WO2023063074A1 - トラッカモジュール - Google Patents

トラッカモジュール Download PDF

Info

Publication number
WO2023063074A1
WO2023063074A1 PCT/JP2022/035998 JP2022035998W WO2023063074A1 WO 2023063074 A1 WO2023063074 A1 WO 2023063074A1 JP 2022035998 W JP2022035998 W JP 2022035998W WO 2023063074 A1 WO2023063074 A1 WO 2023063074A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
circuit
inductor
module substrate
power inductor
Prior art date
Application number
PCT/JP2022/035998
Other languages
English (en)
French (fr)
Inventor
孝紀 上嶋
正也 三浦
武 小暮
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202280068418.9A priority Critical patent/CN118160226A/zh
Publication of WO2023063074A1 publication Critical patent/WO2023063074A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits

Definitions

  • the present invention relates to tracker modules.
  • Patent Document 1 discloses a power supply modulation circuit capable of supplying a power amplifier with a power supply voltage dynamically adjusted over time in accordance with a high frequency signal.
  • the power supply modulation circuit (power supply circuit) of Patent Document 1 includes a magnetic regulation stage (pre-regulator circuit) that adjusts the DC voltage using a power inductor. Modularization of such a power supply circuit may cause problems such as deterioration of electrical characteristics due to noise or EMI (Electromagnetic Interference).
  • EMI Electromagnetic Interference
  • the present invention provides a tracker module capable of suppressing characteristic deterioration and/or EMI due to noise.
  • a tracker module comprises a module substrate, at least one integrated circuit disposed on the module substrate, and a power inductor disposed on the module substrate, wherein the at least one integrated circuit comprises a power inductor at least one switch included in a pre-regulator circuit configured to convert an input voltage to a first voltage using a switched capacitor circuit configured to generate a plurality of discrete voltages from the first voltage At least one switch and at least one switch included in an output switch circuit configured to selectively output at least one of the plurality of discrete voltages based on the envelope signal.
  • a tracker module comprises a module substrate, at least one integrated circuit disposed on the module substrate, and a power inductor disposed on the module substrate, wherein the at least one integrated circuit comprises a power inductor at least one switch included in a pre-regulator circuit configured to convert an input voltage to a first voltage using a switched capacitor circuit configured to generate a plurality of discrete voltages from the first voltage at least one switch and an output switch circuit having a control terminal connected to the control circuit and configured to selectively output at least one of the plurality of discrete voltages.
  • a switch
  • a tracker module comprises a module substrate, at least one integrated circuit disposed on the module substrate, and a power inductor disposed on the module substrate, wherein the at least one integrated circuit is a pre-regulator At least one switch included in the circuit, at least one switch included in the switched capacitor circuit, and at least one switch included in the output switch circuit, the switched capacitor circuit connecting the first electrode and the second electrode.
  • At least one switch included in the switched capacitor circuit comprises a first switch, a second switch, a third switch, a fourth switch , a fifth switch, a sixth switch, a seventh switch and an eighth switch, wherein one end of the first switch and one end of the third switch are connected to the first electrode, one end of the second switch and one end of the fourth switch.
  • the other end of the fourth switch is connected to the other end of the eighth switch
  • the output switch circuit includes an output terminal, and at least one switch included in the output switch circuit is connected to the other end of the first switch, the second a ninth switch connected between the other end of the switch, the other end of the fifth switch, the other end of the sixth switch, and the output terminal; the other end of the third switch, the other end of the seventh switch, and the output terminal; and a tenth switch connected between the pre-regulator circuit including the power inductor and the input terminal, at least one switch included in the pre-regulator circuit being connected between the input terminal and one end of the power inductor.
  • a connected eleventh switch a connected eleventh switch; and a twelfth switch connected between one end of the power inductor and ground, the other end of the power inductor being the other end of the first switch, the other end of the second switch, It is connected to the other end of the fifth switch and the other end of the sixth switch.
  • FIG. 1 is a circuit configuration diagram of a communication device according to an embodiment.
  • FIG. 2 is a circuit configuration diagram of a pre-regulator circuit, a switched capacitor circuit, an output switch circuit, and a filter circuit according to the embodiment.
  • FIG. 3A is a graph showing power supply voltage delivered by digital envelope tracking.
  • FIG. 3B is a graph showing the power supply voltage delivered by analog envelope tracking.
  • 4 is a plan view of the tracker module according to the first embodiment.
  • FIG. FIG. 5 is a plan view of the tracker module according to the first embodiment;
  • FIG. 6 is a cross-sectional view of the tracker module according to the first embodiment.
  • FIG. 7 is a cross-sectional view of the tracker module according to the first embodiment.
  • FIG. 8 is a plan view of a tracker module according to the second embodiment.
  • FIG. 9 is a cross-sectional view of a tracker module according to the second embodiment.
  • FIG. 10 is a plan view of a tracker module according to the third embodiment;
  • FIG. 11 is a plan view of a tracker module according to the fourth embodiment.
  • FIG. 12 is a plan view of a tracker module according to the fifth embodiment.
  • FIG. 13 is a cross-sectional view of a tracker module according to another embodiment.
  • each drawing is a schematic diagram that has been appropriately emphasized, omitted, or adjusted in proportion to show the present invention, and is not necessarily strictly illustrated, and the actual shape, positional relationship, and ratio may differ.
  • substantially the same configurations are denoted by the same reference numerals, and redundant description may be omitted or simplified.
  • the x-axis and the y-axis are axes orthogonal to each other on a plane parallel to the main surface of the module substrate.
  • the x-axis is parallel to the first side of the module substrate
  • the y-axis is parallel to the second side orthogonal to the first side of the module substrate.
  • the z-axis is an axis perpendicular to the main surface of the module substrate, and its positive direction indicates an upward direction and its negative direction indicates a downward direction.
  • connection includes not only direct connection with connection terminals and/or wiring conductors, but also electrical connection via other circuit elements.
  • Connected between A and B means connected to both A and B between A and B; It includes parallel connection (shunt connection) between the path and the ground.
  • the component is placed on the board includes the component being placed on the main surface of the board and the component being placed inside the board.
  • the component is arranged on the main surface of the board means that the component is arranged in contact with the main surface of the board, and that the component is arranged above the main surface without contacting the main surface. (eg, a component is laminated onto another component placed in contact with a major surface).
  • the component is arranged on the main surface of the substrate may include that the component is arranged in a concave portion formed in the main surface.
  • Components are located within a substrate means that, in addition to encapsulating components within a module substrate, all of the components are located between major surfaces of the substrate, but some of the components are located between major surfaces of the substrate. Including not covered by the substrate and only part of the component being placed in the substrate.
  • a plan view of the module board means that an object is orthographically projected onto the xy plane from the positive side of the z-axis.
  • a overlaps B in plan view means that the area of A orthogonally projected onto the xy plane overlaps the area of B orthogonally projected onto the xy plane.
  • a circuit component means a component including active elements and/or passive elements.
  • circuit components include active components such as transistors or diodes, and passive components such as inductors, transformers, capacitors or resistors, but do not include electromechanical components such as terminals, connectors or wiring.
  • “C is arranged closer to A than B” means that the distance between A and C is shorter than the distance between A and B.
  • the distance between A and B means the shortest distance between A and B.
  • the distance between A and B means the length of the shortest line segment among multiple line segments connecting an arbitrary point on the surface of A and an arbitrary point on the surface of B. .
  • FIG. 1 is a circuit configuration diagram of a communication device 7 according to this embodiment.
  • the communication device 7 includes a power supply circuit 1, power amplifiers (PA) 2A and 2B, filters 3A and 3B, a PA control circuit 4, an RFIC ( Radio Frequency Integrated Circuit) 5 and an antenna 6 are provided.
  • PA power amplifiers
  • RFIC Radio Frequency Integrated Circuit
  • Power supply circuit 1 can supply power supply voltages VETA and VETB to power amplifiers 2A and 2B, respectively, in digital envelope tracking (ET) mode.
  • the voltage level of each of the power supply voltages V ETA and V ETB is selected from a plurality of discrete voltage levels based on a digital control signal corresponding to the envelope signal and varies over time.
  • An envelope signal is a signal that indicates the envelope value of a modulated wave (high frequency signal).
  • the envelope value is represented by the square root of (I 2 +Q 2 ), for example.
  • (I, Q) represent constellation points.
  • a constellation point is a point representing a signal modulated by digital modulation on a constellation diagram. Details of the digital ET mode will be described later with reference to FIGS. 3A and 3B.
  • the power supply circuit 1 supplies the two power amplifiers 2A and 2B with the two power supply voltages VETA and VETB, respectively, but the same power supply voltage may be supplied to a plurality of power amplifiers. . Also, the power supply circuit 1 may supply the power supply voltage to only one power amplifier.
  • the power supply circuit 1 includes a pre-regulator circuit 10, a switched capacitor circuit 20, output switch circuits 30A and 30B, filter circuits 40A and 40B, and a DC power supply 50.
  • the pre-regulator circuit 10 includes a power inductor and a switch.
  • a power inductor is an inductor used for stepping up and/or stepping down a DC voltage.
  • a power inductor is placed in series with the DC path.
  • the power inductor may be connected (arranged in parallel) between the series path and the ground.
  • the pre-regulator circuit 10 can convert the input voltage to the first voltage using a power inductor.
  • Such a pre-regulator circuit 10 is sometimes called a magnetic regulator or a DC (Direct Current)/DC converter.
  • the switched capacitor circuit 20 includes a plurality of capacitors and a plurality of switches to generate a plurality of second voltages, each having a plurality of discrete voltage levels, from the first voltage from the pre-regulator circuit 10 as a plurality of discrete voltages. can do.
  • the switched-capacitor circuit 20 is sometimes called a switched-capacitor voltage balancer.
  • the output switch circuits 30A and 30B each select one of the plurality of second voltages generated by the switched capacitor circuit 20 based on the digital control signal corresponding to the envelope signal to apply to the filter circuits 40A and 40B, respectively. can be output.
  • the filter circuits 40A and 40B can filter the signals (second voltage) from the output switch circuits 30A and 30B.
  • the DC power supply 50 can supply DC voltage to the pre-regulator circuit 10 .
  • the DC power supply 50 can be, for example, a rechargeable battery, but is not limited to this.
  • the power supply circuit 1 may not include at least one of the pre-regulator circuit 10, the switched capacitor circuit 20, the output switch circuits 30A and 30B, the filter circuits 40A and 40B, and the DC power supply 50.
  • the power supply circuit 1 may not include the output switch circuit 30B and the filter circuit 40B.
  • the power supply circuit 1 may not include the DC power supply 50, and may not include the filter circuits 40A and 40B.
  • any combination of pre-regulator circuit 10, switched capacitor circuit 20, output switch circuits 30A and 30B, and filter circuits 40A and 40B may be integrated into a single circuit.
  • Power amplifier 2A is connected between RFIC 5 and filter 3A. Further, power amplifier 2A can receive power supply voltage VETA from power supply circuit 1 and can receive a bias signal from PA control circuit 4. FIG. Thereby, the power amplifier 2A can amplify the transmission signal of band A received from the RFIC 5 .
  • Power amplifier 2B is connected between RFIC 5 and filter 3B. Further, power amplifier 2B can receive power supply voltage VETB from power supply circuit 1 and can receive a bias signal from PA control circuit 4. FIG. Thereby, the power amplifier 2B can amplify the transmission signal of band B received from the RFIC 5 .
  • the filter 3A is connected between the power amplifier 2A and the antenna 6.
  • Filter 3A has a passband that includes band A. As a result, the filter 3A can pass the band A transmission signal amplified by the power amplifier 2A.
  • the filter 3B is connected between the power amplifier 2B and the antenna 6.
  • Filter 3B has a passband that includes band B; As a result, the filter 3B can pass the transmission signal of the band B amplified by the power amplifier 2B.
  • the PA control circuit 4 can control the power amplifiers 2A and 2B. Specifically, PA control circuit 4 can supply a bias signal to each of power amplifiers 2A and 2B.
  • the RFIC 5 is an example of a signal processing circuit that processes high frequency signals. Specifically, the RFIC 5 processes the input transmission signal by up-conversion or the like, and supplies the high-frequency transmission signal generated by the signal processing to the power amplifiers 2A and 2B. Also, the RFIC 5 has a control section that controls the power supply circuit 1 . A part or all of the functions of the RFIC 5 as a control unit may be implemented outside the RFIC 5 .
  • the antenna 6 transmits a band A signal input from the power amplifier 2A through the filter 3A and a band B signal input from the power amplifier 2B through the filter 3B.
  • Bands A and B are frequency bands for communication systems built using radio access technology (RAT).
  • Bands A and B are predefined by standardization bodies and the like (eg, 3GPP (registered trademark) (3rd Generation Partnership Project) and IEEE (Institute of Electrical and Electronics Engineers), etc.).
  • Examples of communication systems include a 5GNR (5th Generation New Radio) system, an LTE (Long Term Evolution) system, and a WLAN (Wireless Local Area Network) system.
  • the circuit configuration of the communication device 7 shown in FIG. 1 is an example, and is not limited to this.
  • the communication device 7 may not have the antenna 6 .
  • the communication device 7 may include a plurality of antennas.
  • FIG. 2 is a circuit configuration diagram of the pre-regulator circuit 10, the switched capacitor circuit 20, the output switch circuits 30A and 30B, and the filter circuits 40A and 40B according to this embodiment.
  • FIG. 2 is an exemplary circuit configuration, and preregulator circuit 10, switched capacitor circuit 20, output switch circuits 30A and 30B, and filter circuits 40A and 40B can be implemented in any of a wide variety of circuit implementations and circuit technologies. can be implemented using Therefore, the description of each circuit provided below should not be construed as limiting.
  • the switched capacitor circuit 20 includes, as shown in FIG. 120; Energy and charge are input from the pre-regulator circuit 10 to the switched capacitor circuit 20 at nodes N1-N4 and extracted from the switched capacitor circuit 20 to the output switch circuits 30A and 30B at nodes N1-N4.
  • the control terminal 120 is an input terminal for digital control signals. That is, control terminal 120 is a terminal for receiving a digital control signal for controlling switched capacitor circuit 20 .
  • a digital control signal received via the control terminal 120 for example, a source synchronous control signal that transmits a data signal and a clock signal can be used, but is not limited to this.
  • a clock-embedded control signal in which a clock is embedded in a data signal may be used.
  • the capacitor C11 has two electrodes. One of the two electrodes of the capacitor C11 is connected to one end of the switch S11 and one end of the switch S12. The other of the two electrodes of capacitor C11 is connected to one end of switch S21 and one end of switch S22.
  • the capacitor C12 is an example of a first capacitor and has two electrodes (an example of a first electrode and a second electrode). One of the two electrodes of the capacitor C12 is connected to one end of the switch S21 and one end of the switch S22. The other of the two electrodes of the capacitor C12 is connected to one end of the switch S31 and one end of the switch S32.
  • the capacitor C13 has two electrodes. One of the two electrodes of the capacitor C13 is connected to one end of the switch S31 and one end of the switch S32. The other of the two electrodes of the capacitor C13 is connected to one end of the switch S41 and one end of the switch S42.
  • the capacitor C14 has two electrodes. One of the two electrodes of the capacitor C14 is connected to one end of the switch S13 and one end of the switch S14. The other of the two electrodes of capacitor C14 is connected to one end of switch S23 and one end of switch S24.
  • the capacitor C15 is an example of a second capacitor and has two electrodes (an example of a third electrode and a fourth electrode). One of two electrodes of the capacitor C15 is connected to one end of the switch S23 and one end of the switch S24. The other of the two electrodes of capacitor C15 is connected to one end of switch S33 and one end of switch S34.
  • the capacitor C16 has two electrodes. One of the two electrodes of the capacitor C16 is connected to one end of the switch S33 and one end of the switch S34. The other of the two electrodes of capacitor C16 is connected to one end of switch S43 and one end of switch S44.
  • Each of the set of capacitors C11 and C14, the set of capacitors C12 and C15, and the set of capacitors C13 and C16 can be complementarily charged and discharged by repeating the first and second phases. .
  • switches S12, S13, S22, S23, S32, S33, S42 and S43 are turned on.
  • one of the two electrodes of the capacitor C12 is connected to the node N3
  • the other of the two electrodes of the capacitor C12 and one of the two electrodes of the capacitor C15 are connected to the node N2
  • the two electrodes of the capacitor C15 are connected to the node N2. is connected to node N1.
  • switches S11, S14, S21, S24, S31, S34, S41 and S44 are turned on.
  • one of the two electrodes of the capacitor C15 is connected to the node N3
  • the other of the two electrodes of the capacitor C15 and one of the two electrodes of the capacitor C12 are connected to the node N2
  • the two electrodes of the capacitor C12 are connected to the node N2. is connected to node N1.
  • capacitors C12 and C15 can be discharged to the capacitor C30. That is, capacitors C12 and C15 can be charged and discharged complementarily.
  • Each of the set of capacitors C11 and C14 and the set of capacitors C13 and C16 is also complementarily charged and discharged in the same manner as the set of capacitors C12 and C15 by repeating the first and second phases. can be done.
  • Each of capacitors C10, C20, C30 and C40 functions as a smoothing capacitor. That is, each of capacitors C10, C20, C30 and C40 is used to hold and smooth voltages V1-V4 at nodes N1-N4.
  • a capacitor C10 is connected between the node N1 and ground. Specifically, one of the two electrodes of capacitor C10 is connected to node N1. On the other hand, the other of the two electrodes of capacitor C10 is connected to the ground.
  • a capacitor C20 is connected between nodes N2 and N1. Specifically, one of the two electrodes of capacitor C20 is connected to node N2. On the other hand, the other of the two electrodes of capacitor C20 is connected to node N1.
  • a capacitor C30 is connected between nodes N3 and N2. Specifically, one of the two electrodes of capacitor C30 is connected to node N3. On the other hand, the other of the two electrodes of capacitor C30 is connected to node N2.
  • a capacitor C40 is connected between nodes N4 and N3. Specifically, one of the two electrodes of capacitor C40 is connected to node N4. On the other hand, the other of the two electrodes of capacitor C40 is connected to node N3.
  • the switch S11 is connected between one of the two electrodes of the capacitor C11 and the node N3. Specifically, one end of the switch S11 is connected to one of the two electrodes of the capacitor C11. On the other hand, the other end of switch S11 is connected to node N3.
  • the switch S12 is connected between one of the two electrodes of the capacitor C11 and the node N4. Specifically, one end of the switch S12 is connected to one of the two electrodes of the capacitor C11. On the other hand, the other end of switch S12 is connected to node N4.
  • the switch S21 is an example of a first switch and is connected between one of the two electrodes of the capacitor C12 and the node N2. Specifically, one end of the switch S21 is connected to one of the two electrodes of the capacitor C12 and the other of the two electrodes of the capacitor C11. On the other hand, the other end of switch S21 is connected to node N2.
  • the switch S22 is an example of a third switch and is connected between one of the two electrodes of the capacitor C12 and the node N3. Specifically, one end of the switch S22 is connected to one of the two electrodes of the capacitor C12 and the other of the two electrodes of the capacitor C11. On the other hand, the other end of switch S22 is connected to node N3.
  • the switch S31 is an example of a fourth switch and is connected between the other of the two electrodes of the capacitor C12 and the node N1. Specifically, one end of the switch S31 is connected to the other of the two electrodes of the capacitor C12 and one of the two electrodes of the capacitor C13. On the other hand, the other end of switch S31 is connected to node N1.
  • the switch S32 is an example of a second switch and is connected between the other of the two electrodes of the capacitor C12 and the node N2. Specifically, one end of the switch S32 is connected to the other of the two electrodes of the capacitor C12 and one of the two electrodes of the capacitor C13. On the other hand, the other end of switch S32 is connected to node N2. That is, the other end of switch S32 is connected to the other end of switch S21.
  • the switch S41 is connected between the other of the two electrodes of the capacitor C13 and the ground. Specifically, one end of the switch S41 is connected to the other of the two electrodes of the capacitor C13. On the other hand, the other end of switch S41 is connected to the ground.
  • the switch S42 is connected between the other of the two electrodes of the capacitor C13 and the node N1. Specifically, one end of the switch S42 is connected to the other of the two electrodes of the capacitor C13. On the other hand, the other end of switch S42 is connected to node N1. That is, the other end of switch S42 is connected to the other end of switch S31.
  • the switch S13 is connected between one of the two electrodes of the capacitor C14 and the node N3. Specifically, one end of the switch S13 is connected to one of the two electrodes of the capacitor C14. On the other hand, the other end of switch S13 is connected to node N3. That is, the other end of the switch S13 is connected to the other end of the switch S11 and the other end of the switch S22.
  • the switch S14 is connected between one of the two electrodes of the capacitor C14 and the node N4. Specifically, one end of the switch S14 is connected to one of the two electrodes of the capacitor C14. On the other hand, the other end of switch S14 is connected to node N4. That is, the other end of switch S14 is connected to the other end of switch S12.
  • the switch S23 is an example of a fifth switch, and is connected between one of the two electrodes of the capacitor C15 and the node N2. Specifically, one end of the switch S23 is connected to one of the two electrodes of the capacitor C15 and the other of the two electrodes of the capacitor C14. On the other hand, the other end of switch S23 is connected to node N2. That is, the other end of the switch S23 is connected to the other end of the switch S21 and the other end of the switch S32.
  • the switch S24 is an example of a seventh switch and is connected between one of the two electrodes of the capacitor C15 and the node N3. Specifically, one end of the switch S24 is connected to one of the two electrodes of the capacitor C15 and the other of the two electrodes of the capacitor C14. On the other hand, the other end of switch S24 is connected to node N3. That is, the other end of the switch S24 is connected to the other end of the switch S11, the other end of the switch S22, and the other end of the switch S13.
  • the switch S33 is an example of an eighth switch, and is connected between the other of the two electrodes of the capacitor C15 and the node N1. Specifically, one end of the switch S33 is connected to the other of the two electrodes of the capacitor C15 and one of the two electrodes of the capacitor C16. On the other hand, the other end of switch S33 is connected to node N1. That is, the other end of the switch S33 is connected to the other end of the switch S31 and the other end of the switch S42.
  • the switch S34 is an example of a sixth switch, and is connected between the other of the two electrodes of the capacitor C15 and the node N2. Specifically, one end of the switch S34 is connected to the other of the two electrodes of the capacitor C15 and one of the two electrodes of the capacitor C16. On the other hand, the other end of switch S34 is connected to node N2. That is, the other end of the switch S34 is connected to the other end of the switch S21, the other end of the switch S32, and the other end of the switch S23.
  • the switch S43 is connected between the other of the two electrodes of the capacitor C16 and the ground. Specifically, one end of the switch S43 is connected to the other of the two electrodes of the capacitor C16. On the other hand, the other end of switch S43 is connected to the ground.
  • the switch S44 is connected between the other of the two electrodes of the capacitor C16 and the node N1. Specifically, one end of the switch S44 is connected to the other of the two electrodes of the capacitor C16. On the other hand, the other end of switch S44 is connected to node N1. That is, the other end of the switch S44 is connected to the other end of the switch S31, the other end of the switch S42, and the other end of the switch S33.
  • a first set of switches comprising switches S12, S13, S22, S23, S32, S33, S42 and S43 and a second set of switches comprising switches S11, S14, S21, S24, S31, S34, S41 and S44 , are switched on and off complementarily. Specifically, in the first phase, a first set of switches is turned on and a second set of switches is turned off. Conversely, in the second phase, the first set of switches are turned off and the second set of switches are turned on.
  • charging is performed from capacitors C11-C13 to capacitors C10-C40 in the first and second phases on the one hand, and from capacitors C14-C16 to capacitors C10-C40 on the other hand in the first and second phases. charging is performed.
  • the capacitors C10 to C40 are always charged from the capacitors C11 to C13 or the capacitors C14 to C16. charge is replenished at high speed, potential fluctuations of the nodes N1 to N4 can be suppressed.
  • the voltage levels of voltages V1-V4 correspond to a plurality of discrete voltage levels that can be provided by switched capacitor circuit 20 to output switch circuits 30A and 30B.
  • the voltage ratio V1:V2:V3:V4 is not limited to 1:2:3:4.
  • the voltage ratio V1:V2:V3:V4 may be 1:2:4:8.
  • the configuration of the switched capacitor circuit 20 shown in FIG. 2 is an example, and is not limited to this.
  • the switched capacitor circuit 20 is configured to be able to supply four discrete voltage levels, but is not limited to this.
  • the switched capacitor circuit 20 may be configured to be able to supply any number of discrete voltage levels equal to or greater than two.
  • the switched capacitor circuit 20 may at least include capacitors C12 and C15 and switches S21-S24 and S31-S34.
  • the output switch circuit 30A includes input terminals 131A-134A, switches S51A-S54A, an output terminal 130A, and control terminals 135A and 136A.
  • the output switch circuit 30B also includes input terminals 131B to 134B, switches S51B to S54B, an output terminal 130B, and control terminals 135B and 136B.
  • the output switch circuit 30A will be described, and the description of the output switch circuit 30B will be omitted because it is substantially the same as the description of the output switch circuit 30A with the reference numeral "A" replaced by "B". Note that the output switch circuit 30B may be integrated with the output switch circuit 30A.
  • the output terminal 130A is connected to the filter circuit 40A.
  • the output terminal 130A is a terminal for supplying a voltage selected from the voltages V1 to V4 to the filter circuit 40A.
  • the input terminals 131A-134A are connected to the nodes N4-N1 of the switched capacitor circuit 20, respectively.
  • Input terminals 131 A to 134 A are terminals for receiving voltages V 4 to V 1 from switched capacitor circuit 20 .
  • the control terminals 135A and 136A are input terminals for digital control signals. That is, the control terminals 135A and 136A are terminals for receiving digital control signals indicating one of the voltages V1 to V4.
  • the output switch circuit 30A controls on/off of the switches S51A to S54A so as to select the voltage level indicated by the digital control signal.
  • Two digital control logic (DCL: Digital Control Logic/Line) signals can be used as the digital control signals received via the control terminals 135A and 136A.
  • Each of the two DCL signals is a 1-bit signal.
  • Each of the voltages V1-V4 is represented by a combination of two 1-bit signals. For example, V1, V2, V3 and V4 are indicated by '00', '01', '10' and '11' respectively.
  • a Gray code may be used to express the voltage level.
  • DCL signals are used in this embodiment, the present invention is not limited to this.
  • any number of DCL signals one or more, may be used depending on the number of voltage levels.
  • the digital control signal is not limited to the DCL signal, and may be a source-synchronous control signal.
  • the switch S51A is connected between the input terminal 131A and the output terminal 130A. Specifically, the switch S51A has a terminal connected to the input terminal 131A and a terminal connected to the output terminal 130A. In this connection configuration, the switch S51A can switch between connection and non-connection between the input terminal 131A and the output terminal 130A by switching on/off.
  • the switch S52A is an example of a tenth switch and is connected between the input terminal 132A and the output terminal 130A. Specifically, the switch S52A has a terminal connected to the input terminal 132A and a terminal connected to the output terminal 130A. In this connection configuration, the switch S52A can switch between connection and non-connection between the input terminal 132A and the output terminal 130A by switching on/off.
  • the switch S53A is an example of a ninth switch and is connected between the input terminal 133A and the output terminal 130A. Specifically, the switch S53A has a terminal connected to the input terminal 133A and a terminal connected to the output terminal 130A. In this connection configuration, the switch S53A can switch between connection and disconnection between the input terminal 133A and the output terminal 130A by switching on/off.
  • the switch S54A is connected between the input terminal 134A and the output terminal 130A. Specifically, the switch S54A has a terminal connected to the input terminal 134A and a terminal connected to the output terminal 130A. In this connection configuration, the switch S54A can switch between connection and non-connection between the input terminal 134A and the output terminal 130A by switching on/off.
  • These switches S51A to S54A are controlled to be ON exclusively. That is, only one of the switches S51A to S54A is turned on, and the rest of the switches S51A to S54A are turned off. Thereby, the output switch circuit 30A can output one voltage selected from the voltages V1 to V4.
  • the configuration of the output switch circuit 30A shown in FIG. 2 is an example, and is not limited to this.
  • the switches S51A to S54A may have any configuration as long as they can selectively connect at least one of the four input terminals 131A to 134A to the output terminal 130A.
  • output switch circuit 30A may further include switches connected between switches S51A-S53A and switch S54A and output terminal 130A.
  • the output switch circuit 30A may further include switches connected between the switches S51A and S52A, the switches S53A and S54A, and the output terminal 130A.
  • the output switch circuit 30A should include at least the switches S52A and S53A.
  • the preregulator circuit 10 includes an input terminal 110, output terminals 111 to 114, a control terminal 117, switches S61 to S63, S71 and S72, a power inductor L71, and capacitors C61 to C64. , provided.
  • the input terminal 110 is a DC voltage input terminal. That is, input terminal 110 is a terminal for receiving an input voltage from DC power supply 50 .
  • the output terminal 111 is the output terminal of the voltage V4.
  • the output terminal 111 is a terminal for supplying the voltage V4 to the switched capacitor circuit 20 .
  • Output terminal 111 is connected to node N4 of switched capacitor circuit 20 .
  • the output terminal 112 is the output terminal of the voltage V3. In other words, the output terminal 112 is a terminal for supplying the voltage V3 to the switched capacitor circuit 20 . Output terminal 112 is connected to node N3 of switched capacitor circuit 20 .
  • the output terminal 113 is the output terminal of the voltage V2.
  • the output terminal 113 is a terminal for supplying the voltage V2 to the switched capacitor circuit 20 .
  • Output terminal 113 is connected to node N2 of switched capacitor circuit 20 .
  • the output terminal 114 is the output terminal of the voltage V1. That is, the output terminal 114 is a terminal for supplying the voltage V ⁇ b>1 to the switched capacitor circuit 20 . Output terminal 114 is connected to node N1 of switched capacitor circuit 20 .
  • the control terminal 117 is an input terminal for digital control signals. That is, control terminal 117 is a terminal for receiving a digital control signal for controlling preregulator circuit 10 .
  • a digital control signal received via the control terminal 117 for example, a source synchronous control signal that transmits a data signal and a clock signal can be used, but is not limited to this.
  • a clock-embedded control signal in which a clock is embedded in a data signal may be used. Note that the control terminal 117 and the control terminal 120 may be combined into one.
  • the switch S71 is an example of an eleventh switch and is connected between the input terminal 110 and one end of the power inductor L71. Specifically, the switch S71 has a terminal connected to the input terminal 110 and a terminal connected to one end of the power inductor L71. In this connection configuration, the switch S71 can switch between connection and disconnection between the input terminal 110 and one end of the power inductor L71 by switching on/off.
  • the switch S72 is an example of a 12th switch and is connected between one end of the power inductor L71 and the ground. Specifically, the switch S72 has a terminal connected to one end of the power inductor L71 and a terminal connected to the ground. In this connection configuration, the switch S72 can switch between connection and disconnection between one end of the power inductor L71 and the ground by switching on/off.
  • the switch S61 is connected between the other end of the power inductor L71 and the output terminal 111. Specifically, switch S61 has a terminal connected to the other end of power inductor L71 and a terminal connected to output terminal 111 . In this connection configuration, the switch S61 can switch between connection and disconnection between the other end of the power inductor L71 and the output terminal 111 by switching on/off.
  • the switch S62 is connected between the other end of the power inductor L71 and the output terminal 112. Specifically, switch S62 has a terminal connected to the other end of power inductor L71 and a terminal connected to output terminal 112 . In this connection configuration, the switch S62 can switch between connection and disconnection between the other end of the power inductor L71 and the output terminal 112 by switching on/off.
  • the switch S63 is connected between the other end of the power inductor L71 and the output terminal 113. Specifically, switch S63 has a terminal connected to the other end of power inductor L71 and a terminal connected to output terminal 113 . In this connection configuration, the switch S63 can switch between connection and disconnection between the other end of the power inductor L71 and the output terminal 113 by switching on/off.
  • One of the two electrodes of the capacitor C61 is connected to the switch S61 and the output terminal 111.
  • the other of the two electrodes of capacitor C61 is connected to switch S62, output terminal 112 and one of the two electrodes of capacitor C62.
  • One of the two electrodes of the capacitor C62 is connected to the switch S62, the output terminal 112, and the other of the two electrodes of the capacitor C61.
  • the other of the two electrodes of capacitor C62 is connected to a path connecting switch S63, output terminal 113 and one of the two electrodes of capacitor C63.
  • One of the two electrodes of the capacitor C63 is connected to the switch S63, the output terminal 113, and the other of the two electrodes of the capacitor C62.
  • the other of the two electrodes of capacitor C63 is connected to output terminal 114 and one of the two electrodes of capacitor C64.
  • One of the two electrodes of the capacitor C64 is connected to the output terminal 114 and the other of the two electrodes of the capacitor C63.
  • the other of the two electrodes of capacitor C64 is connected to ground.
  • the switches S61 to S63 are controlled to be turned on exclusively. That is, only one of the switches S61 to S63 is turned on, and the rest of the switches S61 to S63 are turned off. By turning ON only one of the switches S61 to S63, the pre-regulator circuit 10 can change the voltage supplied to the switched capacitor circuit 20 at voltage levels V2 to V4.
  • the pre-regulator circuit 10 configured in this way can supply electric charge to the switched capacitor circuit 20 via at least one of the output terminals 111-113.
  • the preregulator circuit 10 should at least include the switches S71 and S72 and the power inductor L71.
  • the filter circuits 40A and 40B include low-pass filters (LPFs). Specifically, as shown in FIG. 2, the filter circuit 40A includes inductors L51A to L53A, capacitors C51A and C52A, a resistor R51A, an input terminal 140A, and an output terminal 141A.
  • the filter circuit 40B also includes an LPF, and includes inductors L51B to L53B, capacitors C51B and C52B, a resistor R51B, an input terminal 140B, and an output terminal 141B.
  • the filter circuit 40A will be described, and the description of the filter circuit 40B will be omitted because it is substantially the same as the description of the filter circuit 40A with the reference numeral "A" replaced with "B".
  • the input terminal 140A is the input terminal for the voltage selected by the output switch circuit 30A.
  • the input terminal 140A is a terminal for receiving a voltage selected from the plurality of voltages V1 to V4.
  • the output terminal 141A is an output terminal for the power supply voltage VETA . That is, the output terminal 141A is a terminal for supplying the power supply voltage VETA to the power amplifier 2A.
  • the filter circuit 40A can reduce high frequency components contained in the power supply voltage. For example, if the predetermined band is a frequency band for frequency division duplex (FDD), the filter circuit 40A reduces the frequency components of the gap between the uplink operating band and the downlink operating band of the predetermined band. configured as
  • filter circuit 40A may not include inductor L53A and resistor R51A. Further, for example, the filter circuit 40A may include an inductor connected to one of the two electrodes of the capacitor C51A, and may include an inductor connected to one of the two electrodes of the capacitor C52A.
  • FIG. 3A is a graph showing an example of changes in power supply voltage in the digital ET mode.
  • FIG. 3B is a graph showing an example of changes in power supply voltage in the analog ET mode.
  • the horizontal axis represents time and the vertical axis represents voltage.
  • a thick solid line represents the power supply voltage, and a thin solid line (waveform) represents the modulated wave.
  • the envelope of the modulated wave is tracked by varying the power supply voltage to multiple discrete voltage levels within one frame.
  • the power supply voltage signal forms a square wave.
  • the power supply voltage level is selected or set from a plurality of discrete voltage levels based on the envelope signal.
  • a frame means a unit that constitutes a high-frequency signal (modulated wave).
  • a frame includes 10 subframes, each subframe includes multiple slots, and each slot consists of multiple symbols.
  • the subframe length is 1 ms and the frame length is 10 ms.
  • the envelope of the modulated wave is tracked by continuously varying the power supply voltage.
  • the power supply voltage is determined based on the envelope signal.
  • the envelope of the modulated wave changes rapidly, it is difficult for the power supply voltage to track the envelope.
  • Example 1 [3.1 Parts Arrangement of Tracker Module 100]
  • Example 1 of the power supply circuit 1 configured as described above a tracker module 100 in which the preregulator circuit 10, the switched capacitor circuit 20, the output switch circuits 30A and 30B, and the filter circuits 40A and 40B are mounted.
  • FIGS. 4 to 7. FIG.
  • FIG. 4 is a plan view of the tracker module 100 according to this embodiment.
  • FIG. 5 is a plan view of the tracker module 100 according to the present embodiment, and is a perspective view of the main surface 90b side of the module substrate 90 from the z-axis positive side.
  • 6 and 7 are cross-sectional views of the tracker module 100 according to this embodiment. 6 and 7 are taken along lines VI-VI and VII-VII of FIGS. 4 and 5, respectively.
  • FIGS. 4 and 5 illustration of a part of wiring connecting a plurality of circuit components arranged on the module substrate 90 is omitted.
  • FIGS. 4 and 5 illustration of a resin member 91 covering a plurality of circuit components and a shield electrode layer 92 covering the surface of the resin member 91 is omitted.
  • 4 and 6 unlabeled blocks represent optional circuit components that are not essential to the present invention.
  • Tracker module 100 incorporates a plurality of circuit components including active and passive elements included in preregulator circuit 10, switched capacitor circuit 20, output switch circuits 30A and 30B, and filter circuits 40A and 40B shown in FIG. In addition, it includes a module substrate 90 , a resin member 91 and a plurality of land electrodes 150 .
  • the module substrate 90 has main surfaces 90a and 90b facing each other.
  • the main surfaces 90a and 90b are examples of a first main surface and a second main surface, respectively.
  • a wiring layer, a via conductor, a ground electrode layer 901 and the like are formed in the module substrate 90 . 4 and 5, the module substrate 90 has a rectangular shape in plan view, but is not limited to this shape.
  • LTCC low temperature co-fired ceramics
  • HTCC high temperature co-fired ceramics
  • a component-embedded substrate, a substrate having a redistribution layer (RDL), a printed substrate, or the like can be used, but is not limited to these.
  • main surface 90a On main surface 90a are integrated circuit 80, capacitors C10-C16, C20, C30, C40, C51A, C51B, C52A, C52B, and C61-C64, inductors L51A-L53A and L51B-L53B, and resistor R51A. , R51B, and the resin member 91 are arranged.
  • the integrated circuit 80 has a PR switch section 80a, an SC switch section 80b, and an OS switch section 80c.
  • the PR switch section 80a includes switches S61 to S63, S71 and S72.
  • the PR switch section 80a is an example of a first switch section and includes switches S61 to S63, S71 and S72.
  • the SC switch section 80b is an example of a second switch section and includes switches S11 to S14, S21 to S24, S31 to S34 and S41 to S44.
  • the OS switch section 80c is an example of a third switch section and includes switches S51A to S54A and S51B to S54B.
  • the PR switch section 80a, the SC switch section 80b, and the OS switch section 80c are included in the single integrated circuit 80 in FIG. 4, the present invention is not limited to this.
  • the PR switch section 80a and the SC switch section 80b may be included in one integrated circuit, and the OS switch section 80c may be included in another integrated circuit.
  • the SC switch section 80b and the OS switch section 80c may be included in one integrated circuit, and the PR switch section 80a may be included in another integrated circuit.
  • the PR switch section 80a and the OS switch section 80c may be included in one integrated circuit, and the SC switch section 80b may be included in another integrated circuit.
  • the PR switch section 80a, the SC switch section 80b, and the OS switch section 80c may be individually included in three integrated circuits.
  • the integrated circuit 80 has a rectangular shape in plan view of the module substrate 90, but is not limited to this shape.
  • the integrated circuit 80 is configured using CMOS (Complementary Metal Oxide Semiconductor), for example, and may be specifically manufactured by SOI (Silicon on Insulator) process. Note that the integrated circuit 80 is not limited to CMOS.
  • CMOS Complementary Metal Oxide Semiconductor
  • SOI Silicon on Insulator
  • a chip capacitor means a surface mount device (SMD) that constitutes a capacitor. Note that the mounting of a plurality of capacitors is not limited to chip capacitors. For example, some or all of the multiple capacitors may be included in an Integrated Passive Device (IPD) or may be included in the integrated circuit 80 .
  • IPD Integrated Passive Device
  • Each of the power inductor L71 and inductors L51A to L53A and L51B to L53B is mounted as a chip inductor.
  • a chip inductor means an SMD constituting an inductor. Note that the mounting of multiple inductors is not limited to chip inductors. For example, multiple inductors may be included in the IPD.
  • Each of the resistors R51A and R51B is implemented as a chip resistor.
  • a chip resistor means an SMD that constitutes a resistor. Note that the mounting of the resistors R51A and R51B is not limited to chip resistors. For example, resistors R51A and R51B may be included in the IPD.
  • a plurality of capacitors, a plurality of inductors, and a plurality of resistors arranged on the main surface 90a in this way are grouped for each circuit and arranged around the integrated circuit 80 .
  • the power inductor L71 and the group of capacitors C61 to C64 included in the pre-regulator circuit 10, except for the capacitors C63 and C64, form a straight line along the left side of the integrated circuit 80 and the module in plan view of the module substrate 90. It is arranged in a region on the main surface 90 a sandwiched between the straight line along the left side of the substrate 90 .
  • the group of circuit components included in preregulator circuit 10 is placed near PR switch section 80 a in integrated circuit 80 .
  • the power inductor L71 is arranged adjacent to the integrated circuit 80. More specifically, the power inductor L71 is arranged adjacent to the PR switch section 80a in the integrated circuit 80. As shown in FIG. As a result, the PR switch section 80a is arranged closer to the power inductor L71 than each of the SC switch section 80b and the OS switch section 80c. Also, the power inductor L71 is arranged such that its winding axis L71X is parallel to the y-axis, as shown in FIG.
  • the winding axis of an inductor means a virtual axis that serves as the central axis of the coils that make up the inductor. Therefore, the winding axis of the inductor can be determined from the central axis of the windings of the coil. The winding axis of the inductor can also be deduced from the magnetic axis of the coil.
  • the capacitor C63 is arranged between the power inductor L71 and each of the inductors L51A, L53A, L51B and L53B in a plan view of the module substrate 90. Additionally, capacitor C64 is disposed between power inductor L71 and each of inductors L52A and L52B. Note that the circuit components arranged between the power inductor L71 and the inductors included in the filter circuits 40A and 40B are not limited to the capacitors C63 and C64.
  • a group of capacitors C10 to C16, C20, C30, and C40 included in the switched capacitor circuit 20 is sandwiched between a straight line along the upper side of the integrated circuit 80 and a straight line along the upper side of the module board 90 in plan view of the module board 90. and a region on the main surface 90a sandwiched between a straight line along the right side of the integrated circuit 80 and a straight line along the right side of the module substrate 90 .
  • a group of capacitors C51A, C51B, C52A and C52B, inductors L51A to L53A and L51B to L53B, and resistors R51A and R51B included in the filter circuits 40A and 40B are located on the lower side of the integrated circuit 80 when viewed from the top of the module substrate 90. It is arranged in a region on the main surface 90 a sandwiched between a straight line along the lower side of the module substrate 90 and a straight line along the lower side of the module substrate 90 .
  • the group of circuit components included in the switched capacitor circuit 20 are arranged near the OS switch section 80c in the integrated circuit 80.
  • the inductors L52A and L52B are arranged so that their winding axes L52AX and L52BX are parallel to the x-axis, as shown in FIG.
  • Inductors L51A, L51B, L53A and L53B are arranged such that their winding axes L51AX, L51BX, L53AX and L53BX are parallel to the z-axis, as shown in FIG. That is, the winding axis L71X of the power inductor L71 is perpendicular to each of the winding axes L51AX-L53AX and L51BX-L53BX of the inductors L51A-L53A and L51B-L53B.
  • the winding axis L71X may not be perpendicular to each of the winding axes L51AX to L53AX and L51BX to L53BX, and may be perpendicular to at least one of the winding axes L51AX to L53AX and L51BX to L53BX. .
  • the directions of the winding axes L51AX to L53AX, L51BX to L53BX, and L71X in FIG. 7 are examples, and the present invention is not limited thereto.
  • the winding axis L71X may be parallel to the x-axis or z-axis, or parallel to none of the x-, y-, and z-axes.
  • At least part of the filter circuit 40A and at least part of the filter circuit 40B are arranged adjacent to the same one of the four sides of the integrated circuit 80 (lower side in FIG. 4). Specifically, at least one of the circuit components (capacitor C51A and inductors L51A and L53A in FIG. 4) included in filter circuit 40A is arranged adjacent to the lower side of integrated circuit 80. FIG. Furthermore, at least one of the circuit components (the inductor L53B in FIG. 4) included in the filter circuit 40B is arranged adjacent to the lower side of the integrated circuit 80. As shown in FIG.
  • a plurality of land electrodes 150 are arranged on the main surface 90b.
  • the plurality of land electrodes 150 serve as a plurality of external connection terminals including ground terminals in addition to the input terminal 110, the output terminals 141A and 141B, and the control terminals 117, 120, 135A, 135B, 136A and 136B shown in FIG. Function.
  • a plurality of land electrodes 150 are electrically connected to a plurality of electronic components arranged on main surface 90 a through via conductors or the like formed in module substrate 90 . Copper electrodes can be used as the plurality of land electrodes 150, but are not limited to this. For example, solder electrodes may be used as the land electrodes. Also, instead of the land electrodes 150, a plurality of bump electrodes or a plurality of post electrodes may be used as a plurality of external connection terminals.
  • the resin member 91 covers the main surface 90a and at least part of the plurality of electronic components on the main surface 90a.
  • the resin member 91 has a function of ensuring reliability such as mechanical strength and moisture resistance of the plurality of electronic components on the main surface 90a. Note that the resin member 91 does not have to be included in the tracker module 100 .
  • the shield electrode layer 92 is an example of a metal layer, and is a metal thin film formed by sputtering, for example.
  • the shield electrode layer 92 is formed so as to cover the surface (upper surface and side surfaces) of the resin member 91 .
  • the shield electrode layer 92 is connected to the ground and prevents external noise from entering the electronic components that make up the tracker module 100 and prevents noise generated in the tracker module 100 from interfering with other modules or devices. do. Note that the shield electrode layer 92 may not be included in the tracker module 100 .
  • the configuration of the tracker module 100 is an example, and is not limited to this.
  • a portion of the capacitors and inductors located on main surface 90 a may be formed within module substrate 90 .
  • some of the capacitors and inductors arranged on the main surface 90 a may not be included in the tracker module and may not be arranged on the module substrate 90 .
  • the tracker module 100 includes the module substrate 90, the integrated circuit 80 arranged on the module substrate 90, and the power inductor L71 arranged on the module substrate 90.
  • at least one switch included in a pre-regulator circuit 10 configured to convert an input voltage to a first voltage using a power inductor L71 and configured to generate a plurality of discrete voltages from the first voltage
  • At least one switch included in the switched capacitor circuit 20 and at least one switch included in the output switch circuit 30A configured to selectively output at least one of the plurality of discrete voltages based on the envelope signal. and including.
  • the tracker module 100 includes a module substrate 90, an integrated circuit 80 arranged on the module substrate 90, and a power inductor L71 arranged on the module substrate 90.
  • Circuit 80 includes at least one switch included in pre-regulator circuit 10 configured to convert an input voltage to a first voltage using power inductor L71 and configured to generate a plurality of discrete voltages from the first voltage.
  • an output switch circuit 30A having control terminals 135A and/or 136A connected to RFIC 5 for selectively selecting at least one of a plurality of discrete voltages. and at least one switch included in output switch circuit 30A configured to output to.
  • the tracker module 100 includes a module substrate 90, an integrated circuit 80 arranged on the module substrate 90, and a power inductor L71 arranged on the module substrate 90.
  • Circuit 80 includes at least one switch included in preregulator circuit 10, at least one switch included in switched capacitor circuit 20, and at least one switch included in output switch circuit 30A
  • switched capacitor circuit 20 includes a capacitor C12 having a first electrode and a second electrode and a capacitor C15 having a third electrode and a fourth electrode
  • at least one switch included in the switched capacitor circuit 20 includes switches S21 to S24 and S31 , one end of the switch S21 and one end of the switch S22 are connected to the first electrode, one end of the switch S32 and one end of the switch S31 are connected to the second electrode, one end of the switch S23 and one end of the switch S24.
  • the output switch circuit 30A includes an output terminal 130A.
  • At least one switch included in the output switch circuit 30A is a switch S53A connected between the other end of the switch S21, the other end of the switch S32, the other end of the switch S23, the other end of the switch S34, and the output terminal 130A.
  • the pre-regulator circuit 10 including a power inductor L71 and an input terminal 110, 10 include a switch S71 connected between the input terminal 110 and one end of the power inductor L71, and a switch S72 connected between one end of the power inductor L71 and ground.
  • the other end of the power inductor L71 is connected to the other end of the switch S21, the other end of the switch S32, the other end of the switch S23, and the other end of the switch S34.
  • the power inductor L71 included in the pre-regulator circuit 10 is placed on the module substrate 90 on which the integrated circuit 80 including at least one switch included in the pre-regulator circuit 10 is placed. Therefore, the wiring length between the power inductor L71 and the integrated circuit 80 can be shortened compared to when the power inductor L71 is arranged on a module substrate different from the integrated circuit 80 . If the wiring length between the power inductor L71 and the integrated circuit 80 is shortened, the parasitic inductance of the wiring can be reduced. As a result, noise in the first voltage output from the preregulator circuit 10 can be reduced, and characteristic deterioration due to noise can be suppressed.
  • the tracker module 100 when the tracker module 100 is used in the digital ET mode, ringing noise is superimposed on the switching of a plurality of discrete second voltages.
  • the wiring length between the power inductor L71 and the integrated circuit 80 is shortened, the loop area of the path connected to the power inductor L71 through which a large current flows can be reduced. As a result, it is possible to suppress the generation of a magnetic field due to the change in the loop area, and it is possible to suppress EMI to other modules.
  • the power supply voltages VETA and VETB are supplied to the plurality of power amplifiers 2A and 2B through the plurality of output switch circuits 30A and 30B in the digital ET mode, the current flowing through the power inductor L71 also increases. , the EMI suppression effect is large.
  • the power inductor L71 may be arranged adjacent to the integrated circuit 80.
  • the integrated circuit 80 includes a PR switch section 80a including at least one switch included in the preregulator circuit 10 and at least one switch included in the switched capacitor circuit 20.
  • SC switch section 80b and OS switch section 80c including at least one switch included in output switch circuit 30A. It may be placed near inductor L71.
  • the tracker module 100 may further include an inductor L51A arranged on the module substrate 90 and a circuit component (for example, a capacitor C63) arranged on the module substrate 90, and an output switch Circuit 30A may be configured to selectively output at least one of a plurality of discrete voltages via filter circuit 40A including inductor L51A, and circuit components (eg, capacitor C63) may be implemented on the module substrate.
  • 90 may be arranged between the power inductor L71 and the inductor L51A in plan view.
  • the circuit component is arranged between the power inductor L71 and the inductor L51A, the power inductor L71 can be arranged relatively apart from the inductor L51A. Therefore, magnetic field coupling (that is, inductive coupling) between power inductor L71 and inductor L51A can be suppressed, and deterioration of the electrical characteristics of tracker module 100 can be suppressed.
  • the winding axis L71X of the coil forming the power inductor L71 may be perpendicular to the winding axis L51AX of the coil forming the inductor L51A.
  • the magnetic axis of the power inductor L71 can be made perpendicular to the magnetic axis of the inductor L51A. Therefore, magnetic field coupling between power inductor L71 and inductor L51A can be suppressed, and deterioration of the electrical characteristics of tracker module 100 can be suppressed.
  • the tracker module 100 further includes a resin member 91 that covers the main surface 90a of the module substrate 90 and at least part of the circuit components on the main surface 90a, and at least one of the surfaces of the resin member 91. and a shield electrode layer 92 covering the portion.
  • Example 2 of the power supply circuit 1 will be described.
  • the present embodiment is different from the first embodiment mainly in that a metal member 93A is arranged on the main surface 90a of the module substrate 90.
  • FIG. The tracker module 100A according to the present embodiment will be described below with reference to FIGS. 8 and 9, focusing on the differences from the first embodiment.
  • FIG. 8 is a plan view of the tracker module 100A according to this embodiment.
  • FIG. 9 is a cross-sectional view of the tracker module 100A according to this embodiment. The cross section of the tracker module 100A in FIG. 9 is taken along line IX-IX in FIG.
  • the tracker module 100A further includes a metal member 93A.
  • 93 A of metal members are arrange
  • the metal member 93A is arranged adjacent to the power inductor L71, and arranged between the power inductor L71 and the filter circuits 40A and 40B when the module substrate 90 is viewed from above.
  • the metal member 93A is a ground electrode connected to the ground.
  • the metal member 93A is in contact with the shield electrode layer 92.
  • the metal member 93A is in contact with the shield electrode layer 92 on the upper surface of the tracker module 100A.
  • the metal member 93A may be electrically connected to the land electrode 150 functioning as a ground terminal through pattern electrodes, via electrodes, etc. formed on the module substrate 90 .
  • the metal member 93A is a combination of a metal wall protruding from the main surface 90a and extending along the x-axis and a metal wall protruding from the main surface 90a and extending along the y-axis. be.
  • the height of each metal wall is greater than the height of power inductor L71.
  • the shape of the metal member 93A is not limited to a wall.
  • the metal member 93A may be composed of a plurality of bonding wires.
  • the metal member 93A may be composed of a plurality of metal columns arranged in a row. Note that the shape of the metal member 93A is not limited to these.
  • metal member 93A copper, aluminum, or an alloy containing copper and/or aluminum can be used as the metal member 93A.
  • the material of the metal member 93A is not limited to these.
  • the metal member 93A does not have to come into contact with the shield electrode layer 92 on the upper surface of the tracker module 100A.
  • the height of each metal wall may be smaller than the height of power inductor L71.
  • the metal member 93A does not have to be connected to the ground.
  • the integrated circuit 80 and the power inductor L71 are arranged on the main surface 90a of the module substrate 90. and a metal member 93A disposed on the main surface 90a of the module substrate.
  • the metal member 93A is configured to selectively output at least one of them, and is arranged between the power inductor L71 and the inductor L51A when the module substrate 90 is viewed from above.
  • the metal member 93A is arranged between the power inductor L71 and the inductor L51A, magnetic field coupling between the power inductor L71 and the inductor L51A can be suppressed.
  • the metal member 93A may be a ground electrode connected to the ground.
  • Example 3 of the power supply circuit 1 will be described.
  • This embodiment differs from the second embodiment mainly in the arrangement of power inductors and the arrangement and shape of metal members.
  • the tracker module 100B according to the present embodiment will be described below with reference to FIG. 10, focusing on the differences from the second embodiment.
  • FIG. 10 is a plan view of the tracker module 100B according to this embodiment.
  • illustration of the resin member 91 and the shield electrode layer 92 is omitted.
  • unlabeled blocks represent optional circuit components that are not essential to the present invention.
  • the power inductor L71 is not arranged adjacent to the integrated circuit 80 in the tracker module 100B according to this embodiment.
  • Capacitors C61 to C64 are arranged between the power inductor L71 and the integrated circuit 80 in a plan view of the module substrate 90 .
  • the tracker module 100B includes a metal member 93B instead of the metal member 93A. Similar to the metal member 93A, the metal member 93B is arranged on the main surface 90a of the module substrate 90, and protrudes from the main surface 90a so that at least a portion of the metal member 93B exists above the main surface 90a.
  • the metal member 93B is a metal wall that protrudes from the main surface 90a and extends along the y-axis, and is arranged adjacent to the power inductor L71.
  • the metal member 93B is arranged between the power inductor L71 and each of the inductors L51A to L53A and L51B to L53B included in the filter circuits 40A and 40B when the module substrate 90 is viewed from above.
  • the metal member 93B is in contact with the shield electrode layer 92 on the top surface of the tracker module 100B, and is also in contact with the shield electrode layer 92 on the side surface of the tracker module 100B. Thereby, the metal member 93B can partition the area on the main surface 90a where the power inductor L71 is arranged and the area on the main surface 90a where the filter circuits 40A and 40B are arranged.
  • the integrated circuit 80 and the power inductor L71 are arranged on the main surface 90a of the module substrate 90. and a metal member 93B disposed on the main surface 90a of the module substrate. At least one of them can be output, and the metal member 93B is arranged between the power inductor L71 and the inductor L51A when the module substrate 90 is viewed from above.
  • the metal member 93B is arranged between the power inductor L71 and the inductor L51A, magnetic field coupling between the power inductor L71 and the inductor L51A can be suppressed.
  • the metal member 93B may be a ground electrode connected to the ground.
  • the metal member 93B may contact the shield electrode layer 92 on the upper and side surfaces of the tracker module 100B.
  • the gap between the metal member 93B and the upper surface and side surface of the tracker module 100B can be closed, and the area on the main surface 90a on which the power inductor L71 is arranged and the main surface on which the inductor L51A is arranged can be closed. It can be partitioned between the areas on 90a. Furthermore, the ground potential of the metal member 93B can be further stabilized. As a result, magnetic field coupling between power inductor L71 and inductor L51A can be more effectively suppressed.
  • the tracker module 100B does not have to include the metal member 93B, like the tracker module 100 according to the first embodiment. Even in this case, by arranging the power inductor L71 on the same module substrate 90 as the integrated circuit 80, characteristic deterioration and EMI due to noise can be suppressed.
  • Example 4 of the power supply circuit 1 will be described.
  • This embodiment differs from the third embodiment mainly in that the metal member is closer to the filter circuit than to the power inductor.
  • the tracker module 100C according to this embodiment will be described below with reference to FIG. 11, focusing on the differences from the third embodiment.
  • FIG. 11 is a plan view of the tracker module 100C according to this embodiment.
  • illustration of the resin member 91 and the shield electrode layer 92 is omitted.
  • unlabeled blocks represent optional circuit components that are not essential to the present invention.
  • a tracker module 100C includes a metal member 93C instead of the metal member 93B.
  • the metal member 93C is a metal wall extending along the y-axis.
  • the metal member 93C is arranged between the power inductor L71 and each of the inductors L51A to L53A and L51B to L53B included in the filter circuits 40A and 40B when the module substrate 90 is viewed from above.
  • the metal member 93C is arranged adjacent to at least part of the filter circuit 40A. Conversely, metal member 93C is not arranged adjacent to power inductor L71. That is, in this embodiment, the metal member 93C is closer to the filter circuit 40A than the power inductor L71.
  • the integrated circuit 80 and the power inductor L71 are arranged on the main surface 90a of the module substrate 90. and a metal member 93C disposed on the main surface 90a of the module substrate. At least one of them can be output, and the metal member 93C is arranged between the power inductor L71 and the inductor L51A when the module substrate 90 is viewed from above.
  • the metal member 93C is arranged between the power inductor L71 and the inductor L51A, magnetic field coupling between the power inductor L71 and the inductor L51A can be suppressed.
  • the metal member 93C may be a ground electrode connected to the ground.
  • Example 5 of the power supply circuit 1 will be described.
  • This embodiment differs from the third embodiment mainly in that a metal member is arranged between the two filter circuits.
  • the tracker module 100D according to this embodiment will be described below with reference to FIG. 12, focusing on the differences from the third embodiment.
  • FIG. 12 is a plan view of the tracker module 100D according to this embodiment.
  • illustration of the resin member 91 and the shield electrode layer 92 is omitted.
  • unlabeled blocks represent optional circuit components that are not essential to the present invention.
  • a tracker module 100D includes a metal member 93D in addition to the metal member 93B.
  • Metal member 93D is a metal wall extending along the y-axis.
  • the metal member 93D is arranged between the filter circuits 40A and 40B when the module substrate 90 is viewed from above. That is, the metal member 93D is arranged between the inductors L51A to L53A and the inductors L51B to L53B when the module substrate 90 is viewed from above.
  • the tracker module 100D includes the inductors L51A and L51B arranged on the main surface 90a of the module substrate 90 and the metal member 93D arranged on the main surface 90a of the module substrate 90.
  • the output switch circuit 30A can output at least one of the plurality of second voltages via a filter circuit 40A including an inductor L51A
  • the output switch circuit 30B can output at least one of the plurality of second voltages via a filter circuit 40B including an inductor L51B.
  • At least one of the plurality of second voltages can be output
  • the metal member 93D is arranged between the inductors L51A and L51B when the module substrate 90 is viewed from above.
  • the tracker module according to the present invention has been described above based on the embodiments and examples, the tracker module according to the present invention is not limited to the above embodiments and examples. Another embodiment and another example realized by combining arbitrary components in the above embodiment and the above example, and a range that does not depart from the gist of the present invention with respect to the above embodiment and the above example The present invention also includes modifications that can be made by those skilled in the art, and various devices incorporating the tracker module.
  • another circuit element and wiring may be inserted between the paths connecting the circuit elements and signal paths disclosed in the drawings.
  • an impedance matching circuit may be inserted between the power amplifier 2A and the filter 3A and/or between the filter 3A and the antenna 6.
  • capacitors C51A and/or C52A may be included in the integrated circuit 80 in the tracker module 100 according to the above embodiment.
  • Capacitors C51B and/or C52B may also be included in integrated circuit 80. FIG. This can contribute to miniaturization of the tracker module 100 .
  • the pre-regulator circuit 10 includes one power inductor L71 in the above embodiment, it may include a plurality of power inductors. In this case, at least one of the plurality of power inductors may be arranged on the module substrate 90 and included in the tracker module.
  • the power inductor L71 may be arranged in a cavity 902 formed in the module substrate 90, as shown in FIG. 13, for example.
  • FIG. 13 is a cross-sectional view of a tracker module 100E according to another embodiment.
  • Cavity 902 is a recess formed in main surface 90 a of module substrate 90 .
  • a portion of power inductor L71 is inserted into cavity 902.
  • the height of the power inductor L71 from the main surface 90a can be made close to the height of other circuit components arranged on the main surface 90a, and the height of the tracker module 100E can be reduced. .
  • the present invention can be widely used in communication equipment such as mobile phones as a tracker module that supplies power supply voltage to a power amplifier.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Dc-Dc Converters (AREA)

Abstract

トラッカモジュール(100)は、モジュール基板(90)と、モジュール基板(90)に配置された集積回路(80)と、モジュール基板(90)に配置されたパワーインダクタ(L71)と、を備え、集積回路(80)は、パワーインダクタ(L71)を用いて入力電圧を第1電圧に変換するよう構成されたプリレギュレータ回路(10)に含まれる少なくとも1つのスイッチと、第1電圧から複数の離散的電圧を生成するよう構成されたスイッチトキャパシタ回路(20)に含まれる少なくとも1つのスイッチと、エンベロープ信号に基づいて複数の離散的電圧のうちの少なくとも1つを選択的に出力するよう構成された出力スイッチ回路(30A)に含まれる少なくとも1つのスイッチと、を含む。

Description

トラッカモジュール
 本発明は、トラッカモジュールに関する。
 特許文献1には、高周波信号に応じて時間の経過とともに動的に調整された電源電圧を電力増幅器に供給することができる電源変調回路が開示されている。
米国特許第9755672号明細書
 特許文献1の電源変調回路(電源回路)には、パワーインダクタを用いて直流電圧を調整する磁気式レギュレーションステージ(プリレギュレータ回路)が含まれる。このような電源回路のモジュール化では、ノイズによる電気特性の劣化又はEMI(Electromagnetic Interference)が問題となる場合がある。
 そこで、本発明は、ノイズによる特性劣化及び/又はEMIを抑制することができるトラッカモジュールを提供する。
 本発明の一態様に係るトラッカモジュールは、モジュール基板と、モジュール基板に配置された少なくとも1つの集積回路と、モジュール基板に配置されたパワーインダクタと、を備え、少なくとも1つの集積回路は、パワーインダクタを用いて入力電圧を第1電圧に変換するよう構成されたプリレギュレータ回路に含まれる少なくとも1つのスイッチと、第1電圧から複数の離散的電圧を生成するよう構成されたスイッチトキャパシタ回路に含まれる少なくとも1つのスイッチと、エンベロープ信号に基づいて複数の離散的電圧のうちの少なくとも1つを選択的に出力するよう構成された出力スイッチ回路に含まれる少なくとも1つのスイッチと、を含む。
 本発明の一態様に係るトラッカモジュールは、モジュール基板と、モジュール基板に配置された少なくとも1つの集積回路と、モジュール基板に配置されたパワーインダクタと、を備え、少なくとも1つの集積回路は、パワーインダクタを用いて入力電圧を第1電圧に変換するよう構成されたプリレギュレータ回路に含まれる少なくとも1つのスイッチと、第1電圧から複数の離散的電圧を生成するよう構成されたスイッチトキャパシタ回路に含まれる少なくとも1つのスイッチと、制御回路に接続された制御端子を有する出力スイッチ回路であって複数の離散的電圧のうちの少なくとも1つを選択的に出力するよう構成された出力スイッチ回路に含まれる少なくとも1つのスイッチと、を含む。
 本発明の一態様に係るトラッカモジュールは、モジュール基板と、モジュール基板に配置された少なくとも1つの集積回路と、モジュール基板に配置されたパワーインダクタと、を備え、少なくとも1つの集積回路は、プリレギュレータ回路に含まれる少なくとも1つのスイッチと、スイッチトキャパシタ回路に含まれる少なくとも1つのスイッチと、出力スイッチ回路に含まれる少なくとも1つのスイッチと、を含み、スイッチトキャパシタ回路は、第1電極及び第2電極を有する第1キャパシタと、第3電極及び第4電極を有する第2キャパシタと、を含み、スイッチトキャパシタ回路に含まれる少なくとも1つのスイッチは、第1スイッチ、第2スイッチ、第3スイッチ、第4スイッチ、第5スイッチ、第6スイッチ、第7スイッチ及び第8スイッチを含み、第1スイッチの一端及び第3スイッチの一端は、第1電極に接続され、第2スイッチの一端及び第4スイッチの一端は、第2電極に接続され、第5スイッチの一端及び第7スイッチの一端は、第3電極に接続され、第6スイッチの一端及び第8スイッチの一端は、第4電極に接続され、第1スイッチの他端と第2スイッチの他端と第5スイッチの他端と第6スイッチの他端とは、互いに接続され、第3スイッチの他端は、第7スイッチの他端に接続され、第4スイッチの他端は、第8スイッチの他端に接続され、出力スイッチ回路は、出力端子を含み、出力スイッチ回路に含まれる少なくとも1つのスイッチは、第1スイッチの他端、第2スイッチの他端、第5スイッチの他端及び第6スイッチの他端と出力端子との間に接続された第9スイッチと、第3スイッチの他端及び第7スイッチの他端と出力端子との間に接続された第10スイッチと、を含み、プリレギュレータ回路は、パワーインダクタ及び入力端子を含み、プリレギュレータ回路に含まれる少なくとも1つのスイッチは、入力端子とパワーインダクタの一端との間に接続された第11スイッチと、パワーインダクタの一端とグランドとの間に接続された第12スイッチと、を含み、パワーインダクタの他端は、第1スイッチの他端、第2スイッチの他端、第5スイッチの他端及び第6スイッチの他端に接続される。
 本発明の一態様に係るトラッカモジュールによれば、ノイズによる特性劣化及び/又はEMIを抑制することができる。
図1は、実施の形態に係る通信装置の回路構成図である。 図2は、実施の形態に係るプリレギュレータ回路、スイッチトキャパシタ回路、出力スイッチ回路及びフィルタ回路の回路構成図である。 図3Aは、デジタルエンベロープトラッキングによって供給される電源電圧を示すグラフである。 図3Bは、アナログエンベロープトラッキングによって供給される電源電圧を示すグラフである。 図4は、実施例1に係るトラッカモジュールの平面図である。 図5は、実施例1に係るトラッカモジュールの平面図である。 図6は、実施例1に係るトラッカモジュールの断面図である。 図7は、実施例1に係るトラッカモジュールの断面図である。 図8は、実施例2に係るトラッカモジュールの平面図である。 図9は、実施例2に係るトラッカモジュールの断面図である。 図10は、実施例3に係るトラッカモジュールの平面図である。 図11は、実施例4に係るトラッカモジュールの平面図である。 図12は、実施例5に係るトラッカモジュールの平面図である。 図13は、他の実施例に係るトラッカモジュールの断面図である。
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態などは、一例であり、本発明を限定する主旨ではない。
 なお、各図は、本発明を示すために適宜強調、省略、又は比率の調整を行った模式図であり、必ずしも厳密に図示されたものではなく、実際の形状、位置関係、及び比率とは異なる場合がある。各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡素化される場合がある。
 以下の各図において、x軸及びy軸は、モジュール基板の主面と平行な平面上で互いに直交する軸である。具体的には、平面視においてモジュール基板が矩形状を有する場合、x軸は、モジュール基板の第1辺に平行であり、y軸は、モジュール基板の第1辺と直交する第2辺に平行である。また、z軸は、モジュール基板の主面に垂直な軸であり、その正方向は上方向を示し、その負方向は下方向を示す。
 本発明の回路構成において、「接続される」とは、接続端子及び/又は配線導体で直接接続される場合だけでなく、他の回路素子を介して電気的に接続される場合も含む。「A及びBの間に接続される」とは、A及びBの間でA及びBの両方に接続されることを意味し、A及びBを結ぶ経路に直列接続されることに加えて、当該経路とグランドとの間に並列接続(シャント接続)されることを含む。
 本発明の部品配置において、「部品が基板に配置される」とは、部品が基板の主面上に配置されること、及び、部品が基板内に配置されることを含む。「部品が基板の主面上に配置される」とは、部品が基板の主面に接触して配置されることに加えて、部品が主面と接触せずに当該主面の上方に配置されること(例えば、部品が主面と接触して配置された他の部品上に積層されること)を含む。また、「部品が基板の主面上に配置される」は、主面に形成された凹部に部品が配置されることを含んでもよい。「部品が基板内に配置される」とは、部品がモジュール基板内にカプセル化されることに加えて、部品の全部が基板の両主面の間に配置されているが部品の一部が基板に覆われていないこと、及び、部品の一部のみが基板内に配置されていることを含む。
 また、本発明の部品配置において、「モジュール基板の平面視」とは、z軸正側からxy平面に物体を正投影して見ることを意味する。「Aは平面視においてBと重なる」とは、xy平面に正投影されたAの領域が、xy平面に正投影されたBの領域と重なることを意味する。
 また、本発明の部品配置において、「AがBに隣接して配置される」とは、AとBとが近接配置されていることを表し、具体的にはAがBと対面する空間に他の回路部品が存在しないことを意味する。言い換えると、「AがBに隣接して配置される」とは、AのBに対面する表面上の任意の点から当該表面の法線方向に沿ってBに到達する複数の線分のいずれもが、A及びB以外の回路部品を通らないことを意味する。ここで、回路部品とは、能動素子及び/又は受動素子を含む部品を意味する。つまり、回路部品には、トランジスタ又はダイオード等を含む能動部品、及び、インダクタ、トランスフォーマ、キャパシタ又は抵抗等を含む受動部品が含まれ、端子、コネクタ又は配線等を含む電気機械部品が含まれない。
 また、本発明の部品配置において、「BよりもCの方がAの近くに配置される」とは、A及びCの間の距離がA及びBの間の距離よりも短いことを意味する。ここで、「A及びBの間の距離」とは、A及びBの間の最短距離を意味する。つまり、「A及びBの間の距離」とは、Aの表面上の任意の点とBの表面上の任意の点とを結ぶ複数の線分のうち最も短い線分の長さを意味する。
 また、「平行」及び「垂直」などの要素間の関係性を示す用語、及び、「矩形」などの要素の形状を示す用語、並びに、数値範囲は、厳格な意味のみを表すのではなく、実質的に同等な範囲、例えば数%程度の誤差をも含むことを意味する。
 (実施の形態)
 以下、図面を参照しながら、本実施の形態に係るトラッカモジュール及び通信装置について説明する。
 [1 通信装置7及び電源回路1の回路構成]
 本実施の形態に係る通信装置7の回路構成について、図1を参照しながら説明する。図1は、本実施の形態に係る通信装置7の回路構成図である。
 [1.1 通信装置7の回路構成]
 まず、通信装置7の回路構成について説明する。図1に示すように、本実施の形態に係る通信装置7は、電源回路1と、電力増幅器(PA:Power Amplifier)2A及び2Bと、フィルタ3A及び3Bと、PA制御回路4と、RFIC(Radio Frequency Integrated Circuit)5と、アンテナ6と、を備える。
 電源回路1は、デジタルエンベロープトラッキング(ET:Envelope Tracking)モードで電源電圧VETA及びVETBを電力増幅器2A及び2Bにそれぞれ供給することができる。デジタルETモードでは、電源電圧VETA及びVETBの各々の電圧レベルは、エンベロープ信号に対応するデジタル制御信号に基づいて複数の離散的な電圧レベルの中から選択され、時間とともに変化する。
 エンベロープ信号とは、変調波(高周波信号)のエンベロープ値を示す信号である。エンベロープ値は、例えば(I+Q)の平方根で表される。ここで、(I,Q)は、コンスタレーションポイントを表す。コンスタレーションポイントとは、デジタル変調によって変調された信号をコンスタレーションダイヤグラム上で表す点である。デジタルETモードの詳細については、図3A及び図3Bを用いて後述する。
 なお、図1では、電源回路1は、2つの電力増幅器2A及び2Bに2つの電源電圧VETA及びVETBをそれぞれ供給しているが、複数の電力増幅器に同じ電源電圧を供給してもよい。また、電源回路1は、1つの電力増幅器のみに電源電圧を供給してもよい。
 図1に示すように、電源回路1は、プリレギュレータ回路10と、スイッチトキャパシタ回路20と、出力スイッチ回路30A及び30Bと、フィルタ回路40A及び40Bと、直流電源50と、を備える。
 プリレギュレータ回路10は、パワーインダクタ及びスイッチを含む。パワーインダクタとは、直流電圧の昇圧及び/又は降圧に用いられるインダクタである。パワーインダクタは、直流経路に直列に配置される。なお、パワーインダクタは、直列経路とグランドとの間に接続(並列に配置)されていてもよい。プリレギュレータ回路10は、パワーインダクタを用いて入力電圧を第1電圧に変換することができる。このようなプリレギュレータ回路10は、磁気レギュレータ又はDC(Direct Current)/DCコンバータと呼ばれる場合もある。
 スイッチトキャパシタ回路20は、複数のキャパシタ及び複数のスイッチを含み、プリレギュレータ回路10からの第1電圧から、複数の離散的な電圧レベルをそれぞれ有する複数の第2電圧を複数の離散的電圧として生成することができる。スイッチトキャパシタ回路20は、スイッチトキャパシタ電圧バランサ(Switched-Capacitor Voltage Balancer)と呼ばれる場合もある。
 出力スイッチ回路30A及び30Bは、エンベロープ信号に対応するデジタル制御信号に基づいて、スイッチトキャパシタ回路20で生成された複数の第2電圧のうちの1つをそれぞれ選択してフィルタ回路40A及び40Bにそれぞれ出力することができる。
 フィルタ回路40A及び40Bは、出力スイッチ回路30A及び30Bからの信号(第2電圧)をフィルタリングすることができる。
 直流電源50は、プリレギュレータ回路10に直流電圧を供給することができる。直流電源50としては、例えば、充電式電池(rechargeable battery)を用いることができるが、これに限定されない。
 なお、電源回路1は、プリレギュレータ回路10とスイッチトキャパシタ回路20と出力スイッチ回路30A及び30Bとフィルタ回路40A及び40Bと直流電源50との少なくとも1つを含まなくてもよい。例えば、1つの電力増幅器のみに電源電圧が供給される場合には、電源回路1は、出力スイッチ回路30B及びフィルタ回路40Bを含まなくてもよい。また、電源回路1は、直流電源50を含まなくてもよく、フィルタ回路40A及び40Bを含まなくてもよい。また、プリレギュレータ回路10とスイッチトキャパシタ回路20と出力スイッチ回路30A及び30Bとフィルタ回路40A及び40Bとの任意の組み合わせは、単一の回路に統合されてもよい。
 電力増幅器2Aは、RFIC5とフィルタ3Aとの間に接続される。さらに、電力増幅器2Aは、電源回路1から電源電圧VETAを受けることができ、PA制御回路4からバイアス信号を受けることができる。これにより、電力増幅器2Aは、RFIC5から受けたバンドAの送信信号を増幅することができる。
 電力増幅器2Bは、RFIC5とフィルタ3Bとの間に接続される。さらに、電力増幅器2Bは、電源回路1から電源電圧VETBを受けることができ、PA制御回路4からバイアス信号を受けることができる。これにより、電力増幅器2Bは、RFIC5から受けたバンドBの送信信号を増幅することができる。
 フィルタ3Aは、電力増幅器2Aとアンテナ6との間に接続される。フィルタ3Aは、バンドAを含む通過帯域を有する。これにより、フィルタ3Aは、電力増幅器2Aで増幅されたバンドAの送信信号を通過させることができる。
 フィルタ3Bは、電力増幅器2Bとアンテナ6との間に接続される。フィルタ3Bは、バンドBを含む通過帯域を有する。これにより、フィルタ3Bは、電力増幅器2Bで増幅されたバンドBの送信信号を通過させることができる。
 PA制御回路4は、電力増幅器2A及び2Bを制御することができる。具体的には、PA制御回路4は、電力増幅器2A及び2Bの各々にバイアス信号を供給することができる。
 RFIC5は、高周波信号を処理する信号処理回路の一例である。具体的には、RFIC5は、入力された送信信号をアップコンバート等により信号処理し、当該信号処理して生成された高周波送信信号を、電力増幅器2A及び2Bに供給する。また、RFIC5は、電源回路1を制御する制御部を有する。なお、RFIC5の制御部としての機能の一部又は全部は、RFIC5の外部に実装されてもよい。
 アンテナ6は、電力増幅器2Aからフィルタ3Aを介して入力されたバンドAの信号と、電力増幅器2Bからフィルタ3Bを介して入力されたバンドBの信号とを送信する。
 バンドA及びBは、無線アクセス技術(RAT:Radio Access Technology)を用いて構築される通信システムのための周波数バンドである。バンドA及びBは、標準化団体など(例えば3GPP(登録商標)(3rd Generation Partnership Project)及びIEEE(Institute of Electrical and Electronics Engineers)等)によって予め定義される。通信システムの例としては、5GNR(5th Generation New Radio)システム、LTE(Long Term Evolution)システム及びWLAN(Wireless Local Area Network)システム等を挙げることができる。
 なお、図1に表された通信装置7の回路構成は、例示であり、これに限定されない。例えば、通信装置7は、アンテナ6を備えなくてもよい。また例えば、通信装置7は、複数のアンテナを備えてもよい。
 [1.2 電源回路1の回路構成]
 次に、電源回路1に含まれるプリレギュレータ回路10、スイッチトキャパシタ回路20、出力スイッチ回路30A及び30B、並びに、フィルタ回路40A及び40Bの回路構成について、図2を参照しながら説明する。図2は、本実施の形態に係るプリレギュレータ回路10、スイッチトキャパシタ回路20、出力スイッチ回路30A及び30B、並びに、フィルタ回路40A及び40Bの回路構成図である。
 なお、図2は、例示的な回路構成であり、プリレギュレータ回路10、スイッチトキャパシタ回路20、出力スイッチ回路30A及び30B、並びに、フィルタ回路40A及び40Bは、多種多様な回路実装及び回路技術のいずれかを使用して実装され得る。したがって、以下に提供される各回路の説明は、限定的に解釈されるべきではない。
 [1.2.1 スイッチトキャパシタ回路20の回路構成]
 まず、スイッチトキャパシタ回路20の回路構成について説明する。スイッチトキャパシタ回路20は、図2に示すように、キャパシタC11~C16と、キャパシタC10、C20、C30及びC40と、スイッチS11~S14、S21~S24、S31~S34、及びS41~S44と、制御端子120と、を備える。エネルギー及び電荷は、ノードN1~N4でプリレギュレータ回路10からスイッチトキャパシタ回路20に入力され、ノードN1~N4でスイッチトキャパシタ回路20から出力スイッチ回路30A及び30Bに引き出される。
 制御端子120は、デジタル制御信号の入力端子である。つまり、制御端子120は、スイッチトキャパシタ回路20を制御するためのデジタル制御信号を受けるための端子である。制御端子120を介して受けるデジタル制御信号としては、例えば、データ信号とクロック信号とを送信するソース同期方式の制御信号を用いることができるが、これに限定されない。例えば、デジタル制御信号として、データ信号にクロックが埋め込まれるクロック埋め込み方式の制御信号が用いられてもよい。
 キャパシタC11~C16の各々は、フライングキャパシタ(トランスファキャパシタと呼ばれる場合もある)として機能する。つまり、キャパシタC11~C16の各々は、プリレギュレータ回路10から供給された第1電圧を昇圧又は降圧するために用いられる。より具体的には、キャパシタC11~C16は、4つのノードN1~N4においてV1:V2:V3:V4=1:2:3:4を満たす電圧V1~V4(グランド電位に対する電圧)が維持されるように、キャパシタC11~C16とノードN1~N4との間で電荷を移動させる。この電圧V1~V4が複数の離散的な電圧レベルをそれぞれ有する複数の第2電圧に相当する。
 キャパシタC11は、2つの電極を有する。キャパシタC11の2つの電極の一方は、スイッチS11の一端及びスイッチS12の一端に接続される。キャパシタC11の2つの電極の他方は、スイッチS21の一端及びスイッチS22の一端に接続される。
 キャパシタC12は、第1キャパシタの一例であり、2つの電極(第1電極及び第2電極の一例)を有する。キャパシタC12の2つの電極の一方は、スイッチS21の一端及びスイッチS22の一端に接続される。キャパシタC12の2つの電極の他方は、スイッチS31の一端及びスイッチS32の一端に接続される。
 キャパシタC13は、2つの電極を有する。キャパシタC13の2つの電極の一方は、スイッチS31の一端及びスイッチS32の一端に接続される。キャパシタC13の2つの電極の他方は、スイッチS41の一端及びスイッチS42の一端に接続される。
 キャパシタC14は、2つの電極を有する。キャパシタC14の2つの電極の一方は、スイッチS13の一端及びスイッチS14の一端に接続される。キャパシタC14の2つの電極の他方は、スイッチS23の一端及びスイッチS24の一端に接続される。
 キャパシタC15は、第2キャパシタの一例であり、2つの電極(第3電極及び第4電極の一例)を有する。キャパシタC15の2つの電極の一方は、スイッチS23の一端及びスイッチS24の一端に接続される。キャパシタC15の2つの電極の他方は、スイッチS33の一端及びスイッチS34の一端に接続される。
 キャパシタC16は、2つの電極を有する。キャパシタC16の2つの電極の一方は、スイッチS33の一端及びスイッチS34の一端に接続される。キャパシタC16の2つの電極の他方は、スイッチS43の一端及びスイッチS44の一端に接続される。
 キャパシタC11及びC14のセットと、キャパシタC12及びC15のセットと、キャパシタC13及びC16のセットとの各々は、第1フェーズ及び第2フェーズが繰り返されることで相補的に充電及び放電を行うことができる。
 具体的には、第1フェーズでは、スイッチS12、S13、S22、S23、S32、S33、S42及びS43がオンにされる。これにより、例えば、キャパシタC12の2つの電極の一方はノードN3に接続され、キャパシタC12の2つの電極の他方及びキャパシタC15の2つの電極の一方はノードN2に接続され、キャパシタC15の2つの電極の他方はノードN1に接続される。
 一方、第2フェーズでは、スイッチS11、S14、S21、S24、S31、S34、S41及びS44がオンにされる。これにより、例えば、キャパシタC15の2つの電極の一方はノードN3に接続され、キャパシタC15の2つの電極の他方及びキャパシタC12の2つの電極の一方はノードN2に接続され、キャパシタC12の2つの電極の他方は、ノードN1に接続される。
 このような第1フェーズ及び第2フェーズが繰り返されることにより、例えばキャパシタC12及びC15の一方がノードN2から充電されているときに、キャパシタC12及びC15の他方がキャパシタC30に放電することができる。つまり、キャパシタC12及びC15は、相補的に充電及び放電を行うことができる。
 キャパシタC11及びC14のセットとキャパシタC13及びC16のセットとの各々も、第1フェーズ及び第2フェーズが繰り返されることで、キャパシタC12及びC15のセットと同様に、相補的に充電及び放電を行うことができる。
 キャパシタC10、C20、C30及びC40の各々は、平滑キャパシタとして機能する。つまり、キャパシタC10、C20、C30及びC40の各々は、ノードN1~N4における電圧V1~V4の保持及び平滑化に用いられる。
 キャパシタC10は、ノードN1及びグランドの間に接続される。具体的には、キャパシタC10の2つの電極の一方は、ノードN1に接続される。一方、キャパシタC10の2つの電極の他方は、グランドに接続される。
 キャパシタC20は、ノードN2及びN1の間に接続される。具体的には、キャパシタC20の2つの電極の一方は、ノードN2に接続される。一方、キャパシタC20の2つの電極の他方は、ノードN1に接続される。
 キャパシタC30は、ノードN3及びN2の間に接続される。具体的には、キャパシタC30の2つの電極の一方は、ノードN3に接続される。一方、キャパシタC30の2つの電極の他方は、ノードN2に接続される。
 キャパシタC40は、ノードN4及びN3の間に接続される。具体的には、キャパシタC40の2つの電極の一方は、ノードN4に接続される。一方、キャパシタC40の2つの電極の他方は、ノードN3に接続される。
 スイッチS11は、キャパシタC11の2つの電極の一方とノードN3との間に接続される。具体的には、スイッチS11の一端は、キャパシタC11の2つの電極の一方に接続される。一方、スイッチS11の他端は、ノードN3に接続される。
 スイッチS12は、キャパシタC11の2つの電極の一方とノードN4との間に接続される。具体的には、スイッチS12の一端は、キャパシタC11の2つの電極の一方に接続される。一方、スイッチS12の他端は、ノードN4に接続される。
 スイッチS21は、第1スイッチの一例であり、キャパシタC12の2つの電極の一方とノードN2との間に接続される。具体的には、スイッチS21の一端は、キャパシタC12の2つの電極の一方及びキャパシタC11の2つの電極の他方に接続される。一方、スイッチS21の他端は、ノードN2に接続される。
 スイッチS22は、第3スイッチの一例であり、キャパシタC12の2つの電極の一方とノードN3との間に接続される。具体的には、スイッチS22の一端は、キャパシタC12の2つの電極の一方及びキャパシタC11の2つの電極の他方に接続される。一方、スイッチS22の他端は、ノードN3に接続される。
 スイッチS31は、第4スイッチの一例であり、キャパシタC12の2つの電極の他方とノードN1との間に接続される。具体的には、スイッチS31の一端は、キャパシタC12の2つの電極の他方及びキャパシタC13の2つの電極の一方に接続される。一方、スイッチS31の他端は、ノードN1に接続される。
 スイッチS32は、第2スイッチの一例であり、キャパシタC12の2つの電極の他方とノードN2との間に接続される。具体的には、スイッチS32の一端は、キャパシタC12の2つの電極の他方及びキャパシタC13の2つの電極の一方に接続される。一方、スイッチS32の他端は、ノードN2に接続される。つまり、スイッチS32の他端は、スイッチS21の他端に接続される。
 スイッチS41は、キャパシタC13の2つの電極の他方とグランドとの間に接続される。具体的には、スイッチS41の一端は、キャパシタC13の2つの電極の他方に接続される。一方、スイッチS41の他端は、グランドに接続される。
 スイッチS42は、キャパシタC13の2つの電極の他方とノードN1との間に接続される。具体的には、スイッチS42の一端は、キャパシタC13の2つの電極の他方に接続される。一方、スイッチS42の他端は、ノードN1に接続される。つまり、スイッチS42の他端は、スイッチS31の他端に接続される。
 スイッチS13は、キャパシタC14の2つの電極の一方とノードN3との間に接続される。具体的には、スイッチS13の一端は、キャパシタC14の2つの電極の一方に接続される。一方、スイッチS13の他端は、ノードN3に接続される。つまり、スイッチS13の他端は、スイッチS11の他端及びスイッチS22の他端に接続される。
 スイッチS14は、キャパシタC14の2つの電極の一方とノードN4との間に接続される。具体的には、スイッチS14の一端は、キャパシタC14の2つの電極の一方に接続される。一方、スイッチS14の他端は、ノードN4に接続される。つまり、スイッチS14の他端は、スイッチS12の他端に接続される。
 スイッチS23は、第5スイッチの一例であり、キャパシタC15の2つの電極の一方とノードN2との間に接続される。具体的には、スイッチS23の一端は、キャパシタC15の2つの電極の一方及びキャパシタC14の2つの電極の他方に接続される。一方、スイッチS23の他端は、ノードN2に接続される。つまり、スイッチS23の他端は、スイッチS21の他端及びスイッチS32の他端に接続される。
 スイッチS24は、第7スイッチの一例であり、キャパシタC15の2つの電極の一方とノードN3との間に接続される。具体的には、スイッチS24の一端は、キャパシタC15の2つの電極の一方及びキャパシタC14の2つの電極の他方に接続される。一方、スイッチS24の他端は、ノードN3に接続される。つまり、スイッチS24の他端は、スイッチS11の他端、スイッチS22の他端及びスイッチS13の他端に接続される。
 スイッチS33は、第8スイッチの一例であり、キャパシタC15の2つの電極の他方とノードN1との間に接続される。具体的には、スイッチS33の一端は、キャパシタC15の2つの電極の他方及びキャパシタC16の2つの電極の一方に接続される。一方、スイッチS33の他端は、ノードN1に接続される。つまり、スイッチS33の他端は、スイッチS31の他端及びスイッチS42の他端に接続される。
 スイッチS34は、第6スイッチの一例であり、キャパシタC15の2つの電極の他方とノードN2との間に接続される。具体的には、スイッチS34の一端は、キャパシタC15の2つの電極の他方及びキャパシタC16の2つの電極の一方に接続される。一方、スイッチS34の他端は、ノードN2に接続される。つまり、スイッチS34の他端は、スイッチS21の他端、スイッチS32の他端及びスイッチS23の他端に接続される。
 スイッチS43は、キャパシタC16の2つの電極の他方とグランドとの間に接続される。具体的には、スイッチS43の一端は、キャパシタC16の2つの電極の他方に接続される。一方、スイッチS43の他端は、グランドに接続される。
 スイッチS44は、キャパシタC16の2つの電極の他方とノードN1との間に接続される。具体的には、スイッチS44の一端は、キャパシタC16の2つの電極の他方に接続される。一方、スイッチS44の他端は、ノードN1に接続される。つまり、スイッチS44の他端は、スイッチS31の他端、スイッチS42の他端及びスイッチS33の他端に接続される。
 スイッチS12、S13、S22、S23、S32、S33、S42及びS43を含む第1セットのスイッチと、スイッチS11、S14、S21、S24、S31、S34、S41及びS44を含む第2セットのスイッチとは、相補的にオン及びオフが切り替えられる。具体的には、第1フェーズでは、第1セットのスイッチがオンにされ、第2セットのスイッチがオフにされる。逆に、第2フェーズでは、第1セットのスイッチがオフにされ、第2セットのスイッチがオンにされる。
 例えば、第1フェーズ及び第2フェーズに一方において、キャパシタC11~C13からキャパシタC10~C40への充電が実行され、第1フェーズ及び第2フェーズに他方において、キャパシタC14~C16からキャパシタC10~C40への充電が実行される。つまり、キャパシタC10~C40には、キャパシタC11~C13又はキャパシタC14~C16から常に充電されるので、ノードN1~N4から出力スイッチ回路30A及び30Bへ高速で電流が流れても、ノードN1~N4には高速で電荷が補充されるので、ノードN1~N4の電位変動を抑制できる。
 このように動作することで、スイッチトキャパシタ回路20は、キャパシタC10、C20、C30及びC40のそれぞれの両端でほぼ等しい電圧を維持することができる。具体的には、V1~V4のラベルが付された4つのノードにおいて、V1:V2:V3:V4=1:2:3:4を満たす電圧V1~V4(グランド電位に対する電圧)が維持される。電圧V1~V4の電圧レベルは、スイッチトキャパシタ回路20によって出力スイッチ回路30A及び30Bに供給可能な複数の離散的な電圧レベルに対応する。
 なお、電圧比V1:V2:V3:V4は、1:2:3:4に限定されない。例えば、電圧比V1:V2:V3:V4は、1:2:4:8であってもよい。
 また、図2に示したスイッチトキャパシタ回路20の構成は、一例であり、これに限定されない。図2において、スイッチトキャパシタ回路20は、4つの離散的な電圧レベルの電圧を供給可能に構成されていたが、これに限定されない。スイッチトキャパシタ回路20は、2以上の任意の数の離散的な電圧レベルの電圧を供給可能に構成されてもよい。例えば、2つの離散的な電圧レベルの電圧を供給する場合、スイッチトキャパシタ回路20は、少なくとも、キャパシタC12及びC15と、スイッチS21~S24及びS31~S34と、を備えればよい。
 [1.2.2 出力スイッチ回路30A及び30Bの回路構成]
 次に、出力スイッチ回路30A及び30Bの回路構成について説明する。図2に示すように、出力スイッチ回路30Aは、入力端子131A~134Aと、スイッチS51A~S54Aと、出力端子130Aと、制御端子135A及び136Aと、を備える。また、出力スイッチ回路30Bは、入力端子131B~134Bと、スイッチS51B~S54Bと、出力端子130Bと、制御端子135B及び136Bと、を備える。以下では、出力スイッチ回路30Aについて説明し、出力スイッチ回路30Bの説明については出力スイッチ回路30Aの説明において符号の「A」を「B」に置き換えたものと略同一であるので省略する。なお、出力スイッチ回路30Bは、出力スイッチ回路30Aに統合されてもよい。
 出力端子130Aは、フィルタ回路40Aに接続される。出力端子130Aは、フィルタ回路40Aに電圧V1~V4の中から選択された電圧を供給するための端子である。
 入力端子131A~134Aは、スイッチトキャパシタ回路20のノードN4~N1にそれぞれ接続される。入力端子131A~134Aは、スイッチトキャパシタ回路20から電圧V4~V1を受けるための端子である。
 制御端子135A及び136Aは、デジタル制御信号の入力端子である。つまり、制御端子135A及び136Aは、電圧V1~V4のうちの1つを示すデジタル制御信号を受けるための端子である。出力スイッチ回路30Aは、デジタル制御信号が示す電圧レベルを選択するように、スイッチS51A~S54Aのオン/オフを制御する。
 制御端子135A及び136Aを介して受けるデジタル制御信号としては、2つのデジタル制御論理(DCL:Digital Control Logic/Line)信号を用いることができる。2つのDCL信号の各々は1ビット信号である。電圧V1~V4の各々は、2つの1ビット信号の組み合わせによって示される。例えば、V1、V2、V3及びV4は、「00」、「01」、「10」及び「11」によってそれぞれ示される。電圧レベルの表現には、グレイコード(Gray code)が用いられてもよい。
 なお、本実施の形態では、2つのDCL信号が用いられているが、これに限定されない。例えば、電圧レベルの数に応じて1つ又は3以上の任意の数のDCL信号が用いられてもよい。また、デジタル制御信号は、DCL信号に限定されず、ソース同期方式の制御信号であってもよい。
 スイッチS51Aは、入力端子131Aと出力端子130Aとの間に接続される。具体的には、スイッチS51Aは、入力端子131Aに接続された端子と、出力端子130Aに接続された端子と、を有する。この接続構成において、スイッチS51Aは、オン/オフを切り替えることで、入力端子131Aと出力端子130Aとの接続及び非接続を切り替えることができる。
 スイッチS52Aは、第10スイッチの一例であり、入力端子132Aと出力端子130Aとの間に接続される。具体的には、スイッチS52Aは、入力端子132Aに接続された端子と、出力端子130Aに接続された端子と、を有する。この接続構成において、スイッチS52Aは、オン/オフを切り替えることで、入力端子132Aと出力端子130Aとの接続及び非接続を切り替えることができる。
 スイッチS53Aは、第9スイッチの一例であり、入力端子133Aと出力端子130Aとの間に接続される。具体的には、スイッチS53Aは、入力端子133Aに接続された端子と、出力端子130Aに接続された端子と、を有する。この接続構成において、スイッチS53Aは、オン/オフを切り替えることで、入力端子133Aと出力端子130Aとの接続及び非接続を切り替えることができる。
 スイッチS54Aは、入力端子134Aと出力端子130Aとの間に接続される。具体的には、スイッチS54Aは、入力端子134Aに接続された端子と、出力端子130Aに接続された端子と、を有する。この接続構成において、スイッチS54Aは、オン/オフを切り替えることで、入力端子134Aと出力端子130Aとの接続及び非接続を切り替えることができる。
 これらのスイッチS51A~S54Aは排他的にオンになるように制御される。つまり、スイッチS51A~S54Aのいずれかのみがオンにされ、スイッチS51A~S54Aの残りがオフにされる。これにより、出力スイッチ回路30Aは、電圧V1~V4の中から選択された1つの電圧を出力することができる。
 なお、図2に示した出力スイッチ回路30Aの構成は、一例であり、これに限定されない。特にスイッチS51A~S54Aは、4つの入力端子131A~134Aの少なくとも1つを選択的に出力端子130Aに接続できればよく、どのような構成であってもよい。例えば、出力スイッチ回路30Aは、さらに、スイッチS51A~S53AとスイッチS54A及び出力端子130Aとの間に接続されたスイッチを備えてもよい。また例えば、出力スイッチ回路30Aは、さらに、スイッチS51A及びS52AとスイッチS53A及びS54A並びに出力端子130Aとの間に接続されたスイッチを備えてもよい。
 なお、スイッチトキャパシタ回路20から2つの離散的な電圧レベルの電圧が供給される場合、出力スイッチ回路30Aは、少なくとも、スイッチS52A及びS53Aを備えればよい。
 [1.2.3 プリレギュレータ回路10の回路構成]
 まず、プリレギュレータ回路10の構成について説明する。図2に示すように、プリレギュレータ回路10は、入力端子110と、出力端子111~114と、制御端子117と、スイッチS61~S63、S71及びS72と、パワーインダクタL71と、キャパシタC61~C64と、を備える。
 入力端子110は、直流電圧の入力端子である。つまり、入力端子110は、直流電源50から入力電圧を受けるための端子である。
 出力端子111は、電圧V4の出力端子である。つまり、出力端子111は、スイッチトキャパシタ回路20に電圧V4を供給するための端子である。出力端子111は、スイッチトキャパシタ回路20のノードN4に接続される。
 出力端子112は、電圧V3の出力端子である。つまり、出力端子112は、スイッチトキャパシタ回路20に電圧V3を供給するための端子である。出力端子112は、スイッチトキャパシタ回路20のノードN3に接続される。
 出力端子113は、電圧V2の出力端子である。つまり、出力端子113は、スイッチトキャパシタ回路20に電圧V2を供給するための端子である。出力端子113は、スイッチトキャパシタ回路20のノードN2に接続される。
 出力端子114は、電圧V1の出力端子である。つまり、出力端子114は、スイッチトキャパシタ回路20に電圧V1を供給するための端子である。出力端子114は、スイッチトキャパシタ回路20のノードN1に接続される。
 制御端子117は、デジタル制御信号の入力端子である。つまり、制御端子117は、プリレギュレータ回路10を制御するためのデジタル制御信号を受けるための端子である。制御端子117を介して受けるデジタル制御信号としては、例えば、データ信号とクロック信号とを送信するソース同期方式の制御信号を用いることができるが、これに限定されない。例えば、デジタル制御信号として、データ信号にクロックが埋め込まれるクロック埋め込み方式の制御信号が用いられてもよい。なお、制御端子117は、制御端子120と1つにまとめられてもよい。
 スイッチS71は、第11スイッチの一例であり、入力端子110とパワーインダクタL71の一端との間に接続される。具体的には、スイッチS71は、入力端子110に接続される端子と、パワーインダクタL71の一端に接続される端子と、を有する。この接続構成において、スイッチS71は、オン/オフを切り替えることで、入力端子110とパワーインダクタL71の一端との間の接続及び非接続を切り替えることができる。
 スイッチS72は、第12スイッチの一例であり、パワーインダクタL71の一端とグランドとの間に接続される。具体的には、スイッチS72は、パワーインダクタL71の一端に接続される端子と、グランドに接続される端子と、を有する。この接続構成において、スイッチS72は、オン/オフを切り替えることで、パワーインダクタL71の一端とグランドとの間の接続及び非接続を切り替えることができる。
 スイッチS61は、パワーインダクタL71の他端と出力端子111との間に接続される。具体的には、スイッチS61は、パワーインダクタL71の他端に接続された端子と、出力端子111に接続された端子と、有する。この接続構成において、スイッチS61は、オン/オフを切り替えることで、パワーインダクタL71の他端と出力端子111との間の接続及び非接続を切り替えることができる。
 スイッチS62は、パワーインダクタL71の他端と出力端子112との間に接続される。具体的には、スイッチS62は、パワーインダクタL71の他端に接続された端子と、出力端子112に接続された端子と、有する。この接続構成において、スイッチS62は、オン/オフを切り替えることで、パワーインダクタL71の他端と出力端子112との間の接続及び非接続を切り替えることができる。
 スイッチS63は、パワーインダクタL71の他端と出力端子113との間に接続される。具体的には、スイッチS63は、パワーインダクタL71の他端に接続された端子と、出力端子113に接続された端子と、有する。この接続構成において、スイッチS63は、オン/オフを切り替えることで、パワーインダクタL71の他端と出力端子113との間の接続及び非接続を切り替えることができる。
 キャパシタC61の2つの電極の一方は、スイッチS61と出力端子111とに接続される。キャパシタC61の2つの電極の他方は、スイッチS62と出力端子112とキャパシタC62の2つの電極の一方とに接続される。
 キャパシタC62の2つの電極の一方は、スイッチS62と出力端子112とキャパシタC61の2つの電極の他方とに接続される。キャパシタC62の2つの電極の他方は、スイッチS63と出力端子113とキャパシタC63の2つの電極の一方とを接続する経路に接続される。
 キャパシタC63の2つの電極の一方は、スイッチS63と出力端子113とキャパシタC62の2つの電極の他方とに接続される。キャパシタC63の2つの電極の他方は、出力端子114とキャパシタC64の2つの電極の一方とに接続される。
 キャパシタC64の2つの電極の一方は、出力端子114とキャパシタC63の2つの電極の他方とに接続される。キャパシタC64の2つの電極の他方は、グランドに接続される。
 スイッチS61~S63は、排他的にオンになるように制御される。つまり、スイッチS61~S63のいずれかのみがオンにされ、スイッチS61~S63の残りがオフにされる。スイッチS61~S63のいずれかのみをオンとすることにより、プリレギュレータ回路10は、スイッチトキャパシタ回路20に供給する電圧を電圧V2~V4の電圧レベルで変化させることが可能となる。
 このように構成されたプリレギュレータ回路10は、出力端子111~113の少なくとも1つを介してスイッチトキャパシタ回路20に電荷を供給することができる。
 なお、入力電圧が1つの第1電圧に変換される場合、プリレギュレータ回路10は、少なくとも、スイッチS71及びS72と、パワーインダクタL71と、を備えればよい。
 [1.2.4 フィルタ回路40A及び40Bの回路構成]
 次に、フィルタ回路40A及び40Bの回路構成について説明する。フィルタ回路40A及び40Bは、ローパスフィルタ(LPF:Low Pass Filter)を含む。具体的には、図2に示すように、フィルタ回路40Aは、インダクタL51A~L53Aと、キャパシタC51A及びC52Aと、抵抗R51Aと、入力端子140Aと、出力端子141Aと、を備える。また、フィルタ回路40Bも、LPFを含み、インダクタL51B~L53Bと、キャパシタC51B及びC52Bと、抵抗R51Bと、入力端子140Bと、出力端子141Bと、を備える。以下では、フィルタ回路40Aについて説明し、フィルタ回路40Bの説明についてはフィルタ回路40Aの説明において符号の「A」を「B」に置き換えたものと略同一であるので省略する。
 入力端子140Aは、出力スイッチ回路30Aで選択された電圧の入力端子である。つまり、入力端子140Aは、複数の電圧V1~V4の中から選択された電圧を受けるための端子である。
 出力端子141Aは、電源電圧VETAの出力端子である。つまり、出力端子141Aは、電力増幅器2Aに電源電圧VETAを供給するための端子である。
 インダクタL51A~L53Aと、キャパシタC51A及びC52Aと、抵抗R51Aとは、ローパスフィルタを構成する。これにより、フィルタ回路40Aは、電源電圧に含まれる高周波成分を低減することができる。例えば、所定バンドが周波数分割複信(FDD:Frequency Division Duplex)用の周波数バンドである場合、フィルタ回路40Aは、所定バンドのアップリンク動作バンド及びダウンリンク動作バンド間のギャップの周波数成分を低減するように構成される。
 なお、図2に示すフィルタ回路40Aの構成は、一例であり、これに限定されない。例えば、フィルタ回路40Aは、インダクタL53A及び抵抗R51Aを備えなくてもよい。また例えば、フィルタ回路40Aは、キャパシタC51Aの2つの電極の一方に接続されたインダクタを備えてもよく、キャパシタC52Aの2つの電極の一方に接続されたインダクタを備えてもよい。
 [2 デジタルETモードの説明]
 ここで、デジタルETモードについて、従来のETモード(以下、アナログETモードという)と比較しながら、図3A及び図3Bを参照して説明する。図3Aは、デジタルETモードにおける電源電圧の推移の一例を示すグラフである。図3Bは、アナログETモードにおける電源電圧の推移の一例を示すグラフである。図3A及び図3Bにおいて、横軸は時間を表し、縦軸は電圧を表す。また、太い実線は、電源電圧を表し、細い実線(波形)は、変調波を表す。
 デジタルETモードでは、図3Aに示すように、1フレーム内で複数の離散的な電圧レベルに電源電圧を変動させることで変調波の包絡線を追跡する。その結果、電源電圧信号は矩形波を形成する。デジタルETモードでは、エンベロープ信号に基づいて、複数の離散的な電圧レベルの中から電源電圧レベルが選択又は設定される。
 フレームとは、高周波信号(変調波)を構成する単位を意味する。例えば5GNR及びLTEでは、フレームは、10個のサブフレームを含み、各サブフレームは、複数のスロットを含み、各スロットは、複数のシンボルで構成される。サブフレーム長は1msであり、フレーム長は10msである。
 アナログETモードでは、図3Bに示すように、電源電圧を連続的に変動させることで変調波の包絡線を追跡する。アナログETモードでは、エンベロープ信号に基づいて、電源電圧が決定される。なお、アナログETモードでは、変調波の包絡線が高速に変化する場合に、電源電圧が包絡線を追跡することが難しい。
 (実施例1)
 [3.1 トラッカモジュール100の部品配置]
 次に、以上のように構成された電源回路1の実施例1として、プリレギュレータ回路10、スイッチトキャパシタ回路20、出力スイッチ回路30A及び30B、並びに、フィルタ回路40A及び40Bが実装されたトラッカモジュール100を、図4~図7を参照しながら説明する。
 図4は、本実施例に係るトラッカモジュール100の平面図である。図5は、本実施例に係るトラッカモジュール100の平面図であり、z軸正側からモジュール基板90の主面90b側を透視した図である。図6及び図7は、本実施例に係るトラッカモジュール100の断面図である。図6及び図7におけるトラッカモジュール100の断面は、それぞれ、図4及び図5のVI-VI線及びVII-VII線における断面である。
 なお、図4~図6において、モジュール基板90に配置された複数の回路部品を接続する配線の一部の図示が省略されている。図4及び図5において、複数の回路部品を覆う樹脂部材91及び樹脂部材91の表面を覆うシールド電極層92の図示が省略されている。図4及び図6において、符号が付されていないブロックは、本発明に必須ではない任意の回路部品を表す。
 トラッカモジュール100は、図2に示されたプリレギュレータ回路10、スイッチトキャパシタ回路20、出力スイッチ回路30A及び30B、並びに、フィルタ回路40A及び40Bに含まれる能動素子及び受動素子を含む複数の回路部品に加えて、モジュール基板90と、樹脂部材91と、複数のランド電極150と、を備える。
 モジュール基板90は、互いに対向する主面90a及び90bを有する。主面90a及び90bは、それぞれ、第1主面及び第2主面の一例である。モジュール基板90内には、配線層、ビア導体及びグランド電極層901などが形成されている。なお、図4及び図5において、モジュール基板90は、平面視において矩形状を有するが、この形状に限定されない。
 モジュール基板90としては、例えば、複数の誘電体層の積層構造を有する低温同時焼成セラミックス(LTCC:Low Temperature Co-fired Ceramics)基板もしくは高温同時焼成セラミックス(HTCC:High Temperature Co-fired Ceramics)基板、部品内蔵基板、再配線層(RDL:Redistribution Layer)を有する基板、又は、プリント基板等を用いることができるが、これらに限定されない。
 主面90a上には、集積回路80と、キャパシタC10~C16、C20、C30、C40、C51A、C51B、C52A、C52B、及び、C61~C64と、インダクタL51A~L53A及びL51B~L53Bと、抵抗R51A及びR51Bと、樹脂部材91と、が配置されている。
 集積回路80は、PRスイッチ部80aと、SCスイッチ部80bと、OSスイッチ部80cと、を有する。PRスイッチ部80aは、スイッチS61~S63、S71及びS72を含む。PRスイッチ部80aは、第1スイッチ部の一例であり、スイッチS61~S63、S71及びS72を含む。SCスイッチ部80bは、第2スイッチ部の一例であり、スイッチS11~S14、S21~S24、S31~S34及びS41~S44を含む。OSスイッチ部80cは、第3スイッチ部の一例であり、スイッチS51A~S54A及びS51B~S54Bを含む。
 なお、図4では、PRスイッチ部80a、SCスイッチ部80b及びOSスイッチ部80cは、単一の集積回路80に含まれているが、これに限定されない。例えば、PRスイッチ部80a及びSCスイッチ部80bが1つの集積回路に含まれ、OSスイッチ部80cが別の集積回路に含まれてもよい。また例えば、SCスイッチ部80b及びOSスイッチ部80cが1つの集積回路に含まれ、PRスイッチ部80aが別の集積回路に含まれてもよい。また、PRスイッチ部80a及びOSスイッチ部80cが1つの集積回路に含まれ、SCスイッチ部80bが別の集積回路に含まれてもよい。また例えば、PRスイッチ部80a、SCスイッチ部80b及びOSスイッチ部80cは、3つの集積回路に個別に含まれてもよい。
 また、図4において、集積回路80は、モジュール基板90の平面視において矩形状を有するが、この形状に限定されない。
 集積回路80は、例えばCMOS(Complementary Metal Oxide Semiconductor)を用いて構成され、具体的にはSOI(Silicon on Insulator)プロセスにより製造されてもよい。なお、集積回路80は、CMOSに限定されない。
 キャパシタC10~C16、C20、C30、C40、C51A、C52A、C51B、C52B、及び、C61~C64の各々は、チップキャパシタとして実装されている。チップキャパシタとは、キャパシタを構成する表面実装デバイス(SMD:Surface Mount Device)を意味する。なお、複数のキャパシタの実装は、チップキャパシタに限定されない。例えば、複数のキャパシタの一部又は全部は、集積型受動デバイス(IPD:Integrated Passive Device)に含まれてもよく、集積回路80に含まれてもよい。
 パワーインダクタL71並びにインダクタL51A~L53A及びL51B~L53Bの各々は、チップインダクタとして実装されている。チップインダクタとは、インダクタを構成するSMDを意味する。なお、複数のインダクタの実装は、チップインダクタに限定されない。例えば、複数のインダクタは、IPDに含まれてもよい。
 抵抗R51A及びR51Bの各々は、チップ抵抗として実装されている。チップ抵抗とは、抵抗を構成するSMDを意味する。なお、抵抗R51A及びR51Bの実装は、チップ抵抗に限定されない。例えば、抵抗R51A及びR51Bは、IPDに含まれてもよい。
 このように主面90a上に配置された複数のキャパシタ、複数のインダクタ及び複数の抵抗は、回路ごとにグループ化されて集積回路80の周囲に配置されている。
 具体的には、プリレギュレータ回路10に含まれるパワーインダクタL71及びキャパシタC61~C64のグループは、キャパシタC63及びC64を除いて、モジュール基板90の平面視において、集積回路80の左辺に沿う直線とモジュール基板90の左辺に沿う直線とに挟まれた主面90a上の領域に配置されている。これにより、プリレギュレータ回路10に含まれる回路部品のグループは、集積回路80内のPRスイッチ部80aの近くに配置される。
 本実施例では、パワーインダクタL71は、集積回路80に隣接して配置されている。より具体的には、パワーインダクタL71は、集積回路80内のPRスイッチ部80aに隣接して配置されている。これにより、SCスイッチ部80b及びOSスイッチ部80cの各々よりもPRスイッチ部80aの方がパワーインダクタL71の近くに配置される。また、パワーインダクタL71は、図4に示すように、その巻回軸L71Xがy軸に平行となるように配置される。
 インダクタの巻回軸(winding axis)とは、インダクタを構成するコイルの中心軸となる仮想的な軸を意味する。したがって、インダクタの巻回軸は、コイルの巻線(winding)の中心軸から特定することができる。また、インダクタの巻回軸は、コイルの磁気軸(magnetic axis)から推定することもできる。
 キャパシタC63は、モジュール基板90の平面視において、パワーインダクタL71と、インダクタL51A、L53A、L51B及びL53Bの各々との間に配置されている。さらに、キャパシタC64は、パワーインダクタL71と、インダクタL52A及びL52Bの各々との間に配置されている。なお、パワーインダクタL71とフィルタ回路40A及び40Bに含まれるインダクタとの間に配置される回路部品は、キャパシタC63及びC64に限定されない。
 スイッチトキャパシタ回路20に含まれるキャパシタC10~C16、C20、C30及びC40のグループは、モジュール基板90の平面視において、集積回路80の上辺に沿う直線とモジュール基板90の上辺に沿う直線とに挟まれた主面90a上の領域と、集積回路80の右辺に沿う直線とモジュール基板90の右辺に沿う直線とに挟まれた主面90a上の領域と、に配置されている。これにより、スイッチトキャパシタ回路20に含まれる回路部品のグループは、集積回路80内のSCスイッチ部80bの近くに配置される。つまり、PRスイッチ部80a及びOSスイッチ部80cの各々よりもSCスイッチ部80bの方が、スイッチトキャパシタ回路20の近くに配置される。
 フィルタ回路40A及び40Bに含まれるキャパシタC51A、C51B、C52A及びC52B、インダクタL51A~L53A及びL51B~L53B、並びに、抵抗R51A及びR51Bのグループは、モジュール基板90の平面視において、集積回路80の下辺に沿う直線とモジュール基板90の下辺に沿う直線とに挟まれた主面90a上の領域に配置されている。これにより、スイッチトキャパシタ回路20に含まれる回路部品のグループは、集積回路80内のOSスイッチ部80cの近くに配置される。つまり、PRスイッチ部80a及びSCスイッチ部80bの各々よりもOSスイッチ部80cの方が、フィルタ回路40A及び40Bの近くに配置される。
 インダクタL52A及びL52Bは、図4に示すように、その巻回軸L52AX及びL52BXがx軸に平行となるように配置される。インダクタL51A、L51B、L53A及びL53Bは、図7に示すように、その巻回軸L51AX、L51BX、L53AX及びL53BXがz軸に平行となるように配置される。つまり、パワーインダクタL71の巻回軸L71Xは、インダクタL51A~L53A及びL51B~L53Bの巻回軸L51AX~L53AX及びL51BX~L53BXの各々に垂直である。
 なお、巻回軸L71Xは、巻回軸L51AX~L53AX及びL51BX~L53BXの各々に対して垂直でなくてもよく、巻回軸L51AX~L53AX及びL51BX~L53BXの少なくとも1つに垂直であればよい。また、図7の巻回軸L51AX~L53AX、L51BX~L53BX、及び、L71Xの向きは例示であり、これに限定されない。例えば、巻回軸L71Xは、x軸又はz軸に平行であってもよく、x軸、y軸及びz軸のいずれにも平行でなくてもよい。
 フィルタ回路40Aの少なくとも一部及びフィルタ回路40Bの少なくとも一部は、集積回路80の四辺のうちの同じ一辺(図4では下辺)に隣接して配置されている。具体的には、フィルタ回路40Aに含まれる回路部品の少なくとも1つ(図4では、キャパシタC51A並びにインダクタL51A及びL53A)は、集積回路80の下辺に隣接して配置されている。さらに、フィルタ回路40Bに含まれる回路部品の少なくとも1つ(図4では、インダクタL53B)は、集積回路80の下辺に隣接して配置されている。
 主面90b上には、複数のランド電極150が配置されている。複数のランド電極150は、図2に示した入力端子110、出力端子141A及び141B、並びに、制御端子117、120、135A、135B、136A及び136Bに加えてグランド端子を含む複数の外部接続端子として機能する。複数のランド電極150は、モジュール基板90内に形成されたビア導体などを介して、主面90a上に配置された複数の電子部品に電気的に接続される。複数のランド電極150としては、銅電極を用いることができるが、これに限定されない。例えば、複数のランド電極として、はんだ電極が用いられてもよい。また、複数のランド電極150の代わりに、複数のバンプ電極又は複数のポスト電極が複数の外部接続端子として用いられてもよい。
 樹脂部材91は、主面90a及び主面90a上の複数の電子部品の少なくとも一部を覆っている。樹脂部材91は、主面90a上の複数の電子部品の機械強度及び耐湿性等の信頼性を確保する機能を有する。なお、樹脂部材91は、トラッカモジュール100に含まれなくてもよい。
 シールド電極層92は、金属層の一例であり、例えばスパッタ法により形成された金属薄膜である。シールド電極層92は、樹脂部材91の表面(上面及び側面)を覆うように形成されている。シールド電極層92は、グランドに接続され、外来ノイズがトラッカモジュール100を構成する電子部品に侵入すること、及び、トラッカモジュール100で発生したノイズが他のモジュール又は他の機器に干渉することを抑制する。なお、シールド電極層92は、トラッカモジュール100に含まれなくてもよい。
 なお、本実施例に係るトラッカモジュール100の構成は、例示であり、これに限定されない。例えば、主面90aに配置されたキャパシタ及びインダクタの一部は、モジュール基板90内に形成されてもよい。また、主面90aに配置されたキャパシタ及びインダクタの一部は、トラッカモジュールに含まれなくてもよく、モジュール基板90に配置されなくてもよい。
 [3.2 効果など]
 以上のように、本実施例に係るトラッカモジュール100は、モジュール基板90と、モジュール基板90に配置された集積回路80と、モジュール基板90に配置されたパワーインダクタL71と、を備え、集積回路80は、パワーインダクタL71を用いて入力電圧を第1電圧に変換するよう構成されたプリレギュレータ回路10に含まれる少なくとも1つのスイッチと、第1電圧から複数の離散的電圧を生成するよう構成されたスイッチトキャパシタ回路20に含まれる少なくとも1つのスイッチと、エンベロープ信号に基づいて複数の離散的電圧のうちの少なくとも1つを選択的に出力するよう構成された出力スイッチ回路30Aに含まれる少なくとも1つのスイッチと、を含む。
 また、別の見地では、本実施例に係るトラッカモジュール100は、モジュール基板90と、モジュール基板90に配置された集積回路80と、モジュール基板90に配置されたパワーインダクタL71と、を備え、集積回路80は、パワーインダクタL71を用いて入力電圧を第1電圧に変換するよう構成されたプリレギュレータ回路10に含まれる少なくとも1つのスイッチと、第1電圧から複数の離散的電圧を生成するよう構成されたスイッチトキャパシタ回路20に含まれる少なくとも1つのスイッチと、RFIC5に接続された制御端子135A及び/又は136Aを有する出力スイッチ回路30Aであって複数の離散的電圧のうちの少なくとも1つを選択的に出力するよう構成された出力スイッチ回路30Aに含まれる少なくとも1つのスイッチと、を含む。
 また、別の見地では、本実施例に係るトラッカモジュール100は、モジュール基板90と、モジュール基板90に配置された集積回路80と、モジュール基板90に配置されたパワーインダクタL71と、を備え、集積回路80は、プリレギュレータ回路10に含まれる少なくとも1つのスイッチと、スイッチトキャパシタ回路20に含まれる少なくとも1つのスイッチと、出力スイッチ回路30Aに含まれる少なくとも1つのスイッチと、を含み、スイッチトキャパシタ回路20は、第1電極及び第2電極を有するキャパシタC12と、第3電極及び第4電極を有するキャパシタC15と、を含み、スイッチトキャパシタ回路20に含まれる少なくとも1つのスイッチは、スイッチS21~S24及びS31~S34を含み、スイッチS21の一端及びスイッチS22の一端は、第1電極に接続され、スイッチS32の一端及びスイッチS31の一端は、第2電極に接続され、スイッチS23の一端及びスイッチS24の一端は、第3電極に接続され、スイッチS34の一端及びスイッチS33の一端は、第4電極に接続され、スイッチS21の他端とスイッチS32の他端とスイッチS23の他端とスイッチS34の他端とは、互いに接続され、スイッチS22の他端は、スイッチS24の他端に接続され、スイッチS31の他端は、スイッチS33の他端に接続され、出力スイッチ回路30Aは、出力端子130Aを含み、出力スイッチ回路30Aに含まれる少なくとも1つのスイッチは、スイッチS21の他端、スイッチS32の他端、スイッチS23の他端及びスイッチS34の他端と出力端子130Aとの間に接続されたスイッチS53Aと、スイッチS22の他端及びスイッチS24の他端と出力端子130Aとの間に接続されたスイッチS52Aと、を含み、プリレギュレータ回路10は、パワーインダクタL71及び入力端子110を含み、プリレギュレータ回路10に含まれる少なくとも1つのスイッチは、入力端子110とパワーインダクタL71の一端との間に接続されたスイッチS71と、パワーインダクタL71の一端とグランドとの間に接続されたスイッチS72と、を含み、パワーインダクタL71の他端は、スイッチS21の他端、スイッチS32の他端、スイッチS23の他端及びスイッチS34の他端に接続される。
 これによれば、プリレギュレータ回路10に含まれるパワーインダクタL71が、プリレギュレータ回路10に含まれる少なくとも1つのスイッチを含む集積回路80が配置されるモジュール基板90に配置される。したがって、パワーインダクタL71が集積回路80と別のモジュール基板に配置される場合よりも、パワーインダクタL71及び集積回路80間の配線長の短縮を図ることができる。パワーインダクタL71及び集積回路80間の配線長が短縮すれば、配線の寄生インダクタンスを低減できる。その結果、プリレギュレータ回路10から出力される第1電圧のノイズを低減することができ、ノイズによる特性劣化を抑制することができる。特に、トラッカモジュール100がデジタルETモードで用いられる場合には、複数の離散的な第2電圧が切り替えられることによるリンギングノイズに重畳されてしまうため、プリレギュレータ回路10におけるノイズ低減効果は大きい。また、パワーインダクタL71及び集積回路80間の配線長が短縮すれば、大きな電流が流れるパワーインダクタL71に接続される経路のループ面積を縮小することができる。その結果、ループ面積変化に伴う磁界の発生も抑制することができ、他のモジュールなどに対するEMIを抑制することも可能となる。特に、デジタルETモードにおいて複数の出力スイッチ回路30A及び30Bを介して複数の電力増幅器2A及び2Bに電源電圧VETA及びVETBが供給される場合には、パワーインダクタL71を流れる電流も大きくなるため、EMIの抑制効果も大きい。
 また例えば、本実施例に係るトラッカモジュール100において、パワーインダクタL71は、集積回路80に隣接して配置されてもよい。
 これによれば、パワーインダクタL71と集積回路80との間の配線長のさらなる短縮を図ることができ、ノイズによる特性劣化及びEMIをより抑制することができる。
 また例えば、本実施例に係るトラッカモジュール100において、集積回路80は、プリレギュレータ回路10に含まれる少なくとも1つのスイッチを含むPRスイッチ部80aと、スイッチトキャパシタ回路20に含まれる少なくとも1つのスイッチを含むSCスイッチ部80bと、出力スイッチ回路30Aに含まれる少なくとも1つのスイッチを含むOSスイッチ部80cと、を含み、SCスイッチ部80b及びOSスイッチ部80cの各々よりもPRスイッチ部80aの方が、パワーインダクタL71の近くに配置されてもよい。
 これによれば、パワーインダクタL71と集積回路80内のスイッチS71等との間の配線長のさらなる短縮を図ることができ、ノイズによる特性劣化及びEMIをより抑制することができる。
 また例えば、本実施例に係るトラッカモジュール100は、さらに、モジュール基板90に配置されたインダクタL51Aと、モジュール基板90に配置された回路部品(例えばキャパシタC63)と、を備えてもよく、出力スイッチ回路30Aは、インダクタL51Aを含むフィルタ回路40Aを介して、複数の離散的電圧のうちの少なくとも1つを選択的に出力するよう構成されてもよく、回路部品(例えばキャパシタC63)は、モジュール基板90の平面視においてパワーインダクタL71及びインダクタL51Aの間に配置されてもよい。
 これによれば、パワーインダクタL71とインダクタL51Aとの間に回路部品が配置されるので、パワーインダクタL71をインダクタL51Aから比較的離して配置することができる。したがって、パワーインダクタL71及びインダクタL51A間の磁界結合(つまり誘電結合(inductive coupling))を抑制することができ、トラッカモジュール100の電気特性の劣化を抑制することができる。
 また例えば、本実施例に係るトラッカモジュール100において、パワーインダクタL71を構成するコイルの巻回軸L71Xは、インダクタL51Aを構成するコイルの巻回軸L51AXに垂直であってもよい。
 これによれば、パワーインダクタL71の磁気軸をインダクタL51Aの磁気軸に対して垂直にすることができる。したがって、パワーインダクタL71とインダクタL51Aとの間の磁界結合を抑制することができ、トラッカモジュール100の電気特性の劣化を抑制することができる。
 また例えば、本実施例に係るトラッカモジュール100は、さらに、モジュール基板90の主面90a及び当該主面90a上の回路部品の少なくとも一部を覆う樹脂部材91と、樹脂部材91の表面の少なくとも一部を覆うシールド電極層92と、を備えてもよい。
 これによれば、モジュール基板90に配置された回路部品などで発生した電磁波ノイズがトラッカモジュール100外に放射されることを抑制することができ、EMIをさらに抑制することができる。
 (実施例2)
 次に、電源回路1の実施例2について説明する。本実施例では、モジュール基板90の主面90a上に金属部材93Aが配置される点が上記実施例1と主として異なる。以下に、本実施例に係るトラッカモジュール100Aについて、上記実施例1と異なる点を中心に、図8及び図9を参照しながら説明する。
 [4.1 トラッカモジュール100Aの部品配置]
 図8は、本実施例に係るトラッカモジュール100Aの平面図である。図9は、本実施例に係るトラッカモジュール100Aの断面図である。図9におけるトラッカモジュール100Aの断面は、図8のIX-IX線における断面である。
 なお、図8及び図9において、モジュール基板90に配置された複数の回路部品を接続する配線の一部が省略されている。図8において、樹脂部材91及びシールド電極層92の図示が省略されている。また、図8において、符号が付されていないブロックは、本発明に必須ではない任意の回路部品を表す。
 本実施例に係るトラッカモジュール100Aは、さらに、金属部材93Aを備える。金属部材93Aは、モジュール基板90の主面90a上に配置され、主面90aから突出することで主面90aの上方に少なくとも一部が存在している。金属部材93Aは、パワーインダクタL71に隣接して配置され、モジュール基板90の平面視においてパワーインダクタL71と、フィルタ回路40A及び40Bとの間に配置されている。
 金属部材93Aは、グランドに接続されるグランド電極である。金属部材93Aは、シールド電極層92に接触している。具体的には、金属部材93Aは、トラッカモジュール100Aの上面においてシールド電極層92に接触している。さらに、金属部材93Aは、モジュール基板90に形成されたパターン電極及びビア電極等を介して、グランド端子として機能するランド電極150に電気的に接続されてもよい。
 図8において、金属部材93Aは、主面90a上から突出しており、x軸に沿って延びる金属壁と、主面90a上から突出しており、y軸に沿って延びる金属壁と、の組み合わせである。各金属壁の高さは、パワーインダクタL71の高さよりも大きい。なお、金属部材93Aの形状は、壁に限定されない。例えば、金属部材93Aは、複数のボンディングワイヤで構成されてもよい。また例えば、金属部材93Aは、一列に並ぶ複数の金属柱で構成されてもよい。なお、金属部材93Aの形状は、これらに限定されない。
 金属部材93Aとしては、例えば、銅、アルミニウム、又は、銅及び/又はアルミニウムを含む合金を用いることができる。なお、金属部材93Aの材料はこれらに限定されない。
 なお、金属部材93Aは、トラッカモジュール100Aの上面においてシールド電極層92に接触しなくてもよい。この場合、各金属壁の高さは、パワーインダクタL71の高さよりも小さくてもよい。また、金属部材93Aは、グランドに接続されなくてもよい。
 [4.2 効果など]
 以上のように、本実施例に係るトラッカモジュール100Aにおいて、集積回路80及びパワーインダクタL71は、モジュール基板90の主面90a上に配置され、トラッカモジュール100Aは、さらに、モジュール基板90の主面90a上に配置されたインダクタL51Aと、モジュール基板の主面90aに配置された金属部材93Aと、を備え、出力スイッチ回路30Aは、インダクタL51Aを含むフィルタ回路40Aを介して、複数の離散的電圧のうちの少なくとも1つを選択的に出力するよう構成され、金属部材93Aは、モジュール基板90の平面視においてパワーインダクタL71及びインダクタL51Aの間に配置されている。
 これによれば、パワーインダクタL71及びインダクタL51A間に金属部材93Aが配置されるので、パワーインダクタL71及びインダクタL51A間の磁界結合を抑制することができる。
 また例えば、本実施例に係るトラッカモジュール100Aにおいて、金属部材93Aは、グランドに接続されるグランド電極であってもよい。
 これによれば、パワーインダクタL71及びインダクタL51A間の磁界結合をより効果的に抑制することができる。
 (実施例3)
 次に、電源回路1の実施例3について説明する。本実施例では、パワーインダクタの配置並びに金属部材の配置及び形状が上記実施例2と主として異なる。以下に、本実施例に係るトラッカモジュール100Bについて、上記実施例2と異なる点を中心に、図10を参照しながら説明する。
 [5.1 トラッカモジュール100Bの部品配置]
 図10は、本実施例に係るトラッカモジュール100Bの平面図である。図10において、樹脂部材91及びシールド電極層92の図示が省略されている。また、図10において、符号が付されていないブロックは、本発明に必須ではない任意の回路部品を表す。
 本実施例に係るトラッカモジュール100Bでは、パワーインダクタL71は、集積回路80に隣接して配置されていない。モジュール基板90の平面視において、パワーインダクタL71及び集積回路80の間には、キャパシタC61~C64が配置されている。
 トラッカモジュール100Bは、金属部材93Aの代わりに金属部材93Bを備える。金属部材93Bは、金属部材93Aと同様に、モジュール基板90の主面90a上に配置され、主面90aから突出することで主面90aの上方に少なくとも一部が存在している。本実施例では、金属部材93Bは、主面90a上から突出しておりy軸に沿って延びる金属壁であり、パワーインダクタL71に隣接して配置されている。金属部材93Bは、モジュール基板90の平面視において、パワーインダクタL71と、フィルタ回路40A及び40Bに含まれるインダクタL51A~L53A及びL51B~L53Bの各々との間に配置されている。
 金属部材93Bは、トラッカモジュール100Bの上面においてシールド電極層92に接触し、さらに、トラッカモジュール100Bの側面においてシールド電極層92に接触している。これにより、金属部材93Bは、パワーインダクタL71が配置された主面90a上の領域とフィルタ回路40A及び40Bが配置された主面90a上の領域との間を区画することができる。
 [5.2 効果など]
 以上のように、本実施例に係るトラッカモジュール100Bにおいて、集積回路80及びパワーインダクタL71は、モジュール基板90の主面90a上に配置され、トラッカモジュール100Bは、さらに、モジュール基板90の主面90a上に配置されたインダクタL51Aと、モジュール基板の主面90aに配置された金属部材93Bと、を備え、出力スイッチ回路30Aは、インダクタL51Aを含むフィルタ回路40Aを介して、複数の第2電圧のうちの少なくとも1つを出力可能であり、金属部材93Bは、モジュール基板90の平面視においてパワーインダクタL71及びインダクタL51Aの間に配置されている。
 これによれば、パワーインダクタL71及びインダクタL51A間に金属部材93Bが配置されるので、パワーインダクタL71及びインダクタL51A間の磁界結合を抑制することができる。
 また例えば、本実施例に係るトラッカモジュール100Bにおいて、金属部材93Bは、グランドに接続されるグランド電極であってもよい。
 これによれば、パワーインダクタL71及びインダクタL51A間の磁界結合をより効果的に抑制することができる。
 また例えば、本実施例に係るトラッカモジュール100Bにおいて、金属部材93Bは、トラッカモジュール100Bの上面及び側面においてシールド電極層92に接触してもよい。
 これによれば、金属部材93Bとトラッカモジュール100Bの上面及び側面との間のギャップを塞ぐことができ、パワーインダクタL71が配置された主面90a上の領域と、インダクタL51Aが配置された主面90a上の領域との間を区画することができる。さらに、金属部材93Bのグランド電位をより安定させることができる。その結果、パワーインダクタL71及びインダクタL51A間の磁界結合をより効果的に抑制することができる。
 なお、トラッカモジュール100Bは、実施例1に係るトラッカモジュール100と同様に、金属部材93Bを備えなくてもよい。この場合であっても、パワーインダクタL71が集積回路80と同じモジュール基板90に配置されることで、ノイズによる特性劣化及びEMIを抑制することができる。
 (実施例4)
 次に、電源回路1の実施例4について説明する。本実施例では、金属部材がパワーインダクタよりもフィルタ回路の方に近い点が上記実施例3と主として異なる。以下に、本実施例に係るトラッカモジュール100Cについて、上記実施例3と異なる点を中心に、図11を参照しながら説明する。
 [6.1 トラッカモジュール100Cの部品配置]
 図11は、本実施例に係るトラッカモジュール100Cの平面図である。図11において、樹脂部材91及びシールド電極層92の図示が省略されている。また、図11において、符号が付されていないブロックは、本発明に必須ではない任意の回路部品を表す。
 本実施例に係るトラッカモジュール100Cは、金属部材93Bの代わりに金属部材93Cを備える。金属部材93Cは、y軸に沿って延びる金属壁である。金属部材93Cは、モジュール基板90の平面視において、パワーインダクタL71と、フィルタ回路40A及び40Bに含まれるインダクタL51A~L53A及びL51B~L53Bの各々との間に配置されている。
 本実施例では、金属部材93Cは、フィルタ回路40Aの少なくとも一部に隣接して配置されている。逆に、金属部材93Cは、パワーインダクタL71に隣接して配置されていない。つまり、本実施例では、金属部材93Cは、パワーインダクタL71よりもフィルタ回路40Aの方に近い。
 [6.2 効果など]
 以上のように、本実施例に係るトラッカモジュール100Cにおいて、集積回路80及びパワーインダクタL71は、モジュール基板90の主面90a上に配置され、トラッカモジュール100Cは、さらに、モジュール基板90の主面90a上に配置されたインダクタL51Aと、モジュール基板の主面90aに配置された金属部材93Cと、を備え、出力スイッチ回路30Aは、インダクタL51Aを含むフィルタ回路40Aを介して、複数の第2電圧のうちの少なくとも1つを出力可能であり、金属部材93Cは、モジュール基板90の平面視においてパワーインダクタL71及びインダクタL51Aの間に配置されている。
 これによれば、パワーインダクタL71及びインダクタL51A間に金属部材93Cが配置されるので、パワーインダクタL71及びインダクタL51A間の磁界結合を抑制することができる。
 また例えば、本実施例に係るトラッカモジュール100Cにおいて、金属部材93Cは、グランドに接続されるグランド電極であってもよい。
 これによれば、パワーインダクタL71及びインダクタL51A間の磁界結合をより効果的に抑制することができる。
 (実施例5)
 次に、電源回路1の実施例5について説明する。本実施例では、2つのフィルタ回路の間に金属部材が配置される点が上記実施例3と主として異なる。以下に、本実施例に係るトラッカモジュール100Dについて、上記実施例3と異なる点を中心に、図12を参照しながら説明する。
 [7.1 トラッカモジュール100Dの部品配置]
 図12は、本実施例に係るトラッカモジュール100Dの平面図である。図12において、樹脂部材91及びシールド電極層92の図示が省略されている。また、図12において、符号が付されていないブロックは、本発明に必須ではない任意の回路部品を表す。
 本実施例に係るトラッカモジュール100Dは、金属部材93Bに加えて金属部材93Dを備える。金属部材93Dは、y軸に沿って延びる金属壁である。金属部材93Dは、モジュール基板90の平面視においてフィルタ回路40A及び40Bの間に配置されている。つまり、金属部材93Dは、モジュール基板90の平面視において、インダクタL51A~L53AとインダクタL51B~L53Bとの間に配置されている。
 [7.2 効果など]
 以上のように、本実施例に係るトラッカモジュール100Dは、モジュール基板90の主面90a上に配置されたインダクタL51A及びL51Bと、モジュール基板90の主面90aに配置された金属部材93Dとを備え、出力スイッチ回路30Aは、インダクタL51Aを含むフィルタ回路40Aを介して複数の第2電圧のうちの少なくとも1つを出力可能であり、出力スイッチ回路30Bは、インダクタL51Bを含むフィルタ回路40Bを介して複数の第2電圧のうちの少なくとも1つを出力可能であり、金属部材93Dは、モジュール基板90の平面視においてインダクタL51A及びL51Bの間に配置されている。
 これによれば、インダクタL51A及びL51B間の磁界結合を抑制することができる。したがって、2つの電力増幅器2A及び2Bに電源電圧VETA及びVETBが同時に供給される場合に、電源電圧VETA及びVETB間の干渉を抑制することができ、ノイズを低減することができる。
 (他の実施の形態)
 以上、本発明に係るトラッカモジュールについて、実施の形態及び実施例に基づいて説明したが、本発明に係るトラッカモジュールは、上記実施の形態及び上記実施例に限定されるものではない。上記実施の形態及び上記実施例における任意の構成要素を組み合わせて実現される別の実施の形態及び別の実施例や、上記実施の形態及び上記実施例に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、上記トラッカモジュールを内蔵した各種機器も本発明に含まれる。
 例えば、上記実施の形態に係る各種回路の回路構成において、図面に開示された各回路素子及び信号経路を接続する経路の間に、別の回路素子及び配線などが挿入されてもよい。例えば、電力増幅器2Aとフィルタ3Aとの間、及び/又は、フィルタ3Aとアンテナ6との間に、インピーダンス整合回路が挿入されてもよい。
 また例えば、上記実施例に係るトラッカモジュール100において、キャパシタC51A及び/又はC52Aは、集積回路80に含まれてもよい。また、キャパシタC51B及び/又はC52Bは、集積回路80に含まれてもよい。これによれば、トラッカモジュール100の小型化に貢献することができる。
 なお、上記実施の形態では、プリレギュレータ回路10は、1つのパワーインダクタL71を備えていたが、複数のパワーインダクタを備えてもよい。この場合、複数のパワーインダクタの少なくとも1つが、モジュール基板90に配置され、トラッカモジュールに含まれればよい。
 なお、上記各実施例において、例えば図13に示すように、パワーインダクタL71は、モジュール基板90に形成されたキャビティ902内に配置されてもよい。図13は、他の実施例に係るトラッカモジュール100Eの断面図である。キャビティ902は、モジュール基板90の主面90aに形成された凹部である。図13において、パワーインダクタL71の一部は、キャビティ902内に挿入されている。これによれば、主面90aからのパワーインダクタL71の高さを主面90a上に配置された他の回路部品の高さに近づけることができ、トラッカモジュール100Eの低背化を図ることができる。
 本発明は、電力増幅器に電源電圧を供給するトラッカモジュールとして、携帯電話などの通信機器に広く利用できる。
 1 電源回路
 2A、2B 電力増幅器
 3A、3B フィルタ
 4 PA制御回路
 5 RFIC
 6 アンテナ
 7 通信装置
 10 プリレギュレータ回路
 20 スイッチトキャパシタ回路
 30A、30B 出力スイッチ回路
 40A、40B フィルタ回路
 50 直流電源
 80 集積回路
 80a PRスイッチ部
 80b SCスイッチ部
 80c OSスイッチ部
 90 モジュール基板
 90a、90b 主面
 91 樹脂部材
 92 シールド電極層
 93A、93B、93C、93D 金属部材
 100、100A、100B、100C、100D、100E トラッカモジュール
 110、131A、131B、132A、132B、133A、133B、134A、134B、140A、140B 入力端子
 111、112、113、114、130A、130B、141A、141B 出力端子
 117、120、135A、135B、136A、136B 制御端子
 150 ランド電極
 901 グランド電極層
 902 キャビティ
 C10、C11、C12、C13、C14、C15、C16、C20、C30、C40、C51A、C51B、C52A、C52B、C61、C62、C63、C64 キャパシタ
 L51A、L51B、L52A、L52B、L53A、L53B インダクタ
 L51AX、L51BX、L52AX、L52BX、L53AX、L53BX、L71X 巻回軸
 L71 パワーインダクタ
 N1、N2、N3、N4 ノード
 R51A、R51B 抵抗
 S11、S12、S13、S14、S21、S22、S23、S24、S31、S32、S33、S34、S41、S42、S43、S44、S51A、S51B、S52A、S52B、S53A、S53B、S54A、S54B、S61、S62、S63、S71、S72 スイッチ
 V1、V2、V3、V4 電圧

Claims (19)

  1.  モジュール基板と、
     前記モジュール基板に配置された少なくとも1つの集積回路と、
     前記モジュール基板に配置されたパワーインダクタと、を備え、
     前記少なくとも1つの集積回路は、
     前記パワーインダクタを用いて入力電圧を第1電圧に変換するよう構成されたプリレギュレータ回路に含まれる少なくとも1つのスイッチと、
     前記第1電圧から複数の離散的電圧を生成するよう構成されたスイッチトキャパシタ回路に含まれる少なくとも1つのスイッチと、
     エンベロープ信号に基づいて前記複数の離散的電圧のうちの少なくとも1つを選択的に出力するよう構成された出力スイッチ回路に含まれる少なくとも1つのスイッチと、を含む、
     トラッカモジュール。
  2.  モジュール基板と、
     前記モジュール基板に配置された少なくとも1つの集積回路と、
     前記モジュール基板に配置されたパワーインダクタと、を備え、
     前記少なくとも1つの集積回路は、
     前記パワーインダクタを用いて入力電圧を第1電圧に変換するよう構成されたプリレギュレータ回路に含まれる少なくとも1つのスイッチと、
     前記第1電圧から複数の離散的電圧を生成するよう構成されたスイッチトキャパシタ回路に含まれる少なくとも1つのスイッチと、
     制御回路に接続された制御端子を有する出力スイッチ回路であって前記複数の離散的電圧のうちの少なくとも1つを選択的に出力するよう構成された出力スイッチ回路に含まれる少なくとも1つのスイッチと、を含む、
     トラッカモジュール。
  3.  前記パワーインダクタは、前記少なくとも1つの集積回路に隣接して配置されている、
     請求項1又は2に記載のトラッカモジュール。
  4.  前記少なくとも1つの集積回路は、
     前記プリレギュレータ回路に含まれる前記少なくとも1つのスイッチを含む第1スイッチ部と、
     前記スイッチトキャパシタ回路に含まれる前記少なくとも1つのスイッチを含む第2スイッチ部と、
     前記出力スイッチ回路に含まれる前記少なくとも1つのスイッチを含む第3スイッチ部と、を含み、
     前記第2スイッチ部及び前記第3スイッチ部の各々よりも前記第1スイッチ部の方が、前記パワーインダクタの近くに配置されている、
     請求項1~3のいずれか1項に記載のトラッカモジュール。
  5.  前記トラッカモジュールは、さらに、
     フィルタ回路に含まれ、前記モジュール基板に配置されたインダクタと、
     前記モジュール基板に配置された回路部品と、を備え、
     前記出力スイッチ回路は、前記フィルタ回路を介して、前記複数の離散的電圧のうちの前記少なくとも1つを選択的に出力するよう構成され、
     前記回路部品は、前記モジュール基板の平面視において前記パワーインダクタと前記フィルタ回路の前記インダクタとの間に配置されている、
     請求項1~4のいずれか1項に記載のトラッカモジュール。
  6.  前記少なくとも1つの集積回路及び前記パワーインダクタは、前記モジュール基板の主面上に配置され、
     前記トラッカモジュールは、さらに、
     フィルタ回路に含まれ、前記モジュール基板の前記主面上に配置されたインダクタと、
     前記モジュール基板の前記主面上に配置された金属部材と、を備え、
     前記出力スイッチ回路は、前記フィルタ回路を介して、前記複数の離散的電圧のうちの前記少なくとも1つを選択的に出力するよう構成され、
     前記金属部材は、前記モジュール基板の平面視において前記パワーインダクタと前記フィルタ回路の前記インダクタとの間に配置されている、
     請求項1~5のいずれか1項に記載のトラッカモジュール。
  7.  前記金属部材は、グランドに接続されるグランド電極である、
     請求項6に記載のトラッカモジュール。
  8.  前記パワーインダクタを構成するコイルの巻回軸は、前記フィルタ回路の前記インダクタを構成するコイルの巻回軸に垂直である、
     請求項5~7のいずれか1項に記載のトラッカモジュール。
  9.  前記トラッカモジュールは、さらに、
     前記モジュール基板の主面及び当該主面上の回路部品の少なくとも一部を覆う樹脂部材と、
     前記樹脂部材の表面の少なくとも一部を覆う金属層と、を備える、
     請求項1~8のいずれか1項に記載のトラッカモジュール。
  10.  前記モジュール基板には、キャビティが形成されており、
     前記パワーインダクタの少なくとも一部は、前記キャビティ内に配置されている、
     請求項1~9のいずれか1項に記載のトラッカモジュール。
  11.  モジュール基板と、
     前記モジュール基板に配置された少なくとも1つの集積回路と、
     前記モジュール基板に配置されたパワーインダクタと、を備え、
     前記少なくとも1つの集積回路は、
     プリレギュレータ回路に含まれる少なくとも1つのスイッチと、
     スイッチトキャパシタ回路に含まれる少なくとも1つのスイッチと、
     出力スイッチ回路に含まれる少なくとも1つのスイッチと、を含み、
     前記スイッチトキャパシタ回路は、
     第1電極及び第2電極を有する第1キャパシタと、
     第3電極及び第4電極を有する第2キャパシタと、を含み、
     前記スイッチトキャパシタ回路に含まれる前記少なくとも1つのスイッチは、第1スイッチ、第2スイッチ、第3スイッチ、第4スイッチ、第5スイッチ、第6スイッチ、第7スイッチ及び第8スイッチを含み、
     前記第1スイッチの一端及び前記第3スイッチの一端は、前記第1電極に接続され、
     前記第2スイッチの一端及び前記第4スイッチの一端は、前記第2電極に接続され、
     前記第5スイッチの一端及び前記第7スイッチの一端は、前記第3電極に接続され、
     前記第6スイッチの一端及び前記第8スイッチの一端は、前記第4電極に接続され、
     前記第1スイッチの他端と前記第2スイッチの他端と前記第5スイッチの他端と前記第6スイッチの他端とは、互いに接続され、
     前記第3スイッチの他端は、前記第7スイッチの他端に接続され、
     前記第4スイッチの他端は、前記第8スイッチの他端に接続され、
     前記出力スイッチ回路は、出力端子を含み、
     前記出力スイッチ回路に含まれる前記少なくとも1つのスイッチは、
     前記第1スイッチの他端、前記第2スイッチの他端、前記第5スイッチの他端及び前記第6スイッチの他端と前記出力端子との間に接続された第9スイッチと、
     前記第3スイッチの他端及び前記第7スイッチの他端と前記出力端子との間に接続された第10スイッチと、を含み、
     前記プリレギュレータ回路は、前記パワーインダクタ及び入力端子を含み、
     前記プリレギュレータ回路に含まれる前記少なくとも1つのスイッチは、
     前記入力端子と前記パワーインダクタの一端との間に接続された第11スイッチと、
     前記パワーインダクタの一端とグランドとの間に接続された第12スイッチと、を含み、
     前記パワーインダクタの他端は、前記第1スイッチの他端、前記第2スイッチの他端、前記第5スイッチの他端及び前記第6スイッチの他端に接続される、
     トラッカモジュール。
  12.  前記パワーインダクタは、前記少なくとも1つの集積回路に隣接して配置されている、
     請求項11に記載のトラッカモジュール。
  13.  前記少なくとも1つの集積回路は、
     前記プリレギュレータ回路に含まれる前記少なくとも1つのスイッチを含む第1スイッチ部と、
     前記スイッチトキャパシタ回路に含まれる前記少なくとも1つのスイッチを含む第2スイッチ部と、
     前記出力スイッチ回路に含まれる前記少なくとも1つのスイッチを含む第3スイッチ部と、を含み、
     前記第2スイッチ部及び前記第3スイッチ部の各々よりも前記第1スイッチ部の方が、前記パワーインダクタの近くに配置されている、
     請求項11又は12に記載のトラッカモジュール。
  14.  前記トラッカモジュールは、さらに、
     フィルタ回路に含まれ、前記モジュール基板に配置されたインダクタと、
     前記モジュール基板に配置された回路部品と、を備え、
     前記出力スイッチ回路の前記出力端子は、前記フィルタ回路の入力端子に接続され、
     前記回路部品は、前記モジュール基板の平面視において前記パワーインダクタと前記フィルタ回路の前記インダクタとの間に配置されている、
     請求項11~13のいずれか1項に記載のトラッカモジュール。
  15.  前記少なくとも1つの集積回路及び前記パワーインダクタは、前記モジュール基板の主面上に配置され、
     前記トラッカモジュールは、さらに、
     フィルタ回路に含まれ、前記モジュール基板の前記主面上に配置されたインダクタと、
     前記モジュール基板の前記主面上に配置された金属部材と、を備え、
     前記出力スイッチ回路の前記出力端子は、前記フィルタ回路の入力端子に接続され、
     前記金属部材は、前記モジュール基板の平面視において前記パワーインダクタと前記フィルタ回路の前記インダクタとの間に配置されている、
     請求項11~14のいずれか1項に記載のトラッカモジュール。
  16.  前記金属部材は、グランドに接続されるグランド電極である、
     請求項15に記載のトラッカモジュール。
  17.  前記パワーインダクタを構成するコイルの巻回軸は、前記フィルタ回路の前記インダクタを構成するコイルの巻回軸に垂直である、
     請求項14~16のいずれか1項に記載のトラッカモジュール。
  18.  前記トラッカモジュールは、さらに、
     前記モジュール基板の主面及び当該主面上の回路部品の少なくとも一部を覆う樹脂部材と、
     前記樹脂部材の表面の少なくとも一部を覆う金属層と、を備える、
     請求項11~17のいずれか1項に記載のトラッカモジュール。
  19.  前記モジュール基板には、キャビティが形成されており、
     前記パワーインダクタの少なくとも一部は、前記キャビティ内に配置されている、
     請求項11~18のいずれか1項に記載のトラッカモジュール。
PCT/JP2022/035998 2021-10-11 2022-09-27 トラッカモジュール WO2023063074A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280068418.9A CN118160226A (zh) 2021-10-11 2022-09-27 跟踪器模块

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-166755 2021-10-11
JP2021166755 2021-10-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/619,853 Continuation US20240243697A1 (en) 2021-10-11 2024-03-28 Tracker module

Publications (1)

Publication Number Publication Date
WO2023063074A1 true WO2023063074A1 (ja) 2023-04-20

Family

ID=85988517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035998 WO2023063074A1 (ja) 2021-10-11 2022-09-27 トラッカモジュール

Country Status (2)

Country Link
CN (1) CN118160226A (ja)
WO (1) WO2023063074A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170237339A1 (en) * 2014-08-01 2017-08-17 Icergi Limited Power factor correction stages in power conversion
JP2020516194A (ja) * 2017-04-04 2020-05-28 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. 電力増幅器をバイアススイッチングする装置と方法
WO2022163791A1 (ja) * 2021-01-28 2022-08-04 株式会社村田製作所 トラッカモジュール、電力増幅モジュール、高周波モジュール及び通信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170237339A1 (en) * 2014-08-01 2017-08-17 Icergi Limited Power factor correction stages in power conversion
JP2020516194A (ja) * 2017-04-04 2020-05-28 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. 電力増幅器をバイアススイッチングする装置と方法
WO2022163791A1 (ja) * 2021-01-28 2022-08-04 株式会社村田製作所 トラッカモジュール、電力増幅モジュール、高周波モジュール及び通信装置

Also Published As

Publication number Publication date
CN118160226A (zh) 2024-06-07

Similar Documents

Publication Publication Date Title
WO2022163791A1 (ja) トラッカモジュール、電力増幅モジュール、高周波モジュール及び通信装置
WO2023063074A1 (ja) トラッカモジュール
US20230075733A1 (en) Tracker module, power amplifier module, radio frequency module, and communication device
WO2023074251A1 (ja) トラッカモジュール
WO2023054382A1 (ja) トラッカモジュール
WO2023054380A1 (ja) トラッカモジュール
US20240243697A1 (en) Tracker module
WO2023136165A1 (ja) トラッカモジュール
WO2023054383A1 (ja) トラッカモジュール
WO2023074254A1 (ja) トラッカモジュール
WO2023054376A1 (ja) トラッカモジュール
US20240235481A1 (en) Tracker module
US20240235486A1 (en) Tracker module and communication device
WO2024135468A1 (ja) トラッカモジュールおよび通信装置
WO2023054384A1 (ja) トラッカモジュールおよび通信装置
WO2023054387A1 (ja) トラッカモジュール及び通信装置
WO2024135465A1 (ja) トラッカモジュールおよび通信装置
WO2023054369A1 (ja) トラッカモジュールおよび通信装置
WO2023054372A1 (ja) トラッカモジュールおよび通信装置
WO2023054374A1 (ja) トラッカモジュールおよび通信装置
WO2023223746A1 (ja) トラッカ回路、トラッカモジュール及び電圧供給方法
US20240235364A1 (en) Tracker module
WO2023153460A1 (ja) 電源回路及び電源電圧供給方法
WO2024135460A1 (ja) トラッカモジュールおよび通信装置
US20240235487A1 (en) Tracker module and communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880770

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE