WO2023065362A1 - 功率控制方法、设备及存储介质 - Google Patents

功率控制方法、设备及存储介质 Download PDF

Info

Publication number
WO2023065362A1
WO2023065362A1 PCT/CN2021/125911 CN2021125911W WO2023065362A1 WO 2023065362 A1 WO2023065362 A1 WO 2023065362A1 CN 2021125911 W CN2021125911 W CN 2021125911W WO 2023065362 A1 WO2023065362 A1 WO 2023065362A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
pssch
sidelink
power
path loss
Prior art date
Application number
PCT/CN2021/125911
Other languages
English (en)
French (fr)
Inventor
丁伊
赵振山
林晖闵
张世昌
马腾
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202180101298.3A priority Critical patent/CN117751634A/zh
Priority to PCT/CN2021/125911 priority patent/WO2023065362A1/zh
Publication of WO2023065362A1 publication Critical patent/WO2023065362A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the technical field of communications, and in particular, to a power control method, device, and storage medium.
  • sidelink carrier aggregation In sidelink (sidelink, SL) communication, sidelink carrier aggregation is supported, that is, a terminal device can transmit data in parallel on one or more carriers, thereby improving the throughput of the sidelink transmission system.
  • a terminal device In the carrier aggregation scenario, how the terminal device performs sidelink power control is an urgent problem to be solved at present.
  • Embodiments of the present application provide a power control method, device, and storage medium, which reduce sidelink signaling overhead and reduce sidelink device power consumption.
  • the embodiment of the present application provides a power control method, including: the first device determines the first transmit power of the sidelink on the target carrier according to the first carrier; the target carrier includes the first carrier and/or or a carrier other than the first carrier.
  • the embodiment of the present application provides a first device, including: a processing module configured to determine the first transmit power of the sidelink on the target carrier according to the first carrier; the target carrier includes the first A carrier and/or carriers other than said first carrier.
  • an embodiment of the present application provides an electronic device, including: a transceiver, a processor, and a memory; the memory stores computer-executable instructions; the processor executes the computer-executable instructions stored in the memory, so that the processing The device executes the method as described in the first aspect.
  • an embodiment of the present application provides a computer storage medium for storing a computer program, and when the computer program runs on a computer, the computer executes the method described in the first aspect.
  • an embodiment of the present application provides a computer program product, which causes the computer to execute the method as described in the first aspect when the computer program product is run on a computer.
  • Embodiments of the present application provide a power control method, device, and storage medium, which can be applied to sidelink communication.
  • the method includes: the first device determines the transmission power of the sidelink signal on the target carrier according to the sidelink path loss obtained on the first carrier to perform power control, wherein the target carrier can be the first carrier or other carriers except the first carrier .
  • the above solution can reduce the overhead of sidelink signaling, reduce the processing complexity of sidelink equipment, reduce the power consumption of sidelink equipment, and improve the quality of sidelink communication.
  • FIG. 1 is a first schematic diagram of an application scenario of lateral communication provided by an embodiment of the present application
  • FIG. 2 is a second schematic diagram of an application scenario of lateral communication provided by an embodiment of the present application
  • FIG. 3 is a third schematic diagram of an application scenario of lateral communication provided by an embodiment of the present application.
  • FIG. 4 is a fourth schematic diagram of an application scenario of lateral communication provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a time slot structure provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a power control scenario for sidelink communication provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a scene for determining lateral path loss provided by an embodiment of the present application.
  • FIG. 8 is a first schematic diagram of a sidelink carrier aggregation scenario provided by an embodiment of the present application.
  • FIG. 9 is a second schematic diagram of a sidelink carrier aggregation scenario provided by an embodiment of the present application.
  • FIG. 10 is a flowchart of a power control method provided in an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of the first device provided by the embodiment of the present application.
  • FIG. 12 is a schematic diagram of a hardware structure of an electronic device provided by an embodiment of the present application.
  • the power control method provided by this application can be applied to various communication systems, for example: long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex) , TDD), Universal Mobile Telecommunications System (UMTS), Worldwide Interoperability for Microwave Access (WiMAX) Communication System, Fifth Generation (5th Generation, 5G) Mobile Communication System or New Wireless Access Access technology (new radio access technology, NR).
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • FDD frequency division duplex
  • time division duplex time division duplex
  • TDD Time division duplex
  • UMTS Universal Mobile Telecommunications System
  • WiMAX Worldwide Interoperability for Microwave Access
  • 5G mobile communication system may include non-standalone networking (non-standalone, NSA) and/or standalone networking (standalone, SA).
  • the power control method provided by this application can also be applied to machine type communication (machine type communication, MTC), inter-machine communication long-term evolution technology (Long Term Evolution-machine, LTE-M), device to device (device to device, D2D) A network, a machine to machine (M2M) network, an Internet of things (IoT) network, or other networks.
  • MTC machine type communication
  • LTE-M inter-machine communication long-term evolution technology
  • D2D device to device
  • a network a machine to machine (M2M) network
  • M2M machine to machine
  • IoT Internet of things
  • the IoT network may include, for example, the Internet of Vehicles.
  • the communication methods in the Internet of Vehicles system are collectively referred to as vehicle to other devices (vehicle to X, V2X, X can represent anything), for example, the V2X can include: vehicle to vehicle (vehicle to vehicle, V2V) communication, vehicle and Infrastructure (vehicle to infrastructure, V2I) communication, vehicle to pedestrian (vehicle to pedestrian, V2P) or vehicle to network (vehicle to network, V2N) communication, etc.
  • vehicle to vehicle vehicle to vehicle
  • V2V vehicle to vehicle
  • V2I vehicle to infrastructure
  • V2P vehicle to pedestrian
  • V2N vehicle to network
  • the power control method provided in this application can also be applied to future communication systems, such as the sixth generation mobile communication system and the like. This application is not limited to this.
  • the terminal equipment may also be referred to as user equipment (user equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal , wireless communication device, user agent, or user device.
  • user equipment user equipment
  • UE user equipment
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal , wireless communication device, user agent, or user device.
  • a terminal device may be a device that provides voice/data connectivity to users, for example, a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • some terminals can be: mobile phone (mobile phone), tablet computer (pad), computer with wireless transceiver function (such as notebook computer, palmtop computer, etc.), mobile internet device (mobile internet device, MID), virtual reality (virtual reality, VR) equipment, augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control (industrial control), wireless terminals in self driving (self driving), wireless in remote medical (remote medical) Terminals, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, cellular phones, cordless Telephones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (PDAs), handheld devices with wireless communication capabilities, computing devices, or connected Other processing devices to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in the 5G network or
  • wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories.
  • Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the terminal device may also be a terminal device in an Internet of Things (Internet of things, IoT) system.
  • IoT Internet of things
  • Its main technical feature is to connect objects to the network through communication technology, so as to realize the intelligent network of human-machine interconnection and object interconnection.
  • IoT technology can achieve massive connections, deep coverage, and terminal power saving through, for example, narrow band (NB) technology.
  • NB narrow band
  • terminal equipment can also include sensors such as smart printers, train detectors, and gas stations.
  • the main functions include collecting data (partial terminal equipment), receiving control information and downlink data from network equipment, and sending electromagnetic waves to transmit uplink data to network equipment. .
  • the network device may be any device with a wireless transceiver function.
  • Network equipment includes but not limited to: evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), Node B (Node B, NB), base station controller (base station controller, BSC) , base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), wireless fidelity (wireless fidelity, WiFi) system Access point (access point, AP), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), etc., can also be 5G, such as NR, A gNB in the system, or a transmission point (TRP or TP), one or a group (including multiple antenna panels) antenna panels of a base station in a 5G system, or it
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU can be responsible for processing non-real-time protocols and services, for example, it can implement the radio resource control (radio resource control, RRC) layer, service data adaptive protocol (service data) Adaptation protocol (SDAP) layer and/or packet data convergence protocol (packet data convergence protocol, PDCP) layer functions.
  • DU can be responsible for handling physical layer protocols and real-time services.
  • a DU can be connected to only one CU or to multiple CUs, and a CU can be connected to multiple DUs, and CUs and DUs can communicate through the F1 interface.
  • the AAU can realize some physical layer processing functions, radio frequency processing and related functions of active antennas.
  • high-level signaling such as RRC layer signaling, also It can be considered as sent by the DU, or sent by the DU+AAU.
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in an access network (radio access network, RAN), and the CU can also be divided into network devices in a core network (core network, CN), which is not limited in this application.
  • RAN radio access network
  • CN core network
  • the network device provides services for the cell, and the terminal device communicates with the cell through the transmission resources (for example, frequency domain resources, or spectrum resources) allocated by the network device.
  • the cell may belong to a macro base station (for example, a macro eNB or a macro gNB, etc.) , can also belong to the base station corresponding to a small cell, where the small cell can include: a metro cell, a micro cell, a pico cell, a femto cell, etc. , these small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • FIG. 1 is a first schematic diagram of an application scenario of lateral communication provided by an embodiment of the present application.
  • the scenario shown in FIG. 1 includes a network device 11 and two terminal devices, which are terminal devices 12 and 13 respectively. Both the terminal device 12 and the terminal device 13 are within the coverage of the network device 11 .
  • the network device 11 is connected in communication with the terminal device 12 and the terminal device 13 respectively, and the terminal device 12 is connected in communication with the terminal device 13 .
  • the terminal device 12 may send a communication message to the terminal device 13 through the network device 11, and the terminal device 12 may also directly send the communication message to the terminal device 13.
  • the link for direct communication between the terminal device 12 and the terminal device 13 is called a D2D link, and may also be called a proximity service (proximity service, ProSe) link, a side link, and the like.
  • the transmission resource on the D2D link can be allocated by the network device.
  • FIG. 2 is a second schematic diagram of an application scenario of lateral communication provided by an embodiment of the present application.
  • the scenario shown in FIG. 2 also includes a network device 11 and two terminal devices.
  • the difference from FIG. 1 is that the terminal device 13 is within the coverage of the network device 11 and the terminal device 14 is outside the coverage of the network device 11 .
  • the network device 11 is connected in communication with the terminal device 13
  • the terminal device 13 is connected in communication with the terminal device 14 .
  • the terminal device 13 may receive the configuration information sent by the network device 11, and perform side communication according to the configuration information. Since the terminal device 14 cannot receive the configuration information sent by the network device 11, the terminal device 14 can perform sidelink communication according to pre-configuration information or information carried in a physical sidelink broadcast channel (PSBCH) sent by the terminal device 13.
  • PSBCH physical sidelink broadcast channel
  • FIG. 3 is a third schematic diagram of an application scenario of lateral communication provided by an embodiment of the present application.
  • both the terminal device 14 and the terminal device 15 are outside the coverage of the network device 11 .
  • Both the terminal device 14 and the terminal device 15 can determine the sidelink configuration according to the pre-configuration information, and perform sidelink communication.
  • FIG. 4 is a fourth schematic diagram of an application scenario of lateral communication provided by an embodiment of the present application.
  • multiple terminal devices form a communication group, for example, terminal devices 16 , 17 and 18 form a communication group.
  • a central control node in the communication group which can also be called a cluster header terminal (cluster header, CH), such as terminal device 16 .
  • the central control node has one of the following functions: responsible for the establishment of communication groups; joining and leaving of group members; performing resource coordination, allocating side transmission resources for other terminals, and receiving side transmission feedback information from other terminals; communicating with other communication groups Resource coordination and other functions.
  • device-to-device communication is a sidelink transmission technology.
  • the Internet of Vehicles system uses direct device-to-device communication, so it has a higher frequency efficiency and lower transmission delay.
  • two transmission modes are defined in the 3rd Generation Partnership Project (3GPP): the first transmission mode and the second transmission mode.
  • 3GPP 3rd Generation Partnership Project
  • the first transmission mode the transmission resource of the terminal device is allocated by the base station, and the terminal device performs data transmission on the sidelink according to the resources allocated by the base station.
  • the base station can allocate resources for a single transmission to the terminal equipment, and can also allocate resources for semi-static transmission to the terminal equipment.
  • the terminal device 12 shown in FIG. 1 is located within the coverage of the network device 11, and the network device 11 allocates transmission resources for the terminal device 12 to be used for sidelink transmission.
  • the second transmission mode the terminal device selects one or more resources from the resource pool for data transmission. Specifically, the terminal device may select transmission resources from the resource pool by listening, or select transmission resources from the resource pool by random selection.
  • the terminal device 12 shown in FIG. 1 may autonomously select transmission resources from a resource pool configured by the network for sidelink transmission.
  • Both the terminal devices 14 and 15 shown in FIG. 3 are located outside the coverage of the network device 11, and the terminal devices 14 and 15 can autonomously select transmission resources from a pre-configured resource pool for sidelink transmission.
  • vehicle-to-vehicle communication is only used as an example in Figures 1 to 4, and SL communication can be applied to direct communication scenarios between various terminal devices, so the terminal device in this embodiment of the application can be any Terminal equipment for SL communication technology.
  • NR-V2X is a communication scenario based on sidelink links.
  • X can generally refer to any device with wireless receiving and transmitting capabilities, including but not limited to slow-moving wireless devices, fast Mobile vehicle equipment, network control nodes with wireless transmission and reception capabilities, etc.
  • NR-V2X communication supports unicast, multicast, and broadcast transmission methods.
  • the sending terminal sends data, and there is only one receiving terminal.
  • the sending terminal sends data, and the receiving terminal is all terminals in a communication group, or all terminals within a certain transmission distance.
  • the sending terminal sends data, and the receiving terminal is any terminal around the sending terminal.
  • NR-V2X communication needs to support autonomous driving, so it puts forward higher requirements for data interaction between vehicles, such as higher throughput, lower latency, higher reliability, larger coverage, and more flexibility resource allocation, etc.
  • a physical sidelink feedback channel (physical sidelink feedback channel, PSFCH) is introduced.
  • the sending terminal For unicast transmission, the sending terminal sends sidelink data to the receiving terminal, including physical sidelink control channel (physical sidelink control channel, PSSCH) and physical sidelink shared channel (physical sidelink shared channel, PSSCH), and the receiving terminal sends Hybrid Automatic Repeat reQuest (HARQ) feedback information, the sending terminal judges whether data retransmission is required according to the feedback information of the receiving terminal.
  • sidelink data including physical sidelink control channel (physical sidelink control channel, PSSCH) and physical sidelink shared channel (physical sidelink shared channel, PSSCH)
  • HARQ Hybrid Automatic Repeat reQuest
  • Method 1 The terminal within a certain distance receives the sidelink data from the sending terminal. If the detection result is NACK, then sidelink feedback needs to be sent; if the detection result is ACK, no sidelink feedback needs to be sent. Terminals outside the distance range do not need to send sidetrack feedback no matter what the detection result is.
  • Mode 2 For a communication group, all receiving terminals need to send sideline feedback.
  • a communication group includes P terminals, and when one terminal serves as a sending terminal to send sidelink data, the other P ⁇ 1 terminals all need to send sidelink feedback information.
  • the HARQ feedback information is carried in the PSFCH.
  • the terminal device can use pre-configuration information, network configuration information, or send terminal activation or deactivation feedback. If the sidelink feedback is activated, the receiving terminal receives the sidelink data sent by the sending terminal, and needs to feed back HARQ ACK/NACK (confirmation/non-confirmation) to the sending terminal according to the detection result, and the sending terminal decides to send retransmission data according to the feedback information of the receiving terminal or new data. If the sidelink feedback is deactivated, the receiving terminal does not need to send feedback information, and the sending terminal usually sends data in a blind retransmission manner, for example, the sending terminal repeatedly sends a preset number of retransmissions for each sidelink data.
  • FIG. 5 is a schematic diagram of a time slot structure provided by an embodiment of the present application.
  • the first symbol in this time slot is an automatic gain control (AGC) symbol.
  • AGC automatic gain control
  • the SL UE When the SL UE is receiving, the received power can be adjusted in this symbol to be suitable for demodulation power.
  • the SL UE transmits the contents of the symbol following this symbol are repeatedly transmitted on the AGC symbol.
  • the PSCCH shown in FIG. 5 is used to carry the first sidelink control information, and the first sidelink control information mainly includes fields related to resource sensing.
  • the PSSCH is used to carry data and second sidelink control information, and the second sidelink control information mainly includes fields related to data demodulation.
  • a certain time slot there may also be symbols corresponding to the PSFCH, and the PSFCH is used to transmit HARQ feedback information.
  • symbols corresponding to PSFCH may appear every 1, 2, or 4 time slots.
  • the GAP symbol between PSSCH and PSFCH in FIG. 5 both the AGC for receiving PSFCH and the PSFCH symbol are used to bear PSSCH.
  • the last symbol in a time slot is a GP symbol, namely GAP.
  • the symbol next to the last symbol carrying the PSSCH or PSFCH is a GP symbol.
  • the SL UE performs transceiving conversion within the GP symbol and does not transmit.
  • PSFCH resources exist in a time slot GP symbols also exist between symbols of PSSCH and PSFCH. This is because the UE may transmit on the PSSCH and receive on the PSFCH, and also needs GP symbols to perform transceiving conversion.
  • the PSCCH and PSSCH of NR-V2X support two different types of power control, namely power control based on downlink path loss and power control based on sidelink path loss.
  • FIG. 6 is a schematic diagram of a power control scenario of sidelink communication provided by an embodiment of the present application.
  • the power control based on downlink path loss is mainly used to reduce the interference of sidelink transmission to uplink reception. Since the sidelink communication may be located on the same carrier as the Uu uplink, the sidelink transmission between UE2 and UE3 may interfere with the base station’s uplink reception of UE1. After introducing power control based on downlink path loss, the sidelink between UE2 and UE3 The uplink transmission power will decrease with the decrease of the downlink path loss, so that the purpose of controlling the uplink interference can be achieved.
  • the main purpose of power control based on sidelink path loss is to reduce the interference between sidelink communications, because power control based on sidelink path loss relies on sidelink reference signal received power (SL-RSRP) feedback
  • SL-RSRP sidelink reference signal received power
  • the transmission power of PSSCH can be determined in the following manner:
  • P PSSCH (i) min(P CMAX ,P MAX,CBR ,min(P PSSCH,D (i),P PSSCH,SL (i)))[dBm]
  • P CMAX is the maximum transmission power allowed by the UE
  • P MAX,CBR represents the maximum transmission power allowed for the current channel busy ratio (channel busy ratio, CBR) level and priority of transmission data
  • i is the index of the OFDM symbol.
  • P PSSCH,D (i) and P PSSCH,SL (i) are the transmission power of the PSSCH determined by the UE according to the downlink path loss and the sidelink path loss, respectively, and are determined by the following formulas:
  • P 0,D /P 0,SL is the basic operating point based on downlink/sidelink path loss power control configured by high-level signaling
  • ⁇ D / ⁇ SL is the downlink/sidelink path loss compensation factor configured by high-level signaling
  • PL D /PL SL is the UE estimated downlink/sidelink path loss
  • indicates the subcarrier spacing configuration.
  • the subcarrier spacing is 15 kHz, ⁇ is 0; the subcarrier spacing is 30 kHz, ⁇ is 1.
  • the UE When an OFDM symbol has both PSCCH and PSSCH (such as the OFDM symbol with both PSCCH and PSSCH in Figure 5), the UE will allocate the transmission power P PSSCH (i) to PSCCH and PSSCH according to the ratio of the number of PRBs of PSCCH and PSSCH . Specifically, in this case, the transmission power P PSSCH2 (i) of the PSSCH is:
  • the transmit power of PSCCH is:
  • the UE can control the transmit power according to the downlink path loss and/or the sidelink path loss.
  • the downlink path loss is obtained directly based on downlink signal measurement, and the sidelink path loss requires RSRP feedback at the receiving end.
  • FIG. 7 is a schematic diagram of a scene for determining a lateral path loss provided by an embodiment of the present application.
  • UE1 is a terminal performing power control.
  • UE2 measures RSRP according to the demodulation reference signal (demodulation reference signal, DMRS) of PSSCH sent by UE1, and feeds back the RSRP measurement result filtered by high layers to UE1.
  • the transmit power and the RSRP measurement result fed back by UE2 determine the sidelink path loss.
  • the sidelink path loss is determined by subtracting the feedback RSRP measurement result from the transmit power.
  • UE1 also filters the transmit power according to the same filter coefficient, and then determines the sidelink path loss according to the transmit power and the RSRP measurement result fed back by UE2.
  • the carrier aggregation of the sidelink is supported, and the UE can transmit data in parallel on one or more carriers, thereby improving the throughput of the sidelink transmission system.
  • Carrier aggregation can be divided into inter-band carrier aggregation (inter-band CA) and intra-band carrier aggregation (intra-band CA).
  • inter-band CA inter-band carrier aggregation
  • intra-band CA intra-band carrier aggregation
  • carriers in the same frequency band can use the same set of radio frequencies, and carriers in different frequency bands use different radio frequency hardware.
  • FIG. 8 is a first schematic diagram of a sidelink carrier aggregation scenario provided by an embodiment of the present application. As shown in Figure 8, assuming that UE1 sends PSSCH DMRS to UE2 on carriers 1 to 4, if the existing mechanism is used, UE2 needs to independently perform RSRP measurement, high-layer filtering and feedback RSRP measurement results on each carrier.
  • this embodiment of the present application proposes a power control method from the perspective of reducing signaling overhead and complexity, and its main idea is as follows: the first device (that is, the transmitting terminal) obtains the Power control is performed on the sidelink transmit power on the target carrier, where the target carrier includes the first carrier and/or carriers other than the first carrier.
  • FIG. 9 is a second schematic diagram of a sidelink carrier aggregation scenario provided by an embodiment of the present application.
  • UE1 also sends data to UE2 on Carrier 1 to Carrier 4.
  • UE2 only measures RSRP on Carrier 1 for filtering and feedback.
  • the power control is performed on the transmission of sidelink signals on carrier 1 to carrier 4 according to the upstream path loss.
  • Reduce the overhead of sidelink signaling reduce the complexity of sidelink equipment processing (such as avoiding the receiving terminal from performing sidelink link measurement on each carrier, high-level filtering, and sending RSRP measurement results, etc.), reduce the power of sidelink equipment consumption and improve the quality of lateral communication.
  • system and “network” are often used interchangeably herein.
  • the term “and/or” is only an association relationship describing associated objects, indicating that there may be three types of relationships, for example, A and/or B may indicate: A exists alone, A and B exist simultaneously, and B exists independently. situation.
  • the character "/" in this article generally indicates that the contextual objects are an "or” relationship.
  • the "instruction" mentioned in the embodiment of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that there is a relationship between indicating and being instructed, configuring and being configured, etc. .
  • predefined or “preconfigured” can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • the application does not limit its specific implementation.
  • pre-defined may refer to defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, which is not limited in the present application.
  • the power control method provided in the following embodiments can be applied to any device in sidelink communication.
  • the following introduces the solution by taking the first device (UE1 as shown in FIG. 9 ) as the execution subject.
  • FIG. 10 is a flowchart of a power control method provided by an embodiment of the present application. As shown in FIG. 10, the power control method provided in this embodiment includes the following steps:
  • Step 101 the first device determines the first transmit power of the sidelink on the target carrier according to the first carrier.
  • Step 102 the first device performs sidelink transmission with the second device on the target carrier according to the first transmit power.
  • the target carrier includes the first carrier and/or carriers other than the first carrier.
  • the first device determines the first transmit power of the sidelink on the first carrier according to the first carrier.
  • the first device determines the first transmit power of the sidelink on other carriers except the first carrier according to the first carrier.
  • the first device determines the first transmit power of the sidelink on the first carrier and other carriers except the first carrier according to the first carrier.
  • the first carrier includes at least one carrier
  • the target carrier includes at least one carrier
  • the first carrier is carrier 1
  • the target carrier is carrier 2
  • the first device determines the sidelink transmit power on carrier 2 according to carrier 1.
  • the first carrier is carrier 1
  • target carriers are carrier 2 to carrier 4
  • the first device determines sidelink transmit power on carrier 2 to carrier 4 according to carrier 1.
  • the first carrier is carrier 1 to carrier 4
  • the target carrier is carrier 1
  • the first device determines the sidelink transmit power on carrier 1 according to at least one item of carrier 1 to carrier 4.
  • the first carrier is carrier 1 and carrier 2
  • the target carrier is carrier 1 to carrier 4
  • the first device determines the sidelink transmit power on carrier 1 to carrier 4 according to at least one of carrier 1 and carrier 2 .
  • the method before step 101 is performed, the method includes: the first device determines the first carrier and the target carrier.
  • the first carrier or target carrier includes any of the following:
  • a network-configured carrier ; a pre-configured carrier; a carrier that depends on the implementation of the first device.
  • the first carrier is configured or preconfigured by the network or depends on the realization of the first device
  • the target carrier is configured or preconfigured by the network or depends on the realization of the first device.
  • the multiple carriers are located in the same frequency band.
  • the difference between their center frequencies and the center frequency of the first carrier is less than or equal to a preset threshold.
  • the preset threshold includes any one of the following: a threshold configured by the network; a pre-configured threshold; a threshold depending on the implementation of the first device; and a threshold specified by a standard.
  • the first carrier is carrier 1
  • the target carriers are carriers 2, 3, and 4
  • the center frequency differences between carrier 1 and carriers 2, 3, and 4 are all less than or equal to a preset threshold.
  • the first carrier and the target carrier are located in the same frequency band (band).
  • the first carriers are carrier 1 and carrier 2
  • the target carriers are carriers 1, 2, 3, and 4
  • carriers 1 to 4 are located in the same frequency band.
  • the first device determines the first transmit power of the sidelink on the target carrier according to the first carrier, including: the first device determines the sidelink path loss according to the first carrier, and determines the sidelink path loss according to the sidelink The path loss determines the first transmit power.
  • the first device determines the first transmit power by using the following formula:
  • P PSSCH (i) min(P CMAX ,P MAX,CBR ,min(P PSSCH,D (i),P PSSCH,SL (i)))[dBm]
  • P CMAX represents the maximum transmission power allowed by the first device
  • P MAX,CBR represents the maximum transmission power allowed by the first device for the CBR level and priority of transmission data on the target carrier
  • i is the index of the OFDM symbol.
  • P PSSCH,D (i) and P PSSCH,SL (i) are respectively the transmit power of the PSSCH on the target carrier determined by the first device according to the downlink path loss and the sidelink path loss.
  • P PSSCH,D (i) and P PSSCH,SL (i) are respectively determined by the following formulas:
  • P 0,D /P 0,SL is the basic operating point based on downlink/sidelink path loss power control configured by high-level signaling
  • ⁇ D / ⁇ SL is the compensation for downlink/sidelink path loss configured by high-level signaling factor.
  • ⁇ D / ⁇ SL is not configured
  • ⁇ D / ⁇ SL is equal to 1.
  • P 0,D /P 0,SL are configuration parameters for the target carrier.
  • ⁇ D / ⁇ SL is a configuration parameter for the target carrier.
  • PL D is the downlink path loss estimated by the first device.
  • PL D is the downlink path loss estimated by the first device on the target carrier.
  • PL SL is the lateral path loss obtained by the first device on the first carrier, Indicates the number of PRBs occupied by sending the PSSCH on the target carrier, and ⁇ indicates the subcarrier spacing configuration on the target carrier.
  • the subcarrier spacing is 15 kHz, ⁇ is 0; the subcarrier spacing is 30 kHz, ⁇ is 1; the subcarrier spacing is 60 kHz, ⁇ is 2.
  • the first transmit power includes any of the following:
  • the maximum transmission power allowed by the first device is the maximum transmission power allowed by the first device
  • the transmission power of the PSSCH on the target carrier determined by the first device according to the sidelink path loss.
  • the first transmission power is the minimum transmission power among the above several transmission powers.
  • the first transmission power includes: power for sending the PSSCH, or power for sending the PSSCH and power for sending a physical sidelink control channel PSCCH.
  • the first sending power includes power for sending the PSSCH, that is, the first device only sends the PSSCH on the target carrier.
  • the first device only sends the PSSCH on the target OFDM symbol on the target carrier.
  • the first device uses the first transmission power as power for transmitting the PSSCH.
  • the first transmission power includes power for sending the PSSCH and power for sending the PSCCH, that is, the first device simultaneously sends the PSSCH and the PSCCH on the target carrier.
  • the first device sends both the PSCCH and the PSSCH on the target OFDM symbol on the target carrier.
  • the first device determines the power for sending the PSSCH and the power for sending the PSCCH according to the first sending power, the number of PRBs occupied by the PSSCH on the target carrier, and the number of PRBs occupied by the PSCCH on the target carrier.
  • the first device allocates the first transmit power to the PSSCH and the PSCCH according to the ratio of the number of PRBs of the PSSCH and the PSCCH.
  • the transmission power of sending the PSSCH on the target carrier is expressed as:
  • the transmit power for transmitting PSCCH on the target carrier is expressed as:
  • P PSSCH (i) is the first transmission power, is the number of PRBs occupied by the PSSCH on the target carrier, is the number of PRBs occupied by the PSCCH on the target carrier.
  • the above steps are independently performed on each target carrier to determine the transmission power of the PSSCH or PSCCH.
  • the first device first needs to determine the sidelink path loss according to the first carrier, and then determine the first transmit power according to the sidelink path loss. How the first device determines the lateral path loss will be described below.
  • the first device determines the sidelink path loss according to the reference signal received power RSRP fed back by the second device on the first carrier.
  • the first device determines the side link based on the RSRP fed back by the second device on the first carrier and the second transmission power of the physical sidelink shared channel PSSCH sent by the first device on the first carrier.
  • Row path loss, RSRP is obtained by the second device by measuring the demodulation reference signal DMRS of the PSSCH.
  • UE1 sends a PSSCH to UE2 on carrier 1, UE2 measures the DMRS of the PSSCH sent by UE1 on carrier 1 to obtain RSRP, and feeds back the RSRP to UE1.
  • UE1 determines the sidelink path loss according to the RSRP fed back by UE2 and the transmission power of the PSSCH sent by UE1.
  • the first device indicates the first carrier to the second device.
  • the second device performs RSRP measurement and feedback on the first carrier indicated by the first device.
  • the first device indicates the first carrier to the second device through PC5-RRC signaling or a MAC control element CE or first side control information or second side control information.
  • the first device determines the sidelink path loss according to the RSRP fed back by the second device on the first carrier and the second transmission power of the PSSCH sent by the first device on the first carrier, including : The first device uses the difference between the second transmit power and the RSRP as the sidelink path loss.
  • the second transmission power of the PSSCH transmitted by the first device on the first carrier is the transmission power filtered by the high layer of the first device, and the RSRP fed back by the second device is transmitted by the high layer of the second device Filtered RSRP. That is, the first device performs high-layer filtering (for example, layer 3 filtering) on the second transmit power for sending the PSSCH, and the second device performs high-layer filtering (for example, layer 3 filtering) on the measured RSRP.
  • high-layer filtering for example, layer 3 filtering
  • the first device uses a difference between the high-layer filtered second transmit power and the high-layer filtered RSRP fed back by the second device as the sidelink path loss.
  • UE1 sends PSSCH to UE2 on carrier 1, and UE2 measures DMRS of PSSCH sent by UE1 on carrier 1 to obtain RSRP, which is filtered by layer 3 and then fed back to UE1.
  • UE1 obtains the sidelink path loss by subtracting the RSRP fed back by UE2 from the transmit power of the PSSCH filtered by layer 3 and filtered by layer 3.
  • the first device may determine the sidewalk path loss in any of the following ways:
  • the lateral path loss is a lateral path loss acquired by the first device on any one of multiple carriers in the first carrier.
  • the lateral path loss is an average value of lateral path losses obtained by the first device on multiple carriers in the first carrier.
  • the lateral path loss is a maximum value of lateral path losses acquired by the first device on multiple carriers in the first carrier.
  • the lateral path loss is a minimum value of lateral path losses acquired by the first device on multiple carriers in the first carrier.
  • the sidelink path losses acquired by UE1 on carrier 1 to carrier 4 are PL SL,1 , PL SL,2 , PL SL,3 , PL SL,4 respectively
  • the sidelink path loss determined by UE1 according to the first carrier can be any one of PL SL,1 , PL SL,2 , PL SL,3 , PL SL,4, or PL SL,1 , PL SL,2 , PL SL,3 , PL SL,4 the average value or the maximum or minimum value.
  • unicast communication is performed between the first device and the second device.
  • the power control method shown in the embodiment of this application enables the first device to determine the transmission power of the sidelink signal on the target carrier according to the sidelink path loss obtained on the first carrier to perform power control, where the target carrier can be the first carrier and/or or another carrier other than the first carrier.
  • the above solution can reduce the overhead of sidelink signaling, reduce the processing complexity of sidelink equipment, reduce the power consumption of sidelink equipment, and improve the quality of sidelink communication.
  • FIG. 11 is a schematic structural diagram of a first device provided in an embodiment of the present application. As shown in Figure 11, the first device 200 provided in this embodiment includes:
  • the processing module 201 is configured to determine a first transmit power of a sidelink on a target carrier according to a first carrier; the target carrier includes the first carrier and/or carriers other than the first carrier.
  • the first carrier includes at least one carrier
  • the target carrier includes at least one carrier
  • the first carrier or the target carrier includes any one of the following: a carrier configured by the network; a pre-configured carrier; and a carrier depending on the implementation of the first device.
  • the difference between the center frequencies of the first carrier and the target carrier is less than or equal to a preset threshold.
  • the preset threshold includes any one of the following: a threshold configured by the network; a preconfigured threshold; a threshold implemented by the first device; and a threshold specified by a standard.
  • the first carrier and the target carrier are located in the same frequency band.
  • the processing module 201 is configured to:
  • the processing module 201 is configured to:
  • the sidelink path loss is determined according to the reference signal received power RSRP fed back by the second device on the first carrier.
  • the processing module 201 is configured to:
  • the RSRP is obtained by the second device measuring the demodulation reference signal DMRS of the PSSCH.
  • the processing module 201 is configured to:
  • the second transmit power is the transmit power filtered by the high layer of the first device
  • the RSRP is the RSRP filtered by the high layer of the second device.
  • the first transmission power includes:
  • the power for sending the PSSCH and the power for sending the physical sidelink control channel PSCCH are the power for sending the physical sidelink control channel PSCCH.
  • the first transmission power includes any of the following:
  • the maximum transmission power allowed by the first device is the maximum transmission power allowed by the first device
  • the processing module 201 is configured to:
  • the first device only sends PSSCH on the target carrier, use the first sending power as power for sending the PSSCH.
  • the processing module 201 is configured to:
  • the first device transmits PSSCH and PSCCH on the target carrier at the same time, according to the first transmit power, the number of PRBs occupied by the PSSCH on the target carrier, and the number of PRBs occupied by the PSCCH on the target carrier, The number of PRBs occupied on the target carrier determines the power for sending the PSSCH and the power for sending the PSCCH.
  • the first device provided in the embodiment of the present application is used to implement the technical solution of the first device in the foregoing method embodiment, and its implementation principle and technical effect are similar, so details are not repeated here.
  • FIG. 12 is a schematic diagram of a hardware structure of an electronic device provided by an embodiment of the present application.
  • the electronic device 300 provided in this embodiment may include: a processor 301 , a memory 302 and a communication interface 303 .
  • the memory 302 is used to store a computer program;
  • the processor 301 is used to execute the computer program stored in the memory 302, so as to implement the method performed by the first device in the above method embodiment.
  • the communication interface 303 is used for data communication or signal communication with other devices.
  • the memory 302 can be independent or integrated with the processor 301 .
  • the electronic device 300 may further include: a bus 304 , configured to connect the memory 302 and the processor 301 .
  • the processor 301 may be a chip.
  • processing module 201 in FIG. 11 may be integrated in the processor 301 for implementation.
  • the electronic device provided in this embodiment can be used to execute the method executed by the first device in the above method embodiment, and its implementation principle and technical effect are similar, and will not be repeated here.
  • An embodiment of the present application also provides a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when the computer-executable instructions are executed by a processor, they are used to implement the first device in the aforementioned method embodiments technical solutions.
  • An embodiment of the present application further provides a computer program, which is used to execute the technical solution of the first device in the foregoing method embodiments when the computer program is executed by a processor.
  • An embodiment of the present application further provides a computer program product, including program instructions, and the program instructions are used to implement the technical solution of the first device in the foregoing method embodiments.
  • the embodiment of the present application also provides a chip, including: a processing module and a communication interface, where the processing module can execute the technical solution of the first device in the foregoing method embodiment.
  • the chip further includes a storage module (such as a memory), the storage module is used to store instructions, and the processing module is used to execute the instructions stored in the storage module, and the execution of the instructions stored in the storage module makes the processing module perform the aforementioned method implementation The technical solution of the first device in the example.
  • the present application also provides a communication system, which may include the aforementioned first device and second device.
  • a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device can be components.
  • One or more components can reside within a process and/or thread of execution and a component can be localized on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more packets of data (e.g., data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet via a signal interacting with other systems). Communicate through local and/or remote processes.
  • packets of data e.g., data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet via a signal interacting with other systems.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the order of execution of the processes should be determined by their functions and internal logic, and should not be used in the implementation of this application.
  • the implementation of the examples constitutes no limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种功率控制方法、设备及存储介质,可应用于侧行通信。该方法包括:第一设备根据在第一载波上获取的侧行路径损耗确定目标载波上的侧行信号发送功率进行功率控制,其中目标载波可以是第一载波或除第一载波外的其他载波。上述方案可减小侧行信令开销,降低侧行设备处理的复杂度,降低侧行设备功耗,提高侧行通信质量。

Description

功率控制方法、设备及存储介质 技术领域
本申请实施例涉及通信技术领域,尤其涉及一种功率控制方法、设备及存储介质。
背景技术
在侧行链路(sidelink,SL)通信中,支持侧行链路的载波聚合,即终端设备可以在一个或多个载波上并行地传输数据,进而提升侧行传输系统的吞吐量。在载波聚合场景下,终端设备如何进行侧行链路的功率控制是目前亟待解决的问题。
发明内容
本申请实施例提供一种功率控制方法、设备及存储介质,减小侧行信令开销,降低侧行设备功耗。
第一方面,本申请实施例提供一种功率控制方法,包括:第一设备根据第一载波确定目标载波上侧行链路的第一发送功率;所述目标载波包括所述第一载波和/或除所述第一载波外的载波。
第二方面,本申请实施例提供一种第一设备,包括:处理模块,处理模块用于根据第一载波确定目标载波上侧行链路的第一发送功率;所述目标载波包括所述第一载波和/或除所述第一载波外的载波。
第三方面,本申请实施例提供一种电子设备,包括:收发器、处理器、存储器;所述存储器存储计算机执行指令;所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如第一方面所述的方法。
第四方面,本申请实施例提供一种计算机存储介质,用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如第一方面所述的方法。
第五方面,本申请实施例提供一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如第一方面所述的方法。
本申请实施例提供一种功率控制方法、设备及存储介质,可应用于侧行通信。该方法包括:第一设备根据在第一载波上获取的侧行路径损耗确定目标载波上的侧行信号发送功率进行功率控制,其中目标载波可以是第一载波或除第一载波外的其他载波。上述方案可减小侧行信令开销,降低侧行设备处理的复杂度,降低侧行设备功耗,提高侧行通信质量。
附图说明
图1为本申请实施例提供的侧行通信的应用场景示意图一;
图2为本申请实施例提供的侧行通信的应用场景示意图二;
图3为本申请实施例提供的侧行通信的应用场景示意图三;
图4为本申请实施例提供的侧行通信的应用场景示意图四;
图5为本申请实施例提供的时隙结构的示意图;
图6为本申请实施例提供的侧行通信的功率控制场景示意图;
图7为本申请实施例提供的确定侧行路径损耗的场景示意图;
图8为本申请实施例提供的侧行载波聚合的场景示意图一;
图9为本申请实施例提供的侧行载波聚合的场景示意图二;
图10为本申请实施例提供的功率控制方法的流程图;
图11为本申请实施例提供的第一设备的结构示意图;
图12为本申请实施例提供的电子设备的硬件结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请提供的功率控制方法可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th Generation,5G)移动通信系统或新无线接入技术(new radio access technology,NR)。其中,5G移动通信系统可以包括非独立组网(non-standalone,NSA)和/或独立组网(standalone,SA)。
本申请提供的功率控制方法还可以应用于机器类通信(machine type communication,MTC)、机器间通信长期演进技术(Long Term Evolution-machine,LTE-M)、设备到设备(device to device,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)网络或者其他网络。其中,IoT网络例如可以包括车联网。其中,车联网系统中的通信方式统称为车到其他设备(vehicle to X,V2X,X可以代表任何事物),例如,该V2X可以包括:车辆到车辆(vehicle to vehicle,V2V)通信,车辆与基础设施(vehicle to infrastructure,V2I)通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。
本申请提供的功率控制方法还可以应用于未来的通信系统,如第六代移动通信系统等。本申请对此不作限定。
本申请实施例中,终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。
终端设备可以是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例可以为:手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑(如笔记本电脑、掌上电脑等)、移动互联网设备(mobile internet device,MID)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。
其中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,终端设备还可以是物联网(Internet of things,IoT)系统中的终端设备。IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。IoT技术可以通过例如窄带(narrow  band,NB)技术,做到海量连接,深度覆盖,终端省电。
此外,终端设备还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端设备)、接收网络设备的控制信息与下行数据,并发送电磁波,向网络设备传输上行数据。
本申请实施例中,网络设备可以是任意一种具有无线收发功能的设备。网络设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WiFi)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU可以负责处理非实时协议和服务,如,可以实现无线资源控制(radio resource control,RRC)层、业务数据自适应协议(service data adaptation protocol,SDAP)层和/或分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU可以负责可以处理物理层协议和实时服务。例如可以实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。一个DU可以仅连接到一个CU或者连接到多个CU,而一个CU可以连接到多个DU,CU与DU之间可以通过F1接口进行通信。AAU可以实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会被递交至PHY层从而变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。
可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
网络设备为小区提供服务,终端设备通过网络设备分配的传输资源(例如,频域资源,或者说,频谱资源)与小区进行通信,该小区可以属于宏基站(例如,宏eNB或宏gNB等),也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发送功率低等特点,适用于提供高速率的数据传输服务。
为了便于理解本申请实施例,首先对本申请实施例的应用场景进行说明。
图1为本申请实施例提供的侧行通信的应用场景示意图一。图1所示场景包括一个网络设备11以及两个终端设备,分别为终端设备12和13,终端设备12和终端设备13均处于网络设备11的覆盖范围内。网络设备11分别与终端设备12、终端设备13通信连接,终端设备12与终端设备13通信连接。示例性的,终端设备12可以通过网络设备11向终端设备13发送通信消息,终端设备12还可以直接向终端设备13发送通信消息。其中,终端设备12与终端设备13之间直接通信的链路称为D2D链路,也可以称为临近服务(proximity service,ProSe)链路、侧行链路等。D2D链路上的 传输资源可以由网络设备分配。
图2为本申请实施例提供的侧行通信的应用场景示意图二。图2所示场景同样包括一个网络设备11以两个终端设备,与图1不同的是,终端设备13处于网络设备11的覆盖范围内,终端设备14在网络设备11的覆盖范围之外。网络设备11与终端设备13通信连接,终端设备13与终端设备14通信连接。示例性的,终端设备13可以接收网络设备11发送的配置信息,根据配置信息进行侧行通信。由于终端设备14无法接收网络设备11发送的配置信息,终端设备14可以根据预配置信息或者终端设备13发送的侧行广播信道(physical sidelink broadcast channel,PSBCH)中携带的信息,进行侧行通信。
图3为本申请实施例提供的侧行通信的应用场景示意图三。图3所示场景中,终端设备14和终端设备15均在网络设备11的覆盖范围之外。终端设备14与终端设备15均可以根据预配置信息确定侧行配置,进行侧行通信。
图4为本申请实施例提供的侧行通信的应用场景示意图四。图4所示场景中,多个终端设备构成一个通信组,例如终端设备16、17和18组成一个通信组。通信组内具有中央控制节点,又可以称为组头终端(cluster header,CH),例如终端设备16。其中中央控制节点具有以下功能之一:负责通信组的建立;组成员的加入、离开;进行资源协调,为其他终端分配侧行传输资源,接收其他终端的侧行反馈信息;与其他通信组进行资源协调等功能。
需要说明的是,本申请实施例描述的系统架构以及应用场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的问题,同样适用。
与传统的蜂窝系统中通信数据通过基站接收或发送的方式不同,设备到设备通信是一种侧行链路传输技术,例如车联网系统采用设备到设备直接通信的方式,因此具有更高的频率效率以及更低的传输时延。
关于设备到设备的通信,在第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)定义了两种传输模式:第一传输模式和第二传输模式。
第一传输模式:终端设备的传输资源是由基站分配的,终端设备根据基站分配的资源在侧行链路上进行数据传输。基站可以为终端设备分配单次传输的资源,也可以为终端设备分配半静态传输的资源。
示例性的,图1所示的终端设备12位于网络设备11覆盖范围内,网络设备11为终端设备12分配侧行传输使用的传输资源。
第二传输模式:终端设备自行在资源池中选取一个或多个资源进行数据的传输。具体的,终端设备可以通过侦听的方式在资源池中选取传输资源,或者通过随机选取的方式在资源池中选取传输资源。
示例性的,图1所示的终端设备12可以在网络配置的资源池中自主选取传输资源进行侧行传输。图3所示的终端设备14和15均位于网络设备11覆盖范围外,终端设备14和15可以在预配置的资源池中自主选取传输资源进行侧行传输。
需要说明的是,图1至图4中仅以车对车通信作为示例,SL通信可应用于各种终端设备之间的直接通信场景,因此本申请实施例的终端设备可以是任何一种利用SL通信技术的终端设备。
NR-V2X是基于侧行链路进行通信的一种通信场景,在NR-V2X通信中,X可以泛指任意具有无线接收和发送能力的设备,包括但不限于慢速移动的无线装置,快速移动的车载设备,具有无线发射接收能力的网络控制节点等。
NR-V2X通信支持单播、组播、广播的传输方式。对于单播传输,发送终端发送 数据,接收终端只有一个。对于组播传输,发送终端发送数据,接收终端是一个通信组内的所有终端,或者是在一定传输距离内的所有终端。对于广播传输,发送终端发送数据,接收终端是发送终端周围的任意一个终端。
NR-V2X通信需要支持自动驾驶,因此对车辆之间数据交互提出了更高的要求,如更高的吞吐量、更低的时延、更高的可靠性、更大的覆盖范围、更灵活的资源分配等。为了提高通信的可靠性,在NR-V2X中,引入了物理侧行反馈信道(physical sidelink feedback channel,PSFCH)。
对于单播传输,发送终端向接收终端发送侧行数据,包括物理侧行控制信道(physical sidelink control channel,PSSCH)和物理侧行共享信道(physical sidelink shared channel,PSSCH),接收终端向发送终端发送混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)的反馈信息,发送终端根据接收终端的反馈信息判断是否需要进行数据重传。
对于组播传输,支持如下两种侧行反馈方式:
方式1:在一定距离范围内的终端接收发送终端的侧行数据,如果检测结果是NACK,则需要发送侧行反馈;如果检测结果是ACK,则不需要发送侧行反馈。在该距离范围外的终端,无论检测结果是什么都不需要发送侧行反馈。
方式2:对于一个通信组,所有的接收终端都需要发送侧行反馈。例如,一个通信组包括P个终端,当一个终端作为发送终端发送侧行数据时,其他的P-1个终端都需要发送侧行反馈信息。其中,HARQ的反馈信息承载在PSFCH中。
终端设备可以通过预配置信息、网络配置信息或发送终端激活或去激活侧行反馈。如果侧行反馈被激活,接收终端接收发送终端发送的侧行数据,需要根据检测结果向发送终端反馈HARQ ACK/NACK(确认/不确认),发送终端根据接收终端的反馈信息决定发送重传数据或新数据。如果侧行反馈被去激活,接收终端不需要发送反馈信息,发送终端通常采用盲重传的方式发送数据,例如发送终端对每个侧行数据重复发送预设的重传次数。
下面对NR-V2X通信中的时隙结构进行说明。
图5为本申请实施例提供的时隙结构的示意图。如图5所示,该时隙中第一个符号为自动增益控制(automatic gain control,AGC)符号,当SL UE进行接收时,可以在该符号中对接收功率进行调整,调整为适合解调的功率。当SL UE进行发送时,在AGC符号上重复发送该符号之后一个符号中的内容。图5所示的PSCCH用于承载第一侧行控制信息,第一侧行控制信息中主要包含资源侦听相关的域。PSSCH用于承载数据和第二侧行控制信息,第二侧行控制信息主要包含数据解调相关的域。在某一个时隙中,还可能存在PSFCH对应的符号,PSFCH用于传输HARQ反馈信息。取决于资源池配置,PSFCH对应的符号可以每1,2,4个时隙出现一次。当某个时隙不存在PSFCH对应的符号时,例如图5中的PSSCH与PSFCH之间的GAP符号,用于接收PSFCH的AGC以及PSFCH符号均用于承载PSSCH。通常情况下,时隙中的最后一个符号为GP符号,即GAP。或者说承载PSSCH或PSFCH的最后一个符号的下一个符号为GP符号。SL UE在GP符号内进行收发转换,不进行传输。当时隙中存在PSFCH资源时,PSSCH与PSFCH的符号之间也存在GP符号。这是因为UE可能在PSSCH发送,在PSFCH进行接收,也需要GP符号进行收发转换。
下面对NR-V2X通信中的功率控制进行说明。
NR-V2X的PSCCH和PSSCH支持两种不同类型的功率控制,即基于下行路径损耗的功率控制和基于侧行路径损耗的功率控制。
图6为本申请实施例提供的侧行通信的功率控制场景示意图。如图6所示,基于下行路径损耗的功率控制,主要用于降低侧行发送对上行接收的干扰。由于侧行通信 可能和Uu上行位于相同的载波,UE2和UE3之间的侧行发送可能对基站对UE1的上行接收造成干扰,引入基于下行路径损耗的功率控制后,UE2和UE3之间的侧行发送功率将随着下行路径损耗的减小而减小,从而可以达到控制对上行干扰的目的。基于侧行路径损耗的功率控制的主要目的是为了降低侧行通信之间的干扰,由于基于侧行路径损耗的功率控制依赖侧行参考信号接收功率(sidelink reference signal received power,SL-RSRP)反馈以计算侧行路径损耗,在NR-V2X中只有单播通信支持基于侧行路径损耗的功率控制。
对于仅存在PSSCH的正交频分复用(orthogonal frequency division multiplexing,OFDM)符号(如图5中仅存在PSSCH的OFDM符号)上PSSCH的发送功率可以通过以下方式确定:
P PSSCH(i)=min(P CMAX,P MAX,CBR,min(P PSSCH,D(i),P PSSCH,SL(i)))[dBm]
其中,P CMAX是UE允许的最大发送功率,P MAX,CBR表示对于当前信道繁忙率(channel busy ratio,CBR)级别和发送数据优先级所允许的最大发送功率,i为OFDM符号的索引。P PSSCH,D(i)和P PSSCH,SL(i)分别为UE根据下行路径损耗和侧行路径损耗确定的PSSCH的发送功率,分别通过以下公式确:
当高层信令配置了P 0,D
Figure PCTCN2021125911-appb-000001
否则:
P PSSCH,D(i)=min(P CMAX,P MAX,CBR)[dBm]
当高层信令配置了P 0,SL
Figure PCTCN2021125911-appb-000002
否则:
P PSSCH,SL(i)=min(P CMAX,P PSSCH,D(i))[dBm]
其中,P 0,D/P 0,SL为高层信令配置的基于下行/侧行路径损耗功率控制的基本工作点,α DSL为高层信令配置的下行/侧行路径损耗补偿因子,PL D/PL SL为UE估计的下行/侧行路径损耗,
Figure PCTCN2021125911-appb-000003
表示PSSCH占用的物理资源块(physical resource block,PRB)个数,μ表示子载波间隔配置。示例性的,子载波间隔是15kHz,μ为0;子载波间隔是30kHz,μ为1。
当一个OFDM符号即存在PSCCH又存在PSSCH时(如图5中既存在PSCCH和PSSCH的OFDM符号),UE会将发送功率P PSSCH(i)按照PSCCH和PSSCH的PRB个数比例分配到PSCCH和PSSCH。具体的,在这种情况下,PSSCH的发送功率P PSSCH2(i)为:
Figure PCTCN2021125911-appb-000004
PSCCH的发送功率为:
Figure PCTCN2021125911-appb-000005
其中,
Figure PCTCN2021125911-appb-000006
为PSCCH占用的PRB个数。
从上述描述可知,UE可以根据下行路径损耗和/或侧行路径损耗进行发送功率的控制。下行路径损耗直接基于下行信号测量得到,侧行路径损耗需要接收端进行RSRP反馈。
图7为本申请实施例提供的确定侧行路径损耗的场景示意图。如图7所示,UE1为进行功率控制的终端,UE2根据UE1发送的PSSCH的解调参考信号(demodulation reference signal,DMRS)测量RSRP,将经过高层滤波的RSRP测量结果反馈给UE1,UE1根据自身发送功率和UE2反馈的RSRP测量结果,确定侧行路径损耗。示例性的,用发送功率减去反馈的RSRP测量结果确定侧行路径损耗。可选的,UE1也根据同样的滤波系数对发送功率进行滤波后,根据发送功率和UE2反馈的RSRP测量结果确定侧行路径损耗。
在LTE-V2X中,支持侧行链路的载波聚合,UE可以在一个或多个载波上并行地传输数据,进而提升侧行传输系统的吞吐量。载波聚合可以分为频段间载波聚合(inter-band CA)和频段内载波聚合(intra-band CA)。一般情况下,在同一频段内的载波可以利用同一套射频,不同频段的载波利用不同的射频硬件。
目前,NR SL中没有对载波聚合场景的技术方案进行讨论。在载波聚合场景下,终端如何根据侧行路径损耗进行功率控制是亟待解决的问题。
图8为本申请实施例提供的侧行载波聚合的场景示意图一。如图8所示,假设UE1在载波1到载波4上发送PSSCH的DMRS到UE2,如果沿用现有机制,UE2需在每个载波上都独立地进行RSRP测量,高层滤波以及反馈RSRP测量结果。
考虑到当载波1到载波4的中心频率相差不大,例如intra-band场景,UE1在四个载波上获取到侧行路径损耗理论上不会有很大差别。因此,本申请实施例从降低信令开销和复杂度的角度,提出一种功率控制方法,其主要思路如下:第一设备(即发送终端)根据第一载波上获取到的侧行路径损耗,对目标载波上的侧行发送功率进行功率控制,其中目标载波包括第一载波和/或除第一载波外的载波。
图9为本申请实施例提供的侧行载波聚合的场景示意图二。如图9所示,UE1同样是在载波1到载波4上发送数据到UE2,与图8不同的是,UE2只在载波1上测量RSRP进行滤波并反馈,UE1根据在载波1上获取的侧行路径损耗,对载波1到载波4上的侧行信号发送进行功率控制。
上述功率控制方案至少具有如下有益效果:
减小侧行信令开销,降低侧行设备处理的复杂度(例如避免接收终端在每个载波上都进行侧行链路测量,高层滤波以及发送RSRP测量结果等行为),降低侧行设备功耗,提高侧行通信质量。
为便于理解本申请实施例,做出如下几点说明。
本申请实施例中,术语“系统”和“网络”在本文中常被可互换使用。术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
本申请实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
本申请实施例中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,“预定义”或“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
下面通过具体实施例对本申请实施例提供的技术方案进行详细说明。需要说明的是,本申请实施例提供的技术方案可以包括以下内容中的部分或全部,下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘 述。
需要指出的是,下述实施例提供的功率控制方法可应用于侧行通信的任意设备,为了便于理解,下面以第一设备(如图9所示的UE1)为执行主体进行方案介绍。
图10为本申请实施例提供的功率控制方法的流程图。如图10所示,本实施例提供的功率控制方法,包括如下步骤:
步骤101、第一设备根据第一载波确定目标载波上侧行链路的第一发送功率。
步骤102、第一设备根据第一发送功率,在目标载波上与第二设备进行侧行传输。(可选)
本实施例中,目标载波包括第一载波和/或除第一载波外的载波。
一种可能的实施方式中,第一设备根据第一载波确定第一载波上侧行链路的第一发送功率。
一种可能的实施方式中,第一设备根据第一载波确定除第一载波外的其他载波上侧行链路的第一发送功率。
一种可能的实施方式中,第一设备根据第一载波确定第一载波和除第一载波外的其他载波上的侧行链路的第一发送功率。
本实施例中,第一载波包括至少一个载波,目标载波包括至少一个载波。
示例性的,第一载波为载波1,目标载波为载波2,第一设备根据载波1确定载波2上侧行链路发送功率。
示例性的,第一载波为载波1,目标载波为载波2至载波4,第一设备根据载波1确定载波2至载波4上侧行链路发送功率。
示例性的,第一载波为载波1至载波4,目标载波为载波1,第一设备根据载波1至载波4的至少一项,确定载波1上侧行链路发送功率。
示例性的,第一载波为载波1和载波2,目标载波为载波1至载波4,第一设备根据载波1和载波2的至少一项,确定载波1至载波4上侧行链路发送功率。
本实施例的一个可选实施例中,在执行步骤101之前,该方法包括:第一设备确定第一载波和目标载波。其中,第一载波或目标载波包括以下任意一项:
网络配置的载波;预配置的载波;取决于第一设备实现的载波。
即第一载波由网络配置或预配置或取决于第一设备的实现,目标载波由网络配置或预配置或取决于第一设备实现。
可选的,如果第一载波为多个载波,则该多个载波位于同一频段。
可选的,对于目标载波中包含的除第一载波外的载波,其中心频率与第一载波的中心频率的差值小于或等于预设阈值。其中,预设阈值包括以下任意一项:网络配置的阈值;预配置的阈值;取决于第一设备实现的阈值;标准规定的阈值。示例性的,第一载波为载波1,目标载波为载波2、3、4,载波1与载波2、3、4的中心频率的差值均小于或等于预设阈值。
可选的,第一载波和目标载波位于同一频段(band)。示例性的,第一载波为载波1和载波2,目标载波为载波1、2、3、4,载波1至载波4位于同一频段。
本实施例的一个可选实施例中,第一设备根据第一载波确定目标载波上侧行链路的第一发送功率,包括:第一设备根据第一载波确定侧行路径损耗,根据侧行路径损耗确定第一发送功率。
可选的,第一设备通过如下公式确定第一发送功率:
P PSSCH(i)=min(P CMAX,P MAX,CBR,min(P PSSCH,D(i),P PSSCH,SL(i)))[dBm]
其中,P CMAX表示第一设备允许的最大发送功率,P MAX,CBR表示第一设备对于目标载波上的CBR级别和发送数据优先级所允许的最大发送功率,i为OFDM符号的索引。P PSSCH,D(i)和P PSSCH,SL(i)分别为第一设备根据下行路径损耗和侧行路径损耗确定的 目标载波上的PSSCH的发送功率。
P PSSCH,D(i)和P PSSCH,SL(i)分别通过以下公式确定:
当高层信令配置了P 0,D
Figure PCTCN2021125911-appb-000007
否则:
P PSSCH,D(i)=min(P CMAX,P MAX,CBR)[dBm]
当高层信令配置了P 0,SL
Figure PCTCN2021125911-appb-000008
否则:
P PSSCH,SL(i)=min(P CMAX,P PSSCH,D(i))[dBm]
其中,P 0,D/P 0,SL为高层信令配置的基于下行/侧行路径损耗功率控制的基本工作点,α DSL为高层信令配置的下行/侧行路径损耗的补偿因子。可选的,当α DSL未配置时,α DSL等于1。可选的,P 0,D/P 0,SL为针对目标载波的配置参数。可选的,α DSL为针对目标载波的配置参数。
PL D为第一设备估计的下行路损。可选的,PL D为第一设备在目标载波上估计的下行路损。PL SL为第一设备在第一载波上获取的侧行路径损耗,
Figure PCTCN2021125911-appb-000009
表示在目标载波上发送PSSCH占用的PRB个数,μ表示目标载波上的子载波间隔配置。示例性的,子载波间隔为15kHz,μ为0;子载波间隔为30kHz,μ为1;子载波间隔为60kHz,μ为2。
从上述描述可知,第一发送功率包括以下任意一项:
第一设备允许的最大发送功率;
第一设备对于目标载波上的信道繁忙率CBR和发送数据优先级所允许的最大发送功率;
第一设备根据下行路径损耗确定的目标载波上的PSSCH的发送功率;
第一设备根据侧行路径损耗确定的目标载波上的PSSCH的发送功率。
可选的,第一发送功率为上述几种发送功率中的最小发送功率。
可选的,第一发送功率包括:发送PSSCH的功率,或者,发送PSSCH的功率以及发送物理侧行控制信道PSCCH的功率。
一种可能的情况下,第一发送功率包括发送PSSCH的功率,即第一设备在目标载波上仅发送PSSCH。示例性的,第一设备在目标载波上的目标OFDM符号上仅发送PSSCH。
该情况下,第一设备将第一发送功率作为发送PSSCH的功率。
一种可能的情况下,第一发送功率包括发送PSSCH的功率以及发送PSCCH的功率,即第一设备在目标载波上同时发送PSSCH以及PSCCH。示例性的,第一设备在目标载波上的目标OFDM符号上既发送PSCCH又发送PSSCH。
第一设备根据第一发送功率、PSSCH在目标载波上占用的物理资源块PRB个数以及PSCCH在目标载波上占用的PRB个数,确定发送PSSCH的功率以及发送PSCCH的功率。
该情况下,第一设备按照PSSCH和PSCCH的PRB个数比例将第一发送功率分配到PSSCH和PSCCH。具体的,在目标载波上发送PSSCH的发送功率表示为:
Figure PCTCN2021125911-appb-000010
在目标载波上发送PSCCH的发送功率表示为:
Figure PCTCN2021125911-appb-000011
其中,P PSSCH(i)为第一发送功率,
Figure PCTCN2021125911-appb-000012
为在目标载波上PSSCH占用的PRB个数,
Figure PCTCN2021125911-appb-000013
为在目标载波上PSCCH占用的PRB个数。
可选的,当目标载波为多个时,在每个目标载波上独立进行上述步骤,确定PSSCH或PSCCH的发送功率。
从上述实施例可知,作为一种示例,第一设备首先需要根据第一载波确定侧行路径损耗,再根据侧行路径损耗确定第一发送功率。下面对第一设备如何确定侧行路径损耗进行说明。
本实施例的一个可选实施例中,第一设备根据第一载波上第二设备反馈的参考信号接收功率RSRP,确定侧行路径损耗。
本实施例的一个可选实施例中,第一设备根据第一载波上第二设备反馈的RSRP,以及第一设备在第一载波上发送物理侧行共享信道PSSCH的第二发送功率,确定侧行路径损耗,RSRP是第二设备针对PSSCH的解调参考信号DMRS进行测量得到的。
示例性的,如图9所示,UE1在载波1上向UE2发送PSSCH,UE2在载波1上针对UE1发送的PSSCH的DMRS进行测量得到RSRP,并向UE1反馈RSRP。UE1根据UE2反馈的RSRP以及UE1发送PSSCH的发送功率确定侧行路径损耗。
可选的,第一设备指示第一载波给第二设备。
可选的,第二设备在第一设备指示的第一载波上进行RSRP测量与反馈。
可选的,第一设备通过PC5-RRC信令或MAC控制单元CE或第一侧行控制信息或第二侧行控制信息指示第一载波给第二设备。
本实施例的一个可选实施例中,第一设备根据第一载波上第二设备反馈的RSRP,以及第一设备在第一载波上发送PSSCH的第二发送功率,确定侧行路径损耗,包括:第一设备将第二发送功率与RSRP的差值作为侧行路径损耗。
本实施例的一个可选实施例中,第一设备在第一载波上发送PSSCH的第二发送功率是经过第一设备高层滤波后的发送功率,第二设备反馈的RSRP是经过第二设备高层滤波后的RSRP。即第一设备对发送PSSCH的第二发送功率进行高层滤波(例如层3滤波),第二设备对测量得到的RSRP进行高层滤波(例如层3滤波)。
本实施例的一个可选实施例中,第一设备将高层滤波后的第二发送功率与第二设备反馈的经高层滤波的RSRP的差值作为侧行路径损耗。示例性的,如图9所示,UE1在载波1发送PSSCH至UE2,UE2在载波1上针对UE1发送的PSSCH的DMRS进行测量得到RSRP,经层3滤波后反馈给UE1。UE1利用经层3滤波的发送PSSCH的发送功率减去UE2反馈的经层3滤波的RSRP得到侧行路径损耗。
本实施例的一个可选实施例中,若第一载波包括多个载波,第一设备可通过如下方式的任意一项确定侧行路径损耗:
一种可能的实施方式中,侧行路径损耗为第一设备在第一载波中多个载波的任意一个载波上获取的侧行路径损耗。
一种可能的实施方式中,侧行路径损耗为第一设备在第一载波中多个载波上获取的侧行路径损耗的平均值。
一种可能的实施方式中,侧行路径损耗为第一设备在第一载波中多个载波上获取的侧行路径损耗的最大值。
一种可能的实施方式中,侧行路径损耗为第一设备在第一载波中多个载波上获取的侧行路径损耗的最小值。
示例性的,假设第一载波包括载波1至载波4,UE1在载波1至载波4上获取的侧行路径损耗分别为PL SL,1,PL SL,2,PL SL,3,PL SL,4,UE1根据第一载波确定的侧行路径损耗可以是PL SL,1,PL SL,2,PL SL,3,PL SL,4的任意一项,还可以是PL SL,1,PL SL,2,PL SL,3,PL SL,4的平均值或者最大值或最小值。
可选的,第一设备和第二设备之间进行单播通信。
本申请实施例示出的功率控制方法,使第一设备根据在第一载波上获取的侧行路 径损耗确定目标载波上的侧行信号发送功率进行功率控制,其中目标载波可以是第一载波和/或除第一载波外的其他载波。上述方案可减小侧行信令开销,降低侧行设备处理的复杂度,降低侧行设备功耗,提高侧行通信质量。
上文中详细描述了本申请实施例提供的功率控制方法,下面将描述本申请实施例提供的终端设备。
图11为本申请实施例提供的第一设备的结构示意图。如图11所示,本实施例的提供的第一设备200,包括:
处理模块201,用于根据第一载波确定目标载波上侧行链路的第一发送功率;所述目标载波包括所述第一载波和/或除所述第一载波外的载波。
本实施例的一个可选实施例中,所述第一载波包括至少一个载波,所述目标载波包括至少一个载波。
本实施例的一个可选实施例中,所述第一载波或所述目标载波包括以下任意一项:网络配置的载波;预配置的载波;取决于所述第一设备实现的载波。
本实施例的一个可选实施例中,所述第一载波和所述目标载波的中心频率的差值小于或等于预设阈值。
本实施例的一个可选实施例中,所述预设阈值包括以下任意一项:网络配置的阈值;预配置的阈值;取决于所述第一设备实现的阈值;标准规定的阈值。
本实施例的一个可选实施例中,所述第一载波和所述目标载波位于同一频段。
本实施例的一个可选实施例中,所述处理模块201,用于:
根据所述第一载波确定侧行路径损耗;
根据所述侧行路径损耗确定所述第一发送功率。
本实施例的一个可选实施例中,所述处理模块201,用于:
根据所述第一载波上第二设备反馈的参考信号接收功率RSRP,确定所述侧行路径损耗。
本实施例的一个可选实施例中,所述处理模块201,用于:
根据所述第一载波上所述第二设备反馈的RSRP,以及所述第一设备在所述第一载波上发送物理侧行共享信道PSSCH的第二发送功率,确定所述侧行路径损耗;所述RSRP是所述第二设备针对所述PSSCH的解调参考信号DMRS进行测量得到的。
本实施例的一个可选实施例中,所述处理模块201,用于:
将所述第二发送功率与所述RSRP的差值作为所述侧行路径损耗。
本实施例的一个可选实施例中,所述第二发送功率是经过所述第一设备高层滤波后的发送功率,所述RSRP是经过所述第二设备高层滤波后的RSRP。
本实施例的一个可选实施例中,所述第一发送功率包括:
发送PSSCH的功率;或者
发送所述PSSCH的功率以及发送物理侧行控制信道PSCCH的功率。
本实施例的一个可选实施例中,所述第一发送功率包括以下任意一项:
所述第一设备允许的最大发送功率;
所述第一设备对于所述目标载波上的信道繁忙率CBR和发送数据优先级所允许的最大发送功率;
所述第一设备根据下行路径损耗确定的所述目标载波上的PSSCH的发送功率;
所述第一设备根据侧行路径损耗确定的所述目标载波上的PSSCH的发送功率。
本实施例的一个可选实施例中,所述处理模块201,用于:
若所述第一设备在所述目标载波上仅发送PSSCH,将所述第一发送功率作为发送所述PSSCH的功率。
本实施例的一个可选实施例中,所述处理模块201,用于:
若所述第一设备在所述目标载波上同时发送PSSCH以及PSCCH,根据所述第一发送功率、所述PSSCH在所述目标载波上占用的物理资源块PRB个数以及所述PSCCH在所述目标载波上占用的PRB个数,确定发送所述PSSCH的功率以及发送所述PSCCH的功率。
本申请实施例提供的第一设备,用于执行前述方法实施例中第一设备的技术方案,其实现原理和技术效果类似,在此不再赘述。
图12为本申请实施例提供的电子设备的硬件结构示意图。如图12所示,本实施例提供的电子设备300,可以包括:处理器301、存储器302和通信接口303。其中,存储器302,用于存储计算机程序;处理器301,用于执行存储器302存储的计算机程序,以实现上述方法实施例中第一设备所执行的方法。通信接口303,用于与其他设备进行数据通信或者信号通信。
可选的,存储器302既可以是独立的,也可以跟处理器301集成在一起。当所述存储器302是独立于处理器301之外的器件时,所述电子设备300还可以包括:总线304,用于连接所述存储器302和处理器301。
可选的,处理器301可以为芯片。
可选的,图11中的处理模块201可以集成在处理器301中实现.
本实施例提供的电子设备,可用于执行上述方法实施例中第一设备所执行的方法,其实现原理和技术效果类似,此处不再赘述。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现前述方法实施例中第一设备的技术方案。
本申请实施例还提供一种计算机程序,当该计算机程序被处理器执行时,用于执行前述方法实施例中第一设备的技术方案。
本申请实施例还提供一种计算机程序产品,包括程序指令,程序指令用于实现前述方法实施例中第一设备的技术方案。
本申请实施例还提供了一种芯片,包括:处理模块与通信接口,该处理模块能执行前述方法实施例中第一设备的技术方案。可选的,芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行前述方法实施例中第一设备的技术方案。
本申请还提供一种通信系统,该通信系统可以包括前述的第一设备和第二设备。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、 装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。
可以理解的是,在本申请的实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施例的实施过程构成任何限定。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (33)

  1. 一种功率控制方法,其特征在于,包括:
    第一设备根据第一载波确定目标载波上侧行链路的第一发送功率;所述目标载波包括所述第一载波和/或除所述第一载波外的载波。
  2. 根据权利要求1所述的方法,其特征在于,所述第一载波包括至少一个载波,所述目标载波包括至少一个载波。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一载波或所述目标载波包括以下任意一项:
    网络配置的载波;
    预配置的载波;
    取决于所述第一设备实现的载波。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一载波和所述目标载波的中心频率的差值小于或等于预设阈值。
  5. 根据权利要求4所述的方法,其特征在于,所述预设阈值包括以下任意一项:
    网络配置的阈值;
    预配置的阈值;
    取决于所述第一设备实现的阈值;
    标准规定的阈值。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述第一载波和所述目标载波位于同一频段。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述第一设备根据第一载波确定目标载波上侧行链路的第一发送功率,包括:
    所述第一设备根据所述第一载波确定侧行路径损耗;
    所述第一设备根据所述侧行路径损耗确定所述第一发送功率。
  8. 根据权利要求7所述的方法,其特征在于,所述第一设备根据所述第一载波确定所述侧行路径损耗,包括:
    所述第一设备根据所述第一载波上第二设备反馈的参考信号接收功率RSRP,确定所述侧行路径损耗。
  9. 根据权利要求8所述的方法,其特征在于,所述第一设备根据所述第一载波上第二设备反馈的RSRP,确定所述侧行路径损耗,包括:
    所述第一设备根据所述第一载波上所述第二设备反馈的RSRP,以及所述第一设备在所述第一载波上发送物理侧行共享信道PSSCH的第二发送功率,确定所述侧行路径损耗;
    所述RSRP是所述第二设备针对所述PSSCH的解调参考信号DMRS进行测量得到的。
  10. 根据权利要求9所述的方法,其特征在于,所述第一设备根据所述第一载波上所述第二设备反馈的RSRP,以及所述第一设备在所述第一载波上发送PSSCH的第二发送功率,确定所述侧行路径损耗,包括:
    所述第一设备将所述第二发送功率与所述RSRP的差值作为所述侧行路径损耗。
  11. 根据权利要求9或10所述的方法,其特征在于,所述第二发送功率是经过所述第一设备高层滤波后的发送功率,所述RSRP是经过所述第二设备高层滤波后的RSRP。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,所述第一发送功率包括:
    发送PSSCH的功率;或者
    发送所述PSSCH的功率以及发送物理侧行控制信道PSCCH的功率。
  13. 根据权利要求1-12任一项所述的方法,其特征在于,所述第一发送功率包括以下任意一项:
    所述第一设备允许的最大发送功率;
    所述第一设备对于所述目标载波上的信道繁忙率CBR和发送数据优先级所允许的最大发送功率;
    所述第一设备根据下行路径损耗确定的所述目标载波上的PSSCH的发送功率;
    所述第一设备根据侧行路径损耗确定的所述目标载波上的PSSCH的发送功率。
  14. 根据权利要求1-13任一项所述的方法,其特征在于,所述方法还包括:
    若所述第一设备在所述目标载波上仅发送PSSCH,将所述第一发送功率作为发送所述PSSCH的功率。
  15. 根据权利要求1-13任一项所述的方法,其特征在于,所述方法还包括:
    若所述第一设备在所述目标载波上同时发送PSSCH以及PSCCH,所述第一设备根据所述第一发送功率、所述PSSCH在所述目标载波上占用的物理资源块PRB个数以及所述PSCCH在所述目标载波上占用的PRB个数,确定发送所述PSSCH的功率以及发送所述PSCCH的功率。
  16. 一种第一设备,其特征在于,包括:
    处理模块,用于根据第一载波确定目标载波上侧行链路的第一发送功率;所述目标载波包括所述第一载波和/或除所述第一载波外的载波。
  17. 根据权利要求16所述的第一设备,其特征在于,所述第一载波包括至少一个载波,所述目标载波包括至少一个载波。
  18. 根据权利要求16或17所述的第一设备,其特征在于,所述第一载波或所述目标载波包括以下任意一项:
    网络配置的载波;
    预配置的载波;
    取决于所述第一设备实现的载波。
  19. 根据权利要求16-18任一项所述的第一设备,其特征在于,所述第一载波和所述目标载波的中心频率的差值小于或等于预设阈值。
  20. 根据权利要求19所述的第一设备,其特征在于,所述预设阈值包括以下任意一项:
    网络配置的阈值;
    预配置的阈值;
    取决于所述第一设备实现的阈值;
    标准规定的阈值。
  21. 根据权利要求16-20任一项所述的第一设备,其特征在于,所述第一载波和所述目标载波位于同一频段。
  22. 根据权利要求16-21任一项所述的第一设备,其特征在于,所述处理模块,用于:
    根据所述第一载波确定侧行路径损耗;
    根据所述侧行路径损耗确定所述第一发送功率。
  23. 根据权利要求22所述的第一设备,其特征在于,所述处理模块,用于:
    根据所述第一载波上第二设备反馈的参考信号接收功率RSRP,确定所述侧行路径损耗。
  24. 根据权利要求23所述的第一设备,其特征在于,所述处理模块,用于:
    根据所述第一载波上所述第二设备反馈的RSRP,以及所述第一设备在所述第一载波上发送物理侧行共享信道PSSCH的第二发送功率,确定所述侧行路径损耗;
    所述RSRP是所述第二设备针对所述PSSCH的解调参考信号DMRS进行测量得到的。
  25. 根据权利要求24所述的第一设备,其特征在于,所述处理模块,用于:
    将所述第二发送功率与所述RSRP的差值作为所述侧行路径损耗。
  26. 根据权利要求24或25所述的第一设备,其特征在于,所述第二发送功率是经过所述第一设备高层滤波后的发送功率,所述RSRP是经过所述第二设备高层滤波后的RSRP。
  27. 根据权利要求16-26任一项所述的第一设备,其特征在于,所述第一发送功率包括:
    发送PSSCH的功率;或者
    发送所述PSSCH的功率以及发送物理侧行控制信道PSCCH的功率。
  28. 根据权利要求16-27任一项所述的第一设备,其特征在于,所述第一发送功率包括以下任意一项:
    所述第一设备允许的最大发送功率;
    所述第一设备对于所述目标载波上的信道繁忙率CBR和发送数据优先级所允许的最大发送功率;
    所述第一设备根据下行路径损耗确定的所述目标载波上的PSSCH的发送功率;
    所述第一设备根据侧行路径损耗确定的所述目标载波上的PSSCH的发送功率。
  29. 根据权利要求16-28任一项所述的第一设备,其特征在于,所述处理模块,用于:
    若所述第一设备在所述目标载波上仅发送PSSCH,将所述第一发送功率作为发送所述PSSCH的功率。
  30. 根据权利要求16-28任一项所述的第一设备,其特征在于,所述处理模块,用于:
    若所述第一设备在所述目标载波上同时发送PSSCH以及PSCCH,根据所述第一发送功率、所述PSSCH在所述目标载波上占用的物理资源块PRB个数以及所述PSCCH在所述目标载波上占用的PRB个数,确定发送所述PSSCH的功率以及发送所述PSCCH的功率。
  31. 一种电子设备,其特征在于,包括:
    收发器、处理器、存储器;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如权利要求1-15中任一项所述的方法。
  32. 一种计算机存储介质,其特征在于,用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1-15中任一项所述的方法。
  33. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求1-15中任一项所述的方法。
PCT/CN2021/125911 2021-10-22 2021-10-22 功率控制方法、设备及存储介质 WO2023065362A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180101298.3A CN117751634A (zh) 2021-10-22 2021-10-22 功率控制方法、设备及存储介质
PCT/CN2021/125911 WO2023065362A1 (zh) 2021-10-22 2021-10-22 功率控制方法、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/125911 WO2023065362A1 (zh) 2021-10-22 2021-10-22 功率控制方法、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023065362A1 true WO2023065362A1 (zh) 2023-04-27

Family

ID=86057810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125911 WO2023065362A1 (zh) 2021-10-22 2021-10-22 功率控制方法、设备及存储介质

Country Status (2)

Country Link
CN (1) CN117751634A (zh)
WO (1) WO2023065362A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013067030A1 (en) * 2011-11-04 2013-05-10 Intel Corporation Path-loss estimation for uplink power control in a carrier agregation environment
CN104105187A (zh) * 2013-04-03 2014-10-15 上海贝尔股份有限公司 多链路连接的上行传输功率控制方法与装置
US20200022089A1 (en) * 2018-07-11 2020-01-16 Samsung Electronics Co., Ltd. Method and apparatus for multi-antenna transmission in vehicle to vehicle communication
WO2020197287A1 (en) * 2019-03-28 2020-10-01 Samsung Electronics Co., Ltd. Power control method and terminal for performing power control
CN112243289A (zh) * 2019-07-19 2021-01-19 华硕电脑股份有限公司 用于装置到装置传送功率控制的方法和设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013067030A1 (en) * 2011-11-04 2013-05-10 Intel Corporation Path-loss estimation for uplink power control in a carrier agregation environment
CN104105187A (zh) * 2013-04-03 2014-10-15 上海贝尔股份有限公司 多链路连接的上行传输功率控制方法与装置
US20200022089A1 (en) * 2018-07-11 2020-01-16 Samsung Electronics Co., Ltd. Method and apparatus for multi-antenna transmission in vehicle to vehicle communication
WO2020197287A1 (en) * 2019-03-28 2020-10-01 Samsung Electronics Co., Ltd. Power control method and terminal for performing power control
CN112243289A (zh) * 2019-07-19 2021-01-19 华硕电脑股份有限公司 用于装置到装置传送功率控制的方法和设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ASUSTEK: "Remaining issues on sidelink physical layer procedure on NR V2X", 3GPP TSG RAN WG1 #100, R1-2001017, 14 February 2020 (2020-02-14), XP051853140 *
SAMSUNG: "On Sidelink Power Control", 3GPP TSG RAN WG1 #97, R1-1906950, 3 May 2019 (2019-05-03), XP051708985 *

Also Published As

Publication number Publication date
CN117751634A (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
JP6759271B2 (ja) 高密度ワイヤレス環境における周波数多重化通信におけるチャネルセット割振り
CN109644498B (zh) 针对频谱共享的新无线电先听后讲设计
JP5683715B2 (ja) 無線ダイレクトリンクオペレーションに関する方法および装置
TW201832608A (zh) 用於鏈路聚集設立和重配置的信號傳遞
WO2020143692A1 (zh) 通信方法和通信装置
US10313890B2 (en) Method and device for receiving service through different wireless communication systems
US20190059082A1 (en) Method, base station, and user terminal for using location information of user terminal
CN110113133A (zh) 用于波形选择和自适应的系统和方法
WO2012038912A1 (en) Autonomous unlicensed band reuse in mixed cellular and device-to-device network
WO2021226858A1 (zh) 传输资源的确定方法和终端设备
US20130089046A1 (en) Method and apparatus for distributed scheduling for enhancing link performance in wireless communication system
WO2019062746A1 (zh) 通信方法、装置和系统
US20230041458A1 (en) Resource allocation method and terminal
JP7419553B2 (ja) フィードバックリソース決定方法およびフィードバックリソース決定装置
WO2023029008A1 (zh) 信息传输方法、设备及存储介质
WO2023102925A1 (zh) 功率分配方法、装置、设备及存储介质
WO2023065362A1 (zh) 功率控制方法、设备及存储介质
WO2022213328A1 (zh) 侧行链路资源配置的方法和通信装置
WO2022027460A1 (zh) 无线通信方法、终端设备和网络设备
WO2023044716A1 (zh) 信道接入方法、设备及存储介质
WO2024022522A1 (zh) 功率控制方法、装置及终端设备
WO2023050404A1 (zh) 资源配置方法、设备及存储介质
WO2024131529A1 (zh) 一种通信方法及通信装置
WO2024061069A1 (zh) 侧行链路通信的方法及装置
WO2024067869A1 (zh) 通信方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961105

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180101298.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE