WO2023065387A1 - 一种电气化铁路的柔性互联供电系统 - Google Patents

一种电气化铁路的柔性互联供电系统 Download PDF

Info

Publication number
WO2023065387A1
WO2023065387A1 PCT/CN2021/127360 CN2021127360W WO2023065387A1 WO 2023065387 A1 WO2023065387 A1 WO 2023065387A1 CN 2021127360 W CN2021127360 W CN 2021127360W WO 2023065387 A1 WO2023065387 A1 WO 2023065387A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
supply arm
switch circuit
train
over
Prior art date
Application number
PCT/CN2021/127360
Other languages
English (en)
French (fr)
Inventor
仇乐兵
陈洁莲
周方圆
张志学
何多昌
饶沛南
张敏
翁星方
周智
张典
Original Assignee
株洲中车时代电气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株洲中车时代电气股份有限公司 filed Critical 株洲中车时代电气股份有限公司
Publication of WO2023065387A1 publication Critical patent/WO2023065387A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • B60M3/04Arrangements for cutting in and out of individual track sections

Definitions

  • the invention relates to the technical field of rail transit, in particular to a flexible interconnection power supply system for electrified railways.
  • the purpose of the present invention is to provide a flexible interconnection power supply system for electrified railways, so as to effectively implement bilateral power supply, realize flexible adjustment of the power flow of the traction network, and enable trains to pass through electric sections stably.
  • the present invention provides the following technical solutions:
  • a flexible interconnection power supply system for electrified railways comprising:
  • the two ends of the primary winding of the first transformer are respectively connected to the first power supply arm and the ground, and the two ends of the secondary winding of the first transformer are respectively connected to the first end of the first side of the converter and the second
  • the two terminals are connected, the two ends of the primary winding of the second transformer are respectively connected to the second power supply arm and the ground, and the two ends of the secondary winding of the second transformer are respectively connected to the second side of the second side of the converter.
  • One end is connected to the second end; the first end and the second end of the overcurrent section protection device are respectively connected to the first power supply arm and the second power supply arm;
  • the controller is used for: when it is determined by the train position detection device that the train has entered the over-current section area of the sub-area, control the over-current section protection device to be in a conducting state and turn off the converter ; When it is determined by the train position detection device that the train has left the over-voltage segment area, the over-voltage segment protection device is restored to the off state, and the power to the converter is restored controlling for active power exchange between the first power supply arm and the second power supply arm;
  • the power supply arm between the first electric section of the partition station and the first substation is the first power supply arm
  • the connection between the first electric section of the partition station and the second substation The power supply arm in between is the second power supply arm.
  • it also includes: a first switch circuit
  • the partition includes a first electrical segment and a second electrical segment, the first end and the second end of the first switch circuit are respectively connected to the first end and the second end of the second electrical segment of the partition.
  • the two terminals are connected, and the default state of the first switch circuit is the closed state, and when the traction network has an abnormal working condition, the first switch circuit is in the closed state.
  • the over-current section protection device includes: a first switching valve group and a second switching valve group, the first switching valve group and the second switching valve group are connected in antiparallel.
  • both the first switching valve group and the second switching valve group are composed of thyristors.
  • the train position detection device is a train position detection device based on wheel sensor technology, or a train position detection device based on train electronic tag technology, or a train position detection device based on laser radar technology, or a train position detection device based on satellite positioning A train position detection device based on advanced technology, or a train position detection device based on high-speed image recognition technology.
  • the controller is further configured to: when it is determined by the train position detection device that the train has left the over-electric section area, based on the received reactive power compensation instruction, the inverter The controller is controlled to perform reactive power compensation on the first power supply arm and/or the second power supply arm.
  • the converter is a converter of AC-DC structure.
  • it also includes: a second switch circuit and a third switch circuit;
  • the second switch circuit is arranged between the first end of the over-current section protection device and the first power supply arm, and the third switch circuit is arranged at the second end of the over-current section protection device and the second power supply arm.
  • it also includes: a fourth switch circuit and a fifth switch circuit;
  • the fourth switch circuit is arranged between the first end of the primary winding of the first transformer and the first power supply arm, and the fifth switch circuit is arranged at the first end of the primary winding of the second transformer. between one end and the second power supply arm.
  • the converter is connected across the two ends of the first electrical section of the partition through the first transformer and the second transformer, that is, the two ends of the primary winding of the first transformer are respectively connected to the first power supply arm
  • the two ends of the secondary winding of the first transformer are respectively connected to the first end and the second end of the first side of the converter, and the two ends of the primary winding of the second transformer are respectively connected to the second power supply arm and the ground.
  • the two ends of the secondary winding of the second transformer are respectively connected to the first end and the second end of the second side of the converter, when it is determined by the train position detection device that the train has left the over-voltage section area, it means At present, there is no train that needs to pass through the electric section of the partition station.
  • the controller will set the overvoltage section protection device to the off state, and control the converter to carry out the transmission between the first power supply arm and the second power supply arm. Since the active power exchange between the first power supply arm and the second power supply arm can be carried out, the scheme of the present application can realize the flexible adjustment of the power flow of the traction network, and improve the capacity utilization rate of the power supply equipment of the traction station and the regeneration system. Improve the utilization rate of dynamic energy, improve the quality of power supply, and build an integrated energy system through energy storage converters to further improve the energy utilization efficiency of the traction power supply system.
  • the application will control the over-electric section protection device to be in a conduction state and close the converter, so that the train can be continuously powered smoothly Flexibly pass through the first electrical segment of the partition.
  • both the first transformer and the second transformer are connected in parallel to the power supply arm.
  • the scheme of this application can realize the flexible adjustment of the power flow of the traction network, and enable the train to pass through the electric section stably, and can realize complete electrical isolation between the two power supply arms, which can also simplify the system protection It is beneficial to isolate the fault and reduce the impact range of the fault.
  • Fig. 1 is a schematic structural view of a flexible interconnection power supply system of an electrified railway in the present invention
  • Fig. 2 is a schematic structural diagram of a flexible interconnection power supply system of an electrified railway in a specific embodiment of the present invention.
  • the core of the present invention is to provide a flexible interconnection power supply system for electrified railways, which can realize the flexible adjustment of the power flow of the traction network, and enable the train to pass through the electric section stably, and can realize complete electrical isolation between the two power supply arms , which can simplify the system protection requirements, help to isolate faults and reduce the scope of fault influence.
  • FIG. 1 is a schematic structural diagram of a flexible interconnected power supply system for an electrified railway in the present invention.
  • the flexible interconnected power supply system for an electrified railway may include:
  • the two ends of the primary winding of the first transformer TP1 are respectively connected to the first power supply arm and the ground, and the two ends of the secondary winding of the first transformer TP1 are respectively connected to the first end and the second end of the first side of the converter 10 , the two ends of the primary winding of the second transformer TP2 are respectively connected to the second power supply arm and the ground, and the two ends of the secondary winding of the second transformer TP2 are respectively connected to the first end and the second end of the second side of the converter 10 Connection; the first end and the second end of the overcurrent section protection device 20 are respectively connected to the first power supply arm and the second power supply arm;
  • the controller is used to: when it is determined by the train position detection device that the train has entered the over-electric section area of the partition station, control the over-electric section protection device 20 to be in a conduction state and close the converter 10; When the device determines that the train has left the over-voltage segment area, it restores the over-voltage segment protection device 20 to the off state, and restores the control of the converter 10 to carry out the transmission between the first power supply arm and the second power supply arm. active power exchange;
  • the power supply arm between the first electric subsection D1 of the district station and the first substation is the first power supply arm
  • the power supply arm between the first electric section D1 of the district station and the second substation is the second power supply arm.
  • the converter 10 is connected to the traction network through the first transformer TP1 and the second transformer TP2, and the two ends of the primary winding of the first transformer TP1 are respectively connected to the first power supply arm and the ground , the two ends of the primary winding of the second transformer TP2 are respectively connected to the second power supply arm and the ground, that is to say, both the first transformer TP1 and the second transformer TP2 are connected in parallel to the power supply arm.
  • complete electrical isolation between the two power supply arms can be achieved, which can simplify the system protection requirements, help isolate faults and reduce the scope of fault influence.
  • the first substation and the second substation described in this application can be any two adjacent substations, and the partition substation is set between the first substation and the second substation, because the application
  • the scheme can cancel the design of electric phase separation, therefore, only one electric substation can be set up in this divisional substation, that is, only the first electric substation D1 needs to be set.
  • the first substation is marked as SS1, label the second substation as SS2.
  • the power supply arm between the first electric subsection D1 of the district station and the first substation is the first power supply arm, and the first power supply arm can be governed by the first substation.
  • the first electric section D1 of the district station and the first substation The power supply arm between the two substations is the second power supply arm, and the second power supply arm may be governed by the second substation.
  • this application can cancel the design of electrical phase separation, which means that the voltages of the first power supply arm and the second power supply arm are basically in the same phase, which can be achieved by adopting an appropriate technical solution in the substation Guaranteed.
  • the same-phase power supply technology can be used in substations, so that the phases of the traction power supply voltages of different substations can be set to the same phase, so that there is no need to use commutation access to meet the negative sequence requirements of the power system, which also makes
  • the partition between the first power supply arm and the second power supply arm does not need to be provided with an electric phase split structure, but only needs to be provided with an electric segment structure to meet the safety requirements of traction power supply.
  • the train position detection device is used to determine whether the train has entered the over-electric segment area of the sub-region, and the over-electric segment area represents a set area in the sub-region including the first electrical segment D1, and the train enters The area of the electric section indicates that the train is about to pass through the first electric section D1. When the voltages at both ends of the first electrical segment D1 are consistent, the train can pass through the first electrical segment D1 smoothly and continuously without arcing.
  • the specific type of the train position detection device can be set and adjusted according to actual needs.
  • the train position detection device can be specifically a train position detection device based on wheel sensor technology, or a train position detection device based on train electronic tag technology, or a train position detection device based on train electronic tag technology.
  • the train position detection device based on laser radar technology is either a train position detection device based on satellite positioning technology, or a train position detection device based on high-speed image recognition technology.
  • the train position detection device is a train position detection device based on wheel sensor technology. Specifically, two wheel sensors are provided, respectively marked as CG1 and CG2, and CG2 is used to determine whether the train is running. Entering the over-electric section area of the division station, CG1 is used to determine whether the train has left the over-electric section area of the division station, that is, in this implementation mode, the area between CG1 and CG2 can be used as the division station Over-voltage segmentation area.
  • the controller can control the converter 10 and the section over-current protection device 20 .
  • the train position detecting device and the controller are not shown in Fig. 1 of the present application.
  • the controller determines through the train position detection device that the train has entered the over-segmentation area of the partition station, it means that the train is about to pass through the first electrical segment D1, and the application will be in the mode of continuous electrical flexible over-segmentation at this time. In this mode, the controller will control the overcurrent section protection device 20 to be in a conducting state and shut down the converter 10 . Since the voltages of the first power supply arm and the second power supply arm are basically in the same phase, after the over-current section protection device 20 is turned on, the train can pass through the first electric section D1 smoothly and continuously.
  • the bilateral power supply system When passing through the over-voltage section area, the bilateral power supply system is always preserved, that is, one end is directly powered by a substation, and the other end is powered by another substation through the flexible interconnection power supply system of the electrified railway, which improves the power supply efficiency. reliability.
  • the over-current section protection device 20 includes: a first switch valve group and a second switch valve group Group, the first switching valve group and the second switching valve group are connected in antiparallel.
  • Such an embodiment has a simple structure and high flexibility.
  • both the first on-off valve group and the second on-off valve group are composed of several thyristors.
  • the first on-off valve group and the second on-off valve group are respectively labeled as VT1 and VT2 in FIG. 2 .
  • VT1 and VT2 VT1 and VT2 in FIG. 2 .
  • Several thyristors are used to form the first switch valve group and the second switch valve group, the structure is simple, and the reliability is also high.
  • power electronic devices such as IGBT, IGCT, and SIC can also be selected according to actual needs to realize the first switching valve group and the second switching valve group.
  • Fig. 2 when the controller determines that the train arrives at CG2, it can control the first switching valve group and the second switching valve group to conduct, so that the train can pass through the first electrical segment D1 smoothly and flexibly without power interruption.
  • the controller determines through the train position detection device that the train has left the over-electrical segment area of the division, it means that the train has passed the first electrical segment D1, and the application will be in the mode of optimal dispatching of the traction network power flow at this time. That is to say, as long as there is no current train that needs to be segmented, the application will be in the mode of optimal dispatching of the power flow of the traction network to improve the quality of power supply.
  • the controller will restore the over-current section protection device 20 to the off state, and restore the control of the converter 10 to perform the switching between the first power supply arm and the second power supply arm. active power exchange between them.
  • the controller can usually obtain the total incoming power of the first substation and the second substation in real time, so that in the power flow optimization dispatching mode of the traction network, the transmission power parameter information is generated by using the preset electric energy metering algorithm, and then , and then use the transmission power parameter information to send the corresponding control command to the converter 10, through the converter 10 to control the exchange of active power between the first power supply arm and the second power supply arm, specifically, it can control the first The magnitude and direction of the power transmission between the first power supply arm and the second power supply arm, which is equivalent to the controllable interconnection between two high-voltage power supplies through the converter 10 for the power system.
  • the core of this technology is to use
  • the high-voltage and large-capacity power electronic device for power control is consistent with the widely used HVDC or UPFC technology to realize the interconnection and energy scheduling between large power grids, and can be accepted by the power system.
  • the solution of this application can realize the flexible adjustment of the power flow of the traction network, and improve the capacity utilization rate of the power supply equipment of the traction station and the utilization rate of regenerative braking energy , improve the quality of power supply, and build an integrated energy system through energy storage converters to further improve the energy utilization efficiency of the traction power supply system. It avoids the uncontrollable energy exchange between two traction substations under the traditional bilateral power supply system and the safety problems caused by it.
  • the controller in addition to performing active power exchange between the first power supply arm and the second power supply arm by controlling the converter 10, can also perform active power exchange between the first power supply arm and the second power supply arm as required.
  • the reactive power exchange between the two power supply arms does not affect the implementation of the present invention. That is to say, the controller can also be used to control the converter 10 based on the received reactive power compensation command to control the first power supply arm and/or the second power supply arm for reactive power compensation.
  • the specific structure of the converter 10 of the present application can be set and adjusted as required, as long as the purpose of the present application can be achieved.
  • the converter 10 can usually be a converter 10 with an AC-DC-AC structure. It may specifically be a two-level converter topology, a three-level converter topology, a multi-level converter topology, a cascaded multi-level converter topology, and an MMC structure and other topologies.
  • the switch tubes in the converter 10 can be IGBT, IGCT, SIC and other types.
  • it may further include: a first switch circuit Q1;
  • the partition includes a first electrical segment D1 and a second electrical segment D2, the first end and the second end of the first switch circuit Q1 are respectively connected to the first end and the second end of the second electrical segment D2 of the partition connected, and the default state of the first switch circuit Q1 is the closed state, and when the traction network has an abnormal working condition, the first switch circuit Q1 is in the closed state.
  • the solution of the present application can also be applied to a partition with two electric segments, that is, in this embodiment, the The scheme of this application can be applied regardless of whether the partition is an electrical phase separation or an electrical segmentation.
  • the first end and the second end of the first switch circuit Q1 are respectively connected to the first end and the second end of the second electric segment D2 of the partition, and the default state of the first switch circuit Q1 is a closed state, That is to say, when the traction network is in a normal state, the first switch circuit Q1 is turned on, and at this time the flexible interconnection power supply system of the electrified railway can operate normally.
  • the first switching circuit Q1 can be set to an off state.
  • the first switch circuit Q1 is set to an off state. Fault protection can be realized, and the flexible interconnection power supply system of the electrified railway can be out of operation, and the partition station can be restored to the traditional electric phase separation structure with no electricity area, which further improves the safety of the application scheme, and can It provides conditions for the train to adopt on-board power-off and over-phase separation to ensure the safety of the train and catenary.
  • the specific type of the first switch circuit Q1 can be set and adjusted according to needs, and usually a high-voltage mechanical switch with high reliability can be selected as the first switch circuit Q1.
  • it may further include: a second switch circuit Q2 and a third switch circuit Q3;
  • the second switch circuit Q2 is arranged between the first end of the over-current section protection device 20 and the first power supply arm, and the third switch circuit Q3 is arranged between the second end of the over-current section protection device 20 and the second power supply arm. between.
  • the second switch circuit Q2 and the third switch circuit Q3 are usually implemented by mechanical switches with high reliability. By turning off the second switch circuit Q2 and the third switch circuit Q3, the flexible interconnection power supply system of the electrified railway can be out of operation. , and it can be understood that, under normal conditions, the second switch circuit Q2 and the third switch circuit Q3 will remain in a conductive state.
  • it may further include: a fourth switch circuit Q4 and a fifth switch circuit Q5;
  • the fourth switch circuit Q4 is arranged between the first end of the primary winding of the first transformer TP1 and the first power supply arm, and the fifth switch circuit Q5 is arranged between the first end of the primary winding of the second transformer TP2 and the second power supply arm. between the arms.
  • the fourth switch circuit Q4 and the fifth switch circuit Q5 are usually implemented by mechanical switches with high reliability. By turning off the fourth switch circuit Q4 and the fifth switch circuit Q5, the converter 10 can exit For example, when the converter 10 fails or the transformer fails, the fourth switch circuit Q4 and the fifth switch circuit Q5 are turned off. Under normal circumstances, the fourth switch circuit Q4 and the fifth switch circuit Q5 will remain in the conduction state.
  • the converter 10 is connected across the two ends of the first electrical segment D1 of the partition through the first transformer TP1 and the second transformer TP2, that is, the two ends of the primary winding of the first transformer TP1 are respectively It is connected with the first power supply arm and the ground, the two ends of the secondary winding of the first transformer TP1 are respectively connected with the first end and the second end of the first side of the converter 10, and the two ends of the primary winding of the second transformer TP2 respectively connected to the second power supply arm and the ground, and the two ends of the secondary winding of the second transformer TP2 are respectively connected to the first end and the second end of the second side of the converter 10;
  • the over-voltage section area it means that there is no train that needs to pass through the electric section of the sub-area at present.
  • the active power exchange between the first power supply arm and the second power supply arm is carried out. Since the active power exchange between the first power supply arm and the second power supply arm can be carried out, the solution of this application can realize the flexible adjustment of the power flow of the traction network , improve the capacity utilization rate of the power supply equipment of the traction station and the utilization rate of regenerative braking energy, improve the power supply quality, and also construct an integrated energy system through the energy storage converter 10 to further improve the energy utilization efficiency of the traction power supply system. And when it is determined by the train position detection device that the train has entered the over-electric section area of the sub-area, the application will control the over-electric section protection device 20 to be in a conducting state and close the converter 10, so that the train can be continuously powered.
  • both the first transformer TP1 and the second transformer TP2 belong to the connection mode of parallel access to the power supply arm.
  • this access mode is adopted, complete electrical isolation between the two power supply arms can be realized. In other words, system protection requirements can be simplified, which is conducive to isolating faults and reducing the scope of fault influence.
  • the scheme of this application can realize the flexible adjustment of the power flow of the traction network, and enable the train to pass through the electric section stably, and can realize complete electrical isolation between the two power supply arms, which can also simplify the system protection It is beneficial to isolate the fault and reduce the impact range of the fault.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种电气化铁路的柔性互联供电系统,包括:第一变压器和第二变压器均与变流器连接且分别并联至第一供电臂和第二供电臂;过电分段保护装置分别与第一,第二供电臂连接;控制器用于:当通过列车位置检测装置确定出列车驶入了分区所的过电分段区域时,控制过电分段保护装置导通且关闭变流器;当通过列车位置检测装置确定出列车驶离了过电分段区域时,将过电分段保护装置恢复为关断状态,且恢复对变流器的控制以进行第一供电臂与第二供电臂之间的有功功率交换。应用本申请的方案,可以实现牵引网功率潮流的灵活调节,列车能平稳通过电分段,且实现了两个供电臂之间的完全电气隔离。

Description

一种电气化铁路的柔性互联供电系统
本申请要求于2021年10月21日提交至中国专利局、申请号为202111226440.5、发明名称为“一种电气化铁路的柔性互联供电系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及轨道交通技术领域,特别是涉及一种电气化铁路的柔性互联供电系统。
背景技术
目前,我国电气化铁路接触网采用的是25kV单相工频制式的交流供电系统,为了降低电力系统三相供电网与变电所两相牵引输出的电压不平衡度,达到负荷平衡,消除负序分量,目前通常采用的是分段轮换相序的单边供电方式,这就导致牵引供电网存在电分相。但是这样的方式不利于电气化铁路的节能,因此,在实际应用中,开始考虑取消牵引网存在的电分相。
取消电相分有两种情形:一种是取消牵引变电所出口处的电分相,这可以采用单相牵引变压器或与之配套的补偿技术实现,另一种是取消两个牵引变电所之间的分区所的电分相,这需要实施双边供电。
针对第二种情形,目前已有相关研究提供了采用双边供电的方案。例如一种方案是通过增大牵引网系统阻抗来减小均衡电流,但是这样会带来牵引供电品质降低、系统损耗增加、继电保护匹配难度增大等一系列问题,并且,这种无源补偿的方式无法实现牵引网功率潮流的灵活调节,不利于供电能效的提升。另一种方案是在牵引变电所处增加电压补偿装置来调节变电所馈线电压,从而降低均衡电流,该方式实际上是通过晶闸管阀组与变压器的配合实现馈线电压相位的补偿,对分区所两端电压幅值差的调节能力非常有限,不利于列车稳定地通过电分段。
综上所述,如何有效地实施双边供电,实现牵引网功率潮流的灵活调节,且使得列车能够稳定地通过电分段,是目前本领域技术人员急需解决 的技术问题。
发明内容
本发明的目的是提供一种电气化铁路的柔性互联供电系统,以有效地实施双边供电,实现牵引网功率潮流的灵活调节,且使得列车能够稳定地通过电分段。
为解决上述技术问题,本发明提供如下技术方案:
一种电气化铁路的柔性互联供电系统,包括:
第一变压器,第二变压器,变流器,过电分段保护装置,控制器以及列车位置检测装置;
所述第一变压器的原边绕组的两端分别与第一供电臂和地连接,所述第一变压器的副边绕组的两端分别与所述变流器第一侧的第一端和第二端连接,所述第二变压器的原边绕组的两端分别与第二供电臂和地连接,所述第二变压器的副边绕组的两端分别与所述变流器第二侧的第一端和第二端连接;所述过电分段保护装置的第一端和第二端分别与所述第一供电臂和所述第二供电臂连接;
所述控制器用于:当通过所述列车位置检测装置确定出列车驶入了分区所的过电分段区域时,控制所述过电分段保护装置为导通状态且关闭所述变流器;当通过所述列车位置检测装置确定出所述列车驶离了所述过电分段区域时,将所述过电分段保护装置恢复为关断状态,且恢复对所述变流器的控制以进行所述第一供电臂与所述第二供电臂之间的有功功率交换;
其中,所述分区所的第一电分段与第一变电所之间的供电臂为所述第一供电臂,所述分区所的所述第一电分段与第二变电所之间的供电臂为所述第二供电臂。
优选的,还包括:第一开关电路;
所述分区所中包括第一电分段和第二电分段,所述第一开关电路的第一端和第二端分别与所述分区所的第二电分段的第一端和第二端连接,且所述第一开关电路的默认状态为闭合状态,当牵引网出现异常工况时,所 述第一开关电路为关断状态。
优选的,所述过电分段保护装置包括:第一开关阀组和第二开关阀组,所述第一开关阀组与所述第二开关阀组反向并联。
优选的,所述第一开关阀组和所述第二开关阀组均由晶闸管构成。
优选的,所述列车位置检测装置为基于车轮传感器技术的列车位置检测装置,或者为基于列车电子标签技术的列车位置检测装置,或者为基于激光雷达技术的列车位置检测装置,或者为基于卫星定位技术的列车位置检测装置,或者为基于高速图像识别技术的列车位置检测装置。
优选的,所述控制器还用于:当通过所述列车位置检测装置确定出所述列车驶离了所述过电分段区域时,基于接收到的无功功率补偿指令对所述变流器进行控制,以对所述第一供电臂和/或所述第二供电臂进行无功功率补偿。
优选的,所述变流器为交直交结构的变流器。
优选的,还包括:第二开关电路以及第三开关电路;
所述第二开关电路设置在所述过电分段保护装置的第一端与所述第一供电臂之间,所述第三开关电路设置在所述过电分段保护装置的第二端与所述第二供电臂之间。
优选的,还包括:第四开关电路以及第五开关电路;
所述第四开关电路设置在所述第一变压器的原边绕组的第一端与所述第一供电臂之间,所述第五开关电路设置在所述第二变压器的原边绕组的第一端与所述第二供电臂之间。
本申请的方案中,变流器通过第一变压器和第二变压器跨接在分区所的第一电分段的两端,即,第一变压器的原边绕组的两端分别与第一供电臂和地连接,第一变压器的副边绕组的两端分别与变流器第一侧的第一端和第二端连接,第二变压器的原边绕组的两端分别与第二供电臂和地连接,第二变压器的副边绕组的两端分别与变流器第二侧的第一端和第二端连接,当通过列车位置检测装置确定出列车驶离了过电分段区域时,说明当前没有列车需要经过分区所的电分段,此时,控制器会将过电分段保护装置设置为关断状态,且对变流器控制以进行第一供电臂与第二供电臂之间 的有功功率交换,由于可以进行第一供电臂与第二供电臂之间的有功功率交换,使得本申请的方案可以实现牵引网功率潮流的灵活调节,提升牵引所供电设备容量利用率及再生制动能量利用率、改善供电品质、同时也可以通过储能变流器构建综合能源系统,进一步提升牵引供电系统的能源利用效率。而当通过列车位置检测装置确定出列车驶入了分区所的过电分段区域时,本申请会控制过电分段保护装置为导通状态且关闭变流器,使得列车可以不断电地平滑柔性地通过分区所的第一电分段。并且,本申请的方案中,第一变压器和第二变压器都是属于并联接入供电臂的连接方式,采用这种接入方式时,可以实现两个供电臂之间的完全电气隔离,也就可以简化系统保护要求,有利于隔离故障并减小故障影响范围。
综上所述,本申请的方案可以实现牵引网功率潮流的灵活调节,且使得列车能够稳定地通过电分段,且可以实现两个供电臂之间的完全电气隔离,也就可以简化系统保护要求,有利于隔离故障并减小故障影响范围。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明中一种电气化铁路的柔性互联供电系统的结构示意图;
图2为本发明一种具体实施方式中的电气化铁路的柔性互联供电系统的结构示意图。
具体实施方式
本发明的核心是提供一种电气化铁路的柔性互联供电系统,可以实现牵引网功率潮流的灵活调节,且使得列车能够稳定地通过电分段,且可以实现两个供电臂之间的完全电气隔离,也就可以简化系统保护要求,有利于隔离故障并减小故障影响范围。
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参考图1,图1为本发明中一种电气化铁路的柔性互联供电系统的结构示意图,该电气化铁路的柔性互联供电系统可以包括:
第一变压器TP1,第二变压器TP2,变流器10,过电分段保护装置20,控制器以及列车位置检测装置;
第一变压器TP1的原边绕组的两端分别与第一供电臂和地连接,第一变压器TP1的副边绕组的两端分别与变流器10第一侧的第一端和第二端连接,第二变压器TP2的原边绕组的两端分别与第二供电臂和地连接,第二变压器TP2的副边绕组的两端分别与变流器10第二侧的第一端和第二端连接;过电分段保护装置20的第一端和第二端分别与第一供电臂和第二供电臂连接;
控制器用于:当通过列车位置检测装置确定出列车驶入了分区所的过电分段区域时,控制过电分段保护装置20为导通状态且关闭变流器10;当通过列车位置检测装置确定出列车驶离了过电分段区域时,将过电分段保护装置20恢复为关断状态,且恢复对变流器10的控制以进行第一供电臂与第二供电臂之间的有功功率交换;
其中,分区所的第一电分段D1与第一变电所之间的供电臂为第一供电臂,分区所的第一电分段D1与第二变电所之间的供电臂为第二供电臂。
具体的,本申请的方案中,变流器10通过第一变压器TP1和第二变压器TP2接入牵引网,并且,第一变压器TP1的原边绕组的两端分别与第一供电臂和地连接,第二变压器TP2的原边绕组的两端分别与第二供电臂和地连接,也就是说,第一变压器TP1和第二变压器TP2都是采用了并联接入供电臂的连接方式,采用这种接入方式时,可以实现两个供电臂之间的完全电气隔离,也就可以简化系统保护要求,有利于隔离故障并减小故 障影响范围。
本申请描述的第一变电所和第二变电所可以是任意两个相邻的变电所,而分区所则设置在第一变电所和第二变电所之间,由于本申请的方案可以取消电分相的设计,因此,该分区所中可以只设置一个电分段,即只需要设置第一电分段D1即可,在图1中,将第一变电所标示为SS1,将第二变电所标示为SS2。
分区所的第一电分段D1与第一变电所之间的供电臂为第一供电臂,第一供电臂可以由第一变电所管辖,分区所的第一电分段D1与第二变电所之间的供电臂为第二供电臂,第二供电臂可以由第二变电所管辖。并且需要说明的是,本申请可以取消电分相的设计,也就意味着第一供电臂与第二供电臂的电压基本是同相位的,这通过在变电所采用适当的技术方案是可以保证的。例如,可以在变电所采用同相供电技术,从而将不同变电所的牵引供电电压的相位设置为相同相位,从而无需采用换相接入的方式来满足电力系统的负序要求,也就使得第一供电臂与第二供电臂之间的分区所不需要设置电分相结构,而是只需要设置一个电分段结构即可满足牵引供电的安全要求。
列车位置检测装置用于确定列车是否驶入了分区所的过电分段区域,该过电分段区域即表示分区所中的一个包含第一电分段D1在内的设定区域,列车进入过电分段区域,说明列车即将通过第一电分段D1。第一电分段D1两端的电压一致时,可以使得列车能够平稳不断电地通过第一电分段D1,不容易出现电弧。
列车位置检测装置的具体类型可以根据实际需要进行设定和调整,例如列车位置检测装置可以具体为基于车轮传感器技术的列车位置检测装置,或者为基于列车电子标签技术的列车位置检测装置,或者为基于激光雷达技术的列车位置检测装置,或者为基于卫星定位技术的列车位置检测装置,或者为基于高速图像识别技术的列车位置检测装置。
本申请的图2的具体场合中,列车位置检测装置便是基于车轮传感器技术的列车位置检测装置,具体的,设置有2个车轮传感器,分别标示为CG1和CG2,CG2用来确定列车是否驶入了分区所的过电分段区域,CG1 则用来确定列车是否驶离了分区所的过电分段区域,即该种实施方式中,CG1与CG2之间的区域便可以作为分区所的过电分段区域。
通过列车位置检测装置,控制器可以对变流器10和过电分段保护装置20进行控制。本申请的图1中并未示出列车位置检测装置以及控制器。
当控制器通过列车位置检测装置确定出列车驶入了分区所的过电分段区域时,说明列车即将通过第一电分段D1,本申请此时会处于不断电柔性过分段的模式,在该模式下,控制器会控制过电分段保护装置20为导通状态且关闭变流器10。由于第一供电臂与第二供电臂的电压基本是同相位的,因此,将过电分段保护装置20导通之后,列车能够平稳不断电地通过第一电分段D1,并且,在列车通过过电分段区域时,也是始终保存双边供电的制式,即一端是直接通过变电所供电,另一端是通过电气化铁路的柔性互联供电系统得到另一变电所的供电,提高了供电的可靠性。
过电分段保护装置20的具体构成可以根据需要进行设定和调整,例如在本发明的一种具体实施方式中,过电分段保护装置20包括:第一开关阀组和第二开关阀组,第一开关阀组与第二开关阀组反向并联。这样的实施方式结构简单,且灵活性较高。
第一开关阀组和第二开关阀组的具体构成可以根据需要进行设定和调整,例如在图2的实施方式中,第一开关阀组和第二开关阀组均由若干个晶闸管构成。第一开关阀组和第二开关阀组在图2中分别标示为VT1和VT2。采用若干个晶闸管构成第一开关阀组和第二开关阀组,结构简单,可靠性也较高。当然,其他具体场合中,也可以根据实际需要选用IGBT,IGCT,SIC等电力电子器件来实现第一开关阀组和第二开关阀组。
在图2中,当控制器确定出列车到达CG2时,便可以控制第一开关阀组和第二开关阀组导通,实现列车无断电,平滑柔性地通过第一电分段D1。
当控制器通过列车位置检测装置确定出列车驶离了分区所的过电分段区域时,说明列车已经通过了第一电分段D1,本申请此时会处于牵引网潮流优化调度的模式,也就是说,只要当前没有列车需要过电分段,则本申请便会处于牵引网潮流优化调度的模式,实现供电品质的提升。
具体的,在牵引网潮流优化调度模式下,控制器会将过电分段保护装 置20恢复为关断状态,且恢复对变流器10的控制以进行第一供电臂与第二供电臂之间的有功功率交换。
在实际应用中,控制器通常可以实时地获取第一变电站和第二变电站的进线总功率,从而在牵引网潮流优化调度模式下,利用预设的电能计量算法,生成传输功率参数信息,之后,再利用传输功率参数信息,将相应的控制指令发送至变流器10,通过变流器10控制第一供电臂和第二供电臂之间的有功功率的交换,具体而言,可以控制第一供电臂和第二供电臂之间的功率传输的大小及方向,这对于电力系统而言,相当于是通过变流器10实现两个高压电源之间的可控互联,该技术的核心是利用高压大容量电力电子装置进行电能控制,与目前广泛采用的HVDC或UPFC技术实现大电网之间互联及能量调度是一致的,可以被电力系统接受。
由于可以进行第一供电臂与第二供电臂之间的有功功率交换,因此使得本申请的方案可以实现牵引网功率潮流的灵活调节,提升牵引所供电设备容量利用率及再生制动能量利用率、改善供电品质、同时也可以通过储能变流器构建综合能源系统,进一步提升牵引供电系统的能源利用效率。避免了传统的双边供电制式下两个牵引变电所之间的不可控能量交换、以及由此带来的安全问题。
进一步的,在实际应用中,控制器除了通过对变流器10的控制,进行第一供电臂与第二供电臂之间的有功功率交换之外,还可以根据需要进行第一供电臂与第二供电臂之间的无功功率交换,并不影响本发明的实施。即控制器还可以用于:当通过列车位置检测装置确定出列车驶离了过电分段区域时,基于接收到的无功功率补偿指令对变流器10进行控制,以对第一供电臂和/或第二供电臂进行无功功率补偿。
在图2中,当控制器确定出列车到达CG1时,便可以确定列车已经通过了第一电分段D1,因此便可以恢复为牵引网潮流优化调度模式,实现牵引供电系统的顶层潮流控制,消除均衡电流。
本申请的变流器10的具体结构可以根据需要进行设定和调整,只要能够实现本申请的目的即可,在实际应用中,变流器10通常可以为交直交结构的变流器10。可以具体为两电平的变流器拓扑、三电平的变流器拓扑、 多电平的变流器拓扑、级联式多电平变流器拓扑,以及MMC结构等拓扑。变流器10中的开关管可以采用IGBT、IGCT、SIC等类型。
在本发明的一种具体实施方式中,还可以包括:第一开关电路Q1;
分区所中包括第一电分段D1和第二电分段D2,第一开关电路Q1的第一端和第二端分别与分区所的第二电分段D2的第一端和第二端连接,且第一开关电路Q1的默认状态为闭合状态,当牵引网出现异常工况时,第一开关电路Q1为关断状态。
如前文的描述,本申请的方案中分区所中可以只设置一个电分段,即第一电分段D1,但是,目前的电气化铁路的牵引网中,大部分的分区所都是设置了2个电分段,本申请的该种实施方式中,通过设置第一开关电路Q1,使得本申请的方案也能够应用在具有2个电分段的分区所中,即,该种实施方式,使得无论分区所是电分相还是电分段,本申请方案都能够进行应用。
具体的,第一开关电路Q1的第一端和第二端分别与分区所的第二电分段D2的第一端和第二端连接,且第一开关电路Q1的默认状态为闭合状态,也就是说,当牵引网为正常状态时,第一开关电路Q1是导通的,此时电气化铁路的柔性互联供电系统可以正常运行。
而如果出现了异常工况,根据异常工况综合判定,需要进行第一开关电路Q1的分闸动作,则可以将第一开关电路Q1设置为关断状态。例如,当电气化铁路的柔性互联供电系统中的变流器10或阀组出现故障时,通过将第一开关电路Q1设置为关断状态。可以实现故障保护,并且使得电气化铁路的柔性互联供电系统退出运行,分区所便可以恢复为具备无电区的传统的电分相结构,也就进一步地提升了本申请方案的安全性,并且可以为列车采用车载断电过分相提供条件,保证列车及接触网的安全。
第一开关电路Q1的具体类型可以根据需要进行设定和调整,通常可以选取为可靠性较高的高压机械开关作为第一开关电路Q1。
在本发明的一种具体实施方式中,还可以包括:第二开关电路Q2以及第三开关电路Q3;
第二开关电路Q2设置在过电分段保护装置20的第一端与第一供电臂 之间,第三开关电路Q3设置在过电分段保护装置20的第二端与第二供电臂之间。
第二开关电路Q2以及第三开关电路Q3通常会采用可靠性较高的机械开关来实现,通过关断第二开关电路Q2以及第三开关电路Q3,可以使得电气化铁路的柔性互联供电系统退出运行,并且可以理解的是,在正常情况下,第二开关电路Q2以及第三开关电路Q3会保持为导通状态。
在本发明的一种具体实施方式中,还可以包括:第四开关电路Q4以及第五开关电路Q5;
第四开关电路Q4设置在第一变压器TP1的原边绕组的第一端与第一供电臂之间,第五开关电路Q5设置在第二变压器TP2的原边绕组的第一端与第二供电臂之间。
同样的,第四开关电路Q4以及第五开关电路Q5也通常会采用可靠性较高的机械开关来实现,通过关断第四开关电路Q4以及第五开关电路Q5,可以使得变流器10退出运行,例如在变流器10故障或者变压器故障时关断第四开关电路Q4以及第五开关电路Q5。在正常情况下,第四开关电路Q4以及第五开关电路Q5会保持为导通状态。
本申请的方案中,变流器10通过第一变压器TP1和第二变压器TP2跨接在分区所的第一电分段D1的两端,即,第一变压器TP1的原边绕组的两端分别与第一供电臂和地连接,第一变压器TP1的副边绕组的两端分别与变流器10第一侧的第一端和第二端连接,第二变压器TP2的原边绕组的两端分别与第二供电臂和地连接,第二变压器TP2的副边绕组的两端分别与变流器10第二侧的第一端和第二端连接,当通过列车位置检测装置确定出列车驶离了过电分段区域时,说明当前没有列车需要经过分区所的电分段,此时,控制器会将过电分段保护装置20设置为关断状态,且对变流器10控制以进行第一供电臂与第二供电臂之间的有功功率交换,由于可以进行第一供电臂与第二供电臂之间的有功功率交换,使得本申请的方案可以实现牵引网功率潮流的灵活调节,提升牵引所供电设备容量利用率及再生制动能量利用率、改善供电品质、同时也可以通过储能变流器10构建综合能源系统,进一步提升牵引供电系统的能源利用效率。而当通过列车 位置检测装置确定出列车驶入了分区所的过电分段区域时,本申请会控制过电分段保护装置20为导通状态且关闭变流器10,使得列车可以不断电地平滑柔性地通过分区所的第一电分段D1。并且,本申请的方案中,第一变压器TP1和第二变压器TP2都是属于并联接入供电臂的连接方式,采用这种接入方式时,可以实现两个供电臂之间的完全电气隔离,也就可以简化系统保护要求,有利于隔离故障并减小故障影响范围。
综上所述,本申请的方案可以实现牵引网功率潮流的灵活调节,且使得列车能够稳定地通过电分段,且可以实现两个供电臂之间的完全电气隔离,也就可以简化系统保护要求,有利于隔离故障并减小故障影响范围。
还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的技术方案及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利 要求的保护范围内。

Claims (9)

  1. 一种电气化铁路的柔性互联供电系统,其特征在于,包括:
    第一变压器,第二变压器,变流器,过电分段保护装置,控制器以及列车位置检测装置;
    所述第一变压器的原边绕组的两端分别与第一供电臂和地连接,所述第一变压器的副边绕组的两端分别与所述变流器第一侧的第一端和第二端连接,所述第二变压器的原边绕组的两端分别与第二供电臂和地连接,所述第二变压器的副边绕组的两端分别与所述变流器第二侧的第一端和第二端连接;所述过电分段保护装置的第一端和第二端分别与所述第一供电臂和所述第二供电臂连接;
    所述控制器用于:当通过所述列车位置检测装置确定出列车驶入了分区所的过电分段区域时,控制所述过电分段保护装置为导通状态且关闭所述变流器;当通过所述列车位置检测装置确定出所述列车驶离了所述过电分段区域时,将所述过电分段保护装置恢复为关断状态,且恢复对所述变流器的控制以进行所述第一供电臂与所述第二供电臂之间的有功功率交换;
    其中,所述分区所的第一电分段与第一变电所之间的供电臂为所述第一供电臂,所述分区所的所述第一电分段与第二变电所之间的供电臂为所述第二供电臂。
  2. 根据权利要求1所述的电气化铁路的柔性互联供电系统,其特征在于,还包括:第一开关电路;
    所述分区所中包括第一电分段和第二电分段,所述第一开关电路的第一端和第二端分别与所述分区所的第二电分段的第一端和第二端连接,且所述第一开关电路的默认状态为闭合状态,当牵引网出现异常工况时,所述第一开关电路为关断状态。
  3. 根据权利要求1所述的电气化铁路的柔性互联供电系统,其特征在于,所述过电分段保护装置包括:第一开关阀组和第二开关阀组,所述第一开关阀组与所述第二开关阀组反向并联。
  4. 根据权利要求3所述的电气化铁路的柔性互联供电系统,其特征在 于,所述第一开关阀组和所述第二开关阀组均由晶闸管构成。
  5. 根据权利要求1所述的电气化铁路的柔性互联供电系统,其特征在于,所述列车位置检测装置为基于车轮传感器技术的列车位置检测装置,或者为基于列车电子标签技术的列车位置检测装置,或者为基于激光雷达技术的列车位置检测装置,或者为基于卫星定位技术的列车位置检测装置,或者为基于高速图像识别技术的列车位置检测装置。
  6. 根据权利要求1所述的电气化铁路的柔性互联供电系统,其特征在于,所述控制器还用于:当通过所述列车位置检测装置确定出所述列车驶离了所述过电分段区域时,基于接收到的无功功率补偿指令对所述变流器进行控制,以对所述第一供电臂和/或所述第二供电臂进行无功功率补偿。
  7. 根据权利要求1所述的电气化铁路的柔性互联供电系统,其特征在于,所述变流器为交直交结构的变流器。
  8. 根据权利要求1所述的电气化铁路的柔性互联供电系统,其特征在于,还包括:第二开关电路以及第三开关电路;
    所述第二开关电路设置在所述过电分段保护装置的第一端与所述第一供电臂之间,所述第三开关电路设置在所述过电分段保护装置的第二端与所述第二供电臂之间。
  9. 根据权利要求8所述的电气化铁路的柔性互联供电系统,其特征在于,还包括:第四开关电路以及第五开关电路;
    所述第四开关电路设置在所述第一变压器的原边绕组的第一端与所述第一供电臂之间,所述第五开关电路设置在所述第二变压器的原边绕组的第一端与所述第二供电臂之间。
PCT/CN2021/127360 2021-10-21 2021-10-29 一种电气化铁路的柔性互联供电系统 WO2023065387A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111226440.5 2021-10-21
CN202111226440.5A CN113752922A (zh) 2021-10-21 2021-10-21 一种电气化铁路的柔性互联供电系统

Publications (1)

Publication Number Publication Date
WO2023065387A1 true WO2023065387A1 (zh) 2023-04-27

Family

ID=78784224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127360 WO2023065387A1 (zh) 2021-10-21 2021-10-29 一种电气化铁路的柔性互联供电系统

Country Status (2)

Country Link
CN (1) CN113752922A (zh)
WO (1) WO2023065387A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001560A (ja) * 2005-05-25 2007-01-11 Meidensha Corp 交流電気鉄道の異座電源切替設備
CN105539208A (zh) * 2016-01-25 2016-05-04 西南交通大学 一种基于级联多电平地面过电分相系统功率控制方法
CN108189712A (zh) * 2017-12-30 2018-06-22 中铁第四勘察设计院集团有限公司 一种电气化铁路地面柔性自动过分相系统
CN109802401A (zh) * 2019-03-06 2019-05-24 中南大学 一种贯通式at供电接触网谐波检测及阻尼装置
CN110626220A (zh) * 2018-06-21 2019-12-31 株洲中车时代电气股份有限公司 一种柔性自动过分相系统及其控制方法
CN111267674A (zh) * 2020-03-09 2020-06-12 西南交通大学 一种适用于分区亭电分相的虚拟同相供电系统拓扑结构
CN111361463A (zh) * 2020-03-02 2020-07-03 株洲中车时代电气股份有限公司 交流牵引网柔性双边供电潮流控制系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102126438B (zh) * 2010-12-10 2013-02-13 清华大学 牵引网电分相无断电柔性连接-补偿装置及其方法
CN105383328B (zh) * 2015-11-06 2017-10-27 中国铁路设计集团有限公司 基于柔性输电的电气化铁路贯通式同相供电系统
CN111267676B (zh) * 2020-03-11 2021-08-24 中车株洲电力机车研究所有限公司 一种列车供电网络及其分区所自动过分相的牵引系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001560A (ja) * 2005-05-25 2007-01-11 Meidensha Corp 交流電気鉄道の異座電源切替設備
CN105539208A (zh) * 2016-01-25 2016-05-04 西南交通大学 一种基于级联多电平地面过电分相系统功率控制方法
CN108189712A (zh) * 2017-12-30 2018-06-22 中铁第四勘察设计院集团有限公司 一种电气化铁路地面柔性自动过分相系统
CN110626220A (zh) * 2018-06-21 2019-12-31 株洲中车时代电气股份有限公司 一种柔性自动过分相系统及其控制方法
CN109802401A (zh) * 2019-03-06 2019-05-24 中南大学 一种贯通式at供电接触网谐波检测及阻尼装置
CN111361463A (zh) * 2020-03-02 2020-07-03 株洲中车时代电气股份有限公司 交流牵引网柔性双边供电潮流控制系统
CN111267674A (zh) * 2020-03-09 2020-06-12 西南交通大学 一种适用于分区亭电分相的虚拟同相供电系统拓扑结构

Also Published As

Publication number Publication date
CN113752922A (zh) 2021-12-07

Similar Documents

Publication Publication Date Title
WO2021196448A1 (zh) 基于四端口模块化多电平变流器的贯通同相牵引供电系统
Oni et al. A review of LCC-HVDC and VSC-HVDC technologies and applications
CN111361463B (zh) 交流牵引网柔性双边供电潮流控制系统
CN108683207B (zh) 一种混合直流换流器阀组在线投入电路和投入方法及装置
CN103895534B (zh) 基于模块化多电平换流器的双流制牵引供电系统
CN107069679A (zh) 一种对称双极mmc直流侧单极接地故障穿越和恢复方法
WO2023279641A1 (zh) 接入分散式外电源的柔性直流牵引供电系统及其运行方法
US20230356629A1 (en) System for implementing continuous co-phase flexible alternating current traction power supply and operation mode therefor
CN108189712B (zh) 一种电气化铁路地面柔性自动过分相系统
CN108189711B (zh) 一种电气化铁路地面自动过分相系统
CN103904636B (zh) 一种基于柔性直流输电的直流牵引供电系统
CN112865098B (zh) 和异相供电兼容的全贯通式柔性牵引供电系统
WO2017129026A1 (zh) 一种混合背靠背直流输电系统及潮流反转控制方法
WO2021179539A1 (zh) 一种列车供电网络及其分区所自动过分相的牵引系统
CN106451485B (zh) 电气化铁路牵引变电所变压器电能质量综合控制装置
CN111361462A (zh) 电气化铁路变电所无分相牵引供电装置
CN111600497A (zh) 抑制高压直流换相失败的串联双向二极管桥换流器
CN107176063B (zh) 一种电气化铁路外部电网供电构造
CN110912175A (zh) 一种混合四端高压直流输电系统
WO2023065387A1 (zh) 一种电气化铁路的柔性互联供电系统
CN208369483U (zh) 一种同相供电装置
CN208461466U (zh) 轨道交通变电站供电系统
US4200907A (en) Method of taking a pole of a high-voltage d-c transmission station out of service
CN115189354A (zh) 一种电气化铁路贯通式同相供电系统构造
CN206678832U (zh) 一种电气化铁路分区所连通供电构造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE