline, and the first valve 214 is used to open or close the pipeline.
- gas or liquid can be injected into the flexible bladder 210 through the power pump 213 to expand the flexible bladder 210 and drive the first feedback unit 100 away from the first area S1.
- the first valve 214 is closed, the flexible bladder 210 remains in an inflated state at a predetermined pressure.
- the flexible bladder 210 also communicates with the outside through a pressure relief line, and a second valve 215 is arranged on the pressure relief line.
- the second valve 215 is used to open or close the pressure relief line.
- the flexible bladder 210 can be kept in an inflated state at a predetermined pressure.
- the first valve 214 is closed and the second valve 215 is opened, the flexible bladder 210 is connected to the external environment to discharge the gas or liquid inside the bladder, so that the flexible bladder 210 can return to the contracted state.
- the first feedback The unit 100 is close to the first area S1 of the human body again, and can continue to provide tactile feedback to the first area S1 through the flexible capsule 210 .
- the drive unit 200 further includes a pressure relief pump 219 disposed at the end of the pressure relief line.
- the flexible bladder 210 can maintain the inflated state at a predetermined pressure.
- the first valve 214 is closed and the second valve 215 is opened, the flexible capsule 210 is connected with the pressure relief pump 219, so that the pressure relief pump 219 can quickly discharge the gas or liquid in the flexible capsule 210, so that the flexible capsule 210 It can be quickly switched from the expanded state to the contracted state, and at this time the first feedback unit 100 can be quickly reset.
- the first valve 214 may be a solenoid valve.
- the second valve 215 may be a solenoid valve.
- the functions of the power pump 213 and the pressure relief pump 219 can be implemented by the same pump body. At this time, only one pump body needs to be provided, which can save costs and reduce the overall volume of the tactile feedback device.
- the power pump 213 can be a bidirectional reciprocating pump, which can inject gas or liquid into the flexible bladder 210 and discharge the gas or liquid in the flexible bladder 210 .
- the driving unit 200 further includes a pressure sensor 217 .
- the pressure sensor 217 is used to monitor the pressure inside the flexible bladder 210 .
- the pressure value fed back by the pressure sensor 217 can accurately control the pressure in the flexible bladder 210, and the pressure value in the flexible bladder 210 is positively correlated with the displacement of the outer wall 211, so that the flexible bladder 210 can be adjusted according to the pressure value.
- the precise control of the displacement of the outer wall 211 is to realize the precise control of the displacement of the first feedback unit 100 .
- the pressure sensor 217 may be an air pressure sensor or a hydraulic pressure sensor.
- the drive unit 200 also includes a control unit 216 .
- the power pump 213 , the first valve 214 , the second valve 215 , and the pressure sensor 217 are all communicatively connected with the control unit 216 , so as to realize automatic control and improve control accuracy.
- the control unit 216 may be a single chip microcomputer.
- the driving unit 200 further includes a power supply unit 218 for providing power to the control unit 216 and the like, and the power supply unit 218 may be, for example, a lithium battery, a nickel-metal hydride battery or a sodium-ion battery.
- the first feedback unit 100 may be a flexible variable stiffness driver.
- the flexible variable stiffness driver is capable of varying stiffness and has minimum stiffness.
- the user's finger still needs a certain force to make it bend and deform, that is At this time, it is still possible to hinder the movement of the fingers, so that the movements of the fingers cannot be absolutely free.
- the first feedback unit 100 When the flexible bladder 210 is inflated, the first feedback unit 100 is far away from the first area S1, at this time, the tactile feedback of the first feedback unit 100 to the first area S1 is weakened or eliminated, while the flexible bladder 210 itself is flexible, and the inner It is a fluid such as air or water, which hardly hinders the movement of the fingers, so that the user's fingers have a higher degree of freedom at this time, and can perform operations such as making and receiving calls, and can avoid the need to obtain tactile feedback in the first place.
- a feedback unit 100 hinders the user's actions, so that the user's fingers have a better free experience.
- FIG. 4 is a schematic structural diagram of another example of the tactile feedback device provided by the embodiment of the present application.
- FIG. 5 is a schematic diagram comparing different usage states of the tactile feedback device shown in FIG. 4 .
- Part (a) in FIG. 5 is a schematic structural view of the first feedback unit 100 at an initial position
- part (b) in FIG. 5 is a structural schematic view of the first feedback unit 100 removed.
- the first feedback unit 100 of the tactile feedback device As shown in Fig. 4 and Fig. 5, compared with the embodiment shown in Fig. 2 and Fig. 3, the first feedback unit 100 of the tactile feedback device provided by this embodiment is located inside the flexible capsule 210 and is fixedly connected to the outside On the inner surface of the wall 211 , the first feedback unit 100 is connected to the carrier 700 through the flexible capsule 210 . Controlling the expansion of the flexible bladder 210 can drive the first feedback unit 100 to move away from the first area S1 , and controlling the contraction of the flexible bladder 210 can drive the first feedback unit 100 to approach the first area S1 again.
- the flexible capsule 210 has a contracted state.
- the first feedback unit 100 is close to the first region S1 of the human body, and can transmit
- the inner wall 212 of the flexible capsule 210 provides tactile feedback to the first area S1.
- the flexible bladder 210 has an expanded state, and when the flexible bladder 210 is in the expanded state, the first feedback unit 100 is away from the first region S1 of the human body. That is to say, by inflating the flexible bladder 210, the outer wall 211 can be moved away from the first area S1, thereby driving the first feedback unit 100 away from the first area S1.
- the first feedback unit 100 hinders the user's actions, so that the user's fingers have a better free experience.
- FIG. 6 is a schematic structural diagram of another example of the tactile feedback device provided by the embodiment of the present application.
- FIG. 7 is a schematic diagram of comparison of different usage states of the tactile feedback device shown in FIG. 6 .
- Part (a) in FIG. 7 is a schematic structural diagram of the first feedback unit 100 at an initial position
- part (b) in FIG. 7 is a schematic structural diagram of the first feedback unit 100 after being removed.
- the first feedback unit 100 of the tactile feedback device As shown in Fig. 6 and Fig. 7, compared with the embodiment shown in Fig. 2 and Fig. 3, the first feedback unit 100 of the tactile feedback device provided by this embodiment is located on the outer wall surface of the inner side wall 212 of the flexible capsule 210. , the first feedback unit 100 can be directly attached to the first region S1 without being connected to the first region S1 through the flexible capsule 210 . At this time, the first feedback unit 100 can drive the first feedback unit 100 to move away from the first area S1 by controlling the contraction of the flexible capsule 210, and can drive the first feedback unit 100 to approach and stick to it again by controlling the expansion of the flexible capsule 210. fit in the first area S1.
- the first feedback unit 100 is connected to the carrier 700 through the flexible capsule 210 .
- the flexible bladder 210 has an expanded state.
- the first feedback unit 100 is close to the first area S1 of the human body, and can directly provide tactile feedback to the first area S1.
- the first feedback unit 100 can provide the first region S1 with various types of feedback including friction feedback and texture feedback. Haptic feedback.
- the flexible bladder 210 has a contracted state, and when the flexible bladder 210 is in the contracted state, the first feedback unit 100 is away from the first region S1 of the human body. That is to say, by shrinking the flexible bladder 210, the inner side wall 212 can be moved away from the first area S1, and then drive the first feedback unit 100 away from the first area S1.
- the tactile feedback in a region S1 is weakened or eliminated, which can prevent the first feedback unit 100 from hindering the user's actions when no tactile feedback is required, and provide a better free experience for the user's fingers.
- FIG. 8 is a schematic structural diagram of another example of the tactile feedback device provided by the embodiment of the present application.
- FIG. 9 is a schematic diagram comparing different usage states of the tactile feedback device shown in FIG. 8 .
- Part (a) in FIG. 9 is a schematic structural view of the first feedback unit 100 at an initial position
- part (b) in FIG. 9 is a structural schematic view of the first feedback unit 100 removed.
- the first feedback unit 100 of the tactile feedback device provided by this embodiment is located on the inner wall surface of the inner wall 212 of the flexible capsule 210 , the first feedback unit 100 is attached to the first region S1 through the inner wall 212 .
- the first feedback unit 100 can drive the first feedback unit 100 to move away from the first area S1 by controlling the contraction of the flexible capsule 210, and can drive the first feedback unit 100 to approach and stick to it again by controlling the expansion of the flexible capsule 210. fit in the first area S1.
- the first feedback unit 100 is connected to the carrier 700 through the flexible capsule 210 .
- the flexible bladder 210 has an expanded state. When the flexible bladder 210 is in the expanded state, the first feedback unit 100 is close to the first area S1 of the human body, and can provide tactile feedback to the first area S1 through the inner wall 212 .
- the flexible bladder 210 has a contracted state, and when the flexible bladder 210 is in the contracted state, the first feedback unit 100 is away from the first region S1 of the human body. That is to say, by shrinking the flexible bladder 210, the inner side wall 212 can be moved away from the first area S1, thereby driving the first feedback unit 100 away from the first area S1.
- the first feedback unit 100 hinders the user's actions, so that the user's fingers have a better free experience.
- the flexible capsule 210 is mainly used to drive the first feedback unit 100 to move. As shown in FIGS. The feedback unit 100 is far away from the first area S1.
- FIG. 10 is a schematic structural diagram of another example of the tactile feedback device provided by the embodiment of the present application.
- FIG. 11 is a schematic structural diagram of the use state of the tactile feedback device shown in FIG. 10 .
- Part (a) in FIG. 11 is a schematic structural view of the first feedback unit 100 at an initial position
- part (b) in FIG. 11 is a structural schematic view of the first feedback unit 100 removed.
- the driving unit 200 includes an electrical driving component 220 , the electrical driving component 220 can generate an attractive or repulsive force when electrified, and the attractive or repulsive force can further drive the first feedback unit 100 away from the first region S1 .
- the electrical driving assembly 220 may be directly connected to the first feedback unit 100 , or may be connected to the first feedback unit 100 through an intermediate medium.
- the electrical drive assembly 220 includes a first electrical element 221 and a second electrical element 222 which are both in a sheet structure and arranged opposite to each other.
- the first electrical element 221 and the second electrical element 222 The two electrical elements 222 are approximately parallel to the surface of the first area S1 of the human skin, the first electrical element 221 is located on the side away from the first area S1, and the second electrical element 222 is adjacent to the first area S1.
- the second electrical element 222 is located between the first electrical element 221 and the first region S1 , that is, the outer wall of the second electrical element 222 faces the first region S1 .
- the first feedback unit 100 is connected to the second electrical element 222 , for example, may be connected to a side of the second electrical element 222 facing the first region S1 .
- a mutual attraction force is generated between the first electrical element 221 and the second electrical element 222, and the attraction force drives the second electrical element 222 away from the first area along the normal direction F1 of the first area S1.
- the direction of S1 moves (ie approaches the first electrical element 221 ), and further drives the first feedback unit 100 away from the first region S1 .
- the first electrical element 221 and the second electrical element 222 are connected through the elastic reset member 300.
- the elastic reset member 300 When the first feedback unit 100 moves away from the first area S1, the elastic reset member 300 is in the power storage state, and the drive unit After the driving force of 200 (that is, the mutual attraction between the first electrical element 221 and the second electrical element 222 ) disappears, the elastic reset member 300 releases the elastic force, and drives the first feedback unit 100 to approach and attach to the first above area S1.
- the first electrical element 221 is connected to the carrier 700, and the first feedback unit 100 sequentially passes through the second electrical element 222, the elastic reset member 300 and the first electrical element 221. Connected to the carrier 700. At this time, the first feedback unit 100 is located at the initial position, and the first feedback unit 100 is directly attached to the first area S1, and can directly provide tactile feedback to the first area S1.
- the first electrical element 221 and the second electrical element 222 face each other and are arranged at intervals.
- the first electrical element 221 and the second electrical element 222 are set to have opposite polarities, so that mutual attraction is generated between the two, and the carrier 700 provides a certain support for the first electrical element 221,
- the first electrical element 221 remains stationary, while the second electrical element 222 overcomes the elastic force (pressure) of the elastic return member 300 and approaches the first electrical element 221, thereby driving the first feedback unit 100 away from the first area S1,
- the tactile feedback of the first feedback unit 100 to the first area S1 is weakened or eliminated, which can prevent the first feedback unit 100 from hindering the user's actions when the tactile feedback is not required, so that the user's fingers have better freedom.
- the user can perform other operations such as making a phone call.
- the first electrical element 221 and the second electrical element 222 are powered off.
- the attractive force between the two is zero, and the first feedback unit 100 is reset to fit on the first area S1 again under the action of the elastic force of the elastic restoring member 300 .
- the first electrical element 221 is a first electrode
- the second electrical element 222 is a second electrode
- the first electrode and the second electrode are set to have opposite polarities, so that can generate mutual attraction.
- a DC voltage can be applied to the first electrode and the second electrode.
- the first electrical element 221 is a first electromagnet
- the second electrical element 222 is a second electromagnet
- the first electromagnet and the second electromagnet are set to have opposite polarities, so that make the two attract each other.
- the elastic return member 300 can be any spring (torsion spring, extension spring or compression spring, etc.), elastic sheet (such as metal reed), rubber band, elastic plastic strip, etc. that can achieve elastic return, but is not limited thereto.
- the first electrical element 221 and the second electrical element 222 may also generate mutual repulsion force, and the first feedback unit 100 is reset by the repulsion force.
- the drive unit 200 further includes a position detection sensor 223 that is communicatively connected with the control unit 216 and used to detect the position of the second electrical element 222 (or the first feedback unit 100 ).
- the position information fed back by the position detection sensor 223 can realize the closed-loop control of the displacement of the first feedback unit 100 , which is beneficial to realize the precise control of the displacement of the first feedback unit 100 .
- the detection sensor 223 may be a light sensor, a photoelectric sensor, or a pressure sensor.
- FIG. 12 is a schematic structural diagram of another example of the tactile feedback device provided by the embodiment of the present application.
- FIG. 13 is a schematic structural diagram of the use state of the tactile feedback device shown in FIG. 12 .
- Part (a) in FIG. 13 is a schematic structural view of the first feedback unit 100 at an initial position
- part (b) in FIG. 13 is a structural schematic view of the first feedback unit 100 removed.
- the first feedback unit 100 is connected to the first electrical element 221, for example, it may be connected to the first
- the electrical element 221 is on a side facing the first region S1.
- a mutual repulsive force is generated between the first electrical element 221 and the second electrical element 222, and the repulsive force drives the first electrical element 221 away from the first area along the normal direction F1 of the first area S1.
- the direction of S1 moves (ie away from the second electrical element 222 ), and further drives the first feedback unit 100 away from the first region S1 .
- the second electrical element 222 is connected to the carrier 700, and the first feedback unit 100 passes through the first electrical element 221, the elastic reset member 300 and the second electrical element 222 in sequence. Connected to the carrier 700. At this time, the first feedback unit 100 is located at the initial position, and the first feedback unit 100 is attached to the first area S1 through the second electrical element 222 to provide tactile feedback to the first area S1.
- the first electrical element 221 and the second electrical element 222 are set to have the same polarity, so that a mutual repulsive force is generated between the two, and the carrier 700 is
- the second electrical element 222 provides a certain supporting effect, so that the second electrical element 222 remains still, and the first electrical element 221 overcomes the elastic force (pull force) of the elastic reset member 300 away from the second electrical element 222, thereby driving
- the first feedback unit 100 is far away from the first area S1.
- the tactile feedback of the first feedback unit 100 to the first area S1 is weakened or eliminated, which can avoid the first feedback unit 100 causing the user's actions when there is no need to obtain tactile feedback. Obstacles, so that the user's fingers have a better free experience, at this time the user can perform other operations such as making a phone call.
- the first electrical element 221 and the second electrical element 222 are powered off, and the repulsive force between them is zero at this time.
- the first feedback unit 100 is reset to fit on the first area S1 again.
- the first electrical element 221 is a first electrode
- the second electrical element 222 is a second electrode
- the first electrode and the second electrode are set to have the same polarity, so that can generate mutual repulsion.
- a DC voltage can be applied to the first electrode and the second electrode.
- the first electrical element 221 is a first electromagnet
- the second electrical element 222 is a second electromagnet
- the first electromagnet and the second electromagnet are set to have the same polarity, so that so that a mutual repulsion force can be generated between the two.
- the first electrical element 221 and the second electrical element 222 may also generate mutual attraction, and the first feedback unit 100 is reset through the attraction.
- the aforementioned embodiments shown in FIGS. 2-9 mainly drive the first feedback unit 100 to move through the flexible capsule 210
- the embodiments shown in FIGS. 10-13 mainly drive the first feedback unit through the electrical drive assembly 220 100 to make the move.
- the first feedback unit 100 may also be driven by a motor to move.
- FIG. 14 is a schematic structural diagram of another example of the tactile feedback device provided by the embodiment of the present application.
- FIG. 15 is a comparison diagram of different usage states of the tactile feedback device shown in FIG. 14 .
- Part (a) in FIG. 15 is a schematic structural view of the first feedback unit 100 at an initial position
- part (b) in FIG. 15 is a structural schematic view of the first feedback unit 100 removed.
- the drive unit 200 includes a first motor 230 and a first traction rope 231 , and the first motor 230 drives the first feedback unit 100 away from the first area S1 through the first traction rope 231 .
- the output shaft of the first motor 230 is connected to the first feedback unit 100 through the first traction rope 231.
- the output shaft of the first motor 230 rotates to wind the first traction rope 231, the first The pulling rope 231 further pulls the first feedback unit 100 away from the first area S1 along the tangential direction F2 of the first area S1 .
- the first feedback unit 100 can be moved in any direction away from the first area S1 close to the skin surface, such as moving the first feedback unit 100 up, down, left or right, so that the first feedback unit 100 can be weakened or eliminated.
- the tactile feedback of the first region S1 reduces or avoids hindering the user's actions, so that the user has a better free experience.
- the first feedback unit 100 is driven to move by a motor and a traction rope.
- the structure is simple and easy to implement, which is beneficial to reduce the overall volume of the tactile feedback device and has high operational stability.
- the tactile feedback device provided by the embodiment of the present application further includes an elastic reset member 300, which is used to drive the first feedback unit 100 to approach and attach to the first feedback unit 100 after the driving force of the driving unit 200 disappears. above area S1.
- the first feedback unit 100 is connected to the carrier body 700 through the elastic reset member 300.
- the elastic reset member 300 is in a power storage state. After the driving force of the first motor 230 disappears, the elastic reset member 300 releases the elastic force, and drives the first feedback unit 100 to reset and reattach to the first area S1.
- the elastic reset member 300 can be any component capable of elastic reset, such as a spring (torsion spring, extension spring or compression spring), elastic leaf (such as a metal spring leaf), rubber band, elastic plastic strip, etc., but is not limited thereto.
- the elastic reset member 300 is connected to the carrier body 700 through the first fixing part 234.
- the first fixing part 234 can be any structural connector capable of realizing the fixing function.
- the application does not limit the specific form of the first fixing part 234, for example It may be a ring-shaped structure that can be hooked into by the end of the elastic reset member 300 .
- the first feedback unit 100 is automatically reset by setting the elastic reset member 300 with a simple structure, without setting other power structures to reset the first feedback unit 100, thereby simplifying the structure of the entire tactile feedback device and saving production cost, it is beneficial to reduce the overall volume of the tactile feedback device, and it has high operational stability.
- FIG. 16 is a schematic structural diagram of another example of the tactile feedback device provided by the embodiment of the present application.
- FIG. 17 is a comparative schematic diagram of different usage states of the tactile feedback device shown in FIG. 16 .
- Part (a) in Figure 17 is a schematic structural view of the first feedback unit 100 at the initial position
- part (b) in Figure 17 is a schematic structural view of the first feedback unit 100 avoiding the first region S1;
- Part c) is a schematic diagram of the structure of the first feedback unit 100 attached to the second region S2.
- the drive unit 200 includes a first motor 230 and a first traction rope 231 , and the first motor 230 drives the first feedback unit 100 away from the first area S1 through the first traction rope 231 .
- the drive unit 200 further includes a second motor 232 and a second traction rope 233 , and the second motor 232 drives the first feedback unit 100 to approach and adhere to the first area S1 through the second traction rope 233 .
- a second motor 232 and a second traction rope 233 are provided to replace the elastic return member 300 in the embodiment shown in FIG. 14 and FIG. 15 , so as to realize quick reset of the first feedback unit 100 .
- the first traction rope 231 and the second traction rope 233 can be respectively connected to the opposite sides of the first feedback unit 100, and the connection points of the two can be arranged symmetrically to ensure that the first motor 230 and the second motor 232 alternately drive the first feedback unit 100.
- the first feedback unit 100 is less prone to dislocation, which can improve the running stability.
- the drive unit 200 is also used to drive the second area S2 of the first feedback unit 100 attached to the human skin to provide tactile feedback to the second area S2, the second area S2 and the first Area S1 is different.
- the tactile feedback device provided by the embodiment of the present application can cover multiple areas of the human body through one tactile feedback unit, and realize tactile feedback on multiple areas through one tactile feedback unit, so that users can fully access the visual virtual world.
- Objects in reality produce a more immersive feeling, which is conducive to improving the immersion and realism of the user's interaction with the virtual reality world.
- the above reasons also make the virtual reality interactive products installed with the tactile feedback device provided by the embodiment of the present application have higher usability and make the products more competitive.
- the first area S1 and the second area S2 may be two areas adjacent to the user's skin, for example, the first area S1 and the second area S2 are different areas of the user's palm.
- the first area S1 may be a certain area of the palm, and the second area S2 may be the wrist or the back of the hand.
- FIG. 18 is a schematic structural diagram of another example of the tactile feedback device provided by the embodiment of the present application.
- FIG. 19 is a comparison diagram of different usage states of the tactile feedback device shown in FIG. 18 .
- Part (a) in Figure 19 is a schematic structural view of the first feedback unit 100 at the initial position
- part (b) in Figure 19 is a structural schematic view of the flexible sheet 600 attached to the first region S1
- (c) in Figure 19 ) is a schematic diagram of the structure of the second feedback unit 400 attached to the first area S1.
- the tactile feedback device includes a plurality of tactile feedback units, and the tactile feedback provided by each tactile feedback unit to the human body is different. In this way, users can have a more realistic tactile experience, which is conducive to improving the immersion and realism of the user's interaction with the virtual reality world.
- the tactile feedback device provided in the embodiment of the present application further includes a second feedback unit 400 and a third feedback unit 500 , and two adjacent feedback units are connected through a flexible sheet 600 .
- the plurality of feedback units and the flexible sheet 600 together form an integral sheet-like structure, which covers the palm of the user and can move under the drive of the motor.
- the tactile feedback provided to the user by the second feedback unit 400 is different from that of the first feedback unit 100. It may be a different type of tactile feedback or a different intensity of tactile feedback, which is not limited in this application.
- both the first feedback unit 100 and the second feedback unit 400 are used to provide force feedback, the stiffness of the first feedback unit 100 and the second feedback unit 400 are different, and the user needs to provide different forces to make the above two feedback units bend deformation, so that the above two feedback units can provide force feedback with different intensities to the user.
- both the first feedback unit 100 and the second feedback unit 400 are flexible variable stiffness drivers for providing force feedback. Force feedback with a large variation range.
- the difference in stiffness variation range here means that the stiffness variation ranges of the two do not completely coincide, and at least one endpoint value is different.
- the first feedback unit 100 is a flexible variable stiffness driver used to provide force feedback
- the second feedback unit 400 is used to provide temperature feedback, friction feedback, texture feedback or vibration feedback to the human body and any other type of tactile feedback
- the tactile feedback device can provide multiple (different types) tactile feedback to the user, so that the user can have a rich experience of multiple tactile fusion feedback, and increase the immersion of the user interacting with the virtual reality.
- the driving unit 200 (the first motor 230 and the second motor 232 ) is also used to drive the second feedback unit 400 close to and attached to the first area S1, so as to S1 provides tactile feedback, and the tactile feedback provided by the second feedback unit 400 is different from that provided by the first feedback unit 100 .
- the tactile feedback device provided by the embodiment of the present application is more practical, and can provide different tactile feedback to the same skin area through different tactile feedback units, that is, it can provide users with multiple (different types) through the first area S1. ) tactile feedback, so that users can have a rich experience of multi-tactile fusion feedback, so that users can have a more realistic tactile experience, which is conducive to improving the immersion and realism of the user's interaction with the virtual reality world.
- the second feedback unit 400 is connected to the first feedback unit 100, and the driving unit 200 drives the second feedback unit 400 close to and attached to the first area S1 while driving the first feedback unit 100 away from the first area S1 above S1.
- the overall structure of the driving unit 200 can be simplified, making the driving of the above two feedback units simpler and more convenient, which is beneficial to reducing the volume of the entire tactile feedback device and improving the stability of use.
- the movement of the first feedback unit 100 and the second feedback unit 400 are synchronized.
- the second feedback unit 400 seamlessly covers the first area S1, enabling the user to It has a more realistic tactile experience, which is conducive to improving the immersion and realism of the user's interaction with the virtual reality world.
- the tactile feedback device provided in the embodiment of the present application also includes a flexible sheet 600, which is a sheet-like structure made of flexible materials such as cloth, fiber, rubber, resin, or silica gel.
- the thickness and size of the flexible sheet 600 can be compared with the first feedback
- the unit 100 is the same, and two adjacent feedback units are connected through a flexible sheet 600 .
- the flexible sheet 600 is connected to the first feedback unit 100 , and the driving unit 200 drives the flexible sheet 600 close to and attached to the first area S1 while driving the first feedback unit 100 away from the first area S1 .
- the first feedback unit 100 can be covered on the first area S1; when the user does not need to provide tactile feedback, the driving unit 200 can drive the flexible sheet 600 to cover the first area S1,
- the flexible sheet 600 is flexible and will not cause too much hindrance to the user's actions. At this time, the user's experience can be relatively free. At this time, the user's fingers can be bent enough to perform other operations such as making and receiving calls.
- the flexible sheet 600 is connected with the first feedback unit 100 to realize synchronous driving, which can simplify the overall structure of the driving unit 200, help reduce the volume of the entire tactile feedback device, and improve the stability of use.
- synchronous driving can simplify the overall structure of the driving unit 200, help reduce the volume of the entire tactile feedback device, and improve the stability of use.
- the gap left after the first feedback unit 100 leaves can be filled in time, without adversely affecting the wearing comfort of the tactile feedback device.
- the sheet structure composed of multiple feedback units and flexible sheet 600 is covered on the palm of the user, and the first feedback unit 100 is located at the initial position, and the first feedback unit 100 Sticking on the first region S1 can provide tactile feedback to the first region S1.
- the second motor 232 drives the sheet through the second traction rope 233.
- the shape structure moves upward as a whole (the first motor 230 does not work), and the flexible sheet 600 is covered on the first area S1. At this time, the user's experience can be relatively free without too much hindrance to the finger bending action.
- the second motor 232 drives the whole sheet structure upwards through the second traction rope 233. Move (the first motor 230 does not work), and make the second feedback unit 400 cover the first area S1, at this time, the second feedback unit 400 provides tactile feedback to the first area S1.
- the first motor 230 drives the sheet structure to move downwards through the first traction rope 231 (the second motor 232 does not work), the first The feedback unit 100 is re-covered on the first area S1, and can provide tactile feedback to the first area S1.
- the aforementioned embodiments shown in FIGS. 2-9 mainly drive the first feedback unit 100 to move through the flexible capsule 210
- the embodiments shown in FIGS. 10-13 mainly drive the first feedback unit through the electrical drive assembly 220 100 to make the move.
- the aforementioned embodiments shown in FIGS. 14-19 mainly drive the first feedback unit 100 to move through a motor.
- the first feedback unit 100 may also be driven to move by artificial muscles.
- FIG. 20 is a schematic structural diagram of another example of the tactile feedback device provided by the embodiment of the present application.
- FIG. 21 is a comparative schematic diagram of different usage states of the tactile feedback device shown in FIG. 20 .
- Part (a) in FIG. 21 is a schematic structural view of the first feedback unit 100 at the initial position
- part (b) in FIG. 21 is a schematic structural view of the first feedback unit 100 avoiding the first region S1
- Part c) is a schematic structural diagram of the second feedback unit 400 attached to the first region S1.
- the driving unit 200 includes artificial muscles.
- the tactile feedback device includes a first feedback unit 100 , a second feedback unit 400 , and a first artificial muscle 240 and a second artificial muscle 241 .
- the first feedback unit 100 is connected to the second feedback unit 400
- the second feedback unit 400 is connected to the carrier 700 through the first artificial muscle 240 and the first fixing part 234
- the first feedback unit 100 is connected to the carrier 700 through the second artificial muscle 241
- the first The two fixing parts 235 are connected to the carrier 700 .
- the lengths of the first artificial muscle 240 and the second artificial muscle 241 can be changed through voltage driving, thereby driving the first feedback unit 100 and the second feedback unit 400 to move.
- the first artificial muscle 240 and the second artificial muscle 241 are equivalent to two springs, at this time the first feedback unit 100 is kept at the initial position, the second A feedback unit 100 is pasted on the first area S1 and can provide tactile feedback to the first area S1.
- the second artificial muscle 241 is powered on to generate heat.
- the two artificial muscles 241 are triggered to deform, so that the second artificial muscle 241 becomes longer and drives the first feedback unit 100 and the second feedback unit 400 to move down as a whole.
- the first artificial muscle 240 is equivalent to a spring and is compressed. This enables both the first feedback unit 100 and the second feedback unit 400 to avoid the first area S1 , which can make the user's experience more free and will not cause too much hindrance to the finger bending action.
- the first artificial muscle 240 is powered on to generate heat, and the first artificial muscle 240 is activated.
- the trigger is deformed, making the first artificial muscle 240 longer and driving the first feedback unit 100 and the second feedback unit 400 to move up as a whole and make the second feedback unit 400 cover the first area S1, through the second feedback unit 400 provides tactile feedback to the first area S1, at this time the second artificial muscle 241 acts as a spring and is compressed.
- the first feedback unit 100 When the first feedback unit 100 needs to provide tactile feedback to the first region S1 again, the first artificial muscle 240 is powered off and cooled down, the first artificial muscle 240 returns to its original shape, and combined with the elastic force of the second artificial muscle 241 As a result, the first feedback unit 100 is re-covered on the first area S1, and can provide tactile feedback to the first area S1.
- the first feedback unit 100 in the embodiment of the present application may include a flexible variable stiffness driver for providing force feedback.
- the embodiment of the present application also provides a flexible variable stiffness driver.
- Fig. 22 is a schematic structural diagram of a flexible variable stiffness driver provided by an embodiment of the present application.
- Fig. 23 is a schematic diagram of a partially exploded structure of the flexible variable stiffness driver provided by the embodiment of the present application.
- Fig. 24 is a partial cross-sectional structural schematic diagram of the engaging part in the separated state of the flexible variable stiffness driver provided by the embodiment of the present application.
- Fig. 25 is a partial cross-sectional structural schematic diagram of the fully engaged state of the engaging part in the flexible variable stiffness driver provided by the embodiment of the present application.
- the flexible and variable stiffness drivers shown in FIGS. 22-25 can be applied to the aforementioned tactile feedback device to provide force feedback to the user.
- the aforementioned first feedback unit 100 may be a flexible variable stiffness driver as shown in FIGS. 22-25 .
- the flexible variable stiffness driver of the embodiment of the present application includes a variable stiffness component 10 and a drive component 20 .
- Variable stiffness means that the stiffness can vary. The magnitude of the stiffness affects how easily the variable stiffness component 10 can undergo bending deformation. The lower the overall stiffness of the variable stiffness assembly 10 is, the easier it is to bend and deform. The greater the overall stiffness of the variable stiffness component 10 is, the harder it is to bend and deform.
- the variable stiffness component 10 includes a base body 11 and an engaging portion 12 .
- the base body 11 is a bendable and deformable structure. Bending and deforming means that the base body 11 is flexible and can bend and change shape when subjected to external force.
- the base 11 has a predetermined thickness. Along the thickness direction X of the base body 11 , two or more base bodies 11 are stacked. In at least part of the base bodies 11 , an engaging portion 12 is provided on a surface of one of two adjacent base bodies 11 facing the other.
- the driving assembly 20 is used to drive two adjacent bases 11 provided with engaging portions 12 , so that the engaging portion 12 on one and the engaging portion 12 on the other at least switch from a disengaged state to an engaged state.
- the driving assembly 20 can be used to drive two adjacent bases 11 provided with engaging parts 12 to approach each other, so that the engaging part 12 on one and the engaging part 12 on the other are switched from a separated state to an engaged state.
- the driving assembly 20 can also be used to drive two adjacent bases 11 provided with engaging portions 12 away from each other, so that the engaging portion 12 on one and the engaging portion 12 on the other are switched from an engaged state to a separated state.
- the separated state refers to two adjacent bases 11 provided with engaging portions 12 , where the engaging portions 12 on one are located on the other two adjacent groups of engaging portions 12 between the outside of the gap 13.
- the engaged state refers to two adjacent substrates 11 provided with engaging portions 12 , and the engaging portion 12 on one is at least partially inserted between two adjacent groups of engaging portions 12 on the other. In the gap 13 between.
- variable stiffness assembly 10 In two adjacent base bodies 11 provided with engaging parts 12 , when the engaging parts 12 on the two base bodies 11 are separated, the variable stiffness assembly 10 as a whole has a first stiffness. In two adjacent base bodies 11 provided with engaging parts 12 , when the engaging parts 12 on the two base bodies 11 are in an engaged state, the variable stiffness assembly 10 as a whole has a second stiffness. The second stiffness is greater than the first stiffness.
- the ability of the variable stiffness assembly 10 with the first stiffness to resist bending deformation is weaker than the ability of the variable stiffness assembly 10 with the second stiffness to resist bending deformation. Therefore, if the variable stiffness component 10 is bent to the same shape, the external force acting on the variable stiffness component 10 with the second stiffness needs to be greater than the external force acting on the variable stiffness component 10 with the first stiffness.
- variable stiffness assembly 10 has a relatively small first stiffness against bending deformation.
- the variable stiffness component 10 is bent under force, the resistance to be overcome by the external force is small, and the variable stiffness component 10 can easily undergo bending deformation.
- variable stiffness assembly 10 has a relatively large second stiffness against bending deformation, making it relatively difficult for the variable stiffness assembly 10 to undergo bending deformation.
- the resistance to be overcome by the external force is large.
- variable stiffness assembly 10 when the variable stiffness assembly 10 is applied to at least one of the user's fingers and palms, the user grasps or holds a wire ball and grabs or holds a metal ball of the same size in the virtual reality world.
- the degree of bending of the user's fingers and palm may be the same, but the user's force or perception of softness and hardness of the user's fingers and palm are different. If the user's perception is set to be lighter and softer when grasping or holding a string ball, then in contrast, the user's perception setting is heavier and harder when grasping or holding a metal ball.
- variable stiffness component 10 when grasping or holding a string ball in a virtual reality world, the variable stiffness component 10 may have a first stiffness to simulate a small force and a soft texture. When grabbing or holding a metal ball in the virtual reality world, the variable stiffness component 10 may have a second stiffness to simulate a large force and a relatively hard texture.
- the flexible variable stiffness driver of the embodiment of the present application includes a variable stiffness component 10 and a drive component 20 .
- the overall stiffness of the variable stiffness component 10 can be adjusted.
- the variable stiffness component 10 includes more than two bases 11 that can be bent and deformed. Each base body 11 itself has a predetermined rigidity. When an external force is applied to a single base 11, the base 11 can bend and deform. In at least part of the base bodies 11 , two adjacent base bodies 11 are respectively provided with engaging portions 12 .
- the driving assembly 20 is used to drive two adjacent bases 11 provided with engaging portions 12 , so that the engaging portion 12 on one and the engaging portion 12 on the other at least switch from a disengaged state to an engaged state.
- variable stiffness component 10 may have a first stiffness.
- Each matrix 11 is relatively loose and free, so that the whole variable stiffness assembly 10 is relatively easy to bend and deform.
- the driving assembly 20 can drive each base body 11 close to each other, and in two adjacent base bodies 11 provided with engaging parts 12, when the engaging parts 12 on the two base bodies 11 are switched from a separated state to an engaged state, the variable stiffness assembly 10 has a second Two stiffness. Wherein, the second stiffness is greater than the first stiffness. At this time, the respective substrates 11 are pressed against each other.
- variable stiffness component 10 with the second stiffness is relatively difficult to bend and deform as a whole.
- the bending force of the variable stiffness component 10 with the second stiffness is greater than that of bending the variable stiffness component 10 with the second stiffness.
- the variable stiffness assembly 10 undergoes a bending force.
- the flexible and variable stiffness driver When the flexible and variable stiffness driver is applied to a virtual reality interactive device with force feedback function, the flexible and variable stiffness driver can be set on at least one of the user's body, such as fingers and palms.
- the variable stiffness component 10 has a first stiffness, and when at least one of the user's finger and palm is bent and deformed, the flexible variable stiffness driver can simulate a virtual object with a smaller or softer force during the process of grabbing or holding it. Scenes.
- the variable stiffness component 10 has a second stiffness, and when at least one of the user's fingers and palms is bent and deformed, the flexible variable stiffness driver can simulate a larger or harder force generated in the process of grabbing or holding a virtual object. Scenes.
- the flexible variable stiffness driver Through the flexible and variable stiffness driver, users can feel the force or the degree of softness and hardness generated during the interaction of virtual objects, so as to obtain the same or similar experience as the real world, which is conducive to improving the immersion and realism of the user's interaction with the virtual reality world. feel.
- the flexible variable stiffness driver of the embodiment of the present application is compact in structure, small in size and light in weight, so it is beneficial to improve wearing comfort during use.
- the driving assembly 20 applies a force to the variable stiffness assembly 10 to drive two or more substrates 11 close to each other along the thickness direction X, so that in two adjacent substrates 11 provided with engaging portions 12, The engaging portion 12 on one is switched from the disengaged state to the engaged state with the engaging portion 12 on the other.
- the engaging portions 12 on one are at least partially inserted into the gap between two adjacent groups of engaging portions 12 on the other. 13, so that the engaging portions 12 on the two base bodies 11 are engaged with each other.
- the depth of insertion of the engagement portion 12 on one of the corresponding gaps 13 is different, so the stiffness of the variable stiffness component 10 is different.
- the greater the insertion depth of the engaging portion 12 into the gap 13, the greater the overall stiffness of the variable stiffness assembly 10, that is, the greater the value of the second stiffness.
- the value of the second stiffness of the variable stiffness assembly 10 as a whole can be controlled, thereby facilitating the realization of the stepless stiffness of the entire variable stiffness assembly 10 Adjust to increase the stiffness variation range, so that more stress value points can be simulated.
- the engaging portions 12 on one are completely inserted between the adjacent two sets of engaging portions 12 on the other. In gap 13.
- the engaging portion 12 on one is partially inserted into the gap 13 between two adjacent groups of engaging portions 12 on the other.
- the engaging portions 12 on the two base bodies 11 when they are engaged with each other, they have different engaging states.
- the first meshing state one-third of the meshing portion 12 on one is inserted into the gap 13 between two adjacent groups of meshing portions 12 on the other.
- the second meshing state half of the meshing portion 12 on one is inserted into the gap 13 between two adjacent groups of meshing portions 12 on the other.
- the third meshing state the meshing portion 12 on one is completely inserted into the gap 13 between two adjacent groups of meshing portions 12 on the other.
- the stiffness of the variable stiffness assembly 10 is different in the above three different meshing states. Relatively, in the first meshing state, the stiffness of the variable stiffness assembly 10 is minimum, and in the third meshing state, the stiffness of the variable stiffness assembly 10 is maximum.
- variable stiffness assembly 10 when the variable stiffness assembly 10 is applied to at least one of the user's finger or palm, more than two groups of engaging portions 12 are arranged at intervals along the bending direction of the finger or palm.
- the arrangement direction of more than two groups of engaging portions 12 is the same as the length direction of the finger.
- the arrangement direction of more than two groups of engaging parts 12 is the same as the direction from the wrist to the fingers.
- the arrangement direction of more than two groups of engaging parts 12 is the same as the direction from the wrist to the fingertips.
- base 11 may be a structure having a predetermined length and width.
- more than two groups of engaging portions 12 are arranged at intervals.
- the arrangement direction of more than two groups of engaging portions 12 is the same as the longitudinal direction Y of the base body 11 .
- Each set of engaging parts 12 may include one or more than two engaging parts 12 .
- the distance L between two adjacent gaps 13 ranges from 1 mm to 3 mm, for example, but not limited to 2 mm.
- the hardness of the base body 11 is different from that of the engaging portion 12 .
- the hardness of the engaging portion 12 is greater than that of the base 11.
- the stiffness of the base body 11 itself is the main factor affecting the stiffness of the variable stiffness assembly 10 , so the stiffness of the variable stiffness assembly 10 is relatively small and easy to bend.
- the engaging parts 12 are in the engaged state, the engaging parts 12 with higher hardness are engaged with each other, and the rigidity of the variable stiffness assembly 10 is relatively high. Therefore, when the engaging part 12 is in the disengaged state, the variable stiffness component 10 can simulate a force feedback with a small force or a soft texture generated during the interaction of the virtual object.
- variable stiffness component 10 can Simulate the force feedback generated during the interaction of virtual objects with greater force or harder texture; Possibility of skewing and loss of good mesh.
- the structure in which the hardness of the engaging portion 12 is greater than that of the base body 11 can be beneficial to increase the adjustment range of the stiffness change of the variable stiffness component 10 .
- the base 11 and the engaging portion 12 are integrally formed, so that, on the one hand, it is beneficial to improve the connection strength between the base 11 and the engaging portion 12, so that the engaging portion 12 can be used during the bending of the base 11. Bear a large extrusion stress without being separated from the base 11; on the other hand, there is no need to additionally arrange connecting parts, such as adhesive parts, between the base body 11 and the engaging part 12, which is conducive to reducing the loss caused by setting a connecting part with a predetermined thickness. This leads to the possibility that the stiffness adjustment accuracy of the variable stiffness assembly 10 is adversely affected.
- the integral molding structure refers to the continuous transition between the base body 11 and the engaging portion 12, and there is no need for a connecting piece between the two, but when the base body 11 and the engaging portion 12 need to be separated, one of the base body 11 and the engaging portion 12 needs to be destroyed. structure of the reader.
- the material of the base body 11 is the same as that of the engaging portion 12 .
- the base body 11 is a single-layer structure. Both the material of the base body 11 and the material of the engaging portion 12 are selected from resin, rubber or silicone.
- the base body 11 is flexible and easy to bend and deform.
- the base body 11 and the engaging portion 12 are light in weight, which is beneficial to the lightweight design of the variable stiffness component 10 .
- machining may be used to remove material from the blank to form the base body 11 and the engaging portion 12 .
- the base body 11 and the engaging portion 12 may be manufactured in an additive manner by using a 3D printing process.
- the base body 11 may be formed using silica gel with a hardness of 40A
- the engaging portion 12 may be formed using silica gel with a hardness of 95A through a 3D printing process.
- the base body 11 and the engaging portion 12 are separate assembly structures.
- the base body 11 and the engaging portion 12 are manufactured separately, and then the base body 11 and the engaging portion 12 are connected by assembly, so that on the one hand, the overall processing difficulty of the variable stiffness component 10 can be reduced; on the other hand, the variable stiffness component 10 can be According to the rigidity adjustment requirements, the materials of the base body 11 and the engaging part 12 can be flexibly selected.
- the substrate 11 is a single-layer structure.
- the material of the base body 11 and the material of the engaging portion 12 may be the same, for example, both may be selected from resin, rubber or silicone.
- the engagement portion 12 is connected to the base body 11 by bonding or hot-melt welding.
- the substrate 11 is a single-layer structure.
- the material of the base body 11 and the material of the engaging portion 12 can be different, for example, the material of the base body 11 can be selected from resin, rubber or silicone.
- the material of the engagement part 12 may be selected from plastic, diamond or corundum.
- the material of the engaging portion 12 may be brown fused alumina.
- the hardness of the engaging portion 12 is greater than that of the base body 11 .
- the engagement part 12 can be connected to the base body 11 by adhesive.
- the shape of the engaging portion 12 may be herringbone.
- the engagement portion 12 includes two intersecting extensions.
- the value range of the included angle between the two extension sections may be 100° to 160°.
- FIG. 26 is a schematic diagram of an exploded structure of the variable stiffness assembly 10 provided by an embodiment of the present application.
- the shape of the engaging portion 12 may be spherical, for example, semicircular.
- Each set of engaging portions 12 may include a plurality of spherical engaging portions 12 arranged at intervals.
- the engaging portion 12 on one base body 11 may be in contact with four engaging portions 12 on the other base body 11 .
- FIG. 27 is a schematic diagram of an exploded structure of a variable stiffness assembly 10 provided in another embodiment of the present application.
- the shape of the engaging portion 12 may be a strip.
- the engaging portion 12 extends in a straight line.
- the engagement portion 12 extends along the width direction Z of the base body 11 . Both the thickness direction X and the length direction Y are perpendicular to the width direction Z.
- Fig. 28 is a schematic diagram of an exploded structure of a variable stiffness component provided in another embodiment of the present application.
- the surface of the engagement portion 12 facing away from the base body 11 is a curved surface. More than two engaging portions 12 form a wave-shaped structure.
- the shape of the engaging portion 12 in the present application is not limited to the above-mentioned shapes, and other shapes that can realize the mutual engagement of the engaging portions 12 are within the protection scope of the present application.
- FIG. 29 is a schematic diagram of a partial structure of a variable stiffness component 10 provided by an embodiment of the present application.
- FIG. 30 is a schematic diagram of a partial structure of a variable stiffness assembly 10 provided in another embodiment of the present application.
- the variable stiffness assembly 10 further includes a protrusion 14 .
- the size of the protrusion 14 is smaller than that of the engaging portion 12 .
- at least some of the side walls 121 of the engaging portion 12 are provided with a plurality of protrusions 14 .
- the side wall 121 of the engagement portion 12 refers to a surface facing the gap 13 and used for engagement. After the protrusion 14 is provided on the side wall 121 of the engaging portion 12 , the frictional force of the side wall 121 can be increased.
- the engaging portions 12 on the two base bodies 11 are engaged with each other, the engaging portions 12 on the two base bodies 11 are subjected to relatively large friction force and are not easily engaged.
- the engagement portion 12 provided with the protrusion 14 needs to overcome greater frictional resistance than the engagement portion 12 without the protrusion 14 . Since the engagement portion 12 where the protrusion 14 is provided is not easy to engage and requires greater compressive stress to achieve the same engagement state, it is switched from the disengaged state of the engagement portion 12 to the fully engaged state of the engagement portion 12, so that the applied force on the base 11 and the engagement portion The upper limit of the compressive stress of 12 is larger, so that the value range of the force applied to the engaging part 12 is wider, and the precision of the force applied to the engaging part 12 is higher, which is conducive to improving the insertion of the engaging part 12.
- the engagement portion 12 with the protrusion 14 needs to overcome greater frictional resistance when switching from the engaged state to the disengaged state, so that the engagement portion 12 with the protrusion 14 is not easy to move from Switching from the engaged state to the disengaged state can realize the gradual switching of the engaging part 12 to the disengaged state, reducing the possibility of sudden stress changes in the engaging part 12 due to the excessively fast separation speed.
- the friction force of the side wall 121 can be adjusted and changed.
- the height of the engaging portion 12 protruding from the base 11 may range from 0.5 mm to 3 mm, for example, but not limited to 1 mm.
- the height of the protrusion 14 protruding from the sidewall 121 may range from 5 microns to 500 microns.
- the sidewalls 121 of a certain number of engaging parts 12 are provided with a plurality of protrusions 14 , while the sidewalls 121 of the remaining number of engaging parts 12 are not provided with protrusions 14 . Therefore, different types of engaging parts 12 can be provided at different positions on one base 11, so that the difference in stiffness variation effects at different positions on the variable stiffness component 10 can be realized, so as to better simulate the user's grasping or gripping. keep the experience.
- Fig. 31 is a schematic diagram of a partial structure of a variable stiffness component provided by another embodiment of the present application.
- the base body 11 has a plurality of exposed areas 11 a located between two adjacent engaging portions 12 .
- a plurality of protrusions 14 are provided on at least a partial number of the exposed areas 11a. After the protrusion 14 is provided on the exposed area 11a, the frictional force of the exposed area 11a can be increased.
- the engaging portions 12 on the two substrates 11 are engaged with each other, the frictional force between the surface of the engaging portion 12 facing the exposed area 11a and the exposed area 11a where the protrusion 14 is provided is relatively large, so that the engaging portion 12 is not easy to face the exposed area 11a Movement occurs.
- variable stiffness component 10 Under the condition that the variable stiffness component 10 is bent to the same degree, the bending force of the variable stiffness component 10 comprising the base 11 provided with the protrusion 14 is greater than that of the variable stiffness component 10 comprising the base 11 not provided with the protrusion 14 The force of bending occurs, so that the protrusion 14 is provided in the exposed area 11 a, which is beneficial to improve the stiffness variation range of the variable stiffness assembly 10 .
- the protrusion 14 is provided on the side wall 121 of the engagement portion 12 and the exposed area 11 a of the base 11 at the same time.
- the top wall 122 of the engagement portion 12 may also be provided with a protrusion 14 .
- the protrusion 14 is spherical in shape, such as a semicircular spherical shape.
- the shape of the protrusion 14 can be the same as that of the engaging portion 12, and a plurality of protrusions 14 are arranged at intervals on at least one of the side wall 121 of the engaging portion 12 and the exposed area 11a on the base 11 .
- the engaging portion 12 is herringbone-shaped or strip-shaped, a plurality of protrusions 14 are arranged at intervals on at least one of the sidewall 121 of the engaging portion 12 and the exposed area 11 a on the base 11 .
- the shape of the protrusion 14 is a bar.
- the engaging portion 12 is herringbone, strip or spherical
- the protrusion 14 extends along the width direction Z of the base 11 .
- a plurality of protrusions 14 are disposed at intervals on at least one of the sidewall 121 of the engagement portion 12 and the exposed area 11 a on the base 11 .
- the shape of the protrusion 14 in the present application is not limited to the shapes illustrated above, and other shapes of the protrusion 14 that can achieve the same function are within the protection scope of the present application.
- FIG. 32 is a schematic diagram of an exploded structure of a variable stiffness component provided by another embodiment of the present application.
- the base body 11 includes more than two connected layer structures 11b. Along the thickness direction X of the base body 11, two or more layer structures 11b are stacked. The hardness of two adjacent layer structures 11b is different.
- the material of the base body 11 has a major influence on the stiffness of the base body 11 itself, so the stiffness of the base body 11 itself formed of one material has a small variation range.
- the base 11 of the multi-layer structure 11b can adjust the hardness of each layer to realize the overall stiffness adjustment of the variable stiffness component 10, which can help increase the overall stiffness of the variable stiffness component 10. range, increasing the value range of the stiffness that can be simulated by the variable stiffness component 10 .
- the materials of two adjacent layer structures 11b are the same.
- the two layer structures 11b made of the same material can be directly connected to each other, and the connection is realized by heat fusion welding, so that no additional intermediate connectors are required, so that the structure of the variable stiffness assembly 10 is compact, which is conducive to reducing the cost of the variable stiffness assembly 10. weight.
- the base body 11 includes two connected layer structures 11b.
- the material of the layer structure 11b away from the engaging portion 12 and the material of the layer structure 11b close to the engaging portion 12 can be silicone, rubber or resin.
- the materials of two adjacent layer structures 11b are different.
- the hardness of two adjacent layer structures 11b can be different to form a matrix 11 with different rigidities, which facilitates the use of different materials to compound and form the matrix 11 that meets the requirements of different stiffness changes.
- Two adjacent layer structures 11b can be connected by means of adhesive.
- the base body 11 includes two connected layer structures 11b. Of the two layer structures 11 b, the hardness of the layer structure 11 b remote from the engaging portion 12 is greater than the hardness of the layer structure 11 b close to the engaging portion 12 .
- the material of the layer structure 11b remote from the engaging portion 12 may be paper or plastic.
- the material of the layer structure 11b adjacent to the engaging portion 12 may be silicone, rubber or resin.
- the base body 11 includes three connected layer structures 11b. Among the three layer structures 11b, the materials of the respective layer structures 11b are different.
- the hardness of the outermost layer structure 11 b is greater than the hardness of the remaining layer structures 11 b. Therefore, the outermost layer structure 11b can be used as a constraining structure, which can keep the overall size of the base 11 from changing without affecting the bending of the base 11, and reduce the stiffness of the base 11 due to stretching and elongation during the bending process. Possibility of adversely affecting the accuracy of the stiffness variation of the assembly 10 .
- the outermost layer structure 11b can be a bendable and stretch-resistant structural member, so that the outermost layer structure 11b itself can be bent and deformed, and at the same time, it is not easily stretched and deformed when bearing tensile stress.
- the outermost layer structure 11b is a plastic sheet or a paper product. Paper products can be, for example, kraft paper made using kraft and wood pulp.
- the base body 11 comprises two layer structures 11b.
- the material of the layer structure 11b connected to the engaging portion 12 may be resin.
- the material of the outermost layer structure 11b may be a paper product.
- the layer structure 11b connected to the engagement portion 12 is glued to the outermost layer structure 11b.
- the layer structure 11b connected to the engaging portion 12 is bonded to the outermost layer structure 11b by an adhesive member 11c.
- the bonding member 11c may be epoxy glue.
- the base body 11 has a flat structure.
- the material of the layer structure 11 b adjoining the engagement part 12 and the material of the engagement part 12 are the same.
- the layer structure 11b connected to the engaging portion 12 and the engaging portion 12 are integrally formed.
- the shape of the engaging portion 12 is herringbone.
- the engaging part 12 on one substrate 11 and the engaging part 12 on the other substrate 11 switch from the engaged state to the disengaged state, if the engaging part 12 is not separated in time or completely , will cause the meshing part 12 to still be in the engaged state, so that when the variable stiffness component 10 needs to be switched to the first stiffness, the variable stiffness component 10 remains at the second stiffness, affecting the stiffness adjustment accuracy and simulation accuracy of the variable stiffness component 10 .
- the driving assembly 20 can apply a force to the variable stiffness assembly 10 to drive two or more substrates 11 away from each other along the thickness direction X, so that two adjacent substrates 11 provided with engaging parts 12 , the engaging portion 12 on one and the engaging portion 12 on the other are switched from an engaged state to a disengaged state.
- the base 11 in order to ensure that the engaging portion 12 can smoothly switch from the engaged state to the disengaged state, the base 11 can be an elastic structure and itself can be flexible.
- the base body 11 can release its own elastic recovery force and drive the engaging portion 12 to switch from the engaged state to the disengaged state.
- the base body 11 itself can provide an active force for switching the engagement portion 12 from the engagement state to the disengagement state, so as to further ensure the smooth separation of the engagement portion 12 .
- the driving assembly 20 can apply force to the variable stiffness assembly 10, and at the same time, the base body 11 can release its own elastic recovery force, so as to drive two or more base bodies 11 away from each other along the thickness direction X, so that the engaging portion 12 can move from The engaged state is switched to the disengaged state.
- Fig. 33 is a partial cross-sectional structural schematic diagram of the engaging part in the separated state of the flexible variable stiffness driver provided by an embodiment of the present application.
- Fig. 34 is a partial cross-sectional structural schematic diagram of the engaging part in the flexible variable stiffness driver of the embodiment shown in Fig. 33 in an engaged state.
- the variable stiffness assembly 10 further includes an elastic member 16 .
- the engaging portions 12 on two adjacent substrates 11 When the engaging portions 12 on two adjacent substrates 11 are in an engaged state, the engaging portions 12 press the elastic member 16 to deform, so that the elastic member 16 accumulates elastic potential energy.
- the elastic member 16 releases the elastic restoring force and applies compressive stress to the engaging parts 12, thereby pushing the engaging parts 12 to separate from each other.
- the elastic member 16 can additionally provide an active force for the engagement part 12 when separating, so that the engagement part 12 can be separated relatively easily, which is beneficial to reduce the possibility that the engagement parts 12 still remain engaged with each other and fail to occur when switching from the engaged state to the disengaged state. possibility of separation.
- the driving assembly 20 can apply force to the variable stiffness assembly 10, and at the same time, the base body 11 and the elastic member 16 can release their own elastic restoring force, so as to drive two or more base bodies 11 away from each other along the thickness direction X, so that The engaging portion 12 is switched from an engaged state to a disengaged state.
- the elastic member 16 is an elastic sheet.
- an elastic member 16 is disposed between the engaging portion 12 on one and the engaging portion 12 on the other.
- the elastic member 16 can cover all the engaging parts 12 on the base body 11 .
- the engagement portions 12 on the two base bodies 11 engage, the engagement portions 12 on the two base bodies 11 will simultaneously press the elastic member 16 .
- a part of the elastic member 16 is pressed into the corresponding gap 13 by the engaging portion 12 .
- the engaging portion 12 withdraws from the corresponding gap 13 , the portion of the elastic member 16 located in the gap 13 rebounds to push the engaging portion 12 .
- the material of the elastic member 16 can be selected from plastics, so that the elastic member 16 has good flexibility, so that after the elastic member 16 is repeatedly squeezed and rebounded, it is not easy to appear indentation and cause the possibility of failure of the elastic member 16 .
- the thickness of the elastic member 16 is smaller than the height of the engaging portion 12 protruding from the base 11 .
- the thickness of the elastic member 16 may range from 20 microns to 100 microns.
- Fig. 35 is a schematic structural diagram of a flexible variable stiffness driver provided by an embodiment of the present application.
- the driving assembly 20 includes an airbag 21 .
- the variable stiffness component 10 is disposed in the airbag 21 .
- the outermost base 11 is connected to the inner wall of the airbag 21 .
- the airbag 21 can be directly arranged on the body part and in direct contact with the skin, or a carrier can be arranged outside the airbag 21 and be arranged on the body part through the carrier.
- the internal pressure of the airbag 21 can be adjusted by deflation or inflation.
- the airbag 21 When the airbag 21 is in a negative pressure state, the airbag 21 is compressed and deformed under the action of atmospheric pressure, and the two opposite walls of the airbag 21 are close to each other, so that the airbag 21 exerts compressive stress on the variable stiffness component 10 to make the base 11 close to each other.
- the engaging portions 12 are switched from a separated state to an engaged state.
- the airbag 21 When the airbag 21 is connected to the atmospheric environment and is in a normal pressure state or the airbag 21 is in a positive pressure state, the two opposite walls of the airbag 21 are far away from each other, so that the airbag 21 pulls the base 11 away from each other, so that the engaging portion 12 on the base 11 is separated from the other.
- the engaged state switches to the disengaged state.
- the outer surface of the base body 11 may be adhesively connected to the inner wall of the airbag 21 .
- Fig. 36 is a schematic structural diagram of a flexible variable stiffness driver provided by another embodiment of the present application.
- the driving assembly 20 further includes a vacuum pump 22 , a first valve body 23 and a second valve body 24 .
- the vacuum pump 22 and the air bag 21 are connected through a pipeline, and the first valve body 23 is arranged on the pipeline.
- the first valve body 23 is used to open or close the pipeline.
- the air in the airbag 21 can be drawn out by the vacuum pump 22, so that the airbag 21 is in a negative pressure state.
- the first valve body 23 is closed, the air bag 21 is maintained at a predetermined negative pressure state.
- the second valve body 24 is disposed in another pipeline.
- the pipeline is used to communicate with the airbag 21 and the external atmosphere.
- the second valve body 24 is used to open or close the pipeline.
- the air bag 21 can be kept in a negative pressure state of a predetermined pressure.
- the air bag 21 communicates with the atmospheric environment and inhales air to switch from a negative pressure state to a normal pressure state.
- the drive assembly 20 also includes an air pump 25 .
- the second valve body 24 is disposed in another pipeline.
- the pipeline is used to communicate with the air bag 21 and the air pump 25 .
- the second valve body 24 is used to open or close the pipeline.
- the air bag 21 can be kept in a negative pressure state of a predetermined pressure.
- the airbag 21 is connected with the air pump 25, so that the air pump 25 can fill the airbag 21 with gas, so that the airbag 21 is switched from a negative pressure state to a positive pressure state .
- the first valve body 23 may be a solenoid valve.
- the second valve body 24 may be a solenoid valve.
- the drive assembly 20 also includes an air pressure sensor 26 .
- the air pressure sensor 26 is used for monitoring the pressure value in the air bag 21 .
- the pressure value fed back by the air pressure sensor 26 can precisely control the air pressure in the air bag 21, so that the precise control of the compressive stress exerted by the air bag 21 on the substrate 11 can be realized, and then the depth of the engagement part 12 inserted into the corresponding gap 13 can be realized. Precise control.
- the drive assembly 20 also includes a control module 27 .
- the vacuum pump 22, the first valve body 23, the second valve body 24, the air pump 25 and the air pressure sensor 26 are all communicated with the control module 27, so that automatic control can be realized, which is beneficial to improve control accuracy.
- the control module 27 may be a single-chip microcomputer.
- the driving component 20 may further include a first electrode and a second electrode.
- a first electrode and a second electrode By controlling the polarity of the first electrode and the second electrode, an attractive force or a repulsive force can be generated between the two.
- Both the first electrode and the second electrode are connected to the variable stiffness component, and are used to drive two adjacent electrodes that are provided with meshing base of the part.
- the driving assembly 20 may further include a first electromagnet and a second electromagnet.
- a first electromagnet and a second electromagnet By controlling the polarity of the first electromagnet and the second electromagnet, an attractive or repulsive force can be generated between the two.
- Both the first electromagnet and the second electromagnet are connected with the variable stiffness assembly and are used to drive two A base body provided with an engaging portion.
- the embodiment of the present application also provides a virtual reality interaction device.
- Fig. 37 is a schematic diagram of an overall structure of an example of a virtual reality interaction device provided by an embodiment of the present application.
- the virtual reality interaction device includes a tactile feedback device 1000, which may be the tactile feedback device provided in any of the foregoing embodiments.
- the tactile feedback device 1000 can be installed on various parts that need to provide tactile feedback, such as any part of the human body such as hands, wrists, arms, waist, abdomen, neck or legs, or the hands, wrists, arms, Waist, abdomen, neck or legs, etc.
- the tactile feedback device 1000 can provide tactile feedback to any body parts such as finger joints, wrist joints, elbow joints, shoulder joints, hip joints, knee joints, ankle joints or necks of the human body.
- the virtual reality interactive device can use the tactile feedback device 1000 to simulate the force generated when the hand grabs or holds an object in the virtual reality world or its softness and hardness, so that Obtaining the same or similar feeling as the real world is conducive to improving the immersion and realism of the user's interaction with the virtual reality world.
- the tactile feedback device 1000 may be disposed on the inner side of the hand, that is, attached to the palm of the user.
- the tactile feedback device 1000 may be disposed on at least one of the user's finger and palm.
- the tactile feedback device 1000 can be adhered to the skin.
- it is bound to at least one of the fingers and the palm by a strap.
- the whole of the tactile feedback device 1000 may be in the shape of a rectangle, an ellipse or a circle.
- the overall shape of the tactile feedback device 1000 in the present application is not limited to the above-mentioned exemplified shapes, and other shapes that can achieve the same function are within the protection scope of the present application.
- the virtual reality interaction device further includes a carrier 700 .
- the tactile feedback device 1000 is disposed on the carrier 700 .
- the carrier 700 of the virtual reality interaction device may be set on at least one of the user's finger and palm.
- the carrier 700 may be a glove.
- the tactile feedback device 1000 is disposed on the carrier 700 to form a tactile feedback glove, for example, a force feedback glove.
- the tactile feedback device 1000 is disposed on at least one of the finger area and the palm area of the carrier 700 .
- the user can wear the carrier 700 on his hand.
- the fingers of the user's hand correspond to the finger area of the carrier 700
- the palm corresponds to the palm area of the carrier 700 .
- the tactile feedback device 1000 can be adhered to the carrier 700 .
- the tactile feedback device 1000 can be sewn on the carrier 700 .
- the carrier 700 has a receiving portion, and the tactile feedback device 1000 is loaded into the receiving portion.
- the shape and size of the tactile feedback device 1000 in the embodiment of the present application can be parameterized and customized during the manufacturing process, and the tactile feedback device 1000 can have different installation distributions on the human body (such as the palm).
- the tactile feedback device 1000 can be made into the shape of a human hand and installed on the palm or the back of the hand. At this time, a full-palm tactile feedback experience with one degree of freedom can be realized, such as a full-hand palm force feedback experience. .
- the smaller tactile feedback device 1000 can also be installed in different positions of the palm according to the distribution of joints and muscles of the human hand, so as to realize the multi-degree-of-freedom independent driving of the glove and give the hand different tactile feedback experiences.
- Fig. 38 is a schematic diagram of the overall structure of another example of the virtual reality interaction device provided by the embodiment of the present application.
- a plurality of mutually independent tactile feedback devices 1000 can be arranged on the palm side of the glove, wherein one tactile feedback device 1000 fits on the user's palm to provide tactile feedback for the user's palm, while the other five The tactile feedback device 1000 provides tactile feedback for five fingers respectively.
- the intensity and/or type of tactile feedback provided by the tactile feedback device 1000 corresponding to different areas may be different, which is beneficial to improve the immersion and realism of the user's interaction with the virtual reality world.
- Fig. 39 is a schematic diagram of the overall structure of another example of the virtual reality interaction device provided by the embodiment of the present application. As shown in Figure 39, more mutually independent and smaller tactile feedback devices 1000 can be provided on the palm side of the glove, and some of the tactile feedback devices 1000 are attached to the user's palm to provide tactile feedback for the user's palm , some other tactile feedback devices 1000 respectively provide tactile feedback for different joint areas of the five fingers.
- the virtual reality interactive device provided by the embodiment of the present application can provide tactile feedback to the human body, providing users with a tactile experience that cannot be provided in the visual virtual reality field, so that the user can fully contact the objects in the visual virtual reality, creating a more immersive experience.
- the feeling of the environment is conducive to improving the immersion and realism of the user's interaction with the virtual reality world.
- the tactile feedback device in the virtual reality interactive device includes a first feedback unit 100 and a drive unit 200.
- the first feedback unit 100 can be attached to the human body for tactile feedback, enhancing user real experience.
- the present application sets the driving unit 200 to drive the first feedback unit 100 away from the area where tactile feedback is required on the human body, thereby weakening or eliminating the first feedback without taking off the virtual reality interaction device.
- the feedback unit 100 provides tactile feedback to the area, avoiding the first feedback unit 100 from hindering the user's actions when no tactile feedback is required, so that the user has a better free experience, and at this time the user can smoothly make and receive calls, etc. other operations.
- the virtual reality interactive device has high flexibility in use, can meet the use requirements in different scenarios, and is conducive to improving the user's interactive experience when there is no need to obtain tactile feedback.
- the application can facilitate the use of users, improve the experience of users, and help to improve the competitiveness of products.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Computer Graphics (AREA)
- Computer Hardware Design (AREA)
- Software Systems (AREA)
- User Interface Of Digital Computer (AREA)
Abstract
一种触觉反馈装置及虚拟现实交互设备,涉及终端产品技术领域,所述触觉反馈装置应用于虚拟现实交互设备,所述虚拟现实交互设备用于穿戴于人体上,所述触觉反馈装置包括:第一反馈单元,用于贴合于人体皮肤的第一区域以向所述第一区域提供触觉反馈;驱动单元,用于驱动所述第一反馈单元沿着所述第一区域的法线方向和/或切线方向远离所述第一区域,以减弱或者消除所述第一反馈单元对所述第一区域的触觉反馈。所述驱动单元例如包括柔性囊体、电性驱动组件、电机或者人工肌肉等,但不限于此。触觉反馈装置和虚拟现实交互设备能够满足不同场景下的使用需求,有利于提高用户在不需要获得触觉反馈时的交互体验。
Description
本申请要求于2021年11月18日提交国家知识产权局、申请号为202111373060.4、申请名称为“触觉反馈装置及虚拟现实交互设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及终端产品技术领域,特别涉及一种触觉反馈装置及虚拟现实交互设备。
虚拟现实(Virtual Reality,VR)技术是20世纪发展起来的一项全新的实用技术。虚拟现实技术囊括计算机、电子信息、仿真技术,其基本实现方式是计算机模拟虚拟环境从而给人以环境沉浸感。虚拟现实技术是利用现实生活中的数据,通过计算机技术产生的电子信号,将其与各种输出设备结合使其转化为能够让人们感受到的现象,这些现象可以是现实中真真切切的物体,也可以是我们肉眼所看不到的物质,通过三维模型表现出来。因为这些现象不是我们直接所能看到的,而是通过计算机技术模拟出来的现实中的世界,故称为虚拟现实。
触觉反馈被认为是实现虚拟现实完全沉浸的重要组成部分,是增强用户沉浸感的重要措施。当具有触觉反馈装置的虚拟现实交互设备被穿戴于人体之上后,触觉反馈装置被贴合于人体皮肤的对应区域之上,并能够向该对应区域提供力反馈、温度反馈、摩擦反馈、纹理反馈或者振动反馈中至少一种类型的触觉反馈,从而有利于提高用户与虚拟现实世界交互过程的沉浸感和真实感。
针对当前的虚拟现实交互设备,触觉反馈装置通常被固定设于设备的承载体上,当设备被穿戴于人体之上时,触觉反馈装置始终贴合于用户的皮肤之上,期间用户如果需要进行接打电话等其他操作时,触觉反馈装置可能会对用户的动作造成阻碍,例如可能造成用户的手指无法弯曲拾取手机。而此时如果将设备整体从人体上摘下过程又过于繁琐,并且时间上可能来不及,以上原因使得当前的触觉反馈装置使用方法不够灵活,无法满足不同场景下的使用需求,不利于用户在不需要获得触觉反馈时的交互体验。
发明内容
本申请提供了一种触觉反馈装置及虚拟现实交互设备,能够满足不同场景下的使用需求,有利于提高用户在不需要获得触觉反馈时的交互体验。
第一方面,提供了一种触觉反馈装置,所述触觉反馈装置用于虚拟现实交互设备,所述虚拟现实交互设备用于穿戴于人体上,所述触觉反馈装置包括:第一反馈单元,用于贴合于人体皮肤的第一区域以向所述第一区域提供触觉反馈;驱动单元,用于驱动所述第一反馈单元远离所述第一区域,以减弱或者消除所述第一反馈单元对所述第一区域的触觉反馈;所述驱动单元包括柔性囊体,所述柔性囊体膨胀或者收缩以驱动所述第一反馈单元远离所述第一区域。
根据本申请实施例提供的触觉反馈装置,在正常使用状态下第一反馈单元能够贴合于人体之上以进行触觉反馈,增强用户的真实体验。而当不需要进行触觉反馈时,本申请通 过设置驱动单元来驱动第一反馈单元远离人体需要进行触觉反馈的区域,从而在无需摘下虚拟现实交互设备的前提下能够减弱或者消除第一反馈单元对该区域的触觉反馈,避免在不需要获得触觉反馈时第一反馈单元对用户的动作造成阻碍,使用户具有较好的自由体验,此时用户可以顺畅的进行接打电话等其他操作。本申请实施例提供的触觉反馈装置具有较高的使用灵活性,能够满足不同场景下的使用需求,有利于提高用户在不需要获得触觉反馈时的交互体验。本申请能够方便用户的使用,提高了用户的使用体验,有利于提高产品的竞争力。
柔性囊体具有结构简单、安装方便、体积小巧、传动方式简单等优点,本申请利用柔性囊体的膨胀或者收缩来带动第一反馈单元移动构思十分巧妙,不仅能够简化触觉反馈装置的整体结构并有利于减小整个触觉反馈装置的体积,还能够保证触觉反馈装置具有足够的使用稳定性,确保保证长时间多次使用后驱动单元仍然能够可靠的带动第一反馈单元进行移动而不易出现故障,使得触觉反馈装置具有较高的运行稳定性。
在一种可能的设计中,所述驱动单元驱动所述第一反馈单元沿着所述第一区域的法线方向远离所述第一区域。此时可以将柔性囊体设置成扁平状,通过设置柔性囊体沿着法线方向带动第一反馈单元远离第一区域,结构简单并且容易实现,并有利于提高触觉反馈装置的运行稳定性。
可选地,柔性囊体可以由弹性树脂、弹性硅胶、弹性橡胶等弹性材质构成,例如可以由弹性硅胶浇注而成。
可选地,柔性囊体呈扁平状,并且覆盖于第一区域之上。
在一种可能的设计中,所述柔性囊体具有相对设置的外侧壁和内侧壁,所述内侧壁的外壁面朝向所述第一区域;所述第一反馈单元连接于所述外侧壁的内壁面或者外壁面上,所述柔性囊体膨胀以驱动所述第一反馈单元远离所述第一区域;或者,所述第一反馈单元连接于所述内侧壁的内壁面或者外壁面上,所述柔性囊体收缩以驱动所述第一反馈单元远离所述第一区域。
在一种可能的设计中,所述驱动单元还包括动力泵,所述动力泵用于向所述柔性囊体内注入气体或者液体以使所述柔性囊体膨胀。
在一种可能的设计中,所述驱动单元还包括控制单元和压力传感器,所述压力传感器用于监测所述柔性囊体内的压力值,所述控制单元用于根据所述压力值对所述第一反馈单元的位移量进行控制。
通过压力传感器反馈的压力值可以对柔性囊体内的压力实现精准控制,柔性囊体内的压力值与外侧壁的位移量正相关,从而可以根据压力值实现柔性囊体对外侧壁位移量的精准控制,即实现对第一反馈单元的位移量的精准控制。该压力传感器可以是气压传感器或者液压传感器。
第二方面,提供了一种触觉反馈装置,用于虚拟现实交互设备,所述虚拟现实交互设备用于穿戴于人体上,所述触觉反馈装置包括:第一反馈单元,用于贴合于人体皮肤的第一区域以向所述第一区域提供触觉反馈;驱动单元,用于驱动所述第一反馈单元沿着所述第一区域的法线方向和/或切线方向远离所述第一区域,以减弱或者消除所述第一反馈单元(100)对所述第一区域(S1)的触觉反馈。
根据本申请实施例提供的触觉反馈装置,在正常使用状态下第一反馈单元能够贴合于 人体之上以进行触觉反馈,增强用户的真实体验。而当不需要进行触觉反馈时,本申请通过设置驱动单元来驱动第一反馈单元远离人体需要进行触觉反馈的区域,从而在无需摘下虚拟现实交互设备的前提下能够减弱或者消除第一反馈单元对该区域的触觉反馈,避免在不需要获得触觉反馈时第一反馈单元对用户的动作造成阻碍,使用户具有较好的自由体验,此时用户可以顺畅的进行接打电话等其他操作。本申请实施例提供的触觉反馈装置具有较高的使用灵活性,能够满足不同场景下的使用需求,有利于提高用户在不需要获得触觉反馈时的交互体验。本申请能够方便用户的使用,提高了用户的使用体验,有利于提高产品的竞争力。
本申请实施例提供的触觉反馈装置能够被应用于虚拟现实交互设备中,能够向人体提供触觉反馈,为用户提供视觉虚拟现实领域所不能提供的触觉感受,使用户可以全面接触到视觉虚拟现实中的物体,产生更为身临其境的感受,有利于提高用户与虚拟现实世界交互过程的沉浸感和真实感。
在一种可能的设计中,所述驱动单元包括柔性囊体,所述柔性囊体膨胀或者收缩以驱动所述第一反馈单元远离所述第一区域。
柔性囊体具有结构简单、安装方便、体积小巧、传动方式简单等优点,本申请利用柔性囊体的膨胀或者收缩来带动第一反馈单元移动构思十分巧妙,不仅能够简化触觉反馈装置的整体结构并有利于减小整个触觉反馈装置的体积,还能够保证触觉反馈装置具有足够的使用稳定性,确保保证长时间多次使用后驱动单元仍然能够可靠的带动第一反馈单元进行移动而不易出现故障,使得触觉反馈装置具有较高的运行稳定性。
在一种可能的设计中,所述柔性囊体具有相对设置的外侧壁和内侧壁,所述内侧壁的外壁面朝向所述第一区域;所述第一反馈单元连接于所述外侧壁的内壁面或者外壁面上,所述柔性囊体膨胀以驱动所述第一反馈单元远离所述第一区域;或者,所述第一反馈单元连接于所述内侧壁的内壁面或者外壁面上,所述柔性囊体收缩以驱动所述第一反馈单元远离所述第一区域。
在一种可能的设计中,所述驱动单元还包括动力泵,所述动力泵用于向所述柔性囊体内注入气体或者液体以使所述柔性囊体膨胀。
在一种可能的设计中,所述驱动单元包括电性驱动组件,所述电性驱动组件包括相对设置的第一电性元件和第二电性元件,通电状态下所述第一电性元件和所述第二电性元件之间产生驱动所述第一反馈单元远离所述第一区域的吸引力或者排斥力。
在一种可能的设计中,所述第二电性元件位于所述第一电性元件与所述第一区域之间;所述第一反馈单元设于所述第二电性元件上,所述第一电性元件与所述第二电性元件之间产生吸引力以驱动所述第一反馈单元远离所述第一区域;或者,所述第一反馈单元设于所述第一电性元件上,所述第一电性元件与所述第二电性元件之间产生排斥力以驱动所述第一反馈单元远离所述第一区域。
在一种可能的设计中,所述第一电性元件为第一电极,所述第二电性元件为第二电极;或者,所述第一电性元件为第一电磁体,所述第二电性元件为第二电磁体。
在一种可能的设计中,所述驱动单元包括第一电机和第一牵引绳,所述第一电机通过所述第一牵引绳带动所述第一反馈单元远离所述第一区域。通过电机和牵引绳来驱动第一反馈单元进行移动,结构简单并且容易实现,有利于减小触觉反馈装置的整体体积,并且 具有较高的运行稳定性。
在一种可能的设计中,所述驱动单元还包括第二电机和第二牵引绳,所述第二电机通过所述第二牵引绳带动所述第一反馈单元靠近并贴合于所述第一区域之上。
在一种可能的设计中,所述驱动单元包括人工肌肉。
在一种可能的设计中,所述驱动单元还用于驱动所述第一反馈单元靠近并贴合于所述第一区域之上。
在一种可能的设计中,所述触觉反馈装置还包括:弹性复位件,用于在所述驱动单元的驱动力消失后,驱动所述第一反馈单元靠近并贴合于所述第一区域之上。本申请通过设置结构简单的弹性复位件来使第一反馈单元自动复位,而无需设置其他动力结构来使第一反馈单元复位,由此能够简化整个触觉反馈装置的结构,能够节约生产成本,有利于减小触觉反馈装置的整体体积,并且具有较高的运行稳定性。
可选地,弹性复位件可以为弹簧(例如扭簧、拉簧或者压簧)、弹片(例如金属簧片)橡皮筋、弹性塑胶条等任意能够实现弹性复位的部件,但不限于此。
在一种可能的设计中,所述驱动单元还用于驱动所述第一反馈单元贴合于人体皮肤的第二区域以向所述第二区域提供触觉反馈,所述第二区域与所述第一区域不同。
通过以上设置,使得本申请实施例提供的触觉反馈装置能够通过一个触觉反馈单元覆盖于人体的多个区域,通过一个触觉反馈单元实现对多个区域的触觉反馈,使用户可以全面接触到视觉虚拟现实中的物体,产生更为身临其境的感受,有利于提高用户与虚拟现实世界交互过程的沉浸感和真实感。以上原因也使得安装有本申请实施例提供的触觉反馈装置的虚拟现实交互类产品具有更高的使用性能,使得产品更具竞争力。
在一种可能的设计中,所述触觉反馈装置还包括:第二反馈单元;所述驱动单元还用于驱动所述第二反馈单元靠近并贴合于所述第一区域之上,以向所述第一区域提供触觉反馈,所述第二反馈单元与所述第一反馈单元提供的触觉反馈不同。
通过以上设置,使得本申请实施例提供的触觉反馈装置实用性更强,可以通过不同的触觉反馈单元向同一皮肤区域提供不同的触觉反馈,即能够通过第一区域向用户提供多元(不同类型)的触觉反馈,让用户能有一个多元触觉融合反馈的丰富体验,从而能够使得用户具有更加逼真的触觉体验,有利于提高用户与虚拟现实世界交互过程的沉浸感和真实感。
在一种可能的设计中,所述第二反馈单元与所述第一反馈单元相连,所述驱动单元在驱动所述第一反馈单元远离所述第一区域的同时驱动所述第二反馈单元靠近并贴合于所述第一区域之上。
通过以上设置,能够简化驱动单元的整体结构,使得对上述两个反馈单元的驱动更加简单方便,有利于减小整个触觉反馈装置的体积,并且提高使用稳定性。第一反馈单元与第二反馈单元的运动实现同步,在第一反馈单元离开第一区域的同时第二反馈单元无缝衔接的覆盖于第一区域之上,能够使得用户具有更加逼真的触觉体验,有利于提高用户与虚拟现实世界交互过程的沉浸感和真实感。
在一种可能的设计中,所述触觉反馈装置还包括:柔性片,与所述第一反馈单元相连;所述驱动单元在驱动所述第一反馈单元远离所述第一区域的同时驱动所述柔性片靠近并贴合于所述第一区域之上。
当用户需要能够触觉反馈时,可以将第一反馈单元覆盖于第一区域之上,当用户不需要提供触觉反馈时,驱动单元可以驱动柔性片覆盖于第一区域之上,柔性片具有柔性,不会对用户的动作造成过多的阻碍,此时能够使得用户的体验较为自由,此时用户的手指可以完成足够的弯曲以进行接打电话等其他操作。
柔性片与第一反馈单元相连以实现同步驱动,能够简化驱动单元的整体结构,有利于减小整个触觉反馈装置的体积,并且提高使用稳定性。本申请通过设置柔性片还能够及时填补第一反馈单元离开后留下的间隙,不会对触觉反馈装置的穿戴舒适性造成不良影响。
在一种可能的设计中,所述触觉反馈包括以下反馈中的至少一种:力反馈、温度反馈、摩擦反馈、纹理反馈或者振动反馈。
在一种可能的设计中,所述第一反馈单元包括用于提供力反馈的柔性变刚度驱动器。
在一种可能的设计中,所述柔性变刚度驱动器至少包括:变刚度组件,包括啮合部以及可弯曲变形的基体,两个以上的所述基体层叠设置,至少部分数量的所述基体中,相邻两个所述基体中的一者面向另一者的表面上设置所述啮合部;驱动组件,用于驱动相邻两个设置有所述啮合部的所述基体,以使一者上的所述啮合部与另一者上的所述啮合部至少从分离状态切换为啮合状态;其中,所述啮合部处于所述分离状态时,所述变刚度组件整体具有第一刚度,所述啮合部处于所述啮合状态时,所述变刚度组件整体具有第二刚度,所述第二刚度大于所述第一刚度。
本申请实施例的柔性变刚度驱动器包括变刚度组件和驱动组件。变刚度组件整体刚度可以调节。变刚度组件包括两个以上的可弯曲变形的基体。每个基体自身具有预定刚度。对单独的一个基体施加外力时,该基体可以弯曲变形。至少部分数量的基体中,相邻两个基体上各自设置有啮合部。驱动组件用于驱动相邻两个设置有啮合部的基体,以使一者上的啮合部与另一者上的啮合部至少从分离状态切换为啮合状态。相邻两个设置有啮合部的基体中,两个基体上的啮合部处于分离状态时,变刚度组件可以具有第一刚度。各个基体相对松散自由,使得变刚度组件整体相对容易弯曲变形。驱动组件驱动各个基体彼此靠近,并且相邻两个设置有啮合部的基体中,两个基体上的啮合部从分离状态切换为啮合状态时,变刚度组件具有第二刚度。其中,第二刚度大于第一刚度。
此时,各个基体相互抵压。相对于具有第一刚度的变刚度组件,具有第二刚度的变刚度组件整体相对难以弯曲变形。例如,在将具有第一刚度的变刚度组件和具有第二刚度的变刚度组件弯曲至相同程度时,使具有第二刚度的变刚度组件发生弯曲的作用力大于使具有第二刚度的变刚度组件发生弯曲的作用力。将柔性变刚度驱动器应用于具有力反馈功能的虚拟现实交互设备时,用户的身体一部分,例如手指和手掌中至少一者上可以设置柔性变刚度驱动器。变刚度组件具有第一刚度,并且用户手指和手掌中至少一者弯曲变形时,可以通过柔性变刚度驱动器模拟出抓取或握持的虚拟物体产生的作用力较小或较软的场景。变刚度组件具有第二刚度,并且用户手指和手掌中至少一者弯曲变形时,可以通过柔性变刚度驱动器模拟出抓取或握持的虚拟物体产生的作用力较大或较硬的场景。通过柔性变刚度驱动器,用户可以感受到虚拟物体交互过程中产生的作用力或者其软硬程度,从而获得与现实世界相同或相近的感受,有利于提高用户与虚拟现实世界交互过程的沉浸感和真实感。本申请实施例的柔性变刚度驱动器结构紧凑、体积小、质量轻,因此在使用过程中有利于提升佩戴舒适度。
在一种可能的设计中,所述啮合部的硬度大于所述基体的硬度。硬度较大的啮合部相互啮合,并且变刚度组件发生弯曲时,硬度较大的啮合部自身抗变形能力较强,受力后不易发生倾斜变形,从而一方面,变刚度组件可以模拟感受到虚拟物体交互过程中产生的作用力较大或质地较硬的力反馈;另一方面,可以降低相邻两个啮合部沿基体的长度方向相互挤压而导致两个啮合部发生倾斜变形并脱离良好啮合状态的可能性。啮合部的硬度大于基体的硬度的结构,可以有利于增大变刚度组件的刚度变化调节范围。
在一种可能的设计中,所述基体和所述啮合部为一体成型结构。
在一种可能的设计中,所述基体的材料和所述啮合部的材料均选自树脂、橡胶或硅胶。
在一种可能的设计中,所述基体和所述啮合部为分体组装结构。
在一种可能的设计中,所述基体的材料选自树脂、橡胶或硅胶,所述啮合部的材料选自树脂、塑料、金刚石或刚玉。
在一种可能的设计中,所述啮合部的形状可以是球形、人字形或条形。
在一种可能的设计中,所述变刚度组件还包括凸起,所述凸起的尺寸小于所述啮合部的尺寸,至少部分数量的所述啮合部的侧壁设置多个所述凸起。
在一种可能的设计中,所述变刚度组件还包括凸起,设置所述啮合部的所述基体上,所述基体具有位于相邻两个所述啮合部之间的外露区域,至少部分数量的所述外露区域设置多个所述凸起。
在啮合部插入对应间隙的深度相同的情况下,相对于未设置凸起的啮合部,设置凸起的啮合部需要克服更大的摩擦阻力。由于设置凸起的啮合部不易啮合并且需要更大的压应力实现相同的啮合状态,因此从啮合部处于分离状态切换至啮合部完全啮合状态,使得所施加于基体和啮合部的压应力的上限值更大,从而使得施加于啮合部上的作用力的取值范围更宽,施加于啮合部上的作用力大小精度更高,有利于提高啮合部插入对应间隙内的深度的精度,进而有利于提高变刚度组件的刚度变化范围,提高变刚度组件的刚度控制精度。对应地,相对于未设置凸起的啮合部,设置凸起的啮合部从啮合状态切换至分离状态时需要克服更大的摩擦阻力,使得设置凸起的啮合部不易从啮合状态切换至分离状态,可以实现啮合部逐渐切换至分离状态,降低啮合部从啮合状态切换至分离状态因分离速度过快而出现应力突变的可能性。
在一种可能的设计中,所述凸起的形状为球形或条形。
在一种可能的设计中,所述基体包括相连的两个以上的层结构,沿所述基体的厚度方向,两个以上的所述层结构层叠设置,相邻两个所述层结构的硬度不同。
基体为单层结构时,基体的材料对基体自身的刚度具有主要影响,从而由一种材料形成的基体自身的刚度变化范围小。相对于基体为单层结构,多个层结构的基体可以通过调节各层的硬度以实现变刚度组件整体的刚度调节,从而可以有利于增大变刚度组件的整体刚度变化范围,增大变刚度组件可模拟刚度的取值范围。
在一种可能的设计中,相邻两个所述层结构的材料不同。
可以通过选择不同层结构的材料,使得相邻两个层结构的硬度不同,形成具有不同刚度的基体,从而有利于使用不同的材料复合形成满足不同刚度变化要求的基体。
在一种可能的设计中,远离所述啮合部的方向上,最外侧的所述层结构的硬度大于其余所述层结构的硬度。
因此,最外侧的层结构可以作为约束结构,在不影响基体发生弯曲的情况下可以使得基体保持整体尺寸不易发生变化,降低基体在弯曲过程中被拉伸变长而对变刚度组件的刚度变化精度产生不良影响的可能性。
在一种可能的设计中,最外侧的所述层结构为可弯曲变形并且抗拉伸的结构件。
在一种可能的设计中,所述基体为弹性结构,所述基体被配置为释放自身的弹性回复力并带动所述啮合部从所述啮合状态切换成所述分离状态。基体自身可以提供使啮合部从啮合状态切换成分离状态的作用力,从而有利于保证啮合部顺利地实现分离。
在一种可能的设计中,所述变刚度组件还包括弹性件,相邻两个所述基体上的所述啮合部处于啮合状态时,所述啮合部挤压所述弹性件变形,所述啮合部从啮合状态切换为分离状态时,所述弹性件释放弹性回复力并向所述啮合部施加压应力。
啮合部从啮合状态切换为分离状态时,弹性件释放弹性回复力并向啮合部施加压应力,从而推动啮合部相互分离。弹性件可以额外向啮合部提供分离时的作用力,以使啮合部相对容易地发生分离,有利于降低从啮合状态切换为分离状态时,啮合部仍然保持相互啮合而未能发生分离的可能性。
在一种可能的设计中,所述弹性件为弹性片,相邻两个设置有所述啮合部的所述基体中,一者上的所述啮合部与另一者上的所述啮合部之间设置所述弹性件。
在一种可能的设计中,驱动组件包括气囊。变刚度组件设置于气囊内。位于最外侧的基体与气囊的内壁相连。气囊用于驱动相邻两个设置有啮合部的基体。
在一种可能的设计中,驱动组件包括第一电极和第二电极。第一电极和第二电极均与变刚度组件相连,并且用于驱动相邻两个设置有啮合部的基体。
在一种可能的设计中,驱动组件包括极性相反的第一电磁体和第二电磁体。第一电磁体和第二电磁体均与变刚度组件相连,并且用于驱动相邻两个设置有啮合部的基体。
第三方面,提供了一种虚拟现实交互设备,包括前述第一方面或第二方面中任一种可能设计所提供的触觉反馈装置。
由于虚拟现实交互设备采用了前述第一方面或第二方面提供的触觉反馈装置,因此使得虚拟现实交互设备也具有与触觉反馈装置相应的技术效果,在此不再赘述。
图1是触觉反馈装置与人体皮肤表面的相互作用示意图。
图2是本申请实施例提供的触觉反馈装置的一例的结构示意图。
图3是图2所示的触觉反馈装置不同使用状态的对比示意图。
图4是本申请实施例提供的触觉反馈装置的另一例的结构示意图。
图5是图4所示的触觉反馈装置不同使用状态的对比示意图。
图6是本申请实施例提供的触觉反馈装置的再一例的结构示意图。
图7是图6所示的触觉反馈装置不同使用状态的对比示意图。
图8是本申请实施例提供的触觉反馈装置的再一例的结构示意图。
图9是图8所示的触觉反馈装置不同使用状态的对比示意图。
图10是本申请实施例提供的触觉反馈装置的再一例的结构示意图。
图11是图10所示的触觉反馈装置不同使用状态的对比示意图。
图12是本申请实施例提供的触觉反馈装置的再一例的结构示意图。
图13是图12所示的触觉反馈装置不同使用状态的对比示意图。
图14是本申请实施例提供的触觉反馈装置的再一例的结构示意图。
图15是图14所示的触觉反馈装置不同使用状态的对比示意图。
图16是本申请实施例提供的触觉反馈装置的再一例的结构示意图。
图17是图16所示的触觉反馈装置不同使用状态的对比示意图。
图18是本申请实施例提供的触觉反馈装置的再一例的结构示意图。
图19是图18所示的触觉反馈装置不同使用状态的对比示意图。
图20是本申请实施例提供的触觉反馈装置的再一例的结构示意图。
图21是图20所示的触觉反馈装置不同使用状态的对比示意图。
图22为本申请实施例提供的柔性变刚度驱动器的结构示意图。
图23为本申请实施例提供的柔性变刚度驱动器的局部分解结构示意图。
图24为本申请实施例提供的柔性变刚度驱动器中的啮合部处于分离状态的局部剖视结构示意图。
图25为本申请实施例提供的柔性变刚度驱动器中的啮合部处于完全啮合状态的局部剖视结构示意图。
图26为本申请一实施例提供的变刚度组件的分解结构示意图。
图27为本申请又一实施例提供的变刚度组件的分解结构示意图。
图28为本申请又一实施例提供的变刚度组件的分解结构示意图。
图29为本申请一实施例提供的变刚度组件的局部结构示意图。
图30为本申请又一实施例提供的变刚度组件的局部结构示意图。
图31为本申请另一实施例提供的变刚度组件的局部结构示意图。
图32为本申请又一实施例提供的变刚度组件的分解结构示意图。
图33为本申请一实施例提供的柔性变刚度驱动器中的啮合部处于分离状态的局部剖视结构示意图。
图34为图33所示实施例的柔性变刚度驱动器中的啮合部处于啮合状态的局部剖视结构示意图。
图35为本申请一实施例提供的柔性变刚度驱动器的结构示意图。
图36为本申请另一实施例提供的柔性变刚度驱动器的结构示意图。
图37是本申请实施例提供的虚拟现实交互设备的一例的整体结构示意图。
图38是本申请实施例提供的虚拟现实交互设备的另一例的整体结构示意图。
图39是本申请实施例提供的虚拟现实交互设备的再一例的整体结构示意图。
附图标记:
1、第一力反馈单元;2、第二力反馈单元;
S1、第一区域;S2、第二区域;F1、法线方向;F2、切线方向;
100、第一反馈单元;
200、驱动单元;
210、柔性囊体;211、第一侧壁;212、第二侧壁;213、动力泵;214、第一阀门;215、第二阀门;216、控制单元;217、压力传感器;218、电源单元;219、泄压泵;220、 电性驱动组件;221、第一电性元件;222、第二电性元件;223、位置检测传感器;230、第一电机;231、第一牵引绳;232、第二电机;233、第二牵引绳;234、第一固定部;235、第二固定部;240、第一人工肌肉;241、第二人工肌肉;
300、弹性复位件;
400、第二反馈单元;500、第三反馈单元;
600、柔性片;
700、承载体;
10、变刚度组件;11、基体;11a、外露区域;11b、层结构;11c、粘接件;12、啮合部;121、侧壁;122、顶壁;13、间隙;14、凸起;16、弹性件;
20、驱动组件;21、气囊;22、真空泵;23、第一阀体;24、第二阀体;25、充气泵;26、气压传感器;27、控制模块;
X、厚度方向;Y、长度方向;Z、宽度方向;
1000、触觉反馈装置。
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请的描述中,需要理解的是,术语“上”、“下”、“侧”、“前”、“后”等指示的方位或位置关系为基于安装的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,需要说明的是,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
还需说明的是,本申请实施例中以同一附图标记表示同一组成部分或同一零部件,对于本申请实施例中相同的零部件,图中可能仅以其中一个零件或部件为例标注了附图标记,应理解的是,对于其他相同的零件或部件,附图标记同样适用。
随着社会生产力和科学技术的不断发展,各行各业对虚拟现实技术的需求日益旺盛。虚拟现实技术的发展让用户与虚拟环境的交互成为可能。用户可以在虚拟现实世界体验到 最真实的感受,其模拟环境的真实性可以接近现实。同时,虚拟现实世界里可以具有一切人类所拥有的感知功能,比如听觉、视觉、触觉、味觉、嗅觉等感知系统。用户在虚拟现实的操作过程中,可以获得类似现实的环境反馈。
用户在使用虚拟现实交互设备在虚拟现实世界中进行相应操作时,希望可以获得类似现实场景下的真实触觉反馈。例如,在现实世界中,用户如果通过手部抓取或握持相应的真实物体时,可以通过手部反馈的应力大小来感知真实物体的重量或软硬程度。例如,用户在现实世界中,手部分别抓取或握持相同尺寸的线球和金属球,所感知的是线球较轻、较软,而金属球较重、较硬。因此,用户在虚拟现实世界中通过虚拟现实交互设备抓取或握持相应的虚拟物体时,也希望可以感受到虚拟物体交互过程中产生的作用力或者其软硬程度,从而获得与现实世界相同或相近的感受,有利于提高用户与虚拟现实世界交互过程的沉浸感和真实感。
虚拟现实交互设备包括可穿戴设备。可穿戴设备可以包括触觉反馈手套,从而可以方便用户佩戴于手部,并且通过手部动作来控制虚拟现实世界中的手部动作,例如顺利完成抓取或握持相应的物体等动作。当触觉反馈手套被穿戴于人体手部之后,触觉反馈装置被贴合于手部的皮肤之上,并能够向手部皮肤提供力反馈、温度反馈、摩擦反馈、纹理反馈或者振动反馈等中至少一种类型的触觉反馈,从而能够增强用户的真实体验。
图1是触觉反馈装置与人体皮肤表面的相互作用示意图。如图1所示,触觉反馈手套具有被固定安装于承载体(例如手套本体)上并具有一定刚度的第一力反馈单元1和第二力反馈单元2。当触觉反馈手套被穿戴于用户手部之后,第一力反馈单元1贴合于用户的手掌上以向用户的手掌提供力反馈,第二力反馈单元2贴合于用户手腕上以向用户的手腕提供力反馈。
在触觉反馈手套被穿戴的整个过程中,第一力反馈单元1和第二力反馈单元2始终被紧密贴合于用户的手部皮肤之上。期间用户如果需要进行接打电话等其他操作时,第一力反馈单元1和第二力反馈单元2由于具有一定的刚度,需要施加足够的作用力才能使其弯曲变形,由此使得第一力反馈单元1和第二力反馈单元2可能会对用户的动作造成阻碍,例如可能造成用户的手指和/或手腕无法弯曲拾取手机。而此时如果将触觉反馈手套整体从手部取下过程又过于繁琐,并且时间上可能来不及,以上原因使得当前的触觉反馈装置使用方法不够灵活,通用性不高,无法满足不同场景下的使用需求,不利于用户在不需要获得触觉反馈时的交互体验。
基于此,本申请实施例提供了一种触觉反馈装置及虚拟现实交互设备,正常使用状态下反馈单元能够贴合于人体之上以进行触觉反馈,增强用户的真实体验。而当不需要进行触觉反馈时,本申请通过设置驱动单元能够驱动反馈单元远离人体需要进行触觉反馈的区域,从而在无需摘下虚拟现实交互设备的前提下能够减弱或者消除反馈单元对该区域的触觉反馈,避免在不需要获得触觉反馈时反馈单元对用户的动作造成阻碍,使用户具有较好的自由体验,此时用户可以顺畅的进行接打电话等其他操作。本申请实施例提供的触觉反馈装置具有较高的使用灵活性,能够满足不同场景下的使用需求,有利于提高用户在不需要获得触觉反馈时的交互体验。
本申请实施例首先提供了一种触觉反馈装置,图2是本申请实施例提供的触觉反馈装置的一例的结构示意图。图3是图2所示的触觉反馈装置不同使用状态的对比示意图。如 图2、图3所示,本申请实施例提供的触觉反馈装置包括第一反馈单元100和驱动单元200。
本申请实施例提供的触觉反馈装置能够被安装应用于虚拟现实交互设备之上,当虚拟现实交互设备被穿戴于人体之上时,第一反馈单元100能够贴合于人体皮肤的第一区域S1以向该第一区域S1提供触觉反馈。第一反馈单元100可以被安装于虚拟现实交互设备的承载体(即主体结构)700之上,并具有初始安装位置,当虚拟现实交互设备被穿戴于人体上时,第一反馈单元100刚好贴合于人体需要进行触觉反馈的第一区域S1。
如图3所示,虚拟现实交互设备可以是触觉反馈手套(此时承载体700为手套本体),该第一区域S1可以是用户手掌的指关节区域,当触觉反馈手套被穿戴于手部时,第一反馈单元100向用户手掌的指关节区域提供触觉反馈。
可选地,在其他实施方式中,虚拟现实交互设备也可以是其他穿戴设备,并向用户的其他身体部位提供触觉反馈,本申请对此不做限定。
例如,本申请实施例中的虚拟现实交互设备还可以被穿戴于人体的手腕、胳膊、腰部、腹部、颈部或腿部等其他任意部位,即此时虚拟现实交互设备可以是能够提供触觉反馈的护腕、护膝、衣服、裤子、腰带、鞋子或者颈环等任意穿戴设备,此时的第一区域S1可以是腕关节区域、肘关节区域、肩关节区域、髋关节区域、膝关节区域、踝关节区域或者脖颈区域等任意身体部位。
可选地,第一反馈单元100向第一区域S1提供的触觉反馈包括力反馈、温度反馈、摩擦反馈、纹理反馈或者振动反馈等中的至少一种。
例如,第一反馈单元100可以向第一区域S1提供力反馈,第一反馈单元100可以是柔性变刚度驱动器(例如,可以下文中图22-图36所示的柔性变刚度驱动器,这里暂不说明),该柔性变刚度驱动器可以是基于啮合程度的变刚度驱动器、基于阻塞原理的颗粒状或层状变刚度驱动器以及软体变刚度驱动器等,但不限于此。此时,可以通过驱动器的变刚度性能提供给用户不同程度的力反馈体验。
具体地,柔性变刚度驱动器可以实现刚度的变化,通过对柔性变刚度驱动器的刚度控制,可以模拟用户抓取或握持不同物体的过程中产生的作用力或其软硬程度。通过柔性变刚度驱动器用户可以感受到虚拟物体交互过程中产生的作用力或者软硬程度,从而获得与现实世界相同或相近的感受,有利于提高用户与虚拟现实世界交互过程的沉浸感和真实感。
再例如,第一反馈单元100可以向第一区域S1提供温度反馈,此时第一反馈单元100可以包括帕尔帖元件或者发热电阻丝等调温元件,可以通过调节第一反馈单元100的表面温度提供给用户不同程度的温度反馈体验,让用户感知虚拟现实中的物品温度或者环境温度。
再例如,第一反馈单元100可以向第一区域S1提供摩擦反馈,此时第一反馈单元100可以是能够改变表面粗糙度的摩擦反馈薄片,能够给用户带来逼真的摩擦触觉反馈。
再例如,第一反馈单元100可以向第一区域S1提供纹理反馈,此时第一反馈单元100可以是能够改变内部纹理的形状和/或深度的纹理反馈薄片,能够给用户带来逼真的纹理触觉反馈。
再例如,第一反馈单元100可以向第一区域S1提供振动反馈,此时第一反馈单元100可以是能够改变振动频率和振动幅度的振动马达(比如线性振动马达)、震动片(比如压 点陶瓷片)等振动器,能够给用户带来逼真的振动反馈体验。
在一种可能的实现方式中,第一反馈单元100还可以向第一区域S1提供两种或者更多种类型的触觉反馈,让用户能有一个多元触觉融合反馈的丰富体验,增加了用户与虚拟现实交互的沉浸感。
例如,第一反馈单元100可以是刚度和温度的结合,可以同时向第一区域S1提供力反馈和温度反馈,从而能够提供给用户更加逼真的触觉反馈体验。
在本申请实施例中,第一反馈单元100具有初始安装位置,当虚拟现实交互设备被穿戴于人体上时,第一反馈单元100刚好贴合于人体需要进行触觉反馈的第一区域S1。在这里,第一反馈单元100贴合于人体皮肤的第一区域S1可以是直接贴合也可以是间接贴合,本申请对此不做限定。
当第一反馈单元100直接贴合于人体皮肤之上时第一反馈单元100的表面与皮肤表面直接接触,此时第一反馈单元100对第一区域S1的触觉反馈效果更加高效明显。当第一反馈单元100间接贴合于人体皮肤之上时,此时第一反馈单元100通过中间媒介(例如手套本体的布料层或者纤维层)与皮肤表面贴合,该中间媒介不会对第一反馈单元100提供的触觉反馈造成阻碍,此时第一反馈单元100能够被更加舒适的穿戴于人体之上。
第一反馈单元100的形状与第一区域S1的形状相互适配,例如第一反馈单元100与第一区域S1的形状相同,并且第一反馈单元100的尺寸略大于第一区域S1的尺寸,进而能够保证可靠的触觉反馈效果。
可选地,第一反馈单元100可以为片状或者板状结构,形状可以为圆形、三角形、矩形、梯形、菱形或者椭圆形等任意规则或者不规则的形状。
进一步地,如图2、图3所示,在本申请实施例中,触觉反馈装置还包括驱动单元200,第一反馈单元100被位置可调(可活动)的保持于承载体700之上,驱动单元200能够驱动第一反馈单元100在承载体700上进行位移以远离第一区域S1,进而减弱或者消除第一反馈单元100对第一区域S1的触觉反馈,避免在不需要获得触觉反馈时第一反馈单元100对用户的动作造成阻碍,使用户具有较好的自由体验。
在这里,驱动单元200能够驱动第一反馈单元100移动以远离第一区域S1。驱动单元200可以包括动力源和传动机构,动力源输出动力并通过传动机构传递至第一反馈单元100,进而能够使第一反馈单元100移动。
可选地,动力源可以是各类动力泵、电机、马达、液压缸、气压缸、电性驱动组件(电极片或者电磁铁)、形状记忆合金、压电材料、人工肌肉、磁流变液等任意动力机构。
可选地,驱动单元200可以采用气压驱动、液压驱动、绳驱动或者电机驱动等任意方式驱动第一反馈单元100移动。
可选地,传动机构可以包括任意个不同部件(齿轮、齿条、凸轮、偏心轮、滑块、皮带、转轴、铰链、传动绳、气囊、液囊、连杆、滑杆或者摆杆等)、不同连接关系(抵接、铰接、滑动连接、啮合连接、皮带连接、绳连接等)的相互配合,以此来实现将动力源输出的动力传递至第一反馈单元100。
在本申请实施例中,如图3所示,驱动单元200驱动第一反馈单元100沿着第一区域S1的法线方向F1远离第一区域S1。
此时,第一反馈单元100可以沿着法线方向F1向远离第一区域S1的方向移动,使得 第一反馈单元100与第一区域S1之间的距离被增大,从而能够减弱或者消除第一反馈单元100对第一区域S1的触觉反馈,减小或者避免对用户的动作造成阻碍,使得用户具有较好的自由体验。
在一种可能的实现方式中,如图15所示,驱动单元200还可以驱动第一反馈单元100沿着第一区域S1的切线方向F2远离第一区域S1。
此时,第一反馈单元100可以贴着皮肤表面向远离第一区域S1的方向移动,例如上、下或者左、右方向移动第一反馈单元100,从而能够减弱或者消除第一反馈单元100对第一区域S1的触觉反馈,减小或者避免对用户的动作造成阻碍,使得用户具有较好的自由体验。
在一种可能的实现方式中,驱动单元200驱动第一反馈单元100沿着第一区域S1的法线方向F1和切线方向F2远离第一区域S1。此时驱动单元200可以驱动第一反馈单元100向远离第一区域S1的方向倾斜运动。
根据本申请实施例提供的触觉反馈装置,在正常使用状态下第一反馈单元100能够贴合于人体之上以进行触觉反馈,增强用户的真实体验。而当不需要进行触觉反馈时,本申请通过设置驱动单元200来驱动第一反馈单元100远离人体需要进行触觉反馈的区域,从而在无需摘下虚拟现实交互设备的前提下能够减弱或者消除第一反馈单元100对该区域的触觉反馈,避免在不需要获得触觉反馈时第一反馈单元100对用户的动作造成阻碍,使用户具有较好的自由体验,此时用户可以顺畅的进行接打电话等其他操作。本申请实施例提供的触觉反馈装置具有较高的使用灵活性,能够满足不同场景下的使用需求,有利于提高用户在不需要获得触觉反馈时的交互体验。本申请能够方便用户的使用,提高了用户的使用体验,有利于提高产品的竞争力。
本申请实施例提供的触觉反馈装置能够被应用于虚拟现实交互设备中,能够向人体提供触觉反馈,为用户提供视觉虚拟现实领域所不能提供的触觉感受,使用户可以全面接触到视觉虚拟现实中的物体,产生更为身临其境的感受,有利于提高用户与虚拟现实世界交互过程的沉浸感和真实感。
下面结合附图2、图3对本申请实施例提供的触觉反馈装置的具体结构做进一步介绍。如图2、图3所示,在本申请实施例中,驱动单元200包括柔性囊体210,柔性囊体210与第一反馈单元100传动连接,柔性囊体210膨胀或者收缩能够带动第一反馈单元100远离第一区域S1。相反地,柔性囊体210的收缩或者膨胀能够带动第一反馈单元100靠近第一区域S1。
柔性囊体210具有结构简单、安装方便、体积小巧、传动方式简单等优点,本申请利用柔性囊体210的膨胀或者收缩来带动第一反馈单元100移动构思十分巧妙,不仅能够简化触觉反馈装置的整体结构并有利于减小整个触觉反馈装置的体积,还能够保证触觉反馈装置具有足够的使用稳定性,确保保证长时间多次使用后驱动单元200仍然能够可靠的带动第一反馈单元100进行移动而不易出现故障,使得触觉反馈装置具有较高的运行稳定性。
可选地,柔性囊体210可以由弹性树脂、弹性硅胶、弹性橡胶等弹性材质构成,例如可以由弹性硅胶浇注而成。如图2、图3所示,柔性囊体210呈扁平状,并且覆盖于第一区域S1之上,柔性囊体210具有相对设置的外侧壁211和内侧壁212。被佩戴时,外侧 壁211与内侧壁212与人体皮肤的第一区域S1表面保持近似平行的形态,外侧壁211位于远离第一区域S1的一侧,而内侧壁212邻近第一区域S1,内侧壁212位于外侧壁211与第一区域S1之间,也就是说,内侧壁212的外壁面朝向第一区域S1。
图3中的(a)部分是第一反馈单元100位于初始位置的结构示意图,图3中的(b)部分是第一反馈单元100被移开后的结构示意图。如图2、图3所示,第一反馈单元100可以与承载体700相连,并通过胶粘等方式固定贴合于外侧壁211的外壁面上,承载体700由柔性材料(例如布料)构成,能够支持一定的变形量,并且不会阻碍第一反馈单元100的移动。
如图3中的(a)部分所示,柔性囊体210具有收缩状态,当柔性囊体210处于该收缩状态下时,第一反馈单元100靠近人体的第一区域S1,此时可以透过柔性囊体210对第一区域S1进行触觉反馈(例如力反馈、温度反馈或者振动反馈等)。
如图3中的(b)部分所示,柔性囊体210具有膨胀状态,当柔性囊体210处于该膨胀状态下时,第一反馈单元100远离人体的第一区域S1。也就是说,通过使柔性囊体210进行膨胀,能够使得外侧壁211向远离第一区域S1的方向移动,进而带动第一反馈单元100远离第一区域S1,此时第一反馈单元100对第一区域S1的触觉反馈被减弱或者消除,能够避免在不需要获得触觉反馈时第一反馈单元100对用户的动作造成阻碍,使用户的手指具有较好的自由体验。
如图2所示,驱动单元200还包括动力泵213,动力泵213用于向柔性囊体210内注入气体或者液体以使柔性囊体210膨胀。也就是说,动力泵213可以是气泵,可以向柔性囊体210内注入空气等气体以使柔性囊体210膨胀,此时柔性囊体210为气囊。动力泵213还可以是液泵,可以向柔性囊体210内注入水等液体以使柔性囊体210膨胀,此时柔性囊体210为液囊,并且驱动单元200还可以包括储存液体的储液腔。
动力泵213和柔性囊体210通过管线相连通,该管线上设有第一阀门214,第一阀门214用于打开或关闭管线。第一阀门214打开时,可以通过动力泵213向柔性囊体210内注入气体或者液体,以使柔性囊体210膨胀,进而带动第一反馈单元100远离第一区域S1。第一阀门214关闭时,柔性囊体210保持在预定压力的膨胀状态下。
柔性囊体210还通过泄压管线与外部连通,该泄压管线上设有第二阀门215。第二阀门215用于打开或关闭泄压管线。第一阀门214关闭,第二阀门215关闭时,柔性囊体210可以保持在预定压力的膨胀状态下。第一阀门214关闭,第二阀门215打开时,柔性囊体210与外部环境相连通以将囊体内部的气体或者液体排出,进而能够使得柔性囊体210恢复至收缩状态,此时第一反馈单元100再次靠近人体的第一区域S1,并可以透过柔性囊体210继续对第一区域S1进行触觉反馈。
参见图2所示,驱动单元200还包括设于泄压管线末端的泄压泵219。第一阀门214关闭,第二阀门215关闭时,柔性囊体210可以保持在预定压力的膨胀状态。第一阀门214关闭,第二阀门215打开时,柔性囊体210与泄压泵219相连通,从而泄压泵219可以将柔性囊体210内的气体或液体快速排出,以使柔性囊体210能够从膨胀状态快速切换至收缩状态,此时第一反馈单元100能够快速复位。
可选地,第一阀门214可以为电磁阀。第二阀门215可以为电磁阀。
可选地,动力泵213和泄压泵219的功能可以由同一个泵体实现,此时仅需要设置一 个泵体,能够节约成本并且减小触觉反馈装置的整体体积。例如,动力泵213可以为双向往复泵,既可以向柔性囊体210注入气体或者液体,也可以将柔性囊体210内的气体或者液体排出。
如图2所示,驱动单元200还包括压力传感器217。压力传感器217用于监测柔性囊体210内的压力值。通过压力传感器217反馈的压力值可以对柔性囊体210内的压力实现精准控制,柔性囊体210内的压力值与外侧壁211的位移量正相关,从而可以根据压力值实现柔性囊体210对外侧壁211位移量的精准控制,即实现对第一反馈单元100的位移量的精准控制。该压力传感器217可以是气压传感器或者液压传感器。
进一步地,驱动单元200还包括控制单元216。动力泵213、第一阀门214、第二阀门215、压力传感器217均与控制单元216通信连接,从而可以实现自动化控制,有利于提高控制精度。示例性地,控制单元216可以是单片机。
进一步地,驱动单元200还包括用于向控制单元216等提供电源的电源单元218,该电源单元218例如可以是锂电池、镍氢电池或者钠离子电池等。
作为一个具体的示例,第一反馈单元100可以是柔性变刚度驱动器。该柔性变刚度驱动器能够进行刚度变化,并具有最小刚度。当第一反馈单元100处于初始位置而紧密贴合于第一区域S1之上时,即使该柔性变刚度驱动器处于刚度最小的情况下,用户手指仍然需要一定在作用力才能使其弯曲变形,即此时仍然能够对手指的动作造成阻碍,使手指的动作做不到绝对的自由。
当柔性囊体210膨胀时,第一反馈单元100远离第一区域S1,此时第一反馈单元100对第一区域S1的触觉反馈被减弱或者消除,而柔性囊体210本身具有柔性,并且内部是空气或者水等流体,对手指的动作几乎不会造成阻碍,由此使得此时用户的手指具有更高的自由度,能够进行接打电话等操作,能够避免在不需要获得触觉反馈时第一反馈单元100对用户的动作造成阻碍,使用户的手指具有较好的自由体验。
图4是本申请实施例提供的触觉反馈装置的另一例的结构示意图。图5是图4所示的触觉反馈装置不同使用状态的对比示意图。图5中的(a)部分是第一反馈单元100位于初始位置的结构示意图,图5中的(b)部分是第一反馈单元100被移开后的结构示意图。
如图4、图5所示,相对于前述图2、图3所示的实施例,本实施例提供的触觉反馈装置的第一反馈单元100位于柔性囊体210的内部,并且固定连接于外侧壁211的内壁面上,第一反馈单元100通过柔性囊体210连接于承载体700上。通过控制柔性囊体210膨胀,能够带动第一反馈单元100移动以远离第一区域S1,通过控制柔性囊体210收缩,能够带动第一反馈单元100再次靠近第一区域S1。
如图5中的(a)部分所示,柔性囊体210具有收缩状态,当柔性囊体210处于该收缩状态下时,第一反馈单元100靠近人体的第一区域S1,此时可以透过柔性囊体210的内侧壁212对第一区域S1进行触觉反馈。
如图5中的(b)部分所示,柔性囊体210具有膨胀状态,当柔性囊体210处于该膨胀状态下时,第一反馈单元100远离人体的第一区域S1。也就是说,通过使柔性囊体210进行膨胀,能够使得外侧壁211向远离第一区域S1的方向移动,进而带动第一反馈单元100远离第一区域S1,能够避免在不需要获得触觉反馈时第一反馈单元100对用户的动作造成阻碍,使用户的手指具有较好的自由体验。
图6是本申请实施例提供的触觉反馈装置的另一例的结构示意图。图7是图6所示的触觉反馈装置不同使用状态的对比示意图。图7中的(a)部分是第一反馈单元100位于初始位置的结构示意图,图7中的(b)部分是第一反馈单元100被移开后的结构示意图。
如图6、图7所示,相对于前述图2、图3所示的实施例,本实施例提供的触觉反馈装置的第一反馈单元100位于柔性囊体210的内侧壁212的外壁面上,第一反馈单元100能够直接贴合于第一区域S1,而无需通过柔性囊体210与第一区域S1相连。此时,第一反馈单元100通过控制柔性囊体210收缩,能够带动第一反馈单元100移动以远离第一区域S1,通过控制柔性囊体210膨胀,能够带动第一反馈单元100再次靠近并贴合于第一区域S1。
如图7中的(a)部分所示,第一反馈单元100通过柔性囊体210连接于承载体700上。柔性囊体210具有膨胀状态,当柔性囊体210处于该膨胀状态下时,第一反馈单元100靠近人体的第一区域S1,并可以直接对第一区域S1进行触觉反馈。此时由于第一反馈单元100无需通过柔性囊体210对第一区域S1提供触觉反馈,因此第一反馈单元100可以向第一区域S1提供包括摩擦反馈、纹理反馈等在内的多种类型的触觉反馈。
如图7中的(b)部分所示,柔性囊体210具有收缩状态,当柔性囊体210处于该收缩状态下时,第一反馈单元100远离人体的第一区域S1。也就是说,通过使柔性囊体210进行收缩,能够使得内侧壁212向远离第一区域S1的方向移动,进而带动第一反馈单元100远离第一区域S1,此时第一反馈单元100对第一区域S1的触觉反馈被减弱或者消除,能够避免在不需要获得触觉反馈时第一反馈单元100对用户的动作造成阻碍,使用户的手指具有较好的自由体验。
图8是本申请实施例提供的触觉反馈装置的另一例的结构示意图。图9是图8所示的触觉反馈装置不同使用状态的对比示意图。图9中的(a)部分是第一反馈单元100位于初始位置的结构示意图,图9中的(b)部分是第一反馈单元100被移开后的结构示意图。
如图8、图9所示,相对于前述图6、图7所示的实施例,本实施例提供的触觉反馈装置的第一反馈单元100位于柔性囊体210的内侧壁212的内壁面上,第一反馈单元100通过内侧壁212贴合于第一区域S1。此时,第一反馈单元100通过控制柔性囊体210收缩,能够带动第一反馈单元100移动以远离第一区域S1,通过控制柔性囊体210膨胀,能够带动第一反馈单元100再次靠近并贴合于第一区域S1。
如图9中的(a)部分所示,第一反馈单元100通过柔性囊体210连接于承载体700上。柔性囊体210具有膨胀状态,当柔性囊体210处于该膨胀状态下时,第一反馈单元100靠近人体的第一区域S1,并可以通过内侧壁212对第一区域S1进行触觉反馈。
如图9中的(b)部分所示,柔性囊体210具有收缩状态,当柔性囊体210处于该收缩状态下时,第一反馈单元100远离人体的第一区域S1。也就是说,通过使柔性囊体210进行收缩,能够使得内侧壁212向远离第一区域S1的方向移动,进而带动第一反馈单元100远离第一区域S1,能够避免在不需要获得触觉反馈时第一反馈单元100对用户的动作造成阻碍,使用户的手指具有较好的自由体验。
前述图2-图9所示的实施例中,主要通过柔性囊体210来驱动第一反馈单元100进行移动,如图10、图11所示,还可以通过电性驱动组件220来驱动第一反馈单元100远离第一区域S1。
图10是本申请实施例提供的触觉反馈装置的再一例的结构示意图。图11是图10所示的触觉反馈装置的使用状态的结构示意图。图11中的(a)部分是第一反馈单元100位于初始位置的结构示意图,图11中的(b)部分是第一反馈单元100被移开后的结构示意图。
在本实施例中,驱动单元200包括电性驱动组件220,电性驱动组件220通电能够产生吸引力或者排斥力,该吸引力或者排斥力可以进一步驱动第一反馈单元100远离第一区域S1。电性驱动组件220可以直接与第一反馈单元100相连,也可以通过中间媒介与第一反馈单元100传动连接。
如图10、图11所示,电性驱动组件220包括均呈片状结构并且相对设置的第一电性元件221和第二电性元件222,被佩戴时,第一电性元件221和第二电性元件222与人体皮肤的第一区域S1表面保持近似平行的形态,第一电性元件221位于远离第一区域S1的一侧,而第二电性元件222邻近第一区域S1,第二电性元件222位于第一电性元件221与第一区域S1之间,也就是说,第二电性元件222的外壁面朝向第一区域S1。
第一反馈单元100连接于第二电性元件222上,例如可以连接于第二电性元件222朝向第一区域S1的侧面上。通电状态下,第一电性元件221和第二电性元件222之间产生相互吸引力,该吸引力驱动第二电性元件222沿着第一区域S1的法线方向F1向远离第一区域S1的方向移动(即靠近第一电性元件221),并且进一步驱动第一反馈单元100远离所述第一区域S1。
第一电性元件221和第二电性元件222之间通过弹性复位件300相连,在第一反馈单元100远离第一区域S1的过程中,弹性复位件300处于蓄力状态,而在驱动单元200的驱动力(即第一电性元件221和第二电性元件222之间的相互吸引力)消失后,弹性复位件300释放弹力,并驱动第一反馈单元100靠近并贴合于第一区域S1之上。
如图11中的(a)部分所示,第一电性元件221连接于承载体700上,第一反馈单元100依次通过第二电性元件222、弹性复位件300以及第一电性元件221与承载体700相连。此时第一反馈单元100位于初始位置,第一反馈单元100直接贴合于第一区域S1之上,可以直接对第一区域S1提供触觉反馈。
如图11中的(b)部分所示,第一电性元件221和第二电性元件222相互正对并且间隔设置。通电状态下,第一电性元件221和第二电性元件222设置为极性相反,从而使得二者之间产生相互吸引力,承载体700对第一电性元件221提供一定的支撑作用,使得第一电性元件221保持不动,而第二电性元件222克服弹性复位件300的弹力(压力)向第一电性元件221靠拢,进而带动第一反馈单元100远离第一区域S1,此时第一反馈单元100对第一区域S1的触觉反馈被减弱或者消除,能够避免在不需要获得触觉反馈时第一反馈单元100对用户的动作造成阻碍,使用户的手指具有较好的自由体验,此时用户可以进行拨打电话等其他操作。
当用户再次需要通过第一反馈单元100对第一区域S1进行触觉反馈时(此时拨打电话等其他操作已经完成),第一电性元件221和第二电性元件222进行断电,此时二者之间的吸引力为零,在弹性复位件300的弹力作用下,第一反馈单元100被复位以再次贴合于第一区域S1之上。
可选地,第一电性元件221为第一电极,第二电性元件222为第二电极,并且在通电 状态下,第一电极和第二电极设置为极性相反,从而使得二者之间能够产生相互吸引力。例如第一电极和第二电极上可以施加直流电压。
可选地,第一电性元件221为第一电磁体,第二电性元件222为第二电磁体,并且在通电状态下,第一电磁体和第二电磁体设置为极性相反,从而使得二者之间能够产生相互吸引力。
可选地,弹性复位件300可以为弹簧(扭簧、拉簧或压簧等)、弹片(例如金属簧片)橡皮筋、弹性塑胶条等任意能够实现弹性复位的部件,但不限于此。
可选地,在其他实施方式中,在通电状态下,也可以使第一电性元件221和第二电性元件222产生相互排斥力,通过排斥力使得第一反馈单元100复位。
如图10所示,驱动单元200还包括与控制单元216通信连接并且用于检测第二电性元件222(或者第一反馈单元100)位置的位置检测传感器223。通过位置检测传感器223反馈的位置信息能够实现对第一反馈单元100位移的闭环控制,有利于实现对第一反馈单元100的位移量的精准控制。该检测传感器223可以是光线传感器、光电传感器或者压力传感器等。
图12是本申请实施例提供的触觉反馈装置的再一例的结构示意图。图13是图12所示的触觉反馈装置的使用状态的结构示意图。图13中的(a)部分是第一反馈单元100位于初始位置的结构示意图,图13中的(b)部分是第一反馈单元100被移开后的结构示意图。
如图12、图13所示,相对于前述图10、图11所示的实施例,在本实施例中,第一反馈单元100连接于第一电性元件221上,例如可以连接于第一电性元件221朝向第一区域S1的侧面上。通电状态下,第一电性元件221和第二电性元件222之间产生相互排斥力,该排斥力驱动第一电性元件221沿着第一区域S1的法线方向F1向远离第一区域S1的方向移动(即远离第二电性元件222),并且进一步驱动第一反馈单元100远离所述第一区域S1。
如图13中的(a)部分所示,第二电性元件222连接于承载体700上,第一反馈单元100依次通过第一电性元件221、弹性复位件300以及第二电性元件222与承载体700相连。此时第一反馈单元100位于初始位置,第一反馈单元100通过第二电性元件222贴合于第一区域S1之上,以对第一区域S1提供触觉反馈。
如图13中的(b)部分所示,通电状态下,第一电性元件221和第二电性元件222设置为极性相同,从而使得二者之间产生相互排斥力,承载体700对第二电性元件222提供一定的支撑作用,使得第二电性元件222保持不动,而第一电性元件221克服弹性复位件300的弹力(拉力)远离第二电性元件222,进而带动第一反馈单元100远离第一区域S1,此时第一反馈单元100对第一区域S1的触觉反馈被减弱或者消除,能够避免在不需要获得触觉反馈时第一反馈单元100对用户的动作造成阻碍,使用户的手指具有较好的自由体验,此时用户可以进行拨打电话等其他操作。
当用户再次需要通过第一反馈单元100对第一区域S1进行触觉反馈时,第一电性元件221和第二电性元件222进行断电,此时二者之间的排斥力为零,在弹性复位件300的弹力作用下,第一反馈单元100被复位以再次贴合于第一区域S1之上。
可选地,第一电性元件221为第一电极,第二电性元件222为第二电极,并且在通电 状态下,第一电极和第二电极设置为极性相同,从而使得二者之间能够产生相互排斥力。例如第一电极和第二电极上可以施加直流电压。
可选地,第一电性元件221为第一电磁体,第二电性元件222为第二电磁体,并且在通电状态下,第一电磁体和第二电磁体设置为极性相同,从而使得二者之间能够产生相互排斥力。
可选地,在其他实施方式中,在通电状态下,也可以使第一电性元件221和第二电性元件222产生相互吸引力,通过吸引力使得第一反馈单元100复位。
前述图2-图9所示的实施例主要通过柔性囊体210来驱动第一反馈单元100进行移动,图10-图13所示的实施例主要通过电性驱动组件220来驱动第一反馈单元100进行移动。如图14、图15所示,还可以通过电机来驱动第一反馈单元100进行移动。
图14是本申请实施例提供的触觉反馈装置的再一例的结构示意图。图15是图14所示的触觉反馈装置不同使用状态的对比示意图。图15中的(a)部分是第一反馈单元100位于初始位置的结构示意图,图15中的(b)部分是第一反馈单元100被移开后的结构示意图。
如图14、图15所示,驱动单元200包括第一电机230和第一牵引绳231,第一电机230通过第一牵引绳231带动第一反馈单元100远离第一区域S1。
具体地,第一电机230的输出轴通过第一牵引绳231与第一反馈单元100相连,当不需要进行触觉反馈时,第一电机230的输出轴转动以缠绕第一牵引绳231,第一牵引绳231进一步扯动第一反馈单元100沿着第一区域S1的切线方向F2远离第一区域S1。
此时,第一反馈单元100可以贴着皮肤表面向远离第一区域S1的任意方向移动,例如上、下或者左、右方向移动第一反馈单元100,从而能够减弱或者消除第一反馈单元100对第一区域S1的触觉反馈,减小或者避免对用户的动作造成阻碍,使得用户具有较好的自由体验。
本申请通过电机和牵引绳来驱动第一反馈单元100进行移动,结构简单并且容易实现,有利于减小触觉反馈装置的整体体积,并且具有较高的运行稳定性。
如图14、图15所示,本申请实施例提供的触觉反馈装置还包括弹性复位件300,用于在驱动单元200的驱动力消失后,驱动第一反馈单元100靠近并贴合于第一区域S1之上。
具体地,第一反馈单元100通过弹性复位件300连接于承载体700上,在第一反馈单元100被第一电机230驱动远离第一区域S1的过程中,弹性复位件300处于蓄力状态,而在第一电机230的驱动力消失后,弹性复位件300释放弹力,并驱动第一反馈单元100复位重新贴合于第一区域S1之上。
可选地,弹性复位件300可以为弹簧(扭簧、拉簧或者压簧)、弹片(例如金属簧片)橡皮筋、弹性塑胶条等任意能够实现弹性复位的部件,但不限于此。
弹性复位件300通过第一固定部234连接于承载体700上,该第一固定部234可以是任意能够实现固定作用的结构连接件,本申请对第一固定部234的具体形态不作限定,例如可以是能够供弹性复位件300的端部勾入的环圈状结构。
本申请通过设置结构简单的弹性复位件300来使第一反馈单元100自动复位,而无需设置其他动力结构来使第一反馈单元100复位,由此能够简化整个触觉反馈装置的结构, 能够节约生产成本,有利于减小触觉反馈装置的整体体积,并且具有较高的运行稳定性。
图16是本申请实施例提供的触觉反馈装置的再一例的结构示意图。图17是图16所示的触觉反馈装置不同使用状态的对比示意图。图17中的(a)部分是第一反馈单元100位于初始位置的结构示意图,图17中的(b)部分是第一反馈单元100避开第一区域S1的结构示意图;图17中的(c)部分是第一反馈单元100贴合于第二区域S2的结构示意图。
如图16、图17所示,驱动单元200包括第一电机230和第一牵引绳231,第一电机230通过第一牵引绳231带动第一反馈单元100远离第一区域S1。驱动单元200还包括第二电机232和第二牵引绳233,第二电机232通过第二牵引绳233带动第一反馈单元100靠近并贴合于第一区域S1之上。
本申请实施例通过设置第二电机232和第二牵引绳233来取代前述图14和图15所示实施例中的弹性复位件300,能够实现第一反馈单元100的快速复位。此时,第一牵引绳231与第二牵引绳233可以分别连接于第一反馈单元100相对的两侧,二者的连接点可以对称设置,保证第一电机230和第二电机232交替带动第一反馈单元100移动的过程中,第一反馈单元100不容易发生错位,能够提高运行的平稳性。
如图16、图17所示,驱动单元200还用于驱动第一反馈单元100贴合于人体皮肤的第二区域S2以向第二区域S2提供触觉反馈,第二区域S2与所述第一区域S1不同。通过以上设置,使得本申请实施例提供的触觉反馈装置能够通过一个触觉反馈单元覆盖于人体的多个区域,通过一个触觉反馈单元实现对多个区域的触觉反馈,使用户可以全面接触到视觉虚拟现实中的物体,产生更为身临其境的感受,有利于提高用户与虚拟现实世界交互过程的沉浸感和真实感。以上原因也使得安装有本申请实施例提供的触觉反馈装置的虚拟现实交互类产品具有更高的使用性能,使得产品更具竞争力。
该第一区域S1与第二区域S2可以为用户皮肤相互邻近的两个区域,例如第一区域S1与第二区域S2为用户手掌的不同区域。
再例如,第一区域S1可以为手掌部分的某个区域,而第二区域S2为手腕或者手背区域。
图18是本申请实施例提供的触觉反馈装置的再一例的结构示意图。图19是图18所示的触觉反馈装置不同使用状态的对比示意图。图19中的(a)部分是第一反馈单元100位于初始位置的结构示意图,图19中的(b)部分是柔性片600贴合于第一区域S1的结构示意图;图19中的(c)部分是第二反馈单元400贴合于第一区域S1的结构示意图。
相对于前述图14-图17所示的实施例,如图18、图19所示,在本实施例中,触觉反馈装置包括多个触觉反馈单元,各个触觉反馈单元向人体提供的触觉反馈各不相同,从而能够使得用户具有更加逼真的触觉体验,有利于提高用户与虚拟现实世界交互过程的沉浸感和真实感。
本申请实施例提供的触觉反馈装置还包括第二反馈单元400和第三反馈单元500,相邻的两个反馈单元之间通过柔性片600相连。此时,多个反馈单元和柔性片600共同构成一个整体的薄片状结构,该薄片状结构覆盖于用户的手掌上,在电机的带动下能够进行移动。
第二反馈单元400与第一反馈单元100提供给用户的触觉反馈不同,可以是触觉反馈 的类型不同,也可以是触觉反馈的强度不同,本申请对此不做限定。
例如,第一反馈单元100和第二反馈单元400均用于提供力反馈,第一反馈单元100和第二反馈单元400的刚度不同,用户需要提供不同的作用力才能使上述两个反馈单元弯曲变形,进而使得上述两个反馈单元可以向用户提供强度不同的力反馈。
再例如,第一反馈单元100和第二反馈单元400均是用于提供力反馈的柔性变刚度驱动器,第一反馈单元100和第二反馈单元400的刚度变化范围不同,进而可以向用户提供更大变化范围的力反馈。这里刚度变化范围不同是指二者的刚度变化范围不完全重合,至少有一个端点值不同。
再例如,第一反馈单元100是用于提供力反馈的柔性变刚度驱动器,而第二反馈单元400用于向人体提供温度反馈、摩擦反馈、纹理反馈或者振动反馈等其他任意类型的触觉反馈,此时触觉反馈装置可以向用户提供多元(不同类型)的触觉反馈,让用户能有一个多元触觉融合反馈的丰富体验,增加了用户与虚拟现实交互的沉浸感。
进一步地,在本申请实施例中,驱动单元200(第一电机230和第二电机232)还用于驱动第二反馈单元400靠近并贴合于第一区域S1之上,以向第一区域S1提供触觉反馈,第二反馈单元400与第一反馈单元100提供的触觉反馈不同。
通过以上设置,使得本申请实施例提供的触觉反馈装置实用性更强,可以通过不同的触觉反馈单元向同一皮肤区域提供不同的触觉反馈,即能够通过第一区域S1向用户提供多元(不同类型)的触觉反馈,让用户能有一个多元触觉融合反馈的丰富体验,从而能够使得用户具有更加逼真的触觉体验,有利于提高用户与虚拟现实世界交互过程的沉浸感和真实感。
可选地,第二反馈单元400与所述第一反馈单元100相连,驱动单元200在驱动第一反馈单元100远离第一区域S1的同时驱动第二反馈单元400靠近并贴合于第一区域S1之上。
通过以上设置,能够简化驱动单元200的整体结构,使得对上述两个反馈单元的驱动更加简单方便,有利于减小整个触觉反馈装置的体积,并且提高使用稳定性。第一反馈单元100与第二反馈单元400的运动实现同步,在第一反馈单元100离开第一区域S1的同时第二反馈单元400无缝衔接的覆盖于第一区域S1之上,能够使得用户具有更加逼真的触觉体验,有利于提高用户与虚拟现实世界交互过程的沉浸感和真实感。
本申请实施例提供的触觉反馈装置还包括柔性片600,该柔性片600为布料、纤维、橡胶、树脂或者硅胶等柔性材质构成的薄片状结构,柔性片600的厚度以及尺寸可以与第一反馈单元100的相同,相邻的两个反馈单元之间通过柔性片600相连。柔性片600与第一反馈单元100相连,驱动单元200在驱动第一反馈单元100远离第一区域S1的同时驱动柔性片600靠近并贴合于第一区域S1之上。
当用户需要能够触觉反馈时,可以将第一反馈单元100覆盖于第一区域S1之上,当用户不需要提供触觉反馈时,驱动单元200可以驱动柔性片600覆盖于第一区域S1之上,柔性片600具有柔性,不会对用户的动作造成过多的阻碍,此时能够使得用户的体验较为自由,此时用户的手指可以完成足够的弯曲以进行接打电话等其他操作。
柔性片600与第一反馈单元100相连以实现同步驱动,能够简化驱动单元200的整体结构,有利于减小整个触觉反馈装置的体积,并且提高使用稳定性。本申请通过设置柔性 片600还能够及时填补第一反馈单元100离开后留下的间隙,不会对触觉反馈装置的穿戴舒适性造成不良影响。
如图19中的(a)部分所示,由多个反馈单元和柔性片600共同构成的片状结构覆盖于用户的手掌之上,并且第一反馈单元100位于初始位置,第一反馈单元100贴合于第一区域S1之上,能够对第一区域S1提供触觉反馈。
如图19中的(b)部分所示,当第一区域S1不需要进行触觉反馈时,例如此时用户需要弯曲手指以接打电话,此时第二电机232通过第二牵引绳233带动片状结构整体向上方移动(第一电机230不工作),并且使柔性片600覆盖于第一区域S1之上,此时能够使得用户的体验较为自由,不会对手指弯曲动作造成过多阻碍。
如图19中的(c)部分所示,当第一区域S1需要由第二反馈单元400提供不同的触觉反馈时,此时第二电机232通过第二牵引绳233带动片状结构整体向上方移动(第一电机230不工作),并且使第二反馈单元400覆盖于第一区域S1之上,此时通过第二反馈单元400向第一区域S1提供触觉反馈。
当再次需要由第一反馈单元100对第一区域S1提供触觉反馈时,此时第一电机230通过第一牵引绳231带动片状结构整体向下方移动(第二电机232不工作),第一反馈单元100被重新覆盖于第一区域S1之上,能够对第一区域S1提供触觉反馈。
前述图2-图9所示的实施例主要通过柔性囊体210来驱动第一反馈单元100进行移动,图10-图13所示的实施例主要通过电性驱动组件220来驱动第一反馈单元100进行移动。前述图14-图19所示的实施例主要通过电机来驱动第一反馈单元100进行移动。如图20、图21所示,还可以通过人工肌肉来驱动第一反馈单元100进行移动。
图20是本申请实施例提供的触觉反馈装置的再一例的结构示意图。图21是图20所示的触觉反馈装置不同使用状态的对比示意图。图21中的(a)部分是第一反馈单元100位于初始位置的结构示意图,图21中的(b)部分是第一反馈单元100避开第一区域S1的结构示意图;图21中的(c)部分是第二反馈单元400贴合于第一区域S1的结构示意图。如图20、图21所示,在本申请实施例中,驱动单元200包括人工肌肉。
具体地,触觉反馈装置包括第一反馈单元100、第二反馈单元400以及第一人工肌肉240和第二人工肌肉241。第一反馈单元100与第二反馈单元400相连,第二反馈单元400通过第一人工肌肉240、第一固定部234连接于承载体700上,第一反馈单元100通过第二人工肌肉241、第二固定部235连接于承载体700上。通过电压驱动能够使得第一人工肌肉240和第二人工肌肉241的长度发生变化,进而能够带动第一反馈单元100和第二反馈单元400进行移动。
如图21中的(a)部分所示,在未上电状态下,第一人工肌肉240与第二人工肌肉241相当于两个弹簧,此时第一反馈单元100被保持于初始位置,第一反馈单元100贴合于第一区域S1之上,能够对第一区域S1提供触觉反馈。
如图21中的(b)部分所示,当第一区域S1不需要进行触觉反馈时,例如此时用户需要弯曲手指以接打电话,此时第二人工肌肉241上电以产生热量,第二人工肌肉241被触发发生形变,使得第二人工肌肉241的变长并且带动第一反馈单元100和第二反馈单元400整体下移,此时第一人工肌肉240相当于弹簧并且被压缩,由此使得第一反馈单元100和第二反馈单元400均避开第一区域S1,此时能够使得用户的体验较为自由,不会对手 指弯曲动作造成过多阻碍。
如图21中的(c)部分所示,当第一区域S1需要由第二反馈单元400提供不同的触觉反馈时,此时第一人工肌肉240上电以产生热量,第一人工肌肉240被触发发生形变,使得第一人工肌肉240的变长并且带动第一反馈单元100和第二反馈单元400整体上移并使第二反馈单元400覆盖于第一区域S1之上,通过第二反馈单元400向第一区域S1提供触觉反馈,此时第二人工肌肉241相当于弹簧并且被压缩。
当再次需要由第一反馈单元100对第一区域S1提供触觉反馈时,此时第一人工肌肉240断电并且降温,第一人工肌肉240恢复初始形态,并且结合第二人工肌肉241的弹力的作用,第一反馈单元100被重新覆盖于第一区域S1之上,能够对第一区域S1提供触觉反馈。
根据前文的表述可知,本申请实施例中的第一反馈单元100可以包括用于提供力反馈的柔性变刚度驱动器。在此基础之上,本申请实施例还提供了一种柔性变刚度驱动器。图22为本申请实施例提供的柔性变刚度驱动器的结构示意图。图23为本申请实施例提供的柔性变刚度驱动器的局部分解结构示意图。图24为本申请实施例提供的柔性变刚度驱动器中的啮合部处于分离状态的局部剖视结构示意图。图25为本申请实施例提供的柔性变刚度驱动器中的啮合部处于完全啮合状态的局部剖视结构示意图。
图22-图25所示的柔性变刚度驱动器可以应用于前述的触觉反馈装置中,用于向用户提供力反馈。例如,前述的第一反馈单元100可以为图22-图25所示的柔性变刚度驱动器。
参见图22和图23所示,本申请实施例的柔性变刚度驱动器包括变刚度组件10和驱动组件20。变刚度指的是刚度大小可以发生变化。刚度的大小影响变刚度组件10可以发生弯曲变形的难易程度。变刚度组件10整体刚度越小,越容易地弯曲变形。变刚度组件10整体刚度越大,越难以弯曲变形。变刚度组件10包括基体11和啮合部12。基体11为可弯曲变形的结构。可弯曲变形指的是基体11具有柔性,受到外力作用时可以弯曲,改变形状。基体11具有预定厚度。沿基体11的厚度方向X,两个以上的基体11层叠设置。至少部分数量的基体11中,相邻两个基体11中的一者面向另一者的表面上设置啮合部12。驱动组件20用于驱动相邻两个设置有啮合部12的基体11,以使一者上的啮合部12与另一者上的啮合部12至少从分离状态切换为啮合状态。驱动组件20可以用于驱动相邻两个设置有啮合部12的基体11彼此靠近,以使一者上的啮合部12与另一者上的啮合部12从分离状态切换为啮合状态。驱动组件20也可以用于驱动相邻两个设置有啮合部12的基体11彼此远离,以使一者上的啮合部12与另一者上的啮合部12从啮合状态切换为分离状态。
需要说明的是,参见图24所示,分离状态指的是相邻两个设置有啮合部12的基体11中,一者上的啮合部12位于另一者上的相邻两组啮合部12之间的间隙13的外部。参见图25所示,啮合状态指的是相邻两个设置有啮合部12的基体11中,一者上的啮合部12至少部分地插入到另一者上的相邻两组啮合部12之间的间隙13中。
相邻两个设置有啮合部12的基体11中,两个基体11上的啮合部12处于分离状态时,变刚度组件10整体具有第一刚度。相邻两个设置有啮合部12的基体11中,两个基体11上的啮合部12处于啮合状态时,变刚度组件10整体具有第二刚度。第二刚度大于第一刚度。具有第一刚度的变刚度组件10抵抗弯曲变形的能力弱于具有第二刚度的变刚度组件 10抵抗弯曲变形的能力。因此,如果将变刚度组件10弯曲至相同形状时,作用于具有第二刚度的变刚度组件10的外力需要大于作用于具有第一刚度的变刚度组件10的外力。
相邻两个设置有啮合部12的基体11中,两个基体11上的啮合部12处于分离状态时,两个基体11各自独立,处于相对松散自由的状态。因此,变刚度组件10具有较小的抗弯曲变形的第一刚度。在变刚度组件10受力弯曲时,外力需要克服的阻力小,变刚度组件10可以容易地发生弯曲变形。
相邻两个设置有啮合部12的基体11中,两个基体11上的啮合部12处于啮合状态时,两个基体11各自通过啮合部12相结合,从而两个基体11相互限位约束,使得两个基体11的相对位置不易发生移动。因此,变刚度组件10具有较大的抗弯曲变形的第二刚度,使得变刚度组件10相对难以发生弯曲变形。相对于具有第一刚度的变刚度组件10,在具有第二刚度的变刚度组件10受力弯曲时,外力需要克服的阻力大。
示例性地,在变刚度组件10应用于用户的手指和手掌中的至少一者时,用户在虚拟现实世界中抓取或握持一个线球以及抓取或握持一个相同尺寸的金属球的两种情况下,用户的手指和手掌的弯曲程度可以是相同的,但用户的手指和手掌的作用力或软硬感知是不同的。如果抓取或握持一个线球时,用户的感知设定为较轻、较软,那么相对地,抓取或握持一个金属球时,用户的感知设定为较重、较硬。相对应地,抓取或握持一个虚拟现实世界中的线球时,变刚度组件10可以具有第一刚度,以模拟作用力小、质地较软。抓取或握持一个虚拟现实世界中的金属球时,变刚度组件10可以具有第二刚度,以模拟作用力大、质地较硬。
本申请实施例的柔性变刚度驱动器包括变刚度组件10和驱动组件20。变刚度组件10整体刚度可以调节。变刚度组件10包括两个以上的可弯曲变形的基体11。每个基体11自身具有预定刚度。对单独的一个基体11施加外力时,该基体11可以弯曲变形。至少部分数量的基体11中,相邻两个基体11上各自设置有啮合部12。驱动组件20用于驱动相邻两个设置有啮合部12的基体11,以使一者上的啮合部12与另一者上的啮合部12至少从分离状态切换为啮合状态。相邻两个设置有啮合部12的基体11中,两个基体11上的啮合部12处于分离状态时,变刚度组件10可以具有第一刚度。各个基体11相对松散自由,使得变刚度组件10整体相对容易弯曲变形。驱动组件20可以驱动各个基体11彼此靠近,并且相邻两个设置有啮合部12的基体11中,两个基体11上的啮合部12从分离状态切换为啮合状态时,变刚度组件10具有第二刚度。其中,第二刚度大于第一刚度。此时,各个基体11相互抵压。
相对于具有第一刚度的变刚度组件10,具有第二刚度的变刚度组件10整体相对难以弯曲变形。例如,在将具有第一刚度的变刚度组件10和具有第二刚度的变刚度组件10弯曲至相同程度时,使具有第二刚度的变刚度组件10发生弯曲的作用力大于使具有第二刚度的变刚度组件10发生弯曲的作用力。
将柔性变刚度驱动器应用于具有力反馈功能的虚拟现实交互设备时,用户的身体一部分,例如手指和手掌中至少一者上可以设置柔性变刚度驱动器。变刚度组件10具有第一刚度,并且用户手指和手掌中至少一者弯曲变形时,可以通过柔性变刚度驱动器模拟出抓取或握持的虚拟物体过程中产生的作用力较小或较软的场景。变刚度组件10具有第二刚度,并且用户手指和手掌中至少一者弯曲变形时,可以通过柔性变刚度驱动器模拟出抓取 或握持的虚拟物体过程中产生的作用力较大或较硬的场景。通过柔性变刚度驱动器,用户可以感受到虚拟物体交互过程中产生的作用力或者软硬程度,从而获得与现实世界相同或相近的感受,有利于提高用户与虚拟现实世界交互过程的沉浸感和真实感。本申请实施例的柔性变刚度驱动器结构紧凑、体积小、质量轻,因此在使用过程中有利于提升佩戴舒适度。
在一些可实现的方式中,驱动组件20向变刚度组件10施加作用力,驱动两个以上的基体11沿厚度方向X彼此靠近,以使相邻两个设置有啮合部12的基体11中,一者上的啮合部12与另一者上的啮合部12从分离状态切换为啮合状态。
在一些可实现的方式中,相邻两个设置有啮合部12的基体11中,一者上的啮合部12至少部分地插入到另一者上的相邻两组啮合部12之间的间隙13中,从而实现两个基体11上的啮合部12相互啮合。一者上的啮合部12插入对应的间隙13内的深度不同,则变刚度组件10的刚度不同。啮合部12插入间隙13内的深度越小,则变刚度组件10整体的刚度越小,也即第二刚度的取值越小。啮合部12插入间隙13内的深度越大,则变刚度组件10整体的刚度越大,也即第二刚度的取值越大。因此,通过控制一者上的啮合部12插入对应的间隙13内的深度,可以控制变刚度组件10整体的第二刚度的取值大小,从而有利于实现变刚度组件10整体的刚度的无级调节,增大刚度变化范围,从而可以模拟的应力取值点更多。
在一些示例中,参见图25所示,相邻两个设置有啮合部12的基体11中,一者上的啮合部12的完全插入另一者上的相邻两组啮合部12之间的间隙13内。或者,相邻两个设置有啮合部12的基体11中,一者上的啮合部12部分地插入到另一者上的相邻两组啮合部12之间的间隙13中。
在一些示例中,两个基体11上的啮合部12相互啮合时,具有不同的啮合状态。示例性地,第一种啮合状态:一者上的啮合部12的三分之一插入另一者上的相邻两组啮合部12之间的间隙13内。第二种啮合状态:一者上的啮合部12的二分之一插入另一者上的相邻两组啮合部12之间的间隙13内。第三种啮合状态:一者上的啮合部12的完全插入另一者上的相邻两组啮合部12之间的间隙13内。变刚度组件10在上述三种不同啮合状态下的刚度大小不同。相对地,在第一种啮合状态时,变刚度组件10的刚度最小,而在第三种啮合状态时,变刚度组件10的刚度最大。
在一些可实现的方式中,在变刚度组件10应用于用户的手指和手掌中的至少一者时,沿手指或手掌的弯曲方向,两组以上的啮合部12间隔设置。示例性地,在变刚度组件10应用于用户的手指时,两组以上的啮合部12的排列方向与手指的长度方向相同。在变刚度组件10应用于用户的手掌时,两组以上的啮合部12的排列方向与从手腕至手指的方向相同。在变刚度组件10应用于用户的手指和手掌时,两组以上的啮合部12的排列方向与从手腕至指尖的方向相同。在一些示例中,基体11可以是具有预定长度和宽度的结构。沿基体11的长度方向Y,两组以上的啮合部12间隔设置。两组以上的啮合部12的排列方向与基体11的长度方向Y相同。每组啮合部12可以包括一个或两个以上的啮合部12。
示例性地,参见图24所示,两组以上的啮合部12均匀间隔设置。相邻两个间隙13之间的距离L取值范围为1毫米至3毫米,例如可以但不限定为2毫米。
在一些可实现的方式中,基体11的硬度和啮合部12的硬度不同。啮合部12的硬度 大于基体11的硬度。当啮合部12处于分离状态,此时硬度较小的基体11自身的刚度为变刚度组件10的刚度大小的主要影响因素,因此变刚度组件10的刚度相对较小,易于弯曲。啮合部12处于啮合状态时,硬度较大的啮合部12相互啮合,变刚度组件10的刚度相对较大。因此,啮合部12处于分离状态时,变刚度组件10可以模拟虚拟物体交互过程中产生的作用力较小或质地较软的力反馈。硬度较大的啮合部12相互啮合,并且变刚度组件10发生弯曲时,硬度较大的啮合部12自身抗变形能力较强,受力后不易发生倾斜变形,从而一方面,变刚度组件10可以模拟虚拟物体交互过程中产生的作用力较大或质地较硬的力反馈;另一方面,可以降低相邻两个啮合部12沿基体11的长度方向Y相互挤压而导致两个啮合部12发生倾斜变形并脱离良好啮合状态的可能性。啮合部12的硬度大于基体11的硬度的结构,可以有利于增大变刚度组件10的刚度变化调节范围。
在一些可实现的方式中,基体11和啮合部12为一体成型结构,从而一方面,可以有利于提高基体11和啮合部12两者连接强度,使得基体11在弯曲过程中,啮合部12可以承载较大的挤压应力而不与基体11分离;另一方面,基体11和啮合部12之间不需要额外设置连接件,例如粘接件,有利于降低因设置具有预定厚度的连接件而导致变刚度组件10的刚度调节精度受到不良影响的可能性。一体成型结构指的是基体11和啮合部12之间连续过渡,两者之间不需要设置连接件,而需要将基体11和啮合部12分离时,需要破坏基体11和啮合部12中的一者的结构。
示例性地,基体11的材料和啮合部12的材料相同。例如,基体11为单层结构。基体11的材料和啮合部12的材料均选自树脂、橡胶或硅胶。基体11具有柔性,易于弯曲变形。基体11和啮合部12自身重量轻,有利于变刚度组件10的轻量化设计。示例性地,可以采用机械加工方式对坯料进行材料去除以形成基体11和啮合部12。或者,可以采用3D打印工艺以增料的方式加工制造形成基体11和啮合部12。例如,可以通过3D打印工艺使用硬度为40A的硅胶形成基体11,而使用硬度为95A的硅胶形成啮合部12。
在一些可实现的方式中,基体11和啮合部12为分体组装结构。基体11和啮合部12分别单独加工制造,然后通过组装的方式将基体11和啮合部12相连,从而一方面,可以降低变刚度组件10的整体加工难度;另一方面,可以根据变刚度组件10的刚度调节要求,灵活选择基体11和啮合部12的材料。
在一些示例中,基体11为单层结构。基体11的材料和啮合部12的材料可以相同,例如两者可以均选自树脂、橡胶或硅胶。啮合部12通过粘接或热熔焊接的方式与基体11相连。在另一些示例中,基体11为单层结构。基体11的材料和啮合部12的材料可以不同,例如基体11的材料可以选自树脂、橡胶或硅胶。啮合部12的材料可以选自塑料、金刚石或刚玉。例如,啮合部12的材料可以是棕刚玉。啮合部12的硬度大于基体11的硬度。啮合部12可以通过粘接方式与基体11相连。
在一些可实现的方式中,啮合部12的形状可以是人字形。啮合部12包括相交的两个延伸段。两个延伸段之间的夹角取值范围可以是100°至160°。
图26为本申请一实施例提供的变刚度组件10的分解结构示意图。参见图26所示,啮合部12的形状可以是球形,例如可以是半圆球形。每组啮合部12中可以包括多个间隔设置的球形的啮合部12。示例性地,啮合状态下,一个基体11上的啮合部12可以和另一个基体11上的四个啮合部12相接触。
图27为本申请又一实施例提供的变刚度组件10的分解结构示意图。参见图27所示,啮合部12的形状可以是条形。啮合部12沿直线延伸。基体11具有预定宽度时,啮合部12沿基体11的宽度方向Z延伸。厚度方向X和长度方向Y均与宽度方向Z相垂直。
图28为本申请又一实施例提供的变刚度组件的分解结构示意图。参见图28所示,啮合部12背向基体11的表面为曲面。两个以上的啮合部12形成波浪形结构。
本申请啮合部12的形状不限定于上述所示例的形状,其他可以实现啮合部12相互啮合的形状均在本申请的保护范围内。
图29为本申请一实施例提供的变刚度组件10的局部结构示意图。图30为本申请又一实施例提供的变刚度组件10的局部结构示意图。
参见图29所示,变刚度组件10还包括凸起14。凸起14的尺寸小于啮合部12的尺寸。参见图30所示,至少部分数量的啮合部12的侧壁121设置多个凸起14。啮合部12的侧壁121指的是面向间隙13并且用于啮合的表面。啮合部12的侧壁121上设置凸起14后,可以增加侧壁121的摩擦力。在两个基体11上的啮合部12相互啮合时,两个基体11上的啮合部12受到较大的摩擦力而不易啮合。在啮合部12插入对应间隙13的深度相同的情况下,相对于未设置凸起14的啮合部12,设置凸起14的啮合部12需要克服更大的摩擦阻力。由于设置凸起14的啮合部12不易啮合并且需要更大的压应力实现相同的啮合状态,因此从啮合部12处于分离状态切换至啮合部12完全啮合状态,使得所施加于基体11和啮合部12的压应力的上限值更大,从而使得施加于啮合部12上的作用力的取值范围更宽,施加于啮合部12上的作用力大小精度更高,有利于提高啮合部12插入对应间隙13内的深度的精度,进而有利于提高变刚度组件10的刚度变化范围,提高变刚度组件10的刚度控制精度。对应地,相对于未设置凸起14的啮合部12,设置凸起14的啮合部12从啮合状态切换至分离状态时需要克服更大的摩擦阻力,使得设置凸起14的啮合部12不易从啮合状态切换至分离状态,可以实现啮合部12逐渐切换至分离状态,降低啮合部12从啮合状态切换至分离状态因分离速度过快而出现应力突变的可能性。
在一些示例中,通过调节凸起14的尺寸,可以调整改变侧壁121的摩擦力。示例性地,啮合部12凸出基体11的高度取值范围可以是0.5毫米至3毫米,例如可以但不限定为1毫米。凸起14凸出侧壁121的高度取值范围可以是5微米至500微米。
在一些示例中,一部分数量的啮合部12的侧壁121设置多个凸起14,而其余数量的啮合部12的侧壁121未设置凸起14。因此,一个基体11上可以在不同的位置设置不同类型的啮合部12,从而可以实现变刚度组件10上不同位置的刚度变化效果的差异化,以有利于更好地模拟用户的抓取或握持体验。
图31为本申请另一实施例提供的变刚度组件的局部结构示意图。参见图31所示,基体11上具有多个位于相邻两个啮合部12之间的外露区域11a。至少部分数量的外露区域11a上设置多个凸起14。外露区域11a上设置凸起14后,可以增加外露区域11a的摩擦力。在两个基体11上的啮合部12相互啮合时,啮合部12上面向外露区域11a的表面与设置凸起14的外露区域11a之间的摩擦力较大,从而啮合部12不易相对外露区域11a发生移动。在变刚度组件10弯曲至相同程度的情况下,使包括设置有凸起14的基体11的变刚度组件10发生弯曲的作用力大于使包括未设置有凸起14的基体11的变刚度组件10发生弯曲的作用力,从而外露区域11a设置凸起14,有利于提高变刚度组件10的刚度变 化范围。
在一些可实现的方式中,啮合部12的侧壁121以及基体11的外露区域11a上同时设置凸起14。啮合部12的顶壁122也可以设置凸起14。
在一些可实现的方式中,凸起14的形状为球形,例如可以是半圆球形。啮合部12为球形时,凸起14的形状可以与啮合部12的形状相同,并且多个凸起14间隔设置于啮合部12的侧壁121以及基体11上的外露区域11a中的至少一者。啮合部12为人字形或条形时,多个凸起14间隔设置于啮合部12的侧壁121以及基体11上的外露区域11a中的至少一者。
在一些可实现的方式中,凸起14的形状为条形。啮合部12为人字形、条形或球形时,凸起14沿基体11的宽度方向Z延伸。多个凸起14间隔设置于啮合部12的侧壁121以及基体11上的外露区域11a中的至少一者。
本申请凸起14的形状不限于上述所示例的形状,其他可以实现相同功能的凸起14的形状均在本申请的保护范围内。
图32为本申请又一实施例提供的变刚度组件的分解结构示意图,参见图32所示,基体11包括相连的两个以上的层结构11b。沿基体11的厚度方向X,两个以上的层结构11b层叠设置。相邻两个层结构11b的硬度不同。基体11为单层结构11b时,基体11的材料对基体11自身的刚度具有主要影响,从而由一种材料形成的基体11自身的刚度变化范围小。相对于基体11为单层结构11b,多个层结构11b的基体11可以通过调节各层的硬度以实现变刚度组件10整体的刚度调节,从而可以有利于增大变刚度组件10的整体刚度变化范围,增大变刚度组件10可模拟刚度的取值范围。
在一些可实现的方式中,相邻两个层结构11b的材料相同。使用相同材料制造的两个层结构11b彼此可以直接连接,通过热熔焊接的方式实现连接,从而可以不需要额外设置中间连接件,使得变刚度组件10结构紧凑,有利于降低变刚度组件10的重量。
在一些示例中,基体11包括相连的两个层结构11b。两个层结构11b中,远离啮合部12的层结构11b的材料以及靠近啮合部12的层结构11b的材料均可以是硅胶、橡胶或树脂。
在一些可实现的方式中,相邻两个层结构11b的材料不同。可以通过选择不同层结构11b的材料,使得相邻两个层结构11b的硬度不同,形成具有不同刚度的基体11,从而有利于使用不同的材料复合形成满足不同刚度变化要求的基体11。相邻两个层结构11b可以采用粘接方式实现连接。
在一些示例中,基体11包括相连的两个层结构11b。两个层结构11b中,远离啮合部12的层结构11b的硬度大于靠近啮合部12的层结构11b的硬度。示例性地,远离啮合部12的层结构11b的材料可以是纸制品或塑料。靠近啮合部12的层结构11b的材料可以是硅胶、橡胶或树脂。
在另一些示例中,基体11包括相连的三个层结构11b。三个层结构11b中,各个层结构11b的材料不相同。
在另一些示例中,远离啮合部12的方向上,最外侧的层结构11b的硬度大于其余层结构11b的硬度。因此,最外侧的层结构11b可以作为约束结构,在不影响基体11发生弯曲的情况下可以使得基体11保持整体尺寸不易发生变化,降低基体11在弯曲过程中被 拉伸变长而对变刚度组件10的刚度变化精度产生不良影响的可能性。
示例性地,最外侧的层结构11b可以为可弯曲变形并且抗拉伸的结构件,从而最外侧的层结构11b自身可以弯曲变形,同时在承载拉伸应力时,自身不易被拉伸变形。示例性地,最外侧的层结构11b为塑料片或纸制品。纸制品例如可以是使用硫酸盐和木浆制成的牛皮纸。
示例性地,基体11包括两个层结构11b。与啮合部12相连的层结构11b的材料可以是树脂。最外侧的层结构11b的材料可以是纸制品。与啮合部12相连的层结构11b粘接于最外侧的层结构11b。例如,与啮合部12相连的层结构11b通过粘接件11c粘接于最外侧的层结构11b。粘接件11c可以是环氧树脂胶。
示例性地,基体11呈扁平状的结构。与啮合部12相连的层结构11b的材料以及啮合部12的材料相同。与啮合部12相连的层结构11b以及啮合部12为一体成型结构。啮合部12的形状呈人字形。
本申请实施例的两个基体11中,一个基体11上的啮合部12和另一个基体11上的啮合部12从啮合状态切换至分离状态的过程中,如果啮合部12分离不及时或者不完全,会导致啮合部12仍处于啮合状态,从而在需要变刚度组件10切换至第一刚度时,变刚度组件10却仍然保持在第二刚度,影响变刚度组件10的刚度调节精度和模拟准确度。
在一些可实现的方式中,驱动组件20可以向变刚度组件10施加作用力,驱动两个以上的基体11沿厚度方向X彼此远离,以使相邻两个设置有啮合部12的基体11中,一者上的啮合部12与另一者上的啮合部12从啮合状态切换为分离状态。
在另一些可实现的方式中,为了保证啮合部12可以顺利地从啮合状态切换至分离状态,基体11可以为弹性结构,自身可以具有柔性。在需要变刚度组件10从第二刚度切换至第一刚度时,基体11可以释放自身的弹性回复力并带动啮合部12从啮合状态切换成分离状态。基体11自身可以提供使啮合部12从啮合状态切换成分离状态的作用力,从而有利于进一步保证啮合部12顺利地实现分离。
在一些示例中,驱动组件20可以向变刚度组件10施加作用力,同时基体11可以释放自身的弹性回复力,以此驱动两个以上的基体11沿厚度方向X彼此远离,使啮合部12从啮合状态切换成分离状态。
图33为本申请一实施例提供的柔性变刚度驱动器中的啮合部处于分离状态的局部剖视结构示意图。图34为图33所示实施例的柔性变刚度驱动器中的啮合部处于啮合状态的局部剖视结构示意图。
参见图33所示,变刚度组件10还包括弹性件16。相邻两个基体11上的啮合部12处于啮合状态时,啮合部12挤压弹性件16变形,以使弹性件16积蓄弹性势能。啮合部12从啮合状态切换为分离状态时,弹性件16释放弹性回复力并向啮合部12施加压应力,从而推动啮合部12相互分离。弹性件16可以额外向啮合部12提供分离时的作用力,以使啮合部12相对容易地发生分离,有利于降低从啮合状态切换为分离状态时,啮合部12仍然保持相互啮合而未能发生分离的可能性。
在一些示例中,驱动组件20可以向变刚度组件10施加作用力,同时基体11以及弹性件16可以释放自身的弹性回复力,以此驱动两个以上的基体11沿厚度方向X彼此远离,使啮合部12从啮合状态切换成分离状态。
在一些示例中,参见图33和图34所示,弹性件16为弹性片。相邻两个设置有啮合部12的基体11中,一者上的啮合部12与另一者上的啮合部12之间设置弹性件16。弹性件16可以覆盖基体11上的所有数量的啮合部12。两个基体11上的啮合部12啮合时,两个基体11上的啮合部12会同时挤压弹性件16。弹性件16的一部分被啮合部12压入对应的间隙13中。在啮合部12从对应的间隙13中退出时,弹性件16中位于间隙13中的部分发生回弹,以推动啮合部12。示例性地,弹性件16的材料可以选自塑料,从而弹性件16具有良好的柔韧性,使得弹性件16经过反复挤压、回弹后,不易出现压痕而导致弹性件16失效的可能性。示例性地,弹性件16的厚度小于啮合部12凸出基体11的高度。例如,弹性件16的厚度取值范围可以为20微米至100微米。
图35为本申请一实施例提供的柔性变刚度驱动器的结构示意图。参见图35所示,驱动组件20包括气囊21。变刚度组件10设置于气囊21内。变刚度组件10中,位于最外侧的基体11与气囊21的内壁相连。在柔性变刚度驱动器1应用于用户的身体部位时,可以将气囊21直接设置于身体部位并与皮肤直接接触,也可以在气囊21外部设置承载体,并通过承载体设置于身体部位。可以通过排气或充气的方式调节气囊21的内部压力。气囊21处于负压状态时,气囊21在大气压的作用下压缩变形,而气囊21相对的两个壁部相互靠近,从而气囊21对变刚度组件10施加压应力,以使基体11相互靠近。相邻两个设置有啮合部12的基体11中,啮合部12从分离状态切换至啮合状态。气囊21与大气环境相连通呈常压状态或者气囊21处于正压状态时,气囊21相对的两个壁部相互远离,从而气囊21拉动基体11相互远离,以使基体11上的啮合部12从啮合状态切换至分离状态。
在一些示例中,基体11的外表面可以与气囊21的内壁粘接连接。
图36为本申请另一实施例提供的柔性变刚度驱动器的结构示意图。参见图36所示,驱动组件20还包括真空泵22、第一阀体23和第二阀体24。真空泵22和气囊21通过管线相连通,而第一阀体23设置于管线上。第一阀体23用于打开或关闭管线。第一阀体23打开时,可以通过真空泵22抽出气囊21内的气体,以使气囊21处于负压状态。第一阀体23关闭时,气囊21保持在预定压力的负压状态。
第二阀体24设置于另一条管线。管线用于连通气囊21和外部大气环境。第二阀体24用于打开或关闭管线。第一阀体23关闭,第二阀体24关闭时,气囊21可以保持在预定压力的负压状态。第一阀体23关闭,第二阀体24打开时,气囊21与大气环境连通并吸入空气,以从负压状态切换至常压状态。
驱动组件20还包括充气泵25。第二阀体24设置于另一条管线。管线用于连通气囊21和充气泵25。第二阀体24用于打开或关闭管线。第一阀体23关闭,第二阀体24关闭时,气囊21可以保持在预定压力的负压状态。第一阀体23关闭,第二阀体24打开时,气囊21与充气泵25相连通,从而充气泵25可以向气囊21内充入气体,以使气囊21从负压状态切换至正压状态。
示例性地,第一阀体23可以为电磁阀。第二阀体24可以为电磁阀。
驱动组件20还包括气压传感器26。气压传感器26用于监测气囊21内的压力值。通过气压传感器26反馈的压力值可以对气囊21内的气压实现精准控制,从而可以实现气囊21对基体11所施加的压应力大小的精准控制,进而实现对啮合部12插入对应间隙13的深度实现精准控制。
驱动组件20还包括控制模块27。真空泵22、第一阀体23、第二阀体24、充气泵25和气压传感器26均与控制模块27通信连接,从而可以实现自动化控制,有利于提高控制精度。示例性地,控制模块27可以是单片机。
可选地,在其他实现方式中,驱动组件20还可以包括第一电极和第二电极。通过控制第一电极和第二电极的极性可以使得二者之间产生吸引力或者排斥力,第一电极和第二电极均与变刚度组件相连,并且用于驱动相邻两个设置有啮合部的基体。
可选地,在其他实现方式中,驱动组件20还可以包括第一电磁体和第二电磁体。通过控制第一电磁体和第二电磁体的极性可以使得二者之间产生吸引力或者排斥力,第一电磁体和第二电磁体均与变刚度组件相连,并且用于驱动相邻两个设置有啮合部的基体。
本申请实施例还提供一种虚拟现实交互设备。图37是本申请实施例提供的虚拟现实交互设备的一例的整体结构示意图,该虚拟现实交互设备包括触觉反馈装置1000,该触觉反馈装置1000可以是前述任一实施例提供的触觉反馈装置。
触觉反馈装置1000可以被安装于需要提供触觉反馈的各个部位,例如人体的手部、手腕、胳膊、腰部、腹部、颈部或腿部等任意部位,或者,机器人的手部、手腕、胳膊、腰部、腹部、颈部或腿部等。例如,触觉反馈装置1000可以对人体的指关节、腕关节、肘关节、肩关节、髋关节、膝关节、踝关节或者脖颈等任意身体部位提供触觉反馈。
以触觉反馈装置1000设置于人体的手部为例,虚拟现实交互设备可以通过触觉反馈装置1000模拟在虚拟现实世界中手部抓取或握持物体时产生的作用力或者其软硬程度,从而获得与现实世界相同或相近的感受,有利于提高用户与虚拟现实世界交互过程的沉浸感和真实感。触觉反馈装置1000可以设置于手部的内侧,即贴合于用户的手掌上。
在一些可实现的方式中,触觉反馈装置1000可以设置于用户的手指和掌心中的至少一者上。示例性地,触觉反馈装置1000可以粘接于皮肤上。或者,通过束带绑缚于手指和掌心中的至少一者上。
在一些可实现的方式中,触觉反馈装置1000的整体可以呈矩形、椭圆形或圆形。本申请对触觉反馈装置1000的整体形状不限定于上述所示例的形状,其他可以实现相同功能的形状均在本申请的保护范围内。
在一些可实现的方式中,虚拟现实交互设备还包括承载体700。触觉反馈装置1000设置于承载体700上。虚拟现实交互设备的承载体700可以设置于用户的手指和掌心中的至少一者上。
在一些可实现的方式中,承载体700可以是手套。触觉反馈装置1000设置于承载体700上以形成触觉反馈手套,例如可以是力反馈手套。承载体700的手指区和掌心区中的至少一者上设置触觉反馈装置1000。在用户需要体验虚拟现实世界时,用户可以将承载体700佩戴于自身的手部。用户手部的手指与承载体700的手指区对应,而掌心与承载体700的掌心区相对应。
在一些可实现的方式中,触觉反馈装置1000可以粘接于承载体700上。或者,触觉反馈装置1000可以缝制于承载体700上。或者,承载体700上具有容纳部,而触觉反馈装置1000装入该容纳部内。
本申请实施例中的触觉反馈装置1000在制作过程中可以对其形状、大小进行参数化定制,触觉反馈装置1000在人体(例如手掌)上可以有不同的安装分布。例如,如图22 所示,可以将触觉反馈装置1000制作成人手形状,并安装于手部的手掌或者手背侧,此时可以实现1自由度的全手掌触觉反馈体验,例如全手掌力反馈体验。
在一些可实现的方式中,也可以根据人手的关节和肌肉分布,将较小的触觉反馈装置1000安装于手掌的不同位置,实现手套的多自由度独立驱动,给人手不同的触觉反馈体验。
图38是本申请实施例提供的虚拟现实交互设备的另一例的整体结构示意图。如图38所示,可以在手套的掌心侧设置多个相互独立的触觉反馈装置1000,其中一个触觉反馈装置1000贴合于用户掌心上,用于为用户的掌心提供触觉反馈,而另外五个触觉反馈装置1000分别为五根手指提供触觉反馈。
可选地,对应不同区域的触觉反馈装置1000提供的触觉反馈的强度和/或类型可以不同,有利于提高用户与虚拟现实世界交互过程的沉浸感和真实感。
图39是本申请实施例提供的虚拟现实交互设备的再一例的整体结构示意图。如图39所示,可以在手套的掌心侧设置更多个相互独立并且体积更小的触觉反馈装置1000,其中部分触觉反馈装置1000贴合于用户掌心上,用于为用户的掌心提供触觉反馈,另外一些触觉反馈装置1000分别为五根手指的不同关节区域提供触觉反馈。
本申请实施例提供的虚拟现实交互设备能够向人体提供触觉反馈,为用户提供视觉虚拟现实领域所不能提供的触觉感受,使用户可以全面接触到视觉虚拟现实中的物体,产生更为身临其境的感受,有利于提高用户与虚拟现实世界交互过程的沉浸感和真实感。
本申请实施例提供的虚拟现实交互设备中的触觉反馈装置包括第一反馈单元100和驱动单元200,在正常使用状态下第一反馈单元100能够贴合于人体之上以进行触觉反馈,增强用户的真实体验。而当不需要进行触觉反馈时,本申请通过设置驱动单元200来驱动第一反馈单元100远离人体需要进行触觉反馈的区域,从而在无需摘下虚拟现实交互设备的前提下能够减弱或者消除第一反馈单元100对该区域的触觉反馈,避免在不需要获得触觉反馈时第一反馈单元100对用户的动作造成阻碍,使用户具有较好的自由体验,此时用户可以顺畅的进行接打电话等其他操作。由此使得虚拟现实交互设备具有较高的使用灵活性,能够满足不同场景下的使用需求,有利于提高用户在不需要获得触觉反馈时的交互体验。本申请能够方便用户的使用,提高了用户的使用体验,有利于提高产品的竞争力。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (25)
- 一种触觉反馈装置,用于虚拟现实交互设备,所述虚拟现实交互设备用于穿戴于人体上,其特征在于,所述触觉反馈装置包括:第一反馈单元(100),用于贴合于人体皮肤的第一区域(S1)以向所述第一区域(S1)提供触觉反馈;驱动单元(200),用于驱动所述第一反馈单元(100)远离所述第一区域(S1),以减弱或者消除所述第一反馈单元(100)对所述第一区域(S1)的触觉反馈;所述驱动单元(200)包括柔性囊体(210),所述柔性囊体(210)膨胀或者收缩以驱动所述第一反馈单元(100)远离所述第一区域(S1)。
- 根据权利要求1所述的触觉反馈装置,其特征在于,所述驱动单元(200)驱动所述第一反馈单元(100)沿着所述第一区域(S1)的法线方向(F1)远离所述第一区域(S1)。
- 根据权利要求2所述的触觉反馈装置,其特征在于,所述柔性囊体(210)具有相对设置的外侧壁(211)和内侧壁(212),所述内侧壁(212)的外壁面朝向所述第一区域(S1);所述第一反馈单元(100)连接于所述外侧壁(211)的内壁面或者外壁面上,所述柔性囊体(210)膨胀以驱动所述第一反馈单元(100)远离所述第一区域(S1);或者,所述第一反馈单元(100)连接于所述内侧壁(212)的内壁面或者外壁面上,所述柔性囊体(210)收缩以驱动所述第一反馈单元(100)远离所述第一区域(S1)。
- 根据权利要求1-3中任一项所述的触觉反馈装置,其特征在于,所述驱动单元(200)还包括动力泵(213),所述动力泵(213)用于向所述柔性囊体(210)内注入气体或者液体以使所述柔性囊体(210)膨胀。
- 根据权利要求1-4中任一项所述的触觉反馈装置,其特征在于,所述驱动单元(200)还包括控制单元(216)和压力传感器(217),所述压力传感器(217)用于监测所述柔性囊体(210)内的压力值,所述控制单元(216)用于根据所述压力值对所述第一反馈单元(100)的位移量进行控制。
- 一种触觉反馈装置,用于虚拟现实交互设备,所述虚拟现实交互设备用于穿戴于人体上,其特征在于,所述触觉反馈装置包括:第一反馈单元(100),用于贴合于人体皮肤的第一区域(S1)以向所述第一区域(S1)提供触觉反馈;驱动单元(200),用于驱动所述第一反馈单元(100)沿着所述第一区域(S1)的法线方向(F1)和/或切线方向(F2)远离所述第一区域(S1),以减弱或者消除所述第一反馈单元(100)对所述第一区域(S1)的触觉反馈。
- 根据权利要求6所述的触觉反馈装置,其特征在于,所述驱动单元(200)包括柔性囊体(210),所述柔性囊体(210)膨胀或者收缩以驱动所述第一反馈单元(100)远离所述第一区域(S1)。
- 根据权利要求7所述的触觉反馈装置,其特征在于,所述柔性囊体(210)具有相对设置的外侧壁(211)和内侧壁(212),所述内侧壁(212)的外壁面朝向所述第一区域(S1);所述第一反馈单元(100)连接于所述外侧壁(211)的内壁面或者外壁面上,所述柔性囊体(210)膨胀以驱动所述第一反馈单元(100)远离所述第一区域(S1);或者,所述第一反馈单元(100)连接于所述内侧壁(212)的内壁面或者外壁面上,所述柔性囊体(210)收缩以驱动所述第一反馈单元(100)远离所述第一区域(S1)。
- 根据权利要求7或8所述的触觉反馈装置,其特征在于,所述驱动单元(200)还包括动力泵(213),所述动力泵(213)用于向所述柔性囊体(210)内注入气体或者液体以使所述柔性囊体(210)膨胀。
- 根据权利要求6所述的触觉反馈装置,其特征在于,所述驱动单元(200)包括电性驱动组件(220),所述电性驱动组件(220)包括相对设置的第一电性元件(221)和第二电性元件(222),通电状态下所述第一电性元件(221)和所述第二电性元件(222)之间产生驱动所述第一反馈单元(100)远离所述第一区域(S1)的吸引力或者排斥力。
- 根据权利要求10所述的触觉反馈装置,其特征在于,所述第二电性元件(222)位于所述第一电性元件(221)与所述第一区域(S1)之间;所述第一反馈单元(100)设于所述第二电性元件(222)上,所述第一电性元件(221)与所述第二电性元件(222)之间产生吸引力以驱动所述第一反馈单元(100)远离所述第一区域(S1);或者,所述第一反馈单元(100)设于所述第一电性元件(221)上,所述第一电性元件(221)与所述第二电性元件(222)之间产生排斥力以驱动所述第一反馈单元(100)远离所述第一区域(S1)。
- 根据权利要求11所述的触觉反馈装置,其特征在于,所述第一电性元件(221)为第一电极,所述第二电性元件(222)为第二电极;或者,所述第一电性元件(221)为第一电磁体,所述第二电性元件(222)为第二电磁体。
- 根据权利要求6所述的触觉反馈装置,其特征在于,所述驱动单元(200)包括第一电机(230)和第一牵引绳(231),所述第一电机(230)通过所述第一牵引绳(231)带动所述第一反馈单元(100)远离所述第一区域(S1)。
- 根据权利要求13所述的触觉反馈装置,其特征在于,所述驱动单元(200)还包括第二电机(232)和第二牵引绳(233),所述第二电机(232)通过所述第二牵引绳(233)带动所述第一反馈单元(100)靠近并贴合于所述第一区域(S1)之上。
- 根据权利要求6-14中任一项所述的触觉反馈装置,其特征在于,所述驱动单元(200)包括人工肌肉。
- 根据权利要求6-15中任一项所述的触觉反馈装置,其特征在于,所述驱动单元(200)还用于驱动所述第一反馈单元(100)靠近并贴合于所述第一区域(s1)之上。
- 根据权利要求6-15中任一项所述的触觉反馈装置,其特征在于,所述触觉反馈装置还包括:弹性复位件(300),用于在所述驱动单元(200)的驱动力消失后,驱动所述第一反馈单元(100)靠近并贴合于所述第一区域(S1)之上。
- 根据权利要求6-17中任一项所述的触觉反馈装置,其特征在于,所述驱动单元(200)还用于驱动所述第一反馈单元(100)贴合于人体皮肤的第二区域(S2)以向所述第二区域(S2)提供触觉反馈,所述第二区域(S2)与所述第一区域(S1)不同。
- 根据权利要求6-18中任一项所述的触觉反馈装置,其特征在于,所述触觉反馈装置还包括:第二反馈单元(400);所述驱动单元(200)还用于驱动所述第二反馈单元(400)靠近并贴合于所述第一区域(S1)之上,以向所述第一区域(S1)提供触觉反馈,所述第二反馈单元(400)与所述第一反馈单元(100)提供的触觉反馈不同。
- 根据权利要求19所述的触觉反馈装置,其特征在于,所述第二反馈单元(400)与所述第一反馈单元(100)相连,所述驱动单元(200)在驱动所述第一反馈单元(100)远离所述第一区域(S1)的同时驱动所述第二反馈单元(400)靠近并贴合于所述第一区域(S1)之上。
- 根据权利要求6-18中任一项所述的触觉反馈装置,其特征在于,所述触觉反馈装置还包括:柔性片(600),与所述第一反馈单元(100)相连;所述驱动单元(200)在驱动所述第一反馈单元(100)远离所述第一区域(S1)的同时驱动所述柔性片(600)靠近并贴合于所述第一区域(S1)之上。
- 根据权利要求6-21中任一项所述的触觉反馈装置,其特征在于,所述触觉反馈包括以下反馈中的至少一种:力反馈、温度反馈、摩擦反馈、纹理反馈或者振动反馈。
- 根据权利要求6-21中任一项所述的触觉反馈装置,其特征在于,所述第一反馈单元(100)包括用于提供力反馈的柔性变刚度驱动器。
- 根据权利要求23所述的触觉反馈装置,其特征在于,所述柔性变刚度驱动器至少包括:变刚度组件(10),包括啮合部(12)以及可弯曲变形的基体(11),两个以上的所述基体(11)层叠设置,至少部分数量的所述基体(11)中,相邻两个所述基体(11)中的一者面向另一者的表面上设置所述啮合部(12);驱动组件(20),用于驱动相邻两个设置有所述啮合部(12)的所述基体(11),以使一者上的所述啮合部(12)与另一者上的所述啮合部(12)至少从分离状态切换为啮合状态;其中,所述啮合部(12)处于所述分离状态时,所述变刚度组件(10)整体具有第一刚度,所述啮合部(12)处于所述啮合状态时,所述变刚度组件(10)整体具有第二刚度,所述第二刚度大于所述第一刚度。
- 一种虚拟现实交互设备,其特征在于,包括如权利要求1-24中任一项所述的触觉反馈装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111373060.4A CN116136720A (zh) | 2021-11-18 | 2021-11-18 | 触觉反馈装置及虚拟现实交互设备 |
CN202111373060.4 | 2021-11-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023088361A1 true WO2023088361A1 (zh) | 2023-05-25 |
Family
ID=86334312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/132554 WO2023088361A1 (zh) | 2021-11-18 | 2022-11-17 | 触觉反馈装置及虚拟现实交互设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116136720A (zh) |
WO (1) | WO2023088361A1 (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106843475A (zh) * | 2017-01-03 | 2017-06-13 | 京东方科技集团股份有限公司 | 一种实现虚拟现实交互的方法及系统 |
CN107961145A (zh) * | 2017-11-29 | 2018-04-27 | 广州正艺产品设计有限公司 | 一种用雷达感知环境并进行触觉反馈引导盲人行走的方法 |
CN112799500A (zh) * | 2019-11-13 | 2021-05-14 | 南昌欧菲显示科技有限公司 | 触觉反馈模组、触摸屏及电子装置 |
-
2021
- 2021-11-18 CN CN202111373060.4A patent/CN116136720A/zh active Pending
-
2022
- 2022-11-17 WO PCT/CN2022/132554 patent/WO2023088361A1/zh unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106843475A (zh) * | 2017-01-03 | 2017-06-13 | 京东方科技集团股份有限公司 | 一种实现虚拟现实交互的方法及系统 |
CN107961145A (zh) * | 2017-11-29 | 2018-04-27 | 广州正艺产品设计有限公司 | 一种用雷达感知环境并进行触觉反馈引导盲人行走的方法 |
CN112799500A (zh) * | 2019-11-13 | 2021-05-14 | 南昌欧菲显示科技有限公司 | 触觉反馈模组、触摸屏及电子装置 |
Also Published As
Publication number | Publication date |
---|---|
CN116136720A (zh) | 2023-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180335842A1 (en) | Haptic feedback glove | |
US7211937B2 (en) | Electroactive polymer animated devices | |
Zubrycki et al. | Novel haptic device using jamming principle for providing kinaesthetic feedback in glove-based control interface | |
EP3977239B1 (en) | Haptic feedback apparatus worn on a hand | |
US11370653B2 (en) | Electrostatic zipper | |
EP3821322A1 (en) | Electrostatic brake-based haptic device | |
JP2020505981A (ja) | 流体駆動アクチュエータとその応用 | |
JP5021596B2 (ja) | 施療子及びそれを用いたマッサージ器 | |
US10546471B1 (en) | Pneumatically controlled haptic mechanisms for haptic feedback | |
Hinchet et al. | Glove‐and Sleeve‐Format Variable‐Friction Electrostatic Clutches for Kinesthetic Haptics | |
US10372219B1 (en) | Pneumatically controlled haptic mechanisms with nested internal structures for haptic feedback | |
US11199905B1 (en) | Systems, methods, and articles for haptic-jamming | |
US20200198290A1 (en) | Fabric structure used for fabrication of wearable soft exoskeleton suit and wearable soft exoskeleton suit fabricated by the same | |
Tonazzini et al. | Variable stiffness strip with strain sensing for wearable robotics | |
WO2023088361A1 (zh) | 触觉反馈装置及虚拟现实交互设备 | |
US10540870B1 (en) | Pneumatically controlled haptic mechanisms with curling internal structures for haptic feedback | |
US11627418B1 (en) | Multilayer membranes for haptic devices | |
US11353135B1 (en) | Magnetic fluidic valves and related systems and methods | |
Helps et al. | Easy undressing with soft robotics | |
US10907658B1 (en) | Fluidic power transmission apparatuses for haptics systems and related methods | |
Nakamura et al. | Hapbelt: haptic display for presenting vibrotactile and force sense using belt-winding mechanism | |
US20230324994A1 (en) | Haptic device | |
US20230125655A1 (en) | Electrostatic zipper with ionoelastomer membranes for decreased operating voltage | |
Yap | Design, fabrication, and characterization of soft pneumatic actuators towards soft wearable robotic applications | |
Abrar et al. | Soft wearable glove for tele-rehabilitation therapy of clenched hand/fingers patients |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22894892 Country of ref document: EP Kind code of ref document: A1 |