WO2023062989A1 - Heat medium circulation system - Google Patents

Heat medium circulation system Download PDF

Info

Publication number
WO2023062989A1
WO2023062989A1 PCT/JP2022/033866 JP2022033866W WO2023062989A1 WO 2023062989 A1 WO2023062989 A1 WO 2023062989A1 JP 2022033866 W JP2022033866 W JP 2022033866W WO 2023062989 A1 WO2023062989 A1 WO 2023062989A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric heating
heating device
refrigerant
heat exchanger
heat medium
Prior art date
Application number
PCT/JP2022/033866
Other languages
French (fr)
Japanese (ja)
Inventor
俊二 森脇
由樹 山岡
常子 今川
繁男 青山
和彦 町田
潤 吉田
泰彬 坂東
和人 中谷
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023062989A1 publication Critical patent/WO2023062989A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present disclosure relates to a heat medium circulation system.
  • Patent Document 1 discloses an outdoor unit using a flammable refrigerant. This outdoor unit is provided with an electric heating device on the upper part of the bottom plate, and the electric heating device is energized after the outdoor fan rotates.
  • the present disclosure provides a heat medium circulation system with improved safety by controlling power consumption while ventilating the atmosphere gas of the electric heating device.
  • a compressor, a user-side heat exchanger, an expansion device, and a heat source-side heat exchanger are connected in a ring, a refrigerant circuit using a combustible refrigerant, and air in the heat source-side heat exchanger.
  • a blower device for circulating the air blower a housing containing at least the refrigerant circuit and the blower device, an electric heating device provided on the surface of the bottom plate of the housing, and a control device. The operation and the energization of the electric heating device are started at the same time, and the power consumption of the electric heating device is controlled to be lower than that in the stable state for a predetermined time after the start of energization of the electric heating device.
  • the surface temperature of the electric heating device is kept low until the atmosphere gas of the electric heating device is ventilated, so safety is further improved. Also, freezing of the bottom plate is prevented.
  • FIG. 1 is a configuration diagram of a heat medium circulation system according to an embodiment of the present invention
  • Pressure-enthalpy diagram (Ph diagram) of the same heat medium circulation system Schematic diagram of the installation form of the electric heating device of the heat medium circulation system
  • Configuration diagram of the control system of the same heat medium circulation system Correlation diagram between power density and heater surface temperature of the electric heating device of the same heat medium circulation system Flowchart for explaining the control operation of the air blower and the electric heating device of the same heat medium circulation system
  • FIG. 1 An embodiment of the present invention will be described below with reference to FIGS. 1 to 5.
  • FIG. 1 An embodiment of the present invention will be described below with reference to FIGS. 1 to 5.
  • the heat medium circulation system 100 includes a refrigerant circuit 110, a heat medium circuit 120, and a controller .
  • the refrigerant circuit 110 is a vapor compression refrigeration cycle, and is configured by sequentially connecting a compressor 111, a user-side heat exchanger 112, an expansion device 113, and a heat source-side heat exchanger 114 via pipes 116. .
  • Propane which is a flammable refrigerant, is used as the refrigerant.
  • the refrigerant circuit 110 is also provided with a four-way valve 115 for switching between a heating operation for generating hot water and a cooling operation for generating cold water.
  • the refrigerant circuit 110 is housed in a housing 140 outside the room.
  • the housing 140 is provided with a blower 117 that circulates outdoor air to the heat source side heat exchanger 114 .
  • the heat medium circuit 120 is configured by sequentially connecting a use-side heat exchanger 112 , a use-side terminal 122 , switching valves 124 a and 124 b , and a carrier pump 121 through heat medium pipes 126 .
  • the switching valves 124a and 124b selectively switch the circuit of the heat medium.
  • the conveying pump 121 is a heat medium conveying device. Water or antifreeze is used as a heat medium.
  • the heat medium circuit 120 is provided with a hot water storage tank 123 in parallel with the user terminal 122 .
  • the hot water storage tank 123 is connected by a heat medium pipe 126 that branches from the switching valve 124b and merges with the switching valve 124a.
  • a water heating device 127 having a heater element is provided on the downstream side of the utilization side heat exchanger 112. As shown in FIG. At the highest position of the water heating device 127, a degassing device 128 capable of discharging the gas flowing through the heat medium circuit 120 to the outside is provided. The outlet of the deaerator 128 is open to the outdoor atmosphere.
  • a cutoff valve 129a is provided between the transfer pump 121 and the use side heat exchanger 112 to stop the flow of the heat medium.
  • a cutoff valve 129b is provided between the utilization side heat exchanger 112 and the water heating device 127 .
  • solid line arrows indicate the flow direction of the refrigerant during the heating operation
  • dashed line arrows indicate the flow direction of the refrigerant during the cooling operation.
  • the state change of the refrigerant in the heating operation and the cooling operation will be described with reference to FIG.
  • the high-pressure refrigerant (point a) discharged from the compressor 111 flows into the user-side heat exchanger 112 via the four-way valve 115, and radiates heat to the heat medium flowing through the user-side heat exchanger 112.
  • the high-pressure refrigerant (point b) after radiating heat in the user-side heat exchanger 112 is depressurized and expanded by the expansion device 113 , and then flows into the heat source-side heat exchanger 114 .
  • the low-pressure refrigerant (point c) flowing into the heat source side heat exchanger 114 absorbs heat from the outside air, evaporates, and returns to the suction side (point d) of the compressor 111 via the four-way valve 115 again.
  • the high-pressure refrigerant (point a) discharged from the compressor 111 flows into the heat source side heat exchanger 114 via the four-way valve 115, and the heat source side heat exchanger 114 radiates heat to the outside air.
  • the high pressure refrigerant (point b) is depressurized and expanded in the expansion device 113 and then flows into the utilization side heat exchanger 112 .
  • the low-pressure refrigerant (point c) flowing into the usage-side heat exchanger 112 absorbs heat from the heat medium flowing through the usage-side heat exchanger 112 and evaporates. point).
  • the state change of the heat medium in the heat medium circuit 120 will be described.
  • the heat medium circulated by the conveying pump 121 is heated by the high-temperature refrigerant in the user-side heat exchanger 112 .
  • the heat medium is radiated to, for example, the air in the living space at the user terminal 122 and used to heat the user load.
  • the heat medium whose temperature has been lowered by radiating heat at the user-side terminal 122 is heated again by the user-side heat exchanger 112 .
  • the heater element of the water heating device 127 is energized, and the heat medium flows into the water heating device 127. to heat directly.
  • the high-temperature heat medium heated by the use-side heat exchanger 112 circulates in the hot water storage tank 123 by switching the switching valves 124a and 124b. A high-temperature heat medium is introduced into the hot water storage tank 123 from the upper portion of the hot water storage tank 123 , and a low-temperature heat medium is led out from the lower portion of the hot water storage tank 123 and heated by the utilization side heat exchanger 112 .
  • the heat medium is cooled by the user-side heat exchanger 112 and circulated by the carrier pump 121 to absorb heat in the user-side terminal 122 and used to cool the user-side load.
  • the heat medium whose temperature has been increased by absorbing heat in the utilization side terminal 122 is cooled again in the utilization side heat exchanger 112 .
  • Control device 130 is provided within housing 140 of heat medium circulation system 100 .
  • the control device 130 controls the rotation speed of the compressor 111, the rotation speed of the conveying pump 121, the throttle amount of the expansion device 113, and the applied voltage of the water heating device 127, and switches the four-way valve 115 and switching valves 124a and 124b. etc. By doing so, the efficiency of the vapor compression refrigeration cycle is increased.
  • the heating operation when the heating operation is performed, moisture in the air freezes in the heat source side heat exchanger 114 to form frost.
  • the heat transfer performance of the heat source side heat exchanger 114 deteriorates, resulting in a reduction in heating capacity and a reduction in the coefficient of performance.
  • the degree of frost formation is determined from the outside air temperature, the operating time, the temperature of the heat source side heat exchanger 114, or the like, and a defrosting operation is performed in which the frost is melted and removed with the heat of the refrigerant.
  • Typical defrosting methods generally include reverse cycle defrosting and hot gas defrosting.
  • the four-way valve 115 is switched to reverse the circulation direction of the refrigerant, the high-temperature and high-pressure gas refrigerant discharged from the compressor 111 is introduced into the heat source side heat exchanger 114, and the condensation heat of the gas refrigerant defrosts. to melt.
  • Hot gas defrosting is performed by increasing the opening of the expansion device 113 without switching the four-way valve 115 and introducing the high-temperature and high-pressure gas refrigerant discharged from the compressor 111 into the heat source side heat exchanger 114 without reducing the pressure. , thaw the frost
  • frost adheres to the surfaces of the heat transfer tubes and fins in the heat source side heat exchanger 114 during the heating operation.
  • frost on the heat source side heat exchanger 114 is heated and melted by the defrosting operation.
  • the melted drain water runs along the fin surfaces of the heat source side heat exchanger 114 and falls from below the heat source side heat exchanger 114 to the bottom plate 141 of the outdoor housing 140 .
  • Drain water flows out of the housing 140 through a drain hole 142 provided in the bottom plate 141 .
  • a certain amount of drain water that falls on the bottom plate 141 during the defrosting operation is drained from the drain hole 142.
  • the slope to the drain hole 142 is small. part of the drain water stays in the Therefore, the accumulated drain water may freeze during the heating operation under environmental conditions below the freezing point. If the defrosting operation and the heating operation are repeated in such a state, ice will accumulate on the bottom plate 141 . In the worst case, the accumulated ice and the fan blades of the blower 117 come into contact with each other, causing the blower 117 to malfunction. In addition, problems such as breakage of the refrigerant pipe due to contact of the ice with the refrigerant pipe occur. Therefore, reliability and safety may not be ensured.
  • an electric heating device 143 is installed on the surface of the bottom plate 141 to heat the bottom plate 141 and prevent the drain water from freezing.
  • the electric heating device 143 is composed of, for example, a sheathed heater, a silicon rubber heater, or a PTC heater. It is desirable that the electric heating device 143 is arranged at an appropriate position with a heater length corresponding to the area of the bottom plate 141 so that the temperature of the bottom plate 141 can be sufficiently increased.
  • the electric heating device 143 uses a heater having a power density of 2 W/cm 2 when a rated voltage is applied.
  • the control device 130 includes a controller 131, a user interface 132, a high pressure side pressure sensor 133, a discharge temperature sensor 134, a heat source side heat exchange temperature sensor 135, an outside air temperature sensor 136, an incoming water temperature sensor 137, and an outgoing water temperature. It is composed of a sensor 138 and a gas sensor 139 .
  • the controller 131 is equipped with a microcomputer, memory, and the like.
  • a user interface 132 is used to input the operation stop of the device, the temperature setting of the heat medium to be generated, and the like.
  • the high pressure side pressure sensor 133 is provided in the discharge side pipe of the compressor 111 and detects the discharge side pressure.
  • a discharge temperature sensor 134 detects the temperature of the discharged refrigerant.
  • the heat source side heat exchanger temperature sensor 135 is provided in the refrigerant pipe of the heat source side heat exchanger 114 and detects the saturation temperature of the refrigerant flowing through the heat source side heat exchanger 114 .
  • the outside air temperature sensor 136 is provided on the outer surface of the housing 140 of the heat medium circulation system 100 and detects the outside air temperature.
  • the incoming water temperature sensor 137 detects the temperature of the heat medium flowing into the utilization side heat exchanger 112 provided in the heat medium circuit 120 .
  • the outgoing water temperature sensor 138 detects the temperature of the heat medium flowing out from the utilization side heat exchanger 112 .
  • a gas sensor 139 is provided in the lower part of the housing 140 and detects the concentration of combustible gas.
  • the controller 131 performs heating operation or cooling operation based on input information of the user interface 132 .
  • the compressor 111 is controlled at a rotation speed determined based on the detection value of the outside air temperature sensor 136 , the detection value of the water temperature sensor 138 , and the water temperature set value of the user interface 132 .
  • the expansion device 113 Controls the amount of aperture.
  • the rotation speed of the conveying pump 121 is controlled so that the difference between the detected value of the outgoing water temperature sensor 138 and the detected value of the incoming water temperature sensor 137 becomes a predetermined temperature difference. Furthermore, during the heating operation, the voltage applied to the heater element of the water heating device 127 is controlled so that the detected value of the water temperature sensor 138 becomes the water temperature setting value.
  • the applied voltage is controlled below the rated voltage so that the power density is 1 W/cm 2 , keeping the surface temperature of the electric heating device 143 lower than normal and operating the electric heating device 143 . Then, when the rotational speed of the air blower 117 reaches a predetermined air volume, the applied voltage is increased to the rated voltage to further increase the temperature of the bottom plate 141 . Further, when the heat source side heat exchanger 114 is frosted due to the heating operation, the defrosting operation is started, but the air blower 117 is stopped when the reverse cycle defrosting is executed. At this time, the voltage applied to the electric heating device 143 is lowered so that the power density is reduced from 2 W/cm 2 to 1 W/cm 2 to keep the surface temperature low.
  • the defrosting operation is finished and the heating operation is started.
  • the applied voltage is raised to the rated voltage to keep the surface temperature of the electric heating device 143 high.
  • the concentration detected by the gas sensor 139 reaches or exceeds a predetermined concentration, the power supply to the electric heating device 143 is stopped and the surface temperature of the electric heating device 143 is lowered.
  • FIG. 5 is a graph showing the relationship between the power density and the surface temperature of the heater (electric heating device). Until a sufficient amount of air passes through the electric heating device 143, the electric heating device 143 is operated at a voltage applied to the heater of 1 W/cm 2 , which is a heater surface temperature well below the flash point of propane, 432°C. Then, after a sufficient air volume is secured, the electric heating device 143 is operated at a voltage applied to the heater of 2 W/cm 2 which is lower than the flash point of propane and a surface temperature sufficient to heat the bottom plate 141 . Thus, the heater applied voltage is controlled.
  • control device 130 operates blower device 117 and simultaneously applies a voltage having a power density of 1 W/cm 2 to electric heating device 143 (step S2). Then, the compressor 111 and the conveying pump 121 are operated to control their rotation speeds, and the opening degree of the expansion device 113 is adjusted (step S3).
  • the control device 130 detects the refrigerant concentration Cr in the housing 140 with the gas sensor 139 (step S4). Then, the refrigerant concentration Ca and the refrigerant concentration Cr set in advance are compared to determine whether the refrigerant concentration Cr is equal to or higher than the refrigerant concentration Ca (step S5).
  • step S5 When the refrigerant concentration Cr is equal to or higher than the refrigerant concentration Ca (YES in step S5), it is determined that the refrigerant is leaking from the refrigerant circuit 110. Then, while the air blower 117 continues to operate, the electric heating device 143 is de-energized (step S6). At the same time, the operations of the compressor 111 and the transport pump 121 are stopped (step S7). Next, the shutoff valves 129a and 129b are energized to operate in the closing direction to stop the flow of the heat medium (step S8).
  • step S5 when the refrigerant concentration Cr is less than the refrigerant concentration Ca (NO in step S5), it is determined that the combustible refrigerant is not leaking from the refrigerant circuit 110, and the operation is continued. Then, it is determined whether or not the blower 117 has been operated for a predetermined time (step S9). Then, when it is determined that a sufficient air volume has been secured after operating for a predetermined time (YES in step S9), the voltage is increased so that the power density of the electric heating device 143 becomes 2 W/cm 2 (step S10). .
  • the preset defrosting operation start temperature Tds is compared with the detected temperature Te of the heat source side heat exchanger temperature sensor 135 to determine whether or not the detected temperature Te, which is the heat exchanger temperature, is less than the defrost operation start temperature Tds. Determine (step S11).
  • the heat exchanger temperature Te is equal to or higher than the defrosting operation start temperature Tds (NO in step S11)
  • step S11 if the heat exchanger temperature Te is less than the defrosting operation start temperature Tds (YES in step S11), it is determined that the heat source side heat exchanger 114 has a large amount of frost due to the heating operation and that defrosting is necessary. do. Then, the four-way valve 115 is switched to the cooling side, and the blower 117 is stopped to start the defrosting operation (step S12). At this time, the applied voltage is lowered so that the power density of the electric heating device 143 becomes 1 W/cm 2 at the same time as the air blower 117 is stopped (step S13).
  • the preset defrosting operation end temperature Tde is compared with the temperature Te detected by the heat source side heat exchanger temperature sensor 135, and it is determined whether or not the heat exchanger temperature Te is equal to or higher than the defrosting operation end temperature Tde (step S14).
  • the heat exchanger temperature Te is lower than the defrosting operation end temperature Tde (NO in step S14)
  • frost remains in the heat source side heat exchanger 114, and the defrosting operation is continued.
  • step S14 if the heat exchanger temperature Te is equal to or higher than the defrosting operation end temperature Tde (YES in step S14), it is determined that the frost on the heat source side heat exchanger 114 has completely melted and the defrosting is completed. Then, the four-way valve 115 is switched to the heating side, and the air blower 117 is operated to start the heating operation (step S15).
  • the heat medium circulation system 100 includes the refrigerant circuit 110, the heat medium circuit 120, the control device 130, the blower device 117, the bottom plate 141, and the electric heating device 143.
  • Refrigerant circuit 110 is a combustible refrigerant vapor compression refrigeration cycle.
  • a compressor 111 , a user-side heat exchanger 112 , an expansion device 113 , and a heat source-side heat exchanger 114 are annularly connected to the refrigerant circuit 110 .
  • Heat medium circuit 120 circulates a liquid heat medium that heats and cools the load on the user side.
  • the blower 117 circulates outdoor air to the heat source side heat exchanger 114 .
  • the electric heating device 143 is provided on the surface of the bottom plate 141 and electrically heats the bottom plate 141 .
  • the electric heating device 143 is energized at the same time as the air blower 117 is operated, and is controlled to be lower than the stable power consumption for a predetermined time after the start of energization. As a result, the electric heating device 143 is energized simultaneously with the operation of the blower device 117 . Therefore, the temperature of the bottom plate 141 is prevented from lowering due to air blowing, and the temperature of the bottom plate 141 rises quickly. Also, if gas leaks and stays on the bottom plate 141 while the operation is stopped, the wind speed is low immediately after the operation of the blower 117 and the gas that stays is difficult to diffuse.
  • the temperature is controlled to be low, the power density of the electric heating device 143 is low for a predetermined time after the operation of the blower 117, and the surface temperature of the electric heating device 143 is kept low until the atmosphere gas of the electric heating device 143 is ventilated. Therefore, it is possible to achieve both more reliable prevention of ignition of the leaked refrigerant due to heat generation of the electric heating device 143 and prevention of freezing of the bottom plate 141 . Therefore, safety regarding leakage of the combustible refrigerant is further improved.
  • the power density of the electric heating device 143 is 2 W or less, and the power density may be controlled to be less than 1 W/cm 2 for a predetermined time after the start of energization.
  • the power density of the electric heating device 143 is low and the surface temperature is kept at a temperature sufficiently lower than the ignition temperature of propane in the time period when the wind speed is low after the blower device 117 starts operating. Therefore, even if combustible gas remains, it will not ignite. Therefore, it is possible to achieve both more reliable prevention of ignition of the leaked refrigerant due to heat generation of the electric heating device 143 and prevention of freezing of the bottom plate 141 . Therefore, safety against leakage of combustible refrigerant is further improved.
  • the predetermined time for controlling the power consumption of the electric heating device 143 to be low may be set to the time until the air volume of the blower device 117 reaches a predetermined air volume that can sufficiently exhaust the stagnant gas. good.
  • the combustible gas that has leaked from the refrigerant circuit 110 and has accumulated in the vicinity of the electric heating device 143 is diffused by the wind generated by the blower device 117 .
  • the surface temperature of the electric heating device 143 is maintained at a temperature sufficiently lower than the ignition temperature of propane. do not.
  • the operation of the air blower 117 is continued and the power supply to the electric heating device 143 is cut off. good. This makes it possible to reliably determine that the combustible refrigerant has leaked. At the time of gas leakage, the exhaust of the combustible gas by the air blower 117 and the stoppage of power supply to the electric heating device 143 quickly lower the surface temperature. Therefore, safety is further improved.
  • the combustible refrigerant may be propane or a mixed refrigerant containing propane.
  • the global warming potential (GWP) is low, and adverse effects on the environment can be suppressed even when the refrigerant leaks. Therefore, environmental performance is improved.
  • the cooling/heating water heater has been described as an example of the heat medium circulation system 100 .
  • the heat medium circulation system 100 may be any system as long as it can cool or heat liquid. Therefore, heat medium circulation system 100 is not limited to an air conditioner. However, if a cooling/heating water heater is used as the heat medium circulation system 100, the annual heat demand of the house can be met. Alternatively, a cold/hot water chiller may be used as the heat medium circulation system 100 . If a hot/cold water chiller is used as the heat medium circulation system 100, it is possible to cope with the heat load of heating and cooling used in the factory or the like, so that the energy efficiency of the factory can be improved.
  • the refrigerant concentration sensor has been described as an example of the leak detection sensor. Any leak detection sensor may be used as long as it can determine that the refrigerant has leaked from the refrigerant circuit 110 into the heat medium circuit 120 . Therefore, the leak detection sensor is not limited to the refrigerant concentration sensor. However, if a refrigerant concentration sensor is used as the leakage detection sensor, it can be realized with a simple configuration. Further, as the leakage detection sensor, a pressure sensor that detects the pressure of the refrigerant circuit 110 or a thermistor that detects the refrigerant temperature during operation may be used. If the pressure and temperature of the refrigerant circuit 110 are detected, the sensor for operation control can be shared, so there is an effect that it can be manufactured at low cost.
  • the installation position of the electric heating device 143 the structure installed on the surface of the bottom plate 141 of the housing 140 has been described.
  • the electric heating device 143 may be installed at a position where the temperature of the bottom plate 141 rises and the drain water does not freeze when the electric heating device 143 is energized. Therefore, the installation position of the electric heating device 143 is not limited to the surface of the bottom plate 141 . However, if the electric heating device 143 is installed on the surface of the bottom plate 141, the bottom plate 141 and the drain water can be directly heated, so that the heat exchange efficiency can be increased. Also, the electric heating device 143 may be installed on the back surface of the bottom plate 141 .
  • the refrigerant gas will not come into direct contact with the electric heating device 143 when the electric heating device 143 is short-circuited and a spark is generated. Therefore, there is an effect that it is possible to more reliably prevent ignition when a spark occurs.
  • circuits installed between the transfer pump 121 and the user-side heat exchanger 112 and between the user-side heat exchanger 112 and the switching valve have been described as examples of the installation positions of the shutoff valves 129a and 129b.
  • the shutoff valves 129a and 129b may be installed at positions where the refrigerant does not flow into the living space when the refrigerant leaks into the heat medium circuit 120.
  • FIG. Therefore, the installation positions of the shutoff valves 129a and 129b are not limited to between the transfer pump 121 and the user-side heat exchanger 112 or between the user-side heat exchanger 112 and the switching valve.
  • shutoff valves 129a and 129b are installed on the downstream side of the discharge device, the leaked refrigerant existing in the heat medium circuit 120 between the shutoff valves 129a and 129b can be discharged into the atmosphere even after shutting off. Therefore, safety is further improved.
  • the present disclosure is applicable to a heat medium circulation system using a combustible refrigerant in the refrigerant circuit. Specifically, the present disclosure is applicable to hot water heaters, commercial chillers, and the like.
  • heat medium circulation system 110 refrigerant circuit 111 compressor 112 use side heat exchanger 113 expansion device 114 heat source side heat exchanger 115 four-way valve 116 piping 117 air blower 120 heat medium circuit 121 transfer pump 122 use side terminal 123 hot water storage tank 124a, 124b switching valve 126 heat medium pipe 127 water heating device 128 degassing device 129a, 129b cutoff valve 130 control device 131 controller 132 user interface 133 high pressure side pressure sensor 134 discharge temperature sensor 135 heat source side heat exchanger temperature sensor 136 outside air temperature sensor 137 water inlet Temperature sensor 138 Outflow temperature sensor 139 Gas sensor 140 Housing 141 Bottom plate 142 Drain hole 143 Electric heating device

Abstract

This heat medium circulation system 100 comprises: a refrigerant circuit 110 that uses a combustible refrigerant and in which a compressor 111, a use-side heat exchanger 112, an expansion means 113, and a heat source-side heat exchanger 114 are connected in an annular manner; an air blowing device 117 circulating air to the heat source-side heat exchanger 114; a housing 140 incorporating at least the refrigerant circuit 110 and the air blowing device 117; an electric heating device 143 provided to a bottom plate 141 of the housing 140; and a control device 130. The control device 130 simultaneously starts the operation of the air blowing device 117 and the conduction of the electric heating device 143, and controls the power consumption of the electric heating device 143 so as to be lower than that at a stable time for a prescribed time from the start of conduction of the electric heating device 143, thereby stably operating the electric heating device 143, which suppresses freezing of drain water, and further improving safety.

Description

熱媒体循環システムHeat medium circulation system
 本開示は、熱媒体循環システムに関する。 The present disclosure relates to a heat medium circulation system.
 特許文献1は、可燃性冷媒を用いた室外機を開示する。この室外機は、底板の上部に電熱装置を設け、室外送風機の回転後に電熱装置が通電される。 Patent Document 1 discloses an outdoor unit using a flammable refrigerant. This outdoor unit is provided with an electric heating device on the upper part of the bottom plate, and the electric heating device is energized after the outdoor fan rotates.
特開2015-55455号公報JP 2015-55455 A
 本開示は、電熱装置の雰囲気ガスを換気しながら消費電力を制御することで、安全性をより向上した熱媒体循環システムを提供する。 The present disclosure provides a heat medium circulation system with improved safety by controlling power consumption while ventilating the atmosphere gas of the electric heating device.
 本開示における熱媒体循環システムは、圧縮機、利用側熱交換器、膨張装置、および熱源側熱交換器が環状に接続され、可燃性冷媒を用いた冷媒回路と、熱源側熱交換器に空気を流通させる送風装置と、少なくとも、冷媒回路と送風装置とを内装する筐体と、筐体の底板の表面に設けられた電熱装置と、制御装置と、を備え、制御装置は、送風装置の運転と電熱装置の通電とを同時に開始し、電熱装置への通電開始から所定時間は、電熱装置の消費電力を安定時より低くなるように制御する。 In the heat medium circulation system according to the present disclosure, a compressor, a user-side heat exchanger, an expansion device, and a heat source-side heat exchanger are connected in a ring, a refrigerant circuit using a combustible refrigerant, and air in the heat source-side heat exchanger. A blower device for circulating the air blower, a housing containing at least the refrigerant circuit and the blower device, an electric heating device provided on the surface of the bottom plate of the housing, and a control device. The operation and the energization of the electric heating device are started at the same time, and the power consumption of the electric heating device is controlled to be lower than that in the stable state for a predetermined time after the start of energization of the electric heating device.
 本開示における熱媒体循環システムは、電熱装置の雰囲気ガスが換気されるまで電熱装置の表面温度が低く保持されるので安全性がより向上する。また、底板の凍結が予防される。 In the heat medium circulation system of the present disclosure, the surface temperature of the electric heating device is kept low until the atmosphere gas of the electric heating device is ventilated, so safety is further improved. Also, freezing of the bottom plate is prevented.
本発明の一実施の形態における熱媒体循環システムの構成図1 is a configuration diagram of a heat medium circulation system according to an embodiment of the present invention; 同熱媒体循環システムの圧力―エンタルピー線図(P-h線図)Pressure-enthalpy diagram (Ph diagram) of the same heat medium circulation system 同熱媒体循環システムの電熱装置の設置形態の模式図Schematic diagram of the installation form of the electric heating device of the heat medium circulation system 同熱媒体循環システムの制御系の構成図Configuration diagram of the control system of the same heat medium circulation system 同熱媒体循環システムの電熱装置の電力密度とヒーター表面温度の相関図Correlation diagram between power density and heater surface temperature of the electric heating device of the same heat medium circulation system 同熱媒体循環システムの送風装置と電熱装置の制御動作を説明するためのフローチャートFlowchart for explaining the control operation of the air blower and the electric heating device of the same heat medium circulation system
 (本開示の基礎となった知見等)
 室外送風機によって可燃性冷媒が換気されるまでの間、電熱装置に通電されないときには、場合によっては底板の温度が低下して底板表面の水分が凍結する。それによって、ドレンパイプの破損などが生じる可能性がある。
 そこで本開示では、送風装置の運転と、電熱装置の通電と、を同時に開始し、電熱装置への通電開始から所定時間は、電熱装置の消費電力を安定時より低くなるように制御する。これにより、万が一可燃冷媒が漏洩しても、可燃冷媒が着火しない熱量に抑制する。そうすることで、底板の温度低下を抑制しながら電熱装置を換気して漏洩冷媒を排気できる。これにより、機器の信頼性向上と、安全性をより向上した熱媒体循環システムを提供する。
(Knowledge, etc. on which this disclosure is based)
When the electric heating device is not energized until the combustible refrigerant is ventilated by the outdoor blower, the temperature of the bottom plate may drop and the moisture on the surface of the bottom plate may freeze. As a result, damage to the drain pipe or the like may occur.
Therefore, in the present disclosure, the operation of the blower device and the energization of the electric heating device are started at the same time, and the power consumption of the electric heating device is controlled to be lower than that in the stable state for a predetermined time after the start of energization of the electric heating device. As a result, even if the combustible refrigerant leaks, the amount of heat is suppressed so that the combustible refrigerant does not ignite. By doing so, it is possible to ventilate the electric heating device and exhaust the leaked refrigerant while suppressing the temperature drop of the bottom plate. As a result, it is possible to provide a heat medium circulation system with improved equipment reliability and improved safety.
 以下、図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が必要以上に冗長になるのを避け、当業者の理解を容易にするためである。
 なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することを意図していない。
Hereinafter, embodiments will be described in detail with reference to the drawings. However, more detailed description than necessary may be omitted. For example, detailed descriptions of well-known matters or redundant descriptions of substantially the same configurations may be omitted. This is to avoid the following description from becoming more redundant than necessary and to facilitate understanding by those skilled in the art.
It should be noted that the accompanying drawings and the following description are provided to allow those skilled in the art to fully understand the present disclosure and are not intended to limit the claimed subject matter thereby.
 以下、図1~図5を用いて、本発明の一実施の形態を説明する。 An embodiment of the present invention will be described below with reference to FIGS. 1 to 5. FIG.
 [1-1.構成]
 [1-1-1.熱媒体循環システムの構成]
 図1において、熱媒体循環システム100は、冷媒回路110と、熱媒体回路120と、制御装置130と、を備える。
[1-1. composition]
[1-1-1. Configuration of heat medium circulation system]
In FIG. 1, the heat medium circulation system 100 includes a refrigerant circuit 110, a heat medium circuit 120, and a controller .
 冷媒回路110は、蒸気圧縮式冷凍サイクルであり、圧縮機111と、利用側熱交換器112と、膨張装置113と、熱源側熱交換器114と、が配管116で順次接続されて構成される。冷媒として可燃性冷媒であるプロパンを用いている。
 また、冷媒回路110には、温水を生成する加熱運転と、冷水を生成する冷却運転と、を切り換えるための四方弁115が設けられている。
 冷媒回路110は、室外の筐体140内に収納されている。筐体140には、熱源側熱交換器114に屋外空気を流通させる送風装置117が設けられている。
 熱媒体回路120は、利用側熱交換器112と、利用側端末122と、切替弁124a、124bと、搬送ポンプ121と、が熱媒体配管126で順次接続されて構成される。切替弁124a、124bは、熱媒体の回路を選択的に切り替える。搬送ポンプ121は、熱媒体の搬送装置である。熱媒体として水又は不凍液を用いている。
 また、熱媒体回路120には、利用側端末122と並列に貯湯タンク123を備えている。貯湯タンク123は、切替弁124bから分岐して切替弁124aに合流する熱媒体配管126で接続されている。
The refrigerant circuit 110 is a vapor compression refrigeration cycle, and is configured by sequentially connecting a compressor 111, a user-side heat exchanger 112, an expansion device 113, and a heat source-side heat exchanger 114 via pipes 116. . Propane, which is a flammable refrigerant, is used as the refrigerant.
The refrigerant circuit 110 is also provided with a four-way valve 115 for switching between a heating operation for generating hot water and a cooling operation for generating cold water.
The refrigerant circuit 110 is housed in a housing 140 outside the room. The housing 140 is provided with a blower 117 that circulates outdoor air to the heat source side heat exchanger 114 .
The heat medium circuit 120 is configured by sequentially connecting a use-side heat exchanger 112 , a use-side terminal 122 , switching valves 124 a and 124 b , and a carrier pump 121 through heat medium pipes 126 . The switching valves 124a and 124b selectively switch the circuit of the heat medium. The conveying pump 121 is a heat medium conveying device. Water or antifreeze is used as a heat medium.
In addition, the heat medium circuit 120 is provided with a hot water storage tank 123 in parallel with the user terminal 122 . The hot water storage tank 123 is connected by a heat medium pipe 126 that branches from the switching valve 124b and merges with the switching valve 124a.
 熱媒体回路120おいて、利用側熱交換器112の下流側にはヒーターエレメントが内装された水加熱装置127が備えられている。水加熱装置127の最も高い位置には、熱媒体回路120内を流通する気体を屋外に排出可能な脱気装置128が設けられている。脱気装置128の排出口は、屋外大気中に開口している。
 また、熱媒体回路120において、搬送ポンプ121と利用側熱交換器112の間には、熱媒体の流動を停止させる遮断弁129aが設けられている。また、利用側熱交換器112と水加熱装置127の間には、遮断弁129bが設けられている。
 図1では、加熱運転時の冷媒の流れ方向を実線矢印で、冷却運転時の冷媒の流れ方向を破線矢印で示している。
In the heat medium circuit 120, a water heating device 127 having a heater element is provided on the downstream side of the utilization side heat exchanger 112. As shown in FIG. At the highest position of the water heating device 127, a degassing device 128 capable of discharging the gas flowing through the heat medium circuit 120 to the outside is provided. The outlet of the deaerator 128 is open to the outdoor atmosphere.
In addition, in the heat medium circuit 120, a cutoff valve 129a is provided between the transfer pump 121 and the use side heat exchanger 112 to stop the flow of the heat medium. A cutoff valve 129b is provided between the utilization side heat exchanger 112 and the water heating device 127 .
In FIG. 1 , solid line arrows indicate the flow direction of the refrigerant during the heating operation, and dashed line arrows indicate the flow direction of the refrigerant during the cooling operation.
 図2を用いて、加熱運転および冷却運転における冷媒の状態変化を説明する。
 加熱運転時は、圧縮機111から吐出される高圧冷媒(a点)は、四方弁115を介して利用側熱交換器112に流入し、利用側熱交換器112を流通する熱媒体に放熱する。利用側熱交換器112で放熱した後の高圧冷媒(b点)は、膨張装置113にて減圧されて膨張した後に、熱源側熱交換器114に流入する。熱源側熱交換器114に流入する低圧冷媒(c点)は、外気から吸熱して蒸発し、再び四方弁115を介して圧縮機111の吸入側(d点)に戻る。
 一方、冷却運転時は、圧縮機111から吐出される高圧冷媒(a点)は、四方弁115を介して熱源側熱交換器114に流入し、熱源側熱交換器114で外気に放熱する。熱源側熱交換器114で放熱した後の高圧冷媒(b点)は、膨張装置113にて減圧されて膨張した後に、利用側熱交換器112に流入する。利用側熱交換器112に流入する低圧冷媒(c点)は、利用側熱交換器112を流通する熱媒体から吸熱して蒸発し、再び四方弁115を介して圧縮機111の吸入側(d点)に戻る。
The state change of the refrigerant in the heating operation and the cooling operation will be described with reference to FIG.
During heating operation, the high-pressure refrigerant (point a) discharged from the compressor 111 flows into the user-side heat exchanger 112 via the four-way valve 115, and radiates heat to the heat medium flowing through the user-side heat exchanger 112. . The high-pressure refrigerant (point b) after radiating heat in the user-side heat exchanger 112 is depressurized and expanded by the expansion device 113 , and then flows into the heat source-side heat exchanger 114 . The low-pressure refrigerant (point c) flowing into the heat source side heat exchanger 114 absorbs heat from the outside air, evaporates, and returns to the suction side (point d) of the compressor 111 via the four-way valve 115 again.
On the other hand, during the cooling operation, the high-pressure refrigerant (point a) discharged from the compressor 111 flows into the heat source side heat exchanger 114 via the four-way valve 115, and the heat source side heat exchanger 114 radiates heat to the outside air. After radiating heat in the heat source side heat exchanger 114 , the high pressure refrigerant (point b) is depressurized and expanded in the expansion device 113 and then flows into the utilization side heat exchanger 112 . The low-pressure refrigerant (point c) flowing into the usage-side heat exchanger 112 absorbs heat from the heat medium flowing through the usage-side heat exchanger 112 and evaporates. point).
 次に、熱媒体回路120における熱媒体の状態変化を説明する。
 まず、加熱運転時は、搬送ポンプ121により循環する熱媒体が、利用側熱交換器112で高温の冷媒により加熱される。その後、熱媒体は、利用側端末122で例えば居住空間の空気に放熱して、利用側負荷の加熱に利用される。利用側端末122で放熱し温度低下した熱媒体は、再び利用側熱交換器112で加熱される。
 ここで、利用側熱交換器112での加熱量が、利用側負荷を十分に加熱できる熱量に満たない場合は、水加熱装置127のヒーターエレメントに通電し、水加熱装置127に流入する熱媒体を直接加熱する。
 また、利用側熱交換器112で加熱された高温の熱媒体は、切替弁124a、切替弁124bの切り替えによって、貯湯タンク123を循環する。高温の熱媒体は、貯湯タンク123の上部から貯湯タンク123に導入され、低温の熱媒体が貯湯タンク123の下部から導出されて利用側熱交換器112で加熱される。
 一方、冷却運転時は、熱媒体が利用側熱交換器112で冷却され、搬送ポンプ121で循環することにより、利用側端末122で吸熱して利用側負荷の冷却に利用される。利用側端末122で吸熱し温度上昇した熱媒体は、再び利用側熱交換器112で冷却される。
 制御装置130は、熱媒体循環システム100の筐体140内に設けられる。制御装置130は、圧縮機111の回転数、搬送ポンプ121の回転数、膨張装置113の絞り量、水加熱装置127の印加電圧を制御し、四方弁115の切り替え、切替弁124a、124bの切り替えなどを行う。そうすることで、蒸気圧縮式冷凍サイクルの効率を高くする。
Next, the state change of the heat medium in the heat medium circuit 120 will be described.
First, during the heating operation, the heat medium circulated by the conveying pump 121 is heated by the high-temperature refrigerant in the user-side heat exchanger 112 . After that, the heat medium is radiated to, for example, the air in the living space at the user terminal 122 and used to heat the user load. The heat medium whose temperature has been lowered by radiating heat at the user-side terminal 122 is heated again by the user-side heat exchanger 112 .
Here, when the amount of heat to be heated by the use-side heat exchanger 112 is less than the amount of heat that can sufficiently heat the use-side load, the heater element of the water heating device 127 is energized, and the heat medium flows into the water heating device 127. to heat directly.
Also, the high-temperature heat medium heated by the use-side heat exchanger 112 circulates in the hot water storage tank 123 by switching the switching valves 124a and 124b. A high-temperature heat medium is introduced into the hot water storage tank 123 from the upper portion of the hot water storage tank 123 , and a low-temperature heat medium is led out from the lower portion of the hot water storage tank 123 and heated by the utilization side heat exchanger 112 .
On the other hand, during the cooling operation, the heat medium is cooled by the user-side heat exchanger 112 and circulated by the carrier pump 121 to absorb heat in the user-side terminal 122 and used to cool the user-side load. The heat medium whose temperature has been increased by absorbing heat in the utilization side terminal 122 is cooled again in the utilization side heat exchanger 112 .
Control device 130 is provided within housing 140 of heat medium circulation system 100 . The control device 130 controls the rotation speed of the compressor 111, the rotation speed of the conveying pump 121, the throttle amount of the expansion device 113, and the applied voltage of the water heating device 127, and switches the four-way valve 115 and switching valves 124a and 124b. etc. By doing so, the efficiency of the vapor compression refrigeration cycle is increased.
 また、加熱運転を行うと、空気中の水分等が熱源側熱交換器114で氷結して着霜する。それにより、熱源側熱交換器114の伝熱性能低下による加熱能力低下や成績係数の低下が生じる。このような場合、外気温度、運転時間、または熱源側熱交換器114の温度などから着霜度合いを判断し、霜を冷媒の熱で融解して除去する除霜運転を実施する。
 除霜方式の代表的なものとしては、一般的に、リバースサイクル除霜やホットガス除霜などがある。リバースサイクル除霜は、四方弁115を切り替えて冷媒の循環方向を逆転させ、圧縮機111から吐出された高温高圧のガス冷媒を熱源側熱交換器114に導入し、ガス冷媒の凝縮熱で霜を融解する。ホットガス除霜は、四方弁115は切り替えずに、膨張装置113の開度を大きくし、圧縮機111から吐出された高温高圧のガス冷媒を減圧せずに熱源側熱交換器114に導入し、霜を融解する
Further, when the heating operation is performed, moisture in the air freezes in the heat source side heat exchanger 114 to form frost. As a result, the heat transfer performance of the heat source side heat exchanger 114 deteriorates, resulting in a reduction in heating capacity and a reduction in the coefficient of performance. In such a case, the degree of frost formation is determined from the outside air temperature, the operating time, the temperature of the heat source side heat exchanger 114, or the like, and a defrosting operation is performed in which the frost is melted and removed with the heat of the refrigerant.
Typical defrosting methods generally include reverse cycle defrosting and hot gas defrosting. In reverse cycle defrosting, the four-way valve 115 is switched to reverse the circulation direction of the refrigerant, the high-temperature and high-pressure gas refrigerant discharged from the compressor 111 is introduced into the heat source side heat exchanger 114, and the condensation heat of the gas refrigerant defrosts. to melt. Hot gas defrosting is performed by increasing the opening of the expansion device 113 without switching the four-way valve 115 and introducing the high-temperature and high-pressure gas refrigerant discharged from the compressor 111 into the heat source side heat exchanger 114 without reducing the pressure. , thaw the frost
 次に除霜運転時におけるドレン水の流れについて、図3を用いて説明する。
 まず、熱源側熱交換器114における伝熱管とフィンの表面には、加熱運転中に霜が付着している。ここで、除霜運転により、熱源側熱交換器114の霜を加熱し溶かす。融解したドレン水は熱源側熱交換器114のフィン表面を伝い、熱源側熱交換器114の下方から室外の筐体140の底板141に落ちる。ドレン水は、底板141に設けられたドレン穴142から筐体140の外部に流出する。
 除霜運転時に底板141に落ちたドレン水は、ドレン穴142から一定量排水されるが、筐体140の設置バラツキや底板141の構造上の制約などにより、ドレン穴142への勾配が小さい部分にドレン水の一部が滞留する。そのため、氷点下の環境条件下における暖房運転時に滞留したドレン水が凍結する場合がある。
 このような状態で除霜運転と暖房運転が繰り返されると、底板141に氷が堆積する。最悪の場合、堆積した氷と送風装置117のファンブレードが接触して送風装置117が動作不良となる。また、氷が冷媒配管と接触して冷媒配管が破損するなどの不具合が生じる。そのため、信頼性、安全性が確保されないおそれがある。
 そのため、一般的には、底板141の表面に電熱装置143を設置し、底板141を加熱してドレン水の凍結を防止する対応がなされている。
 電熱装置143は、例えばシーズヒーターやシリコンラバーヒーター、PTCヒーターで構成される。電熱装置143は、底板141の温度を十分に上昇できるように、底板141の面積に応じたヒーター長さで適切な位置に配置することが望ましい。
 また、本実施の形態では、電熱装置143の電力密度が、定格電圧を印加した時に、2W/cmとなるヒーターを使用している。
Next, the flow of drain water during defrosting operation will be described with reference to FIG.
First, frost adheres to the surfaces of the heat transfer tubes and fins in the heat source side heat exchanger 114 during the heating operation. Here, the frost on the heat source side heat exchanger 114 is heated and melted by the defrosting operation. The melted drain water runs along the fin surfaces of the heat source side heat exchanger 114 and falls from below the heat source side heat exchanger 114 to the bottom plate 141 of the outdoor housing 140 . Drain water flows out of the housing 140 through a drain hole 142 provided in the bottom plate 141 .
A certain amount of drain water that falls on the bottom plate 141 during the defrosting operation is drained from the drain hole 142. However, due to variations in the installation of the housing 140 and structural restrictions of the bottom plate 141, etc., the slope to the drain hole 142 is small. part of the drain water stays in the Therefore, the accumulated drain water may freeze during the heating operation under environmental conditions below the freezing point.
If the defrosting operation and the heating operation are repeated in such a state, ice will accumulate on the bottom plate 141 . In the worst case, the accumulated ice and the fan blades of the blower 117 come into contact with each other, causing the blower 117 to malfunction. In addition, problems such as breakage of the refrigerant pipe due to contact of the ice with the refrigerant pipe occur. Therefore, reliability and safety may not be ensured.
Therefore, in general, an electric heating device 143 is installed on the surface of the bottom plate 141 to heat the bottom plate 141 and prevent the drain water from freezing.
The electric heating device 143 is composed of, for example, a sheathed heater, a silicon rubber heater, or a PTC heater. It is desirable that the electric heating device 143 is arranged at an appropriate position with a heater length corresponding to the area of the bottom plate 141 so that the temperature of the bottom plate 141 can be sufficiently increased.
In addition, in this embodiment, the electric heating device 143 uses a heater having a power density of 2 W/cm 2 when a rated voltage is applied.
 [1-1-2.制御装置の構成]
 次に、図4を用いて制御装置130の構成を説明する。
 制御装置130は、コントローラ131と、ユーザインタフェース132と、高圧側圧力センサー133と、吐出温度センサー134と、熱源側熱交温度センサー135と、外気温度センサー136と、入水温度センサー137と、出水温度センサー138と、ガスセンサー139と、で構成されている。コントローラ131は、マイコンやメモリなどを搭載する。ユーザインタフェース132は、装置の運転停止や生成する熱媒体の温度設定などを入力する。高圧側圧力センサー133は、圧縮機111の吐出側配管に設けられ吐出側圧力を検出する。吐出温度センサー134は、吐出冷媒温度を検出する。熱源側熱交温度センサー135は、熱源側熱交換器114の冷媒配管に設けられ熱源側熱交換器114を流通する冷媒の飽和温度を検出する。外気温度センサー136は、熱媒体循環システム100の筐体140外面に設けられ外気温度を検出する。入水温度センサー137は、熱媒体回路120に設けられた、利用側熱交換器112に流入する熱媒体の温度を検出する。出水温度センサー138は、利用側熱交換器112から流出する熱媒体の温度を検出する。ガスセンサー139は、筐体140内の下方に設けられ、可燃性ガスの濃度を検出する。
[1-1-2. Configuration of control device]
Next, the configuration of the control device 130 will be described with reference to FIG.
The control device 130 includes a controller 131, a user interface 132, a high pressure side pressure sensor 133, a discharge temperature sensor 134, a heat source side heat exchange temperature sensor 135, an outside air temperature sensor 136, an incoming water temperature sensor 137, and an outgoing water temperature. It is composed of a sensor 138 and a gas sensor 139 . The controller 131 is equipped with a microcomputer, memory, and the like. A user interface 132 is used to input the operation stop of the device, the temperature setting of the heat medium to be generated, and the like. The high pressure side pressure sensor 133 is provided in the discharge side pipe of the compressor 111 and detects the discharge side pressure. A discharge temperature sensor 134 detects the temperature of the discharged refrigerant. The heat source side heat exchanger temperature sensor 135 is provided in the refrigerant pipe of the heat source side heat exchanger 114 and detects the saturation temperature of the refrigerant flowing through the heat source side heat exchanger 114 . The outside air temperature sensor 136 is provided on the outer surface of the housing 140 of the heat medium circulation system 100 and detects the outside air temperature. The incoming water temperature sensor 137 detects the temperature of the heat medium flowing into the utilization side heat exchanger 112 provided in the heat medium circuit 120 . The outgoing water temperature sensor 138 detects the temperature of the heat medium flowing out from the utilization side heat exchanger 112 . A gas sensor 139 is provided in the lower part of the housing 140 and detects the concentration of combustible gas.
 [1-2.動作]
 以上のように構成された熱媒体循環システム100について、その動作を以下に説明する。
[1-2. motion]
The operation of the heat medium circulation system 100 configured as described above will be described below.
 [1-2-1.冷却および加熱運転動作]
 コントローラ131は、ユーザインタフェース132の入力情報に基づき、加熱運転または冷却運転を行う。運転時は、外気温度センサー136の検知値と、出水温度センサー138の検知値と、ユーザインタフェース132の出水温度設定値に基づき決定された回転数で圧縮機111を制御する。高圧側圧力センサー133の検知値と、熱源側熱交温度センサー135の検知値に基づき決定された吐出温度目標値となるように、吐出温度センサー134の検知値と比較しながら、膨張装置113の絞り量を制御する。
 また、運転時は、出水温度センサー138の検知値と、入水温度センサー137の検知値との差分が所定の温度差となるように、搬送ポンプ121の回転数を制御する。
 さらに、加熱運転時には、出水温度センサー138の検出値が出水温度設定値となるように、水加熱装置127のヒーターエレメントの印加電圧を制御する。
[1-2-1. Cooling and heating operation]
The controller 131 performs heating operation or cooling operation based on input information of the user interface 132 . During operation, the compressor 111 is controlled at a rotation speed determined based on the detection value of the outside air temperature sensor 136 , the detection value of the water temperature sensor 138 , and the water temperature set value of the user interface 132 . While comparing with the detection value of the discharge temperature sensor 134 so that the discharge temperature target value determined based on the detection value of the high pressure side pressure sensor 133 and the detection value of the heat source side heat exchanger temperature sensor 135, the expansion device 113 Controls the amount of aperture.
Further, during operation, the rotation speed of the conveying pump 121 is controlled so that the difference between the detected value of the outgoing water temperature sensor 138 and the detected value of the incoming water temperature sensor 137 becomes a predetermined temperature difference.
Furthermore, during the heating operation, the voltage applied to the heater element of the water heating device 127 is controlled so that the detected value of the water temperature sensor 138 becomes the water temperature setting value.
 [1-2-2.電熱装置の運転動作]
 加熱運転および除霜運転における電熱装置143の運転動作を説明する。
 ユーザインタフェース132に加熱運転が入力されると、膨張装置113の開度が初期値に設定されるとともに、搬送ポンプ121が運転され、熱媒体回路120内の熱媒体が循環する。その後、送風装置117が運転されて、熱源側熱交換器114を通過した大気が筐体140内を通過し外部に排出される。また、送風装置117の運転と同時に電熱装置143に通電が開始されて、底板141が加熱される。しかしながら、印加電圧は、電力密度が1W/cmとなるように定格電圧より低く制御され、電熱装置143の表面温度を通常より低く保ち、電熱装置143を動作させる。
 そして、送風装置117の回転数が予め設定した風量となる回転数となった時に、印加電圧を定格電圧まで上昇させて、底板141の温度をさらに上昇させる。
 また、加熱運転により熱源側熱交換器114に着霜した場合、除霜運転が開始されるが、リバースサイクル除霜実行時は、送風装置117が停止される。
 この時、電熱装置143の印加電圧は電力密度が2W/cmから1W/cmとなるように電圧を低下させ、表面温度を低く保つ。そして、除霜運転が終了して加熱運転が開始される。送風装置117の回転数が予め設定した風量となる回転数となった時に、印加電圧を定格電圧まで上昇させて、電熱装置143の表面温度を高く保つ。
 さらに、加熱運転中において、ガスセンサー139の検知濃度が所定濃度以上となると、電熱装置143への通電を停止し、電熱装置143の表面温度を低下させる。
[1-2-2. Operation of electric heating device]
The operation of the electric heating device 143 in heating operation and defrosting operation will be described.
When the heating operation is input to the user interface 132, the opening of the expansion device 113 is set to the initial value, the carrier pump 121 is operated, and the heat medium in the heat medium circuit 120 is circulated. After that, the air blower 117 is operated, and the air that has passed through the heat source side heat exchanger 114 passes through the housing 140 and is discharged to the outside. At the same time as the operation of the air blower 117, the electrical heating device 143 is started to be energized, and the bottom plate 141 is heated. However, the applied voltage is controlled below the rated voltage so that the power density is 1 W/cm 2 , keeping the surface temperature of the electric heating device 143 lower than normal and operating the electric heating device 143 .
Then, when the rotational speed of the air blower 117 reaches a predetermined air volume, the applied voltage is increased to the rated voltage to further increase the temperature of the bottom plate 141 .
Further, when the heat source side heat exchanger 114 is frosted due to the heating operation, the defrosting operation is started, but the air blower 117 is stopped when the reverse cycle defrosting is executed.
At this time, the voltage applied to the electric heating device 143 is lowered so that the power density is reduced from 2 W/cm 2 to 1 W/cm 2 to keep the surface temperature low. Then, the defrosting operation is finished and the heating operation is started. When the number of rotations of the blower 117 reaches a predetermined air volume, the applied voltage is raised to the rated voltage to keep the surface temperature of the electric heating device 143 high.
Furthermore, during the heating operation, when the concentration detected by the gas sensor 139 reaches or exceeds a predetermined concentration, the power supply to the electric heating device 143 is stopped and the surface temperature of the electric heating device 143 is lowered.
 ここで、図5は電力密度とヒーター(電熱装置)の表面温度の関係を示すグラフである。電熱装置143を通過する風量が十分に確保されるまでは、ヒーター印加電圧を、プロパンの引火点432℃を十分に下回るヒーター表面温度となる1W/cmで電熱装置143を動作させる。そして、風量が十分に確保された後は、ヒーター印加電圧を、プロパンの引火点よりも低く、十分に底板141を加熱できる表面温度となる2W/cmで電熱装置143を動作させる。このように、ヒーター印加電圧を制御している。 Here, FIG. 5 is a graph showing the relationship between the power density and the surface temperature of the heater (electric heating device). Until a sufficient amount of air passes through the electric heating device 143, the electric heating device 143 is operated at a voltage applied to the heater of 1 W/cm 2 , which is a heater surface temperature well below the flash point of propane, 432°C. Then, after a sufficient air volume is secured, the electric heating device 143 is operated at a voltage applied to the heater of 2 W/cm 2 which is lower than the flash point of propane and a surface temperature sufficient to heat the bottom plate 141 . Thus, the heater applied voltage is controlled.
 この時の動作を、図6に示すフローチャートを用いて、より詳細に説明する。まず、使用者によるユーザインタフェース132の操作により、加熱運転の開始が指示される(ステップS1)。そして、その指示により、制御装置130は、送風装置117を運転すると同時に電熱装置143に電力密度が1W/cmとなる電圧を印加する(ステップS2)。そして、圧縮機111、搬送ポンプ121を運転し、それらの回転数を制御するとともに、膨張装置113の開度を調整する(ステップS3)。次に、制御装置130は、ガスセンサー139で筐体140内の冷媒濃度Crを検出する(ステップS4)。そして、あらかじめ設定された冷媒濃度Caと冷媒濃度Crを比較し、冷媒濃度Crが冷媒濃度Ca以上であるか否かを判定する(ステップS5)。 The operation at this time will be described in more detail with reference to the flowchart shown in FIG. First, the user instructs to start the heating operation by operating the user interface 132 (step S1). Then, according to the instruction, control device 130 operates blower device 117 and simultaneously applies a voltage having a power density of 1 W/cm 2 to electric heating device 143 (step S2). Then, the compressor 111 and the conveying pump 121 are operated to control their rotation speeds, and the opening degree of the expansion device 113 is adjusted (step S3). Next, the control device 130 detects the refrigerant concentration Cr in the housing 140 with the gas sensor 139 (step S4). Then, the refrigerant concentration Ca and the refrigerant concentration Cr set in advance are compared to determine whether the refrigerant concentration Cr is equal to or higher than the refrigerant concentration Ca (step S5).
 冷媒濃度Crが冷媒濃度Ca以上の場合には(ステップS5でYES)、冷媒回路110から冷媒が漏洩している状態と判断する。そして、送風装置117の運転を継続したまま、電熱装置143への通電を遮断する(ステップS6)。同時に、圧縮機111および搬送ポンプ121の運転を停止(ステップS7)する。次いで、遮断弁129a、129bに通電して遮断弁129a、129bを閉止方向に動作させ、熱媒体の流動を停止させる(ステップS8)。 When the refrigerant concentration Cr is equal to or higher than the refrigerant concentration Ca (YES in step S5), it is determined that the refrigerant is leaking from the refrigerant circuit 110. Then, while the air blower 117 continues to operate, the electric heating device 143 is de-energized (step S6). At the same time, the operations of the compressor 111 and the transport pump 121 are stopped (step S7). Next, the shutoff valves 129a and 129b are energized to operate in the closing direction to stop the flow of the heat medium (step S8).
 一方、冷媒濃度Crが冷媒濃度Ca未満の場合には(ステップS5でNO)、可燃性冷媒が冷媒回路110から漏洩していない状態であると判断し、運転を継続する。そして、送風装置117が所定時間運転したか否かを判定する(ステップS9)。そして、所定時間運転して十分な風量が確保されたと判断された場合には(ステップS9でYES)、電熱装置143の電力密度が2W/cmとなるように電圧を上昇させる(ステップS10)。
 その後、あらかじめ設定された除霜運転開始温度Tdsと熱源側熱交温度センサー135の検知温度Teを比較し、熱交温度である検知温度Teが除霜運転開始温度Tds未満であるか否かを判定する(ステップS11)。熱交温度Teが除霜運転開始温度Tds以上の場合(ステップS11でNO)には、熱源側熱交換器114の着霜量が少なく、除霜運転が必要ではないと判断し、加熱運転を継続する。
On the other hand, when the refrigerant concentration Cr is less than the refrigerant concentration Ca (NO in step S5), it is determined that the combustible refrigerant is not leaking from the refrigerant circuit 110, and the operation is continued. Then, it is determined whether or not the blower 117 has been operated for a predetermined time (step S9). Then, when it is determined that a sufficient air volume has been secured after operating for a predetermined time (YES in step S9), the voltage is increased so that the power density of the electric heating device 143 becomes 2 W/cm 2 (step S10). .
Thereafter, the preset defrosting operation start temperature Tds is compared with the detected temperature Te of the heat source side heat exchanger temperature sensor 135 to determine whether or not the detected temperature Te, which is the heat exchanger temperature, is less than the defrost operation start temperature Tds. Determine (step S11). When the heat exchanger temperature Te is equal to or higher than the defrosting operation start temperature Tds (NO in step S11), it is determined that the amount of frost on the heat source side heat exchanger 114 is small and the defrosting operation is not necessary, and the heating operation is started. continue.
 一方、熱交温度Teが除霜運転開始温度Tds未満の場合(ステップS11でYES)には、加熱運転による熱源側熱交換器114への着霜量が多く、除霜が必要であると判断する。そして、四方弁115を冷房側に切り替えるとともに、送風装置117を停止して除霜運転を開始する(ステップS12)。
 この時、送風装置117の停止と同時に、電熱装置143の電力密度が1W/cmとなるように印加電圧を低下させる(ステップS13)。
 そして、あらかじめ設定された除霜運転終了温度Tdeと熱源側熱交温度センサー135の検知温度Teを比較し、熱交温度Teが除霜運転終了温度Tde以上であるか否かを判定する(ステップS14)。熱交温度Teが除霜運転終了温度Tde未満の場合(ステップS14でNO)には、熱源側熱交換器114の霜が残っている状態であると判断し、除霜運転を継続する。
On the other hand, if the heat exchanger temperature Te is less than the defrosting operation start temperature Tds (YES in step S11), it is determined that the heat source side heat exchanger 114 has a large amount of frost due to the heating operation and that defrosting is necessary. do. Then, the four-way valve 115 is switched to the cooling side, and the blower 117 is stopped to start the defrosting operation (step S12).
At this time, the applied voltage is lowered so that the power density of the electric heating device 143 becomes 1 W/cm 2 at the same time as the air blower 117 is stopped (step S13).
Then, the preset defrosting operation end temperature Tde is compared with the temperature Te detected by the heat source side heat exchanger temperature sensor 135, and it is determined whether or not the heat exchanger temperature Te is equal to or higher than the defrosting operation end temperature Tde (step S14). When the heat exchanger temperature Te is lower than the defrosting operation end temperature Tde (NO in step S14), it is determined that frost remains in the heat source side heat exchanger 114, and the defrosting operation is continued.
 一方、熱交温度Teが除霜運転終了温度Tde以上の場合(ステップS14でYES)には、熱源側熱交換器114の霜が完全に溶解して除霜が完了したと判断する。そして、四方弁115を暖房側に切り替えるとともに、送風装置117を運転して、加熱運転を開始する(ステップS15)。 On the other hand, if the heat exchanger temperature Te is equal to or higher than the defrosting operation end temperature Tde (YES in step S14), it is determined that the frost on the heat source side heat exchanger 114 has completely melted and the defrosting is completed. Then, the four-way valve 115 is switched to the heating side, and the air blower 117 is operated to start the heating operation (step S15).
 [1-3.効果等]
 以上のように、本実施の形態において、熱媒体循環システム100は、冷媒回路110と、熱媒体回路120と、制御装置130と、送風装置117と、底板141と、電熱装置143と、を備える。冷媒回路110は、可燃性冷媒の蒸気圧縮式冷凍サイクルである。冷媒回路110には、圧縮機111、利用側熱交換器112、膨張装置113、および熱源側熱交換器114が環状に接続される。熱媒体回路120は、利用側負荷を加熱および冷却する液体の熱媒体が循環する。送風装置117は、熱源側熱交換器114に屋外の空気を流通させる。電熱装置143は、底板141の表面に設けられ、底板141を電気的に加熱する。
 電熱装置143は、送風装置117が運転されると同時に通電され、通電開始から所定時間は、安定時の消費電力より低くなるように制御される。
 これにより、電熱装置143が送風装置117の運転と同時に通電される。よって、送風による底板141の温度低下を防止し、底板141の温度が迅速に上昇する。
 また、万が一、運転停止中にガスが漏洩して底板141に滞留した場合、送風装置117の運転直後は風速が低く、滞留したガスが拡散しにくいが、電熱装置143の消費電力を安定時より低く制御するので、送風装置117運転後の所定時間は電熱装置143の電力密度が低くなり、電熱装置143の雰囲気ガスが換気されるまで電熱装置143の表面温度が低く保持される。
 そのため、電熱装置143の発熱による漏洩冷媒への着火のより確実な防止と、底板141の凍結予防が両立できる。よって、可燃性冷媒の漏洩に関する安全性がより向上する。
[1-3. effects, etc.]
As described above, in the present embodiment, the heat medium circulation system 100 includes the refrigerant circuit 110, the heat medium circuit 120, the control device 130, the blower device 117, the bottom plate 141, and the electric heating device 143. . Refrigerant circuit 110 is a combustible refrigerant vapor compression refrigeration cycle. A compressor 111 , a user-side heat exchanger 112 , an expansion device 113 , and a heat source-side heat exchanger 114 are annularly connected to the refrigerant circuit 110 . Heat medium circuit 120 circulates a liquid heat medium that heats and cools the load on the user side. The blower 117 circulates outdoor air to the heat source side heat exchanger 114 . The electric heating device 143 is provided on the surface of the bottom plate 141 and electrically heats the bottom plate 141 .
The electric heating device 143 is energized at the same time as the air blower 117 is operated, and is controlled to be lower than the stable power consumption for a predetermined time after the start of energization.
As a result, the electric heating device 143 is energized simultaneously with the operation of the blower device 117 . Therefore, the temperature of the bottom plate 141 is prevented from lowering due to air blowing, and the temperature of the bottom plate 141 rises quickly.
Also, if gas leaks and stays on the bottom plate 141 while the operation is stopped, the wind speed is low immediately after the operation of the blower 117 and the gas that stays is difficult to diffuse. Since the temperature is controlled to be low, the power density of the electric heating device 143 is low for a predetermined time after the operation of the blower 117, and the surface temperature of the electric heating device 143 is kept low until the atmosphere gas of the electric heating device 143 is ventilated.
Therefore, it is possible to achieve both more reliable prevention of ignition of the leaked refrigerant due to heat generation of the electric heating device 143 and prevention of freezing of the bottom plate 141 . Therefore, safety regarding leakage of the combustible refrigerant is further improved.
 本実施の形態のように、電熱装置143の電力密度は2W以下であり、通電開始から所定時間は、電力密度が1W/cm2未満に制御してもよい。
 これにより、送風装置117運転開始後の風速が低い時間帯は、電熱装置143の電力密度が低く、表面温度がプロパンの発火温度より十分低い温度で保持される。そのため、可燃性ガスが滞留していても着火しない。
 そのため、電熱装置143の発熱による漏洩冷媒への着火のより確実な防止と、底板141の凍結予防が両立できる。よって、可燃性冷媒の漏洩に対する安全性がさらに向上する。
As in this embodiment, the power density of the electric heating device 143 is 2 W or less, and the power density may be controlled to be less than 1 W/cm 2 for a predetermined time after the start of energization.
As a result, the power density of the electric heating device 143 is low and the surface temperature is kept at a temperature sufficiently lower than the ignition temperature of propane in the time period when the wind speed is low after the blower device 117 starts operating. Therefore, even if combustible gas remains, it will not ignite.
Therefore, it is possible to achieve both more reliable prevention of ignition of the leaked refrigerant due to heat generation of the electric heating device 143 and prevention of freezing of the bottom plate 141 . Therefore, safety against leakage of combustible refrigerant is further improved.
 本実施の形態のように、電熱装置143の消費電力を低く制御する所定時間を、送風装置117の風量が、滞留したガスを十分に排気できる所定風量に到達するまでの時間に設定してもよい。
 これにより、冷媒回路110から漏洩し、電熱装置143の近傍に滞留していた可燃性ガスが、送風装置117が発生させる風により拡散する。可燃性ガスが、筐体140外に排気されるまでの間は、電熱装置143の表面温度が、プロパンの発火温度より十分低い温度で保持されるので、可燃性ガスが滞留していても着火しない。
As in the present embodiment, the predetermined time for controlling the power consumption of the electric heating device 143 to be low may be set to the time until the air volume of the blower device 117 reaches a predetermined air volume that can sufficiently exhaust the stagnant gas. good.
As a result, the combustible gas that has leaked from the refrigerant circuit 110 and has accumulated in the vicinity of the electric heating device 143 is diffused by the wind generated by the blower device 117 . Until the combustible gas is exhausted to the outside of the housing 140, the surface temperature of the electric heating device 143 is maintained at a temperature sufficiently lower than the ignition temperature of propane. do not.
 本実施の形態のように、ガスセンサー139のガス濃度検知値が予め設定されたガス濃度より高くなった場合に、送風装置117の運転を継続し、電熱装置143への通電を遮断してもよい。
 これにより、確実に可燃性冷媒が漏洩したことが判断できる。ガス漏洩時には送風装置117による可燃性ガスの排気と、電熱装置143の通電の停止により、表面温度が迅速に低下する。よって、さらに安全性が向上する。
As in this embodiment, when the gas concentration detection value of the gas sensor 139 becomes higher than the preset gas concentration, the operation of the air blower 117 is continued and the power supply to the electric heating device 143 is cut off. good.
This makes it possible to reliably determine that the combustible refrigerant has leaked. At the time of gas leakage, the exhaust of the combustible gas by the air blower 117 and the stoppage of power supply to the electric heating device 143 quickly lower the surface temperature. Therefore, safety is further improved.
 本実施の形態のように、可燃性冷媒は、プロパン若しくはプロパンを含む混合冷媒であってもよい。
 これにより、地球温暖化係数(GWP)が低く、冷媒が漏洩した場合にも環境への悪影響を抑制することができる。そのため、環境性が向上する。
As in this embodiment, the combustible refrigerant may be propane or a mixed refrigerant containing propane.
As a result, the global warming potential (GWP) is low, and adverse effects on the environment can be suppressed even when the refrigerant leaks. Therefore, environmental performance is improved.
(他の実施の形態)
 以上のように、本出願において開示する技術の例示として、本実施の形態を説明した。しかしながら、本開示における技術は、これに限定されず、変更、置き換え、付加、省略などを行った実施の形態にも適用できる。また、上記実施の形態で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
 そこで、以下、他の実施の形態を例示する。
(Other embodiments)
As described above, the present embodiment has been described as an example of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to embodiments with modifications, replacements, additions, omissions, and the like. Further, it is also possible to combine the constituent elements described in the above embodiments to form a new embodiment.
Therefore, other embodiments will be exemplified below.
 本実施の形態では、熱媒体循環システム100の一例として冷暖房給湯機を説明した。熱媒体循環システム100は、液体を冷却または加熱できるものであればよい。したがって、熱媒体循環システム100は、冷暖房給湯機に限定されない。ただし、熱媒体循環システム100として冷暖房給湯機を用いれば、住宅の年間熱需要に対応することができる。また、熱媒体循環システム100として冷温水チラーを用いてもよい。熱媒体循環システム100として冷温水チラーを用いれば、工場などで使用する加熱や冷却の熱負荷に対応することができるので、工場の省エネ性を向上することができる。 In the present embodiment, the cooling/heating water heater has been described as an example of the heat medium circulation system 100 . The heat medium circulation system 100 may be any system as long as it can cool or heat liquid. Therefore, heat medium circulation system 100 is not limited to an air conditioner. However, if a cooling/heating water heater is used as the heat medium circulation system 100, the annual heat demand of the house can be met. Alternatively, a cold/hot water chiller may be used as the heat medium circulation system 100 . If a hot/cold water chiller is used as the heat medium circulation system 100, it is possible to cope with the heat load of heating and cooling used in the factory or the like, so that the energy efficiency of the factory can be improved.
 本実施の形態では、漏洩検知センサーの一例として冷媒濃度センサーを説明した。漏洩検知センサーは、冷媒回路110中から熱媒体回路120中に冷媒が漏洩したことが判断できるものであればよい。したがって、漏洩検知センサーは、冷媒濃度センサーに限定されない。ただし、漏洩検知センサーとして冷媒濃度センサーを用いれば、簡素な構成で実現することができる。また、漏洩検知センサーとして、冷媒回路110の圧力を検出する圧力センサーや、運転中の冷媒温度を検出するサーミスターで検出してもよい。冷媒回路110の圧力や温度で検出すれば、運転制御用のセンサーを共用することができるので、安価に製造することができるという効果がある。 In the present embodiment, the refrigerant concentration sensor has been described as an example of the leak detection sensor. Any leak detection sensor may be used as long as it can determine that the refrigerant has leaked from the refrigerant circuit 110 into the heat medium circuit 120 . Therefore, the leak detection sensor is not limited to the refrigerant concentration sensor. However, if a refrigerant concentration sensor is used as the leakage detection sensor, it can be realized with a simple configuration. Further, as the leakage detection sensor, a pressure sensor that detects the pressure of the refrigerant circuit 110 or a thermistor that detects the refrigerant temperature during operation may be used. If the pressure and temperature of the refrigerant circuit 110 are detected, the sensor for operation control can be shared, so there is an effect that it can be manufactured at low cost.
 本実施の形態では、電熱装置143の設置位置の一例として、筐体140の底板141表面に設置された構成を説明した。電熱装置143の設置位置は、電熱装置143が通電された時に底板141の温度が上昇し、ドレン水が氷結しない位置に設置すればよい。したがって、電熱装置143の設置位置は、底板141表面に限定されない。ただし、電熱装置143を底板141表面に設置すれば、直接的に底板141およびドレン水を加熱できるので熱交換効率を高くできる。また、電熱装置143は、底板141の裏面に設置してもよい。電熱装置143を底板141裏面に設置すれば、電熱装置143がショートしてスパークが発生した場合に、冷媒ガスが直接的に接することがない。よって、スパーク発生時などの着火をより確実に防止できるという効果がある。 In the present embodiment, as an example of the installation position of the electric heating device 143, the structure installed on the surface of the bottom plate 141 of the housing 140 has been described. The electric heating device 143 may be installed at a position where the temperature of the bottom plate 141 rises and the drain water does not freeze when the electric heating device 143 is energized. Therefore, the installation position of the electric heating device 143 is not limited to the surface of the bottom plate 141 . However, if the electric heating device 143 is installed on the surface of the bottom plate 141, the bottom plate 141 and the drain water can be directly heated, so that the heat exchange efficiency can be increased. Also, the electric heating device 143 may be installed on the back surface of the bottom plate 141 . If the electric heating device 143 is installed on the back surface of the bottom plate 141, the refrigerant gas will not come into direct contact with the electric heating device 143 when the electric heating device 143 is short-circuited and a spark is generated. Therefore, there is an effect that it is possible to more reliably prevent ignition when a spark occurs.
 本実施の形態では、遮断弁129a、129bの設置位置の一例として、搬送ポンプ121と利用側熱交換器112の間や利用側熱交換器112と切換弁の間に設置する回路を説明した。遮断弁129a、129bは、冷媒が熱媒体回路120に漏洩した時に、居住空間側に冷媒が流入しない位置に設置すればよい。したがって、遮断弁129a、129bの設置位置は、搬送ポンプ121と利用側熱交換器112の間や利用側熱交換器112と切換弁の間に限定されない。ただし、遮断弁129a、129bを排出装置の下流側に設置することで、遮断弁129a、129b間の熱媒体回路120中に存在する漏洩冷媒を、遮断した後も大気中に排出できる。よって、安全性がより向上する。 In the present embodiment, circuits installed between the transfer pump 121 and the user-side heat exchanger 112 and between the user-side heat exchanger 112 and the switching valve have been described as examples of the installation positions of the shutoff valves 129a and 129b. The shutoff valves 129a and 129b may be installed at positions where the refrigerant does not flow into the living space when the refrigerant leaks into the heat medium circuit 120. FIG. Therefore, the installation positions of the shutoff valves 129a and 129b are not limited to between the transfer pump 121 and the user-side heat exchanger 112 or between the user-side heat exchanger 112 and the switching valve. However, by installing the shutoff valves 129a and 129b on the downstream side of the discharge device, the leaked refrigerant existing in the heat medium circuit 120 between the shutoff valves 129a and 129b can be discharged into the atmosphere even after shutting off. Therefore, safety is further improved.
 本開示は、冷媒回路に可燃性冷媒を用いた熱媒体循環システムに適用可能である。具体的には、温水給湯暖房機、業務用チラーなどに、本開示は適用可能である。 The present disclosure is applicable to a heat medium circulation system using a combustible refrigerant in the refrigerant circuit. Specifically, the present disclosure is applicable to hot water heaters, commercial chillers, and the like.
 100 熱媒体循環システム
 110 冷媒回路
 111 圧縮機
 112 利用側熱交換器
 113 膨張装置
 114 熱源側熱交換器
 115 四方弁
 116 配管
 117 送風装置
 120 熱媒体回路
 121 搬送ポンプ
 122 利用側端末
 123 貯湯タンク
 124a、124b 切替弁
 126 熱媒体配管
 127 水加熱装置
 128 脱気装置
 129a、129b 遮断弁
 130 制御装置
 131 コントローラ
 132 ユーザインタフェース
 133 高圧側圧力センサー
 134 吐出温度センサー
 135 熱源側熱交温度センサー
 136 外気温度センサー
 137 入水温度センサー
 138 出水温度センサー
 139 ガスセンサー
 140 筐体
 141 底板
 142 ドレン穴
 143 電熱装置
100 heat medium circulation system 110 refrigerant circuit 111 compressor 112 use side heat exchanger 113 expansion device 114 heat source side heat exchanger 115 four-way valve 116 piping 117 air blower 120 heat medium circuit 121 transfer pump 122 use side terminal 123 hot water storage tank 124a, 124b switching valve 126 heat medium pipe 127 water heating device 128 degassing device 129a, 129b cutoff valve 130 control device 131 controller 132 user interface 133 high pressure side pressure sensor 134 discharge temperature sensor 135 heat source side heat exchanger temperature sensor 136 outside air temperature sensor 137 water inlet Temperature sensor 138 Outflow temperature sensor 139 Gas sensor 140 Housing 141 Bottom plate 142 Drain hole 143 Electric heating device

Claims (5)

  1.  圧縮機、利用側熱交換器、膨張装置、および熱源側熱交換器が環状に接続され、可燃性冷媒を用いた冷媒回路と、
    前記熱源側熱交換器に空気を流通させる送風装置と、
    少なくとも、前記冷媒回路と前記送風装置とを内装する筐体と、
    前記筐体の底板の表面に設けられた電熱装置と、
    制御装置と、を備え、
    前記制御装置は、前記送風装置の運転と前記電熱装置の通電とを同時に開始し、前記電熱装置への通電開始から所定時間は、前記電熱装置の消費電力を安定時より低くなるように制御することを特徴とする熱媒体循環システム。
    a refrigerant circuit in which a compressor, a user-side heat exchanger, an expansion device, and a heat source-side heat exchanger are connected in a ring and using a combustible refrigerant;
    a blower that circulates air through the heat source side heat exchanger;
    a housing that houses at least the refrigerant circuit and the blower;
    an electric heating device provided on the surface of the bottom plate of the housing;
    a controller;
    The control device simultaneously starts the operation of the blower device and the energization of the electric heating device, and controls the power consumption of the electric heating device to be lower than that in a stable state for a predetermined time after the start of energization of the electric heating device. A heat medium circulation system characterized by:
  2.  前記電熱装置は電力密度が2W/cm以下であり、
    前記制御装置は、前記所定時間は電力密度を1W/cm未満に制御することを特徴とする請求項1に記載の熱媒体循環システム。
    The electric heating device has a power density of 2 W/cm 2 or less,
    2. The heat medium circulation system according to claim 1, wherein the controller controls the power density to be less than 1 W/cm <2> during the predetermined time.
  3.  前記所定時間は、前記送風装置が発生させる風量が、予め定められた所定風量以上となるまでの時間であることを特徴とする請求項1または請求項2に記載の熱媒体循環システム。 3. The heat medium circulation system according to claim 1 or 2, wherein the predetermined time is the time until the volume of air generated by the blower reaches or exceeds a predetermined volume of air.
  4.  前記筐体内に前記可燃性冷媒の漏洩を検知する漏洩センサーを設け、
    前記制御装置は、前記漏洩センサーが前記可燃性冷媒の漏洩を検知した場合、前記送風装置の運転を継続し、前記電熱装置への通電を停止することを特徴とする請求項1から請求項3のいずれか1項に記載の熱媒体循環システム。
    A leakage sensor is provided in the housing to detect leakage of the combustible refrigerant,
    4. The control device, when the leak sensor detects leakage of the combustible refrigerant, continues the operation of the blower device and stops power supply to the electric heating device. The heat medium circulation system according to any one of .
  5.  前記可燃性冷媒は、プロパン若しくは前記プロパンを含む混合冷媒であることを特徴とする請求項1から請求項4のいずれか1項に記載の熱媒体循環システム。 The heat medium circulation system according to any one of claims 1 to 4, wherein the combustible refrigerant is propane or a mixed refrigerant containing propane.
PCT/JP2022/033866 2021-10-13 2022-09-09 Heat medium circulation system WO2023062989A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021167893 2021-10-13
JP2021-167893 2021-10-13

Publications (1)

Publication Number Publication Date
WO2023062989A1 true WO2023062989A1 (en) 2023-04-20

Family

ID=85987450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033866 WO2023062989A1 (en) 2021-10-13 2022-09-09 Heat medium circulation system

Country Status (1)

Country Link
WO (1) WO2023062989A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135277A (en) * 2003-10-31 2005-05-26 Matsushita Electric Ind Co Ltd Cooling and warming device for vending machine
JP2009079818A (en) * 2007-09-26 2009-04-16 Panasonic Corp Vending machine
JP2011002228A (en) * 2010-10-04 2011-01-06 Hitachi Appliances Inc Refrigerator
JP2011158183A (en) * 2010-02-01 2011-08-18 Mitsubishi Heavy Ind Ltd Outdoor unit and air conditioner
JP2012047362A (en) * 2010-08-25 2012-03-08 Hitachi Appliances Inc Refrigerator
JP2015055455A (en) 2013-09-13 2015-03-23 三菱電機株式会社 Outdoor unit and air conditioner
JP2017026252A (en) * 2015-07-27 2017-02-02 シャープ株式会社 Air conditioner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135277A (en) * 2003-10-31 2005-05-26 Matsushita Electric Ind Co Ltd Cooling and warming device for vending machine
JP2009079818A (en) * 2007-09-26 2009-04-16 Panasonic Corp Vending machine
JP2011158183A (en) * 2010-02-01 2011-08-18 Mitsubishi Heavy Ind Ltd Outdoor unit and air conditioner
JP2012047362A (en) * 2010-08-25 2012-03-08 Hitachi Appliances Inc Refrigerator
JP2011002228A (en) * 2010-10-04 2011-01-06 Hitachi Appliances Inc Refrigerator
JP2015055455A (en) 2013-09-13 2015-03-23 三菱電機株式会社 Outdoor unit and air conditioner
JP2017026252A (en) * 2015-07-27 2017-02-02 シャープ株式会社 Air conditioner

Similar Documents

Publication Publication Date Title
CN106524389B (en) Air conditioner defrosting method and air conditioner
CN103250012B (en) binary refrigeration cycle device
EP2395302B1 (en) Heat pump-type hot-water supply and air-conditioning device
JP2010144938A (en) Heat pump water heater and method for operating the same
CN110809697B (en) Heat exchange unit and air conditioner
JP2007218463A (en) Heat pump hot water supply heating/cooling device
JP2013119954A (en) Heat pump hot water heater
JP2012078065A (en) Air conditioner
JP2007163071A (en) Heat pump type cooling/heating system
JP2009264715A (en) Heat pump hot water system
JP2018066515A (en) Method of controlling heat pump hot water heating system
KR101044616B1 (en) Defrosting method for heat pump evaporator
KR100712196B1 (en) Heat pump system and a method for eliminating frost on the outdoor heat exchanger of the heat pump system
EP2375187B1 (en) Heat pump apparatus and operation control method of heat pump apparatus
JP2009264718A (en) Heat pump hot water system
WO2023062989A1 (en) Heat medium circulation system
JP2012013350A (en) Hot-water heater
JP2012132573A (en) Heat pump system
JP2009097826A (en) Heat pump hot water supply device
JP4670576B2 (en) vending machine
JP3626890B2 (en) refrigerator
CN209431728U (en) Anti- defrosting device
JP2010054145A (en) Heat pump water heater
JP2005300057A (en) Heat pump hot water supply system
WO2023095427A1 (en) Heat medium circulation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880685

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023555021

Country of ref document: JP