WO2021179539A1 - 一种列车供电网络及其分区所自动过分相的牵引系统 - Google Patents

一种列车供电网络及其分区所自动过分相的牵引系统 Download PDF

Info

Publication number
WO2021179539A1
WO2021179539A1 PCT/CN2020/110369 CN2020110369W WO2021179539A1 WO 2021179539 A1 WO2021179539 A1 WO 2021179539A1 CN 2020110369 W CN2020110369 W CN 2020110369W WO 2021179539 A1 WO2021179539 A1 WO 2021179539A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
supply arm
substation
detection device
area
Prior art date
Application number
PCT/CN2020/110369
Other languages
English (en)
French (fr)
Inventor
张志学
吴丽然
胡景瑜
周方圆
罗文广
仇乐兵
Original Assignee
中车株洲电力机车研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车株洲电力机车研究所有限公司 filed Critical 中车株洲电力机车研究所有限公司
Publication of WO2021179539A1 publication Critical patent/WO2021179539A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • B60M3/02Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power with means for maintaining voltage within a predetermined range

Definitions

  • the present invention relates to the technical field of rail transit, in particular to a traction system for automatically passing phases in a train power supply network and its partitions.
  • FIG. 1 is the schematic diagram of the currently widely used AC traction power supply system.
  • the power system provides 110kV/220kV/330kV high-voltage power supply with a large capacity.
  • the traction transformer completes the conversion from three-phase high-voltage AC to secondary two-phase low-voltage.
  • the secondary side of the transformer uses a feeder to connect the 25kV voltage to the traction network, and then connects to the train through the traction network wire and pantograph, and forms a complete loop through the rail and return line.
  • the three-phase asymmetrical current of the primary side of the traction transformer will result, that is, there is a negative sequence current. therefore.
  • two adjacent power supply arms under the same traction transformer have different voltage amplitudes and phases, such as the ⁇ 1 and ⁇ 1 power supply arms, and the ⁇ 2 and ⁇ 2 power supply arms in FIG. 1.
  • the voltage amplitude and phase of the adjacent power supply arms at both ends of the zone are not completely consistent. Therefore, the current zone Use electric phase separation.
  • two air partitions are used to achieve voltage isolation of the two power supply arms, namely transition zone 1 and transition zone 2.
  • the neutral section in the middle is usually a non-electrical zone, and the length is usually several hundred meters.
  • the staff can manually close the cross-zone switch to short-circuit the sub-zone, and expand the power supply range of the substation to achieve temporary cross-zone power supply. Since the neutral section is usually a no-power zone, it is not conducive to ensuring the stable operation of the train. Therefore, there are also some automatic phase separation schemes.
  • FIG. 3 is a schematic diagram of an automatic ground phase passing system for electrified railways, which can realize uninterrupted train power during the period when the train passes through the neutral section.
  • the essence of the scheme is to use a converter to obtain a controllable voltage and connect this voltage to the original neutral section without electricity.
  • the voltage of the power supply arm TF1 is UA.
  • the voltage conversion is gradually performed until the voltage is adjusted to UB.
  • the power supply arm TF2 is powered by the power supply arm TF2, and the voltage of TF2 is UB.
  • the object of the present invention is to provide a traction system for the automatic passing of the phase passing of the train power supply network and its partitions, so as to effectively realize the automatic passing of the phase and improve the safety of train operation.
  • the present invention provides the following technical solutions:
  • a traction system that automatically passes phases in zones including:
  • a first substation; a second substation; a substation located between the first substation and the second substation, and the substation has only one transition zone;
  • a first detection device arranged between the first substation and the sub-area; a second detection device provided between the second substation and the sub-area; wherein, the first The area between the detection device and the second detection device is an excessive phase area;
  • a converter whose first end is connected to the first end of the transition zone, and the second end is connected to the second end of the transition zone;
  • the controller connected to the converter, the first detection device, and the second detection device is used to determine that the train has entered the first detection device and the second detection device. After passing the phase division area, the converter is controlled to output voltage so that the voltage at the first end of the transition area is equal to the voltage at the second end of the transition area.
  • the controller is also used for:
  • the power supply arm between the transition zone and the first substation is a first power supply arm
  • the power supply arm between the transition zone and the second substation is a second power supply arm
  • the controller is also used for:
  • the power supply arm between the transition zone and the first substation is a first power supply arm
  • the power supply arm between the transition zone and the second substation is a second power supply arm
  • the controller is specifically used for:
  • the voltage at the first end of the transition area is used as a reference to control the converter to the
  • the second end of the transition area performs voltage output so that the voltage of the second end of the transition area is equal to the voltage of the first end of the transition area, or the voltage of the second end of the transition area is used as a reference to control all
  • the converter outputs a voltage to the first end of the transition area, so that the voltage of the first end of the transition area is equal to the voltage of the second end of the transition area.
  • the controller is also used for:
  • the electric energy of the second power supply arm is provided to the first power supply arm through the converter, and when it is determined that the second power supply arm is de-energized, The converter provides the electric energy of the first power supply arm to the second power supply arm;
  • the power supply arm between the transition zone and the first substation is a first power supply arm
  • the power supply arm between the transition zone and the second substation is a second power supply arm
  • the converter is a converter with an AC-DC-AC structure.
  • the first detection device is a detection device that determines whether the train enters the excessive phase area by means of position detection or vehicle-to-ground communication;
  • the second detection device is a detection device that determines whether a train enters the over-phase area by means of position detection or vehicle-to-ground communication.
  • a train power supply network includes any one of the above-mentioned traction systems with automatic phase splitting in zones.
  • the partition has only one transition zone, and the design of the neutral section is cancelled, thus helping to ensure the safe operation of the train.
  • this application is based on the first detection device, the second detection device, the converter and the controller when realizing the automatic phase passing of the zone.
  • the first detection device is installed between the first substation and the substation
  • the second detection device is installed between the second substation and the substation
  • the area between the first detection device and the second detection device It is an over-phase area, as long as the train enters the over-phase area, it can be detected by the first detection device and the second detection device.
  • the controller will control the converter to output voltage so that the voltages at the first end of the transition zone and the second end of the transition zone are equal, that is, the voltages at both ends of the transition zone are the same, thus realizing automatic over-phase division. Therefore, the solution of the present application can effectively realize the automatic over-phase division of the zone, and can improve the safety of train operation.
  • the zoning station has only one transition zone, which reduces the construction workload of the system and also improves the reliability of the traction network.
  • Figure 1 is a schematic diagram of a traditional AC traction power supply system
  • Figure 2 is a schematic diagram of the electrical connection of the traditional divisional power and phase separation
  • Fig. 3 is a schematic diagram of the principle of excessive phase separation in an existing partition
  • Fig. 4 is a schematic diagram of the structure of a traction system with automatic over-phase division in the present invention.
  • the core of the present invention is to provide a traction system for automatically passing the phase separation of the zone, which can effectively realize the automatic phase separation of the zone and can improve the safety of train operation.
  • the construction workload of the system is reduced, and the reliability of the traction net is also improved.
  • FIG. 4 is a schematic diagram of the structure of a traction system with automatic over-phase division in the present invention, including:
  • the first substation 10; the second substation 20; the substation 30 arranged between the first substation 10 and the second substation 20, and the substation 30 has only one transition zone;
  • the first detection device 50 is provided between the first substation 10 and the substation 30; the second detection device 60 is provided between the second substation 20 and the substation 30; wherein, the first detection device 50 and The area between the second detection devices 60 is an over-phase area;
  • a converter 40 whose first end is connected to the first end of the transition zone, and the second end is connected to the second end of the transition zone;
  • the controller connected to the converter 40, the first detection device 50 and the second detection device 60 is used to control the transformer after it is determined by the first detection device 50 and the second detection device 60 that the train enters the over-phase area.
  • the inverter 40 performs voltage output so that the voltage at the first end of the transition area is equal to the voltage at the second end of the transition area.
  • the substation 30 provided between the first substation 10 and the second substation 20 has only one transition zone.
  • the first end of the converter 40 is connected to the first end of the transition zone, and the second end of the converter 40 is connected to the second end of the transition zone.
  • the specific structure of the converter 40 can be set and adjusted according to actual needs.
  • the converter 40 can be a converter 40 with an AC-DC-AC structure, which is convenient for the controller to control the converter 40.
  • the converter 40 can adopt various forms of converter 40 topologies that can realize the functions of the present application, for example, can adopt topologies in the form of 2-level, 3-level, multi-level, cascade, and MMC.
  • the switching devices can use IGBT, IGCT, SIC, etc.
  • the converter 40 in FIG. 1 is directly connected to the traction network 25kV. In other embodiments, it can also be connected to the traction network through a transformer step-down, which does not affect the implementation of the present invention.
  • the negative bus of the converter 40 is not shown in FIG. 1, that is, the ground terminal of the converter 40 is not shown.
  • the area between the first detection device 50 and the second detection device 60 is referred to as the over-phase area.
  • the controller will control the converter 40 according to the corresponding strategy.
  • the first detection device 50 and the second detection device 60 are devices for determining whether the train has entered the over-phase area. And it is understandable that whether the train described in this application enters the over-phase area is specifically aimed at the position of the train’s pantograph. When the train’s pantograph is in the over-phase area, this application determines that the train has entered the over-phase area. Phase area.
  • the specific form and position setting of the first detection device 50 and the second detection device 60 can be set and selected according to actual needs.
  • the first detection device 50 may be several tens of meters or less from the transition zone, of course, the distance may be adjusted as needed.
  • Both the first detection device 50 and the second detection device 60 can adopt common detection devices for detecting the position of the pantograph. In addition, it can also be based on vehicle-ground communication to determine whether the pantograph of the train enters the over-phase area.
  • the first detection device 50 may be a detection device that determines whether the train has entered the excessive phase area by means of position detection or vehicle-to-ground communication; the second detection device 60 may be a passing The position detection method or the vehicle-ground communication method determines whether the train enters the phase-separated area.
  • detection devices such as axle counters, magnets, current sensors, and pantograph detectors can be used.
  • the first detection device 50 and the second detection device 60 are both connected to the controller. Therefore, after the first detection device 50 and the second detection device 60 determine that the train enters the over-phase area, the controller will control the converter 40 The voltage output is performed so that the voltage at the first end of the transition area is equal to the voltage at the second end of the transition area.
  • the controller is not shown in FIG. 1.
  • the controller will control the voltage at the first end of the transition area to be equal to the voltage at the second end of the transition area.
  • the controller controls the converter 40 so that the voltage at the first end of the transition zone is equal to the voltage at the second end of the transition zone, it can take the voltage at the first end of the transition zone as a reference, or it can take the voltage at the second end of the transition zone as a reference.
  • the voltage at the terminal is the reference.
  • a predetermined voltage value can also be used as a reference, but it is usually based on the voltage at the first end of the transition area or the voltage at the second end of the transition area as a reference.
  • controller can be specifically used to:
  • the voltage at the first end of the transition area is used as a reference, and the converter 40 is controlled to output voltage to the second end of the transition area. , Make the voltage of the second end of the transition zone equal to the voltage of the first end of the transition zone, or, based on the voltage of the second end of the transition zone, control the converter 40 to output voltage to the first end of the transition zone, so that The voltage at the first end of the transition zone is equal to the voltage at the second end of the transition zone.
  • the train runs from left to right, and the controller can determine through the first detection device 50 that the pantograph of the train has entered the over-phase area.
  • the output voltage of the first substation 10 is UA
  • the output voltage of the second substation 10 is UA.
  • the output voltage of the power station 20 is UB.
  • the voltage UB at the second end of the transition area is used as the reference. If the voltage UA at the first end of the transition area is used as the reference, the converter 40 is controlled to output the voltage UD to the second end of the transition area.
  • UD UA-UB.
  • the voltages described in this application are equal, which means that the amplitudes and phases of the voltages are equal, that is, a vector.
  • the controller can also be used for:
  • the converter 40 is controlled based on the received active power exchange command to perform active power exchange between the first power supply arm and the second power supply arm;
  • the power supply arm between the transition zone and the first substation 10 is called the first power supply arm
  • the power supply arm between the transition zone and the second substation 20 is called the second power supply arm
  • the controller may control the converter 40 based on the received active power exchange command to perform the active power exchange between the first power supply arm and the second power supply arm, and the specific content of the active power exchange command may be It depends on the current actual active power strategy. For example, if the train is located in the first power supply arm and is currently downhill, the generated electric energy is transmitted to the second power supply arm through the converter 40, so as to realize the electric power dispatch of the power grid. Such a scheme is beneficial to improve the regenerative energy utilization rate and overall efficiency of the entire power supply system. In the traditional scheme, for the energy of the regenerative braking of the train, due to the existence of the neutral section, the energy reuse will be restricted by each section, that is, the energy cannot be fully utilized.
  • the active power exchange strategy does not conflict with the automatic over-phase strategy, the two goals can be achieved at the same time.
  • the automatic over-phase has a higher priority to ensure driving safety.
  • controller can also be used to:
  • the power supply arm between the transition zone and the first substation 10 is the first power supply arm
  • the power supply arm between the transition zone and the second substation 20 is the second power supply arm
  • the two ends of the converter 40 are respectively connected to the first power supply arm and the second power supply arm, it can also be regarded as a power electronic power compensator, which realizes the connection to the first power supply arm and/or Reactive power compensation of the second power supply arm.
  • the specific reactive power compensation strategy depends on actual needs. By performing reactive power compensation, it is beneficial to further optimize the power quality of the entire power supply system.
  • the controller can also be used for:
  • the electric energy of the second power supply arm is supplied to the first power supply arm through the converter 40, and when it is determined that the second power supply arm is de-energized, the first power supply arm is supplied through the converter 40.
  • the electric energy of the arm is supplied to the second power supply arm;
  • the power supply arm between the transition zone and the first substation 10 is the first power supply arm
  • the power supply arm between the transition zone and the second substation 20 is the second power supply arm
  • the converter 40 and the controller are used to realize the function of cross-zone power supply, that is, when one power supply arm fails, the energy of the other power supply arm can be quickly converted into energy of the same amplitude and phase to be supplied to the fault. Power supply arm.
  • the solution of the present application can realize remote, fast and automatic cross-zone power supply, thus shortening the power outage time caused by the cross-zone operation and improving the system efficiency And the level of intelligence.
  • the subarea 30 has only one transition zone, which cancels the design of the neutral section, thus helping to ensure the safe operation of the train.
  • the sub-station 30 automatically passes the phase separation, it is implemented based on the first detection device 50, the second detection device 60, the converter 40 and the controller.
  • the first detection device 50 is disposed between the first substation 10 and the substation 30
  • the second detection device 60 is disposed between the second substation 20 and the substation 30, and the first detection device 50 is connected to the second substation.
  • the area between the two detection devices 60 is an excessive phase separation area, so as long as the train enters the excessive phase separation area, it can be detected by the first detection device 50 and the second detection device 60.
  • the controller controls the converter 40 to output voltage so that the voltages of the first end of the transition zone and the second end of the transition zone are equal, that is, the voltages at both ends of the transition zone are the same, thus realizing automatic over-phase division. Therefore, the solution of the present application can effectively realize the automatic over-phase division of the zone, and can improve the safety of train operation.
  • the zoning station 30 has only one transition zone, which reduces the construction workload of the system and also improves the reliability of the traction network.
  • the embodiment of the present invention also provides a train power supply network, which may include the traction system with automatic phase separation by the partition in any of the above embodiments. Repeat the description.

Abstract

一种列车供电网络及其分区所自动过分相的牵引系统,该牵引系统包括:第一变电所(10);第二变电所(20);仅具有一个过渡区的分区所(30);设置在第一变电所(10)与分区所(30)之间的第一检测装置(50);设置在第二变电所(20)与分区所(30)之间的第二检测装置(60);与过渡区的两端连接的变流器(40);与变流器(40),第一检测装置(50)以及第二检测装置(60)均连接的控制器,用于在通过第一检测装置(50)和第二检测装置(60)确定出列车进入到过分相区域之后,控制变流器(40)进行电压输出,使得过渡区的第一端的电压与过渡区的第二端的电压相等。该牵引系统实现了分区所(30)的自动过分相,能够提高列车运行的安全性,还降低了系统的施工工作量,也提升了牵引网的可靠性。

Description

一种列车供电网络及其分区所自动过分相的牵引系统
本申请要求于2020年03月11日提交至中国专利局、申请号为202010166576.0、发明名称为“一种列车供电网络及其分区所自动过分相的牵引系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及轨道交通技术领域,特别是涉及一种列车供电网络及其分区所自动过分相的牵引系统。
背景技术
目前的电气化铁路绝大部分采用交流供电系统。为了负荷平衡及消除负序分量,通常采用分段轮换相序的供电方式,使得牵引供电网上存在电分相。图1为目前广泛采用的交流牵引供电系统的原理图,电力系统提供110kV/220kV/330kV的高压电源,容量一般较大,牵引变压器则完成三相高压交流到次边两相低压的转化,牵引变压器的次边利用馈线将25kV电压连接到牵引网当中,再经牵引网导线、受电弓接入列车,并经钢轨和回流线构成一个完整的回路。
由于牵引变压器次边的非三相对称,会导致牵引变压器的原边电流三相不对称,即存在负序电流。因此。通常而言,同一牵引变压器下的两个相邻供电臂的电压幅值和相位各不相同,例如图1中的α1与β1供电臂、α2与β2供电臂供电臂。并且,由于牵引变压器参数的分散性、牵引网长度不一致性、列车取流不一致性等因素,分区所两端的相邻供电臂的电压幅值与相位也并不完全一致,因此目前的分区所都会采用电分相。可参阅图2,采用了两个空气隔断来实现两个供电臂的电压隔离,即过渡区1和过渡区2。中间的中性段平时均为无电区,长度通常为数百米。特殊情况下当某个供电臂对应的变电所开关跳闸失电时,工作人员可将越区开关手动闭合来将分区所短接,扩大变电所的供电范围实现临时的越区供电。由于中性段平时为无电区,不利于保障列车的稳定运行,因此,目前也有一些自动过 分相的方案。
可参阅图3,是一种电气化铁路地面自动过分相系统的示意图,能够在列车过中性段期间,实现列车不断电。其方案实质是采用变流器得到一个可控电压,并将该电压接入原先的中性段无电区。例如列车从左驶入Y1之前,供电臂TF1的电压为UA,经过Y1之后,开始逐步进行电压转换直至将电压调整为UB,经过Y2之后由供电臂TF2供电,TF2的电压为UB。可以看出,无论电压转换的过程多么短,其方案需要两个过渡区以及一个中性段,且由于列车高速运行,中性段不能太短,否则无法实现对电压的幅值、相位的转换。而中性段越长则越不利于保障列车的稳定运行,一旦相关设备故障,列车运行可能出现重大风险。还有的一些方案是基于电分相并联各种开关,可以实现自动过分相,但存在一个短的失电时间,也不利于列车的稳定运行。
综上所述,如何有效地实现自动过分相,提高列车运行的安全性,是目前本领域技术人员急需解决的技术问题。
发明内容
本发明的目的是提供一种列车供电网络及其分区所自动过分相的牵引系统,以有效地实现自动过分相,提高列车运行的安全性。
为解决上述技术问题,本发明提供如下技术方案:
一种分区所自动过分相的牵引系统,包括:
第一变电所;第二变电所;设置在所述第一变电所与所述第二变电所之间的分区所,且所述分区所仅具有一个过渡区;
设置在所述第一变电所与所述分区所之间的第一检测装置;设置在所述第二变电所与所述分区所之间的第二检测装置;其中,所述第一检测装置与所述第二检测装置之间的区域为过分相区域;
第一端与所述过渡区的第一端连接,第二端与所述过渡区的第二端连接的变流器;
与所述变流器,所述第一检测装置以及所述第二检测装置均连接的控制器,用于在通过所述第一检测装置和所述第二检测装置确定出列车进入 到所述过分相区域之后,控制所述变流器进行电压输出,使得所述过渡区的第一端的电压与所述过渡区的第二端的电压相等。
优选的,所述控制器还用于:
在确定出列车未进入到所述过分相区域之后,基于接收到的有功功率交换指令对所述变流器进行控制,以进行第一供电臂与第二供电臂之间的有功功率交换;
其中,所述过渡区与所述第一变电所之间的供电臂为第一供电臂,所述过渡区与所述第二变电所之间的供电臂为第二供电臂。
优选的,所述控制器还用于:
基于接收到的无功功率补偿指令对所述变流器进行控制,对第一供电臂和/或第二供电臂进行无功功率补偿;
其中,所述过渡区与所述第一变电所之间的供电臂为第一供电臂,所述过渡区与所述第二变电所之间的供电臂为第二供电臂。
优选的,所述控制器,具体用于:
在通过所述第一检测装置和所述第二检测装置确定出列车进入到所述过分相区域之后,以所述过渡区的第一端的电压为基准,控制所述变流器向所述过渡区的第二端进行电压输出,使得所述过渡区的第二端的电压与所述过渡区的第一端的电压相等,或者,以所述过渡区的第二端的电压为基准,控制所述变流器向所述过渡区的第一端进行电压输出,使得所述过渡区的第一端的电压与所述过渡区的第二端的电压相等。
优选的,所述控制器,还用于:
在确定出第一供电臂失电时,通过所述变流器将所述第二供电臂的电能提供至所述第一供电臂,在确定出所述第二供电臂失电时,通过所述变流器将所述第一供电臂的电能提供至所述第二供电臂;
其中,所述过渡区与所述第一变电所之间的供电臂为第一供电臂,所述过渡区与所述第二变电所之间的供电臂为第二供电臂。
优选的,所述变流器为交直交结构的变流器。
优选的,所述第一检测装置为通过位置检测的方式或者车地通讯的方式确定出列车是否进入所述过分相区域的检测装置;
所述第二检测装置为通过位置检测的方式或者车地通讯的方式确定出列车是否进入所述过分相区域的检测装置。
一种列车供电网络,包括上述任一项所述的分区所自动过分相的牵引系统。
应用本发明实施例所提供的技术方案,分区所仅具有一个过渡区,取消了中性段的设计,因此有利于保障列车的安全运行。而本申请在实现分区所自动过分相时,是基于第一检测装置,第二检测装置,变流器以及控制器实现的。具体的,第一检测装置设置在第一变电所与分区所之间,第二检测装置设置在第二变电所与分区所之间,第一检测装置与第二检测装置之间的区域为过分相区域,则只要列车进入了过分相区域,便可以通过第一检测装置和第二检测装置检测到。控制器此时会控制变流器进行电压输出,使得过渡区的第一端与过渡区的第二端的电压相等,即使得过渡区两端的电压是一致的,因此实现了自动过分相。因此,本申请的方案可以有效地实现分区所的自动过分相,且能够提高列车运行的安全性。此外,分区所仅具有一个过渡区,降低了系统的施工工作量,也提升了牵引网的可靠性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为传统的交流牵引供电系统的原理图;
图2为传统的分区所电分相的电气连接示意图;
图3为现有的一种分区所过分相的原理示意图;
图4为本发明中一种分区所自动过分相的牵引系统的结构示意图。
具体实施方式
本发明的核心是提供一种分区所自动过分相的牵引系统,可以有效地实现分区所的自动过分相,且能够提高列车运行的安全性。此外,还降低了系统的施工工作量,也提升了牵引网的可靠性。
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参考图4,图4为本发明中一种分区所自动过分相的牵引系统的结构示意图,包括:
第一变电所10;第二变电所20;设置在第一变电所10与第二变电所20之间的分区所30,且分区所30仅具有一个过渡区;
设置在第一变电所10与分区所30之间的第一检测装置50;设置在第二变电所20与分区所30之间的第二检测装置60;其中,第一检测装置50与第二检测装置60之间的区域为过分相区域;
第一端与过渡区的第一端连接,第二端与过渡区的第二端连接的变流器40;
与变流器40,第一检测装置50以及第二检测装置60均连接的控制器,用于在通过第一检测装置50和第二检测装置60确定出列车进入到过分相区域之后,控制变流器40进行电压输出,使得过渡区的第一端的电压与过渡区的第二端的电压相等。
具体的,在本申请的方案中,设置在第一变电所10与第二变电所20之间的分区所30仅具有一个过渡区。变流器40的第一端则与过渡区的第一端连接,变流器40的第二端与过渡区的第二端连接。
变流器40的具体构成可以根据实际需要进行设定和调整,例如,变流器40可以为交直交结构的变流器40,便于控制器对变流器40进行控制。并且,变流器40可以采用各种形式的变流器40拓扑,能够实现本申请的功能即可,例如可以采用2电平、三电平、多电平、级联及MMC等形式的拓扑,其中的开关器件可以采用IGBT、IGCT、SIC等。并且,图1中的变流器40 直接接入牵引网25kV,在其他实施方式中,也可以通过变压器降压再接入牵引网,并不影响本发明的实施。此外,图1中并未示出变流器40负母线,即并未示出变流器40的接地端。
本申请将第一检测装置50与第二检测装置60之间的区域称为过分相区域,在列车进入到过分相区域之后,控制器便会按照相应的策略对变流器40进行控制。第一检测装置50以及第二检测装置60便是用于确定列车是否进入过分相区域的装置。并且可以理解的是,本申请描述的列车是否进入过分相区域,具体针对的是列车的受电弓的位置,当列车的受电弓位于过分相区域内时,本申请便确定列车进入了过分相区域。
第一检测装置50以及第二检测装置60的具体形式以及位置设置,均可以根据实际需要进行设定和选取。例如,第一检测装置50可以距离过渡区几十米或者更短,当然,该距离可以根据需要进行调整。第一检测装置50以及第二检测装置60均可以采用常用的进行受电弓位置检测的检测装置,此外,也可以是基于车地通讯的方式确定出列车的受电弓是否进入过分相区域。
即在本发明的一种具体实施方式中,第一检测装置50可以为通过位置检测的方式或者车地通讯的方式确定出列车是否进入过分相区域的检测装置;第二检测装置60可以为通过位置检测的方式或者车地通讯的方式确定出列车是否进入过分相区域的检测装置。例如可以采用计轴器、磁钢、电流传感器、受电弓检测器等检测装置。
第一检测装置50以及第二检测装置60均与控制器连接,因此,基于第一检测装置50以及第二检测装置60确定出列车进入到过分相区域之后,控制器便会控制变流器40进行电压输出,使得过渡区的第一端的电压与过渡区的第二端的电压相等。当然,图1中并未示出控制器。
当列车的受电弓位于过渡区时,此时过渡区的第一端通过受电弓与过渡区的第二端电气连接,此时需要使得过渡区的第一端与过渡区的第二端的电压的相同,否则会产生电火花等危险情况。因此,本申请的方案中,列车进入到过分相区域之后,控制器便会控制过渡区的第一端的电压与过渡区的第二端的电压相等。而控制器在控制变流器40使得过渡区的第一端 的电压与过渡区的第二端的电压相等时,可以以过渡区的第一端的电压为基准,也可以以过渡区的第二端的电压为基准。当然,也可以是以一个预定的电压值作为基准,但通常是以过渡区的第一端的电压为基准或者以过渡区的第二端的电压为基准。
即在具体实施时,控制器可以具体用于:
在通过第一检测装置50和第二检测装置60确定出列车进入到过分相区域之后,以过渡区的第一端的电压为基准,控制变流器40向过渡区的第二端进行电压输出,使得过渡区的第二端的电压与过渡区的第一端的电压相等,或者,以过渡区的第二端的电压为基准,控制变流器40向过渡区的第一端进行电压输出,使得过渡区的第一端的电压与过渡区的第二端的电压相等。
例如图1中,列车从左至右行驶,控制器通过第一检测装置50可以确定列车的受电弓进入到了过分相区域,例如,第一变电所10的输出电压为UA,第二变电所20的输出电压为UB,此时,控制器便会控制变流器40向过渡区的第一端输出电压UC,UC=UB-UA。当然,该例子中是以过渡区的第二端的电压UB为基准,如果以过渡区的第一端的电压UA为基准,则是控制变流器40向过渡区的第二端输出电压UD,UD=UA-UB。此外需要强调的是,本申请描述的电压相等,指的电压的幅值和相位均相等,即是一个矢量。
在本发明的一种具体实施方式中,控制器还可以用于:
在确定出列车未进入到过分相区域之后,基于接收到的有功功率交换指令对变流器40进行控制,以进行第一供电臂与第二供电臂之间的有功功率交换;
本申请的方案中,过渡区与第一变电所10之间的供电臂称为第一供电臂,过渡区与第二变电所20之间的供电臂称为第二供电臂。
该种实施方式中,考虑到本申请设置了变流器40连接到了分区所30的过渡区的两端,而当确定出列车当前未进入到过分相区域时,表明线路上暂时没有列车需要过分相,因此该种实施方式中,便利用变流器40进行有功功率交换。
具体的,控制器可以基于接收到的有功功率交换指令对变流器40进行 控制,以进行第一供电臂与第二供电臂之间的有功功率交换,而有功功率交换指令的具体内容,可以取决于当前实际的有功功率策略。例如,列车位于第一供电臂且当前是下坡,产生的电能通过变流器40输送至第二供电臂,从而实现电网的电能调度。这样的方案有利于提升整个供电系统的再生能量利用率及全局效率。而在传统的方案中,对于列车再生制动的能量,由于中性段无电区的存在,使得能量的再利用会受到各个分段的制约,即能量不能充分利用。
此外,在列车进入到过分相区域之后,如果进行有功功率交换的策略不与自动过分相的策略冲突时,便可以同时实现这两个目标。当然,如果存在冲突,则自动过分相的优先级更高,保障行车安全。
进一步的,控制器还可以用于:
基于接收到的无功功率补偿指令对变流器40进行控制,对第一供电臂和/或第二供电臂进行无功功率补偿;
其中,过渡区与第一变电所10之间的供电臂为第一供电臂,过渡区与第二变电所20之间的供电臂为第二供电臂。
该种实施方式中,考虑到变流器40的两端分别连接在第一供电臂和第二供电臂上,因此也可以视为一个电力电子功率补偿器,实现对第一供电臂和/或第二供电臂的无功功率补偿。当然,具体的进行无功功率补偿的策略取决与实际的需要。通过进行无功功率补偿,有利于进一步地优化整个供电系统的电能质量。
在本发明的一种具体实施方式中,控制器还可以用于:
在确定出第一供电臂失电时,通过变流器40将第二供电臂的电能提供至第一供电臂,在确定出第二供电臂失电时,通过变流器40将第一供电臂的电能提供至第二供电臂;
其中,过渡区与第一变电所10之间的供电臂为第一供电臂,过渡区与第二变电所20之间的供电臂为第二供电臂。
该种实施方式中,利用变流器40和控制器实现越区供电的功能,即在一个供电臂故障时,可以快速地将另一个供电臂能量转换为相同幅值、相位的能量提供到故障供电臂。相较于传统的的需要手动操作越区开关的方 案,本申请的方案可以实现远程,且快速、自动地进行越区供电,因此缩短了越区操作带来的断电时间,提升了系统效率及智能化水平。
应用本发明实施例所提供的技术方案,分区所30仅具有一个过渡区,取消了中性段的设计,因此有利于保障列车的安全运行。而本申请在实现分区所30自动过分相时,是基于第一检测装置50,第二检测装置60,变流器40以及控制器实现的。具体的,第一检测装置50设置在第一变电所10与分区所30之间,第二检测装置60设置在第二变电所20与分区所30之间,第一检测装置50与第二检测装置60之间的区域为过分相区域,则只要列车进入了过分相区域,便可以通过第一检测装置50和第二检测装置60检测到。控制器此时会控制变流器40进行电压输出,使得过渡区的第一端与过渡区的第二端的电压相等,即使得过渡区两端的电压是一致的,因此实现了自动过分相。因此,本申请的方案可以有效地实现分区所的自动过分相,且能够提高列车运行的安全性。此外,分区所30仅具有一个过渡区,降低了系统的施工工作量,也提升了牵引网的可靠性。
相应于上面的分区所自动过分相的牵引系统实施例,本发明实施例还提供了一种列车供电网络,可以包括上述任一实施例中的分区所自动过分相的牵引系统,此处不再重复说明。
还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功 能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的技术方案及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (8)

  1. 一种分区所自动过分相的牵引系统,其特征在于,包括:
    第一变电所;第二变电所;设置在所述第一变电所与所述第二变电所之间的分区所,且所述分区所仅具有一个过渡区;
    设置在所述第一变电所与所述分区所之间的第一检测装置;设置在所述第二变电所与所述分区所之间的第二检测装置;其中,所述第一检测装置与所述第二检测装置之间的区域为过分相区域;
    第一端与所述过渡区的第一端连接,第二端与所述过渡区的第二端连接的变流器;
    与所述变流器,所述第一检测装置以及所述第二检测装置均连接的控制器,用于在通过所述第一检测装置和所述第二检测装置确定出列车进入到所述过分相区域之后,控制所述变流器进行电压输出,使得所述过渡区的第一端的电压与所述过渡区的第二端的电压相等。
  2. 根据权利要求1所述的分区所自动过分相的牵引系统,其特征在于,所述控制器还用于:
    在确定出列车未进入到所述过分相区域之后,基于接收到的有功功率交换指令对所述变流器进行控制,以进行第一供电臂与第二供电臂之间的有功功率交换;
    其中,所述过渡区与所述第一变电所之间的供电臂为第一供电臂,所述过渡区与所述第二变电所之间的供电臂为第二供电臂。
  3. 根据权利要求1所述的分区所自动过分相的牵引系统,其特征在于,所述控制器还用于:
    基于接收到的无功功率补偿指令对所述变流器进行控制,对第一供电臂和/或第二供电臂进行无功功率补偿;
    其中,所述过渡区与所述第一变电所之间的供电臂为第一供电臂,所述过渡区与所述第二变电所之间的供电臂为第二供电臂。
  4. 根据权利要求1所述的分区所自动过分相的牵引系统,其特征在于,所述控制器,具体用于:
    在通过所述第一检测装置和所述第二检测装置确定出列车进入到所述 过分相区域之后,以所述过渡区的第一端的电压为基准,控制所述变流器向所述过渡区的第二端进行电压输出,使得所述过渡区的第二端的电压与所述过渡区的第一端的电压相等,或者,以所述过渡区的第二端的电压为基准,控制所述变流器向所述过渡区的第一端进行电压输出,使得所述过渡区的第一端的电压与所述过渡区的第二端的电压相等。
  5. 根据权利要求1至4任一项所述的分区所自动过分相的牵引系统,其特征在于,所述控制器,还用于:
    在确定出第一供电臂失电时,通过所述变流器将所述第二供电臂的电能提供至所述第一供电臂,在确定出所述第二供电臂失电时,通过所述变流器将所述第一供电臂的电能提供至所述第二供电臂;
    其中,所述过渡区与所述第一变电所之间的供电臂为第一供电臂,所述过渡区与所述第二变电所之间的供电臂为第二供电臂。
  6. 根据权利要求1所述的分区所自动过分相的牵引系统,其特征在于,所述变流器为交直交结构的变流器。
  7. 根据权利要求1所述的分区所自动过分相的牵引系统,其特征在于,所述第一检测装置为通过位置检测的方式或者车地通讯的方式确定出列车是否进入所述过分相区域的检测装置;
    所述第二检测装置为通过位置检测的方式或者车地通讯的方式确定出列车是否进入所述过分相区域的检测装置。
  8. 一种列车供电网络,其特征在于,包括如权利要求1至7任一项所述的分区所自动过分相的牵引系统。
PCT/CN2020/110369 2020-03-11 2020-08-21 一种列车供电网络及其分区所自动过分相的牵引系统 WO2021179539A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010166576.0 2020-03-11
CN202010166576.0A CN111267676B (zh) 2020-03-11 2020-03-11 一种列车供电网络及其分区所自动过分相的牵引系统

Publications (1)

Publication Number Publication Date
WO2021179539A1 true WO2021179539A1 (zh) 2021-09-16

Family

ID=70994434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110369 WO2021179539A1 (zh) 2020-03-11 2020-08-21 一种列车供电网络及其分区所自动过分相的牵引系统

Country Status (2)

Country Link
CN (1) CN111267676B (zh)
WO (1) WO2021179539A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113752922A (zh) * 2021-10-21 2021-12-07 株洲中车时代电气股份有限公司 一种电气化铁路的柔性互联供电系统
CN114771360A (zh) * 2022-04-21 2022-07-22 西南交通大学 一种电气化铁路交直流牵引供电构造及控制方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111267676B (zh) * 2020-03-11 2021-08-24 中车株洲电力机车研究所有限公司 一种列车供电网络及其分区所自动过分相的牵引系统
CN112255530B (zh) * 2020-10-13 2024-03-01 中车株洲电力机车研究所有限公司 一种高速磁浮牵引系统的电气设备自检装置和方法
CN113183832B (zh) * 2021-05-18 2022-08-12 中铁二院工程集团有限责任公司 一种电气化铁路功率平衡协同柔性过分相装置及控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003205772A (ja) * 2001-11-09 2003-07-22 Meidensha Corp 交流電気鉄道の電源設備
US20100200041A1 (en) * 2008-09-23 2010-08-12 David Dayton Dearborn Modular solar photovoltaic canopy system for development of rail vehicle traction power
CN105034856A (zh) * 2015-07-06 2015-11-11 北京交通大学 一种交流电气化铁路智能电分相装置
CN105128704A (zh) * 2015-09-01 2015-12-09 南车株洲电力机车研究所有限公司 一种智能化自动过分相系统
CN108237923A (zh) * 2016-12-27 2018-07-03 中车株洲电力机车研究所有限公司 一种柔性供电装置及交流牵引供电系统
CN110040039A (zh) * 2019-05-21 2019-07-23 西南交通大学 一种光伏储能分布式发电的交流牵引供电系统及方法
CN111267676A (zh) * 2020-03-11 2020-06-12 中车株洲电力机车研究所有限公司 一种列车供电网络及其分区所自动过分相的牵引系统
CN111267675A (zh) * 2020-03-11 2020-06-12 中车株洲电力机车研究所有限公司 一种列车供电网络及其准双边供电的牵引供电系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2427484C1 (ru) * 2010-05-17 2011-08-27 Государственное образовательное учреждение высшего профессионального образования "Дальневосточный государственный университет путей сообщения" (ДВГУПС) Система электроснабжения электрифицированных железных дорог переменного тока
CN107492902B (zh) * 2017-10-21 2023-06-13 盾石磁能科技有限责任公司 基于飞轮储能装置的铁路牵引供电系统及其改善电能质量的方法
CN110626220B (zh) * 2018-06-21 2023-03-07 株洲中车时代电气股份有限公司 一种柔性自动过分相系统及其控制方法
CN109802401A (zh) * 2019-03-06 2019-05-24 中南大学 一种贯通式at供电接触网谐波检测及阻尼装置
CN110126682B (zh) * 2019-05-20 2021-01-08 西南交通大学 一种电气化铁路双边供电方法
CN110562101B (zh) * 2019-09-19 2022-04-01 江苏新绿能科技有限公司 一种接触网电能质量以及能量利用效率优化方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003205772A (ja) * 2001-11-09 2003-07-22 Meidensha Corp 交流電気鉄道の電源設備
US20100200041A1 (en) * 2008-09-23 2010-08-12 David Dayton Dearborn Modular solar photovoltaic canopy system for development of rail vehicle traction power
CN105034856A (zh) * 2015-07-06 2015-11-11 北京交通大学 一种交流电气化铁路智能电分相装置
CN105128704A (zh) * 2015-09-01 2015-12-09 南车株洲电力机车研究所有限公司 一种智能化自动过分相系统
CN108237923A (zh) * 2016-12-27 2018-07-03 中车株洲电力机车研究所有限公司 一种柔性供电装置及交流牵引供电系统
CN110040039A (zh) * 2019-05-21 2019-07-23 西南交通大学 一种光伏储能分布式发电的交流牵引供电系统及方法
CN111267676A (zh) * 2020-03-11 2020-06-12 中车株洲电力机车研究所有限公司 一种列车供电网络及其分区所自动过分相的牵引系统
CN111267675A (zh) * 2020-03-11 2020-06-12 中车株洲电力机车研究所有限公司 一种列车供电网络及其准双边供电的牵引供电系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113752922A (zh) * 2021-10-21 2021-12-07 株洲中车时代电气股份有限公司 一种电气化铁路的柔性互联供电系统
CN114771360A (zh) * 2022-04-21 2022-07-22 西南交通大学 一种电气化铁路交直流牵引供电构造及控制方法
CN114771360B (zh) * 2022-04-21 2023-04-07 西南交通大学 一种电气化铁路交直流牵引供电构造及控制方法

Also Published As

Publication number Publication date
CN111267676A (zh) 2020-06-12
CN111267676B (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
WO2021179539A1 (zh) 一种列车供电网络及其分区所自动过分相的牵引系统
CN111267675B (zh) 一种列车供电网络及其准双边供电的牵引供电系统
CN103895534B (zh) 基于模块化多电平换流器的双流制牵引供电系统
CN102267405B (zh) 一种能馈型牵引供电装置及其控制方法
WO2015176549A1 (zh) 一种三极柔性直流输电系统和方法
CN111361463B (zh) 交流牵引网柔性双边供电潮流控制系统
WO2022147933A1 (zh) 一种轨道交通混合供电系统及不平衡度控制方法
CN202633964U (zh) 能馈式牵引变电所及供电系统
CN103904636B (zh) 一种基于柔性直流输电的直流牵引供电系统
CN109617044B (zh) 一种基于v/v接线的电气化铁路同相供电系统
CN111361462B (zh) 电气化铁路变电所无分相牵引供电装置
CN101348086B (zh) 脉动直流牵引供电系统
CN106451485B (zh) 电气化铁路牵引变电所变压器电能质量综合控制装置
WO2023035540A1 (zh) 一种牵引网分布式发电供电系统及控制方法
CN109318757A (zh) 一种交流牵引网电分相区功率控制装置及方法
CN110562101A (zh) 一种接触网电能质量以及能量利用效率优化方法
CN107749718A (zh) 基于电流转移限流的铁路净化电源及电流转移限流方法
CN109066737B (zh) 一种牵引-补偿变压器的负序补偿装置及其方法
WO2023173784A1 (zh) 一种智能牵引变电所及其潮流控制方法
CN115189354A (zh) 一种电气化铁路贯通式同相供电系统构造
CN210608555U (zh) 一种基于负序注入的高速铁路不平衡优化补偿装置
CN108288859A (zh) 非对称的隔离型二重化串联再生制动能馈装置及控制方法
CN109733252B (zh) 地面自动过分相电路及其控制方法、控制装置和控制系统
CN110875595B (zh) 轨道车辆供电系统
CN106026106A (zh) 一种统一潮流控制器多回线路的串联侧换流器停运方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20924701

Country of ref document: EP

Kind code of ref document: A1