WO2023063059A1 - Gravel production management method and computer program for gravel production management - Google Patents

Gravel production management method and computer program for gravel production management Download PDF

Info

Publication number
WO2023063059A1
WO2023063059A1 PCT/JP2022/035631 JP2022035631W WO2023063059A1 WO 2023063059 A1 WO2023063059 A1 WO 2023063059A1 JP 2022035631 W JP2022035631 W JP 2022035631W WO 2023063059 A1 WO2023063059 A1 WO 2023063059A1
Authority
WO
WIPO (PCT)
Prior art keywords
gravel
ore
rough
stone
raw
Prior art date
Application number
PCT/JP2022/035631
Other languages
French (fr)
Japanese (ja)
Inventor
寛孝 北爪
史朗 古屋
友裕 岸部
Original Assignee
株式会社ヤマサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヤマサ filed Critical 株式会社ヤマサ
Publication of WO2023063059A1 publication Critical patent/WO2023063059A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining

Definitions

  • the present invention provides an unmanned gravel production management method for improving gravel productivity by grasping the quality of raw stones (size, mixing ratio of large and small sizes, etc.) in a gravel factory, and the method comprising a computer.
  • the present invention relates to a computer program for gravel production management used to execute a management system.
  • Patent Document 3 proposes a fragment detection method that identifies fragments from captured images using YOLO (v3), which is a machine learning model for object detection by deep learning using a convolutional neural network. .
  • a sorting process is performed in which rough stones are sieved and sorted into large and small sizes.
  • the sorting process of sorting into large and small sizes is repeated.
  • rough stones are sorted into standard size gravel and shipped as products.
  • the object of the present invention is to accurately grasp the quality of the raw stone (size, mixing ratio of large and small sizes, etc.) from the photographed image of the raw stone in the gravel factory without relying on human labor.
  • a gravel production process in which the rough stones are processed into standard size gravel by repeating the sorting process of sifting rough stones into large and small sizes and the crushing process of crushing the rough stones that have been selected as large in a crushing machine. is controlled by a management system equipped with a computer, an image acquisition step of acquiring a photographed image of the raw ore input to the gravel production process; Using a rough stone detection model equipped with a machine learning function, the raw stone image parts in which the individual raw stones appear are extracted from the photographed image, and a bounding box having a size surrounding each of the extracted rough stone image parts is generated.
  • a detection step The size (area) of the bounding box representing the raw stone image portion is calculated, and the calculated size (area) is compared with a reference value for size selection, and the raw stone reflected in the raw stone image portion is reduced to the standard size.
  • a raw stone quality determination step of classifying into the following small-sized raw stones and large-sized raw stones exceeding the standard size, and calculating the number of these small-sized raw stones and large-sized raw stones;
  • the size (area) of each bounding box, and the number of each of the small-sized ore and the number of the large-sized ore are displayed on the display screen of the display device together with the photographed image in which each ore image portion is surrounded by the bounding box.
  • a display step of displaying It is characterized by having
  • the photographed image of the input ore to be processed is analyzed, and individual ore images are separated and extracted from the background image to detect each ore, and the detection result is Based on this, the quality (size, mixture ratio of large and small sizes) of the input ore is discriminated, and the discriminated result is visualized by displaying it on the display screen in real time along with the photographed image.
  • various images images containing rough stones of different sizes, rough stone images with different mixing ratios of large and small sizes, images with different shooting conditions such as illumination and shooting angle
  • the detection accuracy can be easily improved.
  • the worker can check the quality of the raw stone (size, mixing ratio of large and small) from the screen in real time. You can check it intuitively. Based on the displayed content, the worker can determine whether or not the quality of the input ore is appropriate, and can issue appropriate instructions to the mining site, etc., thereby preventing a decrease in productivity.
  • the input ore is processed into standard size gravel based on at least one of the number ratio and area ratio of small size ore and large size ore contained in the input ore. It is possible to judge the quality of productivity in each case. By storing the correlation between these ratios and productivity in the management system in advance, it is possible to accurately determine the quality of productivity. By displaying the pass/fail judgment on the screen, workers can check the suitability of the input ore.
  • the history information includes at least raw ore information specifying the input ore, the quality determination result in the ore quality determination process of the input ore, and the processing date and time of the input ore in a form associated with each other. It is desirable to be
  • a management system for managing gravel production according to the method of the present invention is wired or wirelessly connected to the factory side system installed in the gravel factory that performs the sorting process and the crushing process, and the factory side system installed in the management office that manages the gravel factory. It can be configured to include a management side system that performs communication.
  • the management side system may be configured to include a management server, a management database, and a management side monitor
  • the factory side system may be configured to include a camera, an edge device, and a factory side monitor. can.
  • the camera executes the photographing process of photographing the input rough stone that is input to the raw stone input port of the sieve, and the edge device uses the photographed image acquisition process and the rough stone detection model. and a transmission step of transmitting the photographed image and the detection result to the management system.
  • the management server performs a receiving step of receiving the photographed image and the detection result, a quality judgment step based on the received detection result, a registration step, and a management monitor for the photographed image together with the detection result and the judgment result. and a transmission step of transmitting the quality determination result to the edge device.
  • the edge device receives the quality judgment result, and the display process of displaying the photographed image of the camera on the screen of the factory monitor along with the raw stone detection result and the received quality judgment result. do.
  • FIG. 4 is a schematic flow chart showing a procedure for creating a raw stone detection model
  • 4 is a schematic flow chart showing an inference procedure for detecting a rough stone from a photographed image using a raw stone detection model
  • A is a schematic flow chart showing a procedure for judging the quality of input ore from the result of ore detection
  • B is an explanatory view thereof.
  • FIG. 4 is an explanatory diagram showing an example of a display screen displaying a photographed image and a quality determination result of a raw stone; It is an explanatory view showing the main part in a gravel production control system.
  • FIG. 4 is an explanatory diagram showing an example of utilization of history information such as gravel production management collected in a management database in a gravel production management system
  • FIG. 10 is an explanatory diagram showing an example of analysis results of the size (area) of raw stone and the production amount of gravel
  • FIG. 4 is an explanatory diagram showing an analysis example of raw stone size and history information related to physical distribution
  • (A) and (B) are explanatory diagrams showing problems in the gravel production process.
  • FIG. 1 is a schematic configuration diagram showing the overall configuration of a gravel production management system.
  • the gravel production management system 1 includes a factory-side system 3 installed in a gravel factory 2, a management-side system 5 installed in a management office 4 that manages the gravel factory 2, and a raw stone quarry for collecting raw stones for the gravel. It is equipped with a collection site side system 7 installed in 6.
  • Each of these systems 3, 5, and 7 is mainly composed of a computer, and executes the steps and processes described below by executing pre-installed software.
  • These systems 3, 5 and 7 are connected via a wireless or wired communication line 8.
  • FIG. 1 is a schematic configuration diagram showing the overall configuration of a gravel production management system.
  • the gravel production management system 1 includes a factory-side system 3 installed in a gravel factory 2, a management-side system 5 installed in a management office 4 that manages the gravel factory 2, and a raw stone quarry for collecting raw stones for the gravel. It is equipped with a collection site side system 7 installed in 6.
  • the factory-side system 3 includes an edge device 31, an input/output device including a factory-side monitor 32, and a camera 33 for photographing input rough stones.
  • a raw stone 9 carried from a raw stone quarry 6 is put into a sieve 22 from a raw stone input port 21 and sieved into a small-sized raw stone 9S smaller than the standard size and a large-sized raw stone 9L larger than the standard size.
  • the small size ore 9S is transferred to the next step.
  • the large size ore 9L is repeatedly subjected to a processing cycle consisting of a crushing step 23 by a crushing machine and a screening step 24 by a sieve to be processed into a small size ore 9S smaller than the standard size.
  • the sorting/crushing process (or crushing/sorting process) is performed in multiple steps as necessary.
  • the small-sized rough stone 9S obtained through such a gravel production process undergoes a predetermined post-treatment process 10 to obtain gravel as a product, which is shipped from the shipping department 25.
  • FIG. 1 A predetermined post-treatment process 10 to obtain gravel as a product, which is shipped from the shipping department 25.
  • the camera 33 for photographing the raw stone is installed at a position capable of photographing the raw stone 9 (hereinafter sometimes referred to as the raw stone 9) that is input from the raw stone input port 21.
  • the input ore 9 is photographed in real time by the camera 33 (photographing step), and the obtained captured image 11 of the input ore 9 is captured by the edge device 31 .
  • the ore detection process is performed using the installed learned ore detection model 34 (ore detection process, see FIGS. 2 and 3 described later).
  • the ore detection result 35 including the photographed image 11 is transmitted from the transmission/reception unit 36 of the edge device 31 to the management side system 5 of the management office 4 via the communication line 8 (transmission step).
  • the management-side system 5 includes a management server 51, a management database 52 built into or external to the management server 51, and an input/output device including a management-side monitor 53.
  • the management server 51 receives the raw stone detection result 35 via the transmission/reception unit 54 (receiving step).
  • the management server 51 analyzes the received ore detection result 35 in the ore quality judging unit 55 to judge the quality of the ore (quality judging step, see FIG. 4 described later).
  • the quality determination result 56 includes the size (area) of the raw stone shown in the photographed image 11 of the input raw stone, the number of large and small size raw stones, and the like.
  • the raw stone detection result 35 and the quality determination result 56 are registered in the management database 52 (registration process) and displayed on the display screen of the management side monitor 53 via the display control unit 57 (display process, see FIG. 5 described later). ).
  • the quality judgment result 56 is transmitted from the transmitting/receiving section 54 to the factory side system 3 and the collection site side system 7 via the communication line 8 .
  • the quality judgment result 56 can also be displayed on a terminal device 59 installed in each department via a communication network 58 such as a LAN.
  • the edge device 31 of the factory-side system 3 receives the quality determination result 56 via the transmission/reception unit 36 (receiving step)
  • the received quality determination result 56 is transmitted via the display control unit 37 to the captured image 11 of the camera 33. are displayed on the display screen of the monitor 32 on the factory side (display step).
  • the image 11 taken by the camera 33 and the quality judgment result 56 of the raw stone are displayed on the monitor 71, the portable communication terminal 72 carried by the field worker, and the like.
  • the raw stones are detected from the photographed image 11 of the input raw stones 9, the quality of the detected raw stones (size, the number of large and small sizes, etc.) is determined, and the photographed image 11 and the raw stone detection result are determined. 35 and the quality judgment result 56 are displayed in real time on the terminal screens installed in the gravel factory 2, the management office 4 and the ore quarry 6.
  • the quality of the input ore 9 can be confirmed, judged, and notified unmanned, and the person in charge of the management office 4 who visually confirms the screen can grasp the quality of the ore from the display screen and control the product quality.
  • Appropriate instructions can be issued to the ore quarry 6, shipping department 25, and the like.
  • workers in the ore quarry 6 and workers in the shipping department 25 can visually check the quality results on the display screen of the terminal and share the quality results. Therefore, it is possible to maintain the productivity and quality of gravel by efficiently collaborating between the management department, the gravel production department, and the rough stone extraction department and the shipping department that are pre- and post-processes.
  • the trained ore detection model 34 installed in the edge device 31 installed in the gravel factory 2 is an object detection model consisting of a machine learning machine algorithm such as a convolutional neural network (CNN) utilizing AI. It is possible to use the YOLO series, which has been developed.
  • CNN convolutional neural network
  • FIG. 2 is a schematic flow chart showing the procedure for creating the ore detection model 34.
  • the training data of the object detection model includes a photographed image of the raw stone thrown in from the raw stone inlet 21 .
  • input ore images for learning were photographed by changing the position, angle, distance, brightness, state of ore, etc. of the camera 33 (ST21), and a data set for learning was created (ST22). These were input as teaching data, and deep learning was performed so as to obtain desired detection results (ST23), and a raw stone detection model 34, which is a learned model capable of accurately extracting raw stones, was obtained (ST24).
  • FIG. 3 is a schematic flow chart showing an inference procedure for detecting ores from the photographed image 11 using the ore detection model 34 .
  • the camera 33 photographs the input rough stone 9 passing through the raw stone passage area (the raw stone input port 21) (ST31), and the obtained captured image 11 of the input rough stone 9 is sent to the edge device 31 (ST32). : image acquisition step).
  • the photographed image 11 is analyzed using the ore detection model 34 (ST33: analysis step), and the feature amount of the image portion where each of the input ore 9 included in the photographed image 11 is shown is extracted.
  • each part of the ore image in which each input ore 9 is captured is extracted, and a bounding box (rectangular frame) having a minimum size capable of containing the extracted ore image part is generated.
  • ST35 raw stone object detection). On the display screen of the monitor, each detected input raw stone 9 is represented by each bounding box 12 displayed on the photographed image 11 .
  • FIGS. 4A and 4B are a schematic flow chart and an explanatory diagram showing the procedure for judging the quality of the input ore 9 from the ore detection result 35 (information of the bounding box 12) detected by the ore detection model 34.
  • FIG. When receiving the raw stone detection result 35, the management server 51 of the management system 5 calculates the size (area) of the bounding box 12 representing the raw stone image portion, and the calculated size (area) is used as the reference value for size selection. Compared with the threshold value, the input ore 9 shown in the ore image portion is classified into a small size ore 9S that is equal to or smaller than the standard size and a large size ore 9L that exceeds the standard size. Calculate the number.
  • initial settings for determination are performed first.
  • the ore quality determination step when processing the input ore into standard size gravel based on the ratio of the number (mixing ratio) or the area ratio of the small size ore 9S and the large size ore 9L contained in the input ore 9 It is possible to judge the quality of the productivity of
  • each gravel factory 2 the mixing ratio of the large and small sizes of the input rough stones 9 and the degree of productivity when producing gravel of a standard size or less set from the input rough stones are registered in the management database 52 as a production history. do. Based on the production history in each gravel factory 2, the correlation between the mixing ratio of large and small sizes of input rough stones and the productivity of gravel of a set standard size or less is obtained using a statistical method such as regression analysis. . In the ore quality determination unit 55 (see FIG. 1) of the management server 51, based on the obtained correlation, the mixing ratio of the large and small sizes of the input ore 9 and the set standard size are used to determine the gravel processing from the input ore 9. Estimate productivity.
  • the estimation result (productivity judgment) is displayed in real time on the display screen together with the photographed image 11 as one of the raw stone quality judgment results 56, for example.
  • the person in charge of management can quickly and accurately issue countermeasures for improving productivity to relevant departments based on the displayed contents.
  • FIG. 5 is an explanatory diagram showing an example of a display screen.
  • a photographed image 11 is displayed with each ore image portion surrounded by a bounding box 12 .
  • the calculated size (area) is displayed as "size 119.0" or the like.
  • a threshold value for size selection such as "Threshold: 50" is displayed.
  • the number of small-sized rough stones 9S is displayed as "Small Count: 23".
  • the display form is an example, and can be displayed in various forms.
  • the ratio of the size of the input ore 9 included in the photographed image 11 and the ratio of the area of the large and small sizes are calculated, they can be displayed on the screen in various display forms such as a pie chart and a bar graph. can be displayed in
  • FIG. 6 is an explanatory diagram collectively showing the main functions and actions of the gravel production management system 1 of this example.
  • the camera 33 is installed at the first process location in the gravel factory 2, for example, the place where the input ore 9 passes through, such as the ore input port, and the photographed image 11 of the input ore 9 is displayed.
  • the acquired photographed image 11 is analyzed using the ore detection model 34 to obtain the ore detection result 35 (vertical and horizontal coordinates, vertical and horizontal size of the bounding box 12, detection date and time, etc.).
  • the management server 51 calculates the area of the detected raw stone, determines the size of the large and small stones, and counts the number of large and small size raw stones.
  • the screen displays the detected ore and the digitized quality (size and number) of the ore.
  • the quality of the input ore can be accurately determined without relying on human labor, and workers, managers, etc. can confirm the determination results on the screen in real time.
  • without relying on human labor it is possible to accurately determine the productivity when producing gravel of a set standard size from input ore. It is possible to quickly and accurately deliver to
  • FIG. 7 is an explanatory diagram showing an example of utilization of history information such as gravel production management collected in the management database 52 in the gravel production management system 1.
  • history information can include raw stone information that identifies the raw stone (specific information about the raw stone quarry), gravel production status, quality judgment results of the raw stone, distribution history, and the like.
  • Logistics history can include, for example, the history of carrying rough stones from the quarry to the gravel factory, the handling history of the rough stones brought in at the gravel factory, and the shipping history of the produced gravel.
  • Fig. 8 is an explanatory diagram showing an example of the analysis results of the size of the ore (area) and the amount of gravel produced.
  • the raw stone size DB shown in FIG. 8(A) is the area (total area of the raw stones collected) to which the date and time (time stamp) are linked, and the production DB shown in FIG. 8(B) is the date and time (time stamp). is the product weight at each linked gravel mill.
  • the product amount and area generally show a high correlation, and the smaller the area, the larger the product amount. Based on this correlation, it can be determined that the ore quality is good when the area is less than or equal to a predetermined value, or when the amount of product is greater than or equal to a predetermined value.
  • Fig. 9 is an explanatory diagram showing an analysis example of raw stone size and logistic-related history information.
  • the contents of the raw stone size DB shown in FIG. 9(A) are the same as those in FIG. 8(A).
  • the physical distribution DB shown in FIG. 9B includes origin information (collection site information) and destination information (gravel factory information) of rough stones linked to date and time.
  • This information includes the geological information of the starting point (collection site). It also includes latitude and longitude information from the departure point (collection site) to the arrival point (gravel factory), and based on this information, information on the distance from the departure point to the arrival point can be generated. It can also generate information about excavation time in each section.
  • Various analyzes can be performed from the history information accumulated in the management database 52, and are not limited to the above analysis examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Primary Health Care (AREA)
  • Tourism & Hospitality (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Strategic Management (AREA)
  • Animal Husbandry (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Marine Sciences & Fisheries (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Automation & Control Theory (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • General Factory Administration (AREA)
  • Image Processing (AREA)

Abstract

An edge device (31) in a gravel production management system (1) for confirmation/determination/notification of the quality of ore in accordance with this gravel production management method acquires a captured image (11) of input ore (9) in a gravel plant (2), extracts individual ores from the captured image (11) using an ore detection model (34), and encloses each of the extracted ores in a bounding box (12). A management server (51) in a management office (4) calculates the size (area) of each bounding box (12), compares the calculated size (area) with a threshold value to classify the ores into small-size ores (9S) and large-size ores (9L), calculates the number thereof, and displays the bounding boxes (12), sizes, and a mixture ratio of large and small sizes on the captured image (11) displayed on a display screen. Quality management of the input ore (9) can be performed precisely in real time.

Description

砂利生産管理方法および砂利生産管理用コンピュータプログラムGravel production control method and computer program for gravel production control
 本発明は、砂利工場において、無人で、原石の質(サイズ、大小サイズの混合割合など)を把握して砂利の生産性の向上を図る砂利生産管理方法、および当該方法をコンピュータから構成される管理システムに実行させるために用いる砂利生産管理用コンピュータプログラムに関する。 The present invention provides an unmanned gravel production management method for improving gravel productivity by grasping the quality of raw stones (size, mixing ratio of large and small sizes, etc.) in a gravel factory, and the method comprising a computer. The present invention relates to a computer program for gravel production management used to execute a management system.
 一般的に、採取場で採掘された原石は、砂利工場において、様々な機械で破砕・選別・洗浄され、所定の粒度規格に適合させて出荷され、コンクリート、アスファルト等の骨材として用いられる。コンクリート、アスファルトに用いる砂利に規格外のサイズのもの、異物などが混在していると、納入先の受入検査に合格できない。石灰石採掘鉱山やコンクリート製造等を想定し、規格外の大サイズの石や骨材、異物などを、人手に頼ることなく除去する方法は、例えば、特許文献1、2において提案されている。 In general, rough stones mined at a quarry are crushed, sorted, and washed with various machines at a gravel factory, conformed to the prescribed particle size standards, shipped, and used as aggregates for concrete, asphalt, etc. If the gravel used for concrete and asphalt contains non-standard size or foreign matter, it will not pass the acceptance inspection at the delivery destination. Assuming limestone mining, concrete manufacturing, etc., methods for removing non-standard large-sized stones, aggregates, foreign substances, etc. without relying on human labor are proposed in Patent Documents 1 and 2, for example.
 特許文献1に記載の骨材選別装置においては、篩に掛けた後の骨材をCCDカメラで撮影し、撮影画像を画像解析して基準から大きく外れた大きなサイズの骨材を検出し、検出された骨材を他の骨材から除去している。これにより、篩目を通ってしまった細長い形状をした規格サイズよりも大きな骨材を除去している。特許文献2に記載の異物を検出する方法では、搬送される骨材の画像を処理して、規格サイズから大きく外れた大きなサイズの石の塊だけでなく、異物も検出して除去できるようにしている。 In the aggregate sorting apparatus described in Patent Document 1, aggregates after sieving are photographed with a CCD camera, and the photographed images are image-analyzed to detect large-sized aggregates greatly deviating from the standard. aggregates are removed from other aggregates. This removes elongated aggregates that have passed through the sieve and are larger than the standard size. In the method for detecting foreign matter described in Patent Document 2, the image of the aggregate being conveyed is processed so that not only large stone blocks that deviate greatly from the standard size, but also foreign matter can be detected and removed. ing.
 一方、近年においては、AI技術の発達に伴い、物体検出用ソフトウエアとして、各種の機械学習モデルが提案されており、広く利用されている。例えば、YOLOシリーズが知られている。特許文献3には、畳み込みニューラルネットワークを用いたディープラーニングによる物体検出用の機械学習モデルであるYOLO(v3)を利用して、撮影画像から破砕片を識別する破砕片検出方法が提案されている。 On the other hand, in recent years, with the development of AI technology, various machine learning models have been proposed and widely used as software for object detection. For example, the YOLO series is known. Patent Document 3 proposes a fragment detection method that identifies fragments from captured images using YOLO (v3), which is a machine learning model for object detection by deep learning using a convolutional neural network. .
特開2008-212778号公報Japanese Patent Application Laid-Open No. 2008-212778 特開2016-194505号公報JP 2016-194505 A 特開2021-8754号公報JP 2021-8754 A
 採取場から採取された原石から規格サイズの砂利を製造する場合において、砂利原料である原石の質、特に、サイズ、大小サイズの混合割合などによって、製品である砂利の生産性、品質に大きく影響がでる。従来においては、加工対象となる原石の状態を、人が目視により確認し、生産性、品質の低下などを勘と経験によって判断して、原石の採取場、工場、出荷部門などへ指示をだし、製品の生産性、製品の品質を維持するようにしている。しかしながら、人手不足、熟練者の高齢化・減少などにより、人手に頼って原石の質を判断して砂利生産の質、効率を維持することが困難になってきている。また、目視による確認、勘と経験に頼る判断には限界があり、異なる作業環境の下では同質の原石であっても異なる状態に見え、採取場が異なると原石の質も異なるなどの各種の要因により、常に適切な判断を行うことを期待できない。 When manufacturing standard-sized gravel from rough stones collected from a quarry, the quality of the rough stones, especially the size and the mixing ratio of large and small sizes, greatly affects the productivity and quality of the gravel product. comes out. In the past, people visually checked the condition of the ore to be processed, judged the decrease in productivity and quality based on intuition and experience, and issued instructions to the ore extraction site, factory, shipping department, etc. , to maintain product productivity and product quality. However, due to labor shortages, the aging and decreasing number of skilled workers, etc., it is becoming difficult to rely on human labor to determine the quality of raw stones and maintain the quality and efficiency of gravel production. In addition, there are limits to visual confirmation and judgments that rely on intuition and experience. Under different working environments, even the same quality of ore may look different. You cannot be expected to make good judgments all the time due to factors.
 例えば、砂利工場における砂利生産工程では、原石を篩に掛けて大小のサイズに選別する選別工程が行われ、大サイズとして選別された原石に対しては、破砕機械に掛けて破砕する破砕工程および大小のサイズに選別する選別工程を繰り返し行っている。このような工程を経て、原石を規格サイズの砂利に選別して製品として出荷している。 For example, in the gravel production process at a gravel factory, a sorting process is performed in which rough stones are sieved and sorted into large and small sizes. The sorting process of sorting into large and small sizes is repeated. Through this process, rough stones are sorted into standard size gravel and shipped as products.
 ここで、図10(A)に示すように、砂利生産工程に投入される原石100が、サイズ、大小サイズの比率などが所定の状態の原石の場合(原石の大小のバランスが良い場合)には、大サイズとして選別された原石100Lに対して行われる破砕工程110および選別工程120からなる処理サイクルが少ない回数で済み、生産性を維持できる。 Here, as shown in FIG. 10(A), when the raw stone 100 to be put into the gravel production process is in a predetermined state of size, ratio of large and small sizes, etc. (when the size of the raw stone is well balanced), can maintain productivity by reducing the number of processing cycles consisting of the crushing step 110 and the sorting step 120 performed on the rough stone 100L sorted as a large size.
 これに対して、図10(B)に示すように、原石100のサイズが全体として大きく、大小サイズの混合割合に偏りがある場合、特に、大サイズの混合割合が大きい場合には、大サイズとして選別された原石100Lに対する処理サイクルの回数が増加し、1サイクルで得られる規格サイズより小さい小サイズの原石100Sの量が少なくなり、砂利の生産性が低下してしまう。また、再破砕される原石100Lの量が多いと、破砕機械への負荷も高くなり、各処理サイクルにおいて新たに投入する原石100の量を少なくする必要があるので、生産性が更に低下してしまう。このような状態が継続すると、原料在庫が滞留し、ストック場のひっ迫、原石採取の一時停止などの悪循環に陥るおそれがある。 On the other hand, as shown in FIG. 10(B), when the size of the rough stone 100 is large as a whole and the mixing ratio of the large and small sizes is biased, especially when the mixing ratio of the large size is large, the large size The number of processing cycles for the raw stone 100L sorted out as 100L increases, and the amount of small-sized raw stone 100S smaller than the standard size obtained in one cycle decreases, resulting in a decrease in gravel productivity. In addition, if the amount of re-crushed 100L of raw stone is large, the load on the crushing machine will be high, and it will be necessary to reduce the amount of newly input raw stone 100 in each processing cycle, resulting in a further decrease in productivity. put away. If this situation continues, there is a risk that raw material inventory will stagnate, leading to a vicious circle of tightness in the stock field and temporary suspension of ore extraction.
 本発明の目的は、このような点に鑑みて、砂利工場において、人手に頼ることなく、原石の撮影画像から原石の質(サイズ、大小サイズの混合割合など)を正確に把握して砂利の生産性、品質を維持できるようにした砂利生産管理方法を提案することにある。また、本発明の目的は、当該方法を、コンピュータを中心に構成されるシステムに実行させるために用いる砂利生産管理用コンピュータプログラムを提供することにある。 In view of these points, the object of the present invention is to accurately grasp the quality of the raw stone (size, mixing ratio of large and small sizes, etc.) from the photographed image of the raw stone in the gravel factory without relying on human labor. To propose a gravel production control method capable of maintaining productivity and quality. It is another object of the present invention to provide a computer program for gravel production management used to cause a computer-based system to execute the method.
 上記の課題を解決するために、本発明は、
 原石を篩に掛けて大小のサイズに選別する選別工程と、大サイズとして選別された原石を破砕機械に掛けて破砕する破砕工程とを繰り返して前記原石を規格サイズの砂利に加工する砂利生産工程を、コンピュータを備えた管理システムにより管理する砂利生産管理方法において、
 前記砂利生産工程に投入される投入原石の撮影画像を取得する画像取得工程と、
 機械学習機能を備えた原石検出モデルを用いて、前記撮影画像から個々の原石が写っている原石画像部位を抽出し、抽出した前記原石画像部位のそれぞれを取り囲む大きさのバウンディングボックスを生成する原石検出工程と、
 前記原石画像部位を表す前記バウンディングボックスのサイズ(面積)を算出し、算出したサイズ(面積)をサイズ選別用の基準値と比較して、前記原石画像部位に写っている原石を、前記規格サイズ以下の小サイズ原石および前記規格サイズを超える大サイズ原石に分類し、これら小サイズ原石および大サイズ原石の個数を算出する原石品質判定工程と、
 表示装置の表示画面上に、各原石画像部位が前記バウンディングボックスで囲まれた状態の前記撮影画像と共に、各バウンディングボックスのサイズ(面積)、および、前記小サイズ原石および前記大サイズ原石それぞれの個数を表示する表示工程と、
を備えていることを特徴としている。
In order to solve the above problems, the present invention
A gravel production process in which the rough stones are processed into standard size gravel by repeating the sorting process of sifting rough stones into large and small sizes and the crushing process of crushing the rough stones that have been selected as large in a crushing machine. is controlled by a management system equipped with a computer,
an image acquisition step of acquiring a photographed image of the raw ore input to the gravel production process;
Using a rough stone detection model equipped with a machine learning function, the raw stone image parts in which the individual raw stones appear are extracted from the photographed image, and a bounding box having a size surrounding each of the extracted rough stone image parts is generated. a detection step;
The size (area) of the bounding box representing the raw stone image portion is calculated, and the calculated size (area) is compared with a reference value for size selection, and the raw stone reflected in the raw stone image portion is reduced to the standard size. A raw stone quality determination step of classifying into the following small-sized raw stones and large-sized raw stones exceeding the standard size, and calculating the number of these small-sized raw stones and large-sized raw stones;
The size (area) of each bounding box, and the number of each of the small-sized ore and the number of the large-sized ore are displayed on the display screen of the display device together with the photographed image in which each ore image portion is surrounded by the bounding box. a display step of displaying
It is characterized by having
 本発明では、AIを活用した原石検出モデルを用いて、処理対象である投入原石の撮影画像を解析して背景画像から個々の原石画像を分離抽出して個々の原石を検出し、検出結果に基づき、投入原石の質(サイズ、大小サイズの混合割合)を判別し、撮影画像と共に判別結果を、表示画面上にリアルタイムで表示することで可視化している。原石検出モデルの構築に当たり、教師データとして各種の画像(サイズの異なる原石を含む画像、大小のサイズの混合割合が異なる原石画像、照度、撮影角度などの撮影条件が異なる画像)を用意して学習させることで、検出精度を容易に高めることができる。また、画像上における原石のサイズ(面積)、大小サイズの個数を算出して、数値として可視化することで、作業員は、原石の質(サイズ、大小の混合割合)を、画面からリアルタイムで、直感的に確認できる。作業員は、表示内容に基づき、投入原石の質が適切であるか否かを判断でき、採取場などに適切な指示をだすことができ、生産性の低下などを防止できる。 In the present invention, using an AI-based ore detection model, the photographed image of the input ore to be processed is analyzed, and individual ore images are separated and extracted from the background image to detect each ore, and the detection result is Based on this, the quality (size, mixture ratio of large and small sizes) of the input ore is discriminated, and the discriminated result is visualized by displaying it on the display screen in real time along with the photographed image. When constructing the rough stone detection model, various images (images containing rough stones of different sizes, rough stone images with different mixing ratios of large and small sizes, images with different shooting conditions such as illumination and shooting angle) are prepared and trained as training data. , the detection accuracy can be easily improved. In addition, by calculating the size (area) of the rough stone on the image and the number of large and small sizes and visualizing it as a numerical value, the worker can check the quality of the raw stone (size, mixing ratio of large and small) from the screen in real time. You can check it intuitively. Based on the displayed content, the worker can determine whether or not the quality of the input ore is appropriate, and can issue appropriate instructions to the mining site, etc., thereby preventing a decrease in productivity.
 本発明において、原石品質判定工程において、投入原石に含まれる小サイズ原石および大サイズ原石の個数の比率および面積の比率のうちの少なくとも一方の比率に基づき、投入原石を規格サイズの砂利に加工する場合の生産性の良否判断を行うことができる。これらの比率と生産性との間の相関関係を事前に管理システムに保持させておくことで、生産性の良否判定を精度良く行うことができる。良否判定を画面上に表示することで作業員は投入原石の適否を確認できる。 In the present invention, in the ore quality determination step, the input ore is processed into standard size gravel based on at least one of the number ratio and area ratio of small size ore and large size ore contained in the input ore. It is possible to judge the quality of productivity in each case. By storing the correlation between these ratios and productivity in the management system in advance, it is possible to accurately determine the quality of productivity. By displaying the pass/fail judgment on the screen, workers can check the suitability of the input ore.
 本発明において、砂利生産工程における砂利生産管理の履歴情報をデータベースに登録する登録工程を備えている場合がある。この場合には、履歴情報には、少なくとも、投入原石を特定する原石情報と、投入原石の原石品質判定工程における品質判定結果と、投入原石の加工日時とが対応付けされた形態で含まれていることが望ましい。 In the present invention, there may be a registration process for registering history information of gravel production management in the gravel production process in the database. In this case, the history information includes at least raw ore information specifying the input ore, the quality determination result in the ore quality determination process of the input ore, and the processing date and time of the input ore in a form associated with each other. It is desirable to be
 本発明の方法により砂利生産管理を行う管理システムを、選別工程および破砕工程を行う砂利工場に設置した工場側システムと、砂利工場を管理する管理事務所に設置され工場側システムと有線あるいは無線による通信を行う管理側システムとを備えた構成とすることができる。この場合、管理側システムを、管理サーバと、管理データベースと、管理側モニターとを備えた構成とし、工場側システムを、カメラと、エッジデバイスと、工場側モニターとを備えた構成とすることができる。 A management system for managing gravel production according to the method of the present invention is wired or wirelessly connected to the factory side system installed in the gravel factory that performs the sorting process and the crushing process, and the factory side system installed in the management office that manages the gravel factory. It can be configured to include a management side system that performs communication. In this case, the management side system may be configured to include a management server, a management database, and a management side monitor, and the factory side system may be configured to include a camera, an edge device, and a factory side monitor. can.
 この構成の管理システムにおいては、砂利工場において、カメラが篩の原石投入口に投入される前記投入原石を撮影する撮影工程を実行し、エッジデバイスが、撮影画像取得工程と、原石検出モデルを用いた原石検出工程と、撮影画像および検出結果を管理システムに送信する送信工程とを実行する。
 また、管理事務所において、管理サーバが、撮影画像および検出結果を受信する受信工程と、受信した検出結果に基づく品質判定工程と、登録工程と、撮影画像を検出結果および判定結果と共に管理用モニターに表示する表示工程と、品質判定結果をエッジデバイスに送信する送信工程とを実行する。
 さらに、砂利工場において、エッジデバイスが、品質判定結果を受信する受信工程と、カメラの撮影画像を、原石検出結果および受信した品質判定結果と共に、工場側モニターの画面に表示する表示工程とを実行する。
In the management system having this configuration, in the gravel factory, the camera executes the photographing process of photographing the input rough stone that is input to the raw stone input port of the sieve, and the edge device uses the photographed image acquisition process and the rough stone detection model. and a transmission step of transmitting the photographed image and the detection result to the management system.
Further, in the management office, the management server performs a receiving step of receiving the photographed image and the detection result, a quality judgment step based on the received detection result, a registration step, and a management monitor for the photographed image together with the detection result and the judgment result. and a transmission step of transmitting the quality determination result to the edge device.
Furthermore, in the gravel factory, the edge device receives the quality judgment result, and the display process of displaying the photographed image of the camera on the screen of the factory monitor along with the raw stone detection result and the received quality judgment result. do.
本発明を適用した砂利生産管理システムの全体構成を示す概略構成図である。1 is a schematic configuration diagram showing the overall configuration of a gravel production management system to which the present invention is applied; FIG. 原石検出モデルの作成手順を示す概略フローチャートである。4 is a schematic flow chart showing a procedure for creating a raw stone detection model; 原石検出モデルを用いて撮影画像から原石を検出する推論手順を示す概略フローチャートである。4 is a schematic flow chart showing an inference procedure for detecting a rough stone from a photographed image using a raw stone detection model; (A)は原石検出結果から投入原石の品質を判定する手順を示す概略フローチャートであり、(B)はその説明図である。(A) is a schematic flow chart showing a procedure for judging the quality of input ore from the result of ore detection, and (B) is an explanatory view thereof. 撮影画像および原石の品質判定結果を表示する表示画面の一例を示す説明図である。FIG. 4 is an explanatory diagram showing an example of a display screen displaying a photographed image and a quality determination result of a raw stone; 砂利生産管理システムにおける主要部分を示す説明図である。It is an explanatory view showing the main part in a gravel production control system. 砂利生産管理システムにおいて管理データベースに収集された砂利生産管理等の履歴情報の活用例を示す説明図である。FIG. 4 is an explanatory diagram showing an example of utilization of history information such as gravel production management collected in a management database in a gravel production management system; 原石サイズ(面積)と砂利の製造量との分析結果の一例を示す説明図である。FIG. 10 is an explanatory diagram showing an example of analysis results of the size (area) of raw stone and the production amount of gravel; 原石サイズと物流関連の履歴情報との分析例を示す説明図である。FIG. 4 is an explanatory diagram showing an analysis example of raw stone size and history information related to physical distribution; (A)および(B)は砂利生産工程における問題点を示す説明図である。(A) and (B) are explanatory diagrams showing problems in the gravel production process.
 以下に、図面を参照して本発明の方法を適用した砂利生産管理システムの実施の形態を説明する。なお、実施の形態は本発明の一例を示すものであり、本発明を実施の形態に限定することを意図したものではない。 An embodiment of a gravel production management system to which the method of the present invention is applied will be described below with reference to the drawings. In addition, embodiment shows an example of this invention, and does not intend to limit this invention to embodiment.
(全体構成)
 図1は砂利生産管理システムの全体構成を示す概略構成図である。砂利生産管理システム1は、砂利工場2に設置した工場側システム3と、砂利工場2を管理する管理事務所4に設置した管理側システム5と、砂利の原料となる原石を採取する原石採取場6に設置された採取場側システム7とを備えている。これらのシステム3、5、7はそれぞれコンピュータを中心に構成されており、予めインストールされているソフトウエアを実行することにより以下に述べる各工程・処理を実行する。これらのシステム3、5、7の間は、無線あるいは有線による通信回線8を介して接続される。
(overall structure)
FIG. 1 is a schematic configuration diagram showing the overall configuration of a gravel production management system. The gravel production management system 1 includes a factory-side system 3 installed in a gravel factory 2, a management-side system 5 installed in a management office 4 that manages the gravel factory 2, and a raw stone quarry for collecting raw stones for the gravel. It is equipped with a collection site side system 7 installed in 6. Each of these systems 3, 5, and 7 is mainly composed of a computer, and executes the steps and processes described below by executing pre-installed software. These systems 3, 5 and 7 are connected via a wireless or wired communication line 8. FIG.
 工場側システム3は、エッジデバイス31と、工場側モニター32を含む入出力装置と、投入原石撮影用のカメラ33とを備えている。砂利工場2では、原石採取場6から搬入される原石9が、原石投入口21から篩22に投入されて規格サイズより小さな小サイズ原石9Sとそれより大きな大サイズ原石9Lに篩分けされる。小サイズ原石9Sは次工程に移送される。大サイズ原石9Lに対しては、破砕機械による破砕工程23および篩による選別工程24からなる処理サイクルを繰り返し施して、規格サイズより小さな小サイズ原石9Sに加工する。選別・破砕工程(あるいは破砕・選別工程)は、必要に応じて多段階で行われる。このような砂利生産工程を経て得られた小サイズ原石9Sは所定の後処理工程10を経て製品である砂利が得られ、出荷部門25から出荷される。 The factory-side system 3 includes an edge device 31, an input/output device including a factory-side monitor 32, and a camera 33 for photographing input rough stones. In the gravel factory 2, a raw stone 9 carried from a raw stone quarry 6 is put into a sieve 22 from a raw stone input port 21 and sieved into a small-sized raw stone 9S smaller than the standard size and a large-sized raw stone 9L larger than the standard size. The small size ore 9S is transferred to the next step. The large size ore 9L is repeatedly subjected to a processing cycle consisting of a crushing step 23 by a crushing machine and a screening step 24 by a sieve to be processed into a small size ore 9S smaller than the standard size. The sorting/crushing process (or crushing/sorting process) is performed in multiple steps as necessary. The small-sized rough stone 9S obtained through such a gravel production process undergoes a predetermined post-treatment process 10 to obtain gravel as a product, which is shipped from the shipping department 25. FIG.
 原石撮影用のカメラ33は、原石投入口21から投入される原石9(以下、投入原石9と呼ぶ場合もある。)を撮影可能な位置に設置される。カメラ33により投入原石9がリアルタイムで撮影され(撮影工程)、得られた投入原石9の撮影画像11はエッジデバイス31に取り込まれる。エッジデバイス31において、インストールされている学習済みの原石検出モデル34を用いて原石検出処理が行われる(原石検出工程、後述の図2、図3参照)。撮影画像11を含む原石検出結果35は、エッジデバイス31の送受信部36から通信回線8を介して管理事務所4の管理側システム5に送信される(送信工程)。 The camera 33 for photographing the raw stone is installed at a position capable of photographing the raw stone 9 (hereinafter sometimes referred to as the raw stone 9) that is input from the raw stone input port 21. The input ore 9 is photographed in real time by the camera 33 (photographing step), and the obtained captured image 11 of the input ore 9 is captured by the edge device 31 . In the edge device 31, the ore detection process is performed using the installed learned ore detection model 34 (ore detection process, see FIGS. 2 and 3 described later). The ore detection result 35 including the photographed image 11 is transmitted from the transmission/reception unit 36 of the edge device 31 to the management side system 5 of the management office 4 via the communication line 8 (transmission step).
 管理側システム5は、管理サーバ51と、管理サーバ51に内蔵あるいは外付けの管理データベース52と、管理側モニター53を含む入出力装置とを備えている。管理サーバ51は送受信部54を介して原石検出結果35を受信する(受信工程)。管理サーバ51は受信した原石検出結果35を原石品質判定部55において解析して原石の品質判定を行う(品質判定工程、後述の図4参照)。 The management-side system 5 includes a management server 51, a management database 52 built into or external to the management server 51, and an input/output device including a management-side monitor 53. The management server 51 receives the raw stone detection result 35 via the transmission/reception unit 54 (receiving step). The management server 51 analyzes the received ore detection result 35 in the ore quality judging unit 55 to judge the quality of the ore (quality judging step, see FIG. 4 described later).
 品質判定結果56には、投入原石の撮影画像11に写し出された原石のサイズ(面積)、大小サイズの原石の個数などが含まれている。原石検出結果35および品質判定結果56は、管理データベース52に登録され(登録工程)、表示制御部57を介して、管理側モニター53の表示画面に表示される(表示工程、後述の図5参照)。また、品質判定結果56は、送受信部54から通信回線8を介して、工場側システム3および採取場側システム7に送信される。なお、品質判定結果56は、LANなどの通信網58を介して、各部署に設置されている端末機器59などにも表示可能である。 The quality determination result 56 includes the size (area) of the raw stone shown in the photographed image 11 of the input raw stone, the number of large and small size raw stones, and the like. The raw stone detection result 35 and the quality determination result 56 are registered in the management database 52 (registration process) and displayed on the display screen of the management side monitor 53 via the display control unit 57 (display process, see FIG. 5 described later). ). Also, the quality judgment result 56 is transmitted from the transmitting/receiving section 54 to the factory side system 3 and the collection site side system 7 via the communication line 8 . The quality judgment result 56 can also be displayed on a terminal device 59 installed in each department via a communication network 58 such as a LAN.
 工場側システム3のエッジデバイス31において、送受信部36を介して品質判定結果56を受信すると(受信工程)、受信した品質判定結果56が、表示制御部37を介して、カメラ33の撮影画像11と共に工場側モニター32の表示画面に表示される(表示工程)。同様に、採取場側システム7においても、そのモニター71、現場作業員の所持する携帯用通信端末72などに、カメラ33の撮影画像11および原石の品質判定結果56が表示される。 When the edge device 31 of the factory-side system 3 receives the quality determination result 56 via the transmission/reception unit 36 (receiving step), the received quality determination result 56 is transmitted via the display control unit 37 to the captured image 11 of the camera 33. are displayed on the display screen of the monitor 32 on the factory side (display step). Similarly, in the collection site system 7, the image 11 taken by the camera 33 and the quality judgment result 56 of the raw stone are displayed on the monitor 71, the portable communication terminal 72 carried by the field worker, and the like.
 このように、砂利生産管理システム1においては、投入原石9の撮影画像11から原石を検出し、検出した原石の品質(サイズ、大小サイズの個数など)を判定し、撮影画像11、原石検出結果35および品質判定結果56を、リアルタイムで砂利工場2、管理事務所4および原石採取場6に設置した端末画面に表示している。無人で投入原石9の品質を確認・判定・通知を行うことができ、画面を目視により確認した管理事務所4の担当者は、表示画面から、原石の質を把握し製品品質をコントロールするべく適切な指示を原石採取場6、出荷部門25などにだすことができる。また、原石採取場6の作業員、出荷部門25の作業員なども端末の表示画面上において品質結果を目視により確認して品質結果を共有できる。よって、管理部門と、砂利生産部門、その前後工程となる原石採取部門、出荷部門との間の連携を効率良く行って、砂利の生産性、品質を維持することが可能になる。 As described above, in the gravel production management system 1, the raw stones are detected from the photographed image 11 of the input raw stones 9, the quality of the detected raw stones (size, the number of large and small sizes, etc.) is determined, and the photographed image 11 and the raw stone detection result are determined. 35 and the quality judgment result 56 are displayed in real time on the terminal screens installed in the gravel factory 2, the management office 4 and the ore quarry 6. The quality of the input ore 9 can be confirmed, judged, and notified unmanned, and the person in charge of the management office 4 who visually confirms the screen can grasp the quality of the ore from the display screen and control the product quality. Appropriate instructions can be issued to the ore quarry 6, shipping department 25, and the like. In addition, workers in the ore quarry 6 and workers in the shipping department 25 can visually check the quality results on the display screen of the terminal and share the quality results. Therefore, it is possible to maintain the productivity and quality of gravel by efficiently collaborating between the management department, the gravel production department, and the rough stone extraction department and the shipping department that are pre- and post-processes.
(原石検出モデル、原石検出工程)
 砂利工場2に設置したエッジデバイス31にインストールされている学習済みの原石検出モデル34はAIを活用した畳み込みニューラルネットワーク(CNN)などの機械学習機アルゴリズムからなる物体検知モデルであり、例えば、広く利用されているYOLOシリーズを用いることができる。
(Rough stone detection model, raw stone detection process)
The trained ore detection model 34 installed in the edge device 31 installed in the gravel factory 2 is an object detection model consisting of a machine learning machine algorithm such as a convolutional neural network (CNN) utilizing AI. It is possible to use the YOLO series, which has been developed.
 図2は、原石検出モデル34の作成手順を示す概略フローチャートである。作成手順は一般的なものであるが、物体検知モデルの教師データには、原石投入口21から投入される原石の撮影画像が含まれている。撮影画像として、カメラ33の位置、角度、距離、明暗、原石の状態などを変えて学習用の投入原石画像を撮影し(ST21)、学習用データセットを作成した(ST22)。これらを教師データとして入力して、所望の検出結果が得られるようにディープラーニングを行わせ(ST23)、原石を精度良く抽出可能な学習済みモデルである原石検出モデル34を得た(ST24)。 FIG. 2 is a schematic flow chart showing the procedure for creating the ore detection model 34. FIG. Although the preparation procedure is a general one, the training data of the object detection model includes a photographed image of the raw stone thrown in from the raw stone inlet 21 . As photographed images, input ore images for learning were photographed by changing the position, angle, distance, brightness, state of ore, etc. of the camera 33 (ST21), and a data set for learning was created (ST22). These were input as teaching data, and deep learning was performed so as to obtain desired detection results (ST23), and a raw stone detection model 34, which is a learned model capable of accurately extracting raw stones, was obtained (ST24).
 図3は、原石検出モデル34を用いて撮影画像11から原石を検出する推論手順を示す概略フローチャートである。砂利工場2において、カメラ33によって原石通過領域(原石投入口21)を通過する投入原石9が撮影され(ST31)、得られた投入原石9の撮影画像11が、エッジデバイス31に送られる(ST32:画像取得工程)。エッジデバイス31において、原石検出モデル34を用いて撮影画像11が解析され(ST33:解析工程)、撮影画像11に含まれている投入原石9のそれぞれが写っている画像部位の特徴量が抽出され(ST34)、特徴量に基づき、各投入原石9が写っている原石画像部位のそれぞれが抽出され、抽出された原石画像部位を包含可能な最小限の大きさのバウンディングボックス(矩形枠)が生成される(ST35:原石物体検出)。モニターの表示画面上において、撮影画像11上に表示されるバウンディングボックス12のそれぞれによって、検出された投入原石9のそれぞれが表される。 FIG. 3 is a schematic flow chart showing an inference procedure for detecting ores from the photographed image 11 using the ore detection model 34 . In the gravel factory 2, the camera 33 photographs the input rough stone 9 passing through the raw stone passage area (the raw stone input port 21) (ST31), and the obtained captured image 11 of the input rough stone 9 is sent to the edge device 31 (ST32). : image acquisition step). In the edge device 31, the photographed image 11 is analyzed using the ore detection model 34 (ST33: analysis step), and the feature amount of the image portion where each of the input ore 9 included in the photographed image 11 is shown is extracted. (ST34), based on the feature amount, each part of the ore image in which each input ore 9 is captured is extracted, and a bounding box (rectangular frame) having a minimum size capable of containing the extracted ore image part is generated. (ST35: raw stone object detection). On the display screen of the monitor, each detected input raw stone 9 is represented by each bounding box 12 displayed on the photographed image 11 .
(原石品質判定工程)
 図4(A)および(B)は、原石検出モデル34によって検出された原石検出結果35(バウンディングボックス12の情報)から投入原石9の品質を判定する手順を示す概略フローチャートおよび説明図である。管理側システム5の管理サーバ51は、原石検出結果35を受信すると、原石画像部位を表すバウンディングボックス12のサイズ(面積)を算出し、算出したサイズ(面積)をサイズ選別用の基準値である閾値と比較して、原石画像部位に写っている投入原石9を、規格サイズ以下の小サイズ原石9Sおよび規格サイズを超える大サイズ原石9Lに分類し、これら小サイズ原石9Sおよび大サイズ原石9Lの個数を算出する。
(Rough stone quality judgment process)
FIGS. 4A and 4B are a schematic flow chart and an explanatory diagram showing the procedure for judging the quality of the input ore 9 from the ore detection result 35 (information of the bounding box 12) detected by the ore detection model 34. FIG. When receiving the raw stone detection result 35, the management server 51 of the management system 5 calculates the size (area) of the bounding box 12 representing the raw stone image portion, and the calculated size (area) is used as the reference value for size selection. Compared with the threshold value, the input ore 9 shown in the ore image portion is classified into a small size ore 9S that is equal to or smaller than the standard size and a large size ore 9L that exceeds the standard size. Calculate the number.
 図4(A)のフローチャートに従って説明すると、まず判定のための初期設定が行われる。大小サイズ原石9L、9Sを選別するための基準値である閾値tとして、所定の規格サイズnが設定される(ST41:t=n)。小サイズ原石9Sのカウント数Scおよび大サイズ原石9Lのカウント数Lcが「0」にリセットされる(ST42:Sc=0,ST43:Lc=0)。次に、検出された原石画像部位を表すバウンディングボックス12(矩形枠)の情報から、各バウンディングボックス12の縦(h)および横(w)のサイズを取得し(ST44)、これらの情報から、各バウンディングボックスのサイズを表す面積(a)を算出する(ST45:a=h*w)。算出された面積(a)を閾値(t)と比較する(ST46)。面積(a)が閾値(t)よりも小さい場合には、小サイズ原石9Sのカウント値Scに1を加算し(ST47)、大きい場合には、大サイズ原石9Lのカウント値Lcに1を加算する(ST48)。 Describing according to the flowchart of FIG. 4(A), initial settings for determination are performed first. A predetermined standard size n is set as a threshold value t, which is a reference value for sorting out the large and small size rough stones 9L and 9S (ST41: t=n). The count number Sc of the small size ore 9S and the count number Lc of the large size ore 9L are reset to "0" (ST42: Sc=0, ST43: Lc=0). Next, the vertical (h) and horizontal (w) sizes of each bounding box 12 are obtained from the information of the bounding box 12 (rectangular frame) representing the detected ore image part (ST44), and from this information, An area (a) representing the size of each bounding box is calculated (ST45: a=h*w). The calculated area (a) is compared with the threshold (t) (ST46). If the area (a) is smaller than the threshold value (t), add 1 to the count value Sc of the small size rough stone 9S (ST47), and if it is larger, add 1 to the count value Lc of the large size rough stone 9L. (ST48).
 ここで、原石品質判定工程において、投入原石9に含まれる小サイズ原石9Sおよび大サイズ原石9Lの個数の比率(混合割合)または面積の比率に基づき、投入原石を規格サイズの砂利に加工する場合の生産性の良否判断を行うことができる。 Here, in the ore quality determination step, when processing the input ore into standard size gravel based on the ratio of the number (mixing ratio) or the area ratio of the small size ore 9S and the large size ore 9L contained in the input ore 9 It is possible to judge the quality of the productivity of
 投入原石9に含まれる大サイズ原石9Lの混合割合が多い場合には、先に述べたように(図10参照)、破砕工程および選別工程を繰り返し行う必要があり、砂利の生産性が低下する。大小サイズの原石の混合割合と、各砂利工場における規格サイズ以下の砂利の生産性との間の相関関係を事前に把握しておけば、判定された投入原石の大小サイズの混合割合を用いて相関関係から砂利の生産性の良否を判断することが可能である。 When the mixing ratio of the large-sized ore 9L contained in the input ore 9 is large, as described above (see FIG. 10), it is necessary to repeatedly perform the crushing process and the sorting process, resulting in a decrease in gravel productivity. . If the correlation between the mixing ratio of large and small stones and the productivity of gravel smaller than the standard size at each gravel mill is grasped in advance, It is possible to judge the quality of gravel productivity from the correlation.
 例えば、各砂利工場2において、投入原石9の大小サイズの混合割合と、当該投入原石から設定された規格サイズ以下の砂利を生産した場合の生産性の程度とを管理データベース52に生産履歴として登録する。各砂利工場2における生産履歴に基づき、投入原石の大小サイズの混合割合と設定された規格サイズ以下の砂利の生産性との間の相関関係を、回帰分析などの統計学的手法を用いて求める。管理サーバ51の原石品質判定部55(図1参照)において、求まった相関関係に基づき、投入原石9の大小サイズの混合割合と設定された規格サイズから、投入原石9から砂利を加工する場合の生産性を推定する。推定結果(生産性の良否判定)は、例えば、原石の品質判定結果56の一つとして撮影画像11と共に表示画面上にリアルタイムに表示する。管理担当者などは、表示内容に基づき、生産性を高めるための対策を迅速かつ的確に、関連部署に出すことができる。 For example, in each gravel factory 2, the mixing ratio of the large and small sizes of the input rough stones 9 and the degree of productivity when producing gravel of a standard size or less set from the input rough stones are registered in the management database 52 as a production history. do. Based on the production history in each gravel factory 2, the correlation between the mixing ratio of large and small sizes of input rough stones and the productivity of gravel of a set standard size or less is obtained using a statistical method such as regression analysis. . In the ore quality determination unit 55 (see FIG. 1) of the management server 51, based on the obtained correlation, the mixing ratio of the large and small sizes of the input ore 9 and the set standard size are used to determine the gravel processing from the input ore 9. Estimate productivity. The estimation result (productivity judgment) is displayed in real time on the display screen together with the photographed image 11 as one of the raw stone quality judgment results 56, for example. The person in charge of management can quickly and accurately issue countermeasures for improving productivity to relevant departments based on the displayed contents.
(判定結果表示工程)
 管理側システム5の管理側モニター53の画面上には、原石撮影画像が表示されると共に、判定結果が表示される。図5は表示画面の一例を示す説明図である。この図に示すように、管理側モニター53の表示画面上に、各原石画像部位がバウンディングボックス12で囲まれた状態の撮影画像11が表示される。表示された各バウンディングボックス12の上辺枠に沿って、算出されたサイズ(面積)が「size 119.0」などと表示される。表示画面53の表示領域の上側の一方の隅の部位には、サイズ選別用の閾値が「Threshold : 50」などと表示され、その下に、大サイズ原石9Lの個数が「Large Count: 5」などと表示され、その下に、小サイズ原石9Sの個数が「Small Count: 23」などと表示される。なお、表示形態は一例であり、各種の形態で表示可能である。また、撮影画像11に含まれている投入原石9の大小サイズの比率、大小サイズの面積の比率なども算出される場合には、円グラフ、棒グラフなどの各種の表示形態で、これらを画面上に表示することができる。
(Judgment result display process)
On the screen of the management-side monitor 53 of the management-side system 5, the raw stone photographed image is displayed and the determination result is also displayed. FIG. 5 is an explanatory diagram showing an example of a display screen. As shown in this figure, on the display screen of the monitor 53 on the management side, a photographed image 11 is displayed with each ore image portion surrounded by a bounding box 12 . Along the upper frame of each bounding box 12 displayed, the calculated size (area) is displayed as "size 119.0" or the like. At one of the upper corners of the display area of the display screen 53, a threshold value for size selection such as "Threshold: 50" is displayed. etc., and below that, the number of small-sized rough stones 9S is displayed as "Small Count: 23". Note that the display form is an example, and can be displayed in various forms. In addition, when the ratio of the size of the input ore 9 included in the photographed image 11 and the ratio of the area of the large and small sizes are calculated, they can be displayed on the screen in various display forms such as a pie chart and a bar graph. can be displayed in
(作用効果)
 図6は、本例の砂利生産管理システム1の主要機能・作用を纏めて示す説明図である。上記のように砂利生産管理システム1では、砂利工場2における最初の工程箇所、例えば、原石投入口等のような投入原石9の通過場所にカメラ33を設置して、投入原石9の撮影画像11を取得している。取得した撮影画像11を、原石検出モデル34を用いて解析し、原石検出結果35(バウンディングボックス12の縦横の座標、縦横のサイズ、検知した日時など)を得ている。原石検出結果35に基づき、管理サーバ51においては、検出された原石の面積算出、大小のサイズ判定、および大小サイズ原石の個数カウントを行っている。そして、リアルタイムで、検出された原石、数値化された原石の質(サイズと個数)を画面表示している。
(Effect)
FIG. 6 is an explanatory diagram collectively showing the main functions and actions of the gravel production management system 1 of this example. As described above, in the gravel production management system 1, the camera 33 is installed at the first process location in the gravel factory 2, for example, the place where the input ore 9 passes through, such as the ore input port, and the photographed image 11 of the input ore 9 is displayed. are getting The acquired photographed image 11 is analyzed using the ore detection model 34 to obtain the ore detection result 35 (vertical and horizontal coordinates, vertical and horizontal size of the bounding box 12, detection date and time, etc.). Based on the raw stone detection result 35, the management server 51 calculates the area of the detected raw stone, determines the size of the large and small stones, and counts the number of large and small size raw stones. In real time, the screen displays the detected ore and the digitized quality (size and number) of the ore.
 本例の砂利生産管理システム1によれば、人手に頼ることなく、投入原石の質が精度良く判定され、作業員、管理者等は、画面上においてリアルタイムに判定結果を確認できる。また、投入原石の撮影画像および判定結果を、砂利生産工場内の各部署に設置した端末、管理事務所に設置した端末、原石採取場に設置した端末で確認できる。よって、投入原石の質などを、工場内、関連施設において共有でき、判定結果に基づく対策、処理などの通知、指示を迅速かつ的確に行うことができる。さらに、人手に頼ることなく、投入原石から設定された規格サイズの砂利を生産する場合の生産性を精度良く判別でき、これに基づき、生産性を改善するための対策、指示などを各関連部門に迅速かつ的確にだすことが可能になる。 According to the gravel production management system 1 of this example, the quality of the input ore can be accurately determined without relying on human labor, and workers, managers, etc. can confirm the determination results on the screen in real time. In addition, it is possible to check the photographed image of the input rough stone and the judgment result on the terminal installed in each department in the gravel production factory, the terminal installed in the management office, and the terminal installed in the rough stone quarry. Therefore, information such as the quality of input ore can be shared within the factory and related facilities, and notifications and instructions regarding countermeasures, treatments, etc. based on the judgment results can be promptly and accurately made. In addition, without relying on human labor, it is possible to accurately determine the productivity when producing gravel of a set standard size from input ore. It is possible to quickly and accurately deliver to
(履歴管理工程・履歴情報の活用)
 図7は、砂利生産管理システム1において管理データベース52に収集された砂利生産管理等の履歴情報の活用例を示す説明図である。この図に示すように、本例の砂利生産管理システム1においては、砂利工場2で行われる砂利生産工程の砂利生産管理の履歴情報が管理データベース52に登録される。履歴情報には、投入原石を特定する原石情報(原石採取場の特定情報)、砂利生産状況、投入原石の品質判定結果、物流履歴などを含めることができる。物流履歴には、例えば、原石採取場から砂利工場への原石搬入履歴、砂利工場における搬入原石の取り扱い履歴、生産された砂利の出荷履歴などを含めることができる。
(History management process/utilization of history information)
FIG. 7 is an explanatory diagram showing an example of utilization of history information such as gravel production management collected in the management database 52 in the gravel production management system 1. As shown in FIG. As shown in this figure, in the gravel production management system 1 of this example, the history information of the gravel production management of the gravel production process performed in the gravel factory 2 is registered in the management database 52 . The history information can include raw stone information that identifies the raw stone (specific information about the raw stone quarry), gravel production status, quality judgment results of the raw stone, distribution history, and the like. Logistics history can include, for example, the history of carrying rough stones from the quarry to the gravel factory, the handling history of the rough stones brought in at the gravel factory, and the shipping history of the produced gravel.
 日付が紐付けされている履歴情報を分析して、各砂利工場などにおける砂利生産管理を効率良く行うことができる。例えば、履歴情報の分析結果から、生産性の改善などに関係する新たなパラメータが見つかる場合がある。このような生産性の判断に有効なパラメータを原石品質判定に反映することができる。例えば、先に述べた生産性と投入原石の大小サイズの比率との相関関係に加えて、
 原石採取場の場所(位置、地質など)、進捗状況(採取深度など)と、採取された原石の大小サイズの面積比率との相関、
 原石採取場と、設定された規格サイズの砂利の生産性との相関、
などを分析することができる。
By analyzing historical information with dates, it is possible to efficiently manage gravel production at each gravel factory or the like. For example, analysis of historical information may reveal new parameters related to improvements in productivity. Such parameters that are effective in determining productivity can be reflected in rough stone quality determination. For example, in addition to the previously mentioned correlation between productivity and the ratio of large and small sizes of input rough,
Correlation between the location (position, geology, etc.) of the ore quarry, progress (extraction depth, etc.), and the area ratio of the large and small sizes of the ore extracted,
Correlation between the rough stone quarry and the productivity of gravel of the set standard size,
etc. can be analyzed.
 図8は原石サイズ(面積)と砂利の製造量との分析結果の一例を示す説明図である。図8(A)に示す原石サイズDBは日時(タイムスタンプ)が紐付けされた面積(採取された原石の合計面積)であり、図8(B)に示す製造DBは、日時(タイムスタンプ)が紐付けされた各砂利工場における製品重量である。図8(C)に示すように、一般的に、製品量と面積とは高い相関を示し、面積が小さいほど、製品量が多くなる。この相関に基づき、面積が所定の値以下の場合、あるいは、製品量が所定の値以上の場合に、原石品質が良であると判定することができる。 Fig. 8 is an explanatory diagram showing an example of the analysis results of the size of the ore (area) and the amount of gravel produced. The raw stone size DB shown in FIG. 8(A) is the area (total area of the raw stones collected) to which the date and time (time stamp) are linked, and the production DB shown in FIG. 8(B) is the date and time (time stamp). is the product weight at each linked gravel mill. As shown in FIG. 8(C), the product amount and area generally show a high correlation, and the smaller the area, the larger the product amount. Based on this correlation, it can be determined that the ore quality is good when the area is less than or equal to a predetermined value, or when the amount of product is greater than or equal to a predetermined value.
 図9は原石サイズと物流関連の履歴情報との分析例を示す説明図である。図9(A)に示す原石サイズDBの内容は図8(A)と同様である。図9(B)に示す物流DBには、日時に紐付けされた原石の出発地情報(採取場情報)、到着地情報(砂利工場情報)が含まれる。これらの情報には、出発地(採取場)の地質情報が含まれる。また、出発地(採取場)から到着地(砂利工場)の緯度経度情報が含まれ、これらの情報に基づき、出発地から到着地までの距離に関する情報を生成できる。また、各工区での掘削時間に関する情報も生成できる。 Fig. 9 is an explanatory diagram showing an analysis example of raw stone size and logistic-related history information. The contents of the raw stone size DB shown in FIG. 9(A) are the same as those in FIG. 8(A). The physical distribution DB shown in FIG. 9B includes origin information (collection site information) and destination information (gravel factory information) of rough stones linked to date and time. This information includes the geological information of the starting point (collection site). It also includes latitude and longitude information from the departure point (collection site) to the arrival point (gravel factory), and based on this information, information on the distance from the departure point to the arrival point can be generated. It can also generate information about excavation time in each section.
 これらの情報に基づき、図9(C)に示すように、各工区の位置と各工区の原石の平均サイズとの対応関係を分析できる。また、図9(D)に示すように、或る起点Aからの距離と、平均サイズとの関係を分析できる。さらに、図9(E)に示すように、各工区における掘削時間(進捗度)と平均サイズとの関係を分析できる。 Based on this information, it is possible to analyze the correspondence relationship between the position of each work section and the average size of the ore in each work section, as shown in Fig. 9(C). Also, as shown in FIG. 9(D), the relationship between the distance from a certain starting point A and the average size can be analyzed. Furthermore, as shown in FIG. 9E, the relationship between excavation time (progress) and average size in each section can be analyzed.
 なお、管理データベース52に蓄積した履歴情報から各種の分析を行うことが可能であり、上記の分析例に限定されるものではない。 Various analyzes can be performed from the history information accumulated in the management database 52, and are not limited to the above analysis examples.

Claims (7)

  1.  砂利原料の原石を大小のサイズに選別する選別工程と、大サイズとして選別された原石を破砕する破砕工程とを繰り返して前記原石から規格サイズの砂利を製造する砂利生産工程を、コンピュータを備えた管理システムにより管理する砂利生産管理方法において、
     前記砂利生産工程に投入される投入原石の撮影画像を取得する画像取得工程と、
     機械学習機能を備えた原石検出モデルを用いて、前記撮影画像から個々の原石が写っている原石画像部位を抽出し、抽出した前記原石画像部位のそれぞれを取り囲む大きさのバウンディングボックスを生成する原石検出工程と、
     前記原石画像部位を表す前記バウンディングボックスのサイズを算出し、算出したサイズをサイズ選別用の基準値と比較して、前記原石画像部位に写っている原石を、前記規格サイズ以下の小サイズ原石および前記規格サイズを超える大サイズ原石に分類し、これら小サイズ原石および大サイズ原石の個数を算出する原石品質判定工程と、
     表示装置の表示画面上に、各原石画像部位が前記バウンディングボックスで囲まれた状態の前記撮影画像と共に、各バウンディングボックスのサイズ、および、前記小サイズ原石および前記大サイズ原石それぞれの個数を表示する表示工程と、
    を備えている砂利生産管理方法。
    A gravel production process for producing gravel of a standard size from the rough stones by repeating a sorting process of sorting the raw gravel stones into large and small sizes and a crushing process of crushing the rough stones selected as large sizes, is performed by a computer. In the gravel production management method managed by the management system,
    an image acquisition step of acquiring a photographed image of the raw ore input to the gravel production process;
    Using a rough stone detection model equipped with a machine learning function, the raw stone image parts in which the individual raw stones appear are extracted from the photographed image, and a bounding box having a size surrounding each of the extracted rough stone image parts is generated. a detection step;
    The size of the bounding box representing the rough stone image portion is calculated, and the calculated size is compared with a reference value for size selection, and the rough stone reflected in the rough stone image portion is classified as a small size rough stone of the standard size or less and A rough stone quality determination step of classifying into large-sized raw stones exceeding the standard size and calculating the number of these small-sized raw stones and large-sized raw stones;
    The size of each bounding box and the number of each of the small-sized rough stones and the number of the large-sized rough stones are displayed on the display screen of the display device together with the photographed image in which each rough stone image portion is surrounded by the bounding box. a display step;
    gravel production management method.
  2.  請求項1において、
     前記原石品質判定工程では、
     前記投入原石に含まれる小サイズ原石および大サイズ原石の個数の比率および面積の比率のうちの少なくとも一方の比率に基づき、前記投入原石を前記規格サイズ以下の砂利に加工する場合の生産性の良否判断を行う砂利生産管理方法。
    In claim 1,
    In the ore quality judgment step,
    Based on at least one of the number ratio and the area ratio of the small-sized ore and the large-sized ore included in the input ore, the quality of the productivity when processing the input ore into gravel of the standard size or smaller. Gravel production control methods that make judgments.
  3.  請求項1または2において、
     前記砂利生産工程における砂利生産管理の履歴情報をデータベースに登録する登録工程を備えており、
     前記履歴情報には、少なくとも、前記投入原石を特定する原石情報と、前記投入原石の前記原石品質判定工程における判定結果と、前記投入原石の加工日時とが対応付けされた形態で含まれている砂利生産管理方法。
    In claim 1 or 2,
    a registration step of registering history information of gravel production management in the gravel production process in a database;
    The history information includes at least raw ore information specifying the input ore, the judgment result of the ore quality determination process of the input ore, and the processing date and time of the input ore in a form associated with each other. Gravel production management method.
  4.  請求項3において、
     前記管理システムを、前記選別工程および前記破砕工程を行う砂利工場に設置した工場側システムと、前記砂利工場を管理する管理事務所に設置され前記工場側システムと有線あるいは無線による通信を行う管理側システムとを備えた構成とし、
     前記管理側システムを、管理サーバと、管理データベースと、管理側モニターとを備えた構成とし、
     前記工場側システムを、カメラと、エッジデバイスと、工場側モニターとを備えた構成とし、
     前記砂利工場において、前記カメラが篩の原石投入口に投入される前記投入原石を撮影する撮影工程を実行し、前記エッジデバイスが、前記画像取得工程と、前記原石検出モデルを用いた前記原石検出工程と、前記撮影画像および原石の検出結果を前記管理システムに送信する送信工程とを実行し、
     前記管理事務所において、
     前記管理サーバが、前記撮影画像および前記検出結果を受信する受信工程と、受信した前記検出結果に基づく前記原石品質判定工程と、前記登録工程と、前記撮影画像を、前記検出結果および前記判定結果と共に前記管理側モニターに表示する表示工程と、前記判定結果を前記エッジデバイスに送信する送信工程とを実行し、
     前記砂利工場において、
     前記エッジデバイスが、前記判定結果を受信する受信工程と、前記カメラの撮影画像を、前記検出結果および受信した前記判定結果と共に、前記工場側モニターの画面に表示する表示工程とを実行する砂利生産管理方法。
    In claim 3,
    A factory-side system installed in a gravel factory that performs the sorting process and the crushing process, and a management side that is installed in a management office that manages the gravel factory and communicates with the factory-side system by wire or wireless. A configuration comprising a system and
    The management side system is configured to include a management server, a management database, and a management side monitor,
    The factory-side system is configured to include a camera, an edge device, and a factory-side monitor,
    In the gravel factory, the camera performs a photographing step of photographing the input rough stone input to the raw stone input port of the sieve, and the edge device performs the image acquisition step and the rough stone detection using the rough stone detection model. and a transmission step of transmitting the photographed image and the raw stone detection result to the management system,
    at said administrative office,
    a receiving step of receiving the photographed image and the detection result; a step of judging the quality of the ore based on the received detection result; and performing a display step of displaying on the management monitor and a transmission step of transmitting the determination result to the edge device,
    In said gravel mill,
    Gravel production in which the edge device executes a reception step of receiving the determination result and a display step of displaying the image captured by the camera on the screen of the factory-side monitor together with the detection result and the received determination result. Management method.
  5.  原石を大小のサイズに選別する選別工程、および、大サイズとして選別された原石を破砕する破砕工程とを繰り返して前記原石を規格サイズの砂利に加工する砂利生産工程を管理するための砂利生産管理用コンピュータプログラムであって、
     前記砂利生産工程に投入される投入原石の撮影画像を取得する画像取得工程と、
     機械学習機能を備えた原石検出モデルを用いて、前記撮影画像から個々の原石が写っている原石画像部位を抽出し、抽出した前記原石画像部位のそれぞれを取り囲む大きさのバウンディングボックスを生成する原石検出工程と、
     前記原石画像部位を表す前記バウンディングボックスのサイズを算出し、算出したサイズをサイズ選別用の基準値と比較して、前記原石画像部位に写っている原石を、規格サイズ以下の小サイズ原石および前記規格サイズを超える大サイズ原石に分類し、これら小サイズ原石および大サイズ原石の個数を算出する原石品質判定工程と、
     表示装置の表示画面上に、各原石画像部位が前記バウンディングボックスで囲まれた状態の前記撮影画像と共に、各バウンディングボックスのサイズ、および、前記小サイズ原石および前記大サイズ原石それぞれの個数を表示する表示工程と、
    をコンピュータに実行させることを特徴とする砂利生産管理用コンピュータプログラム。
    Gravel production management for managing a gravel production process for processing the rough stones into standard size gravel by repeating a sorting process of sorting rough stones into large and small sizes and a crushing process of crushing rough stones that have been sorted as large sizes. A computer program for
    an image acquisition step of acquiring a photographed image of the raw ore input to the gravel production process;
    Using a rough stone detection model equipped with a machine learning function, the raw stone image parts in which the individual raw stones appear are extracted from the photographed image, and a bounding box having a size surrounding each of the extracted rough stone image parts is generated. a detection step;
    The size of the bounding box representing the rough stone image portion is calculated, and the calculated size is compared with a reference value for size selection, and the rough stone reflected in the rough stone image portion is classified into a small size rough stone of a standard size or less and the above A raw stone quality judgment step of classifying into large-sized raw stones exceeding the standard size and calculating the number of these small-sized raw stones and large-sized raw stones;
    The size of each bounding box and the number of each of the small-sized rough stones and the number of the large-sized rough stones are displayed on the display screen of the display device together with the photographed image in which each rough stone image portion is surrounded by the bounding box. a display step;
    A computer program for gravel production management, characterized by causing a computer to execute
  6.  請求項5において、
     前記原石品質判定工程は、前記投入原石に含まれる小サイズ原石および大サイズ原石の個数の比率および面積の比率のうちの少なくとも一方の比率に基づき、前記砂利生産工程における砂利の生産性の良否判断を行う砂利生産管理用コンピュータプログラム。
    In claim 5,
    The raw stone quality judging step determines the quality of gravel productivity in the gravel production step based on at least one of a number ratio and an area ratio of small-sized rough stones and large-sized rough stones contained in the input raw stones. computer program for gravel production control.
  7.  請求項5または6において、更に、
     前記砂利生産工程における砂利生産管理履歴をデータベースに登録する登録工程をコンピュータに実行させ、
     前記登録工程では、少なくとも、前記投入原石を特定する原石情報と、前記投入原石の前記原石品質判定工程における判定結果と、前記投入原石の加工日時とを対応付けした形態で前記データベースに保存する砂利生産管理用コンピュータプログラム。
    In claim 5 or 6, further
    cause a computer to execute a registration step of registering the gravel production management history in the gravel production process in a database;
    In the registration step, the gravel is stored in the database in a form in which at least raw stone information specifying the input raw stone, the determination result of the raw stone quality determination step of the input raw stone, and the processing date and time of the input raw stone are associated with each other. A computer program for production control.
PCT/JP2022/035631 2021-10-13 2022-09-26 Gravel production management method and computer program for gravel production management WO2023063059A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-168049 2021-10-13
JP2021168049A JP7012402B1 (en) 2021-10-13 2021-10-13 Gravel production control method and computer program for gravel production control

Publications (1)

Publication Number Publication Date
WO2023063059A1 true WO2023063059A1 (en) 2023-04-20

Family

ID=80735342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035631 WO2023063059A1 (en) 2021-10-13 2022-09-26 Gravel production management method and computer program for gravel production management

Country Status (2)

Country Link
JP (1) JP7012402B1 (en)
WO (1) WO2023063059A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003010726A (en) * 2001-07-03 2003-01-14 Osaka Saiseki Kogyosho Co Ltd Method and apparatus for manufacturing crushed sand
JP2008512672A (en) * 2004-09-07 2008-04-24 ペトロモデル・イーエイチエフ Apparatus and method for analysis of size, shape, angularity of mineral and rock pieces, and composition analysis
JP2008212777A (en) * 2007-02-28 2008-09-18 Taiheiyo Cement Corp Aggregate sorting apparatus
JP2010066127A (en) * 2008-09-10 2010-03-25 Taiheiyo Cement Corp System and method for measuring particle size distribution of granular material
JP2021008754A (en) * 2019-07-01 2021-01-28 Jx金属株式会社 Debris detection method, debris subdivision method, debris detection device and debris subdivision device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2777921B2 (en) * 1990-02-17 1998-07-23 株式会社間組 Method and apparatus for estimating actual rate of aggregate
JP3239907B2 (en) 1993-01-20 2001-12-17 富士ゼロックス株式会社 Register allocation method
JP3158020B2 (en) * 1995-10-09 2001-04-23 栗本商事株式会社 Method for manufacturing crushed sand

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003010726A (en) * 2001-07-03 2003-01-14 Osaka Saiseki Kogyosho Co Ltd Method and apparatus for manufacturing crushed sand
JP2008512672A (en) * 2004-09-07 2008-04-24 ペトロモデル・イーエイチエフ Apparatus and method for analysis of size, shape, angularity of mineral and rock pieces, and composition analysis
JP2008212777A (en) * 2007-02-28 2008-09-18 Taiheiyo Cement Corp Aggregate sorting apparatus
JP2010066127A (en) * 2008-09-10 2010-03-25 Taiheiyo Cement Corp System and method for measuring particle size distribution of granular material
JP2021008754A (en) * 2019-07-01 2021-01-28 Jx金属株式会社 Debris detection method, debris subdivision method, debris detection device and debris subdivision device

Also Published As

Publication number Publication date
JP2023058205A (en) 2023-04-25
JP7012402B1 (en) 2022-01-28

Similar Documents

Publication Publication Date Title
CN101751744B (en) Detection and early warning method of smoke
CN111241959B (en) Method for detecting personnel not wearing safety helmet through construction site video stream
US20150371112A1 (en) Building material classifications from imagery
CN111222478A (en) Construction site safety protection detection method and system
CN109738340A (en) Aggregate size real-time analyzer and aggregate production line
KR101981031B1 (en) Platform for scrapping metal based on artificial intelligence
CN110458975B (en) Asphalt mixture mixing process monitoring system and method
CN113989711B (en) Power distribution construction safety tool use identification method and system
CN112871703A (en) Intelligent management coal preparation platform and method thereof
CN113158829A (en) Deep learning ore size measuring method and early warning system based on EfficientDet network
CN113344745A (en) Engineering project intelligent construction site data acquisition and analysis integrated cloud platform based on remote video monitoring and cloud computing
CN116612440B (en) Building engineering safety monitoring method, equipment and medium based on machine vision
CN114662208B (en) Construction visualization system and method based on Bim technology
CN110238556A (en) Welding track real-time detection method in welding robot welding process
CN113256269A (en) Engineering management system based on BIM, cloud computing and big data technology
CN117011295B (en) UHPC prefabricated member quality detection method based on depth separable convolutional neural network
WO2023063059A1 (en) Gravel production management method and computer program for gravel production management
CN115660297A (en) Automatic AI early warning system and method for construction site safety
CN113408361A (en) Deep learning-based mining conveyor belt bulk material detection method and system
CN113129282A (en) Belt abnormality determination method, device, equipment and storage medium
CN117726991B (en) High-altitude hanging basket safety belt detection method and terminal
CN114091944A (en) Cloud-end-coordinated distribution network engineering field operation analysis decision system
CN113657745A (en) Engineering state monitoring method and system based on multiple camera units
CN111650863B (en) Engineering safety monitoring instrument and monitoring method
Duchesne Multivariate image analysis in mineral processing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880755

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE