WO2023065416A1 - 一种适合单相电能表使用的低成本超级电容充电电路 - Google Patents

一种适合单相电能表使用的低成本超级电容充电电路 Download PDF

Info

Publication number
WO2023065416A1
WO2023065416A1 PCT/CN2021/129417 CN2021129417W WO2023065416A1 WO 2023065416 A1 WO2023065416 A1 WO 2023065416A1 CN 2021129417 W CN2021129417 W CN 2021129417W WO 2023065416 A1 WO2023065416 A1 WO 2023065416A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
voltage
supercapacitor
resistor
transistor
Prior art date
Application number
PCT/CN2021/129417
Other languages
English (en)
French (fr)
Inventor
钱波
都正周
纪建设
孙应军
黄亚娟
张永利
郭权
李想
Original Assignee
河南许继仪表有限公司
许继集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河南许继仪表有限公司, 许继集团有限公司 filed Critical 河南许继仪表有限公司
Publication of WO2023065416A1 publication Critical patent/WO2023065416A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/30Means for acting in the event of power-supply failure or interruption, e.g. power-supply fluctuations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the invention relates to the technical field of capacitor charging, in particular to a low-cost supercapacitor charging circuit and system suitable for single-phase electric energy meters.
  • the object of the present invention is to provide a low-cost supercapacitor charging circuit and system suitable for the use of single-phase electric energy meters.
  • the output of the charging circuit can be adjusted by setting an output voltage regulation module, thereby reducing The voltage at both ends of the supercapacitor to be charged is increased, and the life index of the whole machine of the single-phase smart energy meter is improved.
  • a low-cost supercapacitor charging circuit suitable for single-phase electric energy meters is provided.
  • the charging circuit is used to charge supercapacitors, including charging voltage input terminals, output voltage regulation modules and the charging voltage output terminal;
  • the charging voltage output terminal is connected to the supercapacitor to be charged, and is used to output the charging voltage to the super voltage;
  • the output voltage regulation module is connected between the charging voltage input terminal and the charging voltage output terminal, and is used for regulating the voltage output by the charging voltage output terminal.
  • the temperature compensation module is connected to the output voltage regulation module, and is used to perform temperature compensation on the output voltage regulation module.
  • the current limiting module is connected to the charging circuit between the charging voltage input terminal and the charging voltage output terminal to limit the current of the charging circuit.
  • the output voltage regulation module includes a first regulation resistor, a second regulation resistor and a voltage regulation transistor;
  • the temperature compensation module includes a temperature compensation transistor
  • the base of the temperature compensation transistor is connected to the base of the voltage regulation transistor.
  • the BE junction temperature coefficient of the temperature compensation transistor and the voltage regulation transistor is the same or close to.
  • the current limiting module includes a current limiting resistor
  • a charging system with adjustable output voltage including a smart electric energy meter and a charging circuit; wherein,
  • the charging circuit includes a low-cost supercapacitor charging circuit suitable for a single-phase electric energy meter as described in the first aspect of the present invention;
  • the smart electric energy meter includes a single-phase intelligent electric energy meter or a three-phase intelligent electric energy meter;
  • the present invention provides a low-cost supercapacitor charging circuit and system suitable for single-phase electric energy meters.
  • the inter-output voltage adjustment module is used to adjust the voltage output by the charging voltage output terminal, thereby reducing the voltage at both ends of the supercapacitor to be charged, and improving the life index of the whole machine of the single-phase smart energy meter.
  • the present invention has the following beneficial technical effects:
  • the working state of the charging circuit is stable. Setting the value range of the adjusting resistor in the output voltage adjusting module within 200k ⁇ can prevent the introduction of external noise and other interference signals, and ensure the output voltage of the charging voltage output terminal is stable.
  • Fig. 2 is a schematic structural diagram of a low-cost supercapacitor charging circuit suitable for a single-phase electric energy meter according to the present invention.
  • the life index of the supercapacitor In order to improve the life index of the supercapacitor, it can be realized by reducing the voltage at both ends of the supercapacitor. This is because the service life of the supercapacitor is related to the voltage applied at both ends. The lower the voltage applied at both ends of the supercapacitor, the longer its service life. long. Therefore, it is necessary to adopt a charging scheme with adjustable output voltage, so that after the voltage at both ends of the super capacitor is stable, it can meet the device life and the performance index requirements of the single-phase smart meter for this circuit, thereby improving the life index of the super capacitor.
  • FIG. 1 The principle schematic diagram of a supercapacitor charging circuit used in the prior art is shown in Figure 1, which uses an output voltage adjustable LDO chip; compared with the general output adjustable LDO, it has the following special properties: When the "V-charge" terminal is 0, the current consumed by the supercapacitor through the loop from pin 6OUT to pin 2GND is not more than 3uA, and the energy in the supercapacitor cannot be fed back to the input terminal.
  • the current consumption of the supercapacitor through the resistors R4 and R5 to the GND loop is controlled to be less than 2uA, which can ensure that when the front-end "V-charge" is 0,
  • the current value consumed by the charging circuit itself is not more than 5uA.
  • the circuit is unstable: in order to ensure that the current consumption of the loop through the resistors R4 and R5 to GND is less than 2uA, the resistance values of the resistors R4 and R5 need to be set above the M ⁇ level, and this level of resistance is easy to introduce external noise and other interference signals , will cause the output voltage instability and so on.
  • Non-universal LDO This type of LDO has undergone special internal treatment to ensure that the current consumed by the circuit from pin 6OUT to pin 2GND is controlled at the uA level during the power supply process of the super capacitor; so this LDO is not universal. higher cost. And because of the special performance of the LDO, the cost of this type of chip is generally higher than that of a general-purpose LDO.
  • a low-cost supercapacitor charging circuit suitable for single-phase electric energy meters is provided.
  • the technical solution of the present invention will be described in detail below in conjunction with the accompanying drawings.
  • a low-cost supercapacitor charging circuit suitable for single-phase electric energy meters is provided.
  • the circuit structure diagram of the charging circuit is shown in Fig. 2, and the charging circuit is used to charge the supercapacitor CD1 , including charging voltage input terminal V-charging, output voltage regulation module and charging voltage output terminal; wherein,
  • the charging voltage input terminal V-charging is connected to input the charging voltage.
  • the output voltage regulation module is connected between the charging voltage input terminal and the charging voltage output terminal, and is used for regulating the voltage output by the charging voltage output terminal.
  • the output voltage regulation module may include, for example, a first regulation resistor R2, a second regulation resistor R3 and a voltage regulation transistor Q2; the first regulation resistor R2 and the second regulation resistor R3 are connected in series to the charging voltage input terminal V- Between the charging and grounding terminals DGND, the series connection point of the first adjusting resistor R2 and the second adjusting resistor R3 is connected to the base of the voltage regulating transistor Q2; the collector and emitter of the voltage regulating transistor Q2 are connected to Between the charging voltage input terminal V-charge and the charging voltage output terminal.
  • the voltage output by the charging voltage output terminal can be adjusted by adjusting the resistance values of the first adjusting resistor R2 and the second adjusting resistor R3.
  • the first adjusting resistor R2 and the second adjusting resistor R3 can be, for example, film-type variable resistors and wire-wound variable resistors, respectively, or other adjustable resistance elements commonly used in this field with adjustable resistance. This is not specifically limited.
  • an emitter follower circuit is composed of the first regulating resistor R2, the second regulating resistor R3 and the voltage regulating transistor Q2, which has two functions:
  • the BE junction of the voltage regulating transistor Q2 plays a role in preventing the backfeeding of the supercapacitor.
  • the leakage current can be controlled within 1 ⁇ A in the whole temperature range.
  • the charging circuit may also include a temperature compensation module and a current limiting module.
  • the temperature compensation module is connected to the output voltage regulation module, and is used to perform temperature compensation on the output voltage regulation module.
  • the temperature compensation module may include a temperature compensation transistor Q3; the base of the temperature compensation transistor Q3 is connected to the base of the voltage regulation transistor Q2.
  • the BE junction temperature coefficient of the temperature compensation transistor Q3 is the same as or close to that of the voltage regulation transistor Q2. Because the BE junction voltage drop of the voltage regulating transistor Q2 has a negative temperature effect, that is, when the current passing through the BE junction remains constant, the higher the ambient temperature, the smaller the BE junction voltage drop; otherwise, the lower the ambient temperature, the smaller the BE junction voltage drop.
  • the change of the emitter output voltage of the voltage regulating transistor Q2 has a great influence on the life of the supercapacitor.
  • a temperature compensation transistor Q3 of the same type as that of the voltage regulating transistor Q2 is used, and the BE junction of the temperature compensating transistor Q3 is connected in series with the base of the voltage regulating transistor Q2 Between the second adjusting resistor R3; since the voltage adjusting transistor Q2 and the temperature compensating transistor Q3 belong to the same type of transistor, the temperature coefficient of the BE junction is close, and the temperature compensation can be performed better.
  • the principle of temperature compensation is as follows:
  • Temperature rise ⁇ V BE of the voltage regulation transistor Q2 drops ⁇ V BE variation of the temperature compensation transistor Q3 offsets part of the V BE variation of the voltage regulation transistor Q2 ⁇ V BE of the temperature compensation transistor Q3 drops ⁇ V B of the voltage regulation transistor Q2 drops;
  • the current limiting module is connected to the charging circuit between the charging voltage input terminal and the charging voltage output terminal to limit the current of the charging circuit.
  • the current limiting module may include a current limiting resistor R1, and the current limiting resistor R1 is connected between the charging voltage input terminal V-charging and the voltage regulating transistor Q2.
  • V-charging is performed on the supercapacitor CD1 through the current limiting resistor R1 and the CE junction of the voltage regulating transistor Q2.
  • Charging; the current-limiting resistor R1 can prevent the charging current from being too large, causing the input terminal "V-charging” voltage to be pulled down, and the voltage regulating transistor Q2 to burn out due to overpower.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明涉及一种适合单相电能表使用的低成本超级电容充电电路及系统,该充电电路用于为超级电容充电,通过连接于充电电压输入端和充电电压输出端之间输出电压调节模块来对所述充电电压输出端输出的电压进行调节,从而降低了待充电超级电容两端的电压,提高了单相智能电能表的整机寿命指标。本发明提供的技术方案,充电电路自身消耗的电流较低,充电电路的电路工作状态稳定,装置结构简单并且成本较低。

Description

一种适合单相电能表使用的低成本超级电容充电电路 技术领域
本发明涉及电容充电技术领域,尤其涉及一种适合单相电能表使用的低成本超级电容充电电路及系统。
背景技术
智能电能表行业内普遍采用超级电容作为储能器件,并且单相智能电能表的技术规范对超级电容充电电路的充电时间、自身漏电流等指标进行了严格的限制。目前,智能电能表行业中面临将整机寿命指标提升的问题。
单相智能电能表整机寿命指标的提升,势必要求采用长寿命元器件或者对关键元器件对应电路进行长寿命降额设计;由于现有超级电容充电方案将超级电容的额定电压作为充电截止电压,已经无法同时满足上述寿命指标和电路指标要求,因此需要针对此矛盾研究、开发新的技术方案。
发明内容
基于现有技术的上述情况,本发明的目的在于提供一种适合单相电能表使用的低成本超级电容充电电路及系统,利用通过设置输出电压调节模块来使得充电电路的输出可调,从而降低了待充电超级电容两端的电压,提高了单相智能电能表的整机寿命指标。
为达到上述目的,根据本发明的一个方面,提供了一种适合单相电能表使用的低成本超级电容充电电路,该充电电路用于为超级电容充电,包括充电电压输入端、输出电压调节模块和充电电压输出端;其中,
所述充电电压输入端连接输入充电电压;
所述充电电压输出端连接待充电的超级电容,用于向所述超级电压输出充电电压;
所述输出电压调节模块连接于所述充电电压输入端和所述充电电压输出端之间,用于对所述充电电压输出端输出的电压进行调节。
进一步的,还包括温度补偿模块;
所述温度补偿模块与所述输出电压调节模块连接,用于对所述输出电压调节模块进行温度补偿。
进一步的,还包括限流模块;
所述限流模块连接于所述充电电压输入端和充电电压输出端之间的充电回路上,以对所述充电回路的电流进行限制。
进一步的,所述输出电压调节模块包括第一调节电阻、第二调节电阻和电压调节晶体管;
所述第一调节电阻和第二调节电阻串联连接于所述充电电压输入端和接地端之间,所述第一调节电阻和第二调节电阻的串联连接点连接所述电压调节晶体管的基极;
所述电压调节晶体管的集电极和发射极连接于所述充电电压输入端和充电电压输出端之间。
进一步的,通过调节所述第一调节电阻和第二调节电阻的阻值对所述充电电压输出端输出的电压进行调节。
进一步的,所述第一调节电阻和第二调节电阻分别包括膜式可变电阻器和绕线式可变电阻器。
进一步的,所述温度补偿模块包括温度补偿晶体管;
所述温度补偿晶体管的基极与所述电压调节晶体管的基极相互连接。
进一步的,所述温度补偿晶体管与所述电压调节晶体管的BE结温度系数相同或者接近。
进一步的,所述限流模块包括限流电阻;
所述限流电阻连接于所述充电电压输入端与所述电压调节晶体管之间。
根据本发明的另一个方面,提供了一种输出电压可调的充电系统,包括智能电能表和充电电路;其中,
所述充电电路包括如本发明第一个方面所述的适合单相电能表使用的低成本超级电容充电电路;所述智能电能表包括单相智能电能表或者三相智能电能表;
所述充电电路与所述单相智能电能表中的超级电容连接,用于为所述超级电容充电。
综上所述,本发明提供了一种适合单相电能表使用的低成本超级电容充电电路及系统,该充电电路用于为超级电容充电,通过连接于充电电压输入端和充电电压输出端之间输出电压调节模块来对所述充电电压输出端输出的电压进行调节,从而降低了待充电超级电容两端的电压,提高了单相智能电能表的整机寿命指标。本发明相对于现有技术具有如下有益的技术效果:
(1)充电电路自身消耗的电流较低,采用分立晶体管搭建射极跟随器作为超级电容充电电路的充电电压输出端,通过选择合适的型号规格,可以将充电电路自身的总消耗电流控制在1uA以内。
(2)充电电路的电路工作状态稳定,设定输出电压调节模块中调节电阻的取值范围在200kΩ以内,可以实现不易引入外部噪声等干扰信号,确保充电电压输出端的输出电压稳定。
(3)电路结构简单并且成本较低。
附图说明
图1是现有技术中采用的一种超级电容充电电路的原理示意图;
图2是本发明适合单相电能表使用的低成本超级电容充电电路的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附图,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
为了提升超级电容的寿命指标,可以通过降低超级电容两端电压来实现,这是由于超级电容的使用寿命与两端所施加电压有关,超级电容两端所施加的电压越低,其使用寿命越长。因此需要采用输出电压可调的充电方案,使得超级电容两端电压稳定后,同时满足器件寿命和单相智能表对此电路的性能指标要求,从而可以提升超级电容的寿命指标。
现有技术中采用的一种超级电容充电电路的原理示意图如图1所示,采用了一款输出电压可调LDO芯片;与通用输出可调LDO相比,具备如下特殊性能:在前端输入电压“V-充电”端子为0的情况下,超级电容通过引脚6OUT至引脚2GND回路消耗的电流不大于3uA,并且超级电容中的能量无法反灌至输入端。采用该电路进行充电时,通过为电阻R4和R5选择合适的参数,控制超级电容经过电阻R4和R5至GND回路的电流消耗小于2uA,可确保在前端“V-充电”为0的情况下,此充电电路自身消耗的电流值不大于5uA。
在该充电电路中,通过采用具备特殊性能的LDO芯片,通过调整输出电压,降低超级电容两端电压的方法,既实现了延长超级电容使用寿命的功能,又降低了自身电流消耗指标(对于单相智能电能表,超级电容后端的负载电流在5uA以内,并且要求输入端电压为零,超级电容充满电情况下,可维持后端负载正常运行48h;因此充电电路自身消耗电流值指标影响超级电容的供电时间或者直接决定了超级电容的容量选择),从而解决了前述技术问题。然而,该充电电路仍然存在以下技术问题:
(1)自身消耗电流较大:在前端输入电压为零,即超级电容开始给后级负载供电的情况下,根据前述描述,超级电容充电电路自身消耗的电流约5uA,后级负载电路的电流消耗约3uA,即充电电路自身消耗电流占比超级电容总负载电流约63%。由于要求超级电容维持后级负载正常运行48h的时长指标是固定的,因此减小充电电路自身消耗电流等效于减小超级电容容量,有利于降低整体的硬件成本。
(2)电路工作不稳定:为了确保经过电阻R4和R5至GND回路的电流消耗小于2uA,电阻R4和R5的阻值需要设定在MΩ级别以上,此级别的电阻容 易引入外部噪声等干扰信号,会造成输出电压不稳定等现象。
(3)非通用LDO:此类型的LDO内部经过特殊处理,才能确保超级电容供电过程中,经过引脚6OUT至引脚2GND回路消耗的电流控制在uA级别;所以此LDO不具备通用性,替换成本较高。并且由于该LDO的特殊性能,导致此类型芯片成本普遍高于通用LDO的成本。
针对以上技术问题,根据本发明的一个实施例,提供了一种适合单相电能表使用的低成本超级电容充电电路。下面对结合附图对本发明的技术方案进行详细说明。根据本发明的一个实施例,提供了一种适合单相电能表使用的低成本超级电容充电电路,图2中示出了该充电电路的电路结构示意图,该充电电路用于为超级电容CD1充电,包括充电电压输入端V-充电、输出电压调节模块和充电电压输出端;其中,
所述充电电压输入端V-充电连接输入充电电压。
所述充电电压输出端连接待充电的超级电容CD1,用于向所述超级电压输出充电电压。
所述输出电压调节模块连接于所述充电电压输入端和所述充电电压输出端之间,用于对所述充电电压输出端输出的电压进行调节。所述输出电压调节模块例如可以包括第一调节电阻R2、第二调节电阻R3和电压调节晶体管Q2;所述第一调节电阻R2和第二调节电阻R3串联连接于所述充电电压输入端V-充电和接地端DGND之间,所述第一调节电阻R2和第二调节电阻R3的串联连接点连接所述电压调节晶体管Q2的基极;所述电压调节晶体管Q2的集电极和发射极连接于所述充电电压输入端V-充电和充电电压输出端之间。根据本实施例所提供的输出电压调节模块,可以通过调节所述第一调节电阻R2和第二调节电阻R3的阻值对所述充电电压输出端输出的电压进行调节。所述第一调节电阻R2和第二调节电阻R3例如分别可以为膜式可变电阻器和绕线式可变电阻器,或者为本领域常用的其他阻值可调节的可调节电阻元件,在此不做具体限定。该输出电压调节模块中,由第一调节电阻R2、第二调节电阻R3和电压调节晶体管Q2组成了射极跟随器电路,其具备两个功能:
(1)在“V-充电”电压低于超级电容两端电压情况下,电压调节晶体管Q2的BE结起到防止超级电容反灌的作用,例如通过选取小功率三极管BC817,其BE结的反向漏电流在全温度范围内可控制在1μA以内。
(2)在输入端“V-充电”电压固定的情况下,通过调整第一调节电阻R2和第二调节电阻R3的阻值,改变电压调节晶体管Q2的发射极输出电压,其作用类似于可调输出LDO的反馈电阻,使得本实施例所提供的充电电路可灵活应用于不同场合。
该充电电路还可以包括温度补偿模块和限流模块。
所述温度补偿模块与所述输出电压调节模块连接,用于对所述输出电压调节模块进行温度补偿。该温度补偿模块可以包括温度补偿晶体管Q3;所述温度补偿晶体管Q3的基极与所述电压调节晶体管Q2的基极相互连接。所述温度补偿晶体管Q3与所述电压调节晶体管Q2的BE结温度系数相同或者接近。由于电压调节晶体管Q2的BE结压降具备负温度效应,即在通过BE结电流不变的情况下,环境温度越高,BE结压降越小,反之环境温度越低,BE结压降越大;BE结压降受环境温度影响会导致由第一调节电阻R2和第二调节电阻R3设定的输出电压(射极跟随器特性决定电压调节晶体管Q2的E极电压等于第一调节电阻R2和第二调节电阻R3分压值减去BE结压降)随之改变。由于超级电容寿命与两端电压遵循如下规律:超级电容两端电压每下降0.2V,寿命加倍;反之两端电压增加0.2V,寿命缩短一半。因此电压调节晶体管Q2射极输出电压的改变对超级电容寿命影响较大。为减小电压调节晶体管Q2射极输出电压受温度影响造成的电压波动,采用与电压调节晶体管Q2相同型号的温度补偿晶体管Q3,将温度补偿晶体管Q3的BE结串联在电压调节晶体管Q2的基极与第二调节电阻R3之间;由于电压调节晶体管Q2和温度补偿晶体管Q3属于相同型号的晶体管,BE结的温度系数接近,可较好的进行温度补偿。其进行温度补偿的原理如下:
补偿前:(“V-充电”电压不变)
温度上升→电压调节晶体Q2的V BE下降→超级电容两端电压上升;
温度下降→电压调节晶体Q2的V BE上升→超级电容两端电压下降。
补偿后:(“V-充电”电压不变)
温度上升→电压调节晶体管Q2的V BE下降→温度补偿晶体管Q3的V BE变化压抵消电压调节晶体管Q2V BE的部分变化→温度补偿晶体管Q3的V BE下降→电压调节晶体管Q2的V B下降;
温度下降→电压调节晶体管Q2的V BE上升→温度补偿晶体管Q3的V BE变化压抵消电压调节晶体管Q2V BE的部分变化→温度补偿晶体管Q3的V BE上升→电压调节晶体管Q2的V B上升。
上述温度补偿效果在高低温下实际测量的数据如表1所示(前端输入电压为5V±1%):
表1
温度/电压 V-超级电容(充电30min后测量;设定充电截止电压为4.1V)
-40℃ 4.02V
25℃ 4.04V
70℃ 4.17V
如表1中数据可知,该充电电路的输出电压在-40℃~70℃范围内的变化量为0.15V,与设定输出电压相比的变化率为0.15V/4.1V=3.6%,对应输出电压精度约为±1.8%,其输出稳压性能指标满足超级电容的要求。
所述限流模块连接于所述充电电压输入端和充电电压输出端之间的充电回路上,以对所述充电回路的电流进行限制。所述限流模块可以包括限流电阻R1,所述限流电阻R1连接于所述充电电压输入端V-充电与所述电压调节晶体管Q2之间。在待充电的超级电容CD1两端电压较低,且单相智能电能表整机上电的一段时间内,“V-充电”通过限流电阻R1和电压调节晶体管Q2的CE结对超级电容CD1进行充电;限流电阻R1可以防止充电电流过大,造成拉低输入端“V-充电”电压,和电压调节晶体管Q2过功率烧坏。
通过上述由分立器件组成的具备温度补偿的射极跟随器来构成的充电电路,实现了低成本、输出电压灵活可调、自身消耗电流低、具备温度补偿等 功能,可广泛应用于单相智能电能表等产品上。
根据本发明的另一个实施例,提供了一种输出电压可调的充电系统,包括单相智能电能表和充电电路;其中,所述充电电路包括如本发明第一个实施例所述的适合单相电能表使用的低成本超级电容充电电路;所述充电电路与所述单相智能电能表中的超级电容连接,用于为所述超级电容充电。
综上所述,本发明涉及一种适合单相电能表使用的低成本超级电容充电电路及系统,该充电电路用于为超级电容充电,通过连接于充电电压输入端和充电电压输出端之间输出电压调节模块来对所述充电电压输出端输出的电压进行调节,从而降低了待充电超级电容两端的电压,提高了单相智能电能表的整机寿命指标。本发明提供的技术方案,充电电路自身消耗的电流较低,充电电路的电路工作状态稳定,装置结构简单并且成本较低。
应当理解的是,本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在不偏离本发明的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。此外,本发明所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。

Claims (10)

  1. 一种适合单相电能表使用的低成本超级电容充电电路,该充电电路用于为超级电容充电,其特征在于,包括充电电压输入端、输出电压调节模块和充电电压输出端;其中,
    所述充电电压输入端连接输入充电电压;
    所述充电电压输出端连接待充电的超级电容,用于向所述超级电压输出充电电压;
    所述输出电压调节模块连接于所述充电电压输入端和所述充电电压输出端之间,用于对所述充电电压输出端输出的电压进行调节。
  2. 根据权利要求1所述的电路,其特征在于,还包括温度补偿模块;
    所述温度补偿模块与所述输出电压调节模块连接,用于对所述输出电压调节模块进行温度补偿。
  3. 根据权利要求2所述的电路,其特征在于,还包括限流模块;
    所述限流模块连接于所述充电电压输入端和充电电压输出端之间的充电回路上,以对所述充电回路的电流进行限制。
  4. 根据权利要求3所述的电路,其特征在于,所述输出电压调节模块包括第一调节电阻、第二调节电阻和电压调节晶体管;
    所述第一调节电阻和第二调节电阻串联连接于所述充电电压输入端和接地端之间,所述第一调节电阻和第二调节电阻的串联连接点连接所述电压调节晶体管的基极;
    所述电压调节晶体管的集电极和发射极连接于所述充电电压输入端和充电电压输出端之间。
  5. 根据权利要求4所述的电路,其特征在于,通过调节所述第一调节电阻和第二调节电阻的阻值对所述充电电压输出端输出的电压进行调节。
  6. 根据权利要求5所述的电路,其特征在于,所述第一调节电阻和第二调节电阻分别包括膜式可变电阻器和绕线式可变电阻器。
  7. 根据权利要求6所述的电路,其特征在于,所述温度补偿模块包括 温度补偿晶体管;
    所述温度补偿晶体管的基极与所述电压调节晶体管的基极相互连接。
  8. 根据权利要7所述的电路,其特征在于,所述温度补偿晶体管与所述电压调节晶体管的BE结温度系数相同或者接近。
  9. 根据权利要求8所述的电路,其特征在于,所述限流模块包括限流电阻;
    所述限流电阻连接于所述充电电压输入端与所述电压调节晶体管之间。
  10. 一种输出电压可调的充电系统,其特征在于,包括智能电能表和充电电路;其中,
    所述充电电路包括如权利要求1-9中任意一项所述的适合单相电能表使用的低成本超级电容充电电路;所述智能电能表包括单相智能电能表或者三相智能电能表;
    所述充电电路与所述单相智能电能表中的超级电容连接,用于为所述超级电容充电。
PCT/CN2021/129417 2021-10-21 2021-11-08 一种适合单相电能表使用的低成本超级电容充电电路 WO2023065416A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111227894.4 2021-10-21
CN202111227894.4A CN116014823A (zh) 2021-10-21 2021-10-21 一种适合单相电能表使用的低成本超级电容充电电路

Publications (1)

Publication Number Publication Date
WO2023065416A1 true WO2023065416A1 (zh) 2023-04-27

Family

ID=86028462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129417 WO2023065416A1 (zh) 2021-10-21 2021-11-08 一种适合单相电能表使用的低成本超级电容充电电路

Country Status (2)

Country Link
CN (1) CN116014823A (zh)
WO (1) WO2023065416A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130271092A1 (en) * 2011-12-30 2013-10-17 Shekhar Y. Borkar Ultra-Capacitor Based Energy Storage for Appliances
CN103870400A (zh) * 2014-03-06 2014-06-18 华为技术有限公司 一种超级电容的电压调节方法、装置及系统
CN206349778U (zh) * 2016-12-07 2017-07-21 金卡智能集团股份有限公司 一种电容充电电路
CN211351758U (zh) * 2019-12-27 2020-08-25 深圳市越疆科技有限公司 电容电路及电容装置
CN211606119U (zh) * 2020-03-27 2020-09-29 佛山科学技术学院 一种超级电容器的功率调节装置以及电机驱动装置
CN111799874A (zh) * 2020-08-10 2020-10-20 天津七一二通信广播股份有限公司 一种超级电容的电源管理电路及其实现方法
CN113296567A (zh) * 2021-04-22 2021-08-24 威胜信息技术股份有限公司 一种电压自跟随防反灌电路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130271092A1 (en) * 2011-12-30 2013-10-17 Shekhar Y. Borkar Ultra-Capacitor Based Energy Storage for Appliances
CN103870400A (zh) * 2014-03-06 2014-06-18 华为技术有限公司 一种超级电容的电压调节方法、装置及系统
CN206349778U (zh) * 2016-12-07 2017-07-21 金卡智能集团股份有限公司 一种电容充电电路
CN211351758U (zh) * 2019-12-27 2020-08-25 深圳市越疆科技有限公司 电容电路及电容装置
CN211606119U (zh) * 2020-03-27 2020-09-29 佛山科学技术学院 一种超级电容器的功率调节装置以及电机驱动装置
CN111799874A (zh) * 2020-08-10 2020-10-20 天津七一二通信广播股份有限公司 一种超级电容的电源管理电路及其实现方法
CN113296567A (zh) * 2021-04-22 2021-08-24 威胜信息技术股份有限公司 一种电压自跟随防反灌电路

Also Published As

Publication number Publication date
CN116014823A (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
CN103838286B (zh) 一种快速瞬态响应、高稳定性的低压差线性稳压器
CN103529890B (zh) 一种软启动装置及方法
CN102279609B (zh) 电压调节器及其参考电压产生电路
CN208141256U (zh) 一种新颖稳定的ldo限流保护电路结构
CN113067469B (zh) 一种快速响应环路补偿电路、环路补偿芯片及开关电源
CN110231847A (zh) 快速响应型低压差线性稳压器
CN108776500A (zh) 一种基于频率补偿和瞬态响应改善电路的无片外电容ldo
KR20030029443A (ko) 조정기 회로 및 그 제어 방법
CN210327077U (zh) 快速充电电路及装置
CN103324237B (zh) 一种基于电压感应的ldo瞬态响应增强电路
CN216851374U (zh) 一种预充电电路及芯片
WO2023065416A1 (zh) 一种适合单相电能表使用的低成本超级电容充电电路
CN117638808A (zh) 高负载峰值动态响应电路
CN111049223B (zh) 一种超级电容的恒流-恒压充电电路
CN202997539U (zh) 一种超级电容电压均衡保护电路
CN105159385B (zh) 低功耗低压差电压调节器
CN104460812B (zh) 一种原边反馈变换器的输出整流二极管温度补偿电路
CN206294076U (zh) 一种新型直流稳压电路
CN201717599U (zh) 一种过压保护电路
CN209709122U (zh) 限流板热反馈控制电路及电池装置
CN201233547Y (zh) 蓄电池的低压差线性稳压器
CN210041625U (zh) 一种基于运放构成的负载均流电路
WO2017092114A1 (zh) T-con负载变化的电压控制电路、显示面板及显示装置
CN208142903U (zh) 带输出线补功能的充电器控制电路
Tseng et al. A series stacked FinFET structure for digital low dropout regulators with minimum energy point technique for 37.5% energy reduction in cortex M0 processor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE