WO2023063404A1 - 還元鉄の製造方法 - Google Patents

還元鉄の製造方法 Download PDF

Info

Publication number
WO2023063404A1
WO2023063404A1 PCT/JP2022/038301 JP2022038301W WO2023063404A1 WO 2023063404 A1 WO2023063404 A1 WO 2023063404A1 JP 2022038301 W JP2022038301 W JP 2022038301W WO 2023063404 A1 WO2023063404 A1 WO 2023063404A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
cooling
reduced iron
reducing
separated
Prior art date
Application number
PCT/JP2022/038301
Other languages
English (en)
French (fr)
Inventor
守利 水谷
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to KR1020247011672A priority Critical patent/KR20240064681A/ko
Priority to EP22881099.0A priority patent/EP4417711A1/en
Priority to CN202280068644.7A priority patent/CN118202071A/zh
Priority to MX2024004385A priority patent/MX2024004385A/es
Priority to CA3234384A priority patent/CA3234384A1/en
Priority to JP2023554636A priority patent/JPWO2023063404A1/ja
Priority to AU2022368159A priority patent/AU2022368159A1/en
Publication of WO2023063404A1 publication Critical patent/WO2023063404A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0073Selection or treatment of the reducing gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/02Making spongy iron or liquid steel, by direct processes in shaft furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/001Extraction of waste gases, collection of fumes and hoods used therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/20Increasing the gas reduction potential of recycled exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D2017/009Cyclone for separating fines from gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Definitions

  • the direct reduction ironmaking method is known as one of the ironmaking methods for obtaining iron from raw materials containing iron oxide (reducing iron oxide).
  • the direct reduction ironmaking process has continued to develop against the background of the low construction cost of the plant for this process, the ease of operation, and the ability to operate in a small-scale plant.
  • various improvements have been made to effectively utilize the reducing gas in the furnace.
  • Iron carbide also has the advantage of reducing energy consumption when melting in an electric furnace.
  • Non-Patent Document 1 ACT (registered trademark) (Adjustable Carbon Technology) has been developed for the purpose of improving the C concentration of reduced iron in the MIDREX method.
  • ACT registered trademark
  • H2 - rich gas is returned to the process gas (that is, blown into the reduction zone), and the CO-rich gas is mixed with natural gas into the transition zone and blown into the transition zone to improve and control the C concentration of the reduced iron.
  • the method for producing reduced iron according to aspect 2 of the present invention includes: A reduction step of reducing a raw material, which is iron oxide, with a reducing gas containing hydrogen gas to generate reduced iron, and a dehydration step of separating hydrogen gas from the exhaust gas by removing water from the exhaust gas of the reduction step. , a cooling step of cooling the reduced iron while carbonizing it with a cooling gas containing carbon as an element, and a separation step of separating CO gas and CO2 from the exhaust gas of the cooling step, the cooling gas comprises CO gas;
  • the reducing gas contains the hydrogen gas separated in the dehydration step,
  • the cooling gas further contains the CO gas separated in the separation step.
  • Aspect 3 of the present invention is the method for producing reduced iron of Aspect 2, further comprising a carbon gasification step of gasifying char or coke with CO 2 gas to produce CO gas, the CO2 gas provided in the carbon gasification step comprises the CO2 gas separated in the separation step;
  • the cooling gas is the CO gas produced in the carbon gasification process.
  • the method for producing reduced iron according to aspect 4 of the present invention includes: A reduction step of reducing a raw material, which is iron oxide, with a reducing gas containing hydrogen gas to generate reduced iron, and a dehydration step of separating hydrogen gas from the exhaust gas by removing water from the exhaust gas of the reduction step.
  • the method for producing reduced iron according to the first embodiment includes a reduction step S1 in which a raw material, which is iron oxide, is reduced with hydrogen gas to generate reduced iron, and water is removed from the exhaust gas in the reduction step S1.
  • a dehydration step S3 for separating hydrogen gas from the exhaust gas, a cooling step S2 for cooling the reduced iron while carbonizing it with methane gas, and a separation step S4 for separating the exhaust gas from the cooling step S2 into hydrogen gas and methane gas, , and the hydrogen gas separated in the dehydration step S3, the hydrogen gas separated in the separation step S4, and the methane gas separated in the separation step S4 are circulated as reducing gas and cooling gas, respectively.
  • the reduced iron is cooled and carbonized by methane gas.
  • the chemical reaction formula at this time is shown by the following Formula (2).
  • the reduced iron has a metallization ratio of 70 to 98%, and the amount of carbon contained in the reduced iron is more than 0 Nm 3 /t-DRI and 4.5% by mass or less with respect to the total mass of the reduced iron.
  • the volume ratio of the methane gas separated in the separation step S4 to the total volume of the cooling gas is, for example, 45 vol % to 55 vol %.
  • the volume ratio of the newly introduced methane gas to the total volume of the cooling gas is 45 vol % to 55 vol %.
  • the cooling exhaust gas discharged from the cooling step S2 consists of hydrogen gas and unreacted methane gas.
  • the cooling exhaust gas is gas discharged after cooling in the cooling step S2.
  • the exhaust gas in the cooling step S2A is separated into CO gas and CO 2 gas.
  • a chemical absorption method https://www.course50.com/technology/technology02/
  • an alkaline aqueous solution such as an amine is brought into contact with a CO2- containing gas in an absorption tower to selectively absorb CO2 in the absorbing liquid, and then the absorbing liquid is heated in a regeneration tower. It is a method for separating and recovering high-purity CO2 .
  • the CO gas separated in the separation step S4A is circulated as cooling gas.
  • the handling of the CO 2 gas separated in the separation step S4A is not particularly limited in the method for producing reduced iron of the second embodiment.
  • the ratio of the hydrogen gas consumed in the reduction step S1A and the CO gas consumed in the cooling step S2A is approximately 4:1. Therefore, when all of the cooling CO gas is supplied from water gas (a 1:1 mixed gas of hydrogen gas and CO gas obtained when coal is decomposed only with steam), 4 One-third will be supplied from water gas. For example, it is preferable to provide four direct reduction units and one water gas production unit based on the method for producing reduced iron of the second embodiment. This configuration can cover the reduction hydrogen gas for one unit and the cooling CO gas for all the four units, so it is an efficient equipment configuration.
  • heated hydrogen gas is blown from the lower part of the reduction zone, while methane gas is blown from the lower part of the cooling zone.
  • Iron oxide which is a raw material charged from the top of the shaft furnace, descends while being reduced by hydrogen gas in the reduction zone.
  • a mixed gas of unreacted hydrogen gas and water (steam) generated by reduction of iron oxide is extracted from the reducing gas outlet 29 at the top of the reduction zone 21 .
  • the reduced iron descends from reduction zone 21 to cooling zone 23 .
  • the heating furnace 30 heats the hydrogen gas and then blows it into the lower part of the reduction zone 21 .
  • the cooling device 40 cools and dehydrates the reduced exhaust gas (mixed gas of unreacted hydrogen gas and water (vapor) generated by the reduction of iron oxide) extracted from the upper portion of the reduction zone 21 to convert hydrogen gas. Separate (dehydration step S3). Hydrogen gas is introduced into the heating furnace 30 after being compressed by the compressor 50 . That is, hydrogen gas is circulated as reducing gas.
  • a reduction exhaust gas of a mixed gas of unreacted hydrogen gas and water (steam) generated by reduction of iron oxide is extracted from the upper portion of the reduction zone 21 .
  • the cooling device 40 cools the reducing exhaust gas extracted from the upper portion of the reducing zone 21 and separates it into water (liquid) and hydrogen gas.
  • Hydrogen gas is introduced into the heating furnace 30 after being compressed by the compressor 50 . That is, hydrogen gas is circulated as reducing gas.
  • the carbonized reduced iron is discharged from the lower part of the cooling zone.
  • the reduced iron has a metallization rate of approximately 70 to 98%, and the amount of carbon contained in the reduced iron is approximately more than 0% by mass and 4.5% by mass or less with respect to the total mass of the reduced iron.
  • methane gas rises while carbonizing the reduced iron.
  • Hydrogen gas is generated by the reaction between reduced iron and methane gas. Cooled exhaust gas of hydrogen gas and unreacted methane gas is extracted from the upper part of the cooling zone 23 (cooled exhaust gas extracting step).
  • the cooling exhaust gas extracted from the upper part of the cooling zone 23 is cooled by the cooling device 60 (cooling process).
  • the cooled exhaust gas is then compressed in compressor 70 .
  • the cooled exhaust gas is then introduced into the separation device 80 .
  • the separation device 80 separates the cooled exhaust gas into hydrogen gas and methane gas by, for example, a membrane separation method (separation step).
  • the pressure during the separation process is generally 1.0-2.0 MPa, and the temperature is 0-100.degree.
  • the methane gas is circulated as a cooling gas, and the hydrogen gas is circulated as a reducing gas. That is, methane gas is blown into the lower part of cooling zone 23 and hydrogen gas is introduced into heating furnace 30 .
  • the compressor 70 can be scaled down.
  • the hydrogen gas generated in the system is circulated as a reducing gas, the amount of hydrogen gas supplied from outside the system can be reduced.
  • carbonizing the reduced iron by carbonizing the reduced iron, reoxidation of the reduced iron can be suppressed.
  • the reduced iron contains carbon, the energy consumption in the electric furnace is reduced (dissolution of the reduced iron in the electric furnace is promoted. A small amount of carbon rapidly increases the solubility).
  • Example 2 In Example 2, the same raw material as in Example 1 was used, and the following reduction treatment was performed using a shaft-type tester.
  • Inlet in Table 3 indicates the composition of the gas (input gas) blown into the lower part of the apparatus, and Outlet indicates the composition of the gas (output gas) discharged from the upper part of the apparatus.
  • the input gas temperature was 980° C. and the flow rate was 1200 Nm 3 /t-DRI.
  • the metallization rate of the reduced iron discharged from the bottom of the apparatus was 85%, and the carbon content in the reduced iron was less than 0.1% by mass.
  • the mixed gas amount obtained in the separation step was 55 vol% with respect to the total volume of the cooling gas, and the newly introduced mixed gas amount in Table 8A was 45 vol% with respect to the total volume of the cooling gas. Since the separated gas is circulated to be reduced and cooled, the amount of CO that should be originally supplied by reduction can be reduced, and the effect of reducing energy consumption and cost can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacture Of Iron (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

この還元鉄の製造方法は、酸化鉄である原料を、水素ガスを含む還元ガスで還元して還元鉄を生成する還元工程と、前記還元工程の排ガスから水を除去することで、前記排ガスから水素ガスを分離する脱水工程と、前記還元鉄を、炭素を元素として含む冷却ガスで炭化しつつ冷却する冷却工程と、前記冷却工程の排ガスから水素ガスとメタンガスと分離する分離工程と、を有し、前記冷却ガスがメタンガスであり、前記還元ガスが、前記脱水工程で分離された水素ガスと、前記分離工程で分離された水素ガスと、を更に含み、前記冷却ガスが、前記分離工程で分離されたメタンガスを更に含む。

Description

還元鉄の製造方法
 本発明は、還元鉄の製造方法に関する。
 本願は、2021年10月14日に、日本に出願された特願2021-168721号に基づき優先権を主張し、その内容をここに援用する。
 酸化鉄を含有する原料から鉄を得る(酸化鉄を還元する)製鉄方法の一つとして、直接還元製鉄法が知られている。直接還元製鉄法は、これを行うためのプラントの建設コストが安価であること、運転が容易であること、小規模プラントで操業可能であること、などを背景として、発展を続けてきた。特に、シャフト炉方式の直接還元製鉄法においては、炉内の還元ガスを有効に活用するための種々の改善が加えられている。
 さらに、還元鉄の輸送時の再酸化を防止する目的で、還元鉄を炭化させる工程を追加して炭化鉄を製造する方法も知られている。炭化鉄には電気炉で溶解する際の消費エネルギーが低減するメリットも有する。
 例えば、特許文献1、2には、流動層方式の直接還元製鉄法における鉄鉱石の還元および浸炭方法が記載されており、還元ガスの組成や温度、圧力が規定されている。特許文献3には、シャフト炉方式の直接還元製鉄法における鉄鉱石の還元および浸炭方法が記載されており、還元ガスの組成や温度、圧力が規定されている。
 一般的に、CH(メタンガス)の分解反応は吸熱反応であり、高温高圧であるほど進展しやすい。例えば、常圧系のMIDREX法では、還元ガスを加熱する際にOを富化することで、還元ガスの温度を上昇させ、還元鉄のC濃度の向上を志向する。また、高圧系のHYL(ENERGIRON)法では、還元鉄のC濃度がMIDREX法に比べて高いことが知られている。(MIDREX法:還元鉄のC濃度0.5~2.5%、ENERGIRON法:2.0~4.5%)
 また、最近はMIDREX法における還元鉄のC濃度の向上を目的にACT(登録商標)(Adjustable Carbon Technology)が開発されている(非特許文献1)。このプロセスではリフォーマーで改質した天然ガスの一部を冷却/圧縮/膜分離することで、天然ガスをCOリッチガスとHリッチガスに分ける。そして、Hリッチガスをプロセスガスに戻し(すなわち、還元帯に吹き込み)、COリッチガスを遷移帯(Transition Zone)に天然ガスで混合して吹込むことで、還元鉄のC濃度を向上・制御する。
日本国特開平11-343512号公報 日本国特開平5-222423号公報 日本国特開平8-120314号公報
http://www.midrex.com/wp-content/uploads/MIDREX-ACT-fpo-Brochure.pdf、2017年9月発行 水谷ら:CAMP-ISIJ, 33(2020), 483.
 一方、最近は鉄鋼業からの二酸化炭素排出量の削減を目的として、還元ガスとして水素ガスを利用した直接還元製鉄法の開発が進んでいる。代表的な例として、水の電気分解などにより得られた水素ガスをシャフト炉方式の直接還元製鉄法に利用するHYBRITやMIDREX+Hなどが知られている。しかし、これらのプロセスは還元ガスとして水素ガスを用いるため、還元鉄を加炭することができず、電気炉での溶解処理の多量なエネルギーが必要となる。
 そこで、本発明の目的とするところは、水素ガスを含む還元ガスをシャフト炉の還元ガスとして使用した場合であっても、還元鉄を加炭することが可能な、新規かつ改良された還元鉄の製造方法を提供することにある。
 上記課題を解決するために、本発明の要旨は以下の通りとなる。
(1)本発明の態様1の還元鉄の製造方法は、 酸化鉄である原料を、水素ガスを含む還元ガスで還元して還元鉄を生成する還元工程と、
 前記還元工程の排ガスから水を除去することで、前記排ガスから水素ガスを分離する脱水工程と、
 前記還元鉄を、炭素を元素として含む冷却ガスで炭化しつつ冷却する冷却工程と、
 前記冷却工程の排ガスから水素ガスとメタンガスと分離する分離工程と、
を有し、
 前記冷却ガスがメタンガスであり、
 前記還元ガスが、前記脱水工程で分離された前記水素ガスと、前記分離工程で分離された前記水素ガスと、を更に含み、
 前記冷却ガスが、前記分離工程で分離された前記メタンガスを更に含む。
(2)本発明の態様2の還元鉄の製造方法は、
 酸化鉄である原料を、水素ガスを含む還元ガスで還元して還元鉄を生成する還元工程と、前記還元工程の排ガスから水を除去することで、前記排ガスから水素ガスを分離する脱水工程と、前記還元鉄を、炭素を元素として含む冷却ガスで炭化しつつ冷却する冷却工程と、前記冷却工程の排ガスからCOガスとCOとを分離する分離工程と、を有し、
 前記冷却ガスがCOガスを含み、
 前記還元ガスが、前記脱水工程で分離された前記水素ガスを含み、
 前記冷却ガスが、前記分離工程で分離された前記COガスを更に含む。
(3)本発明の態様3は、態様2の還元鉄の製造方法において、COガスでチャー又はコークスをガス化してCOガスを製造する炭素ガス化工程を更に有し、
 前記炭素ガス化工程で供されるCOガスが前記分離工程で分離された前記COガスを含み、
 前記冷却ガスが、前記炭素ガス化工程で製造された前記COガスである。
(4)本発明の態様4の還元鉄の製造方法は、
 酸化鉄である原料を、水素ガスを含む還元ガスで還元して還元鉄を生成する還元工程と、前記還元工程の排ガスから水を除去することで、前記排ガスから水素ガスを分離する脱水工程と、前記還元鉄を、炭素を元素として含む冷却ガスで炭化しつつ冷却する冷却工程と、前記冷却工程の排ガスから水を分離する第2の脱水工程と、石炭を乾留して石炭乾留ガスを製造する石炭乾留工程と、前記第2の脱水工程後の排ガスおよび前記石炭乾留ガスから水素ガスとCOガス及びメタンガスの混合ガスと、COガスと、を分離する単一又は複数の分離工程と、を有し、
 前記還元ガスが、前記脱水工程で分離された前記水素ガスと、前記分離工程で分離された前記水素ガスと、をさらに含み、
 前記冷却ガスが、前記分離工程で分離された前記混合ガスであり、
 前記石炭乾留工程において、前記分離工程で分離された前記COガスを用いて前記石炭乾留ガスを製造する。
(5)本発明の態様5は、態様1~態様4の還元鉄の製造方法において、
 底部から順に、前記底部に前記炭化しつつ冷却された還元鉄を排出する還元鉄排出部、冷却ガス吹込口、冷却ガス排出口、還元ガス吹込口、還元ガス排出口および、頂部に前記酸化鉄である原料を装入する原料装入部を有するシャフト炉を用い、
 前記還元工程において、前記還元ガス吹込口と還元ガス排出口との間の還元帯で前記原料を、前記還元ガスで還元して前記還元鉄を生成し、
 前記冷却工程において、前記冷却ガス吹込口と前記冷却ガス排出口との間の冷却帯で前記還元鉄を、前記冷却ガスで炭化しつつ冷却する。
 上記観点によれば、水素ガスを含む還元ガスをシャフト炉の還元ガスとして使用した場合であっても、還元鉄を加炭することが可能となる。
本発明の第1実施形態の還元鉄の製造方法を説明するフロー図である。 本発明の第2実施形態の還元鉄の製造方法を説明するフロー図である。 本発明の第3実施形態の還元鉄の製造方法を説明するフロー図である。 本発明の第4実施形態の還元鉄の製造方法を説明するフロー図である。 本実施形態に係る直接還元システムの一例を示すフロー図である。
 以下、図面を参照しながら本実施形態について詳細に説明する。なお、「~」を用いて示される数値範囲は「~」の両端の数値を含む。
 <1.還元鉄の製造方法>
 以下、図1~図4を参照しつつ、本発明の還元鉄の製造方法を説明する。
 本発明は、酸化鉄を原料として一部炭化された還元鉄を製造する還元鉄の製造方法であって、水素ガスを還元ガスとして酸化鉄原料を還元して還元鉄を生成する還元工程S1と、還元工程S1の排ガス(還元排ガス)から水を除去することで、排ガスから水素ガスを分離する脱水工程S3と、炭素を元素として含むガスを冷却ガスとして、還元工程S1で生成した還元鉄を一部炭化しつつ冷却する冷却工程S2と、冷却工程S2の排ガス(冷却排ガス)から炭素を含むガスを少なくとも分離する分離工程S4とを有することを基本的な構成とする。
 本発明の対象とする原料は、酸化鉄を主体とする鉄鉱石、またそれを加工したペレットである。既存の直接還元プロセスで用いられているものでよく、特段の前処理を必要としない。
 本発明によって、水素ガスで直接還元した場合であっても、一部加炭された還元鉄の製造が可能となる。また、分離したガスを循環するので、効率的なガス使用が図れる。
 本発明は、冷却ガスの種類と水素ガスおよびCOガスの系内製造工程の有無およびガス生成方法の違いとを考慮して、以下に説明するように、種々の還元鉄の製造方法として規定できる。そこでは、炭素を元素として含むガスとして、実用的な観点から、メタンガス、COガスまたは両者の混合ガスとしたが、プロパン等の高級炭化水素の使用も可能である。
(第1実施形態の還元鉄の製造方法)
 第1実施形態の還元鉄の製造方法(図1)は、酸化鉄である原料を、水素ガスで還元して還元鉄を生成する還元工程S1と、還元工程S1の排ガスから水を除去することで、排ガスから水素ガスを分離する脱水工程S3と、前記還元鉄を、メタンガスで炭化しつつ冷却する冷却工程S2と、冷却工程S2の排ガスから水素ガスとメタンガスとに分離する分離工程S4と、を有し、脱水工程S3で分離された水素ガス、分離工程S4で分離された水素ガスおよび分離工程S4で分離されたメタンガスを、それぞれ、還元ガスおよび冷却ガスとして循環する。
 還元工程S1では、酸化鉄を還元鉄に水素ガスで還元する。水素ガスはリザーバー(たとえば、ガスタンク)から供給される。還元工程S1において、還元ガスは、外部(たとえば、ガスタンク)から供給された水素ガスとは別に、脱水工程S3で分離された水素ガスと、分離工程S4で分離された水素ガスとを更に含む。水素ガスには、本実施形態の効果を妨げない範囲で、他の種類のガス(例えば窒素ガス、COガス、CHガス等)が混合されていてもよい。還元工程S1に供給される水素ガスの温度は700~1000℃、供給量は1000~2200Nm/t-DRI(還元鉄(DRI)1トン当たりの流量)である。還元工程S1での化学反応式は式(1)で示される。還元工程S1で生成される還元鉄の金属化率(金属鉄濃度/全鉄分濃度×100)は65~98%となる。ここに、金属鉄の濃度はISO 5416 還元鉄中の金属鉄を測定する臭素メタノール滴定法、全鉄分濃度はJIS M 8212: 2005 鉄鉱石‐全鉄定量方法によって測定する。
   Fe+3H→2Fe+3HO  (1)
 水素ガスは酸化鉄との反応により水(水蒸気)となるので、還元工程S1から排出される還元排ガスは、水蒸気と未反応の水素ガスとからなる。還元排ガスは、還元工程S1で還元反応後に排出されるガスである。
 還元排ガスは、脱水工程S3で水が除去されて、水素が分離される。脱水工程S3は、還元排ガスをその露点以下に冷却することによって、未反応の水素ガスと水に汽水分離する。水は系外に排出される。未反応の水素ガスは還元ガスとして循環される。
 冷却工程S2では、還元工程S1で生成した還元鉄をメタンガスで冷却する。このメタンガスは例えば天然ガス由来のガスである。冷却ガスは、外部(液化天然ガスタンク)から供給されるメタンガスとは別に、分離工程S4で分離されたメタンガスを更に含む。メタンガスには、本実施形態の効果を妨げない範囲で他の種類のガスが混合されていてもよい。メタンガスはリザーバー(たとえば、液化天然ガスタンク)から供給される。冷却工程S2に導入される時のメタンガスの温度は0~100℃、吹き込み量は0Nm/t-DRI超400Nm/t-DRI以下である。冷却工程S2では、還元鉄がメタンガスにより冷却及び炭化される。この時の化学反応式は以下の式(2)で示される。還元鉄の金属化率は70~98%であり、還元鉄に含まれる炭素量は、還元鉄の総質量に対して0Nm/t-DRI超4.5質量%以下である。分離工程S4において分離されたメタンガスの、冷却ガスの全体積に対する体積比率は例えば、45vol%~55vol%である。新たに外部から導入されるメタンガスの冷却ガスの全体積に対する体積比率は45vol%~55vol%である。
   3Fe+CH→FeC+2H  (2)
 メタンガスは還元鉄との反応により水素ガスとなるので、冷却工程S2から排出される冷却排ガスは、水素ガスと未反応のメタンガスとからなる。冷却排ガスは、冷却工程S2において、冷却後に排出されるガスである。
 分離工程S4では、冷却工程S2の排ガス(冷却排ガス)から少なくとも水素ガスを分離する。具体的には、分離工程S4では、冷却工程S2の排ガスを水素ガスとメタンガスとに分離する。分離には、例えば膜分離法を採用できる。膜分離時の圧力は1.0~2.0MPaであり、温度は0~100℃である。分離されたメタンガスは冷却ガスとして、水素ガス(H)は還元ガスとしてそれぞれ循環される。分離工程でHを分離しないと、冷却工程のH濃度が上昇し、CHによる加炭反応の速度が低下する。これによって、還元鉄の炭素濃度(C濃度)が低下する。また分離したHを還元ガスに循環することで、還元工程において外部から導入されるH量を削減することができる。これによって、コスト削減をすることができる。
 分離した水素ガスの濃度は、95vol%以上であることが好ましい。分離した水素ガスの濃度の上限は特に限定されず、100vol%であってもよい。分離したメタンガスの濃度は95vol%以上であることが好ましい。
 分離したメタンガスの濃度の上限は特に限定されず、100vol%であってもよい。
 第1実施形態の還元鉄の製造方法は、後述する他の方法と比較して、冷却ガスにメタンガスを用いる点に特徴がある。第1実施形態の還元鉄の製造方法によって、冷却工程S2においてメタンガスを分解できるので、従来の還元ガス製造のための改質工程を省略でき、効率的に還元ガスが得られる。
(第2実施形態の還元鉄の製造方法)
 第2実施形態の還元鉄の製造方法(図2)は、酸化鉄である原料を、水素ガスで還元して還元鉄を生成する還元工程S1Aと、還元工程S1Aの排ガスから水を除去することで、排ガスから水素ガスを分離する脱水工程3Aと、還元工程S1Aで生成した還元鉄を、COガスで炭化しつつ冷却する冷却工程S2Aと、冷却工程S2Aから排出される冷却排ガスをCOガスとCOガスとに分離する分離工程S4Aと、を有し、脱水工程3Aで分離された水素ガスおよび分離工程S4Aで分離されたCOガスを、それぞれ、還元ガスおよび冷却ガスとして循環する。
 第2実施形態の還元鉄の製造方法において、水素ガスおよびCOガスは外部から供給され、リザーバーで貯留された後、使用される。水素ガスおよびCOガスは石炭ガス化によって得られる石炭ガスを水素ガスおよびCOガスに分離して用いることもできる。石炭ガス化は石炭を少量の酸素を用いて分解して水素ガスとCOガスとを得る方法である。
 第2実施形態の還元鉄の製造方法における還元工程S1Aおよび脱水工程3Aは、第1実施形態の還元鉄の製造方法のそれと同じである。
 第2実施形態の還元鉄の製造方法における冷却工程S2Aでは、還元工程S1Aで生成した還元鉄を冷却ガスであるCOガスで冷却する。冷却ガスは、外部から供給されるCOガスとは別に、分離工程S4Aで分離されたCOガスを更に含む。COガスには、本実施形態の効果を妨げない範囲で他の種類のガスが混合されていてもよい。COガスはリザーバー(たとえば、ガスタンク)から供給される。冷却工程S2Aに導入される時のCOガスの温度は0~100℃、吹き込み量は0Nm/t-DRI超400Nm/t-DRI以下である。冷却工程S2Aでは、還元鉄がCOガスにより冷却及び炭化される。この時の化学反応式は以下の式(3)で示される。還元鉄の金属化率は70~98%であり、還元鉄に含まれる炭素量は、還元鉄の総質量に対して0質量%超4.5質量%以下である。分離工程S4Aにおいて分離されたCOガスの冷却ガスの全体積に対する体積比率は45vol%~55vol%であることが好ましい。冷却工程S2Aにおいて、新たに外部から導入されるCOガスの冷却ガスの全体積に対する体積比率は45vol%~55vol%であることが好ましい。
   Fe+2CO→FeC+CO  (3)
 COガスは還元鉄との反応によりCOとなるので、冷却工程S2Aから排出される冷却排ガスは、COガスと未反応のCOガスとからなる。
 第2実施形態の還元鉄の製造方法における分離工程S4Aでは、冷却工程S2Aの排ガスをCOガスとCOガスとに分離する。分離には、例えば、化学吸収法(https: //www.course50.com /technology /technology02/)を適用できる。化学吸収法とは、吸収塔でアミン等のアルカリ性水溶液(吸収液)とCO含有ガスとを接触させ、吸収液にCOを選択的に吸収させた後、再生塔で吸収液を加熱して、高純度のCOを分離・回収する方法である。分離工程S4Aで分離されたCOガスは、冷却ガスとして循環される。一方、分離工程S4Aで分離されたCOガスの扱いは、第2実施形態の還元鉄の製造方法では特に限定しない。
 分離工程S4Aで分離されたCOガスの濃度は、99質量%以上であることが好ましい。COガスの濃度は100%であってもよい。分離工程S4Aで分離されたCOガスの濃度は99質量%以上であることが好ましい。COガスの濃度は100%であってもよい。
 第2実施形態の還元鉄の製造方法は、第1実施形態の還元鉄の製造方法と比較して、冷却ガスにCOガスを用いる点に特徴がある。分離工程S4AにおいてCOを分離して循環するので、効率的に冷却ガスが得られる。
 第2実施形態の還元鉄の製造方法で供給される水素ガスおよびCOガスとして、石炭ガス化によって得られる石炭ガスを水素ガスおよびCOガスに分離して用いる場合、石炭ガス化工程における分解ガスとして酸素ガスと水蒸気を併用することで石炭ガスの水素ガスとCOガスの比率を調整できる。従って、還元ガスと冷却ガスの所要に合わせることで、すべての所要ガスを石炭ガス化によって賄うことができる。
 第2実施形態の還元鉄の製造方法において、還元工程S1Aで消費される水素ガスと冷却工程S2Aで消費されるCOガスの比は、概ね4:1である。従って、すべての冷却用COガスを水成ガス(水蒸気のみで石炭を分解した際に得られる水素ガスとCOガスが1:1の混合ガス)から供給した場合には、還元用水素ガスの4分の1が水成ガスから供給されることになる。たとえば、第2実施形態の還元鉄の製造方法に基づく直接還元装置を4基と1基の水成ガス製造装置を設けるとよい。この構成は、1基分の還元用水素ガスと4基分すべての冷却用COガスを賄うことができるので、効率的な設備構成となる。
(第3実施形態の還元鉄の製造方法)
 第3実施形態の還元鉄の製造方法(図3)は、前述の第2実施形態の還元鉄の製造方法において、さらに、COガスでチャー又はコークスをガス化してCOガスを製造する炭素ガス化工程S5を有する。炭素ガス化反応は、式(4)で示される反応である。炭素ガス化反応を900℃以上で進行させることで、生成するガスを概ねCOガスとできる。
   C+CO→2CO      (4)
 ここに、ガス化されるチャー又はコークスは、冷却工程S2Bにおいて還元鉄の炭化反応を阻害する水素ガスや水蒸気を生じないように、残留する揮発分が少ないことが望ましい。ガス化に際して用いるCOガスは、分離工程4Bで分離されたCO2ガスが循環されるとともに、不足分がリザーバーから供給される。そして、冷却ガスが炭素ガス化工程S5で製造されたCOガスとなるように、すなわち、炭素ガス化工程S5で製造されるCO量を冷却ガスとして必要なCO量に一致するように炭素ガス化工程S5にリザーバーから供給されるCOガスの量を調整することにより、外部からのCOガス導入が不要となる。冷却工程S2Bから排出される冷却排ガスは、COガスと未反応のCOガスとからなる。
 ガス化に際して、COガスとともに酸素ガスを併用することも可能である。
 第3実施形態の還元鉄の製造方法は、第2実施形態の還元鉄の製造方法と比較して、炭素ガス化工程S5が追加されるので、COガスの系外放出がない。また、第3実施形態の還元鉄の製造方法では、COガスを炭化鉄の炭素分として固定する作用を有するので、リザーバーから供給されるCOガスに回収されたCOガスを用いることで、COガスの放出抑制にも寄与する。
(第4実施形態の還元鉄の製造方法)
 第4実施形態の還元鉄の製造方法(図4)は、酸化鉄である原料を、水素ガスで還元して還元鉄を生成する還元工程S1Cと、還元工程S1Cの排ガスから水を除去することで、排ガスから水素ガスを分離する脱水工程S3Cと、COガス及びメタンガスの混合ガスである冷却ガスで還元鉄を炭化しつつ冷却する冷却工程S2Cと、石炭を乾留して石炭乾留ガスを製造する石炭乾留工程S7と、冷却工程S2Cの排ガスから水を分離する別の脱水工程(第2の脱水工程)S6と、脱水された冷却排ガスおよび石炭乾留ガスを水素ガスと、COガス及びメタンガスの混合ガスと、COガスと、に分離する分離工程4Cとを有する。分離された水素ガスおよび混合ガスは、それぞれ、還元ガスおよび冷却ガスの一部又は全部として循環される。また、COガスは、石炭乾留工程S7において用いられる。
 第4実施形態の還元鉄の製造方法における還元工程S1Cおよび脱水工程S3Cは、第1実施形態の還元鉄の製造方法の還元工程S1および脱水工程S3と同じである。
 第4実施形態の還元鉄の製造方法における冷却工程S2Cでは、メタンガスとCOガスの混合ガスで冷却する。冷却ガスは、分離工程S4Cで分離されたメタンガスとCOガスの混合ガスである。冷却工程S2Cに導入される時の混合ガスの温度は0~100℃、吹き込み量は0Nm/t-DRI超400Nm/t-DRI以下である。冷却工程S2Cでは、還元鉄が混合ガスにより冷却及び炭化される。この時、式(2)および(3)の炭化反応が同時に進行する。還元鉄の金属化率は70~98%であり、還元鉄に含まれる炭素量は、還元鉄の総質量に対して0質量%超4.5質量%以下である。
 さらに、冷却ガスには、元素として酸素と水素が共存するので、たとえば式(4)によって、水の生成も並行して進行する。第4実施形態の還元鉄の製造方法は、この水を系外に排出するために、冷却排ガスから水を分離する別の脱水工程(第2の脱水工程)S6を有する。
   CO+H→HO+CO  (4)
 分離工程S4Cでは、第2の脱水工程S6後の冷却排ガスおよび石炭乾留工程S7で製造された石炭乾留ガスを水素ガスと、メタンガスおよびCOガスの混合ガスと、COガスと、に分離する。分離工程S4Cは、脱水された冷却排ガスおよび石炭乾留ガスを分離する単一又は複数の工程を含む。分離には、例えば膜分離法を採用できる。単一の工程で、脱水された冷却排ガス(第2の脱水工程S6後の冷却排ガス)および石炭乾留ガスから、水素ガスとメタンガスおよびCOガスの混合ガスとCOガスと、に分離してもよい。複数の工程で、脱水された冷却排ガスおよび石炭乾留ガスから、水素ガスとメタンガスおよびCOガスの混合ガスとCOガスと、に分離してもよい。
 複数の工程で分離する場合は、第1の工程で、脱水された冷却排ガスおよび石炭乾留ガスからCOガスのみを分離する。第2の工程で、COガスを分離し残ったガス(第1残存ガス)からCOガスを分離する。第3の工程で、第1残存ガスからCOガスを分離して残ったガス(第2残存ガス)からメタンガスを分離する。第4の工程で、第2残存ガスからメタンガスを分離して残ったガス(第3残存ガス)から水素ガスを分離する。COガスとメタンガスとは混合して混合ガスとして使用する。第1の工程のCOガスの分離は化学吸着法で分離し、第2の工程~第4の工程は圧力変動吸着法で分離する等、分離方法を変更しても良い。
 石炭乾留ガスは、例えばコークス炉ガスである。膜分離時の圧力は1.0~2.0MPaであり、温度は0~100℃である。分離された混合ガスは冷却ガスとして、水素ガスは還元ガスとして、それぞれ循環される。COガスは、石炭乾留工程S7において、分離工程S4Cで分離されたCOガスを用いて石炭乾留ガスを製造する。
 第4実施形態の還元鉄の製造方法は、第1実施形態の還元鉄の製造方法、第2実施形態の還元鉄の製造方法において、さらに、石炭を乾留して石炭乾留ガスを製造する石炭乾留工程S7を有する。石炭の乾留は、たとえばコークス炉を用いて石炭を1100℃まで加熱して石炭中の揮発成分をガス化してチャー又はコークスを得る操作である。石炭乾留ガスは、石炭を乾留した際に発生するガスであり、水素ガス、メタンガス、COガスを含む。石炭乾留ガスは、概ねH:50vol%、CH:30vol%、CO:8vol%を含む。
 第4実施形態の還元鉄の製造方法は、石炭乾留工程S7を有して系内で還元ガスおよび冷却ガスを製造することができる。
 更に、石炭の種類を変えることで、石炭乾留ガス中の水素ガス等の比率を調整できる。例えば、褐炭等の石炭化度の低い石炭ほど水素ガスの含有率が大きくなる。従って、石炭の種類を調整することで、還元ガスおよび冷却ガスの両方を石炭乾留ガスのみから供給可能となる。
(第5実施形態の還元鉄の製造方法)
 本発明の還元鉄の製造方法は、一のシャフト炉を用いて行うのがよい。図5に示すように、シャフト炉は、底部25Aから順に、底部25Aに炭化・冷却された還元鉄を排出する還元鉄排出部25、冷却ガス吹込口26、冷却ガス排出口27、還元ガス吹込口28、還元ガス排出口29、および頂部24Aに前記酸化鉄である原料を装入する原料装入部24を備える。
 冷却ガス吹込口26と冷却ガス排出口27の間の冷却帯で冷却工程S2が行われる。冷却工程S2において、冷却ガス吹込口26と冷却ガス排出口27との間の冷却帯で還元鉄を、前記冷却ガスで炭化しつつ冷却する。還元ガス吹込口28と還元ガス排出口29との間の還元帯で還元工程S1が行われる。還元工程S1において、還元ガス吹込口28と還元ガス排出口29との間の還元帯で酸化鉄である原料を、還元ガス(水素ガス)で還元して還元鉄を生成する。
 具体的にシャフト炉を用いた実施形態では、還元帯の下部から加熱された水素ガスを吹き込む一方で、冷却帯の下部からメタンガスを吹き込む。シャフト炉の上部から装入された原料である酸化鉄は、還元帯で水素ガスにより還元されながら下降する。
 一方、水素ガスは酸化鉄を還元しながら上昇する。未反応の水素ガス及び酸化鉄の還元で生じた水(水蒸気)は還元帯の上部から還元排ガスとして抜き出される。還元排ガスは冷却され、水素ガスと水(液体)とに分離される。水素ガスは還元ガスとして循環される。
 冷却帯では、還元鉄がメタンガスにより冷却及び炭化されながら下降する。そして、一部炭化された還元鉄は、冷却帯の下部から排出される。一方、メタンガスは還元鉄を炭化しながら上昇する。この際、還元鉄とメタンガスとの反応により水素ガスが発生する。冷却帯の上部から水素ガス及び未反応のメタンガスとの混合ガスである冷却排ガスを抜き出す。冷却排ガスは、水素ガスとメタンガスに分離される。メタンガスは冷却ガスとして、水素ガスは還元ガスとしてそれぞれ循環される。
 本発明の還元鉄の製造方法は、前述のように一つのシャフト炉を還元帯と冷却帯に区分して用いて行う以外にも、2つのシャフト炉を直列に用いて行うこともできるし、実施例で示すように、一つのシャフト炉を2段階に用いて行うこともできる。また、シャフト炉に限らず、多段の流動層を用いて行うこともできる。
 <2.直接還元システムの構成>
 以下、図5に基づいて、一のシャフト炉を還元帯と冷却帯に区分して用いて行う方法を詳細に説明する。図5は、本実施形態に係る直接還元システム10-1の構成を示す図である。直接還元システム10-1は、本実施形態に係る還元鉄の製造方法を実施するためのシステムであり、シャフト炉20と、加熱炉30と、冷却装置40と、コンプレッサー50と、冷却装置60と、コンプレッサー70と、分離装置80とを備える。シャフト炉20は、上述した原料装入部24、還元鉄排出部25、冷却ガス吹込口26、冷却ガス排出口27、還元ガス吹込口28および還元ガス排出口29を備える。
 シャフト炉20は、還元帯21と、遷移帯22と、冷却帯23とに区分される。還元帯21は、還元ガス吹込口28の中心と還元ガス排出口29の中心との間の領域であって、酸化鉄原料が鉄に還元される領域である。遷移帯22は、冷却ガス排出口27の中心と還元ガス吹込口28の中心との間の領域であって、還元帯及び冷却帯を分離するマテリアルシール領域である。冷却帯23は、冷却ガス吹込口26の中心と冷却ガス排出口27の中心との間の領域であって、還元帯で生成した還元鉄を炭化しながら冷却する領域である。
 還元帯21では、還元帯の下部の還元ガス吹込口28から加熱された水素ガスが還元ガスとして吹き込まれる。水素ガスは、系外から供給されるガスの他、後述する工程で循環されるガスが含まれる。系外から供給される水素ガスは、例えば水の電気分解により製造される水素ガスである。
 シャフト炉20の頂部の原料装入部24から原料である酸化鉄が装入される。酸化鉄は還元帯21内を下降しながら水素ガスにより還元されて還元鉄となる。
 未反応の水素ガスと酸化鉄の還元で発生した水(水蒸気)の混合ガスは、還元帯21の上部の還元ガス排出口29から抜き出される。遷移帯22を経て、還元鉄は、還元帯21から冷却帯23に下降する。
 冷却帯23では、冷却帯23の下部の冷却ガス吹込口26からメタンガスが冷却ガスとして吹き込まれる(冷却ガス吹き込み工程)。
 一方、メタンガスは還元鉄を炭化しながら上昇する。還元鉄とメタンガスとの反応により水素ガスが発生する。冷却帯の上部の冷却ガス排出口27から水素ガス及び未反応のメタンガスの冷却排ガスが抜き出される(冷却排ガス抜き出し工程)。
 加熱炉30は、水素ガスを加熱した後、還元帯21の下部に吹き込む。冷却装置40は、還元帯21の上部から抜き出された還元排ガス(未反応の水素ガスと酸化鉄の還元で発生した水(水蒸気)の混合ガス)を冷却することで脱水し、水素ガスを分離する(脱水工程S3)。水素ガスはコンプレッサー50により圧縮された後、加熱炉30に導入される。すなわち、水素ガスは還元ガスとして循環される。
 冷却帯の上部から抜き出された冷却排ガス(冷却帯で発生した水素ガスと未反応のメタンガスの混合ガス)は、冷却装置60により冷却される。ついで、冷却排ガスは、コンプレッサー70で圧縮される。ついで、冷却排ガスは、分離装置80に導入される。分離装置80は、例えば膜分離法等によって冷却排ガスを水素ガスとメタンガスとに分離する(分離工程S4)。メタンガスは冷却ガスとして、水素ガスは還元ガスとしてそれぞれ循環される。すなわち、メタンガスは冷却帯23の下部に吹き込まれ、水素ガスは加熱炉30に導入される。
 <3.本実施形態に係る還元鉄の製造方法>
 次に、上述した直接還元システム10-1を使用した還元鉄の製造方法について説明する。まず、水素ガスを加熱炉30で加熱した後、還元帯21の下部に導入する。水素ガスの温度は概ね700~1000℃である。また、水素ガスの吹き込み量は概ね1000~2200Nm/t-DRIである。一方で、還元帯21の上部から原料である酸化鉄が装入される。酸化鉄は還元帯21内を下降しながら水素ガスにより還元されて還元鉄となる。水素ガスは、還元帯21を上昇しながら酸化鉄を還元する。この時の化学反応式は上述した式(1)で示される。金属化率は概ね65~98%となる。
 未反応の水素ガスと酸化鉄の還元で発生した水(水蒸気)の混合ガスの還元排ガスは、還元帯21の上部から抜き出される。冷却装置40は、還元帯21の上部から抜き出された還元排ガスを冷却して水(液体)と水素ガスとに分離する。水素ガスはコンプレッサー50により圧縮された後、加熱炉30に導入される。すなわち、水素ガスは還元ガスとして循環される。
 一方、還元鉄は、遷移帯22を経て冷却帯23に下降する。冷却帯23の下部からメタンガスが冷却ガスとして吹き込まれる(冷却ガス吹き込み工程)。メタンガスの温度は概ね0~100℃、吹き込み量は0Nm/t-DRI超400Nm/t-DRI以下とされる。冷却帯23では、還元鉄がメタンガスにより冷却及び炭化されながら下降する。
 そして、炭化された還元鉄は、冷却帯の下部から排出される。還元鉄の金属化率は概ね70~98%であり、還元鉄に含まれる炭素量は、還元鉄の総質量に対して概ね0質量%超4.5質量%以下である。
 一方、メタンガスは還元鉄を炭化しながら上昇する。還元鉄とメタンガスとの反応により水素ガスが発生する。冷却帯23の上部から水素ガス及び未反応のメタンガスの冷却排ガスが抜き出される(冷却排ガス抜き出し工程)。
 冷却帯23の上部から抜き出された冷却排ガスは、冷却装置60により冷却される(冷却工程)。ついで、冷却排ガスは、コンプレッサー70で圧縮される。ついで、冷却排ガスは、分離装置80に導入される。分離装置80は、例えば膜分離法等によって冷却排ガスを水素ガスとメタンガスに分離する(分離工程)。分離工程時の圧力は概ね1.0~2.0MPaであり、温度は0~100℃である。メタンガスは冷却ガスとして、水素ガスは還元ガスとしてそれぞれ循環される。すなわち、メタンガスは冷却帯23の下部に吹き込まれ、水素ガスは加熱炉30に導入される。
 以上説明した通り、本実施形態によれば、水素ガスを含む還元ガスをシャフト炉の還元ガスとして使用した場合であっても、還元鉄を加炭することが可能となる。また、分離工程で分離されたメタンガスを冷却ガスとして循環するので、メタンガスを効率よく利用することができる。また、分離工程で分離された水素ガスを還元帯21に吹き込むので、水素ガスを効率よく利用することができる。また、COの発生量はゼロである。
 また、冷却ガスとしてメタンガスを使用するので、メタンガスの吸熱反応により冷却ガス量が低減される。結果として、コンプレッサー70を縮小することができる。また、系内で生じた水素ガスを還元ガスとして循環するので、系外から供給される水素ガス量を低減することができる。また、還元鉄を炭化することで還元鉄の再酸化を抑制することができる。また、還元鉄に炭素が含まれるので、電気炉における消費エネルギーが低減される(電気炉における還元鉄の溶解が促進される。少量の炭素で急激に溶解性が上昇する。)。
 次に、本実施形態の実施例を説明する。以下の実施例では、非特許文献2に記載の高さ4m、径100mmΦの断熱型向流移動層シャフト炉シミュレーター(以下、シャフト型試験装置、単に装置という)を用いて、還元工程と冷却工程を分けて行った。なお、以下に説明する実施例は本発明の一例であり、本発明は以下の実施例に限定されるものではない。
(実施例1)
 実施例1では、シャフト型試験装置を用いて、酸化鉄原料として、ブラジル産酸性ペレット(鉄分:65.9%、SiO:3.1%)を頂部から供給して、以下の還元処理を行った。なお、頂部は装置の一番上を意味する。まず、表1に示す組成のガス(水素ガス、COガス、COガスの混合ガス)を装置下部から吹き込んだ。装置下部は、底部より0.75m上の位置である。表1のInletは装置下部に吹き込まれたガス(入力ガス)の組成を示し、Outletは装置上部から排出されたガス(出力ガス)の組成を示す。装置上部は、装置頂部から0.25mより下の位置を意味する。なお、表1及び後述する各表の組成の数値はガス全体に対する各成分の体積%を示す。また、ガスの組成はガスクロマトグラフィー質量分析装置(GC/MS)を用いて測定した。具体的には、GC/MSに各ガスを供給し、各ガスの成分を連続的に測定した。表中の数値はその平均値を示している。入力ガスの温度は950℃、流量は1400Nm/t-DRIとした。装置底部から排出される還元鉄の金属化率は96%であり、還元鉄中の炭素量は1.5質量%であった。装置低部は、装置の一番下を意味する。炭素量は、JIS G 1211-3、燃焼‐赤外線吸収法に準じて測定した。
Figure JPOXMLDOC01-appb-T000001
 次に、排出した還元鉄を再度シャフト型試験装置の頂部から供給し、表2Aに示す組成のガス(メタンガス)を装置下部から吹き込んだ。表2AのInletは装置下部に吹き込まれたガス(入力ガス)の組成を示し、Outletは装置上部から排出されたガスの組成を示す。入力ガスの温度は25℃であり、流量は150Nm/t-DRIとした。装置底部から排出された還元鉄の金属化率は97%であり、還元鉄中の炭素量は4.5質量%であった。冷却排ガスを、分離膜を用い水素ガスとメタンガスとに分離した。得られた分離ガスの各濃度を表2Bに示す。冷却排ガスを冷却してから分離を行った。分離して得られた水素ガスを表1の組成の還元ガスと混合し、酸化鉄を還元したところ、還元鉄の金属化率は96%であり、還元鉄中の炭素量は1.5質量%であった。同様に分離して得られたメタンガスを表2Aの冷却ガスと混合して、冷却したところ、還元鉄の金属化率は97%であり、還元鉄中の炭素量は4.5質量%であった。冷却工程での分離工程からのメタンガス量は冷却ガスの全体積に対して55vol%とし、新たに導入したメタンガス量は冷却ガスの全体積に対して45vol%とした。
 分離したガスを循環させて還元・冷却しているので、還元で本来供給すべき水素量を削減でき、エネルギー原単位の削減やコスト削減の効果が得られた。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 以上述べた通り、実施例1によれば、水素ガス(を主体とするガス)を還元ガスとして使用する場合であっても、炭素量4.5質量%の還元鉄を製造することができた。
(実施例2)
 実施例2では、実施例1と同様の原料を使用して、シャフト型試験装置を用いて以下の還元処理を行った。まず、表3に示す組成のガス、すなわち水素ガス(微量の窒素ガスを含む)を装置下部から吹き込んだ。表3のInletは装置下部に吹き込まれたガス(入力ガス)の組成を示し、Outletは装置上部から排出されたガス(出力ガス)の組成を示す。入力ガスの温度は980℃、流量は1200Nm/t-DRIとした。装置底部から排出された還元鉄の金属化率は85%であり、還元鉄中の炭素量は0.1質量%未満であった。
Figure JPOXMLDOC01-appb-T000004
 次に、排出された還元鉄を再度シャフト型試験装置に供給し、表4Aに示す組成のガス(メタンガス)を装置下部から吹き込んだ。表4AのInletは装置下部に吹き込まれたガス(入力ガス)の組成を示し、Outletは装置上部から排出されたガスの組成を示す。入力ガスの温度は30℃であり、流量は250Nm/t-DRIとした。装置底部から排出された還元鉄の金属化率は90%であり、還元鉄中の炭素量は4.0質量%であった。次に、冷却排ガスを、分離膜を用い水素ガスとメタンガスとに分離した。得られた分離ガスの各濃度を表4Bに示す。冷却排ガスを冷却してから分離を行った。得られた水素ガスを表3の組成の還元ガスと混合し、酸化鉄を還元したところ、還元鉄の金属化率は85%であり、還元鉄中の炭素量は0.1質量%未満であった。同様に分離して得られたメタンガスを表4Aの組成の冷却ガスと混合して、冷却したところ、還元鉄の金属化率は90%であり、還元鉄中の炭素量は4.0質量%であった。冷却工程での分離工程からのメタンガス量は冷却ガスの全体積に対して46vol%とし、新たに導入したメタンガス量は冷却ガスの全体積に対して54vol%とした。
 分離したガスを循環させて還元・冷却しているので、還元で本来供給すべき水素量を削減でき、エネルギー原単位の削減やコスト削減の効果が得られた。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 以上述べた通り、実施例2によれば、水素ガスを還元ガスとして使用する場合であっても、炭素量4.0質量%の還元鉄を製造することができた。
(実施例3)
 実施例3では、実施例1と同様の原料に対して、シャフト型試験装置を用いて以下の還元処理を行った。まず、表5に示す組成のガス、すなわち水素ガス(微量の窒素ガスを含む)を装置下部から吹き込んだ。表5のInletは装置下部に吹き込まれたガス(入力ガス)の組成を示し、Outletは装置上部から排出されたガス(出力ガス)の組成を示す。入力ガスの温度は980℃、流量は1200Nm/t-DRIとした。装置底部から排出された還元鉄の金属化率は85%であり、還元鉄中の炭素量は0.1質量%未満であった。
Figure JPOXMLDOC01-appb-T000007
 次に、排出した還元鉄を再度シャフト型試験装置に供給し、表6Aに示す組成のガス(COガス)を装置下部から吹き込んだ。表6AのInletは装置下部に吹き込まれたガス(入力ガス)の組成を示し、Outletは装置上部から排出されたガスの組成を示す。入力ガスの温度は30℃であり、流量は200Nm/t-DRIとした。装置底部から排出された還元鉄の金属化率は90%であり、還元鉄中の炭素量は3.5質量%であった。冷却排ガスを、分離膜を用いCOガスとCOガスとに分離した。得られた分離ガスの濃度を表6Bに示す。冷却排ガスを冷却してから分離を行った。分離して得られたCOを表6Aの組成の冷却ガスと混合し、還元鉄を冷却したところ、還元鉄の金属化率は90%であり、還元鉄中の炭素量は3.5質量%であった。冷却工程での分離工程からのCOガス量は冷却ガスの全体積に対して55vol%とし、新たに導入したCOガス量は冷却ガスの全体積に対して45vol%とした。
 分離したガスを循環させて冷却しているので、還元で本来供給すべきCO量を削減でき、エネルギー原単位の削減やコスト削減の効果が得られた。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 以上述べた通り、実施例3によれば、水素ガスを還元ガスとして使用する場合であっても、炭素量3.5質量%の還元鉄を製造することができた。
(実施例4)
 実施例4では、実施例1と同様の原料に対して、シャフト型試験装置を用いて以下の還元処理を行った。まず、表7に示す組成のガス、すなわち水素ガス(微量の窒素ガスを含む)を装置下部から吹き込んだ。表7のInletは装置下部に吹き込まれたガス(入力ガス)の組成を示し、Outletは装置上部から排出されたガス(出力ガス)の組成を示す。入力ガスの温度は980℃、流量は1200Nm/t-DRIとした。装置下部から排出された還元鉄の金属化率は85%であり、還元鉄中の炭素量は0.1質量%未満であった。
Figure JPOXMLDOC01-appb-T000010
 次に、排出した還元鉄を再度シャフト型試験装置に供給し、表8Aに示す組成のガス(メタンガスとCOガスの混合ガス)を装置下部から吹き込んだ。表8AのInletは装置下部に吹き込まれたガス(入力ガス)の組成を示し、Outletは装置上部から排出されたガスの組成を示す。入力ガスの温度は30℃であり、流量は150Nm/t-DRIとした。装置底部から排出される還元鉄の金属化率は91%であり、還元鉄中の炭素量は3.0質量%であった。冷却排ガスを、分離膜を用い水素ガスと、COガスと、COガスと、メタンガスと、に分離した。得られた分離ガスの各濃度を表8Bに示す。冷却排ガスを冷却してから分離を行った。HOは冷却排ガスを冷却した際に液体の水となり分離される。分離した水素ガスを表7Aの組成の還元ガスに導入し、酸化鉄を還元したところ、還元鉄の金属化率は85%であり、還元鉄中の炭素量は0.1質量%未満であった。分離して得られたCOガスおよびメタンガスの混合ガスを表8Aの組成のガスと混合し、還元鉄を冷却したところ、還元鉄の金属化率は91%であり、還元鉄中の炭素量は3.0質量%であった。分離工程で得られた混合ガス量は冷却ガスの全体積に対して55vol%とし、新たに導入した表8Aの混合ガス量は、冷却ガスの全体積に対して45vol%とした。
 分離したガスを循環させて還元・冷却しているので、還元で本来供給すべきCO量を削減でき、エネルギー原単位の削減やコスト削減の効果が得られた。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 以上述べた通り、実施例4によれば、水素ガスを還元ガスとして使用する場合であっても、炭素量3.0質量%の還元鉄を製造することができた。
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
10-1  直接還元システム
20  シャフト炉
30  加熱炉
40  冷却装置
50  コンプレッサー
60  冷却装置
70  コンプレッサー
80  分離装置

Claims (5)

  1.  酸化鉄である原料を、水素ガスを含む還元ガスで還元して還元鉄を生成する還元工程と、
     前記還元工程の排ガスから水を除去することで、前記排ガスから水素ガスを分離する脱水工程と、
     前記還元鉄を、炭素を元素として含む冷却ガスで炭化しつつ冷却する冷却工程と、
     前記冷却工程の排ガスから水素ガスとメタンガスと分離する分離工程と、
    を有し、
     前記冷却ガスがメタンガスであり、
     前記還元ガスが、前記脱水工程で分離された前記水素ガスと、前記分離工程で分離された前記水素ガスと、を更に含み、
     前記冷却ガスが、前記分離工程で分離された前記メタンガスを更に含む、還元鉄の製造方法。
  2.  酸化鉄である原料を、水素ガスを含む還元ガスで還元して還元鉄を生成する還元工程と、前記還元工程の排ガスから水を除去することで、前記排ガスから水素ガスを分離する脱水工程と、前記還元鉄を、炭素を元素として含む冷却ガスで炭化しつつ冷却する冷却工程と、前記冷却工程の排ガスからCOガスとCOとを分離する分離工程と、を有し、
     前記冷却ガスがCOガスを含み、
     前記還元ガスが、前記脱水工程で分離された前記水素ガスを含み、
     前記冷却ガスが、前記分離工程で分離された前記COガスを更に含む、還元鉄の製造方法。
  3.  請求項2において、COガスでチャー又はコークスをガス化してCOガスを製造する炭素ガス化工程を更に有し、
     前記炭素ガス化工程で供されるCOガスが前記分離工程で分離された前記COガスを含み、
     前記冷却ガスが、前記炭素ガス化工程で製造された前記COガスである、還元鉄の製造方法。
  4.  酸化鉄である原料を、水素ガスを含む還元ガスで還元して還元鉄を生成する還元工程と、前記還元工程の排ガスから水を除去することで、前記排ガスから水素ガスを分離する脱水工程と、前記還元鉄を、炭素を元素として含む冷却ガスで炭化しつつ冷却する冷却工程と、前記冷却工程の排ガスから水を分離する第2の脱水工程と、石炭を乾留して石炭乾留ガスを製造する石炭乾留工程と、前記第2の脱水工程後の排ガスおよび前記石炭乾留ガスから水素ガスとCOガス及びメタンガスの混合ガスと、COガスと、を分離する単一又は複数の分離工程と、を有し、
     前記還元ガスが、前記脱水工程で分離された前記水素ガスと、前記分離工程で分離された前記水素ガスと、をさらに含み、
     前記冷却ガスが、前記分離工程で分離された前記混合ガスであり、
     前記石炭乾留工程において、前記分離工程で分離された前記COガスを用いて前記石炭乾留ガスを製造する、還元鉄の製造方法。
  5.  底部から順に、前記底部に前記炭化しつつ冷却された還元鉄を排出する還元鉄排出部、冷却ガス吹込口、冷却ガス排出口、還元ガス吹込口、還元ガス排出口および、頂部に前記酸化鉄である原料を装入する原料装入部を有するシャフト炉を用い、
     前記還元工程において、前記還元ガス吹込口と還元ガス排出口との間の還元帯で前記原料を、前記還元ガスで還元して前記還元鉄を生成し、
     前記冷却工程において、前記冷却ガス吹込口と前記冷却ガス排出口との間の冷却帯で前記還元鉄を、前記冷却ガスで炭化しつつ冷却する、請求項1~4のいずれか1項に記載の還元鉄の製造方法。
PCT/JP2022/038301 2021-10-14 2022-10-14 還元鉄の製造方法 WO2023063404A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020247011672A KR20240064681A (ko) 2021-10-14 2022-10-14 환원철의 제조 방법
EP22881099.0A EP4417711A1 (en) 2021-10-14 2022-10-14 Method for producing reduced iron
CN202280068644.7A CN118202071A (zh) 2021-10-14 2022-10-14 还原铁的制造方法
MX2024004385A MX2024004385A (es) 2021-10-14 2022-10-14 Metodo para producir hierro de reduccion directa.
CA3234384A CA3234384A1 (en) 2021-10-14 2022-10-14 Method for producing direct reduction iron
JP2023554636A JPWO2023063404A1 (ja) 2021-10-14 2022-10-14
AU2022368159A AU2022368159A1 (en) 2021-10-14 2022-10-14 Method for producing direct reduced iron

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-168721 2021-10-14
JP2021168721 2021-10-14

Publications (1)

Publication Number Publication Date
WO2023063404A1 true WO2023063404A1 (ja) 2023-04-20

Family

ID=85988323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038301 WO2023063404A1 (ja) 2021-10-14 2022-10-14 還元鉄の製造方法

Country Status (9)

Country Link
EP (1) EP4417711A1 (ja)
JP (1) JPWO2023063404A1 (ja)
KR (1) KR20240064681A (ja)
CN (1) CN118202071A (ja)
AU (1) AU2022368159A1 (ja)
CA (1) CA3234384A1 (ja)
MX (1) MX2024004385A (ja)
TW (1) TW202325858A (ja)
WO (1) WO2023063404A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54126618A (en) * 1978-02-21 1979-10-02 Hsieh Jack Method and apparatus for directly reducing iron ore
JPS5681609A (en) * 1979-09-04 1981-07-03 Hylsa Sa Method of reducing pellet iron ore to sponge iron particle
JPS59123708A (ja) * 1982-12-27 1984-07-17 Sumitomo Metal Ind Ltd シヤフト炉による還元鉄製造法
JPH08120314A (ja) 1994-10-20 1996-05-14 Cvg Siderurgica Del Orinoco Ca 炭化鉄の製造方法
JPH11343512A (ja) 1998-04-06 1999-12-14 Orinoco Iron Ca 炭化鉄の製法
JP2011140694A (ja) * 2010-01-07 2011-07-21 Sumitomo Metal Ind Ltd 予備還元焼結鉱の製造方法およびこれを利用した高炉操業方法
CN110562913A (zh) * 2019-09-30 2019-12-13 内蒙古大学 一种利用甲烷和水为原料生产氢气的方法
JP2021168721A (ja) 2020-04-13 2021-10-28 株式会社サンセイアールアンドディ 遊技機

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222423A (ja) 1992-02-14 1993-08-31 Nippon Steel Corp セメンタイト製造法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54126618A (en) * 1978-02-21 1979-10-02 Hsieh Jack Method and apparatus for directly reducing iron ore
JPS5681609A (en) * 1979-09-04 1981-07-03 Hylsa Sa Method of reducing pellet iron ore to sponge iron particle
JPS59123708A (ja) * 1982-12-27 1984-07-17 Sumitomo Metal Ind Ltd シヤフト炉による還元鉄製造法
JPH08120314A (ja) 1994-10-20 1996-05-14 Cvg Siderurgica Del Orinoco Ca 炭化鉄の製造方法
JPH11343512A (ja) 1998-04-06 1999-12-14 Orinoco Iron Ca 炭化鉄の製法
JP2011140694A (ja) * 2010-01-07 2011-07-21 Sumitomo Metal Ind Ltd 予備還元焼結鉱の製造方法およびこれを利用した高炉操業方法
CN110562913A (zh) * 2019-09-30 2019-12-13 内蒙古大学 一种利用甲烷和水为原料生产氢气的方法
JP2021168721A (ja) 2020-04-13 2021-10-28 株式会社サンセイアールアンドディ 遊技機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MIZUTANI ET AL., CAMP-ISIJ, vol. 33, 2020, pages 483

Also Published As

Publication number Publication date
TW202325858A (zh) 2023-07-01
MX2024004385A (es) 2024-04-29
CN118202071A (zh) 2024-06-14
AU2022368159A1 (en) 2024-05-02
KR20240064681A (ko) 2024-05-13
JPWO2023063404A1 (ja) 2023-04-20
EP4417711A1 (en) 2024-08-21
CA3234384A1 (en) 2023-04-20

Similar Documents

Publication Publication Date Title
US20220235426A1 (en) Method and system for producing steel or molten-iron-containing materials with reduced emissions
US8940076B2 (en) Method for producing direct reduced iron with limited CO2 emissions
US9328395B2 (en) Method and apparatus for producing direct reduced iron utilizing a source of reducing gas comprising hydrogen and carbon monoxide
CN102037145B (zh) 通过加入碳氢化合物再循环高炉煤气而熔炼生铁的工艺
EA017978B1 (ru) Способ получения железа прямого восстановления
CN108474048B (zh) 通过使用合成气来生产高碳dri的方法和系统
KR101321823B1 (ko) 일산화탄소 및 수소를 포함하는 합성가스 제조장치 및 제조방법
CN115427588A (zh) 炼钢设备和还原铁的制造方法
TWI803522B (zh) 用於製造熱合成氣(尤其用於鼓風爐操作)之方法
CN117897506A (zh) 使用气体电加热器使铁矿石系统的直接还原中的废还原气体再循环的方法
JP2012528246A (ja) 鉄と、co及びh2含有の粗製合成ガスとを同時に製造する方法
WO2023063404A1 (ja) 還元鉄の製造方法
WO2023036474A1 (en) Method for producing direct reduced iron for an iron and steelmaking plant
CN117280047A (zh) 用于直接还原铁矿石的方法
WO2022053537A1 (en) Method for operating a blast furnace installation
CN112662824A (zh) 一种高效利用冶金废气的高炉富氢冶炼工艺
CN109652604A (zh) 一种利用铁氧化物两步法制备碳化铁的方法
RU2808735C1 (ru) Линия производства восстановленного железа и способ получения восстановленного железа
JP7272312B2 (ja) 還元鉄の製造方法
WO2024135696A1 (ja) 還元鉄の製造方法
AU2023246848A1 (en) Reduction of a metal oxide-containing material on the basis of ammonia nh3
CN118127257A (zh) 一种生物质绿氢还原铁负碳冶炼的装置及方法
CN117337337A (zh) 用于制造直接还原铁的方法
CN117737324A (zh) 一种副产煤气制取高温富氢煤气高炉炼铁工艺及系统
TW201723194A (zh) 結合藉由饋入回收之二氧化碳的二氧化碳及蒸汽重組器之直接還原鐵之製造方法及製造系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22881099

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023554636

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18697769

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: AU2022368159

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 20247011672

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2024/004385

Country of ref document: MX

Ref document number: 3234384

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 202280068644.7

Country of ref document: CN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024006945

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2022368159

Country of ref document: AU

Date of ref document: 20221014

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022881099

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022881099

Country of ref document: EP

Effective date: 20240514

ENP Entry into the national phase

Ref document number: 112024006945

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20240409