WO2023065793A1 - 一种海洋电缆多功能集成软件开发平台、方法及存储介质 - Google Patents

一种海洋电缆多功能集成软件开发平台、方法及存储介质 Download PDF

Info

Publication number
WO2023065793A1
WO2023065793A1 PCT/CN2022/112462 CN2022112462W WO2023065793A1 WO 2023065793 A1 WO2023065793 A1 WO 2023065793A1 CN 2022112462 W CN2022112462 W CN 2022112462W WO 2023065793 A1 WO2023065793 A1 WO 2023065793A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
design
cable
analysis
data
Prior art date
Application number
PCT/CN2022/112462
Other languages
English (en)
French (fr)
Inventor
胡海涛
阎军
杨志勋
耿东岭
卢青针
陈金龙
苏琦
吴尚华
Original Assignee
大连理工大学
大连理工大学宁波研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学, 大连理工大学宁波研究院 filed Critical 大连理工大学
Priority to US18/042,360 priority Critical patent/US12124776B2/en
Publication of WO2023065793A1 publication Critical patent/WO2023065793A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/18Network design, e.g. design based on topological or interconnect aspects of utility systems, piping, heating ventilation air conditioning [HVAC] or cabling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F8/00Arrangements for software engineering
    • G06F8/20Software design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/04Constraint-based CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/16Cables, cable trees or wire harnesses

Definitions

  • the invention relates to the technical field of marine cable engineering, and more specifically relates to a marine cable multifunctional integrated software development platform, method and storage medium.
  • Marine flexible umbilicals are the "vessels” and “nerves” of offshore oil and gas resource development equipment.
  • the design and analysis of marine cables has always been a core key technology in the world.
  • the software related to the design and analysis of marine cables in the world can be mainly divided into overall hydrodynamic analysis software, cross-sectional finite element structural analysis software, etc.
  • Orcaflex is a mature commercial analysis software with a large amount of experimental data base, and can perform static and dynamic analysis of cables connected to floating structures;
  • Bflex is a The calculation software for the nonlinear statics and dynamics analysis of marine cables is a professional software developed on the basis of the finite element method, which can simulate the armor layer, sheath layer and conductor structure of marine cables, and The detailed equivalent fatigue resistance and ultimate load of the cross-section of marine cables are given.
  • USAP and Uflex are mainly used for the analysis of the section mechanical properties of marine cables, the analysis results are compared systematically, and analysis reports can be automatically generated based on the results.
  • the above-mentioned overall hydrodynamic analysis software and cross-section analysis software are mostly based on the finite element method, and are mainly aimed at single cross-section design or overall line shape analysis of marine cables.
  • the supporting role of cable system integration design process needs to be strengthened.
  • the present invention provides a marine cable multifunctional integrated software development platform, method and storage medium, which can realize platform integration for various international software used in marine cable design, and realize automation of data interaction between software, and at the same time It can carry out multi-field coupling analysis, multi-scale and multi-condition load analysis and optimization on the design results, realize the intelligentization of marine cable structure design and rapid performance prediction through cloud database and data-driven technology, and has good openness and Data transformation capability.
  • the embodiment of the present invention provides a marine cable multifunctional integrated software development platform, including: a pre-processing module, an integrated software analysis module, a performance verification module, a post-processing module, and a data drive module based on a cloud database;
  • the pre-processing module based on the input engineering basic data or calling the data-driven module based on the cloud database, constructs structural units and arranges them to form the cross-sectional design of the marine cable; the pre-processing module and the integrated software analysis module respectively , data-driven modules based on cloud databases and post-processing modules are connected;
  • the integrated software analysis module by creating an open software interface, establishes data transmission with different domestic and foreign software used in the analysis and calculation of the marine cable structure, obtains parameter information based on the section design results of the marine cable, and passes the established
  • the data transmission completes the multi-field coupling analysis and optimization design of the cable section layout and line type, and the output results are sent to the performance verification module, post-processing module and data-driven module based on the cloud database;
  • the performance verification module based on the basic cable design verification standard and the special verification standard added according to the needs of the operator, performs a safety verification of the results of the integrated software analysis module, and sends the verified cable design scheme to the Describe the data-driven module and post-processing module based on the cloud database;
  • the data-driven module based on the cloud database is used to store and read the key data in the software development platform, and based on the method of machine learning and deep learning, it can quickly and intelligently predict the layout of the cable section and the cable line structure. design;
  • the post-processing module is used for visually displaying and exporting the calculation results of the software development platform.
  • the above-mentioned technical solution discloses the specific structural setting of the marine cable multifunctional integrated software development platform in the present invention, which can realize the automation of data interaction between software, and realize the intellectualization and rapid performance of marine cable structure design through cloud database and data-driven technology. Prediction, with good openness and data conversion capabilities.
  • the pre-processing module includes a parameter input submodule, a unit construction submodule and a section design submodule; the parameter input submodule, the unit construction submodule and the section design submodule are connected in sequence;
  • the parameter input sub-module is used to input project parameters, and provides basic data for follow-up projects including cloud database storage, calculation, analysis, optimization design, safety check and calculation report analysis;
  • the unit construction submodule is based on given geometric parameters and/or calling project parameters input by the parameter input submodule in the cloud database to construct structural units with specific unit sizes and specific functions;
  • the section design sub-module arranges the structural units by parametrically defining the relationship between the structural units or freely dragging the structural units to form the cross-sectional design of the marine flexible cable.
  • the above-mentioned technical solution discloses the specific structural setting of the pre-processing module, and also discloses a unique unit component building form, which can realize accurate modeling of complex sections through direct dragging of the mouse, and has obvious user-friendliness and ease of operation .
  • the project parameters include water depth, wave height, flow velocity, period, floating body parameters, material parameters, standard specifications, elastic modulus, shear modulus, Poisson's ratio, resistivity, and thermal conductivity.
  • the integrated software analysis module includes a section analysis submodule, a finite element multi-physics field coupling analysis submodule, and an overall line shape design submodule;
  • the section analysis sub-module based on the section design results of the pre-processing module, obtains parameters including tensile stiffness, bending stiffness, torsional stiffness, minimum bending radius, maximum allowable stress, stability parameters, breakdown voltage, insulation resistance in Parameters within, the output results are sent to the overall line design sub-module, performance verification module, post-processing module and data-driven module based on cloud database;
  • the finite element multi-physics field coupling analysis sub-module is connected with finite element analysis software including ANSYS and ABAQUS, and based on the cross-section design results of the pre-processing module and the consideration of electric, thermal, magnetic and mechanical loads, the calculation includes Tensile stiffness, bending stiffness, torsional stiffness, minimum bending radius, maximum allowable stress, stability parameters, stress, displacement, temperature, breakdown voltage, insulation resistance and other parameters, the output results are sent to the overall linear design Sub-modules, performance verification modules, post-processing modules, and data-driven modules based on cloud databases;
  • the overall line design sub-module is used to arrange the overall line shape of the cable according to different marine working conditions.
  • the multi-scale optimization design algorithm is called, and the maximum tension of the cable is included. , minimum bending radius, cable tensile stiffness, bending stiffness, torsional stiffness requirements, and stability requirements, and optimize the design of the cable line shape; at the same time, combine the cable section layout and the overall line shape design to carry out multi-scale coupling conditions
  • calculate the parameters including the tensile stiffness, bending stiffness, minimum bending radius, maximum tension, maximum curvature and local stress of the cable line and send the output results to the performance verification module, which is based on the cloud database. Data-driven modules.
  • the cross-section analysis sub-module further optimizes the layout of the cable cross-section according to the design objectives including the maximum stiffness of the cross-section, the optimal heat dissipation layout of the cross-section, and the layout of functional requirements of the cross-section.
  • section analysis sub-module also calculates basic section parameter information including section stiffness and manufacturing cost based on the designed section layout.
  • the above technical solution discloses the specific structural setting of the integrated software analysis module.
  • the present invention can realize the performance analysis and multi-scale analysis of the marine flexible cable under the multi-physics field coupling condition, and couple the cross-sectional performance and the overall line shape of the marine flexible cable analysis to realize the multi-scale optimal design of marine flexible cables.
  • the data-driven module based on the cloud database includes a cloud database sub-module and a data-driven sub-module;
  • the cloud database submodule stores and reads the key data in the preprocessing module and the integrated software analysis module in the cloud by constructing the connection between the user's local area and the server; the cloud database submodule and the data driver submodule The modules are connected, and the cloud database sub-module is also connected to the pre-processing module, the integrated software analysis module and the performance verification module;
  • the data-driven sub-module reads and processes the data set stored in the cloud database sub-module through the data records of the cloud database sub-module with the help of big data technology. Based on machine learning and deep learning methods, the cable section layout, Quickly and intelligently predict and design the cable line structure; store the cable design results.
  • the above technical solution discloses the specific structural setting of the data-driven module based on the cloud database.
  • the present invention can realize the intelligent design and rapid prediction of the structure of the marine flexible cable by building the cloud database and training the deep learning model based on the data drive. .
  • the post-processing module includes an AutoCAD submodule, a three-dimensional display submodule, and an analysis report submodule;
  • Described AutoCAD submodule is based on AutoCAD commercial software, by calling the AutoCAD submodule port in the software development platform, the result information of the preprocessing module and the integrated software analysis module described in the software development platform is transferred into the AutoCAD software in the form of command flow In, the cable results designed based on the software development platform will be transmitted in the form of engineering design drawings;
  • the three-dimensional display sub-module is used to display the result information of the pre-processing module and the integrated software analysis module in the software development platform in a visualized form of a three-dimensional structure in the software;
  • the analysis report sub-module is based on Office software, and by calling the analysis report module port in the software development platform, the result information of the pre-processing module and the integrated software analysis module described in the software development platform is exported in report form, which is convenient for designers to summarize, report.
  • the above-mentioned technical solution discloses the specific setting of the post-processing module.
  • the present invention has better openness and data conversion capability.
  • the software development platform is an integrated software platform, which can be connected with most current mainstream cable software and Data conversion, with strong comprehensive processing capabilities.
  • the embodiment of the present invention also discloses a method for developing marine cable multifunctional integrated software, including the following steps:
  • the present invention also discloses a computer-storable medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the above-mentioned software development method are realized.
  • the present invention discloses a marine cable multifunctional integrated software development platform, method and storage medium, which has the following beneficial effects compared with the prior art:
  • the present invention can realize the performance analysis of the multi-physics field coupling condition of the marine cable. Since there are many types of internal functional units in marine cables, there are multi-physics effects and special constraints, and the present invention can consider such effects and perform performance analysis;
  • the present invention can realize the multi-scale analysis of the marine flexible cable, can carry out coupling analysis on the section performance of the marine cable and the overall line shape, and transmit the calculation result of the cable section performance to the overall line shape design module for the overall line shape design, and at the same time can Realize the multi-scale optimal design of marine cables through continuous iteration of section performance and overall line design results;
  • the present invention can realize the intelligent design and rapid prediction of the marine cable structure by building a cloud database and training a deep learning model based on the data drive;
  • the present invention has a unique unit component building form, which can realize accurate modeling of complex sections through direct dragging of the mouse, and has obvious user-friendliness and ease of operation;
  • the present invention has better openness and data conversion capability, and the software development platform is an integrated software platform, which can be mutually connected and data conversion with most of the current mainstream cable software, and has strong comprehensive processing capability .
  • Figure 1 is the overall frame diagram of the marine cable multifunctional integrated software development platform
  • Fig. 2 is the structural diagram of preprocessing module
  • Fig. 3 is a structural diagram of the integrated software analysis module
  • Fig. 4 is the structural diagram of post-processing module
  • Fig. 5 is a structural diagram of a performance verification module
  • Fig. 6 is a structural diagram of a data-driven module based on a cloud database
  • Figure 7 is a graphic display of the design results of the overall line design sub-module in the Orcaflex software.
  • the embodiment of the present invention discloses a marine cable multifunctional integrated software development platform, as shown in Figure 1, including: a pre-processing module, an integrated software analysis module, a performance verification module, a post-processing module, and a data drive module based on a cloud database ;
  • the pre-processing module based on the input or the basic engineering data called from the data-driven module based on the cloud database, constructs the structural units and arranges them to form the section design of the marine cable;
  • the data-driven module and the post-processing module are connected;
  • Integrated software analysis module by creating an open software interface, data transmission can be established with different software at home and abroad used in the analysis and calculation of marine cable structures, based on the section design results of marine cables, parameter information can be obtained and passed through the established data
  • the transmission completes the multi-field coupling analysis and optimization design of the cable section layout and line shape, and the output results are sent to the performance verification module, post-processing module and data-driven module based on the cloud database;
  • the performance verification module can perform safety verification on the results of the integrated software analysis module based on the industry cable design verification standard or the special verification standard added by the operator, and verify the cable design scheme that passes the verification Send to the data-driven module and post-processing module based on the cloud database;
  • the data-driven module based on the cloud database is used to store and read the key data in the software development platform, and based on the above-mentioned cloud database, using machine learning and deep learning methods, the layout of the cable section and the cable line structure are analyzed. Fast intelligent prediction and design;
  • the post-processing module is used to visualize and export the calculation results of the software development platform.
  • the pre-processing module includes a parameter input submodule, a unit construction submodule and a section design submodule; the parameter input submodule, the unit construction submodule and the section design submodule are connected in sequence;
  • the parameter input sub-module is used to input project parameters, such as water depth, wave height, flow velocity, period, floating body parameters, material parameters, standard specifications, elastic modulus, shear modulus, Poisson's ratio, resistivity, thermal conductivity, etc., including Provide basic data for follow-up projects including cloud database storage, calculation, analysis, optimization design, security check and calculation report analysis;
  • the unit construction sub-module based on the given geometric parameters and/or project parameters input by calling the parameter input sub-module in the cloud database, constructs structural units with specific unit sizes and specific functions;
  • the section design sub-module arranges the structural units by parametrically defining the relationship between the structural units or freely dragging the structural units to form the cross-sectional design of the marine cable.
  • the integrated software analysis module includes a section analysis submodule, a finite element multi-physics coupling analysis submodule, and an overall line shape design submodule;
  • the section analysis sub-module can carry out basic mechanical analysis and functional analysis on the section design results of the section design sub-module, and obtain information including tensile stiffness, bending stiffness, torsional stiffness, minimum bending radius, maximum allowable stress, stability parameters, shock parameters including breakdown voltage and insulation resistance; the section analysis sub-module also realizes the optimal design function of the cable section layout according to the design objectives such as the maximum stiffness of the section, the optimal heat dissipation layout of the section, and the layout of the functional requirements of the section; the section analysis sub-module can also be based on Design the section layout, and calculate the basic section parameter information such as section stiffness and manufacturing cost.
  • the output results are sent to the overall line design sub-module, performance verification module, post-processing module and data-driven module based on cloud database;
  • the finite element multi-physics field coupling analysis sub-module can be connected to finite element analysis software such as ANSYS, ABAQUS, etc. to perform multi-physics field coupling analysis on the cross-section, considering the multi-physics field coupling analysis under electrical, thermal, magnetic and mechanical loads, and the calculation includes stretching Stiffness, bending stiffness, torsional stiffness, minimum bending radius, maximum allowable stress, stability parameters, stress, displacement, temperature, breakdown voltage, insulation resistance and other parameters, the output results are sent to the overall linear design sub-module, performance Calibration module, post-processing module and data-driven module based on cloud database;
  • the overall line shape design sub-module can arrange the overall line shape of cables according to different marine working conditions. Based on the overall analysis software such as Orcaflex and Fluent, the analysis, design and optimization of the cable shape are realized according to the design goals of the cable's maximum tension, minimum bending radius, cable tensile stiffness, bending stiffness, torsional stiffness requirements, and stability requirements; At the same time, it can combine the optimal design of the section analysis sub-module in the multi-scale coupling condition of cable local section analysis and layout and overall line design, and calculate the tensile stiffness, bending stiffness, minimum bending radius, and maximum tension of the cable line shape. , maximum curvature and local stress results are sent to the performance verification module and the data-driven module based on the cloud database.
  • the overall analysis software such as Orcaflex and Fluent
  • the data-driven module based on the cloud database includes a cloud database sub-module and a data-driven sub-module;
  • the cloud database sub-module by building the connection between the user's local area and the server, stores the key data in the pre-processing module and the integrated software analysis module in the cloud, which is convenient for subsequent applications;
  • the cloud database sub-module is connected with the data-driven sub-module, and the cloud database
  • the sub-module is also connected with the pre-processing module, the integrated software analysis module and the performance verification module;
  • the data-driven sub-module realizes fast and intelligent prediction and design of cable section layout and cable line structure through the data records of the cloud database sub-module based on machine learning and deep learning methods; and is connected to the cloud database sub-module.
  • the post-processing module includes an AutoCAD submodule, a three-dimensional display submodule and an analysis report submodule;
  • the AutoCAD sub-module is based on the AutoCAD commercial software. By calling the AutoCAD sub-module port in the software development platform, the result information of the pre-processing module and the integrated software analysis module in the software development platform is transmitted to the AutoCAD software in the form of command flow. Based on The cable results designed by the software development platform are transmitted in the form of engineering design drawings;
  • the three-dimensional display sub-module displays the result information of the pre-processing module and integrated software analysis module in the software development platform in the form of three-dimensional structure visualization in the software;
  • the analysis report sub-module based on Office software, exports the result information of the pre-processing module and integrated software analysis module in the software development platform in the form of a report by calling the analysis report module port in the software development platform.
  • the embodiment of the present invention discloses a method for developing marine cable multifunctional integrated software, which includes the following steps:
  • the embodiment of the present invention also discloses a computer-storable medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the above-mentioned software development method are realized.
  • the present invention can be applied to the field of multi-scale analysis of the section of the marine cable and the overall line shape of the marine cable, the coupling analysis of the multi-physics field of the marine cable, and the fast analysis of the marine cable based on data drive. The following will explain it through specific embodiments.
  • the present invention can realize the multi-physics field coupling analysis.
  • the four-layer armored umbilical cable of the central cable contains many complex units such as optical fibers, cables, hydraulic pipes, antiscalant pipes, and armored steel wires.
  • the software development platform in the present invention can be used for such complex cross-sectional shapes, and consider Multiphysics coupling analysis of force, electric, magnetic and temperature fields for electrothermal and umbilical interfaces due to special constraints brought by optical fibers.
  • Fig. 7 shows the image display of the design results of the overall line shape design module in the Orcaflex software. The influence of the bending stiffener and the buoyancy block is eliminated, and the multi-scale coupling analysis of the umbilical cable combined with the macroscopic linear scale and the microscopic section performance scale is realized.
  • the invention provides a marine cable multifunctional integrated software development platform, method and storage medium, which can realize platform integration for various international software used in marine cable design, realize automation of data interaction between software, and at the same time, can analyze the design results Carry out multi-field coupling analysis, analysis and optimization of multi-scale and multi-working condition loads, realize the intelligence of marine cable structure design and rapid performance prediction through cloud database and data-driven technology, and have good openness and data conversion capabilities.
  • each embodiment in this specification is described in a progressive manner, each embodiment focuses on the difference from other embodiments, and the same and similar parts of each embodiment can be referred to each other.
  • the description is relatively simple, and for related parts, please refer to the description of the method part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Software Systems (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Medical Informatics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Data Mining & Analysis (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Electric Cable Installation (AREA)

Abstract

本发明公开了一种海洋电缆多功能集成软件开发平台、方法及存储介质,涉及海洋电缆工程技术领域,包括前处理模块、集成软件分析模块、性能校验模块、后处理模块及基于云端数据库的数据驱动模块。输入或调用工程基本数据,构建结构单元并排布,完成海洋电缆的截面设计,基于截面性能分析结果对电缆截面布局及线型进行优化设计,再进行安全校核;对平台中的关键数据进行存储和读取,对电缆截面布局方式、电缆线型结构进行快速智能预测和设计;对平台计算结果进行可视化展示、导出。本发明能够对海洋电缆进行多场耦合、多尺度分析及多工况载荷分析与优化,实现海洋电缆结构的快速智能化设计和性能快速预测,具有较好的开放性与数据转化能力。

Description

一种海洋电缆多功能集成软件开发平台、方法及存储介质 技术领域
本发明涉及海洋电缆工程技术领域,更具体的说是涉及一种海洋电缆多功能集成软件开发平台、方法及存储介质。
背景技术
海洋柔性管缆是海洋油气资源开发装备的“血管”和“神经线”。海洋电缆的设计、分析在国际上一直是一个核心关键技术。国际上与海洋电缆设计及分析有关的软件主要可分为整体水动力分析软件、截面有限元结构分析软件等。Orcaflex作为一款具有代表性的海洋电缆整体水动力分析软件,是一款成熟的商业分析软件,具有大量实验数据基础,能进行与浮式结构相连的电缆静态和动态分析;Bflex是一款用于海洋电缆非线性静力学及动力学分析的计算软件,是在有限元方法的基础上发展而来的一款专业软件,可以模拟海洋电缆的铠装层、护套层及导体结构等,并给出海洋电缆横截面详细的等效抗疲劳性能和极限载荷。此外,USAP和Uflex主要用于海洋电缆的截面力学性能分析,分析结果比较系统,而且可自动根据结果生成分析报告。上述的整体水动力分析软件与截面分析软件多基于有限元方法,主要针对单一的海洋电缆截面设计或整体线型分析,功能较为单一,只能对海洋电缆的系统设计提供部分支持,而对于海洋电缆系统集成设计流程的支持作用有待加强。
通过对国内外海洋电缆设计分析软件的调研,可以发现目前海洋电缆的设计与分析过程往往需要通过多个专用的计算机辅助设计软件完成。例如:使用AutoCAD进行海洋电缆截面设计,使用UFlex、CableCAD等软件分析校核海洋电缆截面力学性能,使用Orcaflex、Riflex等软件分析校核海洋电缆整体线型水动力学响应等。然而,上述各个软件的输入格式差别巨大,软件间的数据交互困难且容易出错。并且,海洋电缆设计过程需要反复迭代,使用传统的设计手段进行数据交互将会大幅增加设计周期,效率低下,无法实现海洋电缆从初始设计到最终设计评估的全套设计流程的自动化。
因此,如何摆脱海洋电缆传统工程经验化的设计方法,实现不同计算机软件间的自动化通信,集成化海洋电缆设计流程,提升软件间数据转化的可靠性,实现海洋电缆结构的智能快速化设计、结构优化设计是本领域技术人员亟需解决的问题。
发明内容
有鉴于此,本发明提供了一种海洋电缆多功能集成软件开发平台、方法及存储介质,能够对海洋电缆设计所用多款国际软件实现平台的集成化,对软件间的数据交互实现自动化,同时能够对设计结果进行多场耦合分析、多尺度及多工况载荷的分析与优化,通过云端数据库和数据驱动技术实现海洋电缆结构设计的智能化和性能的快速预测,具有较好的开放性与数据转化能力。
为了实现上述目的,本发明实施例提供了一种海洋电缆多功能集成软件开发平台,包括:前处理模块、集成软件分析模块、性能校验模块、后处理模块以及基于云端数据库的数据驱动模块;
所述前处理模块,基于输入的工程基本数据或调用所述基于云端数据库的数据驱动模块,构建结构单元并进行排布,形成海洋电缆的截面设计;所述前处理模块分别与集成软件分析模块、基于云端数据库的数据驱动模块以及后处理模块相连;
所述集成软件分析模块,通过创建开放式的软件接口,与海洋电缆结构分析和计算中使用的国内外不同软件之间建立数据传输,基于海洋电缆的截面设计结果,获取参数信息并通过建立的数据传输完成对电缆截面布局及线型的多场耦合分析和优化设计,输出结果发送至所述性能校验模块、后处理模块以及基于云端数据库的数据驱动模块;
所述性能校验模块,基于基本电缆设计校验标准及根据操作人员需要添加的特制校验标准,对所述集成软件分析模块的结果进行安全校核,校核通过的电缆设计方案发送至所述基于云端数据库的数据驱动模块及后处理模块;
所述基于云端数据库的数据驱动模块,用于对软件开发平台中的关键数据进行存储和读取,基于机器学习与深度学习的方法,对电缆截面布局方式、电缆线型结构进行快速智能预测和设计;
所述后处理模块用于对软件开发平台的计算结果进行可视化展示、导出。
上述的技术方案公开了本发明中海洋电缆多功能集成软件开发平台的具体结构设置,能够实现软件间的数据交互自动化,通过云端数据库和数据驱动技术实现海洋电缆结构设计的智能化和性能的快速预测,具有较好的开放性与数据转化能力。
可选的,所述前处理模块包括参数输入子模块、单元构建子模块与截面设计子模块;所述参数输入子模块、单元构建子模块和截面设计子模块依次相连;
所述参数输入子模块用于输入项目参数,为包括云端数据库存储、计算、分析、优化设计、安全校核和计算报告分析在内的后续项目提供基础数据;
所述单元构建子模块,基于给定的几何参数和/或调用云端数据库中参数输入子模块输入的项目参数,构建具有特定单元尺寸和特定功能的结构单元;
所述截面设计子模块通过参数化定义结构单元间的相互关系或对结构单元自由拖动的方式对结构单元进行排布,形成海洋柔性电缆的截面设计。
上述的技术方案公开了前处理模块的具体结构设置,还公开了独特的单元构件组建形式,能够通过鼠标的直接拖动,实现复杂截面的精确建模,具有明显的用户友好性与易操作性。
可选的,所述项目参数包括水深、波高、流速、周期、浮体参数、材料参数、标准规范、弹性模量、剪切模量、泊松比、电阻率、导热率。
可选的,所述集成软件分析模块包括截面分析子模块、有限元多物理场耦合分析子模块、整体线型设计子模块;
所述截面分析子模块,基于所述前处理模块的截面设计结果,获取包括拉伸刚度、弯曲刚度、扭转刚度、最小弯曲半径、最大许用应力、稳定性参数、击穿电压、绝缘电阻在内的参数,输出结果发送至所述整体线型设计子模块、性能校验模块、后处理模块以及基于云端数据库的数据驱动模块;
所述有限元多物理场耦合分析子模块与包括ANSYS、ABAQUS在内的有限元分析软件连接,基于所述前处理模块的截面设计结果及对电、热、磁、机械载荷的考虑,计算包括拉伸刚度、弯曲刚度、扭转刚度、最小弯曲半径、最大许用应力、稳定性参数、应力、位移、温度、 击穿电压、绝缘电阻在内的参数,输出结果发送至所述整体线型设计子模块、性能校验模块、后处理模块以及基于云端数据库的数据驱动模块;
所述整体线型设计子模块,用于根据不同的海洋工况进行电缆的整体线型布置,基于包括Orcaflex、Fluent在内的整体分析软件,调用多尺度优化设计算法,依据包括电缆的最大张力、最小弯曲半径、电缆拉伸刚度、弯曲刚度、扭转刚度要求、稳定性要求在内的设计目标,对电缆线型进行优化设计;同时结合电缆截面布局与整体线型设计进行多尺度耦合工况下的优化设计,计算包括电缆线型的拉伸刚度、弯曲刚度、最小弯曲半径、最大张力、最大曲率和局部应力在内的参数,输出结果发送至所述性能校验模块、基于云端数据库的数据驱动模块。
可选的,所述截面分析子模块还依据包括截面最大刚度、截面最优散热布局以及截面功能性要求布局在内的设计目标,对电缆截面布局进行优化设计。
可选的,所述截面分析子模块还基于设计截面布局,计算包括截面刚度及制造成本在内的基本截面参数信息。
上述的技术方案公开了集成软件分析模块的具体结构设置,本发明能够实现对海洋柔性电缆多物理场耦合工况下的性能分析、多尺度分析,对海洋柔性电缆截面性能与整体线型进行耦合分析,实现海洋柔性电缆的多尺度优化设计。
可选的,所述基于云端数据库的数据驱动模块包括云端数据库子模块与数据驱动子模块;
所述云端数据库子模块,通过构建用户本地与服务器之间的连接,对所述前处理模块和集成软件分析模块中的关键数据进行云端存储和读取;所述云端数据库子模块与数据驱动子模块相连,所述云端数据库子模块还与前处理模块、集成软件分析模块和性能校验模块相互连接;
所述数据驱动子模块通过云端数据库子模块的数据记录,借助大数据技术对所述云端数据库子模块存储的数据集进行读取处理,基于机器学习与深度学习的方法,对电缆截面布局方式、电缆线型结构进行快速智能预测和设计;对电缆设计结果进行存储。
上述的技术方案公开了基于云端数据库的数据驱动模块的具体结构设置,本发明能够基于数据驱动,通过构建云端数据库,并借此训练深度学习模型,实现海洋柔性电缆结构的智能化设计和快速预测。
可选的,所述后处理模块包括AutoCAD子模块、三维展示子模块以及分析报告子模块;
所述AutoCAD子模块基于AutoCAD商业软件,通过调用软件开发平台中的AutoCAD子模块端口,将软件开发平台中所述前处理模块、集成软件分析模块的结果信息,以命令流的形式传递入AutoCAD软件中,将基于软件开发平台设计的电缆结果,以工程设计图纸的形式传出;
所述三维展示子模块,用于将软件开发平台中所述前处理模块、集成软件分析模块的结果信息,在软件中以三维结构的可视化形式展出;
所述分析报告子模块基于Office软件,通过调用软件开发平台中的分析报告模块端口,将软件开发平台中所述前处理模块、集成软件分析模块的结果信息以报告形式导出,便于设计人员总结、汇报。
上述的技术方案公开了后处理模块的具体设置,本发明具有较好的开放性与数据转化能力,该软件开发平台是一个集成化的软件平台,能够与目前大部分主流的电缆软件相互对接和数据转化,具有较强的综合处理能力。
本发明实施例还公开了一种海洋电缆多功能集成软件开发方法,包括以下步骤:
输入或调用工程基本数据,构建结构单元并进行排布,形成海洋柔性电缆的截面设计;
通过创建开放式的软件接口,与海洋电缆结构分析和计算中使用的国内外不同软件之间建立数据传输,基于海洋电缆的截面设计结果,获取参数信息并通过建立的数据传输完成对电缆截面布局及线型的多场耦合分析和优化设计;
基于基本电缆设计校验标准及根据操作人员需要添加的特制校验标准,对优化设计结果进行安全校核,得到校核通过的电缆设计方案;
对软件开发平台中的关键数据进行存储和读取,基于机器学习与深度学习的方法,对电缆截面布局方式、电缆线型结构的快速智能预测和设计;
对软件开发平台的计算结果进行可视化展示、导出。
本发明还公开了一种计算机可存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述软件开发方法的步骤。
经由上述的技术方案可知,本发明公开提供了一种海洋电缆多功能集成软件开发平台、方法及存储介质,与现有技术相比,具有以下有益效果:
(1)本发明能够实现对海洋电缆多物理场耦合工况下的性能分析。由于海洋电缆内部功能单元类别较多存在多物理场作用与特殊约束,而本发明可以考虑此类影响并进行性能分析;
(2)本发明能够实现海洋柔性电缆多尺度分析,可以对海洋电缆截面性能与整体线型进行耦合分析,通过电缆截面性能的计算结果传递给整体线型设计模块进行整体线型设计,同时可通过截面性能和整体线型设计结果的不断迭代,实现海洋电缆的多尺度优化设计;
(3)本发明能够基于数据驱动,通过构建云端数据库,并借此训练深度学习模型,实现海洋电缆结构的智能化设计和快速预测;
(4)本发明具有独特的单元构件组建形式,能够通过鼠标的直接拖动,实现复杂截面的精确建模,具有明显的用户友好性与易操作性;
(5)本发明具有较好的开放性与数据转化能力,该软件开发平台是一个集成化的软件平台,能够与目前大部分主流的电缆软件相互对接和数据转化,具有较强的综合处理能力。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1是海洋电缆多功能集成软件开发平台的整体框架图;
图2是前处理模块的结构图;
图3是集成软件分析模块的结构图;
图4是后处理模块的结构图;
图5是性能校验模块的结构图;
图6是基于云端数据库的数据驱动模块的结构图;
图7是整体线型设计子模块在Orcaflex软件中的设计结果图形展示。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本发明实施例公开了一种海洋电缆多功能集成软件开发平台,如图1所示,包括:前处理模块、集成软件分析模块、性能校验模块、后处理模块以及基于云端数据库的数据驱动模块;
前处理模块,基于输入或从基于云端数据库的数据驱动模块中调用的工程基本数据,构建结构单元并进行排布,形成海洋电缆的截面设计;前处理模块分别与集成软件分析模块、基于云端数据库的数据驱动模块以及后处理模块相连;
集成软件分析模块,通过创建开放式的软件接口,可以与海洋电缆结构分析和计算中使用的国内外不同软件之间建立数据传输,基于海洋电缆的截面设计结果,获取参数信息并通过建立的数据传输完成对电缆截面布局及线型的多场耦合分析和优化设计,输出结果发送至性能校验模块、后处理模块以及基于云端数据库的数据驱动模块;
性能校验模块,如图5所示,可以基于行业电缆设计校验标准或者根据操作人员需要添加的特制校验标准,对集成软件分析模块的结果进行安全校核,校核通过的电缆设计方案发送至基于云端数据库的数据驱动模块及后处理模块;
基于云端数据库的数据驱动模块,用于对软件开发平台中的关键数据进行存储和读取,并基于上述云端数据库,利用机器学习与深度学习的方法,对电缆截面布局方式、电缆线型结构进行快速智能预测和设计;
后处理模块用于对软件开发平台的计算结果进行可视化展示、导出。
进一步的,参见图2,前处理模块包括参数输入子模块、单元构建子模块与截面设计子模块;参数输入子模块、单元构建子模块和截面设计子模块依次相连;
参数输入子模块用于输入项目参数,如水深、波高、流速、周期、浮体参数、材料参数、标准规范、弹性模量、剪切模量、泊松比、电阻率、导热率等,为包括云端数据库存储、计算、分析、优化设计、安全校核和计算报告分析在内的后续项目提供基础数据;
单元构建子模块,基于给定的几何参数和/或调用云端数据库中参数输入子模块输入的项目参数,构建具有特定单元尺寸和特定功能的结构单元;
截面设计子模块通过参数化定义结构单元间的相互关系或对结构单元自由拖动的方式对结构单元进行排布,形成海洋电缆的截面设计。
进一步的,参见图3,集成软件分析模块包括截面分析子模块、有限元多物理场耦合分析子模块、整体线型设计子模块;
截面分析子模块,可对截面设计子模块的截面设计结果进行基本力学分析和功能性分析,获取包括拉伸刚度、弯曲刚度、扭转刚度、最小弯曲半径、最大许用应力、稳定性参数、击穿电压、绝缘电阻在内的参数;截面分析子模块还依据截面最大刚度、截面最优散热布局以及截面功能性要求布局等设计目标,实现电缆截面布局优化设计功能;截面分析子模块还可依据设计截面布局,计算得到截面刚度及制造成本等基本截面参数信息。输出结果发送至整体线型设计子模块、性能校验模块、后处理模块以及基于云端数据库的数据驱动模块;
有限元多物理场耦合分析子模块可连接ANSYS、ABAQUS等有限元分析软件,对截面进行多物理场耦合分析,考虑电、热、磁与机械载荷下的多物理场耦合分析,计算包括拉伸刚度、弯曲刚度、扭转刚度、最小弯曲半径、最大许用应力、稳定性参数、应力、位移、温度、击穿电压、绝缘电阻在内的参数,输出结果发送至整体线型设计子模块、性能校验模块、后处理模块以及基于云端数据库的数据驱动模块;
整体线型设计子模块,可以根据不同的海洋工况进行电缆的整体线型布置。基于Orcaflex、Fluent等整体分析软件,依据电缆的最大张力、最小弯曲半径、电缆拉伸刚度、弯曲刚度、扭转刚度要求、稳定性要求等设计目标,实现对电缆线型的分析、设计和优化;同时可以结合截面分析子模块在电缆局部截面分析和布局与整体线型设计的多尺度耦合工况下的优化设计,计算所得的电缆线型的拉伸刚度、弯曲刚度、最小弯曲半径、最大张力、最大曲率和局部应力等结果发送至性能校验模块、基于云端数据库的数据驱动模块。
进一步的,参见图6,基于云端数据库的数据驱动模块包括云端数据库子模块与数据驱动子模块;
云端数据库子模块,通过构建用户本地与服务器之间的连接,对前处理模块和集成软件分析模块中的关键数据进行云端存储,便于后续应用;云端数据库子模块与数据驱动子模块相连,云端数据库子模块还与前处理模块、集成软件分析模块和性能校验模块相互连接;
数据驱动子模块通过云端数据库子模块的数据记录,基于机器学习与深度学习的方法,实现对电缆截面布局方式、电缆线型结构的快速智能预测和设计;并与云端数据库子模块相互连接。
进一步的,如图4所示,后处理模块包括AutoCAD子模块、三维展示子模块以及分析报告子模块;
AutoCAD子模块基于AutoCAD商业软件,通过调用软件开发平台中的AutoCAD子模块端口,将软件开发平台中前处理模块、集成软件分析模块的结果信息,以命令流的形式传递入AutoCAD软件中,将基于软件开发平台设计的电缆结果,以工程设计图纸的形式传出;
三维展示子模块,将软件开发平台中前处理模块、集成软件分析模块的结果信息,在软件中以三维结构的可视化形式展出;
分析报告子模块,基于Office软件,通过调用软件开发平台中的分析报告模块端口,将软件开发平台中前处理模块、集成软件分析模块的结果信息以报告形式导出。
实施例2
本发明实施例公开了一种海洋电缆多功能集成软件开发方法,包括以下步骤:
输入或调用工程基本数据,构建结构单元并进行排布,形成海洋电缆的截面设计;
通过创建开放式的软件接口,与海洋电缆结构分析和计算中使用的国内外不同软件之间建立数据传输,基于海洋电缆的截面设计结果,获取参数信息并通过建立的数据传输完成对电缆截面布局及线型的多场耦合分析和优化设计;
基于基本电缆设计校验标准及根据操作人员需要添加的特制校验标准,对优化设计结果进行安全校核,得到校核通过的电缆设计方案;
对软件开发平台中的关键数据进行存储和读取,基于机器学习与深度学习的方法,对电缆截面布局方式、电缆线型结构的快速智能预测和设计;
对软件开发平台的计算结果进行可视化展示、导出。
本发明实施例还公开了一种计算机可存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述软件开发方法的步骤。
本发明能够应用于海洋电缆截面与海洋电缆整体线型的多尺度分析领域、海洋电缆多物理场耦合分析以及基于数据驱动的快速海洋电缆分析,下面通过具体的实施例,对其进行解释说明。
以海洋电缆中脐带缆的多物理场耦合分析为例,参见表1,本发明能够实现多物理场耦合分析。中心电缆四层铠装脐带缆内部包含有光纤、电缆、液压管、阻垢剂管以及铠装钢丝等众多复杂单元,通过本发明中的软件开发平台能够对这种具有复杂截面形状,且考虑电热以及由于光纤带来特殊约束的脐带缆界面,进行力场、电场、磁场和温度场的多物理场耦合分析。
表1供电脐带缆
物理参数 单位 计算结果
外径 mm 170.6±3
干重 kg/m 63.96
湿重 kg/m 42.18
外径与湿重比值 m 2/kN 0.41
拉伸刚度 N 11.9E+08
弯曲刚度 N*m 2 13761
扭转刚度 N*m 2 19677
最大许用力 N 1307848
最小弯曲半径 m 4.87
最大工作张力 kN 653
最小破断张力 kN 1307
以脐带缆多尺度分析为例,如图7所示为整体线型设计模块在Orcaflex软件中的设计结果图像展示,该脐带缆线型是基于上述四层铠装脐带缆截面力学分析基础,考虑了弯曲加强器与浮力块的影响,实现了宏观线型尺度与微观截面性能尺度相结合的脐带缆多尺度耦合分析。
本发明提供了一种海洋电缆多功能集成软件开发平台、方法及存储介质,能够对海洋电缆设计所用多款国际软件实现平台的集成化,对软件间的数据交互实现自动化,同时能够对设计结果进行多场耦合分析、多尺度及多工况载荷的分析与优化,通过云端数据库和数据驱动技术实现海洋电缆结构设计的智能化和性能的快速预测,具有较好的开放性与数据转化能力。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的方法而言,由于其与实施例公开的系统相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种海洋电缆多功能集成软件开发平台,其特征在于,包括:前处理模块、集成软件分析模块、性能校验模块、后处理模块以及基于云端数据库的数据驱动模块;
    所述前处理模块,基于输入的工程基本数据或调用所述基于云端数据库的数据驱动模块,构建结构单元并进行排布,形成海洋电缆的截面设计;所述前处理模块分别与集成软件分析模块、基于云端数据库的数据驱动模块以及后处理模块相连;
    所述集成软件分析模块,通过创建开放式的软件接口,与海洋电缆结构分析和计算中使用的国内外不同软件之间建立数据传输,基于海洋电缆的截面设计结果,获取参数信息并通过建立的数据传输完成对电缆截面布局及线型的多场耦合分析和优化设计,输出结果发送至所述性能校验模块、后处理模块以及基于云端数据库的数据驱动模块;
    所述性能校验模块,基于基本电缆设计校验标准及根据操作人员需要添加的特制校验标准,对所述集成软件分析模块的结果进行安全校核,校核通过的电缆设计方案发送至所述基于云端数据库的数据驱动模块及后处理模块;
    所述基于云端数据库的数据驱动模块,用于对软件开发平台中的关键数据进行存储和读取,基于机器学习与深度学习的方法,对电缆截面布局方式、电缆线型结构进行快速智能预测和设计;
    所述后处理模块用于对软件开发平台的计算结果进行可视化展示、导出。
  2. 根据权利要求1所述的一种海洋电缆多功能集成软件开发平台,其特征在于,所述前处理模块包括参数输入子模块、单元构建子模块与截面设计子模块;所述参数输入子模块、单元构建子模块和截面设计子模块依次相连;
    所述参数输入子模块用于输入项目参数,为包括云端数据库存储、计算、分析、优化设计、安全校核和计算报告分析在内的后续项目提供基础数据;
    所述单元构建子模块,基于给定的几何参数和/或调用云端数据库中参数输入子模块输入的项目参数,构建结构单元;
    所述截面设计子模块通过参数化定义结构单元间的相互关系或对结构单元自由拖动的方式对结构单元进行排布,形成海洋电缆的截面设计。
  3. 根据权利要求2所述的一种海洋电缆多功能集成软件开发平台,其特征在于,所述项目参数包括水深、波高、流速、周期、浮体参数、材料参数、标准规范、弹性模量、剪切模量、泊松比、电阻率、导热率。
  4. 根据权利要求1所述的一种海洋电缆多功能集成软件开发平台,其特征在于,所述集成软件分析模块包括截面分析子模块、有限元多物理场耦合分析子模块、整体线型设计子模块;
    所述截面分析子模块,基于所述前处理模块的截面设计结果,获取包括拉伸刚度、弯曲刚度、扭转刚度、最小弯曲半径、最大许用应力、稳定性参数、击穿电压、绝缘电阻在内的参数,输出结果发送至所述整体线型设计子模块、性能校验模块、后处理模块以及基于云端数据库的数据驱动模块;
    所述有限元多物理场耦合分析子模块与包括ANSYS、ABAQUS在内的有限元分析软件连接,基于所述前处理模块的截面设计结果及对电、热、磁、机械载荷的考虑,计算包括拉伸刚度、弯曲刚度、扭转刚度、最小弯曲半径、最大许用应力、稳定性参数、应力、位移、温度、击穿电压、绝缘电阻在内的参数,输出结果发送至所述整体线型设计子模块、性能校验模块、后 处理模块以及基于云端数据库的数据驱动模块;
    所述整体线型设计子模块,用于根据不同的海洋工况进行电缆的整体线型布置,基于包括Orcaflex、Fluent在内的整体分析软件,调用多尺度优化设计算法,依据包括电缆的最大张力、最小弯曲半径、电缆拉伸刚度、弯曲刚度、扭转刚度要求、稳定性要求在内的设计目标,对电缆线型进行优化设计;同时结合电缆截面布局与整体线型设计进行多尺度耦合工况下的优化设计,计算包括电缆线型的拉伸刚度、弯曲刚度、最小弯曲半径、最大张力、最大曲率和局部应力在内的参数,输出结果发送至所述性能校验模块、基于云端数据库的数据驱动模块。
  5. 根据权利要求4所述的一种海洋电缆多功能集成软件开发平台,其特征在于,所述截面分析子模块还依据包括截面最大刚度、截面最优散热布局以及截面功能性要求布局在内的设计目标,对电缆截面布局进行优化设计。
  6. 根据权利要求4所述的一种海洋电缆多功能集成软件开发平台,其特征在于,所述截面分析子模块还基于设计截面布局,计算包括截面刚度及制造成本在内的基本截面参数信息。
  7. 根据权利要求1所述的一种海洋电缆多功能集成软件开发平台,其特征在于,所述基于云端数据库的数据驱动模块包括云端数据库子模块与数据驱动子模块;
    所述云端数据库子模块,通过构建用户本地与服务器之间的连接,对所述前处理模块和集成软件分析模块中的关键数据进行云端存储;所述云端数据库子模块与数据驱动子模块相连,所述云端数据库子模块还与前处理模块、集成软件分析模块和性能校验模块相互连接;
    所述数据驱动子模块,借助大数据技术对所述云端数据库子模块存储的数据集进行读取处理,基于机器学习与深度学习的方法,对电缆截面布局方式、电缆线型结构进行快速智能预测和设计。
  8. 根据权利要求1所述的一种海洋电缆多功能集成软件开发平台,其特征在于,所述后处理模块包括AutoCAD子模块、三维展示子模块以及分析报告子模块;
    所述AutoCAD子模块基于AutoCAD商业软件,通过调用软件开发平台中的AutoCAD子模块端口,将软件开发平台中所述前处理模块、集成软件分析模块的结果信息,以命令流的形式传递入AutoCAD软件中,将基于软件开发平台设计的电缆结果,以工程设计图纸的形式传出;
    所述三维展示子模块,用于将软件开发平台中所述前处理模块、集成软件分析模块的结果信息,在软件中以三维结构的可视化形式展出;
    所述分析报告子模块基于Office软件,通过调用软件开发平台中的分析报告模块端口,将软件开发平台中所述前处理模块、集成软件分析模块的结果信息以报告形式导出。
  9. 一种海洋电缆多功能集成软件开发方法,其特征在于,包括以下步骤:
    输入或调用工程基本数据,构建结构单元并进行排布,形成海洋柔性电缆的截面设计;
    通过创建开放式的软件接口,与海洋电缆结构分析和计算中使用的国内外不同软件之间建立数据传输,基于海洋电缆的截面设计结果,获取参数信息并通过建立的数据传输完成对电缆截面布局及线型的多场耦合分析和优化设计;
    基于基本电缆设计校验标准及根据操作人员需要添加的特制校验标准,对优化设计结 果进行安全校核,得到校核通过的电缆设计方案;
    对软件开发平台中的关键数据进行存储和读取,基于机器学习与深度学习的方法,对电缆截面布局方式、电缆线型结构的快速智能预测和设计;
    对软件开发平台的计算结果进行可视化展示、导出。
  10. 一种计算机可存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求9所述的软件开发方法的步骤。
PCT/CN2022/112462 2021-10-19 2022-08-15 一种海洋电缆多功能集成软件开发平台、方法及存储介质 WO2023065793A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/042,360 US12124776B2 (en) 2021-10-19 2022-08-15 Marine cable multifunctional integrated software development platform, method, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111216970.1 2021-10-19
CN202111216970.1A CN113868820B (zh) 2021-10-19 2021-10-19 一种海洋电缆多功能集成软件开发平台、方法及存储介质

Publications (1)

Publication Number Publication Date
WO2023065793A1 true WO2023065793A1 (zh) 2023-04-27

Family

ID=79000398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112462 WO2023065793A1 (zh) 2021-10-19 2022-08-15 一种海洋电缆多功能集成软件开发平台、方法及存储介质

Country Status (3)

Country Link
US (1) US12124776B2 (zh)
CN (1) CN113868820B (zh)
WO (1) WO2023065793A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118364528A (zh) * 2024-06-19 2024-07-19 中国石油大学(华东) 一种深水聚酯缆系泊系统布局优化方法和系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113868820B (zh) 2021-10-19 2023-01-24 大连理工大学 一种海洋电缆多功能集成软件开发平台、方法及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111653401A (zh) * 2020-06-15 2020-09-11 南海海缆有限公司 一种钢丝铠装海底电缆设计方法
CN112016236A (zh) * 2020-09-10 2020-12-01 重庆交通大学 一种基于ansys的海洋平台建模方法
CN113868820A (zh) * 2021-10-19 2021-12-31 大连理工大学 一种海洋电缆多功能集成软件开发平台、方法及存储介质

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103870635A (zh) * 2014-02-24 2014-06-18 上海宇航系统工程研究所 一种基于模块化的大型结构快速设计分析优化系统
CN106202727B (zh) * 2016-07-12 2020-05-22 上海交通大学 异型线缆拉拔模具的设计方法及系统
CN107944100B (zh) * 2017-11-13 2020-10-30 青岛汉缆股份有限公司 综合生产脐带缆的线型设计方法
GB2604030B (en) * 2018-04-30 2022-12-14 Fitzgerald Ken Improved survivability of wave energy convertors
CN109165412A (zh) * 2018-07-27 2019-01-08 中国电力科学研究院有限公司 一种基于地理信息系统的电缆排管工程设计方法及系统
US10747595B2 (en) * 2018-12-04 2020-08-18 Sap Se Application framework for simulation engineering
CN110008509B (zh) * 2019-03-01 2020-07-07 中国海洋大学 一种考虑背景流场下的内孤立波作用力特性分析方法
DE102019208923A1 (de) * 2019-06-19 2020-12-24 Robert Bosch Gmbh Verfahren und Vorrichtung zum Bestimmen des zeitlichen Strukturverhaltens eines Festkörpers
US10963242B2 (en) * 2019-06-24 2021-03-30 Hartford Fire Insurance Company Intelligent software agent to facilitate software development and operations
US11334794B2 (en) * 2020-04-28 2022-05-17 Trabus Artificial-intelligence-based waterway information system
US20220327258A1 (en) * 2020-07-28 2022-10-13 Dalian University Of Technology Efficient design and optimization algorithm framework of multi-scale porous structures
CN112182928B (zh) * 2020-09-17 2023-04-07 中国海洋大学 一种橡胶制品力学性能分析及优化设计软件系统
CN112417726B (zh) * 2020-11-20 2022-12-20 中国船舶工业集团公司第七0八研究所 一种远程智能浮式平台锚泊定位安全评估系统
US20220398537A1 (en) * 2021-06-10 2022-12-15 Caterpillar Inc. System and method for calculating cost for wire harness assembly
CN113408174B (zh) * 2021-06-28 2024-07-12 大连理工大学 骨骼模型构建方法、装置、计算机设备和存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111653401A (zh) * 2020-06-15 2020-09-11 南海海缆有限公司 一种钢丝铠装海底电缆设计方法
CN112016236A (zh) * 2020-09-10 2020-12-01 重庆交通大学 一种基于ansys的海洋平台建模方法
CN113868820A (zh) * 2021-10-19 2021-12-31 大连理工大学 一种海洋电缆多功能集成软件开发平台、方法及存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PROVASI, R. ET AL.: "AN INTEGRATED ENVIRONMENT FOR DESIGN AND ANALYSIS OF UMBILICAL CABLES", PROCEEDINGS OF THE ASME 2017 36TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 30 June 2017 (2017-06-30), XP009545739 *
WANG, CHONG ET AL.: "Design of Ocean Umbilical Based on Integrated Design Platform", SHIP ENGINEERING, vol. 42, no. supplement 1, 15 July 2020 (2020-07-15), XP009545738 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118364528A (zh) * 2024-06-19 2024-07-19 中国石油大学(华东) 一种深水聚酯缆系泊系统布局优化方法和系统

Also Published As

Publication number Publication date
US20240265161A1 (en) 2024-08-08
CN113868820A (zh) 2021-12-31
CN113868820B (zh) 2023-01-24
US12124776B2 (en) 2024-10-22

Similar Documents

Publication Publication Date Title
WO2023065793A1 (zh) 一种海洋电缆多功能集成软件开发平台、方法及存储介质
AlBahnassi et al. Near real-time motion planning and simulation of cranes in construction: Framework and system architecture
CN104063550A (zh) 一种基于云计算平台的多物理场cae系统
Ororbia et al. Design synthesis through a Markov decision process and reinforcement learning framework
CN104504167A (zh) 一种输电杆塔结构静态力学分析系统及其仿真方法
CN104268322A (zh) Weno差分方法的一种边界处理技术
Musil et al. Towards sustainable architecture: 3d convolutional neural networks for computational fluid dynamics simulation and reverse designworkflow
Yin et al. Study on the automatic optimization design of the cross-sectional layout of an umbilical with layers based on the GA-GLM
Peddada et al. A novel two-stage design framework for two-dimensional spatial packing of interconnected components
Ma et al. Computer-aided modeling of wire ropes bent over a sheave
Shibahara et al. Approach to automation of line heating by combination of reinforcement learning and finite element method simulation
CN111814285B (zh) 一种海缆弯曲保护器的拓扑优化设计方法
Shao et al. A simulation data-driven design approach for rapid product optimization
CN116911114A (zh) 一种耐张线夹压接飞边缺陷的工艺优化方法
CN111563339A (zh) 基于变量耦合与软件集成的cfrp导流罩一体化设计方法
Zhang et al. A parametric model of umbilical cable with siemens NX considering its reliability
Zhang et al. Research on digital twin model of energy equipment
Du et al. A review: virtual assembly of flexible cables based on physical modeling
Zhao et al. A practical optimisation method of submarine base considering vibration reduction, light-weight and shock resistance
Saric et al. Development of integrated intelligent CAD system for calculation, designing and development of bridge crane
Pang et al. Co-design of an unmanned cable shovel for structural and control integrated optimization: A highly heterogeneous constrained multi-objective optimization algorithm
Xu et al. An integrated method of CAD, CAE and multi-objective optimization
CN109193813B (zh) 一种电力系统热稳定安全域雷达图绘制方法
Lee et al. Development of a web-based open source CAE platform for simulation of IC engines
Wang et al. Topology optimization design of filling bodies in an umbilical based on moving morphable components theory

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22882413

Country of ref document: EP

Kind code of ref document: A1