WO2023065116A1 - 一种制冷循环装置及热交换单元 - Google Patents

一种制冷循环装置及热交换单元 Download PDF

Info

Publication number
WO2023065116A1
WO2023065116A1 PCT/CN2021/124721 CN2021124721W WO2023065116A1 WO 2023065116 A1 WO2023065116 A1 WO 2023065116A1 CN 2021124721 W CN2021124721 W CN 2021124721W WO 2023065116 A1 WO2023065116 A1 WO 2023065116A1
Authority
WO
WIPO (PCT)
Prior art keywords
ventilation
heat exchange
diameter section
guide element
cavity
Prior art date
Application number
PCT/CN2021/124721
Other languages
English (en)
French (fr)
Inventor
肖飞
武书昆
马康敬宇
侯瑞航
金学军
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Priority to PCT/CN2021/124721 priority Critical patent/WO2023065116A1/zh
Publication of WO2023065116A1 publication Critical patent/WO2023065116A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/02Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating liquids, e.g. brine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus

Definitions

  • the present application belongs to the technical field of air conditioning, and in particular relates to a refrigeration cycle device and a heat exchange unit arranged in the refrigeration cycle device.
  • solid-state refrigeration technology was proposed and developed rapidly.
  • the key to solid-state refrigeration technology is that when an external field is applied or changed, the solid material exchanges heat with the outside world. By repeatedly superimposing and collecting the heat absorption effect, the refrigeration effect is achieved.
  • solid-state elastothermal refrigeration uses stress to induce a reversible martensitic phase transition in materials, resulting in a large entropy change and finally achieving a significant cooling effect. Due to the characteristics of high efficiency, environmental protection, and low cost, elastothermal refrigeration technology was defined as the most promising technology among the 17 non-gas-liquid compression refrigeration technologies in the future by a US Department of Energy report in 2014.
  • Chinese patent CN107289668B discloses a high-temperature drive group memory alloy that is martensite at room temperature and zero stress, absorbs heat from a low-grade heat source and discharges heat to a normal heat sink, and drives a low-temperature refrigeration group memory that is austenite at room temperature and zero stress
  • the cooling system of the alloy to the low-temperature refrigeration space aims to solve the driving force problem of the elastothermal refrigeration system, but it fails to solve the problem of low heat exchange efficiency caused by insufficient cold and heat exchange.
  • a refrigeration system with high heat exchange efficiency and high refrigeration density is urgently needed.
  • the present invention provides a refrigeration cycle device and a heat exchange unit for solving the problem of low heat exchange efficiency of the existing elastothermal refrigeration system.
  • thermoelastic element is an elastic shape memory alloy
  • thermoelastic element such that the thermoelastic element is tensioned between the first fixing member and the second fixing member
  • a transmission part the transmission part is used to connect with the first fixing part, and the first fixing part can change the relative position of the first fixing part and the second fixing part in response to the action of the transmission part, so that the thermoelastic element The state changes between relaxation and tension;
  • thermoelastic element forms a barrier band between the first fixing part and the second fixing part for blocking gas flow.
  • the transmission part includes a sliding base, a slider, a traction bearing and a guide rail, one end of the sliding base is connected to the first fixing member and the other end is connected to the traction bearing, and the sliding base is fixed on the slider , the slider is slidingly connected with the guide rail.
  • thermoelastic element is a shape memory alloy wire
  • shape memory alloy wire is wound on the first fixing piece and the second fixing piece to form a ring-shaped alloy piece.
  • the ring-shaped alloy piece has two strips between the first fixing part and the second fixing part, and the distance between the strips is according to the distance between the first fixing part and the second fixing part. gradually increases towards the direction of the second fixing member.
  • the transmission part includes a sliding base, a slider, a traction bearing and a guide rail, one end of the sliding base is connected to the first fixing member and the other end is connected to the traction bearing, and the sliding base is fixed on the slider , the slider is slidingly connected with the guide rail.
  • a refrigerating cycle device using the heat exchange unit includes a guide element, the radial side wall of the guide element is according to the distance from the central axis of the guide element The difference includes the first variable diameter section, the first equal diameter section, the second variable diameter section and the second equal diameter section in sequence, and the radial side walls at the first equal diameter section and the second equal diameter section are to the center of the guide element
  • the distance of the shaft remains constant, and the distance from the radial side wall at the first and second diameter reducing sections to the central axis of the guide element gradually changes to the preset direction of change, and at the center of the guide element
  • the changing direction of the distance from the first reducing section to the central axis of the guide element is opposite to the changing direction of the distance from the second reducing section to the central axis of the guiding element;
  • transmission means for transmitting the received rotational power to the transmission member to rotate the transmission member, the transmission member having freedom of movement around the central axis of the guide member on the radial side walls of the guide member Spend;
  • the ventilation device has a closed annular cavity for accommodating the thermoelastic element, and the annular cavity is coaxial with the central axis of the guide element;
  • the annular cavity is sequentially provided with a hot zone inlet, a hot zone outlet, a cold zone inlet and a cold zone outlet;
  • the area between the hot zone inlet and the hot zone outlet as the first ventilation cavity, and the position of the first ventilation cavity corresponds to the first equal-diameter section of the guide element; define the hot zone outlet and The area between the inlets of the cold zone is a first narrow air chamber, and the position of the first narrow air chamber corresponds to the first diameter reducing section of the guide element; the inlet of the cold zone and the outlet of the cold zone are defined The area between is the second ventilation cavity, and the position of the second ventilation cavity corresponds to the second equal-diameter section of the guide element; the area between the outlet of the cold zone and the inlet of the hot zone is defined as the second a narrow air chamber, the second narrow air chamber corresponds to the second reducing section of the guide element;
  • the axial cavity size of the first ventilation cavity and the second ventilation cavity is larger than the axial cavity size of the first narrow wind cavity and the second narrow wind cavity;
  • the barrier strip on the thermoelastic element The arrangement is adapted to the axial distance between the first narrow wind chamber and the second narrow wind chamber to form a barrier to the flow of gas in the annular chamber at the position;
  • the wind on the side of the hot zone inlet and the hot zone outlet is introduced from the hot zone inlet and flows out from the hot zone outlet after being heated, and the wind on the cold zone inlet and the cold zone outlet side enters from the cold zone inlet and is cooled by itself. Area exit outflow.
  • the ventilation device includes a first air channel and a second air channel, the first air channel covers the second air channel, the hot zone inlet, the hot zone outlet, the cold zone inlet and The outlets of the cold zone are all arranged on the first air duct.
  • first variable-diameter section and the first equal-diameter section are cooling sections
  • second variable-diameter section and the second equal-diameter section are refrigeration sections
  • at least A cooling segment and at least one cooling segment are provided.
  • the transmission device includes a fixed base, a central shaft and a rotating bearing;
  • One end of the central shaft is connected to the fixed base, the other end of the central shaft is connected to a connecting plate, and the middle part of the central shaft is arranged in the inner ring of the rotary bearing;
  • the outer side of the connecting plate is connected to the first air duct, the connecting plate covers the guiding element and is fixedly connected with the guiding element;
  • the outer ring of the rotary bearing is connected with a flange, and the outer edge of the flange is connected with a rotating base;
  • At least one heat exchange unit in the circumferential direction of the rotating base, and a ring gear is connected to the outside of the rotating base, and the ring gear is used to receive rotational power to rotate the rotating base.
  • heat exchange units are radially distributed around the central axis.
  • the rotating base is fixedly connected with the transmission member, the second air channel, and the second fixing member in sequence from the inside to the outside, and the rotating base rotates in the same direction as the second air channel ;
  • the second air passage is provided with at least one ventilation slot along the radial direction
  • the first air passage is provided with at least one ventilation slot along the radial direction in the area between the first ventilation cavity and the second ventilation cavity .
  • thermal elastic element is arranged on the side of the ventilation groove of the second air channel.
  • the rotating base is sequentially connected to the heat exchange unit, the second air channel, and the second fixing member from the inside to the outside, and the second air channel is slidably connected to the rotating base , the rotating base rotates relative to the second air duct;
  • the second air passage and the first air passage are provided with at least one radial ventilation slot in the area of the first ventilation cavity and the second ventilation cavity.
  • the ventilation slots on the first air channel and the second air channel are alternately arranged.
  • thermoelastic element transitionally cooperates with the ventilation device in the regions of the first narrow wind chamber and the second narrow wind chamber.
  • the direction of wind flowing in the first ventilation chamber and the second ventilation chamber is opposite to the direction of rotation of the rotating base, that is to say, the direction of wind flowing from the inlet of the hot zone to the outlet of the hot zone is opposite to that of the rotating base.
  • the direction of rotation of the base is opposite, and the direction of wind flowing from the inlet of the cold zone to the outlet of the cold zone is opposite to the direction of rotation of the rotating base.
  • the guide element is composed of the first variable-diameter section, the first equal-diameter section, the second variable-diameter section, and the second equal-diameter section through detachable connections.
  • the invention discloses a heat exchange unit using a shape memory alloy, utilizing the elastothermal effect of a thermoelastic element made of a shape memory alloy, when the thermoelastic element is stretched by a transmission part, a positive martensitic transformation occurs, namely The transformation from austenite to martensite releases heat and causes the temperature of the material itself to rise, resulting in a heat dissipation effect.
  • the thermoelastic element is affected by the transmission part and changes from stretching to compression, the thermoelastic element absorbs heat from the environment and generates Cooling effect.
  • thermoelastic element in the heat exchange unit can be wound by a large number of shape memory alloy wires, so the volume of the thermoelastic element
  • the high refrigeration density improves the refrigeration efficiency.
  • the present invention discloses a refrigeration cycle device using the above-mentioned heat exchange unit.
  • the refrigeration cycle device includes a transmission device, a guide element, a ventilation device and a heat exchange unit.
  • the transmission part on the exchange unit and the guide element move relative to each other. Due to the different distances from the radial side walls on the guide element to the central axis, the transmission part drives the thermoelastic element to undergo periodic changes between tension and relaxation, that is, thermoelasticity
  • the element undergoes periodic changes between heat absorption and heat dissipation, and at the same time, the thermoelastic element rotates in the annular cavity of the ventilation device, and completes the heat exchange with the flow of wind in the ventilation device.
  • the device of the invention has simple structure, ingenious design and convenient use.
  • thermoelastic element since the distance between the first equal-diameter section and the second equal-diameter section on the guide element is relatively long, the thermoelastic element has sufficient time for heat exchange, thereby improving heat exchange efficiency.
  • the barrier strip of the thermoelastic element is adapted to the axial distance between the first narrow air chamber and the second narrow air chamber in the annular cavity to block the flow of gas, so that the first ventilation chamber and the second narrow air chamber on both sides of the narrow air chamber The air in the ventilation cavity cannot flow freely, which reduces the loss of cooling capacity and improves the heat exchange efficiency.
  • Fig. 1 is a sectional view 1 of a refrigeration cycle device in an embodiment of the present invention
  • Fig. 2 is the structural representation of the heat exchange unit in the embodiment of the present invention.
  • thermoelastic element 3 is a schematic structural view of a thermoelastic element and a fixing assembly in an embodiment of the present invention
  • Fig. 4 is the distribution diagram of the heat exchange unit in the embodiment of the present invention.
  • Fig. 5 is a schematic structural view of a guide element in an embodiment of the present invention.
  • Fig. 6 is a cross-sectional view 2 of the refrigeration cycle unit in the embodiment of the present invention.
  • Fig. 7 is a schematic structural diagram of the first air duct in the embodiment of the present invention.
  • Fig. 8 is a cross-sectional view of the first narrow wind chamber in the embodiment of the present invention.
  • Fig. 9 is a cross-sectional view of the first ventilation cavity in the embodiment of the present invention.
  • Fig. 10 is a graph showing the operational performance of the refrigeration cycle unit in the embodiment of the present invention.
  • Embodiments of the present invention provide a refrigeration cycle device with a simple structure and ingenious design to greatly improve heat exchange using shape memory alloys. s efficiency.
  • Figure 2 and Figure 3 show the heat exchange unit based on shape memory alloy wire, including a thermoelastic element 1, which is an elastic shape memory alloy piece; a fixed assembly, which includes a first A fixing part 2 and a second fixing part 3, the fixing assembly provides tension to the thermoelastic element 1 so that the thermoelastic element 1 is tensioned between the first fixing part 2 and the second fixing part 3, the first The fixing part 2 and the second fixing part 3 are two mutually parallel grooved cylinders, the diameter of the first fixing part 2 is smaller than the diameter of the second fixing part 3;
  • the fixed part 2 is connected, and the first fixed part 2 can change the relative position of the first fixed part 2 and the second fixed part 3 in response to the action of the transmission part, so that the state of the thermoelastic element 1 changes between relaxation and tension ;
  • the thermoelastic element 1 forms a barrier band between the first fixing part 2 and the second fixing part 3 for blocking gas flow.
  • the thermoelastic element 1 is a shape memory alloy wire, and the shape memory alloy wire is wound on the first fixing part 2 and the second fixing part 3 to form a ring-shaped alloy piece, and the ring-shaped alloy piece is equivalent to In a plane, air cannot freely pass through the plane perpendicularly.
  • the present invention is not limited to this structure, and any structure that can prevent air from passing through the plane of the thermoelastic element should be within the scope of protection of this application.
  • shape memory alloy wires can be closely arranged between fixed components and multi-layered to block gas flow.
  • the said ring-shaped alloy part has two strips between said first fixing part 2 and said second fixing part 3, and the distance between said strips is in accordance with the The direction from the first fixing part 2 to the second fixing part 3 increases gradually.
  • the heat exchange units are arranged in a circle as shown in Figure 4, the length of the strip when the diameter of the second fixing member 3 is greater than the diameter of the first fixing member 2 is greater than the length of the belt when both diameters are the same Long, so that the contact area between the thermoelastic element 1 and the exchange gas is increased so that the heat exchange efficiency becomes high.
  • the transmission member includes a sliding base 5, a slider 6, a traction bearing 4 and a guide rail 7, one end of the sliding base 5 is connected to the first fixing member 2 and the other end is connected to the traction bearing 4, and the sliding base 5 It is fixed on the slider 6, and the slider 6 is slidably connected with the guide rail 7.
  • the first fixing part 2 and the traction bearing 4 are fixed on the sliding base 5, and the sliding base 5 is installed on the slider 6, and the guide rail 7 is below the slider.
  • the sliding base 5 can slide along the guide rail 7, and when the sliding base 5 slides, the first fixing part 2 moves accordingly, while the second fixing part 3 is fixed relative to the guide rail 7, so when the first fixing part 2 moves,
  • the distance between the first fixing part 2 and the second fixing part 3 will increase or shorten, so that the thermoelastic element 1 changes between tension and relaxation.
  • the thermoelastic element 1 When the thermoelastic element 1 is tensed, it releases heat, and when it relaxes, it absorbs heat.
  • the rational use of this change achieves the purpose of adjusting the temperature.
  • the above-mentioned heat exchange unit is the basic unit that constitutes the refrigeration cycle device in this embodiment.
  • the refrigeration cycle device in the embodiment of the present invention also includes a guide element 11, a transmission device and a ventilation device , used to realize the deformation of the thermoelastic element in the heat exchange unit and the temperature adjustment of the air entering and exiting.
  • a guide element 11 a transmission device and a ventilation device , used to realize the deformation of the thermoelastic element in the heat exchange unit and the temperature adjustment of the air entering and exiting.
  • the radial side wall of the guide element 11 includes a first variable-diameter section 12, a first equal-diameter section 13, a second variable-diameter section 14 and a second Equal-diameter section 15, the distance from the radial side wall at the first equal-diameter section 13 and the second equal-diameter section 15 to the central axis of the guide element 11 remains constant, and the first variable-diameter section 12 and the second variable-diameter section
  • the distance from the radial side wall at 14 to the central axis of the guide element 11 gradually changes to a preset direction of change, and in the same clock rotation direction with the central axis of the guide element 11 as the rotation axis, the first reducing section 12 to The change direction of the distance from the central axis of the guide element 11 is opposite to the change direction of the distance from the second diameter reducing section 14 to the central axis of the guide element 11 .
  • the guide element 11 is in contact with the transmission part of the heat exchange unit, and the transmission part has a degree of freedom of movement around the central axis of the guide element 11 on the radial side walls of the guide element 11 . Since the distance from the radial side wall of the guide element 11 to its central axis is different, and the guide element 11 is arranged between the traction bearing 4 and the first fixing member 2, when the traction bearing 4 slides on the guide element 11, the sliding base 5 moves relative to the guide rail 7 under the action of the traction bearing 4 driven by the guide element 11, so that the thermoelastic element 1 changes between relaxation and tension.
  • the guide element 11 can be integrally formed, or it can be formed by the first reducing section 12, the first equal-diameter section 13, the second reducing-diameter section 14 and the second equal-diameter section 15.
  • the guide element 11 When the guide element 11 is detachably connected, it can be easily replaced if a part of it is damaged, and the purpose of adjusting the degree of tension and relaxation of the thermoelastic element 1 can also be achieved by replacing one of the parts.
  • the movement of the transmission member on the guide element 11 causes the thermoelastic element 1 to change.
  • the power of the above movement comes from the external rotational power, and the rotational power is transmitted to the transmission member through the transmission device.
  • the transmission device includes a fixed base 31 , a central shaft 32 and a rotating bearing 33 .
  • the fixed base 31 is used as the fixed base 31 of the entire refrigeration cycle device, the fixed base 31 has a hole, the central axis 32 is adapted to the hole of the fixed base 31 and one end is placed in the hole and connected to the hole Fixing means forming a state where one end of the central shaft 32 is connected to the fixing base 31 .
  • the other end of the central shaft 32 is exposed to the hole and connected to the connecting plate 35 .
  • the connecting plate 35 is fixedly connected to the guide element 11 , and the guide element 11 is arranged coaxially with the central axis 32 .
  • the guide element 11 in this embodiment is T-shaped, and the T-shaped structure includes vertically arranged horizontal plates and vertical plates, and the horizontal plate is connected to the connecting plate 35 , the riser is in contact with the traction bearing 4 . In this way, both the connecting plate 35 and the guide element 11 are relatively fixed to the fixed base 31 .
  • the middle part of the central shaft 32 is arranged in the inner ring of the rotary bearing 33 , the outer ring of the rotary bearing 33 is connected with a flange 34 , and the outer edge of the flange 34 is connected with a rotary base 37 .
  • the flange 34 , the rotating base 37 and the heat exchange unit rotate due to the ring gear 36 . Therefore, through the arrangement of the above-mentioned transmission device, relative movement can be realized between the heat exchange unit fixed on the rotating base 37 and the relatively fixed guide element 11 of the fixed base 31 .
  • the transmission device transmits the power to the transmission part, so that the heat exchange unit and the guide element 11 move relative to each other, so that the thermoelastic element 1 changes between heat dissipation and cooling, and the air introduced by the ventilation device exchanges heat with the thermoelastic element 1 .
  • the ventilation device has a closed annular cavity for accommodating the thermoelastic element 1 , and the annular cavity is coaxial with the central axis 32 of the guide element 11 .
  • the annular cavity is provided with a hot zone inlet 23 , a hot zone outlet 22 , a cold zone inlet 25 and a cold zone outlet 24 in sequence.
  • the ventilation device in the embodiment of the present invention includes a first air channel 21 and a second air channel 41, the first air channel 21 covers the second air channel 41, and the thermoelastic element 1 Set between the first air duct 21 and the second air duct 41, the hot zone inlet 23, the hot zone outlet 22, the cold zone inlet 25 and the cold zone outlet 24 are all set in the first On duct 21.
  • the area between the hot zone inlet 22 and the hot zone outlet 23 as the first ventilation cavity, and the position of the first ventilation cavity corresponds to the first equal-diameter section 12 of the guide element 11; define the The area between the hot zone outlet 22 and the cold zone inlet 25 is a first narrow wind cavity, and the position of the first narrow wind cavity corresponds to the first variable diameter section 12 of the guide element 11; The area between the zone inlet 25 and the cold zone outlet 24 is a second ventilation cavity, and the position of the second ventilation cavity corresponds to the second equal-diameter section 15 of the guide element 11; defining the cold zone outlet 24 The area between the inlet 23 of the hot zone is a second narrow air cavity, and the second narrow air cavity corresponds to the second diameter-reducing section 14 of the guide element 11 .
  • the wind on the side of the hot zone inlet 23 and the hot zone outlet 22 is introduced from the hot zone inlet 23 , and flows out from the hot zone outlet 22 after heat exchange occurs between the first ventilation cavity and the thermoelastic element 1 .
  • the wind on the side of the cold zone inlet 25 and the cold zone outlet 24 enters from the cold zone inlet 25 and flows out from the cold zone outlet 24 after heat exchange occurs between the second ventilation cavity and the thermoelastic element 1 . Therefore, the heat exchange between the gas and the thermoelastic element 1 continues through the arrangement of the above-mentioned ventilation device.
  • the refrigeration cycle device in the embodiment of the present invention achieves the purpose of temperature regulation through the heat exchange unit, the guide element 11 , the transmission device and the ventilation device.
  • the heat exchange units are evenly distributed around the central axis 32 on the rotating base 37 .
  • External power drives the ring gear 36 to rotate, and the flange 34 , the rotating base 37 and the heat exchange unit rotate due to the ring gear 36 .
  • the thermoelastic element 1 changes between tension and relaxation.
  • thermoelastic element 1 When the thermoelastic element 1 is in the first reducing section 12, the traction bearing 4 is stressed so that the sliding base 5 slides along the guide rail 7, and the first fixing member 2 is fixed on the sliding base 5, so as the sliding base 5 The movement makes the distance between the first fixing part 2 and the second fixing part 3 increase, so that the thermoelastic element 1 gradually turns from relaxation to tension and maintains tension in the first equal-diameter section 13 for heat release.
  • the wind on the side of the inlet 23 and the outlet 22 of the hot zone is introduced from the inlet 23 of the hot zone, and flows out from the outlet 22 of the hot zone after the first ventilation cavity is heated.
  • thermoelastic element 1 When the thermoelastic element 1 is in the second variable-diameter section 14, it turns from tension to relaxation and maintains relaxation in the second equal-diameter section 15 for refrigeration. After the inlet 25 of the cold zone enters, it flows out from the outlet 24 of the cold zone after cooling in the second ventilation chamber.
  • thermoelastic element 1 is in the heat dissipation and cooling states in the first ventilation cavity and the second ventilation cavity respectively. If the gas in the two cavities flows, the heat exchange efficiency will be reduced.
  • the axial cavity size of the first ventilation chamber and the second ventilation cavity is larger than the axial cavity size of the first narrow wind cavity and the second narrow wind cavity, so that the first ventilation cavity and the The second ventilation chamber is separated by the first narrow wind chamber and the second narrow wind chamber.
  • the arrangement of the barrier band on the thermoelastic element 1 is adapted to the axial distance between the first narrow wind cavity and the second narrow wind cavity to form a barrier to the flow of gas in the annular cavity at the position, that is, when the heat
  • the thermoelastic element 1 is located between the first air duct 21 and the second air duct 41, and the barrier strip on the thermoelastic element 1 blocks the air flow in the first air duct.
  • the flow between the cavity and the second ventilation cavity effectively reduces the loss of cooling capacity and improves the heat exchange efficiency.
  • thermoelastic element 1 transition fits with the ventilation device in the first narrow wind cavity and the second narrow wind cavity area, that is, the thermoelastic element 1 passes through the ventilation device in these two areas.
  • the transition fit of is such that air cannot flow between the first ventilation cavity and the second ventilation cavity.
  • the second air channel 41 in the embodiment of the present invention is provided with Radial ventilation slots
  • the first air passage 21 is provided with radial ventilation slots in the area between the first ventilation chamber and the second ventilation chamber, the ventilation slots of the second air passage 41
  • the thermoelastic element 1 is arranged on the side of the groove, and multiple sets of ventilation grooves are arranged in the first air channel 21 and the second air channel 41 in a radially distributed manner.
  • the rotating base 37 is fixedly connected with the transmission member, the second air duct 41 and the second fixing member 3 in turn from the inside to the outside, and the rotating base 37 and the second air duct 41 are to turn.
  • thermoelastic element 1 performs more sufficient heat exchange and improves heat exchange efficiency. Simultaneously because described thermoelastic element 1 is arranged on the edge of the ventilation slot of the second air channel 41, the thermoelastic element 1 on the edge of the ventilation slot in the first narrow air cavity and the second narrow air cavity area can block the air The first ventilation cavity and the second ventilation cavity flow.
  • the rotating base 37 is sequentially connected with the heat exchange unit, the second air duct 41, and the second fixing member 3 from the inside to the outside, so that The second air passage 41 is slidingly connected with the rotating base 37 , and the rotating base 37 and the second air passage 41 rotate relatively.
  • the second air passage 41 and the first air passage 21 are provided with at least one radial ventilation slot in the area of the first ventilation cavity and the second ventilation cavity.
  • the ventilation grooves on the first air duct 21 and the second air duct 41 are alternately arranged to form an S-shaped air duct.
  • thermoelastic element 1 barrier strip blocks the air flow in the first narrow air chamber and the second narrow air chamber.
  • the flow direction of the wind needs to be controlled during the operation of the refrigeration cycle device.
  • the direction of the wind flowing in the first ventilation cavity and the second ventilation cavity in the embodiment of the present invention is related to the rotation The direction of rotation of the base 37 is reversed.
  • outdoor air at normal temperature is blown into the inlet 23 of the hot zone, where the temperature of the thermoelastic element 1 is relatively high, and then the air circulates through the first ventilation cavity, and the heated air Blow from the outlet 22 of the hot zone to the outdoor atmosphere, where the temperature of the thermoelastic element 1 is the highest.
  • the air bends and flows forward in an S shape, and the temperature difference between the air and the thermoelastic element 1 is relatively stable, and relatively sufficient heat exchange is performed.
  • the indoor air is blown into the cold zone inlet 25, where the temperature of the thermoelastic element 1 is relatively low, and then the air circulates through the entire second ventilation cavity, and the air that has been cooled by heat absorption is blown back into the room from the cold zone outlet 24, where the heat Elastic element 1 has the lowest temperature.
  • the air passes through the second ventilation cavity, it bends and flows forward in an S shape, and the temperature difference between the air and the thermoelastic element 1 is relatively stable, and sufficient heat exchange is performed to realize repeated cooling of the air entering the refrigeration cycle device.
  • the air in the room enters the second ventilation cavity, is absorbed by the low-temperature thermoelastic element 1 and takes away heat, and the cooled air is discharged back into the room; the heat taken away is released in the first ventilation cavity to the air blown in from the outside. air, the heated air is then exhausted back to the outside.
  • the first variable-diameter section 12 and the first equal-diameter section 13 are cooling sections
  • the second variable-diameter section 14 and the second equal-diameter section 15 are cooling sections
  • the guide element 11 can be At least one refrigeration section and at least one heat dissipation section are arranged alternately, and corresponding air inlets and outlets are arranged on the ventilation device. In this way, the refrigeration section and the heat dissipation section are arranged according to the actual situation and the corresponding air inlet and outlet are set, so that the temperature of multiple spaces can be adjusted in one cycle.
  • the ring gear 36 receives the power to make the rotating base 37 rotate, and the transmission member connected to the rotating base 37, the second air duct 41 and the second fixing member 3 rotate together with it, and the The traction bearing 4 rotates relative to the guide element 11. Due to the different radial distances of the guide element 11, the traction bearing 4 drives the movement of the first fixing member 2, so that the thermoelastic element 1 changes between tension and relaxation. When the thermoelastic element 1 When rotating in the first ventilation cavity, it is in a tense state.
  • thermoelastic element 1 rotates to the first narrow air cavity
  • the barrier band formed by the thermoelastic element 1 blocks the flow of air in the annular cavity.
  • the thermoelastic element 1 rotates in the second ventilation cavity, it is in a relaxed state, and the wind flows in from the cold zone inlet 25 through the S-shaped air channel to exchange heat with the thermoelastic element 1, and then flows out from the cold zone outlet 24 to take away the heat.
  • the barrier band formed by the thermoelastic element 1 blocks the flow of air in the annular cavity. This cycle goes on and on to achieve the effect of adjusting the temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Flow Control Members (AREA)

Abstract

一种制冷循环装置及热交换单元,涉及空调技术领域,包括热交换单元、导向元件(11)、传动装置和通风装置,热交换单元由传动件、热弹性元件(1)和固定组件构成,热弹性元件(1)为具有弹性的形状记忆合金,传动件用于改变固定组件间的相对位置,使得热弹性元件(1)的状态在松弛和张紧间发生变化,传动装置用于将接收到的转动动力传递给传动件使其与导向元件(11)发生相对运动,让热弹性元件(1)在制冷和散热间进行周期性变化以达到调节环境温度的目的。采用形状记忆合金为介质进行温度调节,结构简单,设计巧妙,热交换效率高,且同时解决了传统气体压缩制冷技术中存在的环境污染问题。

Description

一种制冷循环装置及热交换单元 技术领域
本申请属于空调技术领域,具体涉及一种制冷循环装置、以及设置于制冷循环装置中的热交换单元。
背景技术
在全世界范围内,制冷所消耗电力占全球电力比例已超过15%,每年都会产生很大的碳排放量,且随着经济发展和全球变暖,该比例会越来越高。此外,现今应用最广泛的蒸气压缩制冷技术通过百年的发展,已经达到接近40~45%的卡诺循环理论效率。但是蒸气压缩制冷使用的制冷剂大多为对环境不利,例如最好的制冷液是有毒的(氨基化学药品在工业生产中仍然在使用)或者会产生臭氧消耗效应和温室效应(氟利昂和氢氟烃液)。世界范围内的许多国家已经逐步立法限制并禁用这些制冷剂。因此,现在迫切的需要用一种清洁的环境友好型的技术来取代气体压缩技术,尤其是在巴黎新的全球气候协定之后。在这种要求与背景之下,固态制冷技术被提出并得到迅速发展。固态制冷技术的关键在于,当施加或改变外场,固态材料与外界发生热交换。通过对吸热效应反复叠加、收集,从而达到制冷效果。其中,固态弹热制冷是利用应力诱发材料的可逆马氏体相变,从而导致大的熵变,最终获得显著的制冷效果。由于弹热制冷技术效能高、环保、低成本等特点,2014年一份美国能源部报告将其定义为未来17种非气-液压缩制冷技术中最具有发展前景的技术。
然而,现阶段弹热制冷系统的设计仍存在较多挑战。中国专利CN107289668B公开了一种由常温零应力时为马氏体的高温驱动组记忆合金从低品位热源吸热、向常热汇排热,驱动常温零应力时为奥氏体的低温制冷组记忆合金向低温冷藏空间制冷的系统,旨在解决弹热制冷系统驱动力问题,但未能解决冷热交换并不充分所引起的热交换效率低问题。为了让弹热制冷技术从实验室进化为工业量产,急需一种热交换效率高,制冷密度大的制冷系统。
发明内容
鉴于以上现有技术存在的缺点,本发明提供了一种制冷循环装置及热交换单元,用于解决现有的弹热制冷系统热交换效率低的问题。
根据本申请的一个方面,提供了一种热交换单元,所述热弹性元件为具有弹性的形状记忆合金件;
固定组件,所述固定组件包括第一固定件和第二固定件,所述固定组件对所述热弹性元件提供张力使得所述热弹性元件在第一固定件和第二固定件之间张紧;
传动件,所述传动件用于与所述第一固定件连接,所述第一固定件可响应于传动件的作用改变第一固定件和第二固定件的相对位置,使得热弹性元件的状态在松弛和张紧间发生变 化;
所述热弹性元件在所述第一固定件和所述第二固定件之间形成阻隔带用于阻挡气体流动。
进一步的,所述传动件包括滑动基座、滑块、牵引轴承和导轨,所述滑动基座一端与第一固定件连接且另一端与牵引轴承连接,所述滑动基座固定在滑块上,所述滑块与所述导轨滑动连接。
进一步的,所述热弹性元件为形状记忆合金丝,所述形状记忆合金丝在第一固定件和第二固定件上绕成环带状合金件。
进一步的,所述环带状合金件在所述第一固定件和所述第二固定件之间有两条带状体,所述带状体之间的距离按照从所述第一固定件到指向所述第二固定件的方向逐渐增大。
进一步的,所述传动件包括滑动基座、滑块、牵引轴承和导轨,所述滑动基座一端与第一固定件连接且另一端与牵引轴承连接,所述滑动基座固定在滑块上,所述滑块与所述导轨滑动连接。
根据本申请的另一个方面,提供了一种运用所述热交换单元的制冷循环装置,所述制冷循环装置包括导向元件,所述导向元件的径向侧壁按照其到导向元件中心轴的距离不同依次包括第一变径段、第一等径段、第二变径段和第二等径段,所述第一等径段和第二等径段处的径向侧壁到导向元件中心轴的距离保持不变,所述第一变径段和第二变径段处的径向侧壁到导向元件中心轴的距离逐渐向预设的变化方向变化,且在以所述导向元件中心轴为转轴的同一时钟转动方向上,所述第一变径段到导向元件中心轴的距离的变化方向与所述第二变径段到导向元件中心轴的距离的变化方向相反;
传动装置,用于将接收到的转动动力传递至所述传动件上使得传动件转动,所述传动件具有在所述导向元件的径向侧壁上绕所述导向元件的中心轴运动的自由度;
通风装置,具有一封闭的环形腔体用于容纳所述热弹性元件,所述环形腔体与所述导向元件中心轴同轴;
所述环形腔体上依次设有热区进口、热区出口、冷区进口和冷区出口;
定义所述热区进口与所述热区出口之间的区域为第一通风腔,所述第一通风腔的位置与所述导向元件的第一等径段对应;定义所述热区出口与所述冷区进口之间的区域为第一窄风腔,所述第一窄风腔的位置与所述导向元件的第一变径段对应;定义所述冷区进口与所述冷区出口之间的区域为第二通风腔,所述第二通风腔的位置与所述导向元件的第二等径段对应;定义所述冷区出口与所述热区进口之间的区域为第二窄风腔,所述第二窄风腔与所述导向元件的第二变径段对应;
所述第一通风腔和所述第二通风腔的轴向腔体大小大于所述第一窄风腔和所述第二窄风腔的轴向腔体大小;所述热弹性元件上阻隔带的布置与所述第一窄风腔、所述第二窄风腔的轴向间距适配形成对所在位置处的环形腔体内气体流动的阻挡;
所述热区进口和热区出口一侧的风自热区进口引入并加热后自热区出口流出,所述冷区进口和冷区出口一侧的风自冷区进口进入并制冷后自冷区出口流出。
进一步的,所述通风装置包括第一风道和第二风道,所述第一风道覆盖所述第二风道,所述热区进口、所述热区出口、所述冷区进口和所述冷区出口皆设置与所述第一风道上。
进一步的,所述第一变径段与所述第一等径段为散热段,所述第二变径段与所述第二等径段为制冷段,所述导向元件上交替设有至少一个制冷段与至少一个散热段。
进一步的,所述传动装置包括固定基座、中心轴和旋转轴承;
所述中心轴的一端与所述固定基座连接,所述中心轴另一端连接有连接板,所述中心轴中部设置于所述旋转轴承内圈中;
所述连接板外侧与所述第一风道连接,所述连接板覆盖所述导向元件且与所述导向元件固定连接;
所述旋转轴承外圈连接有法兰,所述法兰外边沿连接有旋转基座;
所述旋转基座的圆周方向上至少有一个所述热交换单元,所述旋转基座外侧连接有齿圈,所述齿圈用于接收转动动力使所述旋转基座转动。
进一步的,所述热交换单元绕所述中心轴呈圆周径向分布。
进一步的,所述旋转基座从内到外依次与所述传动件、所述第二风道、所述第二固定件固定连接,所述旋转基座与所述第二风道同向转动;
所述第二风道至少设有一个沿径向方向的通风槽,所述第一风道在位于所述第一通风腔和所述第二通风腔区域至少设有一个沿径向的通风槽。
进一步的,所述第二风道的通风槽的槽边上设置有所述热弹性元件。
进一步的,所述旋转基座从内到外依次与所述热交换单元、所述第二风道、所述第二个固定件连接,所述第二风道与所述旋转基座滑动连接,所述旋转基座与所述第二风道相对转动;
所述第二风道与所述第一风道在所述第一通风腔和所述第二通风腔区域上至少设有一个沿径向的通风槽。
进一步的,所述第一风道与所述第二风道上的通风槽交替排布。
进一步的,所述热弹性元件在所述第一窄风腔和所述第二窄风腔区域与所述通风装置过渡配合。
进一步的,风在第一通风腔和第二通风腔流动的方向与所述旋转基座的旋转方向相反,即是说风从所述热区进口流到热区出口的方向与所述旋转基座的旋转方向相反,风从所述冷区进口流到所述冷区出口的方向与所述旋转基座的旋转方向相反。
进一步的,所述导向元件由所述第一变径段、所述第一等径段、所述第二变径段和所述第二等径段通过可拆卸连接组成。
由以上技术方案可知,本发明的技术方案获得了如下有益效果:
本发明公开了一种利用形状记忆合金的热交换单元,利用形状记忆合金做成的热弹性元件的弹热效应,当热弹性元件受传动件作用而拉伸时发生马氏体正向变,即从奥氏体向马氏体转变,释放热量并引起材料自身温度升高,产生散热效果,当热弹性元件受传动件影响从拉伸变为压缩后,热弹性元件吸收来自环境的热量,产生制冷效果。通过使用本热交换单元进行温度控制可避免传统气体压缩制冷技术中存在的环境污染问题,且该热交换单元中的热弹性元件可由大量形状记忆合金丝绕制而成,因此热弹性元件体积量大制冷密度高从而提高了制冷效率。
另外,本发明公开了一种使用上述热交换单元的制冷循环装置,该制冷循环装置包括传动装置、导向元件、通风装置和热交换单元,传动装置受力驱动热交换单元进行圆周运动,同时热交换单元上的传动件与导向元件进行相对运动,因导向元件上各段径向侧壁到中心轴的距离不同使得传动件带动热弹性元件在张紧和松弛间进行周期性变化,即热弹性元件在吸热和散热间进行周期变化,同时热弹性元件在通风装置的环形腔体内进行转动,随着通风装置内风的流动完成热量的交换。本发明的装置结构简单,设计巧妙,使用方便。
此外,由于导向元件上第一等径段与第二等径段的距离较长,使得热弹性元件有充分的时间进行热量交换提高了热交换效率。
同时,热弹性元件的阻隔带与环形腔体中第一窄风腔、第二窄风腔的轴向间距适配达到阻隔气体流动的目的,使得窄风腔两侧第一通风腔与第二通风腔的空气无法自由流动,降低制冷量的损失,提高了热交换效率。
应当理解,前述构思以及在下面更加详细地描述的额外构思的所有组合只要在这样的构思不相互矛盾的情况下都可以被视为本公开的发明主题的一部分。
结合附图从下面的描述中可以更加全面地理解本发明教导的前述和其他方面、实施例和特征。本发明的其他附加方面例如示例性实施方式的特征和/或有益效果将在下面的描述中显见,或通过根据本发明教导的具体实施方式的实践中得知。
附图说明
附图不意在按比例绘制。在附图中,在各个图中示出的每个相同或近似相同的组成部分可以用相同的标号表示。为了清晰起见,在每个图中,并非每个组成部分均被标记。现在,将通过例子并参考附图来描述本发明的各个方面的实施例,其中:
图1为本发明实施例中的制冷循环装置的剖视图1;
图2为本发明实施例中的热交换单元的结构示意图;
图3为本发明实施例中的热弹性元件与固定组件的结构示意图;
图4为本发明实施例中的热交换单元的分布图;
图5为本发明实施例中的导向元件的结构示意图;
图6为本发明实施例中的制冷循环单元的剖视图2;
图7为本发明实施例中的第一风道的结构示意图;
图8为本发明实施例中的第一窄风腔的剖视图;
图9为本发明实施例中的第一通风腔的剖视图;
图10为本发明实施例中的制冷循环单元的运行性能图。
图中,各附图标记的含义如下:
1、热弹性元件;2、第一固定件;3、第二固定件;4、牵引轴承;5、滑动基座;6、滑块;7、导轨;11、导向元件;12、第一变径段;13、第一等径段;14、第二变径段;15、第二等径段;21、第一风道;22、热区出口;23、热区进口;24、冷区出口;25、冷区进口;31、固定基座;32、中心轴;33、旋转轴承;34、法兰;35、连接板;36、齿圈;37、旋转基座;41、第二风道。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。除非另作定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。
本发明专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,除非上下文清楚地指明其它情况,否则单数形式的“一个”“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的特征、整体、步骤、操作、元素和/或组件,并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。“上”“下”“左”“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
基于现有技术中固态制冷技术的发现,其关键在于当改变固态材料形态时,固态材料与外界发生热交换。通过对吸热效应反复叠加、收集,从而达到制冷效果。其中,固态弹热制冷是利用应力诱发材料的可逆马氏体相变。但在具体应用中都具有一些弊端,导致利用形状记忆合金进行温度调节缺乏效率,本发明的实施例提供一种结构简单设计巧妙的制冷循环装置来极大的提高了利用形状记忆合金进行热交换的效率。
下面结合附图所示的实施例,对本发明实施例的制冷循环装置和热交换单元作进一步具体介绍。
如图2和图3展示了以形状记忆合金丝为基础的热交换单元,包括热弹性元件1,所述热弹性元件1为具有弹性的形状记忆合金件;固定组件,所述固定组件包括第一固定件2和第二固定件3,所述固定组件对所述热弹性元件1提供张力使得所述热弹性元件1在第一固定件2和第二固定件3之间张紧,第一固定件2和第二固定件3为两个相互平行的带槽圆柱体,第一固定件2的直径小于第二固定件3的直径;传动件,所述传动件用于与所述第一固定件2连接,所述第一固定件2可响应于传动件的作用改变第一固定件2和第二固定件3的相对位置,使得热弹性元件1的状态在松弛和张紧间发生变化;所述热弹性元件1在所述第一固定件2和所述第二固定件3之间形成阻隔带用于阻挡气体流动。
所述热弹性元件1为形状记忆合金丝,所述形状记忆合金丝在第一固定件2和第二固定件3上绕成环带状合金件,环带状合金件在拉直之后等效于一个平面,空气无法自由地垂直穿过该平面。本发明不限于该结构,能阻隔空气垂直穿过热弹性元件平面的结构都应该在本申请的保护范围内,例如可以将形状记忆合金丝在固定组件间紧密排布并设置多层来阻隔气体流动,也可以直接采用形状记忆合金板代替形状记忆合金丝。
如图2所示,所述环带状合金件在所述第一固定件2和所述第二固定件3之间有两条带状体,所述带状体之间的距离按照从所述第一固定件2到指向所述第二固定件3的方向逐渐增大。让热交换单元如图4所示呈圆形排布时,第二固定件3的直径大于第一固定件2的直径时带状体的长度比两者直径一样大的时带状体的长度长,如此增大了热弹性元件1与交换气体的接触面积使得热交换效率变高。
所述传动件包括滑动基座5、滑块6、牵引轴承4和导轨7,所述滑动基座5一端与第一固定件2连接且另一端与牵引轴承4连接,所述滑动基座5固定在滑块6上,所述滑块6与所述导轨7滑动连接。第一固定件2和牵引轴承4固定到滑动基座5上,滑动基座5安装在滑块6上,滑块下方是导轨7。滑动基座5可沿着导轨7滑动,当滑动基座5滑动时第一固定件2随之运动,而第二固定件3相对于导轨7固定不动,所以第一固定件2运动时,第一固定件2与第二固定件3的距离会增加或缩短,使得热弹性元件1在张紧和松弛间变化,当热弹性元件1张紧时释放热量,当其松弛时吸收热量,通过对这种变化的合理运用达到调节温度的目的。
上述热交换单元为组成本实施例中制冷循环装置的基础单元,除上述热交换单元外,如图6所示,本发明实施例中的制冷循环装置还包括导向元件11、传动装置和通风装置,用于实现热交换单元中热弹性元件的形变以及进出风的温度调节。下面将对这些装置的结构和功能进行介绍。
如图5所示,导向元件11的径向侧壁按照其到导向元件11中心轴的距离不同依次包括第一变径段12、第一等径段13、第二变径段14和第二等径段15,所述第一等径段13和第二等径段15处的径向侧壁到导向元件11中心轴的距离保持不变,第一变径段12和第二变径段14处的径向侧壁到导向元件11中心轴的距离逐渐向预设的变化方向变化,且在以所述导 向元件11中心轴为转轴的同一时钟转动方向上,第一变径段12到导向元件11中心轴的距离的变化方向与第二变径段14到导向元件11中心轴的距离的变化方向相反。
如图4所示,导向元件11与热交换单元的传动件接触,所述传动件具有在所述导向元件11的径向侧壁上绕所述导向元件11的中心轴运动的自由度。由于导向元件11径向侧壁到其中心轴的距离不同,且导向元件11设置于牵引轴承4和第一固定件2之间,因此当牵引轴承4在导向元件11上滑动时,滑动基座5在导向元件11驱动运动的牵引轴承4作用下相对于导轨7运动,使得热弹性元件1在松弛和张紧间变化。
某些优选的实施例中,导向元件11可以是一体成型的,也可以是由第一变径段12、第一等径段13、第二变径段14和第二等径段15通过可拆卸连接组合而成,当导向元件11是可拆卸连接而成时,若其某部件损坏可以方便更换,同时也可通过更换其中部件来达到调节热弹性元件1张紧与松弛的程度的目的。
传动件在导向元件11上运动使得热弹性元件1发生变化,上述运动的动力来源于外部的转动动力,并通过传动装置将转动动力传递至所述传动件上。
如图6所示,所述传动装置包括固定基座31、中心轴32和旋转轴承33。所述固定基座31作为整个制冷循环装置的固定基座31,所述固定基座31具有一孔,所述中心轴32与固定基座31的孔适配且一端置于孔中并与孔固定,即形成中心轴32的一端与所述固定基座31连接的状态。所述中心轴32另一端外露于孔且该端连接有连接板35。所述连接板35与所述导向元件11固定连接,且所述导向元件11与中心轴32同轴布置。为了让导向元件11更好的与连接板35固定,本实施例中的导向元件11为T型,T型结构包括垂直设置的横板和竖板,所述横板与所述连接板35连接,所述竖板与所述牵引轴承4接触。如此实现连接板35、导向元件11均与固定基座31相对固定。
所述中心轴32中部设置于所述旋转轴承33内圈中,所述旋转轴承33外圈连接有法兰34,所述法兰34外边沿连接有旋转基座37。所述旋转基座37的圆周方向上至少有一个所述热交换单元,所述旋转基座37与所述热交换单元的导轨固定连接,所述旋转基座37外侧连接有齿圈36,所述齿圈36用于接收转动动力使所述旋转基座37转动。当外部动力驱动齿圈36旋转时,法兰34、旋转基座37和热交换单元因齿圈36的作用而转动。因此,通过上述传动装置的设置,使得固定于旋转基座37上的热交换单元与固定基座31相对固定的导向元件11之间能实现相对运动。
传动装置将动力传递至传动件,让热交换单元与导向元件11进行相对运动,使得热弹性元件1在散热与制冷间发生变化,通风装置引入气体与热弹性元件1发生热交换。
通风装置具有一封闭的环形腔体用于容纳所述热弹性元件1,所述环形腔体与所述导向元件11中心轴32同轴。所述环形腔体上依次设有热区进口23、热区出口22、冷区进口25和冷区出口24。如图6和7所示,本发明实施例中通风装置包括第一风道21和第二风道41,所述第一风道21覆盖所述第二风道41,所述热弹性元件1设置于第一风道21和第二风道41之间,所述热区进口23、所述热区出口22、所述冷区进口25和所述冷区出口24皆设置于所述第一风道21上。定义所述热区进口22与所述热区出口23之间的区域为第一通风腔,所述 第一通风腔的位置与所述导向元件11的第一等径段12对应;定义所述热区出口22与所述冷区进口25之间的区域为第一窄风腔,所述第一窄风腔的位置与所述导向元件11的第一变径段12对应;定义所述冷区进口25与所述冷区出口24之间的区域为第二通风腔,所述第二通风腔的位置与所述导向元件11的第二等径段15对应;定义所述冷区出口24与所述热区进口23之间的区域为第二窄风腔,所述第二窄风腔与所述导向元件11的第二变径段14对应。所述热区进口23和热区出口22一侧的风自热区进口23引入,在第一通风腔与热弹性元件1发生热交换后从热区出口22流出。所述冷区进口25和冷区出口24一侧的风自冷区进口25进入后,在第二通风腔与热弹性元件1发生热交换后从冷区出口24流出。因此,通过上述通风装置的设置,使气体与热弹性元件1持续发生热交换。
本发明实施例制冷循环装置通过上述热交换单元、导向元件11、传动装置和通风装置完成调节温度的目的。如图4和9所示,热交换单元在旋转基座37上绕中心轴32均匀分布。外部动力驱动齿圈36旋转,法兰34、旋转基座37和热交换单元因齿圈36的作用而转动。当导向元件11与热交换单元相对转动时,热弹性元件1在张紧和松弛间发生变化。热弹性元件1在第一变径段12时,牵引轴承4受力使得滑动基座5沿着导轨7滑动,第一固定件2固定于滑动基座5上,因此随着滑动基座5的运动使得第一固定件2与第二固定件3之间的距离增加,使得热弹性元件1从松弛逐渐转为张紧并在第一等径段13维持张紧进行放热,所述热区进口23和热区出口22一侧的风自热区进口23引入,在第一通风腔加热后从热区出口22流出。当热弹性元件1在第二变径段14时,其从张紧转为松弛并在第二等径段15维持松弛进行制冷,所述冷区进口25和冷区出口24一侧的风自冷区进口25进入后,在第二通风腔制冷后从冷区出口24流出。
热弹性元件1在第一通风腔和第二通风腔分别处于散热和制冷状态,若两个腔体中的气体发生流动会降低热交换效率,为了减少两个腔体间气体的流动,如图8所示,第一通风腔和所述第二通风腔的轴向腔体大小大于所述第一窄风腔和所述第二窄风腔的轴向腔体大小,使第一通风腔和第二通风腔被第一窄风腔和所述第二窄风腔隔开。所述热弹性元件1上阻隔带的布置与所述第一窄风腔、所述第二窄风腔的轴向间距适配形成对所在位置处的环形腔体内气体流动的阻挡,即当热交换单元旋转至第一窄风腔和第二窄风腔时,热弹性元件1位于第一风道21和第二风道41之间,热弹性元件1上的阻隔带阻挡气流在第一通风腔与第二通风腔之间流动,这样有效降低了制冷量的损失,提高热交换效率。可选的,所述热弹性元件1在所述第一窄风腔和所述第二窄风腔区域与所述通风装置过渡配合,即热弹性元件1在这两个区域时通过与通风装置的过渡配合使得空气无法在第一通风腔与第二通风腔之间流动。
为了使气体在第一通风腔和第二通风腔中与热弹性元件1发生充分的热交换,如图1、8和9所示,本发明实施例中所述第二风道41设有沿径向方向的通风槽,所述第一风道21在位于所述第一通风腔和所述第二通风腔区域设有沿径向的通风槽,所述第二风道41的通风槽的槽边上设置有所述热弹性元件1,将多组通风槽呈圆周径向分布的方式在第一风道21和第二风道41内排布。所述旋转基座37从内到外依次与所述传动件、所述第二风道41、所述第二固定件3固定连接,所述旋转基座37与所述第二风道41同向转动。如此当风进入环形腔体时,随着第二风道41的转动,第一风道21和第二风道41之间的通风槽形成S型通风道, 空气在S型通风道中流动时与热弹性元件1进行更充分的热量交换,提高热交换效率。同时由于第二风道41的通风槽的槽边上设置有所述热弹性元件1,在第一窄风腔和第二窄风腔区域通风槽槽边上的热弹性元件1会阻挡空气在第一通风腔和第二通风腔流动。
作为优选的实施例,为了进一步提高热交换效率,所述旋转基座37从内到外依次与所述热交换单元、所述第二风道41、所述第二个固定件3连接,所述第二风道41与所述旋转基座37滑动连接,所述旋转基座37与所述第二风道41相对转动。所述第二风道41与所述第一风道21在所述第一通风腔和所述第二通风腔区域上至少设有一个沿径向的通风槽。第一风道21与第二风道41上的通风槽交替排布,形成S型风道,在热弹性元件1阻隔带阻挡第一窄风腔、第二窄风腔空气流动的基础上,此时当热交换单元和旋转基座37转动时第二风道不动,所以第二风道41的通风槽中的空气不会随着转动在第一通风腔和第二通风腔间扩散,进一步降低制冷量的损失,提高热交换效率。
在制冷循环装置运行过程中需要对风的流向进行控制,为了在热交换过程中获得更多的熵增本发明实施例中风在第一通风腔和第二通风腔中流动的方向与所述旋转基座37的旋转方向相反。如图10所示,在制冷系统的运行过程中,常温的室外空气被吹入热区进口23,此处热弹性元件1温度较高,然后空气流通经过第一通风腔,被加热过的空气从热区出口22吹向室外大气,此处热弹性元件1的温度最高。空气通过第一通风腔的过程中呈S状弯折流通前进,且空气和热弹性元件1的温差相对稳定,进行比较充分的热交换。室内的空气被吹入冷区进口25,此处热弹性元件1温度较底,然后空气流通经过整个第二通风腔,被吸热降温过的空气从冷区出口24吹回室内,此处热弹性元件1的温度最低。空气通过第二通风腔的过程中呈S状弯折流通前进,且空气和热弹性元件1的温差相对稳定,进行比较充分的热交换,实现进入制冷循环装置的空气的重复冷却。即室内的空气进入第二通风腔,被温度低的热弹性元件1吸收并带走热量,降温后的空气被排回室内;被带走的热量在第一通风腔释放到从室外吹入的空气中,之后加热的空气被排回室外。
由于制冷循环装置实际所处环境不同,可能一个制冷循环装置需要同时调控多个区域的温度,此时可通过下述改进来达到调控多个区域的效果。所述第一变径段12与所述第一等径段13为散热段,所述第二变径段14与所述第二等径段15为制冷段,在所述导向元件11上可交替设有至少一个制冷段与至少一个散热段,并在通风装置上设置对应的进出风口。如此,根据实际情况对对制冷段和散热段进行布置并设置相应的进出风口,使得一个周期内可对多个空间进行温度调节。
本制冷循环装置的工作过程:齿圈36接收动力使得旋转基座37发生转动,与旋转基座37连接的传动件、第二风道41和第二固定件3与其一起转动,传动件上的牵引轴承4与导向元件11相对转动,因导向元件11径向距离不同使得牵引轴承4带动第一固定件2的移动,让热弹性元件1在张紧和松弛间发生变化,当热弹性元件1在第一通风腔中转动时处于张紧状态,风从热区进口23流入通过S型风道与热弹性元件1进行热交换,然后从热区出口22流出将热量带走完成散热过程。当热弹性元件1转动至第一窄风腔时,热弹性元件1所形成的阻隔带阻挡空气在环形腔体内流动。当热弹性元件1在第二通风腔中转动时处于松弛状态,风从冷区进口25流入通过S型风道与热弹性元件1进行热交换,然后从冷区出口24流出将 热量带走完成制冷过程,当热弹性元件1转动至第二窄风腔时,热弹性元件1所形成的阻隔带阻挡空气在环形腔体内流动。如此循环往复达到调节温度的效果。
虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明。本发明所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰。因此,本发明的保护范围当视权利要求书所界定者为准。

Claims (16)

  1. 一种热交换单元,其特征在于:包括
    热弹性元件,所述热弹性元件为具有弹性的形状记忆合金件;
    固定组件,所述固定组件包括第一固定件和第二固定件,所述固定组件对所述热弹性元件提供张力使得所述热弹性元件在第一固定件和第二固定件之间张紧;
    传动件,所述传动件用于与所述第一固定件连接,所述第一固定件可响应于传动件的作用改变第一固定件和第二固定件的相对位置,使得热弹性元件的状态在松弛和张紧间发生变化;
    所述热弹性元件在所述第一固定件和所述第二固定件之间形成阻隔带用于阻挡气体流动。
  2. 根据权利要求1所述的热交换单元,其特征在于:所述热弹性元件为形状记忆合金丝,所述形状记忆合金丝在第一固定件和第二固定件上绕成环带状合金件。
  3. 根据权利要求2所述的热交换单元,其特征在于:所述环带状合金件在所述第一固定件和所述第二固定件之间有两条带状体,所述带状体之间的距离按照从所述第一固定件到指向所述第二固定件的方向逐渐增大。
  4. 根据权利要求2~3任意一项所述的热交换单元,其特征在于:所述传动件包括滑动基座、滑块、牵引轴承和导轨,所述滑动基座一端与第一固定件连接且另一端与牵引轴承连接,所述滑动基座固定在滑块上,所述滑块与所述导轨滑动连接。
  5. 一种运用权利要求1~4中任一项的热交换单元的制冷循环装置,其特征在于:包括
    导向元件,所述导向元件的径向侧壁按照其到导向元件中心轴的距离不同依次包括第一变径段、第一等径段、第二变径段和第二等径段,所述第一等径段和第二等径段处的径向侧壁到导向元件中心轴的距离保持不变,所述第一变径段和第二变径段处的径向侧壁到导向元件中心轴的距离逐渐向预设的变化方向变化,且在以所述导向元件中心轴为转轴的同一时钟转动方向上,所述第一变径段到导向元件中心轴的距离的变化方向与所述第二变径段到导向元件中心轴的距离的变化方向相反;
    传动装置,用于将接收到的转动动力传递至所述传动件上使得传动件转动,所述传动件具有在所述导向元件的径向侧壁上绕所述导向元件的中心轴运动的自由度;
    通风装置,具有一封闭的环形腔体用于容纳所述热弹性元件,所述环形腔体与所述导向元件中心轴同轴;
    所述环形腔体上依次设有热区进口、热区出口、冷区进口和冷区出口;
    定义所述热区进口与所述热区出口之间的区域为第一通风腔,所述第一通风腔的位置与所述导向元件的第一等径段对应;定义所述热区出口与所述冷区进口之间的区域为第一窄风腔,所述第一窄风腔的位置与所述导向元件的第一变径段对应;定义所述冷区进口与所述冷区出口之间的区域为第二通风腔,所述第二通风腔的位置与所述导向元件的第二等径段对应; 定义所述冷区出口与所述热区进口之间的区域为第二窄风腔,所述第二窄风腔与所述导向元件的第二变径段对应;
    所述第一通风腔和所述第二通风腔的轴向腔体大小大于所述第一窄风腔和所述第二窄风腔的轴向腔体大小;所述热弹性元件上阻隔带的布置与所述第一窄风腔、所述第二窄风腔的轴向间距适配形成对所在位置处的环形腔体内气体流动的阻挡;
    所述热区进口和热区出口一侧的风自热区进口引入并加热后自热区出口流出,所述冷区进口和冷区出口一侧的风自冷区进口进入并制冷后自冷区出口流出。
  6. 根据权利要求5所述的制冷循环装置,其特征在于:所述通风装置包括第一风道和第二风道,所述第一风道覆盖所述第二风道,所述热区进口、所述热区出口、所述冷区进口和所述冷区出口皆设置于所述第一风道上。
  7. 根据权利要求6所述的制冷循环装置,其特征在于:所述第一变径段与所述第一等径段为散热段,所述第二变径段与所述第二等径段为制冷段,所述导向元件上交替设有至少一个制冷段与至少一个散热段。
  8. 根据权利要求6或7所述的制冷循环装置,其特征在于:所述传动装置包括固定基座、中心轴和旋转轴承;
    所述中心轴的一端与所述固定基座连接,所述中心轴另一端连接有连接板,所述中心轴中部设置于所述旋转轴承内圈中;
    所述连接板外侧与所述第一风道连接,所述连接板覆盖所述导向元件且与所述导向元件固定连接;
    所述旋转轴承外圈连接有法兰,所述法兰外边沿连接有旋转基座;
    所述旋转基座的圆周方向上至少有一个所述热交换单元,所述旋转基座外侧连接有齿圈,所述齿圈用于接收转动动力使所述旋转基座转动。
  9. 根据权利要求8所述的制冷循环装置,其特征在于:所述热交换单元绕所述中心轴呈圆周径向分布。
  10. 根据权利要求9所述的制冷循环装置,其特征在于:所述旋转基座从内到外依次与所述传动件、所述第二风道、所述第二固定件固定连接,所述旋转基座与所述第二风道同向转动;
    所述第二风道至少设有一个沿径向方向的通风槽,所述第一风道在位于所述第一通风腔和所述第二通风腔区域至少设有一个沿径向的通风槽。
  11. 根据权利要求10所述的制冷循环装置,其特征在于:所述第二风道的通风槽的槽边上设置有所述热弹性元件。
  12. 根据权利要求9所述的制冷循环装置,其特征在于:所述旋转基座从内到外依次与所述热交换单元、所述第二风道、所述第二个固定件连接,所述第二风道与所述旋转基座滑 动连接,所述旋转基座与所述第二风道相对转动;
    所述第二风道与所述第一风道在所述第一通风腔和所述第二通风腔区域上至少设有一个沿径向的通风槽。
  13. 根据权利要求12所述的制冷循环装置,其特征在于:所述第一风道与所述第二风道上的通风槽交替排布。
  14. 根据权利要求5、6、7、9、10、11、12或13任一项所述的制冷循环装置,其特征在于:所述热弹性元件在所述第一窄风腔和所述第二窄风腔区域与所述通风装置过渡配合。
  15. 根据权利要求14所述的制冷循环装置,其特征在于:风在第一通风腔和第二通风腔中流动的方向与所述旋转基座的旋转方向相反。
  16. 根据权利要求15所述的制冷循环装置,其特征在于:所述导向元件由所述第一变径段、所述第一等径段、所述第二变径段和所述第二等径段通过可拆卸连接组成。
PCT/CN2021/124721 2021-10-19 2021-10-19 一种制冷循环装置及热交换单元 WO2023065116A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/124721 WO2023065116A1 (zh) 2021-10-19 2021-10-19 一种制冷循环装置及热交换单元

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/124721 WO2023065116A1 (zh) 2021-10-19 2021-10-19 一种制冷循环装置及热交换单元

Publications (1)

Publication Number Publication Date
WO2023065116A1 true WO2023065116A1 (zh) 2023-04-27

Family

ID=86057851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124721 WO2023065116A1 (zh) 2021-10-19 2021-10-19 一种制冷循环装置及热交换单元

Country Status (1)

Country Link
WO (1) WO2023065116A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1360064A (en) * 1971-06-29 1974-07-17 Rinipa Ab Air conditioning plant for buildings
US4965545A (en) * 1989-08-09 1990-10-23 Tini Alloy Company Shape memory alloy rotary actuator
CN102778075A (zh) * 2011-04-11 2012-11-14 崔军 热弹性冷却
JP2013178080A (ja) * 2012-02-06 2013-09-09 Daikin Industries Ltd 調湿モジュール及び調湿装置
US20170138648A1 (en) * 2015-11-12 2017-05-18 Jun Cui Compact thermoelastic cooling system
CN107289668A (zh) * 2017-06-06 2017-10-24 西安交通大学 一种低品位热驱动的弹热制冷循环方法及其系统
CN109323489A (zh) * 2018-10-17 2019-02-12 西安交通大学 一种齿轮对称加载结构的纯固态制冷系统及其制冷方法
CN111854222A (zh) * 2020-07-20 2020-10-30 西安交通大学 一种弹热制冷系统及其制冷方法
CN214276212U (zh) * 2021-02-24 2021-09-24 烟台大学 一种冷热分区的扭转制冷装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1360064A (en) * 1971-06-29 1974-07-17 Rinipa Ab Air conditioning plant for buildings
US4965545A (en) * 1989-08-09 1990-10-23 Tini Alloy Company Shape memory alloy rotary actuator
CN102778075A (zh) * 2011-04-11 2012-11-14 崔军 热弹性冷却
JP2013178080A (ja) * 2012-02-06 2013-09-09 Daikin Industries Ltd 調湿モジュール及び調湿装置
US20170138648A1 (en) * 2015-11-12 2017-05-18 Jun Cui Compact thermoelastic cooling system
CN107289668A (zh) * 2017-06-06 2017-10-24 西安交通大学 一种低品位热驱动的弹热制冷循环方法及其系统
CN109323489A (zh) * 2018-10-17 2019-02-12 西安交通大学 一种齿轮对称加载结构的纯固态制冷系统及其制冷方法
CN111854222A (zh) * 2020-07-20 2020-10-30 西安交通大学 一种弹热制冷系统及其制冷方法
CN214276212U (zh) * 2021-02-24 2021-09-24 烟台大学 一种冷热分区的扭转制冷装置

Similar Documents

Publication Publication Date Title
JP5884806B2 (ja) 磁気熱量素子およびそれを備える熱磁気サイクル装置
CN101852490B (zh) 一种空气能二氧化碳热泵热水器
US20150168030A1 (en) Magnetic Refrigeration System With Improved Flow Efficiency
CN108253650B (zh) 一种跨临界二氧化碳复合热泵系统的控制方法
US20080236185A1 (en) Air conditioner
KR100647852B1 (ko) 자기냉동기
CN114136047B (zh) 一种制冷循环装置及热交换单元
KR100647854B1 (ko) 자기냉동기
WO2023065116A1 (zh) 一种制冷循环装置及热交换单元
JP2005214533A (ja) 除湿機
CN210951942U (zh) 热管理系统
CN201680581U (zh) 一种高温型二氧化碳热泵热水器
KR101168522B1 (ko) 폐수를 이용한 냉?온수 생산시스템
CN104501447B (zh) 一种制冷系统
JP5402186B2 (ja) 冷凍装置
CN100470166C (zh) 一种使用冷媒的节能热交换装置
CN207865754U (zh) 磁制冷机
WO2018223406A1 (zh) 主动式热交换以及其应用
CN110805979B (zh) 一种梯级蒸发与温湿度独立控制相耦合的建筑供能系统
CN203744593U (zh) 空气能二氧化碳热泵式干燥机
CN204494920U (zh) 一种壳管式多功能换热器
CN208998364U (zh) 一种具有冷却机组的空调
CN110965257A (zh) 磁热泵、洗烘一体机
KR100728495B1 (ko) 자기열교환유닛 및 이를 채택한 자기냉동기
JP3830141B2 (ja) 発電及び吸収冷温水装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960876

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE