WO2023063404A1 - 還元鉄の製造方法 - Google Patents
還元鉄の製造方法 Download PDFInfo
- Publication number
- WO2023063404A1 WO2023063404A1 PCT/JP2022/038301 JP2022038301W WO2023063404A1 WO 2023063404 A1 WO2023063404 A1 WO 2023063404A1 JP 2022038301 W JP2022038301 W JP 2022038301W WO 2023063404 A1 WO2023063404 A1 WO 2023063404A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- cooling
- reduced iron
- reducing
- separated
- Prior art date
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 222
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 63
- 239000007789 gas Substances 0.000 claims abstract description 499
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 183
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 154
- 238000001816 cooling Methods 0.000 claims abstract description 130
- 230000009467 reduction Effects 0.000 claims abstract description 104
- 239000000112 cooling gas Substances 0.000 claims abstract description 92
- 238000000926 separation method Methods 0.000 claims abstract description 86
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims abstract description 74
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 52
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 52
- 230000018044 dehydration Effects 0.000 claims abstract description 37
- 238000006297 dehydration reaction Methods 0.000 claims abstract description 37
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 37
- 239000002994 raw material Substances 0.000 claims abstract description 33
- 238000010000 carbonizing Methods 0.000 claims abstract description 16
- 239000003245 coal Substances 0.000 claims description 41
- 238000002309 gasification Methods 0.000 claims description 19
- 238000000197 pyrolysis Methods 0.000 claims description 18
- 239000000571 coke Substances 0.000 claims description 7
- 238000007599 discharging Methods 0.000 claims description 4
- 238000006722 reduction reaction Methods 0.000 description 93
- 238000000034 method Methods 0.000 description 42
- 239000000203 mixture Substances 0.000 description 34
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 32
- 238000001465 metallisation Methods 0.000 description 21
- 238000006243 chemical reaction Methods 0.000 description 17
- 229910002092 carbon dioxide Inorganic materials 0.000 description 16
- 230000008569 process Effects 0.000 description 15
- 229910052742 iron Inorganic materials 0.000 description 14
- 239000012528 membrane Substances 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 10
- 238000003763 carbonization Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 238000007664 blowing Methods 0.000 description 7
- 238000005265 energy consumption Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 230000007704 transition Effects 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 229910001567 cementite Inorganic materials 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- 239000003546 flue gas Substances 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000003345 natural gas Substances 0.000 description 4
- 239000003034 coal gas Substances 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 241000209094 Oryza Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000005255 carburizing Methods 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 2
- 239000003949 liquefied natural gas Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 238000011946 reduction process Methods 0.000 description 2
- 238000010405 reoxidation reaction Methods 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- MODGUXHMLLXODK-UHFFFAOYSA-N [Br].CO Chemical compound [Br].CO MODGUXHMLLXODK-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000003077 lignite Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B13/00—Making spongy iron or liquid steel, by direct processes
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B13/00—Making spongy iron or liquid steel, by direct processes
- C21B13/0073—Selection or treatment of the reducing gases
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B13/00—Making spongy iron or liquid steel, by direct processes
- C21B13/02—Making spongy iron or liquid steel, by direct processes in shaft furnaces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D17/00—Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D17/00—Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
- F27D17/001—Extraction of waste gases, collection of fumes and hoods used therefor
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B2100/00—Handling of exhaust gases produced during the manufacture of iron or steel
- C21B2100/20—Increasing the gas reduction potential of recycled exhaust gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D17/00—Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
- F27D2017/009—Cyclone for separating fines from gas
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/10—Reduction of greenhouse gas [GHG] emissions
- Y02P10/143—Reduction of greenhouse gas [GHG] emissions of methane [CH4]
Definitions
- the direct reduction ironmaking method is known as one of the ironmaking methods for obtaining iron from raw materials containing iron oxide (reducing iron oxide).
- the direct reduction ironmaking process has continued to develop against the background of the low construction cost of the plant for this process, the ease of operation, and the ability to operate in a small-scale plant.
- various improvements have been made to effectively utilize the reducing gas in the furnace.
- Iron carbide also has the advantage of reducing energy consumption when melting in an electric furnace.
- Non-Patent Document 1 ACT (registered trademark) (Adjustable Carbon Technology) has been developed for the purpose of improving the C concentration of reduced iron in the MIDREX method.
- ACT registered trademark
- H2 - rich gas is returned to the process gas (that is, blown into the reduction zone), and the CO-rich gas is mixed with natural gas into the transition zone and blown into the transition zone to improve and control the C concentration of the reduced iron.
- the method for producing reduced iron according to aspect 2 of the present invention includes: A reduction step of reducing a raw material, which is iron oxide, with a reducing gas containing hydrogen gas to generate reduced iron, and a dehydration step of separating hydrogen gas from the exhaust gas by removing water from the exhaust gas of the reduction step. , a cooling step of cooling the reduced iron while carbonizing it with a cooling gas containing carbon as an element, and a separation step of separating CO gas and CO2 from the exhaust gas of the cooling step, the cooling gas comprises CO gas;
- the reducing gas contains the hydrogen gas separated in the dehydration step,
- the cooling gas further contains the CO gas separated in the separation step.
- Aspect 3 of the present invention is the method for producing reduced iron of Aspect 2, further comprising a carbon gasification step of gasifying char or coke with CO 2 gas to produce CO gas, the CO2 gas provided in the carbon gasification step comprises the CO2 gas separated in the separation step;
- the cooling gas is the CO gas produced in the carbon gasification process.
- the method for producing reduced iron according to aspect 4 of the present invention includes: A reduction step of reducing a raw material, which is iron oxide, with a reducing gas containing hydrogen gas to generate reduced iron, and a dehydration step of separating hydrogen gas from the exhaust gas by removing water from the exhaust gas of the reduction step.
- the method for producing reduced iron according to the first embodiment includes a reduction step S1 in which a raw material, which is iron oxide, is reduced with hydrogen gas to generate reduced iron, and water is removed from the exhaust gas in the reduction step S1.
- a dehydration step S3 for separating hydrogen gas from the exhaust gas, a cooling step S2 for cooling the reduced iron while carbonizing it with methane gas, and a separation step S4 for separating the exhaust gas from the cooling step S2 into hydrogen gas and methane gas, , and the hydrogen gas separated in the dehydration step S3, the hydrogen gas separated in the separation step S4, and the methane gas separated in the separation step S4 are circulated as reducing gas and cooling gas, respectively.
- the reduced iron is cooled and carbonized by methane gas.
- the chemical reaction formula at this time is shown by the following Formula (2).
- the reduced iron has a metallization ratio of 70 to 98%, and the amount of carbon contained in the reduced iron is more than 0 Nm 3 /t-DRI and 4.5% by mass or less with respect to the total mass of the reduced iron.
- the volume ratio of the methane gas separated in the separation step S4 to the total volume of the cooling gas is, for example, 45 vol % to 55 vol %.
- the volume ratio of the newly introduced methane gas to the total volume of the cooling gas is 45 vol % to 55 vol %.
- the cooling exhaust gas discharged from the cooling step S2 consists of hydrogen gas and unreacted methane gas.
- the cooling exhaust gas is gas discharged after cooling in the cooling step S2.
- the exhaust gas in the cooling step S2A is separated into CO gas and CO 2 gas.
- a chemical absorption method https://www.course50.com/technology/technology02/
- an alkaline aqueous solution such as an amine is brought into contact with a CO2- containing gas in an absorption tower to selectively absorb CO2 in the absorbing liquid, and then the absorbing liquid is heated in a regeneration tower. It is a method for separating and recovering high-purity CO2 .
- the CO gas separated in the separation step S4A is circulated as cooling gas.
- the handling of the CO 2 gas separated in the separation step S4A is not particularly limited in the method for producing reduced iron of the second embodiment.
- the ratio of the hydrogen gas consumed in the reduction step S1A and the CO gas consumed in the cooling step S2A is approximately 4:1. Therefore, when all of the cooling CO gas is supplied from water gas (a 1:1 mixed gas of hydrogen gas and CO gas obtained when coal is decomposed only with steam), 4 One-third will be supplied from water gas. For example, it is preferable to provide four direct reduction units and one water gas production unit based on the method for producing reduced iron of the second embodiment. This configuration can cover the reduction hydrogen gas for one unit and the cooling CO gas for all the four units, so it is an efficient equipment configuration.
- heated hydrogen gas is blown from the lower part of the reduction zone, while methane gas is blown from the lower part of the cooling zone.
- Iron oxide which is a raw material charged from the top of the shaft furnace, descends while being reduced by hydrogen gas in the reduction zone.
- a mixed gas of unreacted hydrogen gas and water (steam) generated by reduction of iron oxide is extracted from the reducing gas outlet 29 at the top of the reduction zone 21 .
- the reduced iron descends from reduction zone 21 to cooling zone 23 .
- the heating furnace 30 heats the hydrogen gas and then blows it into the lower part of the reduction zone 21 .
- the cooling device 40 cools and dehydrates the reduced exhaust gas (mixed gas of unreacted hydrogen gas and water (vapor) generated by the reduction of iron oxide) extracted from the upper portion of the reduction zone 21 to convert hydrogen gas. Separate (dehydration step S3). Hydrogen gas is introduced into the heating furnace 30 after being compressed by the compressor 50 . That is, hydrogen gas is circulated as reducing gas.
- a reduction exhaust gas of a mixed gas of unreacted hydrogen gas and water (steam) generated by reduction of iron oxide is extracted from the upper portion of the reduction zone 21 .
- the cooling device 40 cools the reducing exhaust gas extracted from the upper portion of the reducing zone 21 and separates it into water (liquid) and hydrogen gas.
- Hydrogen gas is introduced into the heating furnace 30 after being compressed by the compressor 50 . That is, hydrogen gas is circulated as reducing gas.
- the carbonized reduced iron is discharged from the lower part of the cooling zone.
- the reduced iron has a metallization rate of approximately 70 to 98%, and the amount of carbon contained in the reduced iron is approximately more than 0% by mass and 4.5% by mass or less with respect to the total mass of the reduced iron.
- methane gas rises while carbonizing the reduced iron.
- Hydrogen gas is generated by the reaction between reduced iron and methane gas. Cooled exhaust gas of hydrogen gas and unreacted methane gas is extracted from the upper part of the cooling zone 23 (cooled exhaust gas extracting step).
- the cooling exhaust gas extracted from the upper part of the cooling zone 23 is cooled by the cooling device 60 (cooling process).
- the cooled exhaust gas is then compressed in compressor 70 .
- the cooled exhaust gas is then introduced into the separation device 80 .
- the separation device 80 separates the cooled exhaust gas into hydrogen gas and methane gas by, for example, a membrane separation method (separation step).
- the pressure during the separation process is generally 1.0-2.0 MPa, and the temperature is 0-100.degree.
- the methane gas is circulated as a cooling gas, and the hydrogen gas is circulated as a reducing gas. That is, methane gas is blown into the lower part of cooling zone 23 and hydrogen gas is introduced into heating furnace 30 .
- the compressor 70 can be scaled down.
- the hydrogen gas generated in the system is circulated as a reducing gas, the amount of hydrogen gas supplied from outside the system can be reduced.
- carbonizing the reduced iron by carbonizing the reduced iron, reoxidation of the reduced iron can be suppressed.
- the reduced iron contains carbon, the energy consumption in the electric furnace is reduced (dissolution of the reduced iron in the electric furnace is promoted. A small amount of carbon rapidly increases the solubility).
- Example 2 In Example 2, the same raw material as in Example 1 was used, and the following reduction treatment was performed using a shaft-type tester.
- Inlet in Table 3 indicates the composition of the gas (input gas) blown into the lower part of the apparatus, and Outlet indicates the composition of the gas (output gas) discharged from the upper part of the apparatus.
- the input gas temperature was 980° C. and the flow rate was 1200 Nm 3 /t-DRI.
- the metallization rate of the reduced iron discharged from the bottom of the apparatus was 85%, and the carbon content in the reduced iron was less than 0.1% by mass.
- the mixed gas amount obtained in the separation step was 55 vol% with respect to the total volume of the cooling gas, and the newly introduced mixed gas amount in Table 8A was 45 vol% with respect to the total volume of the cooling gas. Since the separated gas is circulated to be reduced and cooled, the amount of CO that should be originally supplied by reduction can be reduced, and the effect of reducing energy consumption and cost can be obtained.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Manufacture Of Iron (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
本願は、2021年10月14日に、日本に出願された特願2021-168721号に基づき優先権を主張し、その内容をここに援用する。
(1)本発明の態様1の還元鉄の製造方法は、 酸化鉄である原料を、水素ガスを含む還元ガスで還元して還元鉄を生成する還元工程と、
前記還元工程の排ガスから水を除去することで、前記排ガスから水素ガスを分離する脱水工程と、
前記還元鉄を、炭素を元素として含む冷却ガスで炭化しつつ冷却する冷却工程と、
前記冷却工程の排ガスから水素ガスとメタンガスと分離する分離工程と、
を有し、
前記冷却ガスがメタンガスであり、
前記還元ガスが、前記脱水工程で分離された前記水素ガスと、前記分離工程で分離された前記水素ガスと、を更に含み、
前記冷却ガスが、前記分離工程で分離された前記メタンガスを更に含む。
(2)本発明の態様2の還元鉄の製造方法は、
酸化鉄である原料を、水素ガスを含む還元ガスで還元して還元鉄を生成する還元工程と、前記還元工程の排ガスから水を除去することで、前記排ガスから水素ガスを分離する脱水工程と、前記還元鉄を、炭素を元素として含む冷却ガスで炭化しつつ冷却する冷却工程と、前記冷却工程の排ガスからCOガスとCO2とを分離する分離工程と、を有し、
前記冷却ガスがCOガスを含み、
前記還元ガスが、前記脱水工程で分離された前記水素ガスを含み、
前記冷却ガスが、前記分離工程で分離された前記COガスを更に含む。
(3)本発明の態様3は、態様2の還元鉄の製造方法において、CO2ガスでチャー又はコークスをガス化してCOガスを製造する炭素ガス化工程を更に有し、
前記炭素ガス化工程で供されるCO2ガスが前記分離工程で分離された前記CO2ガスを含み、
前記冷却ガスが、前記炭素ガス化工程で製造された前記COガスである。
(4)本発明の態様4の還元鉄の製造方法は、
酸化鉄である原料を、水素ガスを含む還元ガスで還元して還元鉄を生成する還元工程と、前記還元工程の排ガスから水を除去することで、前記排ガスから水素ガスを分離する脱水工程と、前記還元鉄を、炭素を元素として含む冷却ガスで炭化しつつ冷却する冷却工程と、前記冷却工程の排ガスから水を分離する第2の脱水工程と、石炭を乾留して石炭乾留ガスを製造する石炭乾留工程と、前記第2の脱水工程後の排ガスおよび前記石炭乾留ガスから水素ガスとCOガス及びメタンガスの混合ガスと、CO2ガスと、を分離する単一又は複数の分離工程と、を有し、
前記還元ガスが、前記脱水工程で分離された前記水素ガスと、前記分離工程で分離された前記水素ガスと、をさらに含み、
前記冷却ガスが、前記分離工程で分離された前記混合ガスであり、
前記石炭乾留工程において、前記分離工程で分離された前記CO2ガスを用いて前記石炭乾留ガスを製造する。
(5)本発明の態様5は、態様1~態様4の還元鉄の製造方法において、
底部から順に、前記底部に前記炭化しつつ冷却された還元鉄を排出する還元鉄排出部、冷却ガス吹込口、冷却ガス排出口、還元ガス吹込口、還元ガス排出口および、頂部に前記酸化鉄である原料を装入する原料装入部を有するシャフト炉を用い、
前記還元工程において、前記還元ガス吹込口と還元ガス排出口との間の還元帯で前記原料を、前記還元ガスで還元して前記還元鉄を生成し、
前記冷却工程において、前記冷却ガス吹込口と前記冷却ガス排出口との間の冷却帯で前記還元鉄を、前記冷却ガスで炭化しつつ冷却する。
以下、図1~図4を参照しつつ、本発明の還元鉄の製造方法を説明する。
本発明は、酸化鉄を原料として一部炭化された還元鉄を製造する還元鉄の製造方法であって、水素ガスを還元ガスとして酸化鉄原料を還元して還元鉄を生成する還元工程S1と、還元工程S1の排ガス(還元排ガス)から水を除去することで、排ガスから水素ガスを分離する脱水工程S3と、炭素を元素として含むガスを冷却ガスとして、還元工程S1で生成した還元鉄を一部炭化しつつ冷却する冷却工程S2と、冷却工程S2の排ガス(冷却排ガス)から炭素を含むガスを少なくとも分離する分離工程S4とを有することを基本的な構成とする。
本発明の対象とする原料は、酸化鉄を主体とする鉄鉱石、またそれを加工したペレットである。既存の直接還元プロセスで用いられているものでよく、特段の前処理を必要としない。
本発明によって、水素ガスで直接還元した場合であっても、一部加炭された還元鉄の製造が可能となる。また、分離したガスを循環するので、効率的なガス使用が図れる。
第1実施形態の還元鉄の製造方法(図1)は、酸化鉄である原料を、水素ガスで還元して還元鉄を生成する還元工程S1と、還元工程S1の排ガスから水を除去することで、排ガスから水素ガスを分離する脱水工程S3と、前記還元鉄を、メタンガスで炭化しつつ冷却する冷却工程S2と、冷却工程S2の排ガスから水素ガスとメタンガスとに分離する分離工程S4と、を有し、脱水工程S3で分離された水素ガス、分離工程S4で分離された水素ガスおよび分離工程S4で分離されたメタンガスを、それぞれ、還元ガスおよび冷却ガスとして循環する。
Fe2O3+3H2→2Fe+3H2O (1)
水素ガスは酸化鉄との反応により水(水蒸気)となるので、還元工程S1から排出される還元排ガスは、水蒸気と未反応の水素ガスとからなる。還元排ガスは、還元工程S1で還元反応後に排出されるガスである。
3Fe+CH4→Fe3C+2H2 (2)
メタンガスは還元鉄との反応により水素ガスとなるので、冷却工程S2から排出される冷却排ガスは、水素ガスと未反応のメタンガスとからなる。冷却排ガスは、冷却工程S2において、冷却後に排出されるガスである。
第2実施形態の還元鉄の製造方法(図2)は、酸化鉄である原料を、水素ガスで還元して還元鉄を生成する還元工程S1Aと、還元工程S1Aの排ガスから水を除去することで、排ガスから水素ガスを分離する脱水工程3Aと、還元工程S1Aで生成した還元鉄を、COガスで炭化しつつ冷却する冷却工程S2Aと、冷却工程S2Aから排出される冷却排ガスをCOガスとCO2ガスとに分離する分離工程S4Aと、を有し、脱水工程3Aで分離された水素ガスおよび分離工程S4Aで分離されたCOガスを、それぞれ、還元ガスおよび冷却ガスとして循環する。
Fe+2CO→FeC+CO2 (3)
COガスは還元鉄との反応によりCO2となるので、冷却工程S2Aから排出される冷却排ガスは、CO2ガスと未反応のCOガスとからなる。
第3実施形態の還元鉄の製造方法(図3)は、前述の第2実施形態の還元鉄の製造方法において、さらに、CO2ガスでチャー又はコークスをガス化してCOガスを製造する炭素ガス化工程S5を有する。炭素ガス化反応は、式(4)で示される反応である。炭素ガス化反応を900℃以上で進行させることで、生成するガスを概ねCOガスとできる。
C+CO2→2CO (4)
ガス化に際して、CO2ガスとともに酸素ガスを併用することも可能である。
第4実施形態の還元鉄の製造方法(図4)は、酸化鉄である原料を、水素ガスで還元して還元鉄を生成する還元工程S1Cと、還元工程S1Cの排ガスから水を除去することで、排ガスから水素ガスを分離する脱水工程S3Cと、COガス及びメタンガスの混合ガスである冷却ガスで還元鉄を炭化しつつ冷却する冷却工程S2Cと、石炭を乾留して石炭乾留ガスを製造する石炭乾留工程S7と、冷却工程S2Cの排ガスから水を分離する別の脱水工程(第2の脱水工程)S6と、脱水された冷却排ガスおよび石炭乾留ガスを水素ガスと、COガス及びメタンガスの混合ガスと、CO2ガスと、に分離する分離工程4Cとを有する。分離された水素ガスおよび混合ガスは、それぞれ、還元ガスおよび冷却ガスの一部又は全部として循環される。また、CO2ガスは、石炭乾留工程S7において用いられる。
CO2+H2→H2O+CO (4)
更に、石炭の種類を変えることで、石炭乾留ガス中の水素ガス等の比率を調整できる。例えば、褐炭等の石炭化度の低い石炭ほど水素ガスの含有率が大きくなる。従って、石炭の種類を調整することで、還元ガスおよび冷却ガスの両方を石炭乾留ガスのみから供給可能となる。
本発明の還元鉄の製造方法は、一のシャフト炉を用いて行うのがよい。図5に示すように、シャフト炉は、底部25Aから順に、底部25Aに炭化・冷却された還元鉄を排出する還元鉄排出部25、冷却ガス吹込口26、冷却ガス排出口27、還元ガス吹込口28、還元ガス排出口29、および頂部24Aに前記酸化鉄である原料を装入する原料装入部24を備える。
冷却ガス吹込口26と冷却ガス排出口27の間の冷却帯で冷却工程S2が行われる。冷却工程S2において、冷却ガス吹込口26と冷却ガス排出口27との間の冷却帯で還元鉄を、前記冷却ガスで炭化しつつ冷却する。還元ガス吹込口28と還元ガス排出口29との間の還元帯で還元工程S1が行われる。還元工程S1において、還元ガス吹込口28と還元ガス排出口29との間の還元帯で酸化鉄である原料を、還元ガス(水素ガス)で還元して還元鉄を生成する。
以下、図5に基づいて、一のシャフト炉を還元帯と冷却帯に区分して用いて行う方法を詳細に説明する。図5は、本実施形態に係る直接還元システム10-1の構成を示す図である。直接還元システム10-1は、本実施形態に係る還元鉄の製造方法を実施するためのシステムであり、シャフト炉20と、加熱炉30と、冷却装置40と、コンプレッサー50と、冷却装置60と、コンプレッサー70と、分離装置80とを備える。シャフト炉20は、上述した原料装入部24、還元鉄排出部25、冷却ガス吹込口26、冷却ガス排出口27、還元ガス吹込口28および還元ガス排出口29を備える。
次に、上述した直接還元システム10-1を使用した還元鉄の製造方法について説明する。まず、水素ガスを加熱炉30で加熱した後、還元帯21の下部に導入する。水素ガスの温度は概ね700~1000℃である。また、水素ガスの吹き込み量は概ね1000~2200Nm3/t-DRIである。一方で、還元帯21の上部から原料である酸化鉄が装入される。酸化鉄は還元帯21内を下降しながら水素ガスにより還元されて還元鉄となる。水素ガスは、還元帯21を上昇しながら酸化鉄を還元する。この時の化学反応式は上述した式(1)で示される。金属化率は概ね65~98%となる。
実施例1では、シャフト型試験装置を用いて、酸化鉄原料として、ブラジル産酸性ペレット(鉄分:65.9%、SiO2:3.1%)を頂部から供給して、以下の還元処理を行った。なお、頂部は装置の一番上を意味する。まず、表1に示す組成のガス(水素ガス、COガス、CO2ガスの混合ガス)を装置下部から吹き込んだ。装置下部は、底部より0.75m上の位置である。表1のInletは装置下部に吹き込まれたガス(入力ガス)の組成を示し、Outletは装置上部から排出されたガス(出力ガス)の組成を示す。装置上部は、装置頂部から0.25mより下の位置を意味する。なお、表1及び後述する各表の組成の数値はガス全体に対する各成分の体積%を示す。また、ガスの組成はガスクロマトグラフィー質量分析装置(GC/MS)を用いて測定した。具体的には、GC/MSに各ガスを供給し、各ガスの成分を連続的に測定した。表中の数値はその平均値を示している。入力ガスの温度は950℃、流量は1400Nm3/t-DRIとした。装置底部から排出される還元鉄の金属化率は96%であり、還元鉄中の炭素量は1.5質量%であった。装置低部は、装置の一番下を意味する。炭素量は、JIS G 1211-3、燃焼‐赤外線吸収法に準じて測定した。
分離したガスを循環させて還元・冷却しているので、還元で本来供給すべき水素量を削減でき、エネルギー原単位の削減やコスト削減の効果が得られた。
実施例2では、実施例1と同様の原料を使用して、シャフト型試験装置を用いて以下の還元処理を行った。まず、表3に示す組成のガス、すなわち水素ガス(微量の窒素ガスを含む)を装置下部から吹き込んだ。表3のInletは装置下部に吹き込まれたガス(入力ガス)の組成を示し、Outletは装置上部から排出されたガス(出力ガス)の組成を示す。入力ガスの温度は980℃、流量は1200Nm3/t-DRIとした。装置底部から排出された還元鉄の金属化率は85%であり、還元鉄中の炭素量は0.1質量%未満であった。
分離したガスを循環させて還元・冷却しているので、還元で本来供給すべき水素量を削減でき、エネルギー原単位の削減やコスト削減の効果が得られた。
実施例3では、実施例1と同様の原料に対して、シャフト型試験装置を用いて以下の還元処理を行った。まず、表5に示す組成のガス、すなわち水素ガス(微量の窒素ガスを含む)を装置下部から吹き込んだ。表5のInletは装置下部に吹き込まれたガス(入力ガス)の組成を示し、Outletは装置上部から排出されたガス(出力ガス)の組成を示す。入力ガスの温度は980℃、流量は1200Nm3/t-DRIとした。装置底部から排出された還元鉄の金属化率は85%であり、還元鉄中の炭素量は0.1質量%未満であった。
分離したガスを循環させて冷却しているので、還元で本来供給すべきCO量を削減でき、エネルギー原単位の削減やコスト削減の効果が得られた。
実施例4では、実施例1と同様の原料に対して、シャフト型試験装置を用いて以下の還元処理を行った。まず、表7に示す組成のガス、すなわち水素ガス(微量の窒素ガスを含む)を装置下部から吹き込んだ。表7のInletは装置下部に吹き込まれたガス(入力ガス)の組成を示し、Outletは装置上部から排出されたガス(出力ガス)の組成を示す。入力ガスの温度は980℃、流量は1200Nm3/t-DRIとした。装置下部から排出された還元鉄の金属化率は85%であり、還元鉄中の炭素量は0.1質量%未満であった。
分離したガスを循環させて還元・冷却しているので、還元で本来供給すべきCO量を削減でき、エネルギー原単位の削減やコスト削減の効果が得られた。
20 シャフト炉
30 加熱炉
40 冷却装置
50 コンプレッサー
60 冷却装置
70 コンプレッサー
80 分離装置
Claims (5)
- 酸化鉄である原料を、水素ガスを含む還元ガスで還元して還元鉄を生成する還元工程と、
前記還元工程の排ガスから水を除去することで、前記排ガスから水素ガスを分離する脱水工程と、
前記還元鉄を、炭素を元素として含む冷却ガスで炭化しつつ冷却する冷却工程と、
前記冷却工程の排ガスから水素ガスとメタンガスと分離する分離工程と、
を有し、
前記冷却ガスがメタンガスであり、
前記還元ガスが、前記脱水工程で分離された前記水素ガスと、前記分離工程で分離された前記水素ガスと、を更に含み、
前記冷却ガスが、前記分離工程で分離された前記メタンガスを更に含む、還元鉄の製造方法。 - 酸化鉄である原料を、水素ガスを含む還元ガスで還元して還元鉄を生成する還元工程と、前記還元工程の排ガスから水を除去することで、前記排ガスから水素ガスを分離する脱水工程と、前記還元鉄を、炭素を元素として含む冷却ガスで炭化しつつ冷却する冷却工程と、前記冷却工程の排ガスからCOガスとCO2とを分離する分離工程と、を有し、
前記冷却ガスがCOガスを含み、
前記還元ガスが、前記脱水工程で分離された前記水素ガスを含み、
前記冷却ガスが、前記分離工程で分離された前記COガスを更に含む、還元鉄の製造方法。 - 請求項2において、CO2ガスでチャー又はコークスをガス化してCOガスを製造する炭素ガス化工程を更に有し、
前記炭素ガス化工程で供されるCO2ガスが前記分離工程で分離された前記CO2ガスを含み、
前記冷却ガスが、前記炭素ガス化工程で製造された前記COガスである、還元鉄の製造方法。 - 酸化鉄である原料を、水素ガスを含む還元ガスで還元して還元鉄を生成する還元工程と、前記還元工程の排ガスから水を除去することで、前記排ガスから水素ガスを分離する脱水工程と、前記還元鉄を、炭素を元素として含む冷却ガスで炭化しつつ冷却する冷却工程と、前記冷却工程の排ガスから水を分離する第2の脱水工程と、石炭を乾留して石炭乾留ガスを製造する石炭乾留工程と、前記第2の脱水工程後の排ガスおよび前記石炭乾留ガスから水素ガスとCOガス及びメタンガスの混合ガスと、CO2ガスと、を分離する単一又は複数の分離工程と、を有し、
前記還元ガスが、前記脱水工程で分離された前記水素ガスと、前記分離工程で分離された前記水素ガスと、をさらに含み、
前記冷却ガスが、前記分離工程で分離された前記混合ガスであり、
前記石炭乾留工程において、前記分離工程で分離された前記CO2ガスを用いて前記石炭乾留ガスを製造する、還元鉄の製造方法。 - 底部から順に、前記底部に前記炭化しつつ冷却された還元鉄を排出する還元鉄排出部、冷却ガス吹込口、冷却ガス排出口、還元ガス吹込口、還元ガス排出口および、頂部に前記酸化鉄である原料を装入する原料装入部を有するシャフト炉を用い、
前記還元工程において、前記還元ガス吹込口と還元ガス排出口との間の還元帯で前記原料を、前記還元ガスで還元して前記還元鉄を生成し、
前記冷却工程において、前記冷却ガス吹込口と前記冷却ガス排出口との間の冷却帯で前記還元鉄を、前記冷却ガスで炭化しつつ冷却する、請求項1~4のいずれか1項に記載の還元鉄の製造方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020247011672A KR20240064681A (ko) | 2021-10-14 | 2022-10-14 | 환원철의 제조 방법 |
EP22881099.0A EP4417711A1 (en) | 2021-10-14 | 2022-10-14 | Method for producing reduced iron |
CN202280068644.7A CN118202071A (zh) | 2021-10-14 | 2022-10-14 | 还原铁的制造方法 |
MX2024004385A MX2024004385A (es) | 2021-10-14 | 2022-10-14 | Metodo para producir hierro de reduccion directa. |
CA3234384A CA3234384A1 (en) | 2021-10-14 | 2022-10-14 | Method for producing direct reduction iron |
JP2023554636A JPWO2023063404A1 (ja) | 2021-10-14 | 2022-10-14 | |
AU2022368159A AU2022368159A1 (en) | 2021-10-14 | 2022-10-14 | Method for producing direct reduced iron |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-168721 | 2021-10-14 | ||
JP2021168721 | 2021-10-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023063404A1 true WO2023063404A1 (ja) | 2023-04-20 |
Family
ID=85988323
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/038301 WO2023063404A1 (ja) | 2021-10-14 | 2022-10-14 | 還元鉄の製造方法 |
Country Status (9)
Country | Link |
---|---|
EP (1) | EP4417711A1 (ja) |
JP (1) | JPWO2023063404A1 (ja) |
KR (1) | KR20240064681A (ja) |
CN (1) | CN118202071A (ja) |
AU (1) | AU2022368159A1 (ja) |
CA (1) | CA3234384A1 (ja) |
MX (1) | MX2024004385A (ja) |
TW (1) | TW202325858A (ja) |
WO (1) | WO2023063404A1 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54126618A (en) * | 1978-02-21 | 1979-10-02 | Hsieh Jack | Method and apparatus for directly reducing iron ore |
JPS5681609A (en) * | 1979-09-04 | 1981-07-03 | Hylsa Sa | Method of reducing pellet iron ore to sponge iron particle |
JPS59123708A (ja) * | 1982-12-27 | 1984-07-17 | Sumitomo Metal Ind Ltd | シヤフト炉による還元鉄製造法 |
JPH08120314A (ja) | 1994-10-20 | 1996-05-14 | Cvg Siderurgica Del Orinoco Ca | 炭化鉄の製造方法 |
JPH11343512A (ja) | 1998-04-06 | 1999-12-14 | Orinoco Iron Ca | 炭化鉄の製法 |
JP2011140694A (ja) * | 2010-01-07 | 2011-07-21 | Sumitomo Metal Ind Ltd | 予備還元焼結鉱の製造方法およびこれを利用した高炉操業方法 |
CN110562913A (zh) * | 2019-09-30 | 2019-12-13 | 内蒙古大学 | 一种利用甲烷和水为原料生产氢气的方法 |
JP2021168721A (ja) | 2020-04-13 | 2021-10-28 | 株式会社サンセイアールアンドディ | 遊技機 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05222423A (ja) | 1992-02-14 | 1993-08-31 | Nippon Steel Corp | セメンタイト製造法 |
-
2022
- 2022-10-13 TW TW111138894A patent/TW202325858A/zh unknown
- 2022-10-14 WO PCT/JP2022/038301 patent/WO2023063404A1/ja active Application Filing
- 2022-10-14 JP JP2023554636A patent/JPWO2023063404A1/ja active Pending
- 2022-10-14 AU AU2022368159A patent/AU2022368159A1/en active Pending
- 2022-10-14 KR KR1020247011672A patent/KR20240064681A/ko unknown
- 2022-10-14 MX MX2024004385A patent/MX2024004385A/es unknown
- 2022-10-14 CA CA3234384A patent/CA3234384A1/en active Pending
- 2022-10-14 CN CN202280068644.7A patent/CN118202071A/zh active Pending
- 2022-10-14 EP EP22881099.0A patent/EP4417711A1/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54126618A (en) * | 1978-02-21 | 1979-10-02 | Hsieh Jack | Method and apparatus for directly reducing iron ore |
JPS5681609A (en) * | 1979-09-04 | 1981-07-03 | Hylsa Sa | Method of reducing pellet iron ore to sponge iron particle |
JPS59123708A (ja) * | 1982-12-27 | 1984-07-17 | Sumitomo Metal Ind Ltd | シヤフト炉による還元鉄製造法 |
JPH08120314A (ja) | 1994-10-20 | 1996-05-14 | Cvg Siderurgica Del Orinoco Ca | 炭化鉄の製造方法 |
JPH11343512A (ja) | 1998-04-06 | 1999-12-14 | Orinoco Iron Ca | 炭化鉄の製法 |
JP2011140694A (ja) * | 2010-01-07 | 2011-07-21 | Sumitomo Metal Ind Ltd | 予備還元焼結鉱の製造方法およびこれを利用した高炉操業方法 |
CN110562913A (zh) * | 2019-09-30 | 2019-12-13 | 内蒙古大学 | 一种利用甲烷和水为原料生产氢气的方法 |
JP2021168721A (ja) | 2020-04-13 | 2021-10-28 | 株式会社サンセイアールアンドディ | 遊技機 |
Non-Patent Citations (1)
Title |
---|
MIZUTANI ET AL., CAMP-ISIJ, vol. 33, 2020, pages 483 |
Also Published As
Publication number | Publication date |
---|---|
TW202325858A (zh) | 2023-07-01 |
MX2024004385A (es) | 2024-04-29 |
CN118202071A (zh) | 2024-06-14 |
AU2022368159A1 (en) | 2024-05-02 |
KR20240064681A (ko) | 2024-05-13 |
JPWO2023063404A1 (ja) | 2023-04-20 |
EP4417711A1 (en) | 2024-08-21 |
CA3234384A1 (en) | 2023-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220235426A1 (en) | Method and system for producing steel or molten-iron-containing materials with reduced emissions | |
US8940076B2 (en) | Method for producing direct reduced iron with limited CO2 emissions | |
US9328395B2 (en) | Method and apparatus for producing direct reduced iron utilizing a source of reducing gas comprising hydrogen and carbon monoxide | |
CN102037145B (zh) | 通过加入碳氢化合物再循环高炉煤气而熔炼生铁的工艺 | |
EA017978B1 (ru) | Способ получения железа прямого восстановления | |
CN108474048B (zh) | 通过使用合成气来生产高碳dri的方法和系统 | |
KR101321823B1 (ko) | 일산화탄소 및 수소를 포함하는 합성가스 제조장치 및 제조방법 | |
CN115427588A (zh) | 炼钢设备和还原铁的制造方法 | |
TWI803522B (zh) | 用於製造熱合成氣(尤其用於鼓風爐操作)之方法 | |
CN117897506A (zh) | 使用气体电加热器使铁矿石系统的直接还原中的废还原气体再循环的方法 | |
JP2012528246A (ja) | 鉄と、co及びh2含有の粗製合成ガスとを同時に製造する方法 | |
WO2023063404A1 (ja) | 還元鉄の製造方法 | |
WO2023036474A1 (en) | Method for producing direct reduced iron for an iron and steelmaking plant | |
CN117280047A (zh) | 用于直接还原铁矿石的方法 | |
WO2022053537A1 (en) | Method for operating a blast furnace installation | |
CN112662824A (zh) | 一种高效利用冶金废气的高炉富氢冶炼工艺 | |
CN109652604A (zh) | 一种利用铁氧化物两步法制备碳化铁的方法 | |
RU2808735C1 (ru) | Линия производства восстановленного железа и способ получения восстановленного железа | |
JP7272312B2 (ja) | 還元鉄の製造方法 | |
WO2024135696A1 (ja) | 還元鉄の製造方法 | |
AU2023246848A1 (en) | Reduction of a metal oxide-containing material on the basis of ammonia nh3 | |
CN118127257A (zh) | 一种生物质绿氢还原铁负碳冶炼的装置及方法 | |
CN117337337A (zh) | 用于制造直接还原铁的方法 | |
CN117737324A (zh) | 一种副产煤气制取高温富氢煤气高炉炼铁工艺及系统 | |
TW201723194A (zh) | 結合藉由饋入回收之二氧化碳的二氧化碳及蒸汽重組器之直接還原鐵之製造方法及製造系統 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22881099 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023554636 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18697769 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: AU2022368159 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 20247011672 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2024/004385 Country of ref document: MX Ref document number: 3234384 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280068644.7 Country of ref document: CN |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112024006945 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2022368159 Country of ref document: AU Date of ref document: 20221014 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022881099 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022881099 Country of ref document: EP Effective date: 20240514 |
|
ENP | Entry into the national phase |
Ref document number: 112024006945 Country of ref document: BR Kind code of ref document: A2 Effective date: 20240409 |