WO2023062115A1 - Verfahren zur bestimmung der ansprechwahrscheinlichkeit einer malignen erkrankung auf eine behandlung mit einem pharmazeutischen hemmwirkstoff - Google Patents

Verfahren zur bestimmung der ansprechwahrscheinlichkeit einer malignen erkrankung auf eine behandlung mit einem pharmazeutischen hemmwirkstoff Download PDF

Info

Publication number
WO2023062115A1
WO2023062115A1 PCT/EP2022/078478 EP2022078478W WO2023062115A1 WO 2023062115 A1 WO2023062115 A1 WO 2023062115A1 EP 2022078478 W EP2022078478 W EP 2022078478W WO 2023062115 A1 WO2023062115 A1 WO 2023062115A1
Authority
WO
WIPO (PCT)
Prior art keywords
inhibitor
dna methylation
gene
methylation analysis
pharmaceutical
Prior art date
Application number
PCT/EP2022/078478
Other languages
English (en)
French (fr)
Inventor
Dimo Dietrich
Original Assignee
Rheinische Friedrich-Wilhelms-Universität Bonn
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rheinische Friedrich-Wilhelms-Universität Bonn filed Critical Rheinische Friedrich-Wilhelms-Universität Bonn
Priority to EP22805787.3A priority Critical patent/EP4416306A1/de
Publication of WO2023062115A1 publication Critical patent/WO2023062115A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/106Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/154Methylation markers

Definitions

  • This application includes an electronic sequence listing in xml format according to the WIPO ST.26 standard with 539 sequences as part of the description.
  • the invention relates to in vitro molecular diagnostic methods in the field of oncology, which enable a prediction of the response of persons with a malignant disease to therapy with pharmaceutical inhibitory agents.
  • the invention further relates to medical uses of pharmaceutical inhibitory agents in medical methods of treating malignant disease in subjects known to be responsive to therapy with such pharmaceutical inhibitory agents. Finally, the invention relates to kits for carrying out the methods specified and for the applications specified.
  • Targeted pharmaceutical inhibitors have been a therapeutic breakthrough in drug-based tumor therapy for a number of years and have shown excellent results even in advanced tumor diseases. However, only a relatively small proportion of patients usually respond to these therapies. A predictive biomarker that could predict response to these therapies would therefore be of particular clinical value.
  • US 2011/0275084 A1 discloses a method for identifying tumor cells that are resistant to an inhibitor of fibroblast growth factor receptor 2 (FGFR2) by detecting specific mutations in the FGFR2 gene.
  • FGFR2 fibroblast growth factor receptor 2
  • US 10,980,804 B2 and US 2020/0138809 A1 disclose methods for treating patients with cholangiocarcinoma with a kinase or FGFR inhibitor, the patients being known to have specific mutations in the FGFR gene.
  • US Pat. No. 10,787,713 B2 discloses a method for treating cancer patients with a pllOa inhibitor, the patients being known to have certain mutations in the PIK3CA gene.
  • US 2005/0272083 A1 discloses an association between mutations in the EGFR gene and the response of tumors to treatment with kinase inhibitors.
  • US 2013/0296326 A1 discloses mutations of the FGFR2 gene associated with resistance to FGFR2 inhibitors.
  • US 2009/0258361 A1 discloses a method for determining the probability of a cancer patient responding to treatment with EGFR inhibitors using the mutation status of the PIK3CA gene and the expression status of the PTEN gene.
  • US 2008/0234264 A1 discloses a method for determining the probability of a cancer patient responding to treatment with EGFR inhibitors based on the mutation status of the ERBB1 gene.
  • the therapy with targeted pharmaceutical inhibitors is still not optimally chosen by patients with malignant diseases, since the response of the disease to the therapy can often only be estimated imprecisely in individual cases and the medical staff therefore do not have sufficient indications for a individual selection or adaptation of a therapy are available.
  • DNA methylation analysis to determine methylation of a CpG dinucleotide is within the skill of a molecular biologist or geneticist.
  • Useful laboratory manuals for these techniques and methods are readily available to those skilled in the art, for example "Molecular Cloning, A Laboratory Manual” by M. R. Green and J. Sambrook, 4th Edition, 2012, Gold Spring Harbor Laboratory Press.
  • indefinite articles such as “a” or “an” include the possibility that two or more of those characteristics may also be present.
  • a “person” can be either a patient or a patient.
  • a “gene” refers to a portion of DNA that includes regulatory, transcribed, and/or functional sequence regions and thus contains the basic information for the production of biologically active RNA.
  • a gene also includes, in particular, such elements that fulfill a regulatory function in the transcription of the gene, such as. B. promoter, transcription factor binding sites, CpG islands, open chromatin, enhancers and silencers, and CTCF binding sites.
  • the term "gene” is also used for a limited section of DNA for which no function is known.
  • Locus Chr.3p23 describes a sequence section that is located on chromosome 3 in the area of the cytogenetic band p23 is located and for which the flanking region of a promoter is predicted using bioinformatic approaches.
  • the "gene body” refers here to that section of the DNA which comprises the transcribed sequence regions of the respective gene.
  • a “promoter” is a section of DNA that binds certain DNA-binding proteins that mediate the initiation of transcription of the gene by RNA polymerase and are referred to as transcription factors.
  • a promoter can include a central region and a flanking region.
  • a promoter can also have a regulatory effect on more than one gene
  • a gene can also have several promoters which, for example, the transcription of different isoforms of the respective gene regulate and are also referred to as "alternative promoters".
  • Isoforms of a gene are biologically active RNAs that originate from the same gene locus but differ in their transcription start points or are generated by alternative splicing.
  • HGNC Human Genome Organization Gene Nomenclature Committee
  • a gene in the Ensembl database with a unique identifier (“ENSG ID”) includes all transcript variants of a gene and can be uniquely identified using the Ensembl database (https://www.ensembl.org).
  • Ensembl identifiers are used here for genes, for example that do not code for a protein-coding RNA, such as a long non-coding RNA or a long intergenic non-protein-coding RNA.
  • the gene ENSG00000242759 codes for the long intergenic non-protein-coding RNA 882.
  • prediction is understood here a prediction of the response of a malignant disease to therapy with a pharmaceutical inhibitory agent.
  • the response to therapy with a pharmaceutical inhibitory agent can be characterized in that the extent of the malignancy is decreasing, stable, or increasing at a slower rate with the use of the pharmaceutical inhibitory agent. Failure to respond may be characterized by increasing or accelerating extent of malignancy.
  • the extent of the malignant disease before application of the therapy or a comparison person who does not receive the therapy with the pharmaceutical inhibitor can serve as a comparison.
  • the extent of the disease can be characterized by the number of malignant cells or the size of the malignant tumor.
  • a response to therapy with the pharmaceutical inhibitor by delaying the onset of death, the occurrence of a recurrence, the occurrence of lymph node metastases, the occurrence of distant metastases, the progression of the malignant disease, and / or the increase in another parameter, which is specific to the malignancy.
  • "prediction” refers to deductive steps in connection with a preceding in vitro method, so that no technical step essential to the invention takes place on the human or animal body.
  • sequence identity is referred to as sequence identity with said DNA sequence.
  • Suitable algorithms for determining the sequence identity of DNA sequences are known to those skilled in the art.
  • a "CpG dinucleotide” is a DNA motif containing the nucleoside sequence cytidine- Has phosphate guanosine. Guanosin consists of the nucleobase guanine and the sugar ß-D-ribose. Cytidine consists of the nucleobase cytosine and the sugar ß-D-ribose.
  • DNA methylation refers to the biochemical or chemical coupling of methyl groups to specific nucleotides of DNA.
  • DNA methylation refers to the presence of a methyl group on the fifth carbon atom of a cytosine (5-methylcytosine) located within a CpG Dinucleotide context is, hereinafter referred to as "methylation”.
  • a "DNA methylation analysis” includes the determination of the methylation state of at least one CpG dinucleotide or several CpG dinucleotides from a specific sequence context, e.g. in a specific part of a gene.
  • “DNA methylation analysis” means determining whether the cytosine in the CpG dinucleotide or CpG dinucleotides has methylation, ie is "methylated”, or has no methylation, ie "unmethylated” or "unmethylated”.
  • the DNA methylation analysis can comprise a single copy of the CpG dinucleotide or several different CpG dinucleotides
  • the DNA methylation analysis can also comprise several copies of the CpG dinucleotide or several CpG dinucleotides, for example if the DNA contains a plurality of
  • DNA methylation analysis can provide a methylation level of the CpG dinucleotide or CpG dinucleotides, ie an average value related to the percentage of methylated copies of the CpG dinucleotide or CpG dinucleotides expresses on the total copy number of the CpG dinucleotide or the CpG dinucleotides, wherein the Total copy number can accordingly correspond to the total number of cells examined for the malignant disease.
  • a suitable primary human genome sequence that can be used to determine suitable and preferred regions and sequences of genes for DNA methylation analysis of the present invention is, for example, the human genome version of the Genome Reference Consortium Human Build 38 (GRCh38) Patch Release 13 (GRCh38.pl3) of April 10, 2021.
  • regions of the genome are referred to according to the spelling "chromosome number: position of the first base of the region-position of the last base of the region", e.g. "6:30675116-30688275". for the region from base 30675116 to base 30688275 of chromosome 6.
  • a class of active ingredients with a low molecular mass is referred to here as a “small molecule”.
  • the term “low-molecular compound” is used to differentiate from biologicals.
  • a low-molecular compound can be an active substance whose molecular mass does not exceed approximately 1200 g/mol, in particular 900 g/mol.
  • a “monoclonal antibody” is used herein to refer to a class of immunologically active proteins derived from a B lymphocyte and directed against a single epitope.
  • a monoclonal antibody also includes hybrid antibodies.
  • a hybrid - Antibody is an immunoconjugate, which is made up of the components of two different monoclonal antibodies and is specifically directed against two different epitopes.As the term is used here, a monoclonal antibody also includes single domain antibodies, too called nanobodies or nanoantibodies.
  • Single domain antibodies are antibody fragments made up of a single, monomeric variable domain of an antibody.
  • single domain antibodies can consist of the monomeric variable domains of heavy chain antibodies.
  • Heavy chain antibodies are antibodies consisting exclusively of heavy chains and occur naturally within, for example, the cartilaginous fish class and the camel family.
  • a specific monoclonal antibody is named below as a pharmaceutical inhibitor, this also expressly includes imitation preparations, in particular biosimilar antibodies, of the named monoclonal antibody as pharmaceutical inhibitor.
  • the monoclonal antibody designated by name is an already approved therapeutic monoclonal antibody, also referred to as "original active ingredient” or “reference product”, in this respect representative of copycat preparations or biosimilar antibodies that have an equivalent specificity and effect (also known as “bioequivalence” or clinical equivalence”. referred) to the original active ingredient.
  • malignant disease or “malignant” refers to diseases that are characterized by a course of disease that is progressively destructive and can also lead to the death of the patient.
  • Malignancies involve the malignant formation of new tissue, such as neoplasms or tumors, where malignancy may be characterized by uncontrolled, space-occupying, displacing, infiltrative, and/or invasive growth.
  • Malignant tumors are usually able to to form secondary tumors (metastases).
  • Non-limiting examples of malignancies are carcinomas, sarcomas, melanomas, gliomas, blastomas, seminomas and teratomas.
  • Carcinomas include e.g. B.
  • Malignancies also include hematological malignancies, ie malignancies of the blood system or the hematopoietic system, such as leukemias, lymphomas, myeloproliferative diseases and myelodysplastic syndromes.
  • Leukemias comprise a group of malignancies in which immature hematopoietic cells have become malignant, proliferate excessively, and lead to accumulation of cells in the peripheral blood.
  • Lymphomas include diseases in which cells of the lymphatic system have become malignant.
  • Myeloproliferative disorders comprise a group of disorders in which one or more hematopoietic cell lineages overproliferate.
  • Myelodysplastic syndromes involve a clonal expansion of progenitor cells of all hematopoietic cell lineages, which is based on a chronic differentiation disorder of the hematopoietic stem cells.
  • pharmaceutical inhibitor is used here as a collective term for active ingredients that are able to reduce or inhibit the activity of a protein or a protein complex, also known as “inhibit", and thereby stop the proliferation of malignant cells reduce and/or promote the death of malignant cells.
  • the pharmaceutical inhibitor can in particular in the form of a low molecular weight compound or a biological such.
  • the inhibited protein or protein complex is preferably a kinase, for example a receptor kinase, a non-receptor kinase, a tyrosine kinase and a serine/threonine kinase.
  • the inhibited protein or protein complex can also be a GTPase, a transcription factor or a polymerase.
  • the pharmaceutical inhibitory agent can inhibit one or more isoforms of a protein or family member of a protein family.
  • the pharmaceutical inhibitory agent may inhibit the wild-type and/or mutant variant of a protein, where the mutation is e.g. B. can be a point mutation, a frame mutation, an insertion, an amplification, a deletion or a fusion.
  • Biomarkers are characteristic indicators and/or biological features that can be measured objectively and conclusions can be drawn about the status of a normal biological or a diseased process in an organism, or the response of a normal or diseased process to an intervention, such as an operation, a Radiation or drug treatment Biomarkers are often (bio-)chemical substances, such as proteins, hormones, metabolites, sugars and nucleic acids, as well as modifications thereof.
  • the present invention was preceded by the finding that malignant diseases have complex genetic and epigenetic changes and can therefore be very individual. Even malignancies of the same organ and with the same genetic changes can therefore respond very differently to treatment with a pharmaceutical inhibitor.
  • the inventor has further recognized that many pharmaceutical inhibitory agents can only be used if the malignant disease has a specific genetic change.
  • the MEK inhibitor trametinib can only be used in patients with melanoma or non-small cell carcinoma who also have a BRAFV600 mutation in the BRAF gene. It has been shown that this evidence is often insufficient, since there are both patients with a BRAFV600 mutation in the melanoma who still do not respond to the pharmaceutical inhibitor and, on the other hand, there are patients who respond to the therapy despite the absence of such a mutation.
  • the inventor has recognized that there are other malignancies that also respond to therapy with a BRAF inhibitor. Therefore, there is a need for new predictive biomarkers that can predict response to therapy with a pharmaceutical inhibitor essentially independently of the genetic modification of the malignant disease and independently of the type of malignant disease.
  • the invention is also based on the finding that uniform predictive tests for groups of pharmaceutical inhibitory active ingredients that are based on the same or a similar or analogous principle of action are of particular importance. Such tests can identify patients who benefit from therapy with a pharmaceutical inhibitor from a specific group. At the same time, patients whose malignant disease is predicted not to respond to therapy with a pharmaceutical inhibitor from a specific group can receive drug therapy based, for example, on another group of pharmaceutical inhibitors with a different mode of action. In this way, faster and/or improved treatment success can be achieved with fewer tests and cost-intensive incorrect therapy can be avoided.
  • the present invention provides, in a first aspect, a method for determining the likelihood of a malignant disease responding to treatment with a pharmaceutical inhibitory agent.
  • the pharmaceutical inhibitor is selected from the group consisting of RAS/RAF/MEK/ERK signaling pathway inhibitor, CDK4 and CDK6 inhibitor, PARP inhibitor, PI3K inhibitor, mTOR inhibitor, VEGFR inhibitor, PDGFR inhibitor , SRC Inhibitor, FGFR Inhibitor, NTRK Inhibitor and any combination thereof.
  • a DNA methylation analysis of at least one CpG dinucleotide of a gene selected from the group consisting of PPP1R18, RUNX1 and any combination thereof of cells of the malignant disease is carried out in order to determine the probability of response.
  • a response to the treatment is more likely or more likely if the at least one CpG dinucleotide is unmethylated in a majority of the cells of the malignant disease. Conversely, a response to treatment is less or less likely if the at least one CpG dinucleotide is methylated in a majority of the cells of the malignancy.
  • the DNA methylation analysis of PPP1R18 and/or RUNX1 has proven to be particularly suitable for determining the probability of response to treatment with a RAS/RAF/MEK/ERK signaling pathway inhibitor, which is in particular a MEK inhibitor, RAF inhibitor , ERK inhibitor, RAS inhibitor, SHP2 inhibitor and/or c-Met inhibitor.
  • the RAF inhibitor can in particular be a BRAF inhibitor, RAFI inhibitor and/or ARAF1 inhibitor.
  • the RAS inhibitor can in particular be a KRAS inhibitor and/or NRAS inhibitor.
  • DNA methylation analysis of PPP1R18 and RUNX1 is particularly useful for determining the likelihood of response to treatment with a PI3K inhibitor and/or mTOR inhibitor, particularly an inhibitor that inhibits both PI3K and mTOR ( PI3K and mTOR inhibitor), and to treatment with a VEGFR inhibitor and/or PDGFR inhibitor, in particular an inhibitory agent that inhibits both VEGFR and PDGFR (VEGFR and PDGFR inhibitor).
  • the pharmaceutical inhibitory agent is selected from the group consisting of ERBB inhibitor, RAS/RAF/MEK/ERK signaling pathway inhibitor, and any combination thereof.
  • a response to the treatment is more likely or more likely if the at least one CpG dinucleotide is unmethylated in a majority of the cells of the malignant disease. Conversely, a response to treatment is less or less likely if the at least one CpG dinucleotide is methylated in a majority of the cells of the malignancy.
  • the DNA methylation analysis of PLEC, LAMB3, TINAGL1, CI9orf33, IL18, S100A2, TOBI, TOR4A, FBRSL1, S100A10, LRRFIP2, SPIDR, ASB1, LAMA3, ENSG00000229672, MYH16, GRID1 and/or CHD2 has proven to be particularly suitable for the determination the likelihood of responding to treatment with a RAS/RAF/MEK/ERK signaling pathway inhibitor, in particular a MEK inhibitor, RAF inhibitor, ERK inhibitor, RAS inhibitor, SHP2 inhibitor and/or c-Met Inhibitors can act.
  • the RAF inhibitor can in particular be a BRAF inhibitor, RAFI inhibitor and/or ARAFI be an inhibitor.
  • the RAS inhibitor can in particular be a KRAS inhibitor and/or NRAS inhibitor.
  • DNA methylation analysis of PLEC, LAMB3, TINAGL1, Cl9orf33, IL18, S100A2, TOBI, TOR4A, FBRSL1, S100A10, LRRFIP2, SPIDR, ASB1, LAMA3, ENSGO0000229672, MYH16, GRID1 and/or CHD2 is particularly useful for determining the probability of response to treatment with an ERBB inhibitor, in particular an EGFR inhibitor and/or HER2 inhibitor.
  • the pharmaceutical inhibitor is selected from the group consisting of ERBB inhibitor, RAS/RAF/MEK/ERK signaling pathway inhibitor, CDK4 and CDK6 inhibitor, SRC inhibitor and any combination thereof.
  • a response to the treatment is more likely or more likely if the at least one CpG dinucleotide in the cells of the malignant disease is predominantly unmethylated. Conversely, a response to treatment is less or less likely if the at least one CpG dinucleotide is methylated in a majority of the cells of the malignancy.
  • the inventor has recognized that DNA methylation analysis of ZBTB38, TAFAZZIN, ANXA11, MAFK, NEDD4L, DIP2C, CAPN2, IER3, TM4SF19, RPTOR, S100A16, BCL9L, KCNMA1, GALE, PCID2, GNG7, ANXA2, MAFG, PKP3, ABTB2, ENSGO0000287625, ARL14, BCAR3, BIK, CCND3, CMIP, ELK3, HRH1, SAP30BP, NOS1AP, RALB, TGFBI, ENSG00000235726, CAB39, CIRBP, DIAPH1, FGD6, LMO7, MICAL2, STMN1, MNT, PC, PLEKHG5, PRORP, RDX, SERP1, SLCO3A1, SUFU, TANGOS, EGER, PINX1, SSBP2, TRERF1, GPT2, HEG1, ENSGO0000231740, PPM1H,
  • the pharmaceutical inhibitor is selected from the group consisting of CDK4 and CDK6 inhibitor, RAS/RAF/MEK/ERK signaling pathway inhibitor, SRC inhibitor and any combination thereof.
  • a response to the treatment is more likely or likely if the at least one CpG dinucleotide is unmethylated in a majority of the cells of the malignant disease. Conversely, a response to treatment is less or less likely if the at least one CpG dinucleotide is methylated in a majority of the cells of the malignancy.
  • the DNA methylation analysis of VGLL4, CDCP1, RASA3, PTTG1IP, ASAP2, ENSGO0000242282, locus Chr.3q29, TMCO4, UBXN11, MAP3K5, ASTN2 and/or ENSG00000258082 has proven to be particularly suitable for determining the probability of response to treatment with a RAS/ RAF/MEK/ERK signaling pathway inhibitor, specifically being MEK inhibitor, RAF inhibitor, ERK inhibitor, RAS inhibitor, SHP2 inhibitor and/or c-Met inhibitor.
  • the RAF inhibitor can in particular be a BRAF inhibitor, RAFI inhibitor and/or ARAF1 inhibitor.
  • the RAS inhibitor can in particular be a KRAS inhibitor and/or NRAS inhibitor.
  • the pharmaceutical inhibitory agent is selected from the group consisting of CDK4 and CDK6 inhibitor, PARP inhibitor, mTOR inhibitor, RAS/RAF/MEK/ERK signaling pathway inhibitor, SRC inhibitor, and any combination thereof.
  • a DNA methylation analysis of at least one CpG dinucleotide of a gene selected from the group consisting of SYNJ2 and WWTR1 of cells of the malignant disease is carried out in order to determine the probability of response. It has been shown that a response to the treatment is more likely or likely when the at least one CpG dinucleotide is unmethylated in a majority of the cells of the malignant disease. Conversely, a response to treatment is less or less likely if the at least one CpG dinucleotide is methylated in a majority of the cells of the malignancy.
  • DNA methylation analysis of SYNJ2 and WWTR1 has been shown to be particularly useful for determining the likelihood of response to treatment with a RAS/RAF/MEK/ERK pathway inhibitor, specifically a MEK inhibitor, RAF inhibitor, ERK Inhibitor, RAS inhibitor, SHP2 inhibitor and/or c-Met inhibitor.
  • a RAS/RAF/MEK/ERK pathway inhibitor specifically a MEK inhibitor, RAF inhibitor, ERK Inhibitor, RAS inhibitor, SHP2 inhibitor and/or c-Met inhibitor.
  • An RAF inhibitor can in particular be a BRAF inhibitor, RAFI inhibitor and/or ARAFI inhibitor.
  • a RAS inhibitor can in particular be a KRAS inhibitor and/or NRAS inhibitors.
  • the pharmaceutical inhibitory agent is selected from the group consisting of VEGFR inhibitor, mTOR inhibitor, PDGFR inhibitor, PARP inhibitor, PI3K inhibitor, FGFR inhibitor, NTRK inhibitor, BRAF inhibitor, and any combination thereof.
  • a DNA methylation analysis of at least one CpG dinucleotide of the CLDN4 gene from cells of the malignant disease is carried out in order to determine the probability of response.
  • a response to the treatment is more likely or more likely if the at least one CpG dinucleotide has methylation in a majority of the cells of the malignant disease, ie is methylated.
  • response to treatment is less or less likely if the at least one CpG dinucleotide is unmethylated in a majority of the cells of the malignancy.
  • DNA methylation analysis of CLDN4 has been shown to be particularly useful in determining the likelihood of response to treatment with a PI3K inhibitor and/or mTOR inhibitor, particularly an inhibitory agent that inhibits both PI3K and mTOR, and to treatment with a VEGFR - Inhibitor and/or PDGFR inhibitor, in particular an inhibitory agent that inhibits both VEGFR and PDGFR.
  • GTPases, kinases and transcription factors are involved in the RAS/RAF/MEK/ERK signaling pathway.
  • GTPases of the RAS/RAF/MEK/ERK signaling pathway are the “RAS” (Rat sarcoma) GTPases “KRAS” (Kirsten rat sarcoma virus), “NRAS” (Neuroblastoma RAS viral oncogene homolog) and “HRAS” (Harvey Rat sarcoma virus), which are caused by the genes KRAS (also known as KRAS protooncogene, GTPase), NRAS (NRAS protooncogene, GTPase) and HRAS (HRas protooncogene, GTPase) are encoded.
  • RAF Rapidly Accelerated Fibrosarcoma
  • BRAF Broadband Fidelity
  • RAF1 Rapidly Accelerated Fibrosarcoma
  • ARAF A-Raf protooncogene, serine/threonine kinase
  • BRAF also referred to as B-Raf protooncogene, serine /threonine kinase
  • RAF1 also referred to as Raf-1 protooncogene, serine/threonine kinase
  • ARAF also referred to as A-Raf protooncogene, serine/threonine kinase
  • MAP2K2 kinases of the RAS/RAF/MEK/ERK signaling pathway are also the two "MEK” (mitogen-activated protein kinase) kinases MEK1 (also referred to as serine/threonine protein kinase MEK1) and MEK2 (also referred to as MAP2K2, mitogen-activated protein).
  • MEK1 also referred to as serine/threonine protein kinase MEK1
  • MEK2 also referred to as MAP2K2, mitogen-activated protein.
  • - (MAP)- kinase kinase 2 which are encoded by the genes MEK1 or MAP2K2.
  • ERK1 also termed mitogen-activated protein kinase 3, MAP kinase 3, MAPK3
  • ERK2 also termed mitogen-activated protein kinase 1, MAPK1
  • SHP2 K-box region and MADS-box transcription factor family protein
  • the ephrin receptors of the subclasses EphA and EphB are also kinases of the RAS/RAF/MEK/ERK signaling pathway.
  • An example of an ephrin receptor of the RAS/RAF/MEK/ERK signaling pathway is EPHA2 (ephrin receptor A2), which is encoded by the gene EPHA2 (EPH receptor A2).
  • the kinases of the RAS/RAF/MEK/ERK signaling pathway also include c-Met, also known as hepatocyte growth factor receptor (HGFR), which is encoded by the gene MET (MET proto-oncogene, receptor tyrosine kinase).
  • the pharmaceutical inhibitory agent is a RAS/RAF/MEK/ERK signaling pathway inhibitor.
  • RAS/RAF/MEK/ERK signaling pathway inhibitors are here refers to pharmaceutical inhibitors which inhibit the activity of one or more signaling pathway proteins from the group consisting of RAS, RAF, MEK, ERK, SHP2, ephrin receptors and c-Met.
  • the RAS/RAF/MEK/ERK signaling pathway inhibitor is a MEK inhibitor, RAF inhibitor, RAS inhibitor, ERK inhibitor, SHP2 inhibitor, c-Met inhibitor and/or EPHA2 inhibitor.
  • the RAF inhibitor is preferably a BRAF inhibitor, RAF1 inhibitor and/or ARAF inhibitor, particularly preferably a BRAF inhibitor.
  • the RAS inhibitor is a KRAS inhibitor and/or NRAS inhibitor.
  • the RAS/RAF/MEK/ERK pathway inhibitor is a MEK inhibitor.
  • MEK inhibitors are RAS/RAF/MEK/ERK signaling pathway inhibitors that inhibit MEK1 and/or MEK2.
  • suitable MEK inhibitors are trametinib, refametinib, selumetinib, mirdametinib, binimetinib, cobimetinib, FCN-159 (Fochon Pharmaceuticals), Pimasertib, CI-1040 (CAS No. 212631-79-3), TAK-733 (GAS No. 1035555-63-5), AZD8330 (GAS No. 869357-68-6), GDC-0623 (GAS No.
  • ATR-002 (Atriva Therapeutics GmbH ), CS3006 (CStone), WX-554 (Wilex), SHR 7390 (Jiangsu Hengrui Medicine Co.), HL-085 (Kechow Pharma, Inc.), SHR7390 (Jiangsu Hengrui Medicine Co.) and/or BI 3011441 (LNP3794 ).
  • the MEK inhibitor is selected from the group consisting of refametinib, trametinib, selumetinib, mirdametinib, and any combination thereof.
  • the RAS/RAF/MEK/ERK pathway inhibitor is a RAS inhibitor.
  • RAS inhibitors are RAS/RAF/MEK/ERK signaling pathway inhibitors that inhibit KRAS, NRAS and/or HRAS.
  • Suitable RAS inhibitors include BI 1701963 (Boehringer Ingelheim), Adagrasib, Sotorasib, Lonafarnib, JDQ443 (Novartis), JNJ-74699157 (ARS-3248, Johnson and Johnson), salirasib and/or MCP110 (CAS No. 521310-51-0).
  • the RAS/RAF/MEK/ERK pathway inhibitor is a KRAS inhibitor.
  • KRAS inhibitors are RAS inhibitors and therefore also RAS/RAF/MEK/ERK signaling pathway inhibitors that inhibit KRAS.
  • Suitable KRAS inhibitors are, for example, BI 1701963 (Boehringer Ingelheim), Adagrasib, Sotorasib, Lonafarnib, JDQ443 (Novartis), JNJ-74699157 (ARS-3248, Johnson and Johnson), RG6330 (Roche/Genentech), BI-2852 (GAS No. 2375482-51-0), BI-3406 (GAS No. 2230836-55-0), MRTX- 1257 (GAS No. 2206736-04-9), LY3537982 (Eli Lilly) and/or 6H05 (GAS No. 2061344-88-3).
  • the RAS/RAF/MEK/ERK pathway inhibitor is an NRAS inhibitor.
  • An “NRAS inhibitor” is a RAS inhibitor or a RAS/RAF/MEK/ERK signaling pathway inhibitor that inhibits NRAS.
  • Suitable NRAS inhibitors are, for example, lonafarnib and/or MCP110 (GAS No. 521310-51-0).
  • the RAS/RAF/MEK/ERK pathway inhibitor is an HRAS inhibitor.
  • An "HRAS inhibitor” is a RAS inhibitor or a RAS/RAF/MEK/ERK signaling pathway inhibitor that inhibits HRAS. Suitable HRAS inhibitors are, for example, lonafarnib, MCP110 (GAS No. 521310-51-0) and/or Kobe0065 (GAS No. 436133-68-5).
  • the RAS/RAF/MEK/ERK pathway inhibitor is an RAF inhibitor.
  • "RAF inhibitors" are RAS/RAF/MEK/ERK signaling pathway inhibitors which inhibit the RAF kinases BRAF, RAF1 and/or ARAF.
  • RAF inhibitors examples include belvarafenib, naporafenib, encorafenib, RAF265 (CAS No. 927880-90- 8), VS-6766 (Verastem Oncology), RO5126766 (GAS No. 946128-88-7), TAK-580 (MLN 2480, BIIB-024, GAS No. 1096708-71-2) and/or ARQ 736 (GAS No. 1228237-57-7).
  • the RAS/RAF/MEK/ERK pathway inhibitor is a BRAF inhibitor.
  • a “BRAF inhibitor” is an RAF inhibitor and thus also a RAS/RAF/MEK/ERK signaling pathway inhibitor that inhibits the activity of BRAF.
  • suitable BRAF inhibitors are dabrafenib, encorafenib, vemurafenib, sorafenib, belvarafenib, naporafenib, Regorafenib, PLX-4720 (GAS No. 918505-84-7), AZ 628 (GAS No. 878739-06-1), SB590885 (GAS No. 405554-55-4), GDC-0879 (GAS No.
  • the RAS/RAF/MEK/ERK signaling pathway inhibitor is an RAFI inhibitor.
  • a "RAF1 inhibitor” is an RAF inhibitor or a RAS/RAF/MEK/ERK signaling pathway inhibitor that inhibits RAF1.
  • Suitable RAF1 inhibitors are, for example, naporafenib, encorafenib, vemurafenib, sorafenib, RO5126766 (GAS No. 946128-88 -7), TAK-580 (MLN 2480, BIIB-024, GAS No.: 1096708-71-2), RAF265 (GAS No. 927880-90-8), belvarafenib and/or ARQ 736 (GAS No.
  • the RAS/RAF/MEK/ERK pathway inhibitor is an ARAF inhibitor.
  • An "ARAF inhibitor” is an RAF inhibitor or a RAS/RAF/MEK/ERK signaling pathway inhibitor that inhibits ARAF.
  • suitable ARAF inhibitors are naporafenib, TAK-580 (MLN 2480, BIIB-024, GAS No. : 1096708-71-2), RAF265 (GAS No. 927880-90-8) and/or ARQ 736 (GAS No. 1228237-57-7).
  • the RAS/RAF/MEK/ERK pathway inhibitor is an ERK inhibitor.
  • ERK inhibitors are RAS/RAF/MEK/ERK signaling pathway inhibitors that inhibit ERK1 and/or ERK2.
  • Suitable ERK inhibitors include, for example, ulixertinib, ravoxertinib, AZD0364 (GAS No. 2097416-76-5), SCH772984 (GAS No 942183-80-4), MK-8353 (GAS No. 1184173-73-6), LY3214996 (GAS No. 1951483-29-6), Magnolin (GAS No. 31008-18-1), VX-lle ( GAS No.
  • FR 180204 (GAS No. 865362-74-9), ASTX029 (Astex Pharmaceuticals), ASN007 (Asana BioSciences), KO- 947 (CAS No. 1695533-89-1) and/ or JSI-1187 (JS InnoPharm, LLC).
  • the RAS/RAF/MEK/ERK pathway inhibitor is an SHP2 inhibitor.
  • SHP2 inhibitors are, for example, RMC-4630 (Revolution Medicine), TNO155 (CAS No. 1801765-04-7), ERAS-601, RG6433 (Roche/Genentech), BBP-398 (IACS-15509, Navire Pharma Inc., CAS No. 2160546-07-4), JAB-3068 (CAS No. 2169223-48-5), JAB-3312 (Abbvie), RMC-4550 (CAS No. 2172651-73-7), SHP099 (CAS No. 1801747-42-1), RLY-1971 (Relay Therapeutics) and/or SH3809 (Nanjing Sanhome Pharmaceutical, Co., Ltd.).
  • the RAS/RAF/MEK/ERK is preferred embodiments.
  • EPHA2 inhibitor Suitable EPHA2
  • inhibitors examples include BT5528 (Bicycle Tx Limited), DS- 8895a (Daiichi Sankyo Co., Ltd.), Sitravatinib, SL-701 (Menarini Group) and/or MEDI-547 (Medlmmune LLC).
  • the RAS/RAF/MEK/ERK pathway inhibitor is a c-Met inhibitor.
  • c-Met inhibitors are RAS/RAF/MEK/ERK signaling pathway inhibitors that inhibit c-Met.
  • suitable c-Met inhibitors are capmatinib, tepotinib, amivantamab, glumetinib, tivantinib, foretinib, volitinib, crizotinib, vebreltinib, Bozitinib, Savolitinib, Telisotuzumab vedotin (ABBV-399), Telisotuzumab, AMG 337 (CAS No.
  • the ERBB protein family includes four receptor tyrosine kinases that are structurally related to the epidermal growth factor receptor (EGER).
  • the four members of the "ERBB protein family” include the ERBB receptors “EGER” (ERBB1, HER1), "HER2” (HER-2/neu, ERBB2), HER3 (ERBB3) and HER4 (ERBB4), which are encoded by the genes EGFR, ERBB2, ERBB3 and ERBB4, respectively.
  • EGER ERBB1
  • HER2 HER-2/neu
  • ERBB2 HER3
  • HER4 HER4
  • the pharmaceutical inhibitory agent is an ERBB inhibitor.
  • ERBB inhibitors are inhibitory agents that inhibit the activity of at least one member of the ERBB family of proteins.
  • the ERBB inhibitor is an EGFR inhibitor.
  • EGFR inhibitors are inhibitory agents that inhibit the activity of EGFR.
  • the ERBB inhibitor is a HER2 inhibitor.
  • HER2 inhibitors are inhibitory agents that inhibit the activity of HER2.
  • the ERBB inhibitor is both an EGFR inhibitor and a HER2 inhibitor.
  • ERBB inhibitors examples include afatinib, pyrotinib, dacomitinib, neratinib, lapatinib, varlitinib, tesevatinib, mobocertinib, BMS-599626 (GAS No. 714971-09-2), FCN-411 (Fochon Pharmaceuticals), DZD9008 (Dizal Pharma), Tarloxotinib, PF-06804103 (Pfizer), BMS-690514 (GAS No. 859853-30-8), CDX-3379 (Celldex Therapeutics), BMS-599626 (GAS No. 714971-09-2), BDTX-189 (GAS No.
  • Suitable HER2 inhibitors are, for example, trastuzumab, pertuzumab, afatinib, lapatinib, canertinib, mubritinib, PF- 06804103 (Pfizer), pyrotinib, dacomitinib, tucatinib, neratinib, tarloxotinib, ARX788 (Ambrx Inc.), KN026 (Alphamab Oncology), DZD9008 ( Dizal Pharma), TAS0728 (CAS No. 2088323-16-2), BMS- 599626 (GAS No.
  • EGFR inhibitors examples include cetuximab, afatinib, erlotinib, pelitinib, gefitinib, lapatinib, neratinib, lazertinib, osimertinib, toartinib, pyrotinib, zorifertinib, rociletinib, icotinib, almonertinib, naquotinib, alflutinib, tesevatinib, necitumumab, dacomitinib, mavelertinib, tarloxotinib, Brigatinib, Vandetanib, Poziotinib, Mobocertinib, Varlitinib, Amivantamab, Matuzumab, Panitumumab, CLN-081 (CAS No.
  • the pharmaceutical inhibitory agent is a CDK4 and CDK6 inhibitor.
  • the "cyclin-dependent kinase 4" (CDK4) and “cyclin-dependent kinase 6" (CDK6) are encoded by the genes CDK4 and CDK6, respectively.
  • CDK4 and CDK6 are members of the serine/threonine protein kinase family.
  • CDK4 and CDK6 inhibitors are inhibitory substances which inhibit the activity of cyclin-dependent kinase 4 and/or cyclin-dependent kinase 6.
  • CDK4 and CDK6 inhibitors are palbociclib, ribociclib, Abemaciclib, Trilaciclib, CGP-082996 (CAS No. 359886-84-3), CGP-60474 (CAS No. 164658-13-3), Lerociclib, Dalpiciclib, Voruciclib, FCN-437 (Fochon Pharmaceuticals), CS3002 (CStone) , Alvocidib, Auceliciclib, PF-06873600 (2185857-97-8), Roniciclib, HS-10342 (Jiangsu Hansoh Pharmaceutical), Riviciclib, AMG 925 (CAS No.
  • the pharmaceutical inhibitory agent is a PARP inhibitor.
  • PARP refers to the family of poly (ADP-ribose) polymerases, which are represented by the genes PARP1 (also known as poly (ADP-ribose) polymerase 1, PARP1), PARP2 (also known as poly (ADP-ribose) -Polymerase 2, PARP2), PARP3 (aka Poly(ADP-Ribose)-Polymerase Family Member 3), PARP4 (aka Poly(ADP-Ribose)-Polymerase Family Member 4), TNKS (aka Tankyrase or PARP5A) , TNKS2 (aka Tankyrase 2 or PARP5B), PARP6 (also known as poly (ADP-ribose) polymerase family member 6), TIPARP (TCDD-inducible poly (ADP-ribose) polymerase or PARP7), PARP8 (also known as poly (ADP-ribose) polymerase or PAR
  • PARP inhibitors are pharmaceutical inhibitors which inhibit the activity of PARP polymerases.
  • Preferred PARP inhibitors can inhibit PARP1 and/or PARP2.
  • Suitable PARP inhibitors are, for example, olaparib, veliparib, talazoparib, rucaparib, niraparib, pamiparib, fluzoparib , Iniparib, Amelparib, Venadaparib, Stenoparib, Senaparib, Simmiparib, AG-14361 (CAS No. 328543-09-5), AZD2461 (GAS No. 1174043-16-3), E7449 (GAS No.
  • the pharmaceutical inhibitory agent is an SRC inhibitor.
  • SRC denotes a family of non-receptor kinases with nine members. These nine members are “SRC” (SRC protooncogene encoded by the gene SRC), YES1 (YES protooncogene 1 encoded by the gene YES1), FYN (FYN Proto-oncogene encoded by the gene FYN), FGR (FGR protooncogene encoded by the FGR gene), LCK (LCK protooncogene encoded by the LCK gene), HCK (HCK protooncogene encoded by the HCK gene), BLK (BLK protooncogene encoded by the BLK gene), LYN (LYN protooncogene, encoded by the gene LYN) and FRK (“fyn-related Src family tyrosine kinase”, fyn related Src family tyrosine kinase, encoded by the gene FRK).
  • SRC inhibitors are pharmaceutical inhibitors which have the activity of at least one non inhibit receptor kinases of the SRC family, e.g. SRC. Suitable SRC inhibitors are z. B. Bosutinib, dasatinib, saracatinib, ponatinib, rivoceranib, WH-4-023 (CAS No. 837422-57-8), A-770041 (CAS No. 869748-10-7), eCF506 (CAS No. 1914078-41). -3), DGY-06-116 (CAS No. 2556836-50-9), UM-164 (CAS No. 903564-48-7), 1-NM-PP1 (CAS No.
  • the pharmaceutical inhibitory agent is an NTRK inhibitor.
  • NTRK refers to the family of “neurotrophic receptor tyrosine kinases", also known as tropomyosin receptor kinases ("tropomyosin receptor kinases", TRKs), formed by members TRKA, TRKB and TRKC.
  • TRKA, TRKB and TRKC are encoded by the genes NTRK1 (TRKA), NTRK2 (TRKB) and NTRK3 (TRKC), respectively.
  • NTRK inhibitors are pharmaceutical inhibitors that inhibit the activity of at least one member of the NTRK family No. 1402438-74-7), CH7057288 (CAS No.
  • GNF-5837 (CAS No. 1033769-28-6), SP600125 (CAS No. 129-56-6), Danusertib, BMS -754807 (CAS No. 1001350-96- 4), PBI-200 and PBI-100 (Pyramid Biosciences), GW441756 (CAS No. 504433-23-2), UNC2025 (CAS No. 1429881-91-3), BMS-935177 (CAS No. 1231889-53- 4) and/or sitravatinib.
  • the pharmaceutically acceptable salt in preferred embodiments, the pharmaceutical
  • VEGFR refers to the family of vascular endothelial growth factor receptors'), which is formed by the members VEGFR1, VEGFR2 and VEGFR3.
  • VEGFR1 is also known as FLTI ("fms-related receptor tyrosine kinase 1") and is characterized by the Gene FLTI encoded.
  • VEGFR2 is also known as KDR (kinase insert domain receptor) and is encoded by the KDR gene.
  • VEGFR3 is also known as FLT4 (fms-related receptor tyrosine kinase 4) and is encoded by the FLT4 gene.
  • VEGFR inhibitors are pharmaceutical inhibitors which inhibit the activity of one or more VEGFR, for example KDR.
  • Suitable VEGFR inhibitors are, for example, axitinib, sorafenib, sitravatinib, cediranib, tivozanib, RAF265 (CAS No. 927880-90-8 ), BI 836880 (Boehringer Ingelheim), IBI305 (Innovent), Famitinib, Glesatinib, Sunitinib, Rivoceranib, Lenvatinib, Tesevatinib, Vandetanib, BMS-690514 (CAS No.
  • LY2874455 (CAS No. 1254473-64-7), AZD2932 (CAS No. 883986-34-3), SKLB1002 (CAS No. 1225451-84-2), Vorolanib, SKLB 610 (CAS No.
  • the pharmaceutical inhibitory agent is a PDGFR inhibitor.
  • PDGFR platelet-derived growth factor receptors'.
  • PDGFR are receptor tyrosine kinases that bind platelet-derived growth factors (PDGF).
  • the PDGF bind to the PDGFR isoforms PDGFR-a and PDGFR-ß After binding of the PDGF, the two PDGFR isoforms dimerize and thus form the possible dimers PDGFR-aa, PDGFR-ßß and PDGFR-ß PDGFR-a is encoded by the gene PDGFRA PDGFR-ß is encoded by the gene PDGFRB.
  • PDGFR inhibitors are therefore pharmaceutical inhibitory agents that inhibit the activity of PDGFR- ⁇ and/or PDGFR-ß.
  • Suitable PDGFR inhibitors are, for example, linifanib, tivozanib, imatinib, axitinib, masitinib, amuvatinib, crenolanib, famitinib, lucitanib, nintedanib, orantinib, ponatinib, cediranib, sorafenib, lenvatinib, vatalanib, sunitinib, regorafenib, telatinib, pazopanib, motesanib, OSI 930 (CAS No.
  • K18751 (CAS No. 228559-41-9), XL999 (CAS No. 705946-27-6), K120227 (CAS No. 623142-96-1), SU14813 ( CAS No. 627908-92-3), toceranib, BAW2881 (CAS No. 861875-60-7), SU5402 (CAS No. 215543-92-3), AZD2932 (CAS No. 883986-34-3), vorolanib, Erdafitinib, PDGFR inhibitor 1 (CAS No. 1225278-16-9), foretinib, avapritinib, CP-673451 (CAS No.
  • a PDGFR inhibitor or a VEGFR inhibitor can be both a PDGFR inhibitor and a VEGFR inhibitor, ie the same inhibitory agent is able to inhibit the activity of PDGFR and VEGFR.
  • Suitable pharmaceutical inhibitors that are PDGFR and VEGFR inhibitors in this sense are sorafenib, sunitinib, midostaurin, linifanib, tivozanib, axitinib, pazopanib, orantinib, axitinib, nintedanib, lenvatinib, ponatinib, lucitanib, regorafenib, cediranib, telatinib, Vatalanib, Motesanib, XL999 (GAS No. 705946-27-6), OSI-930 (GAS No. 728033-96-3), K18751 (GAS No.
  • the pharmaceutical inhibitory agent is an FGFR inhibitor.
  • FGFR refers to the receptor tyrosine kinase family of fibroblast growth factor receptors' and includes members FGFR1, FGFR2, FGFR3 and FGFR4.
  • Fibroblast growth factor receptor 1 (FGFR1) is characterized by the gene FGFR1
  • the fibroblast growth factor receptor 2 (FGFR2) is encoded by the gene FGFR2
  • the fibroblast growth factor receptor 3 (FGFR3) is encoded by the gene FGFR3
  • the fibroblast growth factor receptor 4 (fibroblast growth factor receptor 4, FGFR4) is encoded by the FGFR4 gene.
  • FGFR inhibitors are therefore pharmaceutical inhibitors that inhibit the activity of at least one member of the FGFR inhibit.
  • Suitable FGFR inhibitors are, for example, erdafitinib, rogaratinib, infigratinib, anlotinib, alofanib, pemigatinib, ASP5878 (CAS No. 1453208-66-6), AZD4547 (GAS No. 1035270-39-3), Debio 1347 (GAS No. 1265229- 25-1), derazantinib, fisogatinib, futibatinib, PRN1371 (GAS No. 1802929-43-6), E7090 (GAS No.1622204-21-0), CPL304110 (GAS No. 1627826-19-0), HMPL-453 (HutchMed), MAX-40279 (GAS No.
  • LY3076226 (Eli Lilly), Bemarituzumab, Vofatamab, Brivanib, Brivanib Alaninate, PD173074 (GAS No. 219580-11-7), Nintedanib, FP-1039 (Five Prime), Arutumab Ixadotin, Arutumab, Dovitinib, Lucitanib, Ponatinib, Danusertib, Masitinib, Orantinib, Surufatinib, XL228 (GAS No. 898280-07-4), XL999 (GAS No. 705946-27-6), Roblitinib, H3B-6527 (GAS No.
  • the pharmaceutical inhibitory agent is a PI3K inhibitor.
  • PI3K are phosphoinositide-3-kinases, also referred to as phosphatidylinositol-3-kinases.
  • the PI3K family is divided into four distinct classes (Class I-IV).
  • Class I PI3K catalyze the conversion of phosphatidylinositol-4,5 -bisphosphates to phosphatidylinositol-3,4,5-trisphosphates
  • Class I PI3K are heterodimeric molecules composed of a regulatory and a catalytic subunit
  • Class I PI3K are further subdivided into subgroups IA and IB
  • Class IA PI3K are composed of a pllO catalytic subunit and a p85 regulatory subunit
  • Suitable inhibitors of pllO-a, pllO-ß, pllO-y and/or pllO-5 are, for example, copanlisib, idelalisib, duvelisib, gedatolisib, dactolisib, capivasertib, paxalisib, alpelisib, buparlisib, inavolisib, sapanisertib, eganelisib, torkinib, bimiralisib, Voxtalisib, Omipalisib, Tenalisib, Linperlisib, Serabelisib, Leniolisib, Parsaclisib, Pilaralisib, Pictilisib, MEN1611 (CAS No.
  • the pharmaceutical inhibitory agent is a PKB inhibitor.
  • PKB protein kinases B
  • AKT protein kinases B
  • An AKT inhibitor is therefore a pharmaceutical inhibitory agent capable of inhibiting the activity of PI3K.
  • an AKT inhibitor is therefore also a PI3K Inhibitor.
  • the family includes the AKT isoforms PKBa (also known as AKT1), PKBß (also known as AKT2) and PKBy (also known as AKT3), which are encoded by the genes AKT1, AKT2 and AKT3, respectively.
  • AKT inhibitors are pharmaceutical inhibitors that inhibit the activity of PKBa, PKBß and/or PKBy Inhibit PKBa, PKBß and/or PKBy Suitable AKT inhibitors are, for example, Ipatasertib, Miransertib, Afuresertib, Capivasertib, Uprosertib, Borussertib, BAY1125976 (GAS No. 1402608-02-9), MK-2206 (GAS No. 1032350-13- 2), TAS-117 (GAS No. 1402602-94-1), GSK690693 (GAS No. 937174-76-0), PF-04691502 (GAS No.
  • the pharmaceutical inhibitory agent is an mTOR inhibitor.
  • the "mechanistic target of rapamycin” (“mTOR”) is a kinase encoded by the gene MTOR.
  • mTOR forms the core of two protein complexes mTOR complex 1 (mTORCl) and mTOR - Complex 2 (mTORC2).
  • mTORC1 is formed by mTOR, "regulatory-associated protein of mTOR” (RAPTOR, encoded by the gene RAPTOR), "lethal in mammals with SEC13 protein 8".
  • mTORC2 is composed of mTOR, "rampamycin- rapamycin-insensitive companion of mTOR coded by the gene RICTOR), MLST8 and the "stress-activated protein kinase interacting protein 1"("stress-activated protein kinase interacting protein 1", SIN1, coded by the gene MAPKAP1).
  • mTOR inhibitors are pharmaceutical inhibitors that inhibit the activity of mTOR, mTORCl and/or mTORC2
  • GAS No. 1013101-36-4 AZD8055 (GAS No. 1009298-09-2), Ridaforolimus, RMC-5552 (Revolution Medicines), BGT226 (NVP-BGT226) maleate (GAS No. 1245537-68-1) , Paxalisib, Omipalisib, Everolimus, PF-05212384 (GAS No. 1197160-78-3), Rapamycin, WYE-125132 (GAS No. 1144068-46-1), ABI-009 (Nab-Sirolimus), Voxtalisib, Zotarolimus, Torin 2 (GAS No. 1223001-51-1), Torin 1 (GAS No.
  • a PI3K inhibitor or an mTOR inhibitor can be both a PI3K inhibitor and an mTOR inhibitor, ie the same inhibitory agent is able to inhibit the activity of PI3K and mTOR.
  • PI3K and mTOR inhibitors are therefore inhibitors which inhibit the catalytic activity of at least one of the proteins selected from the group consisting of pllO-a, pllO-ß, pllO-y and pllO-5 and inhibit the activity of at least one of the proteins selected from the group consisting of mTOR, mTORC1 or mTORC2.
  • Suitable PI3K and mTOR inhibitors are, for example, dactolisib, pictilisib, omipalisib, buparlisib, aitolisib, gedatolisib, bimiralisib, paxalisib, voxtalisib, samotolisib, sapanisertib, torkinib, PF-04691502 (GAS No. 1013101-36-4), BGT226 ( NVP-BGT226) maleate (GAS No. 1245537-68-1), GSK1059615 (GAS No. 958852-01-2), Voxtalisib, NVP-BGT226 (GAS No.
  • the method according to the invention can also include any combination of the aforementioned embodiments with regard to the pharmaceutical inhibitory active ingredients.
  • the pharmaceutical inhibitory agent is a kinase inhibitor, especially a tyrosine kinase inhibitor.
  • the pharmaceutical inhibitory agent can inhibit different tyrosine kinases from different families.
  • the pharmaceutical inhibitory agent is a GTPase inhibitor.
  • the pharmaceutical inhibitory agent is a transcription factor inhibitor.
  • the pharmaceutical inhibiting agent or inhibitor is preferably a low-molecular compound or an antibody, in particular a monoclonal antibody.
  • the method according to the invention is not particularly restricted with regard to the type of malignant disease, but rather enables a reliable prediction of the probability of response in the case of a large number of different malignant diseases.
  • the malignant disease can in particular include a melanoma, a carcinoma, a sarcoma, a glioblastoma, a lymphoma and/or a leukemia.
  • the carcinoma can be, for example, an adenocarcinoma, squamous cell carcinoma, small cell carcinoma, neuroendocrine carcinoma, renal cell carcinoma, urothelial carcinoma, hepatocellular carcinoma, anal carcinoma, bronchial carcinoma, endometrial carcinoma, cholangiocellular carcinoma, hepatocellular carcinoma, testicular carcinoma colorectal carcinoma, head and neck carcinoma, esophagus carcinoma, gastric carcinoma, breast carcinoma, kidney carcinoma, ovarian carcinoma, pancreatic carcinoma, prostate carcinoma, thyroid carcinoma and/or cervical carcinoma.
  • a sarcoma may be, for example, an angiosarcoma, chondrosarcoma, Ewing's sarcoma, fibrosarcoma, Kaposi's sarcoma, liposarcoma, leiomyosarcoma, malignant fibrous histiocytoma, neurogenic sarcoma, osteosarcoma, or rhabdomyosarcoma.
  • a leukemia can be, for example, acute myeloid leukemia (AML), acute lymphocytic leukemia (ALL), chronic lymphocytic leukemia (CLL), or chronic myeloid leukemia (CML).
  • a lymphoma can be Hodgkin lymphoma or non-Hodgkin lymphoma.
  • Non-Hodgkin lymphoma can be B-cell lymphoma or T-cell lymphoma.
  • the malignant disease is an optionally metastasized, malignant melanoma or carcinoma.
  • the gene PPP1R18 or "protein phosphatase 1-regulating subunit 18" is also known by the synonyms HKMT1098 and KIAA1949 contain regulatory elements (6:30675116-30688275).
  • the at least one CpG dinucleotide is particularly preferably contained in a part of the promoter region of PPP1R18 (6:30683976-30687272, SEQ ID NO:1).Other preferred CpG dinucleotides for the DNA - Methylation analysis of PPP1R18 are described in Example 1.
  • RUNX1 or "RUNX family transcription factor 1" is also known by the synonyms AML1, CBFA2, EVI-1, AMLCR1, PEBP2aB, CBF2alpha, AML1-EVI-1 and PEBP2alpha.
  • Preferred CpG dinucleotides for the DNA methylation analysis of the invention RUNX1 are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (21:34780187-36019819).
  • the DNA methylation analysis of RUNX1 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter region (21:35045377-35053986, SEQ ID NO:37)
  • Other preferred CpG dinucleotides for DNA methylation analysis of RUNX1 are described in Example 1.
  • the gene PLEC or "plectin” is also known under the synonyms EBS1, EBSMD, EBSND, EBSO, EBSOG, EBSPA, HD1, LGMD2Q, LGMDR17, PCN1, PLEClb and PLTN.
  • Preferred CpG dinucleotides for the DNA methylation analysis of PLEC according to the invention are contained, for example, in the transcript-coding regions, the gene body and the upstream and downstream regulatory elements (8:143910841-143983887).
  • the DNA methylation analysis of PLEC according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the promoter region (8:143934771-143952510, SEQ ID NO:90).
  • Other preferred CpG dinucleotides for PLEC methylation analysis are described in Example 2.
  • the LAMB3 gene or "laminin subunit beta 3, laminin subunit beta 3" is also known by the synonyms ALIA, BM600-125KDA, LAM5 and LAMNB1.
  • Preferred CpG dinucleotides for the DNA methylation analysis of LAMB3 according to the invention are, for example, in the transcript-coding ones Contain regions, the gene body and the upstream and downstream regulatory elements (1:209607146-209659806).
  • the DNA methylation analysis of LAMB3 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter region (1:209641284-209659200, SEQ ID NO:24)
  • Other preferred CpG dinucleotides for DNA methylation analysis of LAMB3 are described in Example 2.
  • TINAGL1 gene or "tubulointerstitial nephritis antigen like 1" is also known by the synonyms ARG1, LCN7, LIECG3 and TINAGRP upstream and downstream regulatory elements (1:31565939-31592973)
  • the DNA methylation analysis of TINAGL1 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter region (1:31572254-3157978, SEQ ID NO:75). Further preferred CpG dinucleotides for the DNA methylation analysis of TINAGL1 are described in Example 2.
  • the gene CI9orf33 or "chromosome 19 open reading frame 33" is also known by the synonyms "hepatocyte growth factor activator inhibitor type 2-related small protein” and IMUP H2RSP, IMUP-1 and IMUP-2.
  • Preferred CpG dinucleotides for the DNA methylation analysis of Cl9orf33 according to the invention are contained, for example, in the transcript-coding regions, the gene body, and the upstream and downstream regulatory elements (19:38280165-38319236).
  • the DNA methylation analysis of CI9orf33 according to the invention comprises at least one CpG dinucleotide in part of the promoter region (19:38302227-38305800, SEQ ID NO:43).
  • Other preferred CpG dinucleotides for CI9orf33 methylation analysis are described in Example 2.
  • the IL18 gene or "interleukin 18" is also known by the synonyms IGIF, IL-18, IL-Ig and IL1F4 contain the upstream and downstream regulatory elements (11:112137936-112168855).
  • the DNA methylation analysis of IL18 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter region (11:112155341-112165931, SEQ ID NO:355). Other preferred CpG dinucleotides for DNA methylation analysis of IL18 are described in Example 2.
  • the gene S100A2 or "S100 calcium binding protein A2" (English: S100 calcium binding protein A2) is also known under the synonyms CAN19 and S100L.
  • Preferred CpG dinucleotides for the DNA methylation analysis of S100A2 according to the invention are contained, for example, in the transcript-coding regions, the gene body and the upstream and downstream regulatory elements (1:153557345-153575491).
  • the DNA methylation analysis of S100A2 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter region (1:153563538-153569327, SEQ ID NO:356).
  • Other preferred CpG dinucleotides for DNA methylation analysis of S100A2 are described in Example 2.
  • the TOBI gene or "Transducer of ERBB2, 1" (English: transducer of ERBB2 1) is also known by the synonyms APRO5, APRO6, PIG49, TOB, TROB and TROB1.
  • Preferred CpG dinucleotides for the DNA methylation analysis of TOBI according to the invention are for example in the transcript-coding regions, the gene body and the upstream and downstream regulatory elements and the long non-coding TOBI antisense RNA 1, encoded by ENSG00000229980 (17:50861408-50915767).
  • TOBI at least one CpG dinucleotide in part of the gene body of the long non-coding TOBI antisense RNA 1 (17:50890636-50896863, SEQ ID NO:357) Further preferred CpG dinucleotides for the DNA methylation analysis of TOBI are described in Example 2.
  • the gene TOR4A or "Torsin family 4 member A" (English: torsin family 4 member A) is also known by the synonym C9orfl67 gene bodies and the upstream and downstream regulatory elements (9:137274720-137283779)
  • the DNA methylation analysis of TOR4A according to the invention particularly preferably comprises at least a CpG dinucleotide in part of the promoter region (9:137276024-137280343, SEQ ID NO:358).
  • Other preferred CpG dinucleotides for DNA methylation analysis of TOR4A are described in Example 2.
  • the FBRSL1 gene codes for "fibrosin-like 1".
  • Preferred CpG dinucleotides for the DNA methylation analysis of FBRSL1 according to the invention are, for example, in the transcript-coding regions, the gene body and the upstream and downstream regulatory elements (12:132483422-132589876).
  • DNA methylation analysis of FBRSL1 according to the invention comprises at least one CpG dinucleotide in a part of the gene body region (12:132514348-132533034, SEQ ID NO:359).Other preferred CpG dinucleotides for the DNA - Methylation analysis of FBRSL1 are described in Example 2.
  • S100A10 or "S100 calcium binding protein A10" (English: S100 calcium binding protein A10) is also known under the synonyms 42C, ANX2L, ANX2LG, CAL1L, CLP11, Ca[1], GPU, Pli and plO.
  • Preferred CpG -Dinucleotides for the DNA methylation analysis of S100A10 according to the invention are contained, for example, in the transcript-coding regions, the gene body and the upstream and downstream regulatory elements (1:151979735-151998987).
  • the DNA methylation analysis of S100A10 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter region (1:151990418-151997244, SEQ ID NQ:360)
  • Other preferred CpG dinucleotides for DNA methylation analysis of S100A10 are described in Example 2.
  • the gene LRRFIP2 or "LRR binding FLII interacting protein 2" is also known under the synonym HUFI-2.
  • Preferred CpG dinucleotides for the DNA methylation analysis of LRRFIP2 according to the invention are, for example, in the transcript-coding regions, the gene body and the upstream and downstream regulatory elements and the gene ENSG00000271993 (3:37049702-37191264), which contains an IRRFIP2 antisense RNA encoded.
  • the DNA methylation analysis of LRRFIP2 comprises at least one CpG dinucleotide in part of the promoter region of LRRFIP2 and of the gene ENSG00000271993 (3:37175758-37189914, SEQ ID NO:361) coding for the LRRFIP2 antisense RNA.
  • Other preferred CpG dinucleotides for DNA methylation analysis of LRRFIP2 are described in Example 2.
  • the gene SPIDR or “scaffold protein involved in DNA repair” is also known under the synonym KIAA0146.
  • Preferred CpG dinucleotides for the DNA methylation analysis of SPIDR according to the invention are, for example, in the transcript-coding regions , the gene body and the upstream and downstream regulatory elements (8:47256649-47738528).
  • the DNA methylation analysis of SPIDR according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the gene body (8:47349863-47359489, SEQ ID NO :362)
  • Other preferred CpG dinucleotides for DNA methylation analysis of SPIDR are described in Example 2.
  • the gene ASB1 or "ankyrin repeat and SOGS box containing 1" (English: ankyrin repeat and SOGS box containing 1) is also known under the synonym ASB-1.
  • Preferred CpG dinucleotides for the DNA methylation analysis of ASB1 according to the invention are, for example in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory regions elements included (2:238422129-238457801).
  • the DNA methylation analysis of ASB1 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (2:238435501-238446259, SEQ ID NO:363). Further preferred CpG dinucleotides for the DNA methylation analysis of ASB1 are described in Example 2.
  • the LAMA3 gene or "laminin subunit alpha 3, laminin subunit alpha 3" is also known by the synonyms El70, LOGS, BM600, and LAMNA.
  • Preferred CpG dinucleotides for the DNA methylation analysis of LAMA3 according to the invention are, for example, in the transcript-coding regions , the gene body and the upstream and downstream regulatory elements (18:23675244-23970826).
  • the DNA methylation analysis of LAMA3 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter region (18:23865846-23880913, SEQ ID NO :17)
  • Other preferred CpG dinucleotides for DNA methylation analysis of LAMA3 are described in Example 2.
  • the gene ENSG00000229672 encodes a long non-coding RNA.
  • Preferred CpG dinucleotides for the DNA methylation analysis of ENSG00000229672 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (10:3739910-3772752).
  • the DNA methylation analysis of ENSG00000229672 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the promoter (10:3761335-3766181, SEQ ID NO:364). Further preferred CpG dinucleotides for the DNA methylation analysis of ENSG00000229672 are described in Example 2.
  • the MYH16 gene or "myosin heavy chain 16 pseudogene, myosin heavy chain 16 pseudogene” is also known by the synonyms MYH5, MHC20 and MYH16P.
  • Preferred CpG dinucleotides for the DNA methylation analysis of MYH16 according to the invention are, for example, in the transcript-coding regions contain the gene body and the upstream and downstream regulatory elements (7: 99234452-99331846).
  • the DNA methylation analysis of MYH16 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (7: 99272482-99275507, SEQ ID NO: 27)
  • Other preferred CpG dinucleotides for DNA methylation analysis of MYH16 are described in Example 2.
  • the gene GRID1 or "inonotropic glutamate receptor ⁇ -type subunit 1, glutamate ionotropic receptor delta type subunit 1" is also known under the synonym GluDl.
  • Preferred CpG dinucleotides for the DNA methylation analysis of GRID1 according to the invention are, for example, in the transcript-coding regions the gene body and the upstream and downstream regulatory elements and the GRID1 antisense RNAs (e.g.
  • the DNA methylation analysis of GRID1 comprises at least one CpG dinucleotide in part of the gene body GRID1 and the promoter region of the GRID1 antisense RNA ENSG00000270002 (10:85637128-85653498, SEQ ID NO:28) Further preferred CpG dinucleotides for the DNA methylation analysis of GRID1 are described in Example 2.
  • the CHD2 gene or "chromodomain helicase DNA binding protein 2" is also known under the synonyms EEOC and DEE94. and downstream regulatory elements (15:92893529-93032259).
  • the DNA methylation analysis of CHD2 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter region (15:92897248-92927312, SEQ ID NO:30). Further preferred CpG dinucleotides for the DNA methylation analysis of CHD2 are described in Example 2.
  • TAFAZZIN gene or "tafazzin, phospholipid-lysophospholipid transacylase” is also known by the synonyms BTHS, CMD3A, EFE, EFE2, G4.5, LVNCX, TAZ and Tazl.
  • Preferred CpG dinucleotides for the DNA methylation analysis of TAFAZZIN according to the invention are, for example contained in the transcript-coding regions, the gene body and the upstream and downstream regulatory elements (X:154406693-154423207).
  • the DNA methylation analysis of TAFAZZIN according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter region (X:154408091 -154411364, SEQ ID NO:62).
  • the promoter region of TAFAZZIN is also the promoter region of the DNASE1I1 gene.Other preferred CpG dinucleotides for the DNA methylation analysis of TAFAZZIN are described in Example 3.
  • the GNG7 gene encodes the protein "G protein subunit gamma 1, G protein subunit gamma 7". downstream regulatory elements (19:2505778-2710194).
  • the DNA methylation analysis of GNG7 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the alternative promoter region (19:2535289-2548878, SEQ ID NO:34).Others preferred CpG dinucleotides for methylation analysis of GNG7 are described in Example 3.
  • the ANXA11 gene or "Annexin All” is also known by the synonyms ALS23, ANX11, CAP-50 and CAP50 - and contain downstream regulatory elements (10:80145436-80216216).
  • the DNA methylation analysis of ANXA11 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter region (10:80197502-80212413, SEQ ID NO:366).Other preferred CpG dinucleotides for DNA methylation analysis of ANXA11 are described in Example 3.
  • the gene ANXA2 or "Annexin A2" is also known by the synonyms ANX2 ANX2L4, CAL1H, HEL-S-270, LIP2, LPC2, LPC2D, P36 and PAP-IV.
  • Preferred CpG dinucleotides for the DNA methylation analysis of ANXA2 according to the invention are for example in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (15:60340237-60407620).
  • the DNA methylation analysis of ANXA2 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter region (15: 60387415-60403797, SEQ ID NO:367)
  • Other preferred CpG dinucleotides for DNA methylation analysis of ANXA2 are described in Example 3.
  • the gene MAFG or "MAE bZIP transcription factor G” is also known under the synonym hMAF.
  • Preferred CpG dinucleotides for the DNA methylation analysis of MAFG according to the invention are, for example, in the transcript-coding regions, im gene bodies as well as the upstream and downstream regulatory elements (17:81915678-81931532).
  • the DNA methylation analysis of MAFG according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the promoter region (17:81919353-81927992, SEQ ID NO:368).
  • Other preferred CpG dinucleotides for MAFG DNA methylation analysis are described in Example 3.
  • the PKP3 gene codes for "plakophilin 3" (English: plakophilin 3).
  • Preferred CpG dinucleotides for the DNA methylation analysis of PKP3 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (11 :387251-409900).
  • the DNA methylation analysis of PKP3 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter region (11:391907-396042, SEQ ID NO:369).Other preferred CpG dinucleotides for the methylation analysis of PKP3 are described in example 3 .
  • the gene ABTB2 or "ankyrin repeat and BTB domain containing 2" (English: ankyrin repeat and BTB domain containing 2) is also known by the synonyms ABTB2A and BTBD22 contained in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (11:34147635-34368643).
  • the DNA methylation analysis of ABTB2 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the gene body (11:34195474 - 34280454)
  • Other preferred CpG dinucleotides for the DNA methylation analysis of ABTB2 are described in Example 3.
  • the gene ENSG00000287625 codes for a long non-coding RNA.
  • Preferred CpG dinucleotides for the DNA methylation analysis of ENSG00000287625 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (2:84922387-84970135).
  • the DNA methylation analysis according to the invention of ENSG00000287625 particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (2:84938759-84955130, SEQ ID NO:372). Further preferred CpG dinucleotides for the DNA methylation analysis of ENSG00000287625 are described in Example 3.
  • the gene ARL14 or "ADP-ribosylation factor similar GTPase 14" (English: ADP ribosylation factor like GTPase 14) is also known under the synonym ARF7 , contained in the gene body and the upstream and downstream regulatory elements (3:160670428-160686282).
  • the DNA methylation analysis of ARL14 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter region (3:160675790-160679619, SEQ ID NO :373)
  • Other preferred CpG dinucleotides for DNA methylation analysis of ARL14 are described in Example 3.
  • BCAR3 gene or "BCAR adapter protein, NSP family member" is also known by the synonyms AND-34, MIG7, NSP2 and SH2D3B.
  • Preferred CpG dinucleotides for the DNA methylation analysis of the invention BCAR3 are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (1:93557549-93855963).
  • DNA methylation analysis of BCAR3 according to the invention at least one CpG dinucleotide in a part of the gene body (1:93694082-93712201, SEQ ID NO:374). Further preferred CpG dinucleotides for the DNA methylation analysis of BCAR3 are described in Example 3.
  • the gene BIK or "BCL2 interacting killer" is also known by the synonyms BIP1, BP4 and NBK.
  • Preferred CpG dinucleotides for the DNA methylation analysis of BIK according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (22:43105101-43136810).
  • the DNA methylation analysis of BIK according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (22:43121022-43133479, SEQ ID NO:375).
  • Other preferred CpG dinucleotides for BIK DNA methylation analysis are described in Example 3.
  • the CCND3 gene codes for "cyclin D3".
  • Preferred CpG dinucleotides for the DNA methylation analysis of CCND3 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (6:41930373-42057212).
  • the DNA methylation analysis of CCND3 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (6:41957336-41972623, SEQ ID NO:376). Further preferred CpG dinucleotides for the DNA methylation analysis of CCND3 are described in Example 3.
  • CMIP Maf inducing protein
  • Preferred CpG dinucleotides for DNA methylation analysis of CMIP are contained, for example, in the transcript coding regions, in the gene body and in the upstream and downstream regulatory elements (16:81439687-81717715).
  • the DNA methylation analysis of CMIP according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter region (16:81480995-81512636, SEQ ID NO:377) and/or part of the gene body (16:81618351-81648447, SEQ ID NO :378).
  • Further preferred CpG dinucleotides for the DNA methylation analysis of CMIP are described in Example 3.
  • EIK3 or "ETS transcription factor ELK3" (English: “EIS transcription factor EIK3" is also known under the synonyms ERP, NET, SAP-2 and SAP2.
  • Preferred CpG dinucleotides for the DNA methylation analysis of EIK3 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (12:96190623-96274427).
  • the DNA methylation analysis of EIK3 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter region and/or the gene body (12:96191446-96224107, SEQ ID NO:379).
  • Other preferred CpG dinucleotides for DNA methylation analysis of EIK3 are described in Example 3.
  • the HRH1 gene or "histamine receptor Hl” is also known by the synonyms Hl-R, H1R, HH1R and hisHl.
  • Preferred CpG dinucleotides for the HRH1 DNA methylation analysis according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (3:11127806-11268802).
  • the DNA methylation analysis according to the invention particularly preferably comprises HRH1 at least one CpG dinucleotide in part of the promoter region (3:11132402-11144858, SEQ ID NO:380). Further preferred CpG dinucleotides for the DNA methylation analysis of HRH1 are described in Example 3.
  • the gene SAP30BP or "SAP30 binding protein" is also known by the synonyms HCNGP, HTRG and HTRP.
  • Preferred CpG dinucleotides for the DNA methylation analysis of SAP30BP according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (17:75665360-75709925).
  • the DNA methylation analysis of SAP30BP according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the region of the alternative promoter (17:75680008-75709106, SEQ ID NO:381).
  • Other preferred CpG dinucleotides for DNA methylation analysis of SAP30BP are described in Example 3.
  • the gene NOS1AP or "nitric oxide synthase 1 adapter protein" is also known by the synonyms 6330408P19Rik, CAPON and NPHS22.
  • Preferred CpG dinucleotides for the DNA methylation analysis of NOS1AP according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (1:162060444-162374712).
  • the DNA methylation analysis of NOS1AP according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (1:162126194-162145446, SEQ ID NO:382).
  • Example 3 Further preferred CpG dinucleotides for the DNA methylation analysis of NOS1AP are described in Example 3.
  • the gene RALB codes for the "RAS-like proto-oncogene B" (English: “RAS like proto-oncogene B”).
  • Preferred CpG dinucleotides for the DNA methylation analysis of RALB according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (2:120234285-120299970).
  • the DNA methylation analysis of RALB according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter region (2:120235984-120258633, SEQ ID NO:383).
  • Other preferred CpG dinucleotides for DNA methylation analysis of RALB are described in Example 3.
  • TGFBL or "transforming growth factor beta induced” is also known under the synonyms BLGH3, CDB1, CDG2, CDGG1, CSD, CSD1, CSD2, CSD3, EBMD and LCD1.
  • Preferred CpG dinucleotides for the DNA methylation analysis of TGFBL according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (5:136024636-136067670).
  • the DNA methylation analysis of TGFBL according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter region (5:136026401-136036592, SEQ ID NO:384).
  • Other preferred CpG dinucleotides for DNA methylation analysis of TGFBL are described in Example 3.
  • the gene ENSG00000235726 encodes a long non-coding RNA.
  • Preferred CpG dinucleotides for the DNA methylation analysis of ENSG00000235726 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (2:234799342-234922807).
  • the DNA methylation analysis according to the invention particularly preferably comprises ENSG00000235726 at least one CpG dinucleotide in part of the gene body (2:234878128-234886995, SEQ ID NO:385). Further preferred CpG dinucleotides for the DNA methylation analysis of ENSG00000235726 are described in Example 3.
  • CAB39 gene or "calcium-binding protein 39" is also known under the synonyms CGI-66 and M025.
  • Preferred CpG dinucleotides for the DNA methylation analysis of CAB39 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (2:230706432-230823645).
  • the DNA methylation analysis of CAB39 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (2:230778214-230808224, SEQ ID NO:386).
  • Other preferred CpG dinucleotides for DNA methylation analysis of CAB39 are described in Example 3.
  • the gene CIRBP or "cold inducible RNA binding protein” is also known under the synonym CIRP.
  • Preferred CpG dinucleotides for the CIRBP DNA methylation analysis according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (19:1255182-1278398).
  • the DNA methylation analysis of CIRBP according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the promoter region (19:1259044-1271843, SEQ ID NO:387).
  • Other preferred CpG dinucleotides for DNA methylation analysis of CIRBP are described in Example 3.
  • the gene DIAPH1 or "Diaphanes related Formin 1" (English: “diaphanous related formin 1") is also known under the Synonyms DIA1, DRF1, DFNA1, LFHL1, SCBMS and hDIAl.
  • Preferred CpG dinucleotides for the DNA methylation analysis of DIAPH1 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (5:141509770-141628116).
  • the DNA methylation analysis of DIAPH1 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (5:141598738-141612327, SEQ ID NO:388). Further preferred CpG dinucleotides for the DNA methylation analysis of DIAPH1 are described in Example 3.
  • the gene FGD6 or "FYVE, RhoGEF and PH domain containing 6" (English: “FYVE, RhoGEF and PH domain containing 6") is also known under the synonym ZFYVE24.
  • Preferred CpG dinucleotides for the DNA methylation analysis of FGD6 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (12:95069744-95225462).
  • the DNA methylation analysis of FGD6 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (12:95196683-95213579, SEQ ID NO:389).
  • Other preferred CpG dinucleotides for DNA methylation analysis of FGD6 are described in Example 3.
  • the gene LMO7 or "LIM domain 7" (English: “LIM domain 7") is also known by the synonyms FBX20, FBXO20, LMO7b and LOMP.
  • Preferred CpG dinucleotides for the DNA methylation analysis of LMO7 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (13:75615473-75864623).
  • the DNA methylation analysis of LMO7 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the gene body (13:75708404-75724258, SEQ ID NO:390). Further preferred CpG dinucleotides for the DNA methylation analysis of LMO7 are described in Example 3.
  • the gene MICAL2 or "microtubule associated monooxygenase, calponin and LIM domain containing 2" (English: “microtubule associated monooxygenase r calponin and LIM domain containing 2") is also known under the synonyms Ebiteinl, MICAL-2, MICAL2PV1, MICAL2PV2 and MICALCL.
  • Preferred CpG dinucleotides for the MICAL2 DNA methylation analysis according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (11:12083488-12364914).
  • the DNA methylation analysis of MICAL2 particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (11:12161131-12174720, SEQ ID NO:391).
  • CpG dinucleotides for DNA methylation analysis of MICAL2 are described in Example 3.
  • the STMN1 or "Stathmin 1" gene is also known by the synonyms Clorf215, LAP18, Lag, OP18, PP17, PPI9, PR22 and SMN.
  • Preferred CpG dinucleotides for the DNA methylation analysis of STMN1 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (1:25881610-25911621).
  • the DNA methylation analysis of STMN1 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the alternative promoter region (1:25888471-25896397, SEQ ID NO:392).
  • CpG dinucleotides for DNA methylation analysis of STMN1 are described in Example 3.
  • the gene MNT or "MAX network transcriptional repressor" is also known by the synonyms MAD6, MXD6, ROX, bHLHd3 and IncRNA-HAL.
  • Preferred CpG dinucleotides for the DNA methylation analysis of MNT according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (17:2381980-2411009).
  • the DNA methylation analysis of MNT according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter region (17:2389492-2411009, SEQ ID NO:393). Further preferred CpG dinucleotides for the DNA methylation analysis of MNT are described in Example 3.
  • the gene PC or "pyruvate carboxylase” is also known under the synonym PCB.
  • Preferred CpG dinucleotides for the DNA methylation analysis of PC according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (11:66845983-66969991).
  • the DNA methylation analysis of PC according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (11:66887951-66895877, SEQ ID NO:394).
  • Other preferred CpG dinucleotides for DNA methylation analysis of PC are described in Example 3.
  • the gene PLEKHG5 or "Pleckstrin homology and RhoGEF domain containing G5" is also known by the synonyms CMTRIC, DSMA4, GEF720, Syx and Tech.
  • Preferred CpG dinucleotides for the DNA methylation analysis of PLEKHG5 according to the invention are, for example, in the transcript-coding regions, im gene bodies and the upstream and downstream regulatory elements (1:6465001-6526155).
  • the DNA methylation analysis of PLEKHG5 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter region (1:6488283-6495077, SEQ ID NO:395).
  • Other preferred CpG dinucleotides for DNA methylation analysis of PLEKHG5 are described in Example 3.
  • the gene PRORP or "protein-only RNase P catalytic subunit" (English: “protein only RNase P catalytic subunit") is also known under the synonyms KIAA0391 and MRPP3.
  • Preferred CpG dinucleotides for the DNA methylation analysis of PRORP according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (14:35116632-35281977).
  • the DNA methylation analysis of PRORP according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (14:35153221-35165111, SEQ ID NO:396). Further preferred CpG dinucleotides for the DNA methylation analysis of PRORP are described in Example 3.
  • the gene RDX or "radixin” (English: “radixin”) is also known under the synonym DFNB24.
  • Preferred CpG dinucleotides for the RDX DNA methylation analysis according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (11:109857101-110302174).
  • the DNA methylation analysis of RDX according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (11:110191822-110205411, SEQ ID NO:397).
  • Other preferred CpG dinucleotides for RDX DNA methylation analysis are described in Example 3.
  • the gene SERP1 or "stress-associated endoplasmic reticulum protein 1" is also known under the synonym RAMP4.
  • Preferred CpG dinucleotides for the DNA methylation analysis of SERP1 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (3:150539978-150609060).
  • the DNA methylation analysis of SERP1 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter region (3:150596474-150607869, SEQ ID NO:398), which also represents part of the promoter region of the SELENOT gene.
  • Other preferred CpG dinucleotides for DNA methylation analysis of SERP1 are described in Example 3.
  • the gene SLCO3A1 or "solute carrier organic anion transporter family member 3A1" is also known by the synonyms OATP-D, OATP-RP3, OATP3A1, OATPD, OATPRP3 and SLC21A11.
  • Preferred CpG dinucleotides for the SLCO3A1 DNA methylation analysis according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (15:91849057-92179181).
  • the DNA methylation analysis of SLCO3A1 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (15:92065431-92073357, SEQ ID NO:399). Further preferred CpG dinucleotides for the DNA methylation analysis of SLCO3A1 are described in Example 3.
  • the gene SUFU or "SUFU negative regulator of the hedgehog signal" (English: “SUFU negative regulator of hedgehog signaling") is also known by the synonyms JBTS32, PRO1280, SUFUH and SUFUXL.
  • Preferred CpG dinucleotides for the DNA methylation analysis of SUFU according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements ( 10:102498765-102636930).
  • the DNA methylation analysis of SUFU according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (10:102592829-102609815, SEQ ID N0:400). Further preferred CpG dinucleotides for the DNA Methylation analyzes of SUFU are described in Example 3.
  • the gene TANGO6 or "transport and golgi organization 6 homolog" is also known under the synonym TMCO7.
  • Preferred CpG dinucleotides for the DNA methylation analysis of TANGO6 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (16:68839936-69088520).
  • the DNA methylation analysis of TANGO6 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (16:69069900-69076694, SEQ ID NO:401). Further preferred CpG dinucleotides for DNA methylation analysis of TANGO6 are described in Example 3.
  • the gene EGFR or "epidermal growth factor receptor” is also known under the synonyms ERBE, ERBB1, ERRP, HER1, NISBD2, PIG61 and mENA.
  • Preferred CpG dinucleotides for the DNA methylation analysis of EGFR according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (7:55011530-55218211). Particularly preferably includes the DNA methylation analysis of EGFR according to the invention at least one CpG dinucleotide in a part of the gene body (7:55061106-55086109, SEQ ID NO:402). Other preferred CpG dinucleotides for DNA methylation analysis of EGFR are described in Example 3.
  • the gene PINX1 or "PIN2 (TERF1) interacting telomerase inhibitor 1" (English: “PIN2 (TERFI) interacting telomerase inhibitor 1") is also known by the synonyms Gnol, LPTL, LPTS and Pxrl.
  • Preferred CpG dinucleotides for the DNA methylation analysis of PINX1 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (8:10758795-10845431).
  • the DNA methylation analysis of PINX1 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (8:10795951-10805576, SEQ ID NO:403). Further preferred CpG dinucleotides for DNA methylation analysis of PINX1 are described in Example 3.
  • the gene SSBP2 or "single stranded DNA binding protein 2" is also known under the synonyms HSPC116 and S0SS-B2.
  • Preferred CpG dinucleotides for the DNA methylation analysis of SSBP2 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (5:81410404-81759780).
  • the DNA methylation analysis of SSBP2 comprises at least one CpG dinucleotide in part of the promoter region (5: 81739698-81763435, SEQ ID NQ: 404) and / or at least part or more parts of the gene body (5: 81412171-81427995 , SEQ ID NQ:405 and/or 5:81615123-81643212, SEQ ID NQ:406).
  • CpG dinucleotides for DNA methylation analysis of SSBP2 are described in Example 3.
  • the gene TRERF1 or "transcriptional regulating factor 1" is also known by the synonyms BCAR2, HSA277276, RAPA, TREP132, TReP-132 and dJ139D8.5.
  • Preferred CpG dinucleotides for the DNA methylation analysis of TRERF1 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (6:42221228-42461884).
  • the DNA methylation analysis of TRERF1 particularly preferably comprises at least one CpG dinucleotide in one or more parts of the gene body (6:42312265-42342490, SEQ ID NO:407, 6:42223347- 42232133, SEQ ID NO:408 and/or 6:42395546-42408432, SEQ ID NO:409). Further preferred CpG dinucleotides for the DNA methylation analysis of TRERF1 are described in Example 3.
  • the gene GPT2 or "glutamic-pyruvic transaminase 2" is also known under the synonyms ALT2, GPT 2, MRT49 and NEDSPM.
  • Preferred CpG dinucleotides for the DNA methylation analysis of GPT2 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (16:46845716-46939147).
  • the DNA methylation analysis of GPT2 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter region (16:46853286-46881544, SEQ ID NO:410).
  • Other preferred CpG dinucleotides for DNA methylation analysis of GPT2 are described in Example 3.
  • the gene HEG1 or "heart development protein with EGF-like domain 1" (English: “heart development protein with EGF like domains 1") is also known by the synonyms HEG, MST112 and MSTP112.
  • Preferred CpG dinucleotides for the DNA methylation analysis of HEG1 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (3rd :124959217-125061707).
  • the DNA methylation analysis of HEG1 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter region (3:125048750-125060074, SEQ ID NO:411).Other preferred CpG dinucleotides for the DNA methylation analysis of HEG1 are described in example 3 .
  • the ENSG00000231740 gene encodes a long non-coding RNA.
  • Preferred CpG dinucleotides for the DNA methylation analysis of ENSG00000231740 are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (1:58837145-58858662).
  • the DNA methylation analysis of ENSG00000231740 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter region (1:58846707-58852314, SEQ ID NO:412).
  • the promoter region of ENSG00000231740 lies in the gene body of ENSG00000234807.
  • ENSG00000234807 (1:58782061-58905503) is also a preferred part for DNA methylation analysis of ENSG00000231740 . Further preferred CpG dinucleotides for the DNA methylation analysis of ENSG00000231740 are described in Example 3.
  • the gene PPM1H or "protein phosphatase, Mg2+/Mn2+ dependent 1H" is also known under the synonyms ARHCL1, NERPP-2C and URCC2.
  • preferred CpG dinucleotides for DNA methylation analysis of PPM1H are in the transcript-encoding ones Regions contained in the gene body and the upstream and downstream regulatory elements (12:62639994-62942938).
  • the DNA methylation analysis of PPM1H according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (12:62783039-62797194, SEQ ID NO:413). Further preferred CpG dinucleotides for the DNA methylation analysis of PPM1H are described in Example 3.
  • the gene PRDM10 or "PR/SET domain 10" (English: “PR/SET domain 10") is also known by the synonyms PFM7 and TRIS.
  • Preferred CpG dinucleotides for the DNA methylation analysis of PRDM10 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (11:129897664-130008082).
  • the DNA methylation analysis of PRDM10 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (11:129955771-129968794, SEQ ID NO:414). Further preferred CpG dinucleotides for the DNA methylation analysis of PRDM10 are described in Example 3.
  • the gene RAD18 or "RAD18 E3 ubiquitin protein ligase” is also known under the synonym RNF73.
  • Preferred CpG dinucleotides for the DNA methylation analysis of RAD18 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (3:8773370-8969292).
  • the DNA methylation analysis of RAD18 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (3:8866868-8875927, SEQ ID NO:415).
  • Other preferred CpG dinucleotides for DNA methylation analysis of RAD18 are described in Example 3.
  • the gene ENSG00000231185 encodes the long non-coding SPRY4 antisense RNA 1 (SPRY4-AS1).
  • Preferred CpG dinucleotides for the DNA methylation analysis of ENSG00000231185 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (5:142321168-142681303).
  • the DNA methylation analysis according to the invention of ENSG00000231185 particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (5:142470158-142478084, SEQ ID NO:416). Further preferred CpG dinucleotides for the DNA methylation analysis of ENSG00000231185 are described in Example 3.
  • the gene SYNPO codes for "synaptopodin” (English: “synaptopodin”).
  • Preferred CpG dinucleotides for the DNA methylation analysis of SYNPO according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (5:150596520-150661638).
  • the DNA methylation analysis of SYNPO according to the invention comprises at least one CpG dinucleotide in part of the promoter region (5:150636723-150646915, SEQ ID NO:417).
  • Other preferred CpG dinucleotides for DNA methylation analysis of SYNPO are described in Example 3.
  • the gene TNFRSF10B or "TNF receptor superfamily member 10b" is also known by the synonyms CD262, DR5, KILLER, KILLER/DR5, TRAIL-R2, TRAILR2, TRICK2, TRICK2A, TRICK2B, TRICKB and ZTNFR9.
  • Preferred CpG dinucleotides for the DNA methylation analysis of TNFRSF1OB according to the invention are, for example, in the transcript-coding regions, in the gene body and in the and downstream regulatory elements (8:23018023-23076910).
  • the DNA methylation analysis of TNFRSF10B according to the invention particularly preferably comprises at least part of the promoter region (8:23062823-23075280, SEQ ID NO:418).
  • the DNA methylation analysis of TNFRSF10B comprises at least one CpG dinucleotide in part of the region containing the neighboring and co-regulated genes of the TNF receptor superfamily TNFRSF10A, TNFRSF10C, TNFRSF10D (8:23011161-23238227).
  • Other preferred CpG dinucleotides for DNA methylation analysis of TNFRSF10B are described in Example 3.
  • the T0M1L2 gene encodes "target of mybl like 2 membrane trafficking protein".
  • Preferred CpG dinucleotides for the DNA methylation analysis of TOM1L2 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (17:17842032-17976233).
  • the DNA methylation analysis of T0M1L2 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (17:17951951-17962142, SEQ ID NO:419).
  • Other preferred CpG dinucleotides for DNA methylation analysis of TOM1L2 are described in Example 3.
  • the gene TPRG1 or "tumor protein p63-regulated 1" is also known under the synonym FAM79B.
  • Preferred CpG dinucleotides for the DNA methylation analysis of TPRG1 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (3:188938804-189336311).
  • the DNA methylation analysis according to the invention particularly preferably comprises TPRG1 at least one CpG dinucleotide in part of the promoter region (3:188941701-188956988, SEQ ID NO:420). Further preferred CpG dinucleotides for the DNA methylation analysis of TPRG1 are described in Example 3.
  • the VRK2 gene codes for the "VRK serine/threonine kinase 2" (English: “VRK serine/threonine kinase 2").
  • Preferred CpG dinucleotides for the DNA methylation analysis of VRK2 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (2:57903066-58164107).
  • the DNA methylation analysis of VRK2 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (2:58103868-58114626, SEQ ID NO:421). Other preferred CpG dinucleotides for DNA methylation analysis of VRK2 are described in Example 3.
  • the gene ENSG00000249149 codes for a member of the "high mobility group nucleosome-binding domain-containing protein family".
  • Preferred CpG dinucleotides for the DNA methylation analysis of ENSG00000249149 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (5:73359733-73420441).
  • the DNA methylation analysis according to the invention of ENSG00000249149 particularly preferably comprises at least one CpG dinucleotide in a part of the promoter region (5:73366895-73375762, SEQ ID NO:422).
  • Other preferred CpG dinucleotides for DNA methylation analysis of ENSG00000249149 are described in Example 3.
  • NC0R2 or "nuclear receptor co-repressor 2" (English: “nuclear receptor corepressor 2") is also known under the Synonyms CTG26, N-CoR2, SMAP270, SMRT, SMRTE, SMRTE-tau, TNRC14, TRAC, TRAC-1 and TRAGI.
  • Preferred CpG dinucleotides for the DNA methylation analysis of NC0R2 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (12:124319987-124607641).
  • the DNA methylation analysis of NC0R2 particularly preferably comprises at least one CpG dinucleotide in part of the promoter region (12:124589305-124596665, SEQ ID NO:423).
  • Other preferred CpG dinucleotides for DNA methylation analysis of NC0R2 are described in Example 3.
  • the gene ENSG00000258077 codes for a long non-coding RNA.
  • Preferred CpG dinucleotides for the DNA methylation analysis of ENSG00000258077 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (12:75558548-75990334).
  • the DNA methylation analysis according to the invention of ENSG00000258077 particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (12:75946679-75957592, SEQ ID NO:424). Further preferred CpG dinucleotides for the DNA methylation analysis of ENSG00000258077 are described in Example 3.
  • the gene NINJ2 codes for "Ninjurin 2" (English: “ninjurin 2").
  • Preferred CpG dinucleotides for DNA methylation analysis of NINJ2 are contained, for example, in the transcript coding regions, in the gene body and in the upstream and downstream regulatory elements (12:562510-669531).
  • the DNA methylation analysis of NINJ2 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (12:564035-574700, SEQ ID NO:425).
  • Other preferred CpG dinucleotides for DNA methylation analysis of NINJ2 are described in Example 3.
  • the gene ENSG00000257746 encodes a long non-coding RNA.
  • Preferred CpG dinucleotides for the DNA methylation analysis of ENSG00000257746 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (12:92994918-93221418).
  • the DNA methylation analysis of ENSG00000257746 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter region (12:93081904-93099457, SEQ ID NO:426). Further preferred CpG dinucleotides for the DNA methylation analysis of ENSG00000257746 are described in Example 3.
  • the gene B3GNTL1 or "UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase-like 1" (English: “UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase like 1") is also known among the Synonyms 3-Gn-T8, B3GNT8, BGnT-8, beta-1, beta3Gn-T8 and beta3GnTLl.
  • Preferred CpG dinucleotides for the DNA methylation analysis of B3GNTL1 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (17:82936878-83062018).
  • the DNA methylation analysis of B3GNTL1 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter region (17:83044334-83052973, SEQ ID NO:427).
  • Other preferred CpG dinucleotides for DNA methylation analysis of B3GNTL1 are described in Example 3.
  • the gene DCP2 or "mRNA Entkappung 2" (English: “decapping mRNA 2") is also known under the synonym NUDT20.
  • Preferred CpG dinucleotides for DNA methylation analysis according to the invention of DCP2 are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (5:112968673-113029827).
  • the DNA methylation analysis of DCP2 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (5:113014888-113027911, SEQ ID NO:428).
  • Other preferred CpG dinucleotides for DNA methylation analysis of DCP2 are described in Example 3.
  • the gene ENSG00000242759 codes for the long intergenic non-protein coding RNA 882 (English: "long intergenic non-protein coding RNA 882").
  • Preferred CpG dinucleotides for the DNA methylation analysis of ENSG00000242759 according to the invention are, for example, in the transcript-coding regions , contained in the gene body and the upstream and downstream regulatory elements (3:106444967-107254139).
  • the DNA methylation analysis according to the invention of ENSG00000242759 particularly preferably comprises at least one CpG dinucleotide in part of the gene body (3:106722279-106735868, SEQ ID NO :429) Further preferred CpG dinucleotides for the DNA methylation analysis of ENSG00000242759 are described in Example 3.
  • locus chromosome 3 cytogenetic band p23 is a region on chromosome 3 within the cytogenetic band p23 in which no genes have been identified to date.
  • Preferred CpG dinucleotides for DNA methylation analysis according to the invention are contained in the range 3:31073969-31083028 (SEQ ID NO:430).
  • the DNA methylation analysis of locus Chr.3p23 according to the invention comprises at least one CpG dinucleotide in part of the region 3:31075281-31078856.
  • Other preferred CpG Dinucleotides for DNA methylation analysis of locus Chr.3p23 are described in Example 3.
  • the gene OGDH or "oxoglutarate dehydrogenase” is also known under the synonyms AKGDH, Elk, KGD1, OGDC and OGDH2.
  • Preferred CpG dinucleotides for the DNA methylation analysis of OGDH according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (7:44603525-44717340).
  • the DNA methylation analysis of OGDH according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (7:44632469-44643793, SEQ ID NO:431).
  • Other preferred CpG dinucleotides for DNA methylation analysis of OGDH are described in Example 3.
  • the gene PDZRN3 or "PDZ domain containing ring finger 3" is also known by the synonyms LNX3, SEMACAP3 and SEMCAP3.
  • Preferred CpG dinucleotides for the DNA methylation analysis of PDZRN3 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (3:73379855-73630137).
  • the DNA methylation analysis of PDZRN3 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (3:73541303-73554892, SEQ ID NO:432). Further preferred CpG dinucleotides for the DNA methylation analysis of PDZRN3 are described in Example 3.
  • DNA methylation analyzes of PLXNB2 include the transcript coding regions, gene body, and upstream and downstream regulatory elements (22:50273726-50311664).
  • the DNA methylation analysis of PLXNB2 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter region (22:50280218-50284352, SEQ ID NO:433).
  • Other preferred CpG dinucleotides for DNA methylation analysis of PLXNB2 are described in Example 3.
  • the gene ENSG00000228793 encodes a long non-coding RNA.
  • Preferred CpG dinucleotides for the DNA methylation analysis of ENSG00000228793 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (6:3577234-3725591).
  • the DNA methylation analysis according to the invention of ENSG00000228793 particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (6:3582962-3604478, SEQ ID NO:434).
  • the gene C6orf132 or "chromosome 6 open reading frame 132" is also known by the synonym bA7K24.2.
  • Preferred CpG dinucleotides for the DNA methylation analysis of C6orf132 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (6:42086629-42109278).
  • the DNA methylation analysis of C6orf132 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the gene body and the downstream sequence (6:42095755-42105946, SEQ ID NO:435).
  • Other preferred CpG dinucleotides for DNA Methylation analyzes of C6orfl32 are described in example 3 .
  • the gene ENSG00000254561 encodes a long non-coding RNA which is an antisense RNA to PVRL1.
  • Preferred CpG dinucleotides for the DNA methylation analysis of ENSG00000254561 according to the invention are contained, for example, in the transcript coding regions, in the gene body and in the upstream and downstream regulatory elements (11:119606540-119662598).
  • the DNA methylation analysis according to the invention of ENSG00000254561 particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (11:119611136-119621327, SEQ ID NO:436). Further preferred CpG dinucleotides for the DNA methylation analysis of ENSG00000254561 are described in Example 3.
  • the gene ENSG00000233321 encodes the long intergenic non-protein-coding RNA 2669, which is also known by the synonym LNC02669.
  • Preferred CpG dinucleotides for the DNA methylation analysis of ENSG00000233321 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (10:3429520-3509927).
  • the DNA methylation analysis according to the invention of ENSG00000233321 particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (10:3462995-3475451, SEQ ID NO:437).
  • Other preferred CpG dinucleotides for DNA methylation analysis of ENSG00000233321 are described in Example 3.
  • the gene SPATA12 or "spermatogenesis-associated 12" (English: “spermatogenesis-associated 12") is also known under the synonym SRG5.
  • Preferred CpG dinucleotides for DNA methylation analysis of SPATA12 according to the invention for example in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (3:57055791-57079006).
  • the DNA methylation analysis of SPATA12 according to the invention comprises at least one CpG dinucleotide in part of the promoter region (3:57057839-57062934, SEQ ID NO:438).
  • the promoter region of SPATA12 overlaps with the gene ARHGEF3.
  • the DNA methylation analysis of SPATA12 preferably also comprises at least one CpG dinucleotide in a part of the ARHGEF3 gene, its upstream and/or downstream sequences (3:56716823-57086585).
  • Other preferred CpG dinucleotides for DNA methylation analysis of SPATA12 are described in Example 3.
  • ERBB2 or "erb-b2 receptor tyrosine kinase 2" is also known under the synonyms NEU, NGL, HER2, TKR1, CD340, HER-2, MLN 19 and HER-2/neu.
  • Preferred CpG dinucleotides for the DNA according to the invention -Methylation analysis of ERBB2 are contained, for example, in the transcript-coding regions, the gene body and the upstream and downstream regulatory elements (17:39681935-39734595).
  • the DNA methylation analysis of ERBB2 according to the invention particularly preferably comprises at least one CpG dinucleotide in one part the promoter region (17:39698513-39701727, SEQ ID NO:51)
  • Other preferred CpG dinucleotides for DNA methylation analysis of ERBB2 are described in example 3.
  • the gene ZBTB38 or "zinc finger and BTB domain containing 38" is also known by the synonyms CIBZ, PPP1R171 and ZNF921.
  • Preferred CpG dinucleotides for the DNA methylation analysis of ZBTB38 according to the invention are, for example, in the transcript-coding regions, in the gene body and in the and downstream regulatory elements and sequences (3:141316185-141457181).
  • the DNA methylation analysis of ZBTB38 according to the invention preferably comprises at least one CpG dinucleotide in part of the promoter region (3:141364416-141371142, SEQ ID NO:441).
  • the DNA methylation analysis of ZBTB38 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the central promoter region (3:141367808-141368887).
  • Other preferred CpG dinucleotides for DNA methylation analysis of ZBTB38 are described in Example 4.
  • the gene MAFK or "MAE bZIP transcription factor K" (English: “MAE bZIP transcription factor K”) is also known under the synonyms NFE2U and P18.
  • Preferred CpG dinucleotides for the DNA methylation analysis of MAFK according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (7:1528821-1546374).
  • the DNA methylation analysis of MAFK according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the promoter region (7:1529262-1540502, SEQ ID NO:439).
  • Other preferred CpG dinucleotides for DNA methylation analysis of MAFK are described in Example 4.
  • the gene NEDD4L or "NEDD4-like E3 ubiquitin protein ligase" is also known by the synonyms NEDD4-2, NEDD4.2, PVNH7, RSP5 and hNEDD4-2.
  • Preferred CpG dinucleotides for the DNA methylation analysis of NEDD4L according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (18:58035172-58410596).
  • the DNA methylation analysis according to the invention particularly preferably comprises NEDD4L at least one CpG dinucleotide in part of the alternative promoter region (18:58215872-58228329, SEQ ID NO:440). Further preferred CpG dinucleotides for DNA methylation analysis of NEDD4L are described in Example 4.
  • the gene DIP2C or "disco-interacting protein 2 homolog C” is also known by the synonym KIAA0934.
  • Preferred CpG dinucleotides for the DNA methylation analysis of DIP2C according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (10:267772-695857).
  • the DNA methylation analysis of DIP2C according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter region and/or the gene body (10:682143-695166, SEQ ID NO:442 and/or 10:319301-330625, SEQ ID NO: 443). Further preferred CpG dinucleotides for the methylation analysis of DIP2C are described in Example 4.
  • CAPN2 or "calpain 2" (English: “calpain 2") is also known under the synonyms CANP2, CANPL2, CANPml and mCANP.
  • Preferred CpG dinucleotides for the DNA methylation analysis of CAPN2 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (1:223690715-223778847).
  • the DNA methylation analysis of CAPN2 particularly preferably comprises at least one CpG dinucleotide in part of the region of two promoters (1:223695643-223717861, SEQ ID NO:445) and/or at least one CpG dinucleotide in part of the gene body ( 1:223768582-223775521, SEQ ID NO:444).
  • Other preferred CpG dinucleotides for DNA methylation analysis of CAPN2 are described in Example 4.
  • the IER3 or immediate early response 3 gene is also known by the synonyms DIF-2, DIF2, GLY96, IEX-1, IEX-1L, IEX1 and PRG1.
  • Preferred CpG dinucleotides for the DNA methylation analysis of IER3 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (6:30738181-30760830).
  • the DNA methylation analysis of IER3 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter region (6:30740330-30758622, SEQ ID NO:446).
  • the promoter region of IER3 overlaps with the coding sequence of the long non-coding RNA ENSG00000228022 (HLA complex group 20; English "HLA complex group 20").
  • the DNA methylation analysis of IER3 according to the invention therefore particularly preferably also includes at least one CpG dinucleotide a region of the gene ENSG00000228022, its upstream and/or downstream sequence regions (6:30739218-30796409).
  • the promoter region of IER3 also overlaps with the gene FLOT1.
  • the DNA methylation analysis of IER3 according to the invention therefore particularly preferably also includes at least one CpG dinucleotide in a part of the gene FLOT1, its upstream and/or downstream sequence regions (6:30724525-30753969) Further preferred CpG dinucleotides for the DNA methylation analysis of IER3 are described in Example 4.
  • the gene TM4SF19 or "transmembrane 4 L six family member 19" is also known under the synonym OCTM4.
  • Preferred CpG dinucleotides for the DNA methylation analysis of TM4SF19 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (3:196313253- 196343829) .
  • the DNA methylation analysis of TM4SF19 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter region (3:196334860-196346137, SEQ ID NO:447). Further preferred CpG dinucleotides for the DNA methylation analysis of TM4SF19 are described in Example 4.
  • the RPTOR gene or "regulatory associated protein of MTOR complex 1" is also known by the synonyms KOG1 and Mipl.
  • Preferred CpG dinucleotides for the RPTOR DNA methylation analysis according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (17:80530563-80971671).
  • the DNA methylation analysis of RPTOR according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the gene body (17:80779489-80810457, SEQ ID NO:448, 17:80844268-80875012, SEQ ID NO:449 and/or 17:80875012 -80904251, SEQ ID NQ:450).
  • CpG dinucleotides for RPTOR DNA methylation analysis are described in Example 4.
  • the gene S100A16 or "S100 calcium binding protein A16" (English: “S100 calcium binding protein A16") is also known under the synonyms AAG13, DT1P1A7 and S100F.
  • Preferred CpG dinucleotides for DNA methylation analysis of S100A16 are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (1:153602503-153621188).
  • the DNA methylation analysis of S100A16 according to the invention preferably comprises at least one CpG dinucleotide in part of the promoter region (1:153606408-153613450, SEQ ID NO:451).
  • the DNA methylation analysis according to the invention particularly preferably comprises of S100A16 at least one CpG dinucleotide in part of the central promoter region (1:153608184-153610335).
  • Other preferred CpG dinucleotides for DNA methylation analysis of S100A16 are described in Example 4.
  • the BCL9L or "BCL9-like" gene is also known by the synonyms B9L, BCL9-2 and DLNB11.
  • Preferred CpG dinucleotides for the DNA methylation analysis of BCL9L according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (11:118890163-118935462).
  • the DNA methylation analysis of BCL9L according to the invention preferably comprises at least one CpG dinucleotide in part of the promoter region (11:118907364-118932161, SEQ ID NO:452).
  • the DNA methylation analysis of BCL9L according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the central promoter region (11:118909735-118912492).
  • Other preferred CpG dinucleotides for DNA methylation analysis of BCL9L are described in Example 4.
  • KCNMA1 or "potassium calcium-activated channel subfamily M alpha 1" is also known by the synonyms BKTM, CADEDS, IEG16, KCal.1, LINAS, MaxiK, PNKD3, SAKCA, SLO, SLO-ALPHA, SLO1, bA205K10.1, hSlo and mSLO1.
  • Preferred CpG dinucleotides for the KCNMA1 DNA methylation analysis according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (10:76859079-77651263).
  • the DNA methylation analysis of KCNMA1 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (10:76863515-77655134). Further preferred CpG dinucleotides for the DNA methylation analysis of KCNMA1 are described in Example 4.
  • the gene GALE or "UDP-galactose-4-epimerase” is also known under the synonym SDR1E1.
  • Preferred CpG dinucleotides for the GALE DNA methylation analysis according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (1:23794724-23802450).
  • the DNA methylation analysis of GALE according to the invention comprises at least one CpG dinucleotide in part of the promoter region (1:23797154-23802299), in particular at least part of the central promoter region (1:23798440-23801012, SEQ ID NO:455).
  • Other preferred CpG dinucleotides for GALE DNA methylation analysis are described in Example 4.
  • PCLD2 or "PCL domain containing 2" (English: “PCL domain containing 2") is also known under the synonym F10.
  • Preferred CpG dinucleotides for the DNA methylation analysis of PCLD2 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (13:113174967-113212905).
  • the DNA methylation analysis of PCLD2 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the alternative promoter region and/or the adjacent gene body (13:113183171-113191810, SEQ ID NO:456).
  • Other preferred CpG dinucleotides for DNA methylation analysis of PCLD2 are described in Example 4.
  • the SH3TC1 gene codes for "SH3 domain and tetratricopeptide repeats 1".
  • Preferred CpG dinucleotides for the SH3TC1 DNA methylation analysis according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (4:8178307-8244558).
  • the DNA methylation analysis of SH3TC1 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (4:8186081-8195074, SEQ ID NO:457).
  • Other preferred CpG dinucleotides for DNA methylation analysis of SH3TC1 are described in Example 4.
  • the gene SSH1 or "catapult protein phosphatase 1" (English: “slingshot protein phosphatase 1") is also known under the synonym SSH1L.
  • Preferred CpG dinucleotides for the DNA methylation analysis of SSH1 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (12:108772030-108865460).
  • the DNA methylation analysis of SSH1 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the alternative promoter region and/or the adjacent gene body (12:108818418-108837010, SEQ ID NO:458). Further preferred CpG dinucleotides for DNA methylation analysis of SSH1 are described in Example 4.
  • the gene AVPI1 or "arginine vasopressin induced 1" (English: “arginine vasopressin induced 1") is also known under the synonyms PP5395, VIP32 and VIT32.
  • Preferred CpG dinucleotides for the DNA methylation analysis of AVPI1 according to the invention are, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory regions Elements and sequences included (10:97670645-97697257).
  • the DNA methylation analysis of AVPI1 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter region (10:97680054-97694209, SEQ ID NO:459). Further preferred CpG dinucleotides for DNA methylation analysis of AVPI1 are described in Example 4.
  • the gene MAP3K14 or "mitogen-activated protein kinase kinase kinase 14" is also known by the synonyms FTDCR1B, HS, HSNIK and NIK.
  • Preferred CpG dinucleotides for the DNA methylation analysis of MAP3K14 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (17:45260858-45323711).
  • the DNA methylation analysis of MAP3K14 particularly preferably comprises at least one CpG dinucleotide in part of the promoter region (17:45280967-45306566, SEQ ID NO:460), in particular at least part of the central promoter region (17:45289527-45298809).
  • Other preferred CpG dinucleotides for DNA methylation analysis of MAP3K14 are described in Example 4.
  • the gene MIR23AHG is also called "miR-23a/27a/24-2 cluster host gene".
  • the gene also includes the genes encoding the miRNAs microRNA 24-2 (ENSG00000284387), microRNA 27a (ENSG00000207808) and microRNA 23a (ENSG00000207980) located in the sequence region 19:13835240-13837738.
  • Preferred CpG dinucleotides for the DNA methylation analysis of MIR23AHG according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (19:13821147-13857386).
  • the DNA methylation analysis of MIR23AHG according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter region (19:13833062-13847218, SEQ ID NO:461) of MIR23AHG. Furthermore, the DNA methylation analysis of MIR23AHG according to the invention preferably comprises at least one CpG dinucleotide in part of the transcript-coding regions, the upstream and downstream sequences and/or the promoters of the miRNAs microRNA 24-2, microRNA 27a and/or microRNA 23a (19th :13835240-13837738).
  • Example 4 describes other preferred CpG dinucleotides for DNA methylation analysis of MIR23AHG.
  • EPHA2 or "EPH receptor A2" is also known under the synonyms ARCC2, CTPA, CTPP1, CTRCT6 and ECK.
  • Preferred CpG dinucleotides for the DNA methylation analysis of EPHA2 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (1:16118861-16159630).
  • the DNA methylation analysis of EPHA2 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter region (1:16140758-16159964, SEQ ID NO:462).
  • Other preferred CpG dinucleotides for DNA methylation analysis of EPHA2 are described in Example 4.
  • the gene ENSG00000233785 codes for a long non-coding RNA.
  • Preferred CpG dinucleotides for the DNA methylation analysis of ENSG00000233785 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (X:23772172-23787075).
  • the DNA methylation analysis of ENSG00000233785 according to the invention comprises at least one CpG dinucleotide in part of the promoter region (X:23779234-23784341, SEQ ID NO:463).
  • the promoter of ENSG00000233785 overlaps with the promoter of the SAT1 gene.
  • the DNA methylation analysis of ENSG00000233785 preferably comprises at least one CpG dinucleotide in part of the promoter region of SAT1 (X:23777825-23789716).
  • SAT1 X:23777825-23789716
  • Other preferred CpG dinucleotides for DNA methylation analysis of ENSG00000233785 are described in Example 4.
  • the gene ACVR1 or "activin A receptor type 1" is also known by the synonyms ACTRIA, ACVRLK2, ALK2, FOP, SKR1, TSRI and ACVR1.
  • Preferred CpG dinucleotides for the ACVR1 DNA methylation analysis according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (2:157729592-157882479).
  • the DNA methylation analysis of ACVR1 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the gene body (2:157826504-157840100, SEQ ID NO:464) and/or an alternative promoter (2:157834936-157844561).
  • Other preferred CpG dinucleotides for DNA methylation analysis of ACVR1 are described in Example 4.
  • the gene ENSG00000282849 encodes a long non-coding RNA.
  • Preferred CpG dinucleotides for the DNA methylation analysis of ENSG00000282849 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (1:200470700-200499012).
  • the DNA methylation analysis of ENSG00000282849 according to the invention comprises at least one CpG dinucleotide in part of the promoter region (1:200479260-200488319, SEQ ID NO:465). Further preferred CpG dinucleotides for DNA methylation analysis of ENSG00000282849 are described in Example 4.
  • the gene COX7A2L or "cytochrome c oxidase subunit 7A2-like" is also known by the synonyms COX7AR, COX7RP, EB1, SCAF1, SCAFI and SIG81.
  • Preferred CpG dinucleotides for the DNA methylation analysis of COX7A2L according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (2:42325400-42431854).
  • the DNA methylation analysis of COX7A2L according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (2:42414934-42428523, SEQ ID NO:466).
  • Other preferred CpG dinucleotides for DNA methylation analysis of COX7A2L are described in Example 4.
  • the gene ENSG00000234476 codes for the long intergenic non-protein-coding RNA 2765 (English: "long intergenic non-protein coding RNA 2765").
  • Preferred CpG dinucleotides for the DNA methylation analysis of ENSG00000234476 according to the invention are, for example, in the transcript coding regions , contained in the gene body and the upstream and downstream regulatory elements and sequences (1:225437436-225469711).
  • the DNA methylation analysis of ENSG00000234476 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the gene body and/or the sequence downstream of the gene (1:225440616-225452506, SEQ ID NO:467).
  • the sequence downstream of the ENSG00000234476 gene also includes, for example, the promoter of the LBR gene.
  • the DNA methylation analysis of ENSG00000234476 according to the invention also preferably includes at least one CpG dinucleotide in part of the promoter of the Gen LBR (1:225421581-225447061).
  • Other preferred CpG dinucleotides for DNA methylation analysis of ENSG00000234476 are described in Example 4.
  • the LRRC2 gene encodes "leucine rich repeat containing 2".
  • Preferred CpG dinucleotides for the DNA methylation analysis of LRRC2 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (3:46511046-46584091).
  • the DNA methylation analysis of LRRC2 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the gene body and/or the sequence downstream of the gene (3:46514226-46522718, SEQ ID NO:468).
  • Other preferred CpG dinucleotides for DNA methylation analysis of LRRC2 are described in Example 4.
  • the gene PLXNB1 or "Plexin Bl" (English: “plexin Bl") is also known under the synonyms PLEXIN-Bl, PLXN5 and SEP.
  • Preferred CpG dinucleotides for the DNA methylation analysis of PLXNB1 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (3:48398058-48434297).
  • the DNA methylation analysis of PLXNB1 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the gene body and/or the sequence downstream of the gene (3:48398407-48408032, SEQ ID NO:469).
  • Other preferred CpG dinucleotides for DNA methylation analysis of PLXNB1 are described in Example 4.
  • the gene PPTC7 or "protein phosphatase targeting COQ7" is also known by the synonyms TA-PP2C and TAPP2C.
  • Preferred CpG Dinucleotides for the DNA methylation analysis of PPTC7 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (12:110530192-110590779).
  • the DNA methylation analysis of PPTC7 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter region (12:110572968-110586617, SEQ ID NO:470).
  • Other preferred CpG dinucleotides for DNA methylation analysis of PPTC7 are described in Example 4.
  • the gene RB1CC1 or "RB1 inducible coiled-coil 1" is also known under the synonyms ATG17, CC1, FIP200 and PPP1R131.
  • Preferred CpG dinucleotides for the inventive DNA methylation analysis of RB1CC1 are, for example, in the transcript-coding regions, contained in the gene body and the upstream and downstream regulatory elements and sequences (8:52617519-52751719).
  • the DNA methylation analysis of RB1CC1 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the gene body (8:52691480-52698840, SEQ ID NO:471) Further preferred CpG dinucleotides for the DNA methylation analysis of RB1CC1 are described in Example 4.
  • the gene SLC2A1 or "solute carrier family 2 member 1" is also known by the synonyms CSE, DYT17, DYT18, DYT9, EIG12, GLUT, GLUT-1, GLUT1, GLUT1DS, HTLVR, PED and SDCHCN.
  • Preferred CpG dinucleotides for the DNA methylation analysis of SLC2A1 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (1:42921303-42963771).
  • the DNA methylation analysis of SLC2A1 particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (1:42938229-42947715, SEQ ID NO:472).
  • Other preferred CpG dinucleotides for DNA methylation analysis of SLC2A1 are described in Example 4.
  • the gene SLC39A11 or "solute carrier family 39 member 11" is also known by the synonyms C17orf26, ZIP-11 and ZIP11.
  • Preferred CpG dinucleotides for the DNA methylation analysis of SLC39A11 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (17:72643200-73100730).
  • the DNA methylation analysis of SLC39A11 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (17:72714613-72720275, SEQ ID NO:473).
  • Other preferred CpG dinucleotides for DNA methylation analysis of SLC39A11 are described in Example 4.
  • the gene TBC1D14 codes for "TBC1 domain family member 14" (English: “TBC1 domain family member 14").
  • Preferred CpG dinucleotides for the DNA methylation analysis of TBC1D14 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (4:6904581-7037649).
  • the DNA methylation analysis of TBC1D14 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (4:6940038-6945133, SEQ ID NO:474).
  • Other preferred CpG dinucleotides for DNA methylation analysis of TBC1D14 are described in Example 4.
  • TIMP2 or "TIMP metalloprotease inhibitor 2" (English: “TIMP metallopeptidase inhibitor 2") is also known under the synonyms CSC-21K and DDC8.
  • Preferred CpG dinucleotides for the DNA methylation analysis of TIMP2 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (17:78850969-78930243).
  • the DNA methylation analysis of TIMP2 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (17:78860378-78864341, SEQ ID NO:475).
  • Other preferred CpG dinucleotides for DNA methylation analysis of TIMP2 are described in Example 4.
  • the ENSG00000276527 gene encodes a long non-coding RNA.
  • Preferred CpG dinucleotides for the DNA methylation analysis of ENSG00000276527 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (13:44673141-44730897).
  • the DNA methylation analysis of ENSG00000276527 according to the invention comprises at least one CpG dinucleotide in a part of the promoter region (13:44706332-44721620, SEQ ID NO:476).
  • Other preferred CpG dinucleotides for DNA methylation analysis of ENSG00000276527 are described in Example 4.
  • the CFAP20DC or "CFAP20 domain containing" gene is also known by the synonym C3orf67.
  • Preferred CpG dinucleotides for the CFAP20DC DNA methylation analysis according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (3:58701609-59060611).
  • the DNA methylation analysis of CFAP20DC according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (3:58994710-59004335, SEQ ID NO:477).
  • Other Preferred CpG Dinucleotides for the DNA methylation analysis of CFAP20DC are described in Example 4.
  • the gene PHLDA1 or "Pleckstrin homology-like domain family A member 1" is also known by the synonyms DT1P1B11, PHRIP and TDAG51.
  • Preferred CpG dinucleotides for the DNA methylation analysis of PHLDA1 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (12:76018034-76036153).
  • the DNA methylation analysis of PHLDA1 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the gene body and/or the sequence downstream of the gene (12:76020299-76028225, SEQ ID NO:478).
  • Other preferred CpG dinucleotides for DNA methylation analysis of PHLDA1 are described in Example 4.
  • TESC The gene TESC or "tescalcin" (English: “tescalcin”) is also known under the synonyms CHP3+ TSC.
  • Preferred CpG dinucleotides for the DNA methylation analysis of TESC according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (12:117036475-117104990).
  • the DNA methylation analysis of TESC according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (12:117040788-117045883, SEQ ID NO:479).
  • Other preferred CpG dinucleotides for TESC DNA methylation analysis are described in Example 4.
  • the gene LTMA1 or "LIM domain and actin binding 1" (English: “LIM domain and actin binding 1") is also known under the synonyms EPLIN, LDLCQ8 and SREBP3.
  • Preferred CpG dinucleotides for the DNA methylation analysis of LIMA1 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (12:50173475-50288989).
  • the DNA methylation analysis of LIMA1 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the alternative promoter region and/or the gene body (12:50240641-50255929, SEQ ID NO:480).
  • Other preferred CpG dinucleotides for DNA methylation analysis of LIMA1 are described in Example 4.
  • ASPSCR1 or "ASPSCR1 tether for SLC2A4, UBX domain containing" (English) is also known by the synonyms ASPCR1, ASPL, ASPS, RCC17, TUG, UBXD9 and UBXN9.
  • Preferred CpG dinucleotides for the DNA methylation analysis of ASPSCR1 according to the invention are for example in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (17:81972463-82021726)
  • the DNA methylation analysis of ASPSCR1 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the alternative promoter region and/or the gene body (17:81996878-82011599, SEQ ID NO:481)
  • Further preferred CpG dinucleotides for the DNA methylation analysis of ASPSCR1 are described in Example 4.
  • the CAMKID gene or "calcium/calmodulin-dependent protein kinase ID" is also known by the synonyms CKLiK, CaM-Kl and CaMKID.
  • Preferred CpG dinucleotides for the DNA methylation analysis of CAMKID according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (10:12342542-12846504).
  • Particularly preferably included the DNA methylation analysis of CAMK1D according to the invention at least one CpG dinucleotide in a part of the gene body (10:12441419-12456706, SEQ ID NO:482).
  • Other preferred CpG dinucleotides for DNA methylation analysis of CAMK1D are described in Example 4.
  • the gene CAMK2D or "calcium/calmodulin-dependent protein kinase II delta" is also known under the synonym CAMKD.
  • Preferred CpG dinucleotides for the DNA methylation analysis of CAMK2D according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (4:113443497-113771922).
  • the DNA methylation analysis of CAMK2D according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (4:113463882-113476338, SEQ ID NO:483).
  • Other preferred CpG dinucleotides for DNA methylation analysis of CAMK2D are described in Example 4.
  • the gene CFAP57 or "cilia and flagella associated protein 57” is also known by the synonyms VWS2 and WDR65.
  • Preferred CpG dinucleotides for the CFAP57 DNA methylation analysis according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (1:43168905-43262902).
  • the DNA methylation analysis of CFAP57 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (1:43199549-43214270, SEQ ID NO:484).
  • Other preferred CpG dinucleotides for CFAP57 DNA methylation analysis are described in Example 4.
  • CHCHD6 or "coiled-coil-helix-coiled-coil-helix domain containing 6" (English) is also known under the synonyms CHCM1, MIC0S25, Mic25 and PPP1R23.
  • Preferred CpG dinucleotides for the DNA methylation analysis of CHCHD6 according to the invention are for example in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (3:126691799-126968129).
  • the DNA methylation analysis of CHCHD6 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body ( 3:126904209-126920063, SEQ ID NO:485) Further preferred CpG dinucleotides for the DNA methylation analysis of CHCHD6 are described in Example 4.
  • the gene DRAP1 or "DR1-associated protein 1" (English: “DR1 associated protein 1") is also known under the synonym NC2-alpha.
  • Preferred CpG dinucleotides for the DNA methylation analysis of DRAP1 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (11:65905972-65931452).
  • the DNA methylation analysis of DRAP1 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter region (11:65909705-65922504, SEQ ID NO:486).
  • the DRAP1 promoter region overlaps with the gene body and the upstream and downstream sequences of the CIlorf68 gene (also known by the synonyms BLES03 and P5326).
  • Preferred CpG dinucleotides for the DNA methylation analysis of DRAP1 are therefore also contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences of Cllorf68 (11:65915129-65921081).
  • Other preferred CpG dinucleotides for DNA methylation analysis of DRAP1 are described in Example 4.
  • ENC1 or "ectodermal-neural cortex 1" is also known by the synonyms CCL28, ENC-1, KLHL35, KLHL37, NRPB, PIG10 and TP53I10.
  • Preferred CpG dinucleotides for the DNA methylation analysis of ENC1 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (5:74624641-74648422).
  • the DNA methylation analysis of ENC1 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter region (5:74636598-74645657, SEQ ID NO:487).
  • the promoter region of ENC1 overlaps with the gene body and promoter of the HEXE gene (also known by the synonyms ENC-1AS, HEL-248 and HEL-S-111).
  • Preferred CpG dinucleotides for the DNA methylation analysis of ENC1 are therefore also contained, for example, in the transcript-coding regions, in the gene body and in the promoters of HEXB (5:74636532-74728830). Further preferred CpG dinucleotides for DNA methylation analysis of ENC1 are described in Example 4.
  • the gene ARHGAP32 or "Rho GTPase-activating protein 32" (English: “Rho GTPase activating protein 32") is also known by the synonyms GC-GAP, GRIT, PX-RICS, RTCS, p200RhoGAP and p250GAP.
  • Preferred CpG dinucleotides for DNA methylation analysis of ARHGAP32 are contained, for example, in the transcript coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (11:128954478-129289132).
  • the DNA methylation analysis of ARHGAP32 particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (11:129131715-129160026, SEQ ID NO:488).
  • Other preferred CpG dinucleotides for DNA methylation analysis of ARHGAP32 are described in Example 4.
  • the gene ABL2 or "ABL proto-oncogene 2 , non-receptor tyrosine kinase" is also known by the synonyms ABLL and ARG.
  • Preferred CpG dinucleotides for DNA methylation analysis of ABL2 are contained, for example, in the transcript coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (1:179096875-179238075).
  • the DNA methylation analysis of ABL2 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the alternative promoter region and/or the gene body (1:179132347-179152810, SEQ ID NO:489).
  • Other preferred CpG dinucleotides for DNA methylation analysis of ABL2 are described in Example 4.
  • the gene ENSG00000250754 encodes the long intergenic non-protein-coding RNA 2436 (English: “long intergenic non-protein coding RNA 243"). contained in the gene body and the upstream and downstream regulatory elements and sequences (4:185047564-185119477).
  • the DNA methylation analysis of ENSG00000250754 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the gene body (4:185105388-185115579, SEQ ID NO:490) Further preferred CpG dinucleotides for the DNA methylation analysis of ENSG00000250754 are described in Example 4.
  • locus chromosome 1 cytogenetic band q42.3 (locus Chr.lq42.3) is a region on chromosome 1 within the cytogenetic band q42.3 in which no genes have been identified to date.
  • Preferred CpG dinucleotides for the DNA methylation analyzes of the Chr.lq42.3 locus according to the invention are contained in the range 1:235005582-235018381 (SEQ ID NO:491).
  • the DNA methylation analysis of locus Chr.lq42.3 according to the invention comprises at least one CpG dinucleotide part of the region 1:234990630-235048809.
  • Other preferred CpG dinucleotides for DNA methylation analysis of locus Chr.lq42.3 are described in Example 4.
  • the gene MYO16 or "Myosin XVI" (English: “myosin XVI") is also known under the synonyms MYAP3, MYR8, MyolOb, NYAP3 and PPP1R107.
  • Preferred CpG dinucleotides for the DNA methylation analysis of MYO16 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (13:108587425-109218794).
  • the DNA methylation analysis of MYO16 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (13:108955554-108964613, SEQ ID NO:492).
  • Other preferred CpG dinucleotides for DNA methylation analysis of MYO16 are described in Example 4.
  • the gene MYOF or "myoferlin” (English: “myoferlin”) is also known under the synonyms FER1L3 and HAE7.
  • Preferred CpG dinucleotides for the DNA methylation analysis of MYOF according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (10:93297681-93487941).
  • the DNA methylation analysis of MYOF according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (10:93430533-93443556, SEQ ID NO:493).
  • CpG dinucleotides for DNA methylation analysis of MYOF are described in Example 4.
  • the gene PTPRK or "protein tyrosine phosphatase receptor type K" is also known under the synonym R-PTP-kappa.
  • Preferred CpG dinucleotides for the DNA methylation analysis of PTPRK according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (6:127963171-128535084).
  • the DNA methylation analysis of PTPRK according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter region (6:128505772-128525024, SEQ ID NO:494).
  • Other preferred CpG dinucleotides for DNA methylation analysis of PTPRK are described in Example 4.
  • the RBKS or "ribokinase” gene is also known by the synonyms RBSK and RK.
  • Preferred CpG dinucleotides for the DNA methylation analysis of RBKS according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (2:27777732-27896077).
  • the DNA methylation analysis of RBKS according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (2:27795917-27806109, SEQ ID NO:495).
  • the RBSK gene locus overlaps with the MRPL33 gene locus.
  • the DNA methylation analysis of RBKS comprises at least one CpG dinucleotide in part of the MRPL33 gene, its upstream and downstream regulatory elements and/or sequences (2:27766058-27895728).
  • Other preferred CpG dinucleotides for DNA methylation analysis of RBKS are described in Example 4.
  • the gene SH3RF2 or "SH3 domain containing ring finger 2" is also known by the synonyms HEPP1, POSHER, PPP1R39 and RNF158.
  • Preferred CpG dinucleotides for the SH3RF2 DNA methylation analysis according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (5:145932920-146086373).
  • the DNA methylation analysis of SH3RF2 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (5:145943178-145954502, SEQ ID NO:496).
  • Other preferred CpG dinucleotides for DNA methylation analysis of SH3RF2 are described in Example 4.
  • the gene SILC1 or "sciatic injury induced lincRNA upregulator of SOX11" is also known by the synonym LINC01105 - and contain downstream regulatory elements and sequences (2:5928211-6010316).
  • the DNA methylation analysis of SILC1 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (2:5965649-5976973, SEQ ID NO:497). Further preferred CpG dinucleotides for the DNA methylation analysis of SILC1 are described in Example 4.
  • the gene SRI codes for "Spl transcription factor of SOX11" (English: “Spl transcription factor”).
  • Preferred CpG dinucleotides for the DNA methylation analysis of SRI according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (12:53375735-53421600).
  • the DNA methylation analysis of SRI according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter region (12:53376933-53389389, SEQ ID NO:498) .
  • Other preferred CpG dinucleotides for DNA methylation analysis of SP1 are described in Example 4.
  • the gene SPAG6 or "sperm-associated antigen 6" (English: “sperm-associated antigen 6") is also known under the synonyms CFAP194, CT141, FAP194, Repro-SA-1 and pfl6.
  • Preferred CpG dinucleotides for the DNA methylation analysis of SPAG6 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (10:22334820-22456564).
  • the DNA methylation analysis of SPAG6 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (10:22423788-22437377, SEQ ID NO:499).
  • Other preferred CpG dinucleotides for DNA methylation analysis of SPAG6 are described in Example 4.
  • the gene SRGAP1 or "SLIT-ROBO Rho GTPase-activating protein 1" (English: “SLIT-ROBO Rho GTPase-activating protein 1") is also known by the synonyms ARHGAP13 and NMTC2.
  • Preferred CpG dinucleotides for the DNA methylation analysis of SRGAP1 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (12:63840361-64168219).
  • the DNA methylation analysis of SRGAP1 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (12:64081933-64096088, SEQ ID NQ:500). Further preferred CpG dinucleotides for the DNA methylation analysis of SRGAP1 are described in Example 4.
  • the gene SYTL3 or "synaptotagmin-like 3" (English: “synaptotagmin-like 3") is also known under the synonym SLP3.
  • Preferred CpG dinucleotides for the DNA methylation analysis of SYTL3 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (6:158648904-158767816).
  • the DNA methylation analysis of SYTL3 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (6:158715789-158725980, SEQ ID NO:501).
  • Other preferred CpG dinucleotides for DNA methylation analysis of SYTL3 are described in Example 4.
  • the gene TMEM248 or "transmembrane protein 248" is also known under the synonym C7orf42.
  • Preferred CpG dinucleotides for the DNA methylation analysis of TMEM248 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (7:66917852-66964283).
  • the DNA methylation analysis of TMEM248 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (7:66948778-66956138, SEQ ID NO:503). Further preferred CpG dinucleotides for the DNA methylation analysis of TMEM248 are described in Example 4.
  • the UTP25 or "UTP25 small subunit processor component" gene is also known by the synonyms ClorflOl, DEE, DIEXF and DJ434O14.5.
  • Preferred CpG dinucleotides for the DNA methylation analysis of UTP25 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (1:209825659-209861332).
  • the DNA according to the invention particularly preferably comprises Methylation analysis of UTP25 at least one CpG dinucleotide in a part of the gene body (1:209833653-209842712, SEQ ID NO:504).
  • Other preferred CpG dinucleotides for DNA methylation analysis of UTP25 are described in Example 4.
  • the WDFY3 or "WD repeat and FYVE domain containing 3" gene is also known by the synonyms AIFY, BCHS, MCPH18 and ZFYVE25.
  • Preferred CpG dinucleotides for the DNA methylation analysis of WDFY3 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (4:84663857-84972463).
  • the DNA methylation analysis of WDFY3 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (4:84688272-84697331, SEQ ID NO:505). Further preferred CpG dinucleotides for the DNA methylation analysis of WDFY3 are described in Example 4.
  • the gene WIPF2 or "WAS/WASL-interacting protein family member 2" (English: “WAS/WASI interacting protein family member 2") is also known by the synonyms WICH and WIRE.
  • Preferred CpG dinucleotides for the DNA methylation analysis of WIPF2 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (17:40215423-40289035).
  • the DNA methylation analysis of WIPF2 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the gene body and/or the downstream sequence (17:40280324-40285420, SEQ ID NO:506).
  • CpG dinucleotides for DNA methylation analysis of WIPF2 are described in Example 4.
  • the WSB2 or "WD repeat and SOGS box containing 2" gene is also known by the synonym SBA2.
  • Preferred CpG dinucleotides for the DNA methylation analysis of WSB2 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (12:118031129-118069633).
  • the DNA methylation analysis of WSB2 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body and/or the region of the alternative promoter (12:118050165-118055260, SEQ ID NO:507).
  • Other preferred CpG dinucleotides for DNA methylation analysis of WSB2 are described in Example 4.
  • the gene ZCCHC14 or "zinc finger CCHC-type containing 14" is also known by the synonyms BDG-29 and BDG29.
  • Preferred CpG dinucleotides for the ZCCHC14 DNA methylation analysis according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (16:87404598-87498029).
  • the DNA methylation analysis of ZCCHC14 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (16:87454494-87461288, SEQ ID NO:508).
  • Other preferred CpG dinucleotides for DNA methylation analysis of ZCCHC14 are described in Example 4.
  • the gene ZSWIM1 or "zinc finger SWIM-type containing 1" is also known under the synonym C20orfl62.
  • Preferred CpG dinucleotides for the ZSWIM1 DNA methylation analysis according to the invention are, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory regions Elements and sequences included (20:45879834-45885948).
  • the DNA methylation analysis of ZSWIM1 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the gene body and/or the downstream sequence (20:45882837-45886936, SEQ ID NO:509). Further preferred CpG dinucleotides for the DNA methylation analysis of ZSWIM1 are described in Example 4.
  • the ENSG00000226380 gene encodes a long non-coding RNA.
  • Preferred CpG dinucleotides for the DNA methylation analysis of ENSG00000226380 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (7:130847110-130935786).
  • the DNA methylation analysis of ENSG00000226380 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the gene body and/or an alternative promoter (7:130897587-130915321, SEQ ID NO:510).
  • ENSG00000226380 overlaps with the genes ENSG00000285106 and ENSG00000233559, which encode long non-coding RNAs.
  • Preferred further CpG dinucleotides for the DNA methylation analysis of ENSG00000226380 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences of ENSG00000285106 and/or ENSG00000233559 (7:130785211- 131117033). Further preferred CpG dinucleotides for the DNA methylation analysis of ENSG00000226380 are described in Example 4.
  • the gene ENTPD6 or "ectonucleoside triphosphate diphosphohydrolase 6" is also known by the synonyms CD39L2, IL-6SAG, IL6ST2, NTPDase-6 and dJ738P15.3.
  • Preferred CpG dinucleotides for the DNA methylation analysis of ENTPD6 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (20:25189304-25235735).
  • the DNA methylation analysis of ENTPD6 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the gene body and/or the downstream sequence (20:25218815-25232404, SEQ ID NO:511).
  • Other preferred CpG dinucleotides for DNA methylation analysis of ENTPD6 are described in Example 4.
  • the gene ENSG00000285517 codes for the long intergenic non-protein-coding RNA 941.
  • Preferred CpG dinucleotides for the DNA methylation analysis of ENSG00000285517 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (12:30786572-30885665).
  • the DNA methylation analysis of ENSG00000285517 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter region (12:30789185-30803341, SEQ ID NO:512). Further preferred CpG dinucleotides for the DNA methylation analysis of ENSG00000285517 are described in Example 4.
  • the gene CAPRIN2 or "Caprin family member 2" is also known by the synonyms C1QDC1, EEG-1, EEG1 and RNG140.
  • Preferred CpG dinucleotides for the DNA methylation analysis of CAPRIN2 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (12:30706091-30760450).
  • the DNA methylation analysis of CAPRIN2 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (12:30721446-30731637, SEQ ID NO:513) . Further preferred CpG dinucleotides for the DNA methylation analysis of CAPRIN2 are described in Example 4.
  • the gene MTPN or "myotrophin” (English: “myotrophin”) is also known by the synonyms GCDP and V-I.
  • Preferred CpG dinucleotides for the DNA methylation analysis of MTPN according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (7:135921876-135988693).
  • the DNA methylation analysis of MTPN according to the invention particularly preferably comprises at least one CpG dinucleotide part of the gene body and/or the downstream sequence (7:135916072-135931079, SEQ ID NO:514).
  • MTPN overlaps with the gene ENSG00000224746, which encodes a long non-coding antisense RNA of MTPN.
  • Further preferred CpG dinucleotides for the DNA methylation analysis of MTPN are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and/or sequences of ENSG00000224746 (7:135766091-135940495). Further preferred CpG dinucleotides for the DNA methylation analysis of MTPN are described in Example 4.
  • the gene ADAM17 or "ADAM metallopeptidase domain 17" (English: “ADAM metallopeptidase domain 17") is also known by the synonyms ADAMIS, CD156B, CSVP, NISBD, NISBD1 and TAGE.
  • Preferred CpG dinucleotides for the DNA methylation analysis of ADAM17 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (2:9483620-9576484).
  • the DNA methylation analysis of ADAM17 according to the invention particularly preferably comprises at least a CpG dinucleotide in part of the promoter region (2:9549370-9573152, SEQ ID NO:515). Further preferred CpG dinucleotides for the DNA methylation analysis of ADAM17 are described in Example 4.
  • the gene ATG14 or "autophagy related 14" is also known by the synonyms ATG14L, BARKOR and KIAA0831.
  • Preferred CpG dinucleotides for the DNA methylation analysis of ATG14 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (14:55360269-55419158).
  • the DNA methylation analysis of ATG14 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (14:55394876-55407333, SEQ ID NO:516).
  • Other preferred CpG dinucleotides for DNA methylation analysis of ATG14 are described in example 4.
  • the gene ENSG00000258583 encodes the long intergenic non-protein-coding RNA 1500 (LINC01500).
  • Preferred CpG dinucleotides for the DNA methylation analysis of ENSG00000258583 according to the invention are contained, for example, in the transcript coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (14:58696512-58787111).
  • the DNA methylation analysis according to the invention of ENSG00000258583 particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (14:58725174-58743859, SEQ ID NO:517). Further preferred CpG dinucleotides for the DNA methylation analysis of ENSG00000258583 are described in Example 4.
  • the gene ITGB5 codes for "integrin subunit beta 5".
  • Preferred CpG Dinucleotides for the DNA methylation analysis of ITGB5 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (3:124755559-124906181).
  • the DNA methylation analysis of ITGB5 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter region (3:124873906-124896555, SEQ ID NO:518).
  • Other preferred CpG dinucleotides for DNA methylation analysis of ITGB5 are described in Example 4.
  • the gene VGLL4 or "vestigial like family member 4" is also known under the synonym VGL-4.
  • Preferred CpG dinucleotides for the DNA methylation analysis of VGLL4 according to the invention are, for example, in the transcript-coding regions, in the gene body and those upstream and downstream contain regulatory elements and sequences (3:11551262-11777762).
  • the DNA methylation analysis of VGLL4 according to the invention preferably comprises at least one CpG dinucleotide in part of the region of the alternative promoter and/or gene body (3:11565768-11571995, SEQ ID NO: 519).
  • the DNA methylation analysis of VGLL4 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the central region of the alternative promoter (3:11568540-11569011). Further preferred CpG dinucleotides for the DNA methylation analysis of VGLL4 are in example 5 described.
  • the gene CDCP1 or "CUB domain containing protein 1" is also known by the synonyms CD318 SIMA135 and TRASK downstream regulatory elements and sequences (3:45074059-45158995).
  • DNA methylation analysis of CDCP1 according to the invention at least one CpG dinucleotide in part of the promoter region (3:45124238-45151983, SEQ ID NO:520).
  • the DNA methylation analysis of CDCP1 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter flanking region (3:45131323-45141462).
  • Other preferred CpG dinucleotides for DNA methylation analysis of CDCP1 are described in Example 5.
  • the RASA3 gene or "RAS p21 protein activator 3" is also known by the synonyms GAP1IP4BP and GAPIII contain regulatory elements and sequences (13:113975248-114140593).
  • the DNA methylation analysis of RASA3 according to the invention comprises at least one CpG dinucleotide in part of the promoter region (13:114105649-114128377, SEQ ID NO:521) and/or at least a part of the gene body (13:114062455-114066811, SEQ ID NO:522) Further preferred CpG dinucleotides for the DNA methylation analysis of RASA3 are described in Example 5.
  • the gene PTTG1IP or "PTTG1 interacting protein" is also known by the synonyms C21orf1 C21orf3 and PBF.
  • Preferred CpG dinucleotides for the DNA methylation analysis of PTTG1IP according to the invention are, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory regions Elements and sequences contain (21:44846942-44879217).
  • the DNA methylation analysis of PTTG1IP according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter region (21:44865977-44876735, SEQ ID NO:523).More preferred CpG Dinucleotides for DNA methylation analysis of PTTG1IP are described in Example 5.
  • the gene ASAP2 or "ArfGAP with SH3 domain, ankyrin repeat and PH domain 2" is also known by the synonyms AMAP2, CENTB3, DDEF2, PAG3, PAP, Pap-alpha and SHAG1.
  • Preferred CpG dinucleotides for the DNA methylation analysis according to the invention ASAP2 are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (2:9189545-9412647).
  • the DNA methylation analysis of ASAP2 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the Gene body (2:9230183-9241659, SEQ ID NO:524 and 2:9275684-9297427, SEQ ID NO:525) Further preferred CpG dinucleotides for the DNA methylation analysis of ASAP2 are described in Example 5.
  • the gene ENSG00000242282 encodes a long non-coding RNA.
  • Preferred CpG dinucleotides for the DNA methylation analysis of ENSG00000242282 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (2:3530801-3538728).
  • the DNA methylation analysis of ENSG00000242282 according to the invention comprises at least one CpG dinucleotide in a part of the promoter region (2:3534728-3537892, SEQ ID NO:526).
  • the gene ENSG00000242282 overlaps with the protein-coding gene ENSG00000286905, which has not yet been described in detail.
  • the DNA methylation analysis according to the invention of ENSG00000242282 preferably comprises at least one CpG dinucleotide in part of ENSG00000286905 and/or its upstream or downstream sequences (2:3528688-3564361).
  • Other preferred CpG dinucleotides for DNA Methylation analysis of ENSG00000242282 are described in example 5 .
  • locus chromosome 3 cytogenetic band q29 is a region on chromosome 3 within the cytogenetic band q29 in which no genes have been identified to date.
  • Preferred CpG dinucleotides for DNA methylation analysis according to the invention are included in the range 3:193846105-193957656.
  • the DNA methylation analysis of locus Chr.3p23 according to the invention comprises at least one CpG dinucleotide in part of the region 3:193868829-193871078 (SEQ ID NO:527). Further preferred CpG dinucleotides for DNA methylation analysis of locus Chr.3q29 are described in Example 5.
  • the TMCO4 gene codes for "transmembrane and coiled-coil domains 4".
  • Preferred CpG dinucleotides for the DNA methylation analysis of TMCO4 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences ( 1:19682086-19805528).
  • the DNA methylation analysis of TMCO4 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (1:19760862-19771053, SEQ ID NO:528). Further preferred CpG dinucleotides for the DNA Methylation analyzes of TMCO4 are described in Example 5.
  • the gene UBXN11 or "UBX domain protein 11" is also known by the synonyms COA-1, PP2243, SOC, SOCI and UBXD5.
  • Preferred CpG dinucleotides for the inventive DNA methylation analysis of UBXN11 are, for example, in the transcript-coding regions, im Gene body and the upstream and downstream regulatory elements and sequences included (1:26279900-26322368).
  • the DNA methylation analysis of UBXN11 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (1:26283080-26291573, SEQ ID NO:529).
  • DNA methylation analysis of UBXN11 also includes at least one CpG dinucleotide in part of the SH3BGRL3 gene (1:26279900-26282767) since its downstream sequences overlap with UBXN11.
  • CpG dinucleotides for DNA methylation analysis of UBXN11 are described in Example 5.
  • the gene MAP3K5 or "mitogen-activated protein kinase kinase kinase kinase 5" is also known by the synonyms ASK1, MAPKKK5 and MEKK5.
  • Preferred CpG dinucleotides for the inventive DNA methylation analysis of MAP3K5 are, for example, in the transcript-coding regions, in the gene body and contain the upstream and downstream regulatory elements and sequences (6:136554489-136801939).
  • the DNA methylation analysis of MAP3K5 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (6:136586548-136600703, SEQ ID NO:530)
  • Other preferred CpG dinucleotides for methylation analysis of MAP3K5 are described in Example 5.
  • the ASTN2 gene or "astrotactin 2" is also known under the synonym bA67K19.1.
  • Preferred CpG dinucleotides for the DNA methylation analysis of ASTN2 according to the invention are, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and contain sequences (9:117345773-117430710).
  • the DNA methylation analysis of ASTN2 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (9:117366574-117385825, SEQ ID NO:531) .
  • Other preferred CpG dinucleotides for DNA methylation analysis of ASTN2 are described in Example 5.
  • the gene ENSG00000258082 codes for a long non-coding RNA.
  • Preferred CpG dinucleotides for the DNA methylation analysis of ENSG00000258082 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements and sequences (1:234975256-234989412).
  • the DNA methylation analysis of ENSG00000258082 according to the invention comprises at least one CpG dinucleotide in part of the promoter region (1:234979046-234982307, SEQ ID NO:532).
  • Other preferred CpG dinucleotides for DNA methylation analysis of ENSG00000258082 are described in Example 5.
  • the gene SYNJ2 or "synaptojanin 2" is also known under the synonym INPP5H.
  • Preferred CpG dinucleotides for the DNA methylation analysis of SYNJ2 according to the invention are contained, for example, in the transcript-coding regions, in the gene body and in the upstream and downstream regulatory elements (6 :157977609-158103316.
  • the DNA methylation analysis of SYNJ2 according to the invention particularly preferably comprises at least one CpG dinucleotide in a part of the gene body (6:158054401-158064027, SEQ ID NO:351). of SYNJ2 are described in Example 6.
  • the gene WWTR1 or "WW domain containing transcription regulator 1" is also known under the synonym TAZ.
  • Preferred CpG dinucleotides for the DNA methylation analysis of WWTR1 according to the invention are, for example, in the transcript-coding regions , in the gene body and the and downstream regulatory elements (3:149513215-149741413).
  • the DNA methylation analysis of WWTR1 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter region (3:149654894-149660454, SEQ ID NO:365).
  • Other preferred CpG dinucleotides for DNA methylation analysis of WWTR1 are described in Example 6.
  • the gene CLDN4 or "Claudin 4" is also known by the synonyms CPE-R, CPER, CPETR, CPETR1, WBSCR8 and hCPE-R.
  • Preferred CpG dinucleotides for the DNA methylation analysis of CLDN4 according to the invention are, for example, in the transcript-coding regions , the gene body and the upstream and downstream regulatory elements (7:73791741-73838739).
  • the DNA methylation analysis of CLDN4 according to the invention particularly preferably comprises at least one CpG dinucleotide in part of the promoter and gene body region (7:73826348-73836540, SEQ ID NO:354)
  • Other preferred CpG dinucleotides for DNA methylation analysis of CLDN4 are described in Example 7.
  • DNA methylation analysis can be carried out using all common methods that are known to the person skilled in the art for this purpose from the relevant literature.
  • a suitable method comprises, for example, the following steps: A) providing DNA from the cells of the malignant disease; B) converting at least part of the cytosines contained in the DNA from A) into uracil or another base with a base pairing behavior and/or molecular weight that can be distinguished from cytosine; C) Analysis of the DNA obtained from step B), hereinafter also referred to as "converted DNA” refers to a DNA methylation of the corresponding gene or part thereof, in particular at least one CpG dinucleotide contained in the part.
  • the conversion of the DNA in step B) can be carried out using all methods known and suitable for this purpose in the prior art. Typically this is a chemical or enzymatic conversion, for example by contacting the DNA with bisulfite, e.g. B. sodium bisulfite or ammonium bisulfite.
  • bisulfite e.g. B. sodium bisulfite or ammonium bisulfite.
  • the examination of the DNA for a DNA methylation of the corresponding gene or part thereof can, for. B. using real-time PCR (qPCR), a methylation array or using DNA sequencing.
  • qPCR real-time PCR
  • a polymerase chain reaction is first carried out with oligonucleotides, so-called primers, which are designed to amplify a section of the converted DNA which contains at least one CpG dinucleotide from which the DNA methylation analysis is to be carried out. It is possible that the CpG dinucleotides determined for the DNA methylation analysis are located between the primers and therefore the primers amplify the converted gene segment independently of the methylation state of the at least one CpG dinucleotide.
  • At least part of the amplicon is then preferably sequenced, for example Sanger sequencing, Pyrosequencing, mass spectrometric sequencing or second or third generation sequencing, which is also known as “Massive Parallel Sequencing”, “Next Generation Sequencing” (NGS) or as called nanopore sequencing. It is also possible to carry out a hybridization with methylation-specific oligonucleotides (probes) after the PCR, for example in the form of a DNA microarray.
  • probes methylation-specific oligonucleotides
  • the primers are also designed to be compatible with multiplex PCR in which multiple pairs of primers are used to simultaneously amplify multiple different regions of interest in the transformed DNA.
  • the large number of PCR amplicons is then examined, for example using next-generation sequencing.
  • DNA methylation analysis can also be performed by quantitative real-time PCR (qPCR).
  • qPCR quantitative real-time PCR
  • the qPCR can be performed with at least one probe which specifically binds either the methylated or the unmethylated state of the at least one CpG dinucleotide.
  • DNA methylation can also be determined by modified PCR-based methods such as ARMES (Amplification Refractory Mutation System) or MSP (methylation-specific PCR).
  • ARMES Amplification Refractory Mutation System
  • MSP methylation-specific PCR.
  • the at least one CpG dinucleotide to be examined is located within the primer binding site and primers are used which are designed in such a way that they only bind either the methylated or the unmethylated state of the CpG dinucleotide.
  • the DNA methylation analysis is carried out using a multiplexed, ligation-dependent probe amplification (MLPA).
  • MLPA multiplexed, ligation-dependent probe amplification
  • the probes used for the MLPA are designed in such a way that they bind to the CpG dinucleotides to be determined and are ligated, for example, if a CpG dinucleotide is methylated.
  • the ligated probes can then be amplified using a PCR, for example, and sequenced if necessary.
  • a PCR can be omitted, for example in the case of an analysis using BeadChip technology, as is used, for example, in the Infinium platform (Illumina, Inc., CA, USA). It is also possible to perform DNA methylation analysis of the converted DNA using "Whole Genome Shotgun Bisulfite Sequencing" (WGSBS) or direct nanopore sequencing. In WGSBS, the DNA is fragmented and then adapters are ligated to the DNA fragments. About the adapters is subsequent amplification and sequencing is possible. It is also possible to omit the fragmentation step in the WGSBS, since the DNA can already be fragmented, for example as a result of conversion by bisulfite treatment.
  • WGSBS Whole Genome Shotgun Bisulfite Sequencing
  • Protocols for carrying out a WGSBS are known to the person skilled in the relevant art.
  • nanopore sequencing a DNA molecule is smuggled through a pore.
  • the nucleotides trigger a measurable electrical signal during the passage, which is characteristic of the nucleotides located in the nanopore and can be assigned to them.
  • probes specific oligonucleotides
  • MLPA multiplex ligation dependent probe amplification
  • the mutation analysis is carried out using quantitative real-time PCR.
  • a suitable method comprises, for example, the following steps: A) providing DNA from the cells of the malignant disease; B) carrying out a cleavage or precipitation reaction with the DNA from A) depending on the methylation of the CpG dinucleotide to be examined; C) Analysis of the DNA obtained from step B) for cleaved DNA or precipitated DNA.
  • the cleavage of the DNA depending on the methylation of the CpG dinucleotide can be carried out, for example, by means of methylation-specific restriction enzymes.
  • the precipitation of the DNA as a function of the methylation of the CpG dinucleotide can be carried out, for example, using methylation-specific DNA-binding proteins.
  • the DNA of the cells of the malignant disease can come from different sources, for example from surgically or biopsied tissue, rinsing fluid, fine-needle aspirate or sputum.
  • the DNA can also be derived from blood, blood serum or blood plasma, for example in the form of freely circulating DNA, exosomal DNA or in the form of freely circulating cells of the malignant disease.
  • the DNA can also be extracted from other body fluids, e.g. B. lymphatic fluid, urine, pleural effusions or ascites and from non- preserved cells or tissues.
  • the method according to the invention can also be used with particular advantage on fixed cells, tissue and body fluids, the fixation being carried out, for example, by precipitating fixatives such as e.g. B.
  • the DNA comprises freely circulating DNA, DNA from exosomes and/or DNA from freely circulating cells of the malignant disease from a body fluid.
  • the DNA methylation analysis according to the invention can also include several CpG dinucleotides of the respective gene. Accordingly, a response to the treatment is likely if these CpG dinucleotides are not methylated in a majority of the cells of the malignant disease, ie are unmethylated.
  • An exception to this is the CLDN4 gene, which indicates a probable response when each of these CpG dinucleotides is methylated in a majority of cells in the malignancy.
  • the person skilled in the art is aware that the CpG dinucleotides of a specific gene are usually present in a cell in a comethylated form, ie either essentially all are methylated or all are unmethylated.
  • the methylation state of a CpG dinucleotide of a gene according to the invention is basically representative of the methylation state of other CpG dinucleotides contained in the gene, so that the DNA methylation analysis of a CpG dinucleotide of a gene according to the invention is sufficient and appropriate for a reliable prediction of the claims probability.
  • "a major part” basically means more than 50%.
  • a “major part” can also be more than 60%, more than 70%, more than 75%, more than 80%, more than 85%, greater than 90%, greater than 95% or 100%, with greater than 75% or greater than 85% being particularly preferred.
  • a response is likely if less than 50%, less than 40%, less than 30%, less than 25%, less than 20%, less than 15%, less than 10%, less than 5% or 0% the cells of the malignant disease have DNA methylation of the at least one CpG dinucleotide or, in the case of CLDN4, no DNA methylation of the at least one CpG dinucleotide, with less than 25% or less than 15% being particularly preferred.
  • a particular advantage of the method according to the invention lies in the surprisingly high level of selectivity between sick people who respond to treatment and sick people who do not respond or respond only inadequately to the treatment.
  • a response to treatment is likely when the at least one CpG dinucleotide is present in more than 75% or more than 85% of the cells of the malignant Disease is unmethylated, ie less than 25% or less than 15% of the cells have a DNA methylation of the CpG dinucleotide, and unlikely if the at least one CpG dinucleotide in more than 70% or more than 80% of the cells of the malignant disease is methylated, ie more than 70% or more than 80% of the cells have a DNA methylation of the CpG dinucleotide.
  • CLDN4 these relationships are again reversed. Due to this high selectivity, the probability of error in the procedure is particularly low, which means that time-consuming
  • the proportion of cells of the malignant disease can be determined histopathologically, for example.
  • the determination of the proportion of cell nuclei of cells of the malignant disease in relation to the total number of cell nuclei in a sample is particularly suitable. It is also possible to determine the proportion of malignant disease cells based on a property specific to the malignant disease cells.
  • a particularly useful property is a change in DNA that is unique to cells of the malignant disease. This change can be a mutation, for example.
  • Particularly suitable mutations are mutations in the genes TP53, NRAS, EGFR and BRAF, in particular BRAFV600E.
  • the DNA methylation analysis according to the invention can be normalized with the aid of the number or the proportion of cells of the malignant disease in the sample, for example by multiplication by the percentage of cells of the malignant disease. It is possible to combine DNA methylation analysis with mutation analysis, which is preferably also performed on the transformed DNA.
  • a suitable method for mutation analysis in converted DNA is e.g. B. known from DE 102015 009187 B3. In this way, the response to the treatment with the pharmaceutical inhibitor can be predicted even more precisely, or an even more differentiated decision-making aid for the drug treatment of the sick person can be provided.
  • the mutation analysis comprises at least one gene from the group consisting of BRAF, NRAS, KRAS, PTEN and MEK1 EGER, BRCA2, BRCA1, ATM, CHEK2, PALB2, BRIP1, BARD1, RAD51C, RAD51D, NBN, PIK3CA, FGFR3, FGFR2 , FGFR1, CCND1, NTRK1, NTRK2, NTRK3 and any combination thereof.
  • “Mutation analysis” is understood here to mean, in particular, the determination of whether a gene has changed compared to a wild type, in particular a mutation, fusion or amplification.
  • a response to treatment with a RAS/RAF/MEK/ERK signaling pathway inhibitor selected from the group consisting of MEK inhibitor and RAF inhibitor is particularly likely if the majority of the cells of the malignant disease at least one CpG dinucleotide is unmethylated and at the same time a BRAF mutation, for example a B_RAFV600E mutation, and/or no NRAS mutation is present. It should be understood that, conversely, response to treatment is particularly unlikely if the at least one CpG dinucleotide is methylated in a majority of the cells of the malignant disease and at the same time NRAS has a mutation and/or BRAF has no mutation.
  • a response to treatment with a RAS inhibitor is particularly likely if the at least one CpG dinucleotide is unmethylated in a majority of the cells of the malignant disease and at the same time KRAS has a mutation, for example a KRASG12C mutation , having.
  • e.g. B the determination of the probability of response of a malignant disease to treatment with an ERBB inhibitor selected from the group consisting of EGFR inhibitor and HER2 inhibitor and combinations thereof, a DNA methylation analysis of at least one CpG dinucleotide of a gene selected from the group consisting from PLEC, LAMB3, TINAGL1, C19orf33, IL18, S100A2, TOBI, TOR4A, FBRSL1, S100A10, LRRFIP2, SPIDR, ASB1, LAMA3, ENSG00000229672, MYH16, GRID1, CHD2, ZBTB38, TAFAZZIN, ANXA11, CAPN2.2C11, MAFK, DIDD4L , IER3, TM4SF19, RPTOR, S100A16, BCL9L, KCNMA1, GALE, PCID2, GNG7, ANXA2, MAFG, PKP3, ABTB2, ENSG00000287625,
  • a response to treatment with an EGFR inhibitor is particularly likely if at least one CpG dinucleotide is unmethylated in a majority of the cells of the malignant disease and at the same time there is a mutation in the gene EGER, which is known for this is to predict response to an EGFR inhibitor, e.g. EGFRL858R, and/or there is no mutation of the EGER, KRAS or NRAS genes, e.g. EGFRT790M, which are known to predict non-response to treatment with an EGFR inhibitor or amplification of the ERBB2 gene is present.
  • EGER e.g. EGFRL858R
  • e.g. B the determination of the probability of response of a malignant disease to treatment with a PARP inhibitor, a DNA methylation analysis of at least one CpG dinucleotide of a gene selected from the group consisting of PPP1R18, RUNX1, SYNJ2 WWTR1 and CLDN4 and any combination thereof and a mutation analysis at least one DNA repair gene selected from the group consisting of BRCA2, BRCA1, ATM, CHEK2, PALB2, BRIP1, BARD1, RAD51C, RAD51D, NBN and any combination thereof of malignant disease cells.
  • a response to the treatment is particularly likely if the at least one CpG dinucleotide is unmethylated in a majority of the cells of the malignant disease or methylated in the case of CLDN4 and at the same time at least one of the DNA repair genes of the cells of the malignant disease has a mutation.
  • response to treatment is particularly unlikely if the at least one CpG dinucleotide is methylated in a majority of cells of the malignancy or unmethylated in the case of CLDN4 and the cells of the malignancy do not have a mutation of the DNA have a repair gene.
  • the determination of the probability of response of a malignant disease to a treatment with a PI3K inhibitor a DNA methylation analysis of at least one CpG dinucleotide of a gene selected from the group consisting of PPP1R18, RUNX1 and CLDN4 and any combination thereof and a mutational analysis of PIK3CA of Malignant disease cells include .
  • a response to treatment with a PI3K inhibitor is particularly likely if the at least one CpG dinucleotide is unmethylated or, in the case of CLDN4, methylated in a majority of the cells of the malignant disease and PIK3CA has a mutation at the same time having. It is understood that, conversely, response to treatment is particularly unlikely when the at least one CpG dinucleotide is present in a majority of the cells of the malignant disease is methylated or, in the case of CLDN4, unmethylated and PIK3CA does not have a mutation.
  • e.g. B the determination of the probability of response of a malignant disease to treatment with an FGFR inhibitor, a DNA methylation analysis of at least one CpG dinucleotide of a gene selected from the group consisting of PPP1R18, RUNX1 and CLDN4 and any combination thereof and a determination of a mutation, Fusion or amplification of a gene selected from the group consisting of FGFR3, FGFR2, FGFR1, CCND1 and any combination thereof from cells of the malignant disease.
  • a response to the treatment is particularly likely if the at least one CpG dinucleotide is unmethylated or, in the case of CLDN4, methylated in a majority of the cells of the malignant disease and at the same time at least one of the genes FGFR3, FGFR2 FGFR1 and CCND1 has a mutation, fusion or amplification.
  • the response to the treatment is particularly unlikely if the at least one CpG dinucleotide is methylated in a majority of the cells of the malignant disease or is unmethylated in the case of CLDN4 and the cells of the malignant disease have no mutation, fusion or have amplification of the genes FGFR3, FGFR2, FGFR1 and CCND1.
  • e.g. B the determination of the probability of response of a malignant disease to treatment with an NTRK inhibitor DNA methylation analysis of at least one CpG dinucleotide of a gene selected from the group consisting of PPP1R18, RUNX1 and CLDN4 and any combination thereof and a determination of a fusion or mutation of at least one gene selected from the group consisting of NTRK1, NTRK2 and NTRK3 and any combination thereof from cells of the malignant disease.
  • a response to the treatment is particularly likely if at least one CpG dinucleotide is unmethylated or, in the case of CLDN4, methylated in a majority of the cells of the malignant disease and at the same time at least one of the genes NTRK1, NTRK2 and NTRK3 has a fusion or mutation. It is understood that, conversely, the response to treatment is particularly unlikely if the at least one CpG dinucleotide is methylated in a majority of the cells of the malignant disease or, in the case of CLDN4, is unmethylated and the cells of the malignant disease have no fusion or mutation of the Have genes NTRK1, NTRK2 and NTRK3.
  • the present invention provides, in a second aspect, a pharmaceutical inhibitor for use in a method for treating a malignant disease in a person or a method for medical treating a subject with a malignant disease by administering a pharmaceutically effective dose of a pharmaceutical inhibitory agent.
  • the pharmaceutical inhibitor is selected from the group consisting of RAS/RAF/MEK/ERK signaling pathway inhibitor, CDK4 and CDK6 inhibitor, PARP inhibitor, PI3K inhibitor, mTOR inhibitor, VEGFR inhibitor, PDGFR inhibitor , SRC inhibitor, FGFR inhibitor, NTRK inhibitor, and any combination thereof. It is known from the diseased person that at least one CpG dinucleotide of a gene selected from the group consisting of PPP1R18, RUNX1 and any combination thereof is unmethylated in a majority of cells of the malignant disease.
  • the pharmaceutical inhibitory agent is selected from the group consisting of ERBB inhibitor, RAS/RAF/MEK/ERK signaling pathway inhibitor, and any combination thereof. It is known from the person that at least one CpG dinucleotide of a gene selected from the group consisting of PLEC, LAMB3, TINAGL1, C19orf33, IL18, S100A2, TOBI, TOR4A, FBRSL1, S100A10, LRRFIP2, SPIDR, ASB1, LAMA3, ENSG00000229672 , MYH16, GRID1, CHD2, and any combination thereof is unmethylated in a majority of cells of the malignancy.
  • the pharmaceutical inhibitor is selected from the group consisting of ERBB inhibitor, RAS/RAF/MEK/ERK signaling pathway inhibitor, CDK4 and CDK6 inhibitor, SRC inhibitor and any combination thereof. It is known from the person that at least one CpG dinucleotide of a gene selected from the group consisting of ZBTB38, TAFAZZIN, ANXA11, MAFK, NEDD4L, DIP2C, CAPN2, IER3, TM4SF19, RPTOR, S100A16, BCL9L, KCNMA1, GALE, PCID2, GNG7, ANXA2, MAFG, PKP3, ABTB2, ENSGO0000287625, ARL14, BCAR3, BIK, CCND3, CMIP, ELK3, HRH1, SAP30BP, NOS1AP, RALB, TGFBI, ENSG00026,2357 CAB39, CIRBP, DIAPH1, FGD6, LMO7, MICAL2, STMN1, M
  • the pharmaceutical inhibitor is selected from the group consisting of CDK4 and CDK6 inhibitor, RAS/RAF/MEK/ERK signaling pathway inhibitor, SRC inhibitor and any combination thereof. It is known from the person that at least one CpG dinucleotide of a gene selected from the group consisting of VGLL4, CDCP1, RASA3, PTTG1IP, ASAP2, ENSGO0000242282, Locus Chr.3q29, TMCO4, UBXN11, MAP3K5, ASTN2, ENSG00000258082 and any combination of which is unmethylated in a predominant part of cells of the malignant disease.
  • the pharmaceutical inhibitory agent is selected from the group consisting of CDK4 and CDK6 inhibitor, PARP inhibitor, mTOR inhibitor, RAS/RAF/MEK/ERK signaling pathway inhibitor, SRC inhibitor, and any combination thereof. It is known from the person that at least one CpG dinucleotide of a gene selected from the group consisting of SYNJ2, WWTR1 and any combination thereof is unmethylated in a majority of cells of the malignant disease.
  • the pharmaceutical inhibitor is selected from the group consisting of VEGFR inhibitor, mTOR inhibitor, PDGFR inhibitor, PARP inhibitor, PI3K inhibitor, FGFR inhibitor, NTRK inhibitor, ERBB inhibitor, BRAF inhibitor and any combination thereof. It is known from the person that at least one CpG dinucleotide of the CLDN4 gene is methylated in a majority of cells of the malignant disease.
  • a RAS/RAF/MEK/ERK sinal pathway inhibitor selected from the group consisting of MEK inhibitor, RAF inhibitor, RAS inhibitor, ERK inhibitor, SHP2 inhibitor, c-Met inhibitor, EPHA2 inhibitor and any combinations used in the treatment method if it is known from the diseased person that at least one CpG dinucleotide of a gene selected from the group consisting of PPP1R18, RUNX1, PLEC, LAMB3, TINAGL1, C19orf33, IL18, S100A2, TOBI, TOR4A, FBRSL1, S100A10, LRRFIP2, SPIDR, ASB1, LAMA3, ENSG00000229672, MYH16, GRID1, CHD2, ZBTB38, TAFAZZIN, ANXA11, MAFK, NEDD4L, DIP2C, CAPN2, IER3, TM4SF19, RPTOR, S100A16, BCL9L, KCNMA1,
  • an ERBB2 inhibitor for example an EGFR inhibitor or a HER2 inhibitor, used in the treatment method when the diseased person is known to have at least one CpG dinucleotide of a gene selected from the group consisting of PLEC, LAMB3, TINAGL1 , C19orf33, IL18, S100A2, TOBI, TOR4A, FBRSL1, S100A10, LRRFIP2, SPIDR, ASB1, LAMA3, ENSG00000229672, MYH16, GRID1, CHD2, ZBTB38, TAFAZZIN, ANXA11, MAFK, NEDD4L, DIP2C, CAPN2, IER3, TM4SF19, RPTOR, S100A16, BCL9L, KCNMA1, GALE, PCID2, GNG7, ANXA2,7 MAFG, PKP3, ABTB2, ENSG00000287625, ARL14, BCAR3, BIK,
  • a gene selected from the
  • CAPRIN2 MTPN, ADAM17, ATG14, ENSG00000258583 and ITGB5 and any combination thereof is unmethylated in a majority of malignant disease cells and the majority of malignant disease cells also have at least one mutation in at least one gene selected from the group consisting of EGFR , KRAS, NRAS and any combination thereof or an amplification of the gene ERBB2.
  • a PARP inhibitor used in the treatment method when the diseased person is known to have at least one CpG dinucleotide of a gene selected from the group consisting of PPP1R18, RUNX1, SYNJ2 WWTR1, CLDN4 and any combination thereof is unmethylated in a majority of cells of the malignant disease or methylated in the case of CLDN4 and the majority of cells of the malignant disease also at least one mutation in at least one DNA repair gene selected from the group consisting of BRCA2 , BRCA1, ATM, CHEK2, PALB2, BRIP1, BARD1, RAD51C, RAD51D, NBN and any combination thereof.
  • an NTRK inhibitor used in the treatment method when used by the diseased person it is known that at least one CpG dinucleotide of a gene selected from the group consisting of PPP1R18, RUNX1 and CLDN4 and any combination thereof is unmethylated in a majority of cells of the malignant disease or methylated in the case of CLDN4 and the majority of the cells of malignant disease also has at least one fusion or mutation of at least one of the genes selected from the group consisting of NTRK1, NTRK2, NTRK3 and any combination thereof.
  • the DNA methylation state of the genes mentioned in the embodiments of the invention is universally suitable for predicting the probability of response of malignant diseases to therapy with the corresponding pharmaceutical inhibitory agents.
  • the inventor was able to show that the DNA methylation state of the genes according to the invention is also independent of genomic changes in the cells of the malignant disease, a reliable predictor in relation to the response to therapy developed with the relevant inhibitors.
  • the sick person is also known to have a genomic modification of at least one gene selected from the group consisting of EGFR FGFR NTRK and any combinations thereof in the cells of the malignant disease.
  • the genomic modification can in particular be an activating or deactivating mutation, an amplification, a translocation and/or a gene fusion.
  • the invention offers the possibility of persons with malignant diseases, of which it is known, analogously to the above-mentioned embodiments, based on the DNA methylation of the genes in question, that the response to treatment with the corresponding pharmaceutical inhibitor is unlikely, either with a pharmaceutical inhibitor another group or with another drug class such.
  • an immunotherapeutic agent of which it is known, analogously to the above-mentioned embodiments, based on the DNA methylation of the genes in question, that the response to treatment with the corresponding pharmaceutical inhibitor is unlikely, either with a pharmaceutical inhibitor another group or with another drug class such.
  • HDAC histone deacetylase
  • DNMT DNA methyltransferase
  • a suitable immune checkpoint inhibitor is selected, for example, from the group of nivolumab, pembrolizumab, cemiplimab, spartalizumab, camrelizumab, sintilimab, tislelizumab, toripalimab, dostarlimab, INCMGA00012 (MGA012), AMP-224, AMP-514 (MEDI0680), JTX-4014 , Atezolizumab, Avelumab, Durvalumab, KN035, CK-301, AUNP12, CA-170, BMS-986189, Relatlimab, Tremelimumab, Ipilimumab, Varlilumab, BMS-986218, BMS-986288, BMS-986249, KN044, CS-1002, ONC -392, ADG116, ADG126, Zalifrelimab, AGEN1181, Quavonlimab, ATOR-1015,
  • a suitable HDAC inhibitor is selected, for example, from the group consisting of vorinostat, tefinostat, abexinostat, mocetinostat, quisinostat, entinostat, resminostat, domatinostat, chidamide, belinostat, alteminostat, pracinostat, givinostat, KA2507 (Karus Therapeutics Limited), panobinostat, ricinostat, nanatinostat, Martinostat, Fimepinostat, Romidepsin, Citarinostat (ACY-241), AR-42 (CAS No. 935881-37-1), CKD-504, Pivanex, CXD101 (CAS No. 934828-12-3) and FRM-0334.
  • a suitable DNMT inhibitor is selected, for example, from the group of decitabine, guadecitabine, azacytidine, NTX-301 and capecitabine.
  • z. B an immunotherapeutic agent, in particular an immune checkpoint inhibitor, a histone deacetylase (HDAC) inhibitor or a DNA methyltransferase (DNMT) inhibitor for use in a method for treating a malignant disease of a person provided by the person it is known that at least one CpG dinucleotide of one of the aforementioned genes or combinations thereof is methylated in a majority of cells of the malignant disease or is unmethylated in the case of CLDN4.
  • HDAC histone deacetylase
  • DNMT DNA methyltransferase
  • the present invention provides a kit for carrying out the method for determining the probability of response according to the first aspect and for carrying out the method for treating a malignant disease according to the second aspect or for use in one of these methods.
  • the kit comprises reagents for DNA methylation analysis of at least one CpG dinucleotide of a gene selected from the group consisting of PPP1R18, RUNX1 and any combination of malignant disease cells.
  • the kit comprises reagents for DNA methylation analysis of at least one CpG dinucleotide of a gene selected from the group consisting of PLEC, LAMB3, TINAGL1, C19orf33, IL18, S100A2, TOBI, TOR4A, FBRSL1, S100A10, LRRFIP2, SPIDR, ASB1, LAMA3, ENSGO0000229672, MYH16, GRID1, CHD2 and any combination thereof from malignant disease cells.
  • a gene selected from the group consisting of PLEC, LAMB3, TINAGL1, C19orf33, IL18, S100A2, TOBI, TOR4A, FBRSL1, S100A10, LRRFIP2, SPIDR, ASB1, LAMA3, ENSGO0000229672, MYH16, GRID1, CHD2 and any combination thereof from malignant disease cells.
  • the kit comprises reagents for DNA methylation analysis of at least one CpG dinucleotide of a gene selected from the group consisting of ZBTB38, TAFAZZIN, ANXA11, MAFK, NEDD4L, DIP2C, CAPN2, IER3, TM4SF19, RPTOR, S100A16, BCL9L, KCNMA1, GALE, PCID2, GNG7, ANXA2, MAFG, PKP3, ABTB2, ENSGO0000287625, ARL14, BCAR3, BIK, CCND3, CMIP, ELK3, HRH1, SAP30BP, NOS1AP, RALB, TGFBI, ENSG00000235726, CAB39, CIRBP, DIAPH1, FGD6, LMO7, MICAL2, STMN1, MNT, PC, PLEKHG5, PRORP, RDX, SERP1, SLCO3A1, SUFU, TANGOS, EGER, PINX1,
  • ENSGO0000226380 ENTPD6, ENSGO0000285517, CAPRIN2, MTPN, ADAM17, ATG14, ENSG00000258583, ITGB5 and any combination thereof from malignant disease cells.
  • the kit comprises reagents for DNA methylation analysis of at least one CpG dinucleotide of a gene selected from the group consisting of VGLL4, CDCP1, RASA3, PTTG1IP, ASAP2, ENSGO0000242282, Locus Chr.3q29, TMCO4, UBXN11, MAP3K5, ASTN2 , ENSG00000258082 and any combination thereof of malignant disease cells.
  • the kit comprises reagents for DNA methylation analysis of at least one CpG dinucleotide of a gene selected from the group consisting of SYNJ2, WWTR1 and any combination thereof from cells of the malignant disease.
  • the kit comprises reagents for DNA methylation analysis of at least one CpG dinucleotide of the CLDN4 gene of malignant disease cells.
  • the kit preferably has separate compartments containing the reagents for DNA methylation analysis.
  • the reagents can comprise at least one oligonucleotide or at least one pair of oligonucleotides.
  • the oligonucleotide or pair of oligonucleotides can be set up to hybridize to a sequence section of the DNA from the cells of the malignant disease which contains the at least one CpG dinucleotide of the gene whose DNA Methylation is to be determined after cytosines contained in the DNA have been converted to uracil or another base with a base pairing behavior and/or molecular weight distinguishable from cytosine in order to amplify and/or detect the sequence.
  • the reagents can also comprise several oligonucleotides or several pairs of oligonucleotides in order to determine the DNA methylation of the combinations of genes covered by the invention or the CpG dinucleotides thereof.
  • At least one of the oligonucleotides can be set up to differentiate between converted methylated DNA and converted unmethylated DNA, so that the sequence segment is amplified or detected depending on the methylation.
  • the oligonucleotide can be reverse-complementary to a hybridization sequence in the sequence segment that contains the at least one CpG dinucleotide whose methylation is to be determined.
  • the oligonucleotide can e.g. B. be reverse-complementary to the hybridization sequence if the cytosine in the CpG dinucleotide has been converted, ie was originally present unmethylated.
  • the oligonucleotide can be reverse-complementary to the hybridization sequence if the cytosine in the CpG dinucleotide was not converted, ie was originally methylated. In this way it is achieved that amplification or detection only takes place if the hybridization sequence or the sequence section is methylated or unmethylated.
  • the pair of oligonucleotides can also be set up to amplify the sequence section independently of DNA methylation.
  • the oligonucleotides are then reverse-complementary to hybridization sequences that do not contain a CpG dinucleotide to be analyzed.
  • Preferably located the at least one CpG dinucleotide to be analyzed is located between the hybridization sequences of the oligonucleotides.
  • the kit can additionally contain one or more hybridization probes, which distinguish between converted, methylated sequence section and converted, unmethylated sequence section, so that the amplified sequence section is detected in a methylation-dependent manner. The extent of DNA methylation can then be read from the signal ratio of the probes.
  • Preferred CpG dinucleotides and sequences of the genes mentioned in the embodiments of the kit correspond to those of the first aspect of the invention.
  • the kit preferably comprises instructions for carrying out the method for determining the probability of response according to the first aspect, for carrying out the method for treating a malignant disease according to the second aspect and/or for using the kit in one of these methods.
  • the kit can contain instructions for determining the response probability based on the DNA methylation of one or more of the genes according to the invention or the CpG dinucleotides thereof.
  • FIG. 1 shows a scatter diagram for the correlation according to the invention of the response of malignant cells to treatment with the pharmaceutical inhibitor trametinib (logIC50, y-axis) as a function of the relative methylation of the CpG dinucleotides in SEQ ID NO:76 of the PLEC gene in the cells ;
  • FIG. 2 shows a scatter diagram for the correlation according to the invention of the response of malignant cells to treatment with the pharmaceutical inhibitor afatinib (logIC50, y-axis) as a function of the relative methylation of the CpG dinucleotides in SEQ ID NO:76 of the PLEC gene in the cells ;
  • FIG. 3 shows a scatter diagram for the correlation according to the invention of the response of malignant cells to treatment with the pharmaceutical inhibitor trametinib (logIC50, y-axis) as a function of the relative methylation the CpG dinucleotides in SEQ ID NO:103 of the IL18 gene in the cells;
  • FIG. 4 shows a scatter diagram for the correlation according to the invention of the response of malignant cells to treatment with the pharmaceutical inhibitor afatinib (logIC50, y-axis) as a function of the relative methylation of the CpG dinucleotides in SEQ ID NO:103 of the IL18 gene in the cells ;
  • FIG. 5 shows a scatter diagram for the correlation according to the invention of the response of malignant cells to treatment with the pharmaceutical inhibitor trametinib (logIC50, y-axis) as a function of the relative methylation of the CpG dinucleotides in SEQ ID NO:54 of the TAFAZZIN gene in the cells ;
  • Fig. 6 shows a scatter diagram for the inventive correlation of the response of malignant cells to treatment with the pharmaceutical inhibitor afatinib (logIC50, y-axis) as a function of the relative methylation of the CpG dinucleotides in SEQ ID NO: 54 of the gene TAFAZZIN in the malignant cells;
  • Figure 7 shows a Kaplan-Meier analysis of the overall survival of 51 patients with urothelial carcinoma during immunotherapy designed to inhibit the PD-1 immune checkpoint signaling pathway. Patients were grouped based on DNA methylation of the PPP1R18 gene. 17 patients had tumors with a DNA methylation of the PPP1R18 gene below 50%. The tumors of the remaining 34 patients showed more than 50% DNA methylation of the PPP1R18 gene. 8 shows a boxplot diagram of the response of patients with malignant melanoma to treatment with RAS/RAF/MEK/ERK signaling pathway inhibitors (x-axis) as a function of the methylation of the PPP1R18 gene (y-axis).
  • Example 1 Determination of the probability of response of a malignant disease to treatment with RAS/RAF/MEK/ERK signaling pathway inhibitors, CDK4 and CDK6 inhibitors, PARP inhibitors, PI3K inhibitors, mTOR inhibitors, PI3K and mTOR inhibitors, VEGFR Inhibitors, PDGFR inhibitors, PDGFR and VEGFR inhibitors, SRC inhibitors, FGFR inhibitors and NTRK inhibitors based on an inventive DNA methylation analysis of the genes PPP1R18 and RUNX1
  • the method according to the invention was used to determine the probability of response of malignant diseases to treatment with various RAS/RAF/MEK/ERK signaling pathway inhibitors.
  • the predictive power of response to different MEK inhibitors and BRAF inhibitors was tested, including the five MEK inhibitors trametinib, refametinib, selumetinib, CI-1040 and mirdametinib, and the five BRAF inhibitors AZ 628, dabrafenib, HG -6-64-1, PLX4720 and SB590885.
  • the method according to the invention was used to predict the response of malignant diseases to various VEGFR inhibitors, PDGFR inhibitors and inhibitors which simultaneously inhibit PDGFR and VEGFR.
  • the method according to the invention was also used to predict the response of malignant diseases to various PARP inhibitors, SRC inhibitors and CDK4 and CDK6 inhibitors.
  • the predictive power of the four PARP inhibitors veliparib, AG-014699, talazoparib and olaparib, the five SRC inhibitors A-770041, saracatinib, bosutinib, dasatinib and WH-4-023 and the four CDK4 and Tested CDK6 inhibitors CGP-082996, CGP-60474, AT-7519 and palbociclib.
  • the method of the invention was applied to predict the response of malignancies to treatment with various PI3K inhibitors, mTOR inhibitors, inhibitors that inhibit both PI3K and mTOR, FGFR inhibitors and an NTRK inhibitor.
  • predictive power was assessed with respect to the three PI3K inhibitors AS605240, idelalisib and PIK-93, the two PI3K and mTOR inhibitors dactolisib and omipalisib, the two mTOR inhibitors temsirolimus and AZD8055, the two FGFR inhibitors PD-173074 and masitinib and the NTRK inhibitor lestaurtinib.
  • the response of malignant cells to a pharmaceutical inhibitor can be determined, for example, using the mean determine the inhibitory concentration (IC50).
  • IC50 describes the concentration of an inhibitor at which half-maximal inhibition of cell growth is observed. Therefore, the IC50 is a useful measure of the response of malignant cells to treatment with a pharmaceutical inhibitory agent.
  • the IC50 was determined for each tested inhibitor and each cell line using dose-response curves.
  • the cells of the malignant diseases were seeded in 384-well microtiter plates and incubated in cell culture medium with 10% fetal calf serum and penicillin/streptomycin.
  • the IC50 determination of adherent cells was carried out at a confluence of about 15-20%.
  • Adherent cells were incubated with either nine dilutions of a 1:2 serial dilution or five dilutions of a 1:4 serial dilution of the tested inhibitory agent.
  • the cells were then fixed with 10% formalin for 30 minutes and then stained with 1 pM of the nucleic acid-specific fluorescence dye Syto60 (Invitrogen) for one hour.
  • Suspension cultures were stained with 55 pg/ml resazurin (Sigma) in glutathione-free medium for four hours.
  • the viability of the malignant cell lines was determined using the fluorescence at 630/695 nm excitation/emission wavelength for SytoöO or at 535/595 nm excitation/emission wavelength for resazurin.
  • the IC50 values were estimated from the dose-response curve using a multi-stage model, as described in Vis et al. (Pharmacogenomics 2016, 17, 691-700).
  • IC50s were expressed as the natural logarithm of the half-maximal inhibitory concentration (in pM) and used in calculations predicting response to treatment with each inhibitory agent tested.
  • the DNA methylation analysis of the cells of the malignant diseases was carried out using the Infinium technology (Illumina, Inc. San Diego, CA, USA). First, the DNA of the malignant cells was extracted, for example using the QIAamp DNA Micro Kit (Qiagen, Hilden, Germany) according to the manufacturer's instructions. The DNA concentration was then determined by UV-Vis spectrophotometry at 260 nm.
  • the bisulfite conversion of 500 ng of genomic DNA was then performed using the EZ DNA Methylation Kit (Zymo Research, Irvine, CA, USA) according to the manufacturer's instructions. 200 ng of the bisulfite converted DNA was used for HumanMethylation450 BeadChip analysis (Illumina) according to the manufacturer's instructions.
  • the methylation values were expressed in terms of values as the ratio of fluorescence intensities for each CpG dinucleotide examined. Values were approximated as percent methylation.
  • a negative t which is significantly below the assumed significance level (p ⁇ 0.05), expresses that the mean value of the IC50 of the malignant cells with predominantly methylated CpG dinucleotides is higher than that of the malignant cells with predominantly unmethylated CpG dinucleotides. This means that the malignant cells with predominantly methylated CpG dinucleotides responded significantly poorer to treatment with the respective inhibitor or were less inhibited. In principle, this makes it possible to predict the response or non-response of malignant cells to a pharmaceutical inhibitor by means of a DNA methylation analysis.
  • carcinomas including various adenocarcinomas and squamous cell carcinomas, have been studied. These carcinomas included squamous cell carcinoma of the head and neck, adeno- and squamous cell carcinoma of the esophagus, adenocarcinoma of the breast, malignant tumors of the bile ducts, hepatocellular carcinoma, renal cell carcinoma, colorectal adenocarcinoma, adeno- and squamous cell carcinoma of the lung, small cell lung carcinoma, adenocarcinoma of the pancreas, squamous cell carcinoma of the cervix and ovaries, adenocarcinomas of the endometrium and prostate, thyroid carcinomas, urothelial carcinomas and gastric carcinomas.
  • cell lines of malignant cells of melanoma, glioma, glioblastoma, medulloblastoma, neuroblastoma, germ cell tumor, chondrosarcoma, Ewing's sarcoma, osteosarcoma, fibrosarcoma, rhabdomyosarcoma and mesothelioma were examined in this example.
  • malignant cells which arose from cells of the blood system or the blood-forming (hematopoietic) system, were included in this example.
  • malignant cells included, for example, malignant cells of acute myeloid leukemia (AML), chronic myeloid leukemia (CML), acute lymphocytic leukemia (ALL) as well as B-cell leukemia, hairy cell leukemia, B-cell lymphoma, Burkitt's lymphoma, Hodgkin's lymphoma and myeloma.
  • AML acute myeloid leukemia
  • CML chronic myeloid leukemia
  • ALL acute lymphocytic leukemia
  • B-cell leukemia hairy cell leukemia
  • B-cell lymphoma Burkitt's lymphoma
  • Hodgkin's lymphoma Hodgkin's lymphoma and myeloma.
  • the DNA methylation of CpG dinucleotides of the PPP1R18 gene was examined at a total of ten positions in the gene (SEQ ID NO:2 to SEQ ID NO:11), which are particularly representative of the DNA methylation in the promoter (6:30683976-30687272, SEQ ID NO:1) of the PPP1R18 gene.
  • the DNA methylation of the positions was measured via the HumanMethylation450 BeadChip probes listed in Tables 1-4 below.
  • the DNA methylation of CpG dinucleotides of the RUNX1 gene was examined at a total of two positions in the gene (SEQ ID NO:35 and SEQ ID NO:36), which are particularly representative of the DNA methylation in the promoter (21:35045377-35053986, SEQ ID NO:37) of the RUNX1 gene.
  • the DNA methylation of the positions was measured via the HumanMethylation450 BeadChip probes listed in Tables 1-4 below.
  • Table 1 shows that it was possible to predict the response of the malignant cells to the RAS/RAF/MEK/ERK signaling pathway inhibitors such as MEK inhibitors and BRAF inhibitors using the DNA methylation analysis according to the invention of the examined parts of the genes PPP1R18 and RUNX1. From the table data it can be seen that cell lines of malignant cells in which the investigated CpG dinucleotides were predominantly methylated had a significantly (p ⁇ 0.05) higher IC50 im compared to malignant cells with predominantly unmethylated CpG dinucleotides, which can be seen from the negative t of the t statistic. This means that the malignant cells with the predominantly methylated CpG dinucleotides were significantly less inhibited by the inhibitors investigated, i.e. they responded poorly to the treatment.
  • Table 2 and Table 3 show that it was possible to predict the response of the malignant cells to PARP inhibitors, SRC inhibitors and CDK4 and CDK6 inhibitors using the DNA methylation analysis according to the invention of the examined parts of the genes PPP1R18 and RUNX1. From the tabular data it can be seen that cell lines of malignant cells in which the investigated CpG dinucleotides were predominantly methylated had a significantly (p ⁇ 0.05) higher IC50 compared to malignant cells with predominantly unmethylated CpG dinucleotides, which is due to the negative t of the t-statistic can be seen. This means that the malignant cells with the predominantly methylated CpG dinucleotides were significantly less inhibited by the inhibitors investigated, i.e. they responded poorly to the treatment.
  • Table 4 shows that it was possible to predict the response of the malignant cells to VEGFR inhibitors, PDGFR inhibitors and inhibitors which simultaneously inhibit PDGFR and VEGFR by the DNA methylation analysis according to the invention of the examined parts of the genes PPP1R18 and RUNX1. From the tabular data it can be seen that cell lines of malignant cells in which the investigated CpG dinucleotides were predominantly methylated had a significantly (p ⁇ 0.05) higher IC50 compared to malignant cells with predominantly unmethylated CpG dinucleotides, which is due to the negative t of the t-statistic can be seen. This means that the malignant cells with the predominantly methylated CpG dinucleotides were significantly less inhibited by the inhibitors tested, i.e. responded poorly to the treatment.
  • Table 5 shows that it was possible to determine the response of the malignant cells to PI3K inhibitors, PI3K and mTOR inhibitors, mTOR inhibitors, FGFR inhibitors and the NTRK to predict inhibitors. From the tabular data it can be seen that cell lines of malignant cells in which the examined CpG dinucleotides were predominantly methylated had a significantly (p ⁇ 0.05) higher IC50 compared to malignant cells with predominantly unmethylated CpG dinucleotides, which is due to the negative t of the t-statistic can be seen. This means that the malignant cells with the predominantly methylated CpG dinucleotides were significantly less inhibited by the inhibitors investigated, i.e. they responded poorly to the treatment.
  • the results show that the DNA methylation analysis of the genes PPP1R18 and RUNX1 according to the invention increases the probability of response of malignant cells to RAS/RAF/MEK/ERK signaling pathway inhibitors, CDK4 and CDK6 inhibitors, PARP inhibitors, PI3K inhibitors, mTOR inhibitors , PI3K and mTOR inhibitors, VEGFR inhibitors, PDGFR inhibitors, PDGFR and VEGFR inhibitors, SRC inhibitors, FGFR inhibitors and NTRK inhibitors, regardless of the type and/or cause of the malignancy.
  • Example 2 Determination of the probability of response of a malignant disease to treatment with ERBB inhibitors and RAS/RAF/MEK/ERK signaling pathway inhibitors using a methylation analysis of the genes PLEC, LAMB3, TINAGL1, CI9orf33, IL18, S100A2, TOBI, TOR4A, FBRSL1, S100A10, LRRFIP2, SPIDR, ASB1, LAMA3, ENSG00000229672, MYH16, GRID1 and CHD2
  • the method of the present invention was used to determine the likelihood of malignancies responding to treatment with various ERBB inhibitors, including various EGFR inhibitors.
  • various EGFR inhibitors including various EGFR inhibitors.
  • the predictive power of the four EGFR inhibitors afatinib, gefitinib, cetuximab and lapatinib was examined.
  • the method according to the invention was used to determine the probability of response of malignant diseases to treatment with various RAS/RAF/MEK/ERK signaling pathway inhibitors.
  • the predictive power was examined in relation to different MEK inhibitors, including the four MEK inhibitors trametinib, refametinib, selumetinib and mirdametinib.
  • the DNA methylation of CpG dinucleotides of the PLEC gene was examined at a total of 14 positions (SEQ ID NO:76 to SEQ ID NO:89), which in particular showed DNA methylation in the promoter (8:143934771-143952510, SEQ ID NO: 90) of the PLEC gene.
  • the DNA methylation of CpG dinucleotides of the LAMB3 gene was examined at a total of six positions (SEQ ID NO:18 to SEQ ID NO:23), which are particularly representative of the DNA methylation in the promoter (1:209641284-209659200, SEQ ID NO :24) of the LAMB3 gene.
  • the DNA methylation of CpG dinucleotides of the TINAGL1 gene was examined at a total of twelve positions (SEQ ID NO:63 to SEQ ID NO:74), which in particular showed DNA methylation in the promoter (1:31572254-31579748, SEQ ID NO: 75) of the TINAGL1 gene.
  • the DNA methylation of CpG dinucleotides of the CI9orf33 gene was examined at a total of five positions (SEQ ID NO:38 to SEQ ID NO:42), which in particular showed DNA methylation in the promoter (19:38302227-38305800, SEQ ID NO: 43) of the C19orf33 gene.
  • the DNA methylation of CpG dinucleotides of the IL18 gene was examined at a total of three positions (SEQ ID NO:102 to SEQ ID NO:104), which in particular showed DNA methylation in the promoter (11:112155341-112165931, SEQ ID NO: 355) of the IL18 gene.
  • the DNA methylation of CpG dinucleotides of the S100A2 gene was examined at a total of three positions (SEQ ID NO:237 to SEQ ID NO:239), which in particular the DNA methylation in the promoter (1:153563538-153569327, SEQ ID NO: 356) of the S100A2 gene.
  • the DNA methylation of CpG dinucleotides of the TOBI gene was examined at a total of two positions (SEQ ID NO: 246 and SEQ ID NO: 247), which in particular DNA methylation in the Gene bodies reflect the long non-coding TOBI antisense RNA 1 encoded by ENSG00000229980 (17:50890636-50896863, SEQ ID NO:357).
  • the DNA methylation of CpG dinucleotides of the TOR4A gene was examined at a total of two positions (SEQ ID NO:248 and SEQ ID NO:249), which in particular show DNA methylation in the promoter (9:137276024-137280343, SEQ ID NO: 358) of the TOR4A gene.
  • the DNA methylation of CpG dinucleotides of the FBRSL1 gene was examined at a position (SEQ ID NO:331) which specifically reflects the DNA methylation in the gene body (12:132514348-132533034, SEQ ID NO:359) of FBRSL1.
  • DNA methylation of CpG dinucleotides of the S100A10 gene was examined at a position (SEQ ID NO:335) which specifically reflects DNA methylation in the promoter (1:151990418-151997244, SEQ ID NO:360) of the S100A10 gene.
  • the DNA methylation of CpG dinucleotides of the LRRFIP2 gene was examined at a position (SEQ ID NO:340) which specifically reflects DNA methylation in the promoter of the LRRFIP2 gene and the gene ENSG00000271993 encoding the LRRFIP2 antisense RNA (3:37175758 -37189914, SEQ ID NO:361).
  • the DNA methylation of CpG dinucleotides of the SPIDR gene was examined at a position (SEQ ID NO:343) which specifically reflects the DNA methylation in the gene body (8:47349863-47359489, SEQ ID NO:362) of the SPIDR gene.
  • the DNA methylation of CpG dinucleotides of the ASB1 gene was examined at a position (SEQ ID NO:344) which specifically reflects the DNA methylation in the gene body (2:238435501-238446259, SEQ ID NO:363) of the ASB1 gene.
  • the DNA methylation of CpG dinucleotides of the LAMA3 gene was examined at a total of five positions in the gene (SEQ ID NO:12 to SEQ ID NO:16), which in particular show DNA methylation in the promoter (18:23865846-23880913, SEQ ID NO:17) of the LAMA3 gene.
  • the DNA methylation of CpG dinucleotides of the ENSG00000229672 gene was examined at three positions (SEQ ID NO:121 to SEQ ID NO:123), which in particular the DNA methylation in the promoter (10:3761335-3766181, SEQ ID NO:364 ) of the ENSG00000229672 gene .
  • the DNA methylation of CpG dinucleotides of the MYH16 gene was examined at a total of two positions in the gene (SEQ ID NO:25 to SEQ ID NO:26), which in particular show DNA methylation in the gene body (7:99272482-99275507, SEQ ID NO:27) of the MYH16 gene.
  • the DNA methylation of CpG dinucleotides of the gene GRID1 was examined at a position in the gene (SEQ ID NO:29) which specifically shows the DNA methylation of the coding region and promoter region (10:85637128-85653498, SEQ ID NO:28) which reflects GRID1 antisense RNA (ENSG00000270002).
  • the DNA methylation of CpG dinucleotides of the gene CHD2 was examined at a position in the gene (SEQ ID NO:31) which specifically shows the DNA methylation of the promoter region (15:92897248-92927312, SEQ ID NO:30) of the CHD2 gene.
  • the DNA methylation of the positions was measured via the HumanMethylation450 BeadChip probes listed in Table 6.
  • Trametinib is a MEK inhibitor from the group of RAS/RAF/MEK/ERK signaling pathway inhibitors.
  • Afatinib is an EGFR inhibitor from the group of ERBB signaling pathway inhibitors.
  • the response of the malignant cells to the treatment was determined by the logarithmic mean inhibitory concentration (logIC50), with a low logIC50 indicating a response and a high logIC50 indicating a non-response to the treatment.
  • the DNA methylation of the PLEC gene in SEQ ID NO:76 reflects the DNA methylation in the promoter (8:143934771-143952510, SEQ ID NO:90) of the gene.
  • Fig. 3 and Fig. 4 show further exemplary scatter plots for the correlation of the response of the malignant cells to treatment with the pharmaceutical inhibitor trametinib or afatinib (logIC50, y-axis) as a function of the relative DNA methylation (%, x-axis ) of the CpG dinucleotides in SEQ ID NO:103 of the IL18 gene.
  • the DNA methylation of the IL18 gene in SEQ ID NO:103 reflects the DNA methylation in the promoter (11:112155341-112165931, SEQ ID NO:355) of the gene. Again, it can be clearly seen that malignant cells in which the investigated CpG dinucleotides were predominantly methylated (IL18 DNA methylation > 50%) responded to the treatment only to a small extent, while malignant cells in which the investigated CpG dinucleotides were predominantly unmethylated (IL18 DNA methylation ⁇ 50%) were largely responsive to treatment.
  • Table 6 show in detail that it was possible through the inventive DNA methylation analysis of the CpG dinkleotides of the genes PLEC, LAMB3, TINAGL1, C19orf33, IL18, S100A2, TOBI, TOR4A, FBRSL1, S100A10, LRRFIP2, SPIDR , ASB1, LAMA3, ENSG00000229672, MYH16, GRID1 and CHD2 the response of the malignant cells to RAS/RAF/MEK/ERK signaling inhibitors such as e.g. B. MEK inhibitors and ERBB inhibitors such. B. EGFR inhibitors can be reliably predicted.
  • RAS/RAF/MEK/ERK signaling inhibitors such as e.g. B. MEK inhibitors and ERBB inhibitors such.
  • B. EGFR inhibitors can be reliably predicted.
  • the results show that the DNA methylation analysis according to the invention of the genes PLEC, LAMB3, TINAGL1, C19orf33, IL18, S100A2, TOBI, TOR4A, FBRSL1, S100A10, LRRFIP2, SPIDR, ASB1, LAMA3, ENSGO0000229672, MYH16, GRID1 and CHD2 the probability of response of malignant cells for ERBB inhibitors and RAS/RAF/MEK/ERK signaling pathway inhibitors, regardless of the type and/or cause of the malignancy.
  • Example 3 Determination of the probability of response of a malignant disease to treatment with ERBB inhibitors, RAS/RAF/MEK/ERK signaling pathway inhibitors, SRC inhibitors and CDK4 and CDK6 inhibitors using DNA methylation analysis of TAFAZZIN, GNG7, ANXA11, ANXA2, MAFG, PKP3, ABTB2, ENSGO0000287625, ARL14, BCAR3, BIK, CCND3, CMIP, ELK3, HRH1, SAP30BP, NOS1AP, RALB, TGFBI, ENSG00000235726, CAB39, CIRBP, DIAPH1, FGD6, LMO7, MICAL2, STMN1, MNT, PC, PLEKHG5, PRORP, RDX, SERP1, SLCO3A1, SUFU, TANGOS, EGFR, PINX1, SSBP2, TRERF1, GPT2, HEG1, ENSGO0000231740, PPM1H, PRDM10, RAD
  • the method of the invention was used to determine the likelihood of malignancies responding to treatment with various ERBB inhibitors.
  • the predictive power of response to various EGFR inhibitors was tested, including the five EGFR inhibitors afatinib, gefitinib, cetuximab, lapatinib and erlotinib.
  • the method according to the invention was used to determine the probability of response of malignant diseases to treatment with various RAS/RAF/MEK/ERK signaling pathway inhibitors.
  • the predictive power of response to different MEK inhibitors was tested, including the five MEK inhibitors trametinib, refametinib, selumetinib, CI-1040 and mirdametinib.
  • the method according to the invention was used to predict the response of malignant diseases to treatment with various SRC inhibitors, including the five SRC inhibitors A-770041, Saracatinib, Bosutinib, Dasatinib and WH-4-023.
  • carcinomas including adenocarcinoma and squamous cell carcinoma.
  • carcinomas include adenocarcinoma and squamous cell carcinoma.
  • malignant cells from melanoma, glioma, glioblastoma, medulloblastoma, neuroblastoma, germ cell tumor, chondrosarcoma, Ewing's sarcoma, osteosarcoma, fibrosarcoma, rhabdomyosarcoma and mesothelioma have been used.
  • the DNA methylation of CpG dinucleotides of the TAFAZZIN gene was examined at a total of ten positions in the gene (SEQ ID NO:52 to SEQ ID NO:61), which in particular show the DNA methylation in the promoter (X:154408091-154411364, SEQ ID NO:62) of the TAFAZZIN gene.
  • the DNA methylation of CpG dinucleotides of the GNG7 gene was examined at a total of two positions in the gene (SEQ ID NO:32 to SEQ ID NO:33), which in particular show DNA methylation in the alternative promoter (19:2535289-2548878, SEQ ID NO:34) of the GNG7 gene.
  • the DNA methylation of CpG dinucleotides of the ANXA11 gene was examined at a total of five positions (SEQ ID NO:91 to SEQ ID NO:95), which in particular show DNA methylation in the promoter (10:80197502-80212413, SEQ ID NO: 366) of the ANXA11 gene.
  • the DNA methylation of CpG dinucleotides of the ANXA2 gene was examined at a total of five positions (SEQ ID NO:97 to SEQ ID NO:101), which in particular show DNA methylation in the promoter (15:60387415-60403797, SEQ ID NO: 367) of the ANXA2 gene.
  • the DNA methylation of CpG dinucleotides of the MAFG gene was examined at a total of four positions (SEQ ID NO:105 to SEQ ID NO:108), which in particular show DNA methylation in the promoter (17:81919353-81927992, SEQ ID NO: 368) of the MAFG gene.
  • the DNA methylation of CpG dinucleotides of the PKP3 gene was examined at a total of three positions (SEQ ID NO:115 to SEQ ID NO:117), which in particular show DNA methylation in the promoter (11:391907-396042, SEQ ID NO: 369) of the PKP3 gene.
  • the DNA methylation of CpG dinucleotides of the ABTB2 gene was examined at a total of two positions (SEQ ID NO:118 and SEQ ID NO:119), which in particular reflect the DNA methylation in the gene body (11:34195474-34280454) of the ABTB2 gene .
  • the part with SEQ ID NO:118 reflects the DNA methylation of gene body part 11:34233542-34264793 (SEQ ID NO:370)
  • the part with SEQ ID NO:119 reflects the DNA methylation of gene body part 11:34197244-34227887 (SEQ ID NO:371).
  • the DNA methylation of CpG dinucleotides of the gene ENSG00000287625 was examined at a position (SEQ ID NO:120) which specifically reflects the DNA methylation in the gene body (2:84938759-84955130, SEQ ID NO:372) of the ENSG00000287625 gene.
  • the DNA methylation of CpG dinucleotides of the ARL14 gene was examined at a position (SEQ ID NO:125) which specifically reflects the DNA methylation in the promoter (3:160675790-160679619, SEQ ID NO:373) of the ARL14 gene.
  • the DNA methylation of CpG dinucleotides of the BCAR3 gene was examined at a position (SEQ ID NO:127) which specifically reflects the DNA methylation in the gene body (1:93694082-93712201, SEQ ID NO:374) of the BCAR3 gene.
  • the DNA methylation of CpG dinucleotides of the BIK gene was examined at a position (SEQ ID NO:128) which specifically reflects the DNA methylation in the promoter (22:43121022-43133479, SEQ ID NO:375) of the BIK gene.
  • the DNA methylation of CpG dinucleotides of the CCND3 gene was examined at a position (SEQ ID NO:129) which specifically indicates the DNA methylation of a part of the gene body (6:41957336-41972623, SEQ ID NO:376) of the CCND3 gene reflects .
  • the DNA methylation of CpG dinucleotides of the CMIP gene was examined at a total of two positions (SEQ ID NO:130 and SEQ ID NO:131), which in particular show DNA methylation in the promoter (16:81480995-81512636, SEQ ID NO: 377) or in part of the gene body (16:81618351-81648447, SEQ ID NO:378) of the CMIP gene.
  • the DNA methylation of CpG dinucleotides of the ELK3 gene was examined at a total of three positions (SEQ ID NO:132 to SEQ ID NO:134), which in particular show DNA methylation in the promoter and in the gene body (12:96191446-96224107, SEQ ID NO:379) of the ELK3 gene.
  • the DNA methylation of CpG dinucleotides of the HRH1 gene was examined at a total of three positions (SEQ ID NO:138 to SEQ ID NO:140), which in particular showed DNA methylation in the promoter (3:11132402-11144858, SEQ ID NO: 380) of the HRH1 gene.
  • the DNA methylation of CpG dinucleotides of the gene SAP30BP was examined at a total of two positions (SEQ ID NO:141 and SEQ ID NO:142), which in particular the DNA methylation in the alternative promoter (17:75680008-75709106, SEQ ID NO :381) of the SAP30BP gene.
  • the DNA methylation of CpG dinucleotides of the NOS1AP gene was examined at a position (SEQ ID NO:146) which specifically identifies the DNA methylation of a part of the gene body (1:162126194-162145446, SEQ ID NO:382) of the NOS1AP gene reflects .
  • the DNA methylation of CpG dinucleotides of the gene RALB was examined at a position (SEQ ID NO:147) which in particular reflecting the DNA methylation in the promoter (2:120235984-120258633, SEQ ID NO:383) of the RABB gene.
  • the DNA methylation of CpG dinucleotides of the TGFBI gene was examined at a total of two positions (SEQ ID NO:148 and SEQ ID NO:149), which in particular show DNA methylation in the promoter (5:136026401-136036592, SEQ ID NO: 384) of the TGFBI gene.
  • the DNA methylation of CpG dinucleotides of the ENSG00000235726 gene was examined at a position (SEQ ID NO:156) which specifically reflects the methylation of a part of the gene body (2:234878128-234886995, SEQ ID NO:385) of the ENSG00000235726 gene.
  • the DNA methylation of CpG dinucleotides of the CAB39 gene was examined at a position (SEQ ID NO:160) which specifically identifies the DNA methylation of a part of the gene body (2:230778214-230808224, SEQ ID NO:386) of the CAB39 gene reflects .
  • the DNA methylation of CpG dinucleotides of the CIRBP gene was examined at a position (SEQ ID NO:161) which specifically reflects the DNA methylation in the promoter (19:1259044-1271843, SEQ ID NO:387) of the CIRBP gene.
  • the DNA methylation of CpG dinucleotides of the DIAPH1 gene was examined at a position (SEQ ID NO:163) which specifically indicates the DNA methylation of a part of the gene body (5:141598738-141612327, SEQ ID NO:388) of the DIAPH1 gene reflects .
  • the DNA methylation of CpG dinucleotides of the FGD6 gene was examined at a position (SEQ ID NO:164) which specifically indicates the DNA methylation of a part of the gene body (12:95196683-95213579, SEQ ID NO:389) of the FGD6 gene reflects .
  • the DNA methylation of CpG dinucleotides of the LMO7 gene was examined at a position (SEQ ID NO:166) which specifically identifies the DNA methylation of a part of the gene body (13:75708404-75724258, SEQ ID NO:390) of the LMO7 gene reflects .
  • the DNA methylation of CpG dinucleotides of the MICAL2 gene was examined at a position (SEQ ID NO:168) which specifically identifies the DNA methylation of a part of the gene body (11:12161131-12174720, SEQ ID NO:391) of the MICAL2 gene reflects .
  • the DNA methylation of CpG dinucleotides of the STMN1 gene was examined at a position (SEQ ID NO:189) which specifically reflects the DNA methylation in the alternative promoter (1:25888471-25896397, SEQ ID NO:392) of the STMN1 gene .
  • the DNA methylation of CpG dinucleotides of the MNT gene was examined at a position (SEQ ID NO:195) which in particular reflects the DNA methylation in the promoter (17:2389492-2411009, SEQ ID NO:393) of the MNT gene.
  • the DNA methylation of CpG dinucleotides of the PC gene was examined at a position (SEQ ID NO:196) which specifically identifies the DNA methylation of a part of the gene body (11:66887951-66895877, SEQ ID NO:394) of the PC gene reflects.
  • the DNA methylation of CpG dinucleotides of the PLEKHG5 gene was examined at a position (SEQ ID NO:197) which in particular reflects the DNA methylation in the promoter (1:6488283-6495077, SEQ ID NO:395) of the PLEKHG5 gene.
  • the DNA methylation of CpG dinucleotides of the PRORP gene was examined at a position (SEQ ID N0:200) which specifically identifies the DNA methylation of a part of the gene body (14:35153221-35165111, SEQ ID NO:396) of the PRORP gene reflects .
  • the DNA methylation of CpG dinucleotides of the RDX gene was examined at a position (SEQ ID NO:202) which specifically shows the DNA methylation of a part of the gene body (11:110191822-110205411, SEQ ID NO:397) of the RDX gene reflects.
  • the DNA methylation of CpG dinucleotides of the SERP1 gene was examined at a position (SEQ ID NO:203) which in particular reflects the DNA methylation in the promoter (3:150596474-150607869, SEQ ID NO:398) of the SERP1 gene.
  • the DNA methylation of CpG dinucleotides of the SLCO3A1 gene was examined at a position (SEQ ID NO:206) which specifically identifies the DNA methylation of a part of the gene body (15:92065431-92073357, SEQ ID NO:399) of the SLCO3A1 gene reflects .
  • the DNA methylation of CpG dinucleotides of the SUFU gene was examined at a position (SEQ ID NO:207) which specifically indicates the DNA methylation of a part of the gene body (10:102592829-102609815, SEQ ID N0:400) of the SUFU gene reflects .
  • the DNA methylation of CpG dinucleotides of the TANGOS gene was examined at a position (SEQ ID NO:208) which specifically identifies the DNA methylation of a part of the gene body (16:69069900-69076694, SEQ ID NO:401) of the TANGOS gene reflects .
  • the DNA methylation of CpG dinucleotides of the EGFR gene was examined at a position (SEQ ID NO:222) which specifically indicates the DNA methylation of a part of the gene body (7:55061106-55086109, SEQ ID NQ:402) of the EGFR gene reflects .
  • the DNA methylation of CpG dinucleotides of the PINX1 gene was examined at a position (SEQ ID NO:224) which specifically identifies the DNA methylation of a part of the gene body (8:10795951-10805576, SEQ ID NQ:403) of the PINX1 gene reflects .
  • the DNA methylation of CpG dinucleotides of the SSBP2 gene was examined at a total of three positions (SEQ ID NO:240 to SEQ ID NO:242), which in particular showed DNA methylation in the promoter (5:81739698-81763435, SEQ ID NQ: 404) and parts of the gene body (5:81412171-81427995, SEQ ID NQ:405 and 5:81615123-81643212, SEQ ID NO:406) of the SSBP2 gene.
  • the DNA methylation of CpG dinucleotides of the TRERF1 gene was examined at a total of four positions (SEQ ID NO:250 to SEQ ID NO:253), which in particular show the DNA methylation of parts of the gene body (6:42312265-42342490, SEQ ID NO:407 and 6:42223347-42232133, SEQ ID NO:408 and 6:42395546-42408432, SEQ ID NO:409) of the TRERF1 gene.
  • the DNA methylation of CpG dinucleotides of the GPT2 gene was examined at a position (SEQ ID NO:269) which in particular reflects the DNA methylation in the promoter (16:46853286-46881544, SEQ ID NO:410) of the GPT2 gene.
  • the DNA methylation of CpG dinucleotides of the HEG1 gene was examined at a position (SEQ ID NQ:270) which in particular DNA methylation in the promoter (3:125048750-125060074, SEQ ID NO:411) and located in the promoter CpG island (3:125055332-125056318) of the HEG1 gene.
  • the DNA methylation of CpG dinucleotides of the ENSG00000231740 gene was examined at a position (SEQ ID NO:271) which specifically reflects the DNA methylation in the promoter (1:58846707-58852314, SEQ ID NO:412) of the ENSG00000231740 gene.
  • the DNA methylation of CpG dinucleotides of the PPM1H gene was examined at a position (SEQ ID NO:276) which specifically identifies the DNA methylation of a part of the gene body (12:62783039-62797194, SEQ ID NO:413) of the PPM1H gene reflects .
  • the DNA methylation of CpG dinucleotides of the PRDM10 gene was examined at a position (SEQ ID NO:277), which in particular the DNA methylation of parts of the gene body (11:129955771-129968794, SEQ ID NO:414) of the PRDM10 gene reflects .
  • the DNA methylation of CpG dinucleotides of the RAD18 gene was examined at a position (SEQ ID NO:279) which specifically identifies the DNA methylation of parts of the gene body (3:8866868-8875927, SEQ ID NO:415) of the RAD18 gene reflects.
  • the DNA methylation of CpG dinucleotides of the gene ENSG00000231185 was examined at a position (SEQ ID NO:287) which in particular the DNA methylation of parts of the gene body (5:142470158-142478084, SEQ ID NO:416) of the ENSG00000231185 gene reflects.
  • the DNA methylation of CpG dinucleotides of the SYNPO gene was examined at a position (SEQ ID NO:289) which specifically reflects the DNA methylation of the promoter (5:150636723-150646915, SEQ ID NO:417) of the SYNPO gene.
  • the DNA methylation of CpG dinucleotides of the TNFRSF10B gene was examined at a position (SEQ ID NO:294) which specifically reflects the DNA methylation in the promoter (8:23062823-23075280, SEQ ID NO:418) of the TNFRSF10B gene.
  • the DNA methylation of CpG dinucleotides of the T0M1L2 gene was examined at a position (SEQ ID NO:295) which specifically identifies the DNA methylation of a part of the gene body (17:17951951-17962142, SEQ ID NO:419) of the T0M1L2 gene reflects .
  • the DNA methylation of CpG dinucleotides of the TPRG1 gene was examined at a position (SEQ ID NO:296) which in particular reflects the DNA methylation in the promoter (3:188941701-188956988, SEQ ID NO:420) of the TPRG1 gene.
  • the DNA methylation of CpG dinucleotides of the VRK2 gene was examined at a position (SEQ ID NO:299) which specifically identifies the DNA methylation of a part of the gene body (2:58103868-58114626, SEQ ID NO:421) of the VRK2 gene reflects .
  • the DNA methylation of CpG dinucleotides of the ENSG00000249149 gene was examined at a position (SEQ ID NO:305) which specifically reflects the DNA methylation in the promoter (5:73366895-73375762, SEQ ID NO:422) of the ENSG00000249149 gene.
  • the DNA methylation of CpG dinucleotides of the NC0R2 gene was examined at a position (SEQ ID NO:310) which specifically reflects the DNA methylation in the promoter (12:124589305-124596665, SEQ ID NO:423) of the NC0R2 gene.
  • the DNA methylation of CpG dinucleotides of the ENSG00000258077 gene was examined at a position (SEQ ID NO:314) which specifically reflects the DNA methylation in the promoter (12:75946679-75957592, SEQ ID NO:424) of the ENSG00000258077 gene.
  • the DNA methylation of CpG dinucleotides of the NINJ2 gene was examined at two positions (SEQ ID NO:316 and SEQ ID NO:317), which in particular show the DNA methylation of a part of the gene body (12:564035-574700, SEQ ID NO :425) of the NINJ2 gene.
  • the DNA methylation of CpG dinucleotides of the ENSG00000257746 gene was examined at a position (SEQ ID NO:319) which specifically reflects the DNA methylation in the promoter (12:93081904-93099457, SEQ ID NO:426) of the ENSG00000257746 gene.
  • DNA methylation of CpG dinucleotides of gene B3GNTL1 was examined at a position (SEQ ID NO:323) which in particular reflecting the DNA methylation in the promoter (17:83044334-83052973, SEQ ID NO:427) of the B3GNTL1 gene.
  • the DNA methylation of CpG dinucleotides of the DCP2 gene was examined at a position (SEQ ID NO:325), which in particular the DNA methylation of a part of the gene body (5:113014888-113027911, SEQ ID NO:428) of the DCP2 gene reflects .
  • the DNA methylation of CpG dinucleotides of the gene ENSG00000242759 was examined at a position (SEQ ID NO:327), which in particular the DNA methylation of a part of the gene body (3:106722279-106735868, SEQ ID NO:429) of the ENSG00000242759 gene reflects.
  • the DNA methylation of CpG dinucleotides of the Chr.3p23 locus was examined at a position (SEQ ID NO:328) which specifically shows the DNA methylation of the Chr.3p23 locus in the region 3:31073969-31083028 (SEQ ID NO:430 ) and reflects 3:31075281-31078856 .
  • the DNA methylation of CpG dinucleotides of the OGDH gene was examined at a position (SEQ ID NO:329), which in particular the DNA methylation of a part of the gene body (7:44632469-44643793, SEQ ID NO:431) of the OGDH gene reflects .
  • the DNA methylation of CpG dinucleotides of the PDZRN3 gene was examined at a position (SEQ ID NO:330) which specifically indicates the DNA methylation of a part of the gene body (3:73541303-73554892, SEQ ID NO:432) of the PDZRN3 gene reflects .
  • the DNA methylation of CpG dinucleotides of the PLXNB2 gene was examined at a total of three positions (SEQ ID NO:332, SEQ ID NO:333 and SEQ ID NO:334), which in particular indicate DNA methylation in the promoter (22:50280218- 50284352, SEQ ID NO:433) of the PLXNB2 gene.
  • the DNA methylation of CpG dinucleotides of the gene ENSG00000228793 was examined at a position (SEQ ID NO:336), which in particular the DNA methylation of a part of the gene body (6:3582962-3604478, SEQ ID NO:434) of the ENSG00000228793 gene reflects.
  • the DNA methylation of CpG dinucleotides of the gene C6orf132 was examined at a position (SEQ ID NO:337) which specifically indicates the DNA methylation of a part of the gene body of the gene and the sequence downstream of the gene C6orf132 (6:42095755-42105946, SEQ ID NO:435).
  • the DNA methylation of CpG dinucleotides of the gene ENSG00000254561 was examined at a position (SEQ ID NO:338), which in particular the DNA methylation of a part of the gene body (11:119611136-119621327, SEQ ID NO:436) of the ENSG00000254561 gene reflects.
  • the DNA methylation of CpG dinucleotides of the SPATA12 gene was examined at two positions (SEQ ID NO:341 and SEQ ID NO:342), which in particular indicate DNA methylation in the promoter (3:57057839-57062934, SEQ ID NO:438) of the SPATA12 gene.
  • the DNA methylation of CpG dinucleotides of the gene ERBB2 was examined at a total of seven positions (SEQ ID NO:44 to SEQ ID NO:50) which, in particular, the DNA methylation in the promoter (17:39698513-39701727, SEQ ID NO:51 ) of the ERBB2 gene.
  • Trametinib is a MEK inhibitor from the group of RAS/RAF/MEK/ERK signaling pathway inhibitors.
  • Afatinib is an EGFR inhibitor from the group of ERBB signaling pathway inhibitors.
  • the response of the malignant cells to the treatment was determined by the logarithmic mean inhibitory concentration (logIC50), with a low logIC50 indicating a response and a high logIC50 indicating a non-response to the treatment.
  • the DNA methylation of the TAFAZZIN gene in SEQ ID NO:54 reflects the DNA methylation in the promoter (X:154408091-154411364, SEQ ID NO:62) of the gene.
  • Table 7 and Table 8 show in detail that it was possible through the DNA methylation analysis according to the invention of the examined parts of the genes TAFAZZIN, GNG7, ANXA11, ANXA2, MAFG, PKP3, ABTB2, ENSGO0000287625, ARL14, BCAR3, BIN, CCND3, CMIP, ELK3, HRH1, SAP30BP, NOS1AP, RABB, TGFBI, ENSG00000235726, CAB39, CIRBP, DIAPH1, FGD6, LMO7, MICAL2, STMN1, MNT, PC, PLEKHG5, PRORP, RDX, SERP1, SLCO3A1, SUFU, TANGOS, EGER, PINX1, SSBP2, TRERF1, GPT2, HEG1, ENSGO0000231740, PPM1H, PRDM10, RAD18, ENSGO0000231185, SYNPO, TNFRSF10B, T0M1L2, TPRG1,
  • the results show that the DNA methylation analysis of TAFAZZIN, GNG7, ANXA11, ANXA2, MAFG, PKP3, ABTB2, ENSGO0000287625, ARL14, BCAR3, BIK, CCND3, CMIP, ELK3, HRH1, SAP30BP, NOS1AP, RALB, TGFBI, ENSG00000235726, CAB39, CIRBP, DIAPH1, FGDS, LMO7, MICAL2, STMN1, MNT, PC, PLEKHG5, PRORP, RDX, SERP1, SLCO3A1, SUFU, TANGOS, EGER, PINX1, SSBP2, TRERF1, GPT2, HEG1, ENSGO0000231740, PPM1H, PRDM10, RAD18, ENSGO0000231185, SYNPO, TNFRSF10B, T0M1L2, TPRG1, VRK2, ENSG00000249149, NC0R2, ENSGO
  • the results show that the DNA methylation analysis according to the invention of the genes TAFAZZIN, GNG7, ANXA11, ANXA2, MAFG, PKP3, ABTB2, ENSGO0000287625, ARL14, BCAR3, BIK, CCND3, CMIP, EIK3, HRH1, SAP30BP, NOS1AP, RAIB, TGFBI , ENSG00000235726, CAB39, CIRBP, DIAPH1, FGDS, IMO7, MICAI2, STMN1, MNT, PC, PIEKHG5, PRORP, RDX, SERP1, SICO3A1, SUFU, TANGOS, EGFR, PINX1, SSBP2, TRERF1, GPT2, HEG1, ENSGO0000231740, PPM1H , PRDM10, RAD18, ENSGO0000231185, SYNPO, TNFRSF10B, T0M1I2, TPRG1, VRK2, ENSG000002
  • Example 4 Determination of the probability of response of a malignant disease to treatment with ERBB inhibitors, RAS/RAF/MEK/ERK signaling pathway inhibitors, CDK4 and CDK6 inhibitors and SRC inhibitors using DNA methylation analysis of ZBTB38, MAFK, NEDD4L , DIP2C, CAPN2, IER3, TM4SF19, RPTOR, S100A16, BCL9L, KCNMA1, GALE, PCID2, SH3TC1, SSH1, AVPI1, MAP3K14, MIR23AHG, EPHA2, ENSG00000233785, ACVR1, ENSG00000282849, COX7A2L, ENSG00000234476, LRRC2, PLXNB1, PPTC7, RB1CC1 , SLC2A1, SLC39A11, TBC1D14, TIMP2, ENSG00000276527, CFAP20DC, PHLDA1, TESC, LIMA1, ASPSCR1, CAMK
  • PTPRK PTPRK
  • RBKS RBKS
  • SH3RF2 SILC1, SP1, SPAG6, SRGAP1, SYTL3, TMEM248, UTP25, WDFY3, WIPF2, WSB2, ZCCHC14, ZSWIM1, ENSG00000226380, ENTPD6, ENSG00000285517, CAPRIN2, MTPN, ADAM17, ATG14, and ENSG0GB
  • the method according to the invention was used to determine the probability of response of malignant diseases to treatment with various RAS/RAF/MEK/ERK signaling pathway inhibitors. For example, the predictive power of treatment response to different MEK inhibitors and BRAF inhibitors was examined, including the five MEK inhibitors trametinib, refametinib, selumetinib, CI-1040 and mirdametinib and the four BRAF inhibitors AZ 628, dabrafenib , HG-6-64-1 and PLX4720.
  • the method according to the invention was used to determine the probability of response of malignant diseases to treatment with various ERBB inhibitors.
  • the predictive power of response to treatment with different EGFR inhibitors was tested, including the five EGFR inhibitors afatinib, gefitinib, cetuximab, erlotinib and lapatinib.
  • the method according to the invention was used to predict the response of malignant diseases to treatment with various CDK4 and CDK6 inhibitors and SRC inhibitors.
  • the malignant disease cells examined in this example were the same as in Example 3.
  • the DNA methylation of CpG dinucleotides of the gene ZBTB38 was examined at five positions (SEQ ID NO:175 to SEQ ID NO:179), which in particular the DNA methylation in the promoter (3:141364416-141371142, SEQ ID NO:441 ) of the ZBTB38 gene.
  • the DNA methylation of CpG dinucleotides of the MAFK gene was examined at three positions (SEQ ID NO:109, SEQ ID NO:110 and SEQ ID NO:111), which in particular indicate DNA methylation in the promoter (7:1529262-1540502 , SEQ ID NO:439) of the MAFK gene.
  • the DNA methylation of CpG dinucleotides of the NEDD4L gene was examined at three positions (SEQ ID NO:112, SEQ ID NO:113 and SEQ ID NO:114), which in particular indicate DNA methylation in the alternative promoter (18:58215872- 58228329, SEQ ID NO:440) of the NEDD4L gene.
  • the DNA methylation of CpG dinucleotides of the gene DIP2C was examined at three positions (SEQ ID NO:264, SEQ ID NO:265 and SEQ ID NO:266), which in particular the DNA methylation of the promoter and the downstream section of the gene body (10:682143-695166, SEQ ID NO:442) and another part of the gene body (10:319301-330625, SEQ ID NO:443) of the DIP2C gene.
  • the DNA methylation of CpG dinucleotides of the CAPN2 gene was examined at six positions (SEQ ID NO:169 to SEQ ID NO:174), which in particular show DNA methylation in the gene body (1:223768582-223775521, SEQ ID NO:444 ) and two promoters (1:223695643-223717861, SEQ ID NO:445) of the CAPN2 gene.
  • the DNA methylation of CpG dinucleotides of the gene IER3 was examined at six positions (SEQ ID NO:180 to SEQ ID NO:185), which in particular the DNA methylation in the promoter (6:30740330-30758622, SEQ ID NO:446 ) of the IER3 gene .
  • the DNA methylation of CpG dinucleotides of the gene TM4SF19 was examined at five positions (SEQ ID NO:150 to SEQ ID NO:154), which in particular the DNA methylation in the promoter (3:196334860-196346137, SEQ ID NO:447 ) of the TM4SF19 gene.
  • the DNA methylation of CpG dinucleotides of the RPTOR gene was examined at three positions (SEQ ID NO:186, SEQ ID NO:187 and SEQ ID NO:188), which in particular show the DNA methylation of parts of the gene body (17:80779489 -80810457, SEQ ID NO:448, 17:80844268-80875012, SEQ ID NO:449 and 17:80875012-80904251, SEQ ID NO:450) of the RPTOR gene.
  • the DNA methylation of CpG dinucleotides of the gene S100A16 was examined at five positions (SEQ ID NO:232 to SEQ ID NO:236), which in particular the DNA methylation in the promoter (1:153606408-153613450, SEQ ID NO:451 ) and its center (1:153608184-153610335) of the S100A16 gene.
  • the DNA methylation of CpG dinucleotides of the gene BCL9L was examined at four positions (SEQ ID NO:155 to SEQ ID NO:258), which in particular the DNA methylation in the promoter (11:118907364-118932161, SEQ ID NO:452 ) of the BCL9L gene .
  • the DNA methylation of CpG dinucleotides of the KCNMA1 gene was examined at two positions (SEQ ID NO:216 and SEQ ID NO:217), which specifically indicate the DNA methylation of two parts of the gene body (10:77343586-77364673, SEQ ID NO:453 and 10:77580549-77606859, SEQ ID NO:454) of the KCNMA1 gene.
  • the DNA methylation of CpG dinucleotides of the GALE gene was examined at three positions (SEQ ID NO:135, SEQ ID NO:136 and SEQ ID NO:137), which in particular indicate DNA methylation in the central promoter (1:23798440- 23801012, SEQ ID NO:455) of the GALE gene.
  • the DNA methylation of CpG dinucleotides of the PCLD2 gene was examined at two positions (SEQ ID NO:220 and SEQ ID NO:221), which in particular indicate DNA methylation in the alternative promoter and adjacent gene body (13:113183171-113191810, SEQ ID NO:456) of the PCLD2 gene.
  • the DNA methylation of CpG dinucleotides of the SH3TC1 gene was examined at two positions (SEQ ID NO:282 and SEQ ID NO:283), which in particular show the DNA methylation of a part of the gene body (4:8186081-8195074, SEQ ID NO :457) of the SH3TC1 gene.
  • the DNA methylation of CpG dinucleotides of the SSH1 gene was examined at two positions (SEQ ID NO:243 and SEQ ID NO:244), which in particular indicate DNA methylation in the alternative promoter and adjacent gene body (12:108818418-108837010, SEQ ID NO:458) of the SSH1 gene.
  • the DNA methylation of CpG dinucleotides of the AVPL1 gene was examined at a position (SEQ ID NO:126) which specifically reflects the DNA methylation in the promoter (10:97680054-97694209, SEQ ID NO:459) of the AVPL1 gene.
  • the DNA methylation of CpG dinucleotides of the MAP3K14 gene was examined at a position (SEQ ID NO:143) which specifically reflects the DNA methylation in the promoter (17:45280967-45306566, SEQ ID NO:460) of the MAP3K14 gene.
  • the DNA methylation of CpG dinucleotides of the MIR23AHG gene was examined at two positions (SEQ ID NO:144 and SEQ ID NO:145), which in particular show DNA methylation in the promoter (19:13833062-13847218, SEQ ID NO:461 ) of the MIR23AHG gene.
  • the DNA methylation of CpG dinucleotides of the EPHA2 gene was examined at a position (SEQ ID NO:155) which in particular reflects the DNA methylation in the promoter (1:16140758-16159964, SEQ ID NO:462) of the EPHA2 gene.
  • the DNA methylation of CpG dinucleotides of the ENSG00000233785 gene was examined at a position (SEQ ID NO:157) which specifically reflects the DNA methylation in the promoter (X:23779234-23784341, SEQ ID NO:463) of the ENSG00000233785 gene.
  • the DNA methylation of CpG dinucleotides of the ACVR1 gene was examined at a position (SEQ ID NO:158) which in particular reflects the DNA methylation in the gene body (2:157826504-157840100, SEQ ID NO:464) of the ACVR1 gene.
  • This part of the gene body also includes part of an alternative promoter.
  • the DNA methylation of CpG dinucleotides of the gene ENSG00000282849 was examined at a position (SEQ ID NO:159) which specifically reflects the DNA methylation in the promoter (1:200479260-200488319, SEQ ID NO:465) of the ENSG00000282849 gene.
  • the DNA methylation of CpG dinucleotides of the gene COX7A2L was examined at a position (SEQ ID NO:162) which in particular reflecting the DNA methylation in the gene body (2:42414934-42428523, SEQ ID NO:466) of the COX7A2L gene.
  • the DNA methylation of CpG dinucleotides of the gene ENSG00000234476 was examined at a position (SEQ ID NO:165) which, in particular, shows the DNA methylation in the gene body and the sequence downstream of the gene (1:225440616-225452506, SEQ ID NO:467 ) of the ENSG00000234476 gene.
  • the DNA methylation of CpG dinucleotides of the LRRC2 gene was examined at a position (SEQ ID NO:167) which, in particular, shows DNA methylation in the gene body and the sequence downstream of the gene (3:46514226-46522718, SEQ ID NO:468 ) of the LRRC2 gene.
  • the DNA methylation of CpG dinucleotides of the PLXNB1 gene was examined at a position (SEQ ID NO:198) which, in particular, shows the DNA methylation in the gene body and the sequence downstream of the gene (3:48398407-48408032, SEQ ID NO:469 ) of the PLXNB1 gene.
  • the DNA methylation of CpG dinucleotides of the PPTC7 gene was examined at a position (SEQ ID NO:199) which specifically reflects the DNA methylation in the promoter (12:110572968-110586617, SEQ ID NO:470) of the PPTC7 gene.
  • the DNA methylation of CpG dinucleotides of the RB1CC1 gene was examined at a position (SEQ ID NO:201) which specifically identifies the DNA methylation of a part of the gene body (8:52691480-52698840, SEQ ID NO:471) of the RB1CC1 gene reflects .
  • the DNA methylation of CpG dinucleotides of the SLC2A1 gene was examined at a position (SEQ ID NO:204) which specifically identifies the DNA methylation of a part of the gene body (1:42938229-42947715, SEQ ID NO:472) of the SLC2A1 gene reflects .
  • the DNA methylation of CpG dinucleotides of the SLC39A11 gene was examined at a position (SEQ ID NQ:205) which specifically identifies the DNA methylation of a part of the gene body (17:72714613-72720275, SEQ ID NO:473) of the SLC39A11 gene reflects .
  • the DNA methylation of CpG dinucleotides of the TBC1D14 gene was examined at a position (SEQ ID NQ:209) which specifically identifies the DNA methylation of a part of the gene body (4:6940038-6945133, SEQ ID NO:474) of the TBC1D14 gene reflects .
  • the DNA methylation of CpG dinucleotides of the TIMP2 gene was examined at a position (SEQ ID NQ:210) which specifically identifies the DNA methylation of a part of the gene body (17:78860378-78864341, SEQ ID NO:475) of the TIMP2 gene reflects .
  • the DNA methylation of CpG dinucleotides of the ENSG00000276527 gene was examined at a position (SEQ ID NO:213) which specifically reflects the DNA methylation in the promoter (13:44706332-44721620, SEQ ID NO:476) of the ENSG00000276527 gene.
  • the DNA methylation of CpG dinucleotides of the CFAP20DC gene was examined at a position (SEQ ID NO:215) which specifically indicates the DNA methylation of a part of the gene body (3:58994710-59004335, SEQ ID NO:477) of the CFAP20DC gene.
  • the DNA methylation of CpG dinucleotides of the gene PHLDA1 was examined at a position (SEQ ID NO:223) which, in particular, shows the DNA methylation in the gene body and the sequence downstream of the gene (12:76020299-76028225, SEQ ID NO:478 ) of the PHLDA1 gene.
  • the DNA methylation of CpG dinucleotides of the TESC gene was examined at a position (SEQ ID NO:245) which specifically indicates the DNA methylation of a part of the gene body (12:117040788-117045883, SEQ ID NO:479) of the TESC gene reflects .
  • the DNA methylation of CpG dinucleotides of the LIMA1 gene was examined at a position (SEQ ID NO:254) which specifically corresponds to the DNA methylation in the alternative promoter and gene body (12:50240641-50255929, SEQ ID NQ:480) of the LIMA1 gene reflects .
  • the DNA methylation of CpG dinucleotides of the gene ASPSCR1 was examined at a position (SEQ ID NO:259) which specifically corresponds to DNA methylation in the alternative promoter and gene body (17:81996878-82011599, SEQ ID NO:481) of the ASPSCR1 gene reflects .
  • the DNA methylation of CpG dinucleotides of the gene CAMK1D was examined at a position (SEQ ID NQ:260) which specifically identifies the DNA methylation of a part of the gene body (10:12441419-12456706, SEQ ID NO:482) of the CAMK1D gene reflects .
  • the DNA methylation of CpG dinucleotides of the gene CAMK2D was examined at a position (SEQ ID NO:261), which specifically indicates the DNA methylation of a part of the gene body (4:113463882-113476338, SEQ ID NO:483) of the CAMK2D gene reflects .
  • the DNA methylation of CpG dinucleotides of the CFAP57 gene was examined at a position (SEQ ID NO:262) which specifically identifies the DNA methylation of a part of the gene body (1:43199549-43214270, SEQ ID NO:484) of the CFAP57 gene reflects .
  • the DNA methylation of CpG dinucleotides of the CHCHD6 gene was examined at a position (SEQ ID NO:263) which specifically identifies the DNA methylation of a part of the gene body (3:126904209-126920063, SEQ ID NO:485) of the CHCHD6 gene reflects .
  • the DNA methylation of CpG dinucleotides of the DRAP1 gene was examined at a position (SEQ ID NO:267) which in particular reflects the DNA methylation in the promoter (11:65909705-65922504, SEQ ID NO:486) of the DRAP1 gene.
  • the DNA methylation of CpG dinucleotides of the ENC1 gene was examined at a position (SEQ ID NO:268) which in particular reflects the DNA methylation in the promoter (5:74636598-74645657, SEQ ID NO:487) of the ENC1 gene.
  • the DNA methylation of CpG dinucleotides of the ARHGAP32 gene was examined at a position (SEQ ID NO:124) which specifically identifies the DNA methylation of a part of the gene body (11:129131715-129160026, SEQ ID NO:488) of the ARHGAP32 gene reflects .
  • the DNA methylation of CpG dinucleotides of the ABL2 gene was examined at a position (SEQ ID NO:96) which specifically shows DNA methylation in parts of the alternative promoter and the gene body (1:179132347-179152810, SEQ ID NO:489 ) of the ABL2 gene.
  • the DNA methylation of CpG dinucleotides of the gene ENSG00000250754 was examined at a position (SEQ ID NO:272), which in particular the DNA methylation of a part of the gene body (4:185105388-185115579, SEQ ID NQ:490) of the ENSG00000250754 gene reflects.
  • the DNA methylation of the Chr.lq42.3 locus was examined at a position (SEQ ID NO:273), which specifically shows the DNA methylation of the Chr.lq42.3 locus in the region 1:235005582-235018381 (SEQ ID NO:491 ) and 3:31075281-31078856.
  • the DNA methylation of CpG dinucleotides of the MYO16 gene was examined at a position (SEQ ID NO:274) which specifically identifies the DNA methylation of a part of the gene body (13:108955554-108964613, SEQ ID NO:492) of the MYO16 gene reflects .
  • the DNA methylation of CpG dinucleotides of the MYOF gene was examined at a position (SEQ ID NO:275) which specifically identifies the DNA methylation of a part of the gene body (10:93430533-93443556, SEQ ID NO:493) of the MYOF gene reflects .
  • the DNA methylation of CpG dinucleotides of the PTPRK gene was examined at a position (SEQ ID NO:278) which in particular reflecting the DNA methylation in the promoter (6:128505772-128525024, SEQ ID NO:494) of the PTPRK gene.
  • the DNA methylation of CpG dinucleotides of the RBKS gene was examined at a position (SEQ ID NO:280), which in particular the DNA methylation of a part of the gene body (2:27795917-27806109, SEQ ID NO:495) of the RBKS gene reflects .
  • the DNA methylation of CpG dinucleotides of the SH3RF2 gene was examined at a position (SEQ ID NO:281) which specifically identifies the DNA methylation of a part of the gene body (5:145943178-145954502, SEQ ID NO:496) of the SH3RF2 gene reflects .
  • the DNA methylation of CpG dinucleotides of the SILC1 gene was examined at a position (SEQ ID NO:284) which specifically identifies the DNA methylation of a part of the promoter region (2:5965649-5976973, SEQ ID NO:497) of the SILC1 gene reflects.
  • the DNA methylation of CpG dinucleotides of the SP1 gene was examined at a position (SEQ ID NO:285) which specifically reflects the DNA methylation in the promoter (12:53376933-53389389, SEQ ID NO:498) of the SP1 gene.
  • the DNA methylation of CpG dinucleotides of the SPAG6 gene was examined at a position (SEQ ID NO:286) which specifically identifies the DNA methylation of a part of the gene body (10:22423788-22437377, SEQ ID NO:499) of the SPAG6 gene reflects .
  • the DNA methylation of CpG dinucleotides of the SRGAP1 gene was examined at a position (SEQ ID NO:288) which in particular the DNA methylation of a part of the gene body (12:64081933-64096088, SEQ ID NO:500) of the SRGAP1 gene reflects.
  • the DNA methylation of CpG dinucleotides of the SYTL3 gene was examined at a position (SEQ ID NO:290) which specifically indicates the DNA methylation of a part of the gene body (6:158715789-158725980, SEQ ID NQ:501) of the SYTL3 gene reflects .
  • the DNA methylation of CpG dinucleotides of the TMEM248 gene was examined at a position (SEQ ID NO:293) which specifically identifies the DNA methylation of a part of the gene body (7:66948778-66956138, SEQ ID NQ:503) of the TMEM248 gene reflects .
  • the DNA methylation of CpG dinucleotides of the UTP25 gene was examined at a position (SEQ ID NO:298) which specifically identifies the DNA methylation of a part of the gene body (1:209833653-209842712, SEQ ID NQ:504) of the UTP25 gene reflects .
  • the DNA methylation of CpG dinucleotides of the WDFY3 gene was examined at a position (SEQ ID NO:300) which specifically identifies the DNA methylation of a part of the gene body (4:84688272-84697331, SEQ ID NQ:505) of the WDFY3 gene reflects .
  • the DNA methylation of CpG dinucleotides of the WIPF2 gene was examined at a position (SEQ ID NQ:301) which specifically indicates the DNA methylation of a part of the gene body and the downstream sequence (17:40280324-40285420, SEQ ID NQ:506 ) of the WIPF2 gene.
  • the DNA methylation of CpG dinucleotides of the WSB2 gene was examined at a position (SEQ ID NO:302) which specifically indicates the DNA methylation of a part of the gene body and the alternative promoter (12:118050165-118055260, SEQ ID NO:507 ) of the WSB2 gene.
  • the DNA methylation of CpG dinucleotides of the ZCCHC14 gene was examined at a position (SEQ ID NO:303) which specifically reflects the DNA methylation of the gene body (16:87454494-87461288, SEQ ID NO:508) of the ZCCHC14 gene.
  • the DNA methylation of CpG dinucleotides of the ZSWIM1 gene was examined at a position (SEQ ID NO:304) which, in particular, shows the DNA methylation of the gene body and the downstream sequence (20:45882837-45886936, SEQ ID NO:509) of the ZSWIM1 gene reflects.
  • the DNA methylation of CpG dinucleotides of the gene ENSG00000226380 was examined at a position (SEQ ID NO:309), which in particular the DNA methylation of the gene body and an alternative promoter (7:130897587-130915321, SEQ ID NO:510) of ENSG00000226380 Gens reflects.
  • the DNA methylation of CpG dinucleotides of the ENTPD6 gene was examined at a position (SEQ ID NO:312) which specifically indicates the DNA methylation of a part of the gene body and the downstream sequence (20:25218815-25232404, SEQ ID NO:511 ) of the ENTPD6 gene.
  • the DNA methylation of CpG dinucleotides of the gene ENSG00000285517 was examined at a position (SEQ ID NO:313) which specifically shows the DNA methylation in the promoter (12:30789185-30803341, SEQ ID NO:512) of the ENSG00000285517 gene.
  • the DNA methylation of CpG dinucleotides of the CAPRIN2 gene was examined at a position (SEQ ID NO:315) which specifically identifies the DNA methylation of a part of the gene body (12:30721446-30731637, SEQ ID NO:513) of the CAPRIN2 gene reflects .
  • the DNA methylation of CpG dinucleotides of the MTPN gene was examined at a position (SEQ ID NO:318) which specifically indicates the DNA methylation of a part of the gene body and the downstream sequence (7:135916072-135931079, SEQ ID NO:514 ) of the MTPN gene.
  • the DNA methylation of CpG dinucleotides of the ADAM17 gene was examined at a position (SEQ ID NO:320) which in particular reflects the DNA methylation in the promoter (2:9549370-9573152, SEQ ID NO:515) of the ADAM17 gene.
  • the DNA methylation of CpG dinucleotides of the ATG14 gene was examined at a position (SEQ ID NO:322) which specifically identifies the DNA methylation of a part of the gene body (14:55394876-55407333, SEQ ID NO:516) of the ATG14 gene reflects .
  • the DNA methylation of CpG dinucleotides of the gene ENSG00000258583 was examined at a position (SEQ ID NO:324), which in particular the DNA methylation of a part of the gene body (14:58725174-58743859, SEQ ID NO:517) of the ENSG00000258583 gene reflects.
  • the DNA methylation of CpG dinucleotides of the ITGB5 gene was examined at a position (SEQ ID NO:326) which specifically reflects the DNA methylation in the promoter (3:124873906-124896555, SEQ ID NO:518) of the ITGB5 gene.
  • Tables 9-11 The results are summarized in Tables 9-11.
  • the table data show that it was possible, by means of the DNA methylation analysis according to the invention, of the examined parts of the genes ZBTB38, MAFK, NEDD4L, DIP2C, CAPN2, IER3, TM4SF19, RPTOR, S100A16, BCL9L, KCNMA1, GALE, PCID2, SH3TC1, SSH1, AVPI1, MAP3K14, MIR23AHG, EPHA2, ENSG00000233785, ACVR1, ENSG00000282849, COX7A2L, ENSG00000234476, LRRC2, PLXNB1, PPTC7, RB1CC1, SLC2A1, SLC39A11, TBC1D14, TIMP2, ENSG00000276527, CFAP20DC, PHLDA1, TESC, LIMA1, ASPSCR1, CAMKID, CAMK2D, CFAP57, CHCHD6,
  • the results show that the DNA methylation analysis according to the invention of ZBTB38, MAFK, NEDD4L, DIP2C, CAPN2, IER3, TM4SF19, RPTOR, S100A16, BCL9L, KCNMA1, GALE, PCID2, SH3TC1, SSH1, AVPI1, MAP3K14, MIR23AHG, EPHA2, ENSG00000233785, ACVR1, ENSG00000282849, COX7A2L, ENSG00000234476, LRRC2, PLXNB1, PPTC7, RB1CC1, SLC2A1, SLC39A11, TBC1D14, TIMP2, ENSGO0000276527, CFAP20DC, PHLDA1, TESC, LIMA1, ASPSCR1, CAMK1D, CAMK2D, CFAP57, CHCHD6, DRAP1, ENGI, ARHGAP32, ABL2, ENSGO0000250754, Locus Chr.lq4
  • Example 5 Determination of the probability of response of a malignant disease to treatment with RAS/RAF/MEK/ERK signaling pathway inhibitors, CDK4 and CDK6 inhibitors and SRC inhibitors using DNA methylation analysis of VGLL4, CDCP1, RASA3, PTTG1IP, ASAP2, ENSGO0000242282, Locus Chr.3q29, TMCO4, UBXN11, MAP3K5, ASTN2 and ENSG00000258082
  • the method according to the invention was used to determine the probability of response of malignant diseases to treatment with various RAS/RAF/MEK/ERK Signaling pathway inhibitors applied.
  • the predictive power of response to different MEK inhibitors and BRAF inhibitors was tested, including the five MEK inhibitors trametinib, refametinib, selumetinib, CI-1040 and mirdametinib and the four BRAF inhibitors AZ 628, dabrafenib, HG- 6-64-1 and PLX4720.
  • the method according to the invention was used to predict the response of malignant diseases to various CDK4 and CDK6 inhibitors and SRC inhibitors.
  • the cells of malignant diseases examined in this example corresponded to those from example 3.
  • the DNA methylation of CpG dinucleotides of the VGLL4 gene was examined at a total of four positions (SEQ ID NO:190 to SEQ ID NO:193), which in particular show DNA methylation in the alternative promoter and gene body (3:11565768-11571995, SEQ ID NO:519) of the VGLL4 gene.
  • the DNA methylation of CpG dinucleotides of the gene CDCP1 was examined at a position (SEQ ID NO:214) which in particular reflecting the DNA methylation in the promoter (3:45124238-45151983, SEQ ID NO:520) of the CDCP1 gene.
  • the DNA methylation of CpG dinucleotides of the RASA3 gene was examined at a total of five positions (SEQ ID NO:227 to SEQ ID NO:238), which in particular show DNA methylation in the promoter (13:114105649-114128377, SEQ ID NO: 521) and part of the gene body (13:114062455-114066811, SEQ ID NO:522) of the RASA3 gene.
  • the DNA methylation of CpG dinucleotides of the PTTG1IP gene was examined at a total of two positions (SEQ ID NO:225 and SEQ ID NO:226), which in particular showed DNA methylation in the promoter (21:44865977-44876735, SEQ ID NO: 523) of the PTTG1IP gene.
  • the DNA methylation of CpG dinucleotides of the gene ASAP2 was examined at a total of two positions (SEQ ID NO:306 and SEQ ID NO:307), which in particular show the DNA methylation of parts of the gene body (2:9230183-9241659, SEQ ID NO:524 and 2:9275684-9297427, SEQ ID NO:525) of the ASAP2 gene.
  • the DNA methylation of CpG dinucleotides of the gene ENSG00000242282 was examined at a total of two positions (SEQ ID NO:211 and SEQ ID NO:212), which in particular show the DNA methylation in the promoter (2:3534728-3537892, SEQ ID NO: 526) of the ENSG00000242282 gene.
  • the DNA methylation of the Chr.3q29 locus was examined at a total of two positions (SEQ ID NO:218 and SEQ ID NO:219), which in particular showed DNA methylation in the region 3:193868829-193871078 (SEQ ID NO:527) of the reflect locus Chr.3q29.
  • the DNA methylation of CpG dinucleotides of the TMCO4 gene was examined at a position (SEQ ID NO:292) which specifically identifies the DNA methylation of a part of the gene body (1:19760862-19771053, SEQ ID NO:528) of the TMCO4 gene reflects .
  • the DNA methylation of CpG dinucleotides of the UBXN11 gene was examined at a position (SEQ ID NO:297) which specifically identifies the DNA methylation of a part of the gene body (1:26283080-26291573, SEQ ID NO:529) of the UBXN11 gene reflects .
  • the DNA methylation of CpG dinucleotides of the MAP3K5 gene was examined at a position (SEQ ID NQ:308) which specifically identifies the DNA methylation of a part of the gene body (6:136586548-136600703, SEQ ID NQ:530) of the MAP3K5 gene reflects .
  • the DNA methylation of CpG dinucleotides of the ASTN2 gene was examined at a position (SEQ ID NO:321) which specifically identifies the DNA methylation of a part of the gene body (9:117366574-117385825, SEQ ID NO:531) of the ASTN2 gene reflects .
  • the DNA methylation of CpG dinucleotides of the ENSG00000258082 gene was examined at a position (SEQ ID NO:311) which specifically reflects the DNA methylation in the promoter (1:234979046-234982307, SEQ ID NO:532) of the ENSG00000258082 gene.
  • the DNA methylation of the respective positions was measured using the HumanMethylation450 BeadChip probes, which are listed in Tables 12 and 13. The results are summarized in Tables 11 and 12.
  • Table values show that it was possible through the DNA methylation analysis of the examined CpG dinucleotides of the genes VGLL4, CDCP1, RASA3, PTTG1IP, ASAP2, ENSGO0000242282, Locus Chr.3q29, TMCO4, UBXN11, MAP3K5, ASTN2 and ENSG00000258082 to respond of malignant diseases on RAS/RAF/MEK/ERK signaling pathway inhibitors, such as MEK inhibitors and BRAF inhibitors, as well as CDK4 and CDK6 inhibitors and SRC inhibitors, to reliably predict.
  • RAS/RAF/MEK/ERK signaling pathway inhibitors such as MEK inhibitors and BRAF inhibitors, as well as CDK4 and CDK6 inhibitors and SRC inhibitors
  • the results show that the DNA methylation analysis according to the invention of VGLL4, CDCP1, RASA3, PTTG1IP, ASAP2, ENSGO0000242282, Locus Chr.3q29, TMCO4, UBXN11, MAP3K5, ASTN2 and ENSG00000258082 each the response probability of malignant diseases to treatment with RAS / RAF /MEK/ERK signaling pathway inhibitors, CDK4 and CDK6 inhibitors and SRC inhibitors reliably predicted, in particular to treatment with MEK inhibitors and BRAF inhibitors and EGFR inhibitors, which RAS/RAF/MEK/ERK signaling pathway inhibitors or ERBB - Inhibitors are.
  • Example 6 Determination of the probability of response of a malignant disease to treatment with CDK4 and CDK6 Inhibitors, PARP inhibitors, mTOR inhibitors, RAS/RAF/MEK/ERK signaling pathway inhibitors and SRC inhibitors, using DNA methylation analysis of the SYNJ2 and WWTR1 genes
  • the method according to the invention was used to determine the probability of response of malignant diseases to treatment with various CDK4 and CDK6 inhibitors, PARP inhibitors, mTOR inhibitors, RAS/RAF/MEK/ERK signaling pathway inhibitors and SRC inhibitors.
  • the predictive power of treatment response to various MEK inhibitors and BRAF inhibitors which are RAS/RAF/MEK/ERK signaling pathway inhibitors, including the five MEK inhibitors trametinib, refametinib, selumetinib, CI-1040, was tested and mirdametinib and the four BRAF inhibitors AZ 628, dabrafenib, HG-6-64-1 and PLX4720.
  • the IC50 for the inhibitory substances examined in this example was determined and the DNA methylation analysis of the genes SYNJ2 and WWTR1 was carried out as described in example 1.
  • malignant disease cells examined in this example corresponded to those of example 3.
  • DNA methylation of CpG dinucleotides of gene SYNJ2 was examined at a position (SEQ ID NO:194) which in particular reflecting the DNA methylation of the gene body (6:158054401-158064027, SEQ ID NO:351) of the SYNJ2 gene.
  • the DNA methylation of CpG dinucleotides of the gene WWTR1 was examined at two positions (SEQ ID NO:352 and SEQ ID NO:353), which in particular the DNA methylation of the gene body (3:149654894-149660454, SEQ ID NO:365 ) of the WWTR1 gene.
  • DNA methylation at the positions mentioned was measured using the HumanMethylation450 BeadChip probes listed in Tables 14-16.
  • Tables 14-16 The results of these studies are summarized in Tables 14-16.
  • the table values show that it was possible to determine the response of the malignant cells to CDK4 and CDK6 inhibitors, PARP inhibitors, mTOR inhibitors, RAS/RAF/MEK/ERK -Reliably predict signaling pathway inhibitors and SRC inhibitors. From the tabular data it can be seen that cell lines of malignant cells in which the investigated CpG dinucleotides were predominantly methylated had a significantly (p ⁇ 0.05) higher IC50 compared to malignant cells with predominantly unmethylated CpG dinucleotides, which is due to the negative t of the t-statistic can be seen. This means that the malignant cells with the predominantly methylated CpG dinucleotides were significantly less inhibited by the inhibitors investigated, i.e. they responded poorly to the treatment.
  • Example 7 Determination of the probability of response of a malignant disease to treatment with VEGFR inhibitors, mTOR inhibitors, PDGFR inhibitors, PARP inhibitors, PI3K inhibitors, FGFR inhibitors, NTRK inhibitors and BRAF inhibitors using a methylation analysis of the CLDN4 gene
  • the method according to the invention was used to determine the probability of response of malignant diseases to treatment with various PARP inhibitors, PI3K inhibitors, mTOR inhibitors, PI3K and mTOR inhibitors, VEGFR inhibitors, PDGFR inhibitors, PDGFR and VEGFR inhibitors, FGFR inhibitors , NTRK inhibitors and BRAF inhibitors.
  • the predictive power of malignancy response to treatment with different BRAF inhibitors including AZ 628, dabrafenib, HG-6-64-1, PLX4720 and SB590885, and different PARP inhibitors, including veliparib, was tested , AG-014699, talazoparib and olaparib.
  • the method of the invention was applied to predict the response of malignant diseases to treatment with various VEGFR inhibitors, PDGFR inhibitors and PDGFR and VEGFR inhibitors, including the three VEGFR inhibitors foretinib, cabozantinib and OSI-930, the six PDGFR -and-VEGFR inhibitors sorafenib, sunitinib, midostaurin, linifanib, tivozanib, axitinib and pazopanib and the two PDGFR inhibitors imatinib and masitinib.
  • VEGFR inhibitors including the three VEGFR inhibitors foretinib, cabozantinib and OSI-930, the six PDGFR -and-VEGFR inhibitors sorafenib, sunitinib, midostaurin, linifanib, tivozanib, axitinib and pazopanib and the two PDGFR inhibitor
  • the inventive method for predicting the response of malignancies to treatment with different PI3K inhibitors, PI3K and mTOR inhibitors, mTOR inhibitors, FGFR inhibitors and an NTRK inhibitor was applied, including the three PI3K inhibitors AS605240, idelalisib and PIK-93, the two PI3K and mTOR inhibitors dactolisib and omipalisib, the two mTOR inhibitors temsirolimus and AZD8055, the two FGFR inhibitors PD-173074 and masitinib, and the NTRK inhibitor lestaurtinib.
  • the IC50 for the inhibitory substances investigated in this example was determined and the DNA methylation analysis of the CLDN4 gene was carried out as described in example 1.
  • the cell lines of malignant diseases used in Example 1 were used for the investigations.
  • the DNA methylation of CpG dinucleotides of the CLDN4 gene was examined at a total of six positions (SEQ ID NO:345 to SEQ ID NO:350), which in particular show DNA methylation in the promoter and gene body (7:73826348-73836540, SEQ ID NO:354) of the CLDN4 gene.
  • the DNA methylation of the positions was measured via the HumanMethylation450 BeadChip probes listed in Tables 17-20.
  • Tables 17-19 The results of these studies are summarized in Tables 17-19.
  • the table values show that it was possible to use the inventive DNA methylation analysis of the six examined parts of the CLDN4 gene to determine the response of the malignant cells to BRAF inhibitors, PARP inhibitors, VEGFR inhibitors, PDGFR inhibitors, PDGFR and VEGFR -inhibitors, Reliably predict PI3K inhibitors, PI3K and mTOR inhibitors, mTOR inhibitors, FGFR inhibitors and an NTRK inhibitor.
  • the results show that the DNA methylation analysis of the gene CLDN4 according to the invention respectively the probability of response of malignant diseases to treatment with PARP inhibitors, PI3K inhibitors, mTOR inhibitors, PI3K and mTOR inhibitors, VEGFR inhibitors, PDGFR inhibitors, PDGFR -and-VEGFR inhibitors, FGFR inhibitors, NTRK inhibitors and BRAF inhibitors reliably predicted.
  • Example 8 Clinical study to predict the response of a malignant disease to inhibition of the PD-1 immune checkpoint signaling pathway using DNA methylation of the PPP1R18 gene
  • the invention also offers the advantageous possibility of persons with malignant diseases, of which it is known from the DNA methylation analysis according to the invention that the response to treatment with the corresponding pharmaceutical inhibitor is unlikely, with another class of drugs such.
  • the method according to the invention for determining the probability of response of a malignant disease to an immunotherapy with an immune checkpoint inhibitor was applied.
  • the patient cohort examined comprised a total of 51 patients diagnosed with metastatic or unresectable urothelial carcinoma.
  • tumor tissue samples were taken from the patients, fixed with formalin and embedded in paraffin.
  • the patients were treated with an anti-PD-L immune checkpoint blockade or an anti-PD-Ll immune checkpoint blockade with pembrolizumab, nivolumab or atezolizumab.
  • a DNA methylation analysis was carried out, for example by using a part of the PPP1R18 gene locus was amplified using quantitative real-time PCR and at the same time the DNA methylation of the CpG dinucleotides contained therein was quantified.
  • a real-time PCR was used, in which the amount of methylated copies of the PPP1R18 gene locus as well as the amount of unmethylated copies was quantified within the same reaction.
  • two probes were used, each binding to the methylated and unmethylated variant of the bisulfite-converted PPP1R18 gene locus.
  • the PPP1R18 gene locus was amplified using primers of the sequences SEQ ID NO:533 and SEQ ID NO:534. These primers amplify the sequence resulting from bisulfite conversion of the sequence SEQ ID NO:537 (6:30685813-30685924). This sequence is also bound by the HumanMethylation450 BeadChip probe cgl8335326 having SEQ ID NO:10. In the case of complete DNA methylation, this converted part in the genome has the sequence SEQ ID NO:538. In the unmethylated state, this converted part of the genome has the sequence SEQ ID NO:539.
  • the methylated sequence was detected using a probe of the sequence SEQ ID NO:536, which carried the fluorescent dye 6-FAM at 5' and the quencher BHQ-1 at 3'.
  • the unmethylated sequence was detected using a probe of the sequence SEQ ID NO:535, which carried the fluorescent dye HEX at 5' and the quencher BHQ-1 at 3'.
  • the real-time PCR was carried out in 20 ⁇ l PCR reactions in three independent measurements each, with the following reaction composition being particularly suitable: 35 mM Tris-HCl, pH 8.4, 6 mM MgCl2, 50 mM KCl, 4% glycerol, 0, 25 mM each dNTP (dTTP, dATP, dGTP, dCTP), 2 U FastStart Tag DNA polymerase (Roche Applied Science, Penzberg, Germany), 0.4 pM each primer and 0.3 pM each detection probe.
  • the qPCR was z. B. using an AB 7500 Fast Real-Time PCR System (Life Technologies Corporation, Carlsbad, CA, USA). For example, a suitable temperature profile included the following steps: 20 min at 95 °C, followed by 45 cycles of 60 s at 56 °C and 15 s at 95 °C.
  • the progression of the malignant disease or death was considered as the end point. Survival was defined as the time from the first administration of the immune checkpoint inhibitor to the time of death, progression or last contact. A Kaplan-Meier analysis with a log-rank test was performed on the survival data. SPSS version 23.0 (SPSS Inc., Chicago, IL, USA) was used for statistical analysis.
  • FIG. 7 shows the Kaplan-Meier analysis of the progression-free survival of the 51 patients with metastatic or unresectable urothelial carcinomas during the immunotherapy.
  • Patients were categorized according to the QMS.
  • the inventor was able to show for the first time that a DNA methylation analysis of the gene PPP1R18 from cells of a malignant disease enables the response of the malignant disease to an immunotherapy that inhibits the PD-1 immune checkpoint signaling pathway to be predicted with high reliability. Accordingly, it could also be shown that the presence, absence or extent of DNA methylation of PPP1R18 is a reliable biomarker for predicting a response of the malignant disease to such an immunotherapy.
  • Tables 1-5 from Example 1 show that the DNA methylation of CpG dinucleotides of the gene PPP1R18 in the part examined in the present example with SEQ ID NO:10 the response to the malignant disease with RAS/RAF/MEK/ERK- Signaling Pathway Inhibitors, CDK4 and CDK6 Inhibitors, PARP Inhibitors, PI3K Inhibitors, mTOR Inhibitors, PI3K and mTOR Inhibitors, VEGFR Inhibitors, PDGFR Inhibitors, PDGFR and VEGFR Inhibitors, SRC Inhibitors, FGFR Inhibitors and NTRK Inhibitors reliably predicted.
  • Malignant diseases the cells of which predominantly had unmethylated CpG dinucleotides in SEQ ID NO:10 and respond particularly poorly to immunotherapy in the present example, responded particularly well to treatment with RAS/RAF/MEK/ERK signaling pathway inhibitors, CDK4, in example 1 and CDK6 inhibitors, PARP inhibitors, PI3K inhibitors, mTOR inhibitors, PI3K and mTOR inhibitors, VEGFR inhibitors, PDGFR inhibitors, PDGFR and VEGFR inhibitors, SRC inhibitors, FGFR inhibitors and NTRK inhibitors.
  • Example 9 Determination of the probability of response of melanomas to treatment with RAS/RAF/MEK/ERK signaling pathway inhibitors using a methylation analysis of the PPP1R18 gene
  • the method of the invention was used to determine the likelihood of melanoma responding to treatment with various RAS/RAF/MEK/ERK signaling pathway inhibitors. For example, the predictive power of melanoma response to treatment with different BRAF inhibitors, including vemurafenib, encorafenib and dabrafenib, was tested. In addition, the method of the invention was used to predict the response of melanomas to treatment with various MEK inhibitors, including the three MEK inhibitors trametinib, binimetinib and cobimetinib.
  • the melanomas were treated, for example, in each case with a combination of a BRAF inhibitor and an MEK inhibitor.
  • patients were treated with vemurafenib and cobimetinib, or with dabrafenib and trametinib, or with encorafenib and binimetinib.
  • the patient cohort examined comprised a total of 21 patients diagnosed with metastatic melanoma. Before the start of treatment, tumor tissue samples were taken from the patients, fixed by formalin and embedded in paraffin. In the next step, a DNA methylation analysis of part of the PPP1R18 gene locus was carried out as described in example 8. Of the 21 patients, 18 responded to therapy with RAS/RAF/MEK/ERK signaling pathway inhibitors. Response to therapy was demonstrated by consistent (stable) disease in nine patients and decreasing disease (partial response) in another nine patients. Three patients failed to respond to therapy with RAS/RAF/MEK/ERK signaling pathway inhibitors, characterized by increasing melanoma extent (progressive disease).
  • Figure 8 shows a boxplot diagram of the methylation of the part of the PPP1R18 gene locus analyzed in this example in the melanomas of the patient cohort before they were treated with RAS/RAF/MEK/ERK signaling pathway inhibitors. Melanomas were grouped based on response to treatment with the RAS/RAF/MEK/ERK pathway inhibitors.
  • 21 melanomas 15 (71%) showed less than 30% methylation of the PPP1R18 gene locus, indicating a high probability of response to treatment with various RAS/RAF/MEK/ERK signaling pathway inhibitors.
  • Six of the 21 melanomas (29%) showed more than 30% methylation of the PPP1R18 gene locus and have a low probability of response.
  • Table 1 Prediction of the response of malignant diseases to treatment with RAS/RAF/MEK/ERK signaling pathway inhibitor using a DNA methylation analysis of the genes PPP1R18 and RUNX1 according to the invention.
  • the sequence regions (SEQ ID NO) were analyzed using the assigned probes of the Infinium HumanMethylation450 BeadChip (Infinium Probe).
  • the table values are the t values of the t statistic from the comparison of the IC50 of the malignant cells with a DNA ethylation of the CpG dinucleotides examined above 50% and below 50%. All differences presented are statistically significant (p ⁇ 0.05).
  • Table 2 Prediction of the response of malignant diseases to treatment with SRC inhibitors and CDK4 and CDK6 inhibitors using a DNA methylation analysis according to the invention of the genes PPP1R18 and RUNX1.
  • the sequence regions (SD NO) were analyzed using the assigned probes of the Infinium HumanMethylation450 BeadChip (Infinium Probe).
  • the table values are the t values of the t statistic from the comparison of the IC50 of the malignant cells with an NA methylation of the examined CpG dinucleotides above 50% and below 50%. All differences presented are statistically significant (p ⁇ 0.05).
  • Table 3 Prediction of the response of malignant cells to treatment with PARP inhibitors using a DNA methylation analysis of the genes PPP1R18 and RUNX1 according to the invention.
  • the sequence regions (SEQ ID NO) were analyzed using the assigned probes of the Infinium HumanMethylation450 BeadChip (Infinium Probe).
  • the tables represent the t values of the t statistic from the comparison of the IC50 of the malignant cells with a DNA methylation of the examined CpG dinucleotides above 50% and below 50%. All differences shown are statistically significant (p .05).
  • Table 4 Prediction of the response of malignant cells to treatment with VEGFR inhibitors, PDGFR inhibitors and DGFR and VEGFR inhibitors using a DNA methylation analysis of the genes PPP1R18 and RUNX1 according to the invention.
  • the frequency ranges (SEQ ID NO) were analyzed using the assigned probes of the Infinium HumanMethylation450 BeadChip (Infinium Probe).
  • the table values are the t values of the t statistic from the comparison of the IC50 of the malignant cells with a DNA methylation of the investigated CpG dinucleotides above 50% and below 50%. All differences shown are statistically significant (p ⁇ 0.05).
  • Table 5 Prediction of the response of malignant cells to treatment with PI3K inhibitors, PI3K and mT0R inhibitors, mTOR inhibitors, FGFR inhibitors and NTRK inhibitors using an inventive DNA ethylation analysis of the genes PPP1R18 and RUNX1.
  • the sequence regions (SEQ ID NO) were analyzed using the assigned probes of the Infinium HumanMethylation450 BeadChip (Infinium Probe).
  • the table values are the t values of the t statistic from the comparison of the IC50 of the malignant cells with a DNA methylation of the investigated CpG dinucleotides above 50% and below 50%. All differences presented are statistically significant (p ⁇ 0.05).
  • Table 6 Prediction of the response of malignant cells to treatment with ERBB inhibitors and RAS/RAF/MEK/ERK signaling pathway inhibitors using DNA methylation analysis of the genes PLEC, LAMB3, TINAGL1, C19orf33, L18, S100A2, TOBI, TOR4A, FBRSL1 according to the invention , S100A10, LRRFIP2, SPIDR, ASB1, LAMA3, ENSGO0000229672, MYH16, GRID1 and CHD2.
  • the frequency ranges (SEQ ID NO) were analyzed using the assigned probes of the Infinium HumanMethylation450 BeadChip (Infinium Probe).
  • the table values are the t values of the t statistic from the comparison of the IC50 of the malignant cells with a DNA methylation of the investigated CpG dinucleotides above 50% and below 50%. All differences shown are statistically significant (p ⁇ 0.05).
  • Table 7 Prediction of the response of malignant cells to treatment with ERBB inhibitors and RAS/RAF/MEK/ERK signaling pathway inhibitors using DNA methylation analysis according to the invention of TAFAZZIN, GNG7, ANXA11, ANXA2, MAFG,KP3, ABTB2, ENSGO0000287625, ARL14, BCAR3, BIK, CCND3, CMIP, ELK3, HRH1, SAP30BP, NOS1AP, RALB, TGFBI, ENSG0000023572AB39, CIRBP, DIAPH1, FGD6, LMO7, MICAL2, STMN1, MNT, PC, PLEKHG5, PRORP, RDX, SERP1, SLC03A1, SUFU, TANGO6, EGFR, PITSBP2, TRERF1, GPT2, HEG1, ENSGO0000231740, PPM1H, PRDM10, RAD18, ENSGO0000231185, SYNPO, TNFRSF10B, T0M1
  • SD NO The sequence regions (SD NO) were analyzed using the assigned probes of the Infinium HumanMethylation450 BeadChip (Infinium Probe).
  • the table values are the t-values of the t-statistic from the comparison of the IC50 of the malignant cells with an NA methylation of the examined CpG dinucleotides above 50% and below 50%. All differences presented are statistically significant (p ⁇ 0.05).
  • Table 8 Prediction of the response of malignant cells to treatment with SRC inhibitors and CDK4 and CDK6 inhibitors using DNA methylation analysis according to the invention of TAFAZZIN, GNG7, ANXA11, ANXA2, MAFG, PKP3, ABI NSG00000287625, ARL14, BCAR3, BIK , CCND3, CMIP, ELK3, HRH1, SAP30BP, NOS1AP, RALB, TGFBI, ENSGO0000235726, CAB39, CIF IAPH1, FGD6, LMO7, MICAL2, STMN1, MNT, PC, PLEKHG5, PRORP, RDX, SERP1, SLC03A1, SUFU, TANGO6, EGFR, PINX1, SSBP2, RERF1, GPT2, HEG1, ENSGO0000231740, PPM1H, PRDM10, RAD18, ENSGO0000231185, SYNPO, TNFRSF10B, T0M1L2, TP
  • SD NO The sequence regions (SD NO) were analyzed using the assigned probes of the Infinium HumanMethylation450 BeadChip (Infinium Probe).
  • the table values are the t values of the t statistic from the comparison of the IC50 of the malignant cells with an NA methylation of the examined CpG dinucleotides above 50% and below 50%. All differences presented are statistically significant (p ⁇ 0.05).
  • Table 9 Prediction of the response of malignant cells to treatment with RAS/RAF/MEK/ERK signaling pathway inhibitors by DNA methylation analysis of ZBTB38, MAFK, NEDD4L, DIP2C, CAPN2, IER3, TM4SF19, RPTOR, SlOOAlt CL9L, KCNMA1, GALE according to the invention , PCID2, SH3TC1, SSH1, AVPI1, MAP3K14, MIR23AHG, EPHA2, ENSG00000233785, ACVR1, ENSG00000282849, OX7A2L, ENSG00000234476, LRRC2, PLXNB1, PPTC7, RB1CC1, SLC2A1, SLC39A11, TBC1D14, TIMP2, ENSG00000276527, CFAP20DC, HLDA1, TESC, LIMA1 , ASPSCR1, CAMKID, CAMK2D, CFAP57, CHCHD6, DRAP1, EN
  • Frequency ranges were analyzed using the assigned probes of the Infinium HumanMethylation450 BeadChip (Infinium Probe).
  • the table values are the t values of the t statistic from the comparison of the IC50 of the malignant cells with a DNA methylation of the investigated CpG dinucleotides above 50% and below 50%. All differences shown are statistically significant (p ⁇ 0.05).
  • Table 10 Prediction of the response of malignant cells to treatment with ERBB inhibitors and CDK4 and CDK6 signaling pathway inhibitors using DNA methylation analysis according to the invention of ZBTB38, MAFK, NEDD4L, DIP2C, CAPN2, ER3, TM4SF19, RPTOR, S100A16, BCL9L, KCNMA1, GALE, PCID2, SH3TC1, SSH1, AVPI1, MAP3K14, MIR23AHG, EPHA2, NSG00000233785, ACVR1, ENSG00000282849, COX7A2L, ENSG00000234476, LRRC2, PLXNB1, PPTC7, RB1CC1, SLC2A1, SLC39A11, BC1D14, TIMP2, ENSGO0000276527, CFAP20DC, PHLDA1, TESC, LIMA1, ASPSCR1, CAMKID, CAMK2D, CFAP57, CHCHD6, DRAP1, ENC1, R
  • sequence regions were analyzed using the assigned probes of the infinium HumanMethylation450 BeadChip (Infinium Probe).
  • the table values are the t values of the t statistic in a comparison of the IC50 of the malignant cells with a DNA methylation of the examined CpG dinucleotides above 50% and below 50%. All differences presented are statistically significant (p ⁇ 0.05).
  • Table 11 Prediction of the response of malignant cells to treatment with SRC inhibitors using a DNA methylation analysis according to the invention of ZBTB38, MAFK, NEDD4L, DIP2C, CAPN2, IER3, TM4SF19, RPTOR, S100A16, BCLS CNMA1, GALE, PCID2, SH3TC1, SSH1 , AVPI1, MAP3K14, MIR23AHG, EPHA2, ENSG00000233785, ACVR1, ENSG00000282849, COX7A2L, NSG00000234476, LRRC2, PLXNB1, PPTC7, RB1CC1, SLC2A1, SLC39A11, TBC1D14, TIMP2, ENSG00000276527, CFAP20DC, PHLDA1, TE IMA1, ASPSCR1, CAMKID, CAMK2D, CFAP57, CHCHD6, DRAP1, ENCI, ARHGAP32, ABL2, ENSG00000
  • sequence regions were analyzed using the assigned probes of the Infinium HumanMethylation450 BeadChip (Infinium Probe).
  • the table values are the t values of the t statistic from the comparison of the IC50 of the malignant cells with an NA methylation of the examined CpG dinucleotides above 50% and below 50%. All differences presented are statistically significant (p ⁇ 0.05).
  • Table 12 Prediction of the response of malignant cells to treatment with RAS/RAF/MEK/ERK signaling pathway inhibitors using DNA methylation analysis according to the invention of VGLL4, CDCP1, RASA3, PTTG1IP, ASAP2, ENSG00000242282, Locu hr.3q29, TMCO4, UBXN11, MAP3K5 , ASTN2 and ENSGO0000258082.
  • the sequence regions (SEQ ID NO) were analyzed using the assigned probes of the Infinium HumanMethylation450 BeadChip (Infinium Probe).
  • the table values are the first of the t statistic from the comparison of the IC50 of the malignant cells with a DNA methylation of the investigated CpG inucleotides above 50% and below 50%. All differences presented are statistically significant (p ⁇ 0.05).
  • Table 13 Prediction of the response of malignant cells to treatment with SRC inhibitors and CDK4 and CDK6 signaling pathway inhibitors using a DNA methylation analysis according to the invention of VGLL4, CDCP1, RASA3, PTTG1IP, ⁇ S ⁇ P2, NSG00000242282, Locus Chr.3q29, TMC04, UBXN11 , MAP3K5, ASTN2 and ENSG00000258082.
  • the sequence regions (SEQ ID NO) were analyzed using the assigned probes of the Infinium HumanMethylation450 BeadChip (Infinium Probe).
  • the table values are the t-values of the t-statistic from the comparison of the IC50 of the malignant cells with a DNA methylation of the examined CpG dinucleotides above 50% and below 50%. All differences shown are statistically significant 0.05).
  • Table 14 Prediction of the response of malignant cells to treatment with RAS/RAF/MEK/ERK signaling pathway inhibitors using DNA methylation analysis of the genes SYNJ2 and WWTR1 according to the invention.
  • the sequence regions (SEQ ID NO) were analyzed using the assigned probes of the Infinium HumanMethylation450 BeadChip (Infinium Probe).
  • the table values are the t-values of the t-statistic from the comparison of the IC50 of the malignant cells with a DNA methylation of the examined CpG dinucleotides above 50% and below 50%. All differences shown are statistically significant 0.05).
  • Table 15 Prediction of the response of malignant cells to treatment with PARP inhibitors, CDK4 and CDK6 inhibitors and mTOR inhibitors using a DNA methylation analysis of the genes SYNJ2 and WWTR1 according to the invention.
  • the frequency ranges (SEQ ID NO) were analyzed using the assigned probes of the Infinium HumanMethylation450 BeadChip (Infinium Probe).
  • the table values are the t values of the t statistic from the comparison of the IC50 of the malignant cells with a DNA methylation of the investigated CpG dinucleotides above 50% and below 50%. All differences shown are statistically significant (p ⁇ 0.05).
  • Table 16 Prediction of the response of malignant cells to treatment with SRC inhibitors using a DNA methylation analysis of the genes SYNJ2 and WWTR1 according to the invention.
  • the sequence regions (SEQ ID NO) were analyzed using the respectively assigned probes of the Infinium HumanMethylation450 BeadChip (Infinium Probe).
  • the table values are t values of the t statistic from the comparison of the IC50 of the malignant cells with a DNA methylation of the examined pG dinucleotides above 50% and below 50%. All differences presented are statistically significant (p ⁇ 0.05).
  • Table 17 Prediction of the response of malignant cells to treatment with PARP inhibitors and BRAF inhibitors using a DNA methylation analysis of the gene CLDN4 according to the invention.
  • the sequence regions (SEQ ID NO) were analyzed using the assigned probes of the Infinium HumanMethylation450 BeadChip (Infinium Probe).
  • the tables represent the t values of the t statistic from the comparison of the IC50 of the malignant cells with a DNA methylation of the examined CpG dinucleotides above 50% and below 50%. All differences shown are statistically significant (p .05).
  • Table 18 Prediction of the response of malignant cells to treatment with VEGFR inhibitors, PDGFR inhibitors and DGFR and VEGFR inhibitors using a DNA methylation analysis of the CLDN4 gene according to the invention.
  • the sequence regions (SEQ ID NO) were analyzed using the assigned probes of the Infinium HumanMethylation450 BeadChip (Infinium Probe).
  • the table values are the t values of the t statistic from the comparison of the IC50 of the malignant cells with an NA methylation of the examined CpG dinucleotides above 50% and below 50%. All differences presented are statistically significant (p ⁇ 0.05).
  • Table 19 Prediction of the response of malignant cells to treatment with PI3K inhibitors, PI3K and mT0R inhibitors, mTOR inhibitors, FGFR inhibitors and NTRK inhibitors by methylation analysis of the CLDN4 gene. For example, three PI3K inhibitors, two PI3K and mTOR inhibitors, two mTOR inhibitors, two FGFF inhibitors and one NTRK inhibitor were tested. The listed sequence regions analyzed using the listed Infinium HumanMethylation450 BeadChip probe were examined. Shown are the t of the t-statistic from the comparison 050 of the cell lines with a DNA methylation of the examined CpG dinucleotides of more than 50% and less than 50%. All differences presented are statistically significant (p ⁇ 0.05).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Hospice & Palliative Care (AREA)
  • Biophysics (AREA)
  • Oncology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Die Erfindung betrifft molekulardiagnostische Verfahren auf dem Gebiet der Onkologie, die anhand einer DNA-Methylierungsanalyse spezifischer Gene eine Vorhersage des Ansprechens von Personen mit einer malignen Erkrankung auf eine Therapie mit spezifischen pharmazeutischen Hemmwirkstoffen ermöglichen. Ebenso betrifft die Erfindung Anwendungen von pharmazeutischen Hemmwirkstoffen in medizinischen Verfahren zur Behandlung maligner Erkrankung von Personen, von denen anhand der DNA-Methylierung spezifischer Gene bekannt ist, dass sie wahrscheinlich auf eine Therapie mit diesen pharmazeutischen Hemmwirkstoffen ansprechen. Schließlich betrifft die Erfindung Kits zur Durchführung der angegebenen Verfahren und für die angegebenen Anwendungen.

Description

Titel
VERFAHREN ZUR BESTIMMUNG DER ANSPRECHWAHRSCHEINLICHKEIT EINER MALIGNEN ERKRANKUNG AUF EINE BEHANDLUNG MIT EINEM PHARMAZEUTISCHEN HEMMWIRKSTOFF
Verweis auf frühere Anmeldungen
Diese Anmeldung beansprucht die Priorität der deutschen Patentanmeldung Nr. 102021 126 650.5, eingereicht am 14. Oktober 2021, deren Offenbarungsgehalt hiermit durch Verweis vollumfänglich einbezogen wird.
Sequenzprotokoll
Diese Anmeldung beinhaltet ein elektronisches Sequenzprotokoll im xml-Format nach WIPO ST.26 Standard mit 539 Sequenzen als Teil der Beschreibung.
Gebiet der Erfindung
Die Erfindung betrifft molekulardiagnostische in vitro Verfahren auf dem Gebiet der Onkologie, die eine Vorhersage des Ansprechens von Personen mit einer malignen Erkrankung auf eine Therapie mit pharmazeutischen Hemmwirkstoffen ermöglichen.
Die Erfindung betrifft weiterhin medizinische Anwendungen von pharmazeutischen Hemmwirkstoffen in medizinischen Verfahren zur Behandlung maligner Erkrankung von Personen, deren Ansprechen auf eine Therapie mit diesen pharmazeutischen Hemmwirkstoffen bekannt ist. Schließlich betrifft die Erfindung Kits zur Durchführung der angegebenen Verfahren und für die angegebenen Anwendungen.
Hintergrund der Erfindung
Die richtige Wahl der Behandlung einer erkrankten Person ist ein zentrales Anliegen in der modernen Medizin. Insbesondere sind verlässliche Vorhersagen hinsichtlich des Ansprechens einer Patientin oder eines Patienten auf eine medikamentöse Therapie mit einem bestimmten pharmazeutischen Wirkstoff von hohem klinischem und wirtschaftlichem Nutzen, um durch individualisierte Therapieplanung einen schnellen Behandlungserfolg zu erzielen und kostenintensive Fehltherapien zu vermeiden.
Einen therapeutischen Durchbruch in der medikamentösen Tumortherapie stellen seit einigen Jahren zielgerichtete pharmazeutische Hemmwirkstoffe dar, welche auch bei fortgeschrittenen Tumorerkrankungen herausragende Ergebnisse zeigen. Allerdings spricht in der Regel nur ein relativ kleiner Anteil der Patienten auf diese Therapien an. Ein prädiktiver Biomarker, welcher das Ansprechen auf diese Therapien Vorhersagen könnte, wäre demnach von besonderem klinischem Wert.
Gegenwärtig sind einige molekulardiagnostische Verfahren in der klinischen Anwendung, welche anhand einer DNA-Probe aus Tumorgewebe oder auch gesundem Gewebe das Vorliegen bestimmter genomischer Veränderungen wie beispielsweise Mutationen, Amplifikationen, Translokationen oder Genfusionen erfassen, um auf diese Weise auf ein mögliches Therapieansprechen zu schließen. Allerdings sind diese Tests nur in Einzelfällen spezifisch . Beispielsweise ist aus US 2016/0265067 A1 ein Verfahren zur Identifizierung von Personen, die nicht auf einen HER2-Inhibitor ansprechen, anhand einer oder mehrerer Mutationen im Exon 9 der Phosphoinositol-3-Kinase (PIK3CA) bekannt.
US 2011/0275084 A1 offenbart ein Verfahren zur Identifizierung von Tumorzellen, die resistent gegenüber einem Inhibitor des Fibroblasten-Wachstumsfaktor-Rezeptors 2 (FGFR2) sind, indem spezifische Mutationen im FGFR2 Gen nachgewiesen werden.
US 10,980,804 B2 und US 2020/0138809 A1 offenbaren Verfahren zur Behandlung von Patienten mit Cholangiokarzinom mit einem Kinase- bzw. FGFR-Inhibitor, wobei von den Patienten bekannt ist, dass sie bestimmte Mutationen des FGFR Gens aufweisen.
US 10,787,713 B2 offenbart ein Verfahren zur Behandlung von Krebspatienten mit einem pllOa-Inhibitor, wobei von den Patienten bekannt ist, dass sie bestimmte Mutationen im PIK3CA Gen aufweisen.
US 2005/0272083 A1 offenbart eine Assoziation zwischen Mutationen des EGFR Gens und dem Ansprechen von Tumoren auf eine Behandlung mit Kinaseinhibitoren.
US 2013/0296326 A1 offenbart Mutationen des FGFR2 Gens, die mit einer Resistenz gegen FGFR2-Inhibitoren azzoziiert sind.
Aus US 2009/0258361 A1 ist ein Verfahren zur Bestimmung der Ansprechwahrscheinlichkeit eines Krebspatienten auf eine Behandlung mit EGFR-Inhibitoren anhand des Mutationsstatus des PIK3CA Gens und des Expressionsstatus des PTEN Gens bekannt. US 2008/0234264 A1 offenbart ein Verfahren zur Bestimmung der Ansprechwahrscheinlichkeit eines Krebspatienten auf eine Behandlung mit EGFR-Inhibitoren anhand des Mutationsstatus des ERBB1 Gens.
Nach wie vor wird die Therapie mit zielgerichteten pharmazeutischen Hemmwirkstoffen von Patientinnen und Patienten mit malignen Erkrankungen in vielen Fällen nicht optimal gewählt, da sich das Ansprechen der Erkrankung auf die Therapie im Einzelfall oft nur ungenau abschätzen lässt und dem ärztlichen Personal daher keine ausreichenden Anhaltspunkte für eine individuelle Auswahl oder Anpassung einer Therapie zur Verfügung stehen.
Es ist daher eine Aufgabe der vorliegenden Erfindung, ein robustes und wirtschaftliches Verfahren auf der Grundlage von objektiv messbaren Prädiktoren bereitzustellen, das eine zuverlässige Vorhersage des Ansprechens von Personen mit unterschiedlichen malignen Erkrankungen auf eine Therapie mit zielgerichteten pharmazeutischen Hemmwirkstoffen ermöglicht.
Es ist eine weitere Aufgabe der vorliegenden Erfindung, eine verbesserte medizinische Anwendung von zielgerichteten pharmazeutischen Hemmwirkstoffen in Verfahren zur Behandlung von Personen mit unterschiedlichen malignen Erkrankungen bereitzustellen.
Diese Aufgaben werden durch die Gegenstände der unabhängigen Ansprüche gelöst. Bevorzugte und vorteilhafte Ausführungsformen der Erfindung ergeben sich aus den Gegenständen der abhängigen Ansprüche und der nachfolgenden Beschreibung. Definitionen und allgemeine Erläuterungen
In dieser Beschreibung werden verschiedene Dokumente zitiert, um einen allgemeinen technischen Hintergrund in Bezug auf die vorliegende Erfindung zu vermitteln. Auf die Offenbarung und Lehre dieser Dokumente wird in Ergänzung nachfolgender Beschreibung vollinhaltlich Bezug genommen, um Wiederholungen zu vermeiden.
Die nachfolgenden Definitionen und allgemeinen Erläuterungen sollen den fachkundigen Leser beim Verständnis, in der Auslegung und bei der Ausübung der vorliegenden Erfindung anleiten und unterstützen. Vorbehaltlich anderer Angaben sollen alle technischen und wissenschaftlichen Begriffe diejenige Bedeutung haben, welche dem üblichen Begriffsverständnis eines Durchschnittsfachmanns auf dem Gebiet der vorliegenden Erfindung entspricht.
Die verschiedenen Aspekte und Varianten der Erfindung involvieren Techniken und Methoden aus der molekularbiologischen Routinepraxis. Insbesondere gehört die DNA-Methylierungsanalyse zur Bestimmung der Methylierung eines CpG-Dinukleotids zu den Fachkenntnissen eines Molekularbiologen oder -genetikers. Zweckdienliche Laborhandbücher für diese Techniken und Methoden stehen dem Fachmann ohne Weiteres zur Verfügung, beispielsweise „Molekular Cloning, A Laboratory Manual" von M. R. Green und J. Sambrook, 4th Edition, 2012, Gold Spring Harbor Laboratory Press.
So, wie sie hier verwendet werden, schließen unbestimmte Artikel wie „ein" oder „eine" die Möglichkeit mit ein, dass auch zwei oder mehrere dieser Merkmale vorhanden sein können. Eine „Person" kann sowohl eine Patientin als auch ein Patient sein.
So, wie der Begriff hier verwendet wird, bezeichnet ein "Gen" einen Abschnitt der DNA, der regulatorische, transkribierte und/oder funktionelle Sequenzbereiche umfasst und somit die Grundinformation für die Produktion biologisch aktiver RNA enthält. Im Sinne der vorliegenden Erfindung umfasst ein Gen insbesondere auch solche Elemente, die eine regulatorische Funktion bei der Transkription des Gens erfüllen, wie z. B. Promotor, Transkriptionsfaktor-Bindungsstellen, CpG-Inseln, offenes Chromatin, Enhancer und Silencer sowie CTCF- Bindungsstellen . Im weiteren Sinne der Erfindung wird der Begriff „Gen" auch für einen begrenzten Abschnitt der DNA verwendet, für den bisher noch keine Funktion bekannt ist. Beispielsweise beschreibt „Locus Chr.3p23" einen Sequenzabschnitt, der sich auf Chromosom 3 im Bereich der zytogenetischen Bande p23 befindet und für den der flankierende Bereich eines Promotors anhand bioinformatischer Ansätze vorhergesagt ist.
Der „Genkörper" bezeichnet hier denjenigen Abschnitt der DNA, welcher die transkribierten Sequenzbereiche des jeweiligen Gens umfasst.
Ein „Promotor" ist ein Abschnitt der DNA, der bestimmten DNAbindenden Proteinen bindet, welche den Start der Transkription des Gens durch die RNA-Polymerase vermitteln und als Transkriptionsfaktoren bezeichnet werden. Ein Promotor kann eine zentrale und eine flankierende Region umfassen. Ein Promotor kann auch regulierend auf mehr als ein Gen wirken. Ein Gen kann auch mehrere Promotoren besitzen, welche beispielsweise die Transkription verschiedener Isoformen des jeweiligen Gens regulieren und auch als „alternative Promotoren" bezeichnet werden.
Isoformen eines Gens sind biologisch aktive RNAs, die vom gleichen Genlocus abstammen, sich aber in ihren Transkriptionsstartpunkten unterscheiden oder durch alternatives Spleißen generiert werden.
Eine geeignete Nomenklatur zur Bezeichnung von Genen und ihren Nukleotiden basiert auf der Empfehlung des Human Genome Organization Gene Nomenclature Committee (HGNC) vom 10. April 2021. Ein Genstamm wird beispielsweise mit kursiven lateinischen Großbuchstaben bezeichnet (z.B. PPPIRIS).
Eine weitere Möglichkeit für die eindeutige Bezeichnung von Genen ist die Anwendung von stabilen Identifikatoren, mit denen die Datenbank Ensembl die Gene in ihrer Datenbank kennzeichnet. Ein Gen in der Ensembl Datenbank mit einem eindeutigen Identifikator („ENSG ID") umfasst alle Transkriptvarianten eines Gens und kann anhand der Ensembl Datenbank (https://www.ensembl.org) eindeutig identifiziert werden. Ensembl Identifikatoren werden hier beispielsweise für Gene verwendet, die nicht für eine Protein-codierende RNA codieren, beispielsweise eine lange nicht-codierende RNA oder eine lange intergenische nicht-Protein-codierende RNA. Beispielsweise codiert das Gen ENSG00000242759 für die lange intergenische nicht-Protein-codierende RNA 882.
Als „Prädiktion" wird hier eine Vorhersage des Ansprechverhaltens einer malignen Erkrankung auf eine Therapie mit einem pharmazeutischen Hemmwirkstoff verstanden. Das Ansprechen auf eine Therapie mit einem pharmazeutischen Hemmwirkstoff kann dadurch gekennzeichnet sein, dass das Ausmaß der malignen Erkrankung bei Anwendung des pharmazeutischen Hemmwirkstoffs abnehmend, gleichbleibend, oder verlangsamt zunehmend ist. Das Ausbleiben des Ansprechens kann dadurch gekennzeichnet sein, dass das Ausmaß der malignen Erkrankung zunehmend oder beschleunigt zunehmend ist. Als Vergleich kann jeweils das Ausmaß der malignen Erkrankung vor Anwendung der Therapie dienen oder eine Vergleichsperson, welche die Therapie mit dem pharmazeutischen Hemmwirkstoff nicht erhält. Das Ausmaß der Erkrankung kann durch die Anzahl der malignen Zellen beziehungsweise die Größe des malignen Tumors charakterisiert sein. Insbesondere kann ein Ansprechen auf eine Therapie mit dem pharmazeutischen Hemmwirkstoff durch eine Verzögerung des Eintritts des Tods, des Auftretens eines Rezidivs, des Auftretens von Lymphknotenmetastasen, des Auftretens von Fernmetastasen, der Progression der malignen Erkrankung, und/oder des Anstiegs eines sonstigen Parameters, welcher spezifisch für die maligne Erkrankung ist, gekennzeichnet sein. Insbesondere bezeichnet „Prädiktion" deduktive Schritte in Zusammenhang mit einem vorausgehenden in vitro Verfahren, sodass kein erfindungswesentlicher technischer Schritt am menschlichen oder tierischen Körper stattfindet.
Wenn in der folgenden Beschreibung auf bestimmte DNA-Sequenzen (SEQ ID NOs) Bezug genommen wird, umfasst dies immer Sequenzvarianten mit mindestens 90%, mindestens 95%, mindestens 96%, mindestens 97%, mindestens 98% oder mindestens 99% Sequenzübereinstimmung, auch als Sequenzidentität bezeichnet, mit der genannten DNA-Sequenz. Geeignete Algorithmen zur Bestimmung der Sequenzidentität von DNA-Sequenzen sind dem Fachmann bekannt.
Ein „CpG-Dinukleotid" ist ein DNA-Motiv, das in allgemeiner Leserichtung von 5' nach 3' die Nukleosidsequenz Cytidin- Phosphat-Guanosin aufweist. Guanosin besteht aus der Nukleobase Guanin und dem Zucker ß-D-Ribose. Cytidin besteht aus der Nukleobase Cytosin und dem Zucker ß-D-Ribose.
„DNA-Methylierung" bezeichnet die biochemische oder chemische Kopplung von Methylgruppen an bestimmte Nukleotide der DNA. Im Kontext dieser Erfindung bezieht sich DNA-Methylierung auf die Anwesenheit einer Methylgruppe am fünften Kohlenstoffatom eines Cytosins (5-Methylcytosin), welches sich innerhalb eines CpG- Dinukleotidkontextes befindet, nachfolgend auch kurz als „Methylierung" bezeichnet.
So, wie der Begriff hier verwendet wird, beinhaltet eine „DNA- Methylierungsanalyse" die Bestimmung des Methylierungszustands mindestens eines CpG-Dinukleotids oder mehrerer CpG-Dinukleotide aus einem bestimmten Sequenzkontext, also z. B. in einem bestimmten Teil eines Gens. In verschiedenen Varianten der Erfindung bedeutet „DNA-Methylierungsanalyse" die Bestimmung, ob das Cytosin in dem CpG-Dinukleotid bzw. in den CpG-Dinukleotiden eine Methylierung aufweist, d. h. „methyliert" ist, oder keine Methylierung aufweist, d. h. „unmethyliert" oder „nicht methyliert" ist. Die DNA-Methylierungsanalyse kann eine einzelne Kopie des CpG-Dinukleotids bzw. mehrerer verschiedener CpG- Dinukleotide umfassen. Die DNA-Methylierungsanalyse kann auch mehrere Kopien des CpG-Dinukleotids bzw. mehrerer CpG- Dinukleotide umfassen, beispielsweise wenn die DNA einer Mehrzahl von Zellen einer malignen Erkrankung vorhanden ist. In diesem Fall kann die DNA-Methylierungsanalyse einen Methylierungslevel des CpG-Dinukleotids oder der CpG- Dinukleotide liefern, d. h. einen Durchschnittswert, der den prozentualen Anteil von methylierten Kopien des CpG-Dinukleotids bzw. der CpG-Dinukleotide bezogen auf die Gesamtkopienzahl des CpG-Dinukleotids bzw. der CpG-Dinukleotide ausdrückt, wobei die Gesamtkopienzahl dementprechend der Gesamtzahl der untersuchten Zellen der malignen Erkrankung entsprechen kann.
Eine geeignete Primärsequenz des menschlichen Genoms, die verwendet werden kann, um geeignete und bevorzugte Bereiche und Sequenzen von Genen für die DNA-Methylierungsanalyse der vorliegenden Erfindung zu bestimmen, ist beispielsweise die menschliche Genomversion des Genome Reference Consortium Human Build 38 (GRCh38) Patch Release 13 (GRCh38.pl3) vom 10. April 2021. Im Folgenden wird auf Regionen des Genoms gemäß der Schreibweise „Chromosomennummer:Position der ersten Base der Region-Position der letzten Base der Region", z. B. „6:30675116- 30688275" für die Region von Base 30675116 bis Base 30688275 von Chromosom 6.
Als „niedermolekulare Verbindung" (englisch „small molecule") wird hier eine Klasse von Wirkstoffen mit niedriger Molekülmasse bezeichnet. In bestimmten Ausführungsformen wird der Begriff „niedermolekulare Verbindung" zur Abgrenzung von Biologika verwendet. Insbesondere kann es sich bei einer niedermolekularen Verbindung um einen Wirkstoff handeln, dessen Molekülmasse etwa 1200 g/mol, insbesondere 900 g/mol nicht übersteigt.
Als „monoklonaler Antikörper" wird hier eine Klasse von immunologisch aktiven Proteinen bezeichnet, die auf einen B- Lymphozyten zurückgehen und sich gegen ein einzelnes Epitop richten. So, wie der Begriff hier verwendet wird, beinhaltet ein monoklonaler Antikörper auch Hybrid-Antikörper. Ein Hybrid- Antikörper ist ein Immunkonjungat, welches aus den Bestandteilen von zwei unterschiedlichen monoklonalen Antikörpern aufgebaut ist und sich spezifisch gegen zwei verschiedene Epitope richtet. So, wie der Begriff hier verwendet wird, beinhaltet ein monoklonaler Antikörper auch Einzeldomänenantikörper, auch Nanobodies oder Nanoantikörper genannt. Einzeldomänenantikörper sind Antikörperfragmente, die aus einer einzelnen, monomeren variablen Domäne eines Antikörpers aufgebaut sind. Beispielsweise können Einzeldomänenantikörper aus den monomeren variablen Domänen von Schwere-Ketten-Antikörpern bestehen. Schwere-Ketten-Antikörpern sind Antikörper, die ausschließlich aus schweren Ketten bestehen und beispielsweise innerhalb der Klasse der Knorpelfische und der Familie der Kamele natürlich vorkommen .
Sofern im Folgenden ein spezifischer monoklonaler Antikörper als pharmazeutischer Hemmwirkstoff namentlich benannt wird, werden dadurch auch Nachahmerpräparate, insbesondere biosimilare Antikörper, des namentlich benannten monoklonalen Antikörpers als pharmazeutische Hemmwirkstoffe ausdrücklich mit eingeschlossen. Der namentlich bezeichnete monoklonale Antikörper steht als bereits zugelassener therapeutischer monoklonaler Antikörper, auch als „Originalwirkstoff" oder „Referenzprodukt" bezeichnet", insoweit stellvertretend für Nachahmerpräparate bzw. biosimilare Antikörper, die eine äquivalente Spezifität und Wirkung (auch als „Bioäquivalenz" oder klinische Äquivalenz" bezeichnet) zum Originalwirkstoff aufweisen .
So, wie der Begriff hier verwendet wird, bezeichnet „maligne Erkrankung" oder auch „Malignom" solche Erkrankungen, die durch einen Krankheitsverlauf gekennzeichnet sind, der fortschreitend destruktiv ist und auch zum Tod des Patienten führen kann. Maligne Erkrankungen umfassen die bösartige Bildung von neuem Gewebe, wie Neoplasmen oder Tumoren, wobei die Bösartigkeit durch unkontrolliertes, raumforderndes, verdrängendes, infiltratives und/oder invasives Wachstum gekennzeichnet sein kann. Bösartige Tumoren sind in der Regel in der Lage, Sekundärtumore (Metastasen) zu bilden. Nicht beschränkende Beispiele für bösartige Tumoren sind Karzinome, Sarkome, Melanome, Gliome, Blastome, Seminome und Teratome. Karzinome umfassen z. B. Adenokarzinome und Plattenepithelkarzinome. Maligne Erkrankungen umfassen auch hämatologische maligne Erkrankungen, d. h. maligne Erkrankungen des Blutsystems oder des hämatopoetischen Systems, wie Leukämien, Lymphome, myeloproliferative Erkrankungen und myelodysplastische Syndrome. Leukämien umfassen eine Gruppe bösartiger Erkrankungen, bei denen sich unreife hämatopoetische Zellen bösartig verändert haben, sich übermäßig vermehren und zu einer Anhäufung von Zellen im peripheren Blut führen. Lymphome umfassen Erkrankungen, bei denen Zellen des Lymphsystems bösartig entartet sind. Myeloproliferative Erkrankungen umfassen eine Gruppe von Erkrankungen, bei denen sich eine oder mehrere hämatopoetische Zelllinien übermäßig vermehren.
Myelodysplastische Syndrome umfassen eine klonale Expansion von Vorläuferzellen aller hämatopoetischen Zelllinien, die auf einer chronischen Differenzierungsstörung der hämatopoetischen Stammzellen beruht.
Die Bezeichnung „pharmazeutischer Hemmwirkstoff" wird hier als Sammelbegriff für Wirkstoffe verwendet, welche in der Lage sind, die Aktivität eines Proteins oder eines Proteinkomplexes zu reduzieren oder zu hemmen, auch als „inhibieren" bezeichnet, und dadurch die Proliferation maligner Zellen zu stoppen, zu reduzieren und/oder das Absterben maligner Zellen zu fördern. Der pharmazeutische Hemmwirkstoff kann insbesondere in Form einer niedermolekularen Verbindung oder eines Biologikums wie z. B. eines, vorzugsweise monoklonalen, Antikörpers vorliegen. Geeignete und bevorzugte pharmazeutische Hemmwirkstoffe werden gemäß internationalem Bezeichnungsstandard für chemische Stoffe im Folgenden auch anhand ihrer CAS-Nummer (auch GAS- Registrierungsnummer bzw. CAS-Registernummer, engl. CAS Registry Number, CAS = Chemical Abstracts Service) eindeutig bezeichnet. Bei dem inhibierten Protein bzw. Proteinkomplex handelt es sich vorzugsweise um eine Kinase, beispielsweise eine Rezeptorkinase, eine Nicht-Rezeptorkinase, eine Tyrosinkinase und eine Serin/Threonin-Kinase . Bei dem inhibierten Protein bzw. Proteinkomplex kann es sich auch um eine GTPase, einen Transkriptionsfaktor oder eine Polymerase handeln. In bestimmten Ausführungsformen kann der pharmazeutische Hemmwirkstoff eine oder mehrere Isoformen eines Proteins oder Familienmitglieder einer Proteinfamilie inhibieren. In einigen Ausführungsformen kann der pharmazeutische Hemmwirkstoff die wildtypische und/oder mutierte Variante eines Proteins inhibieren, wobei die Mutation z. B. eine Punktmutation, eine Rastermutationen, eine Insertion, eine Amplifikation, eine Deletion oder eine Fusion sein kann.
„Biomarker" sind charakteristische Indikatoren oder/und biologische Merkmale, die objektiv gemessen werden können und Rückschluss über den Status eines normalen biologischen oder eines krankhaften Prozesses in einem Organismus, beziehungsweise die Antwort eines normalen oder krankhaften Prozesses auf eine Intervention, beispielsweise eine Operation, eine Bestrahlung oder eine medikamentöse Behandlung, zulassen. Biomarker sind häufig (bio-)chemische Substanzen, wie zum Beispiel Proteine, Hormone, Metaboliten, Zucker und Nukleinsäuren, sowie Modifikationen davon.
Der Begriff „bzw." steht im Zweifel für eine „und/oder"- Verknüpfung . Beschreibung der Erfindung
Der vorliegenden Erfindung ging die Erkenntnis voraus, dass maligne Erkrankungen komplexe genetische und epigenetische Veränderungen aufweisen und folglich sehr individuell ausgeprägt sein können. Selbst maligne Erkrankungen des gleichen Organs und mit den gleichen genetischen Veränderungen können daher sehr unterschiedlich auf eine Behandlung mit einem pharmazeutischen Hemmwirkstoff ansprechen.
Der Erfinder hat weiterhin erkannt, dass viele pharmazeutische Hemmwirkstoffe nur dann angewendet werden können, wenn die maligne Erkrankung eine bestimmte genetische Veränderung aufweist. Beispielsweise kann der MEK-Inhibitor Trametinib nur bei Erkrankten mit Melanomen oder nichtkleinzelligen Karzinomen angewendet werden, bei denen außerdem eine Mutation BRAFV600 im BRAF Gen nachgewiesen wurde. Dabei hat sich gezeigt, dass dieser Nachweis oft nicht ausreichend ist, da es sowohl Erkrankte mit BRAFV600 Mutation im Melanom gibt, die trotzdem nicht auf den pharmazeutischen Hemmwirkstoff ansprechen und zum anderen Erkrankte existieren, die trotz Abwesenheit einer solchen Mutation auf die Therapie ansprechen. Außerdem hat der Erfinder erkannt, dass es weitere maligne Erkrankungen gibt, die auch auf eine Therapie mit einem BRAF-Inhibitor ansprechen. Daher besteht ein Bedarf an neuen prädiktiven Biomarkern, die im Wesentlichen unabhängig von der genetischen Veränderung der malignen Erkrankung und unabhängig von der Art der malignen Erkrankung das Ansprechen auf eine Therapie mit einem pharmazeutischen Hemmwirkstoff Vorhersagen können.
Hinzu kommt, dass eine Vielzahl pharmazeutischer Hemmwirkstoffe für die Behandlung maligner Erkrankungen zu Verfügung stehen, für die es gar keine prädiktiven Biomarker gibt. Prädiktive Biomarker, die unabhängig von und/oder zusätzlich zu genetischen Veränderungen der malignen Erkrankung das Ansprechen bzw. Nichtansprechen auf eine Therapie mit einem pharmazeutischen Hemmwirkstoff Vorhersagen können, sind daher von hohem wirtschaftlichem und klinischem Interesse.
Die Erfindung beruht weiterhin auf der Erkenntnis, dass einheitliche prädiktive Tests für Gruppen von pharmazeutischen Hemmwirkstoffen, die auf dem gleichen oder einem ähnlichen bzw. analogen Wirkprinzip beruhen, von besonderer Bedeutung sind. Solche Tests können Patientinnen und Patienten identifizieren, die von einer Therapie mit einem pharmazeutischen Hemmwirkstoff aus einer bestimmten Gruppe profitieren. Gleichzeitig können Patientinnen und Patienten, deren maligne Erkrankung entsprechend der Prädiktion nicht auf eine Therapie mit einem pharmazeutischen Hemmwirkstoff aus einer bestimmten Gruppe ansprechen wird, eine medikamentöse Therapie erhalten, die beispielsweise auf einer anderen Gruppe von pharmazeutischen Hemmwirkstoffen mit einem anderen Wirkprinzip beruht. Auf diese Weise kann mithilfe weniger Test ein schnellerer und/oder verbesserter Behandlungserfolg erzielt und eine kostenintensive Fehltherapierung vermieden werden.
Vor diesem Hintergrund stellt die vorliegende Erfindung in einem ersten Aspekt ein Verfahren zur Bestimmung der Ansprechwahrscheinlichkeit einer malignen Erkrankung auf eine Behandlung mit einem pharmazeutischen Hemmwirkstoff bereit.
In einer Ausführungsform ist der pharmazeutische Hemmwirkstoff ausgewählt aus der Gruppe bestehend aus RAS/RAF/MEK/ERK- Signalweginhibitor, CDK4-und-CDK6-Inhibitor, PARP-Inhibitor, PI3K-Inhibitor, mTOR-Inhibitor, VEGFR-Inhibitor, PDGFR- Inhibitor, SRC-Inhibitor, FGFR-Inhibitor, NTRK-Inhibitor und beliebigen Kombinationen davon. Dafür wird eine DNA- Methylierungsanalyse von mindestens einem CpG-Dinukleotid eines Gens ausgewählt aus der Gruppe bestehend aus PPP1R18, RUNX1 und beliebigen Kombinationen davon von Zellen der malignen Erkrankung durchgeführt, um die Ansprechwahrscheinlichkeit zu bestimmen. Hierbei hat sich gezeigt, dass ein Ansprechen auf die Behandlung wahrscheinlicher bzw. wahrscheinlich ist, wenn das mindestens eine CpG-Dinukleotid bei einem überwiegenden Teil der Zellen der malignen Erkrankung unmethyliert ist. Umgekehrt ist ein Ansprechen auf die Behandlung unwahrscheinlicher bzw. unwahrscheinlich, wenn das mindestens eine CpG-Dinukleotid bei einem überwiegenden Teil der Zellen der malignen Erkrankung methyliert ist.
Die DNA-Methylierungsanalyse von PPP1R18 und/oder RUNX1 hat sich hierbei als besonders geeignet zur Bestimmung der Ansprechwahrscheinlichkeit auf eine Behandlung mit einem RAS/RAF/MEK/ERK-Signalweginhibitor erwiesen, bei dem es sich insbesondere um einen MEK-Inhibitor, RAF-Inhibitor, ERK- Inhibitor, RAS-Inhibitor, SHP2-Inhibitor und/oder c-Met- Inhibitor handeln kann. Der RAF-Inhibitor kann hierbei insbesondere ein BRAF-Inhibitor, RAFl-Inhibitor und/oder ARAF1- Inhibitor sein. Der RAS-Inhibitor kann insbesondere ein KRAS- Inhibitor und/oder NRAS-Inhibitor sein.
Darüber hinaus hat der Erfinder erkannt, dass sich die DNA- Methylierungsanalyse von PPP1R18 und RUNX1 besonders zur Bestimmung der Ansprechwahrscheinlichkeit auf eine Behandlung mit einem PI3K-Inhibitor und/oder mTOR-Inhibitor eignet, insbesondere einen Hemmwirkstoff, der sowohl PI3K als auch mTOR inhibiert (PI3K-und-mTOR-Inhibitor), sowie auf eine Behandlung mit einem VEGFR-Inhibitor und/oder PDGFR-Inhibitor, insbesondere einen Hemmwirkstoff, der sowohl VEGFR als auch PDGFR inhibiert (VEGFR-und-PDGFR-Inhibitor).
In einer weiteren Ausführungsform ist der pharmazeutische Hemmwirkstoff ausgewählt aus der Gruppe bestehend aus ERBB- Inhibitor, RAS/RAF/MEK/ERK-Signalweginhibitor und beliebigen Kombinationen davon. Dafür wird eine DNA-Methylierungsanalyse von mindestens einem CpG-Dinukleotid eines Gens ausgewählt aus der Gruppe bestehend aus PLEC, LAMB3, TINAGL1, C19orf33, IL18, S100A2, TOBI, TOR4A, FBRSL1, S100A10, LRRFIP2, SPIDR, ASB1, LAMA3, ENSG00000229672, MYH16, GRID1, CHD2 und beliebigen Kombinationen davon von Zellen der malignen Erkrankung durchgeführt, um die Ansprechwahrscheinlichkeit zu bestimmen. Hierbei hat sich ebenfalls gezeigt, dass ein Ansprechen auf die Behandlung wahrscheinlicher bzw. wahrscheinlich ist, wenn das mindestens eine CpG-Dinukleotid bei einem überwiegenden Teil der Zellen der malignen Erkrankung unmethyliert ist. Umgekehrt ist ein Ansprechen auf die Behandlung unwahrscheinlicher bzw. unwahrscheinlich, wenn das mindestens eine CpG-Dinukleotid bei einem überwiegenden Teil der Zellen der malignen Erkrankung methyliert ist.
Die DNA-Methylierungsanalyse von PLEC, LAMB3, TINAGL1, CI9orf33, IL18, S100A2, TOBI, TOR4A, FBRSL1, S100A10, LRRFIP2, SPIDR, ASB1, LAMA3, ENSG00000229672, MYH16, GRID1 und/oder CHD2 hat sich hierbei als besonders geeignet zur Bestimmung der Ansprechwahrscheinlichkeit auf eine Behandlung mit einem RAS/RAF/MEK/ERK-Signalweginhibitor erwiesen, wobei es sich insbesondere um einen MEK-Inhibitor, RAF-Inhibitor, ERK- Inhibitor, RAS-Inhibitor, SHP2-Inhibitor und/oder c-Met- Inhibitoren handeln kann. Der RAF-Inhibitor kann hierbei insbesondere ein BRAF-Inhibitor, RAFl-Inhibitor und/oder ARAFI- Inhibitor sein. Der RAS-Inhibitor kann insbesondere ein KRAS- Inhibitor und/oder NRAS-Inhibitor sein.
Darüber hinaus hat der Erfinder erkannt, dass sich die DNA- Methylierungsanalyse von PLEC, LAMB3, TINAGL1, Cl9orf33, IL18, S100A2, TOBI, TOR4A, FBRSL1, S100A10, LRRFIP2, SPIDR, ASB1, LAMA3, ENSGO0000229672, MYH16, GRID1 und/oder CHD2 besonders zur Bestimmung der Ansprechwahrscheinlichkeit auf eine Behandlung mit einem ERBB-Inhibitor eignet, insbesondere einem EGFR- Inhibitor und/oder HER2-Inhibitor.
In einer weiteren Ausführungsform ist der pharmazeutische Hemmwirkstoff ausgewählt aus der Gruppe bestehend aus ERBB- Inhibitor, RAS/RAF/MEK/ERK-Signalweginhibitor, CDK4-und-CDK6- Inhibitor, SRC-Inhibitor und beliebigen Kombinationen davon. Dafür wird eine DNA-Methylierungsanalyse von mindestens einem CpG-Dinukleotid eines Gens ausgewählt aus der Gruppe bestehend aus ZBTB38, TAFAZZIN, ANXA11, MAFK, NEDD4L, DIP2C, CAPN2, IER3, TM4SF19, RPTOR, S100A16, BCL9L, KCNMA1, GALE, PCID2, GNG7, ANXA2, MAFG, PKP3, ABTB2, ENSGO0000287625, ARL14, BCAR3, BIK, CCND3, CMIP, ELK3, HRH1, SAP30BP, NOS1AP, RALB, TGFBI, ENSG00000235726, CAB39, CIRBP, DIAPH1, FGD6, LMO7, MICAL2, STMN1, MNT, PC, PLEKHG5, PRORP, RDX, SERP1, SLCO3A1, SUFU, TANGOS, EGER, PINX1, SSBP2, TRERF1, GPT2, HEG1, ENSGO0000231740, PPM1H, PRDM10, RAD18, ENSGO0000231185, SYNPO, TNFRSF10B, T0M1L2, TPRG1, VRK2, ENSG00000249149, NC0R2, ENSGO0000258077, NINJ2, ENSGO0000257746, B3GNTL1, DCP2, ENSG00000242759, Locus Chr.3p23, OGDH, PDZRN3, PLXNB2, ENSG00000228793, C6orfl32, ENSG00000254561, ENSGO0000233321, SPATA12, ERBB2, SH3TC1, SSH1, AVPI1, MAP3K14, MIR23AHG, EPHA2, ENSG00000233785, ACVR1, ENSG00000282849, COX7A2L, ENSG00000234476, LRRC2, PLXNB1, PPTC7, RB1CC1, SLC2A1, SLC39A11, TBC1D14, TIMP2, ENSGO0000276527, CFAP20DC, PHLDA1, TESC, LIMA1, ASPSCR1, CAMKID, CAMK2D, CFAP57, CHCHD6, DRAP1, ENCI, ARHGAP32, ABL2, ENSG00000250754, Locus Chr.lq42.3, MYO16, MYOF, PTPRK, RBKS, SH3RF2, SILC1, SP1, SPAG6, SRGAP1, SYTL3, TMEM248, UTP25, WDFY3, WIPF2, WSB2, ZCCHC14, ZSWIM1, ENSGO0000226380, ENTPD6, ENSGO0000285517, CAPRIN2, MTPN, ADAM17, ATG14, ENSG00000258583, ITGB5 und beliebigen Kombinationen davon von Zellen der malignen Erkrankung durchgeführt, um die Ansprechwahrscheinlichkeit zu bestimmen. Auch hier hat sich gezeigt, dass ein Ansprechen auf die Behandlung wahrscheinlicher bzw. wahrscheinlich ist, wenn das mindestens eine CpG-Dinukleotid in den Zellen der malignen Erkrankung überwiegend unmethyliert ist. Umgekehrt ist ein Ansprechen auf die Behandlung unwahrscheinlicher bzw. unwahrscheinlich, wenn das mindestens eine CpG-Dinukleotid bei einem überwiegenden Teil der Zellen der malignen Erkrankung methyliert ist.
Die DNA-Methylierungsanalyse von ZBTB38, TAFAZZIN, ANXA11, MAFK, NEDD4L, DIP2C, CAPN2, IER3, TM4SF19, RPTOR, S100A16, BCL9L, KCNMA1, GALE, PCID2, GNG7, ANXA2, MAFG, PKP3, ABTB2, ENSGO0000287625, ARL14, BCAR3, BIK, CCND3, CMIP, ELK3, HRH1, SAP30BP, NOS1AP, RALB, TGFBI, ENSG00000235726, CAB39, CIRBP, DIAPH1, FGD6, LMO7, MICAL2, STMN1, MNT, PC, PLEKHG5, PRORP, RDX, SERP1, SLCO3A1, SUFU, TANGOS, EGER, PINX1, SSBP2, TRERF1, GPT2, HEG1, ENSGO0000231740, PPM1H, PRDM10, RAD18, ENSGO0000231185, SYNPO, TNFRSF10B, T0M1L2, TPRG1, VRK2, ENSG00000249149, NC0R2, ENSGO0000258077, NINJ2, ENSGO0000257746, B3GNTL1, DCP2, ENSG00000242759, Locus Chr.3p23, OGDH, PDZRN3, PLXNB2, ENSGO0000228793, C6orfl32, ENSG00000254561, ENSGO0000233321, SPATA12, ERBB2, SH3TC1, SSH1, AVPI1, MAP3K14, MIR23AHG, EPHA2, ENSG00000233785, ACVR1, ENSG00000282849, COX7A2L, ENSG00000234476, LRRC2, PLXNB1, PPTC7, RB1CC1, SLC2A1, SLC39A11, TBC1D14, TIMP2, ENSGO0000276527, CFAP20DC, PHLDA1, TESC, LIMA1, ASPSCR1, CAMKID, CAMK2D, CFAP57, CHCHD6, DRAP1, ENC1, ARHGAP32, ABL2, ENSGO0000250754, Locus Chr.lq42.3, MYO16, MYOF, PTPRK, RBKS, SH3RF2, SILC1, SP1, SPAG6, SRGAP1, SYTL3, TMEM248, UTP25, WDFY3, WIPF2, WSB2, ZCCHC14, ZSWIM1, ENSGO0000226380, ENTPD6, ENSGO0000285517, CAPRIN2, MTPN, ADAM17, ATG14, ENSG00000258583 und/oder ITGB5 hat sich hierbei als besonders geeignet zur Bestimmung der Ansprechwahrscheinlichkeit auf eine Behandlung mit einem ERBB-Inhibitor erwiesen, wobei es sich insbesondere um einen EGFR-Inhibitor und/oder HER2-Inhibitor handeln kann.
Darüber hinaus hat der Erfinder erkannt, dass sich die DNA- Methylierungsanalyse von ZBTB38, TAFAZZIN, ANXA11, MAFK, NEDD4L, DIP2C, CAPN2, IER3, TM4SF19, RPTOR, S100A16, BCL9L, KCNMA1, GALE, PCID2, GNG7, ANXA2, MAFG, PKP3, ABTB2, ENSGO0000287625, ARL14, BCAR3, BIK, CCND3, CMIP, ELK3, HRH1, SAP30BP, NOS1AP, RALB, TGFBI, ENSG00000235726, CAB39, CIRBP, DIAPH1, FGD6, LMO7, MICAL2, STMN1, MNT, PC, PLEKHG5, PRORP, RDX, SERP1, SLCO3A1, SUFU, TANGOS, EGER, PINX1, SSBP2, TRERF1, GPT2, HEG1, ENSGO0000231740, PPM1H, PRDM10, RAD18, ENSGO0000231185, SYNPO, TNFRSF10B, T0M1L2, TPRG1, VRK2, ENSG00000249149, NC0R2, ENSGO0000258077, NINJ2, ENSGO0000257746, B3GNTL1, DCP2, ENSG00000242759, Locus Chr.3p23, OGDH, PDZRN3, PLXNB2, ENSGO0000228793, C6orfl32, ENSG00000254561, ENSGO0000233321, SPATA12, ERBB2, SH3TC1, SSH1, AVPI1, MAP3K14, MIR23AHG, EPHA2, ENSG00000233785, ACVR1, ENSG00000282849, COX7A2L, ENSG00000234476, LRRC2, PLXNB1, PPTC7, RB1CC1, SLC2A1, SLC39A11, TBC1D14, TIMP2, ENSGO0000276527, CFAP20DC, PHLDA1, TESC, LIMA1, ASPSCR1, CAMKID, CAMK2D, CFAP57, CHCHD6, DRAP1, ENC1, ARHGAP32, ABL2, ENSGO0000250754, Locus Chr.lq42.3, MYO16, MYOF, PTPRK, RBKS, SH3RF2, SILC1, SP1, SPAG6, SRGAP1, SYTL3, TMEM248, UTP25, WDFY3, WIPF2, WSB2, ZCCHC14, ZSWIM1, ENSGO0000226380, ENTPD6, ENSG00000285517, CAPRIN2, MTPN, ADAM17, ATG14, ENSG00000258583 und/oder ITGB5 besonders zur Bestimmung der Ansprechwahrscheinlichkeit einer malignen Erkrankung auf eine Behandlung mit einem RAS/RAF/MEK/ERK-Signalweginhibitor eignet, wobei es sich hierbei insbesondere um einen MEK-Inhibitor, RAF- Inhibitor, ERK-Inhibitor, RAS-Inhibitor, SHP2-Inhibitor und/oder c-Met-Inhibitor handelt. Der RAF-Inhibitor kann hierbei insbesondere ein BRAF-Inhibitor, RAFl-Inhibitor und/oder ARAF1- Inhibitor sein. Der RAS-Inhibitor kann insbesondere ein KRAS- Inhibitor und/oder NRAS-Inhibitor sein.
In einer Ausführungsform ist der pharmazeutische Hemmwirkstoff ausgewählt aus der Gruppe bestehend aus CDK4-und-CDK6-Inhibitor, RAS/RAF/MEK/ERK-Signalweginhibitor , SRC-Inhibitor und beliebigen Kombinationen davon. Dafür wird eine DNA-Methylierungsanalyse von mindestens einem CpG-Dinukleotid eines Gens ausgewählt aus der Gruppe bestehend aus VGLL4, CDCP1, RASA3, PTTG1IP, ASAP2, ENSGO0000242282, Locus Chr.3q29, TMCO4, UBXN11, MAP3K5, ASTN2, ENSG00000258082 und beliebigen Kombinationen davon von Zellen der malignen Erkrankung durchgeführt, um die Ansprechwahrscheinlichkeit zu bestimmen. Hierbei hat sich gezeigt, dass ein Ansprechen auf die Behandlung wahrscheinlicher oder wahrscheinlich ist, wenn das mindestens eine CpG- Dinukleotid bei einem überwiegenden Teil der Zellen der malignen Erkrankung unmethyliert ist. Umgekehrt ist ein Ansprechen auf die Behandlung unwahrscheinlicher bzw. unwahrscheinlich, wenn das mindestens eine CpG-Dinukleotid bei einem überwiegenden Teil der Zellen der malignen Erkrankung methyliert ist.
Die DNA-Methylierungsanalyse von VGLL4, CDCP1, RASA3, PTTG1IP, ASAP2, ENSGO0000242282, Locus Chr.3q29, TMCO4, UBXN11, MAP3K5, ASTN2 und/oder ENSG00000258082 hat sich hierbei als besonders geeignet zur Bestimmung der Ansprechwahrscheinlichkeit auf eine Behandlung mit einem RAS/RAF/MEK/ERK-Signalweginhibitor erwiesen, wobei es sich insbesondere um einen MEK-Inhibitor, RAF-Inhibitor, ERK-Inhibitor, RAS-Inhibitor, SHP2-Inhibitor und/oder c-Met-Inhibitor handeln kann. Der RAF-Inhibitor kann insbesondere ein BRAF-Inhibitor, RAFl-Inhibitor und/oder ARAF1- Inhibitor sein. Der RAS-Inhibitor kann insbesondere ein KRAS- Inhibitor und/oder NRAS-Inhibitor sein.
In einer Ausführungsform ist der pharmazeutische Hemmwirkstoff ausgewählt aus der Gruppe bestehend aus CDK4-und-CDK6-Inhibitor, PARP-Inhibitor, mTOR-Inhibitor, RAS/RAF/MEK/ERK- Signalweginhibitor, SRC-Inhibitor und beliebigen Kombinationen davon. Dafür wird eine DNA-Methylierungsanalyse von mindestens einem CpG-Dinukleotid eines Gens ausgewählt aus der Gruppe bestehend aus SYNJ2 und WWTR1 von Zellen der malignen Erkrankung durchgeführt, um die Ansprechwahrscheinlichkeit zu bestimmen. Es hat sich gezeigt, dass ein Ansprechen auf die Behandlung wahrscheinlicher bzw. wahrscheinlich ist, wenn das mindestens eine CpG-Dinukleotid bei einem überwiegenden Teil der Zellen der malignen Erkrankung unmethyliert ist. Umgekehrt ist ein Ansprechen auf die Behandlung unwahrscheinlicher bzw. unwahrscheinlich, wenn das mindestens eine CpG-Dinukleotid bei einem überwiegenden Teil der Zellen der malignen Erkrankung methyliert ist.
Die DNA-Methylierungsanalyse von SYNJ2 und WWTR1 hat sich als besonders geeignet zur Bestimmung der Ansprechwahrscheinlichkeit auf eine Behandlung mit einem RAS/RAF/MEK/ERK-Signalweginhibitor erwiesen, bei dem es sich insbesondere um einen MEK-Inhibitor, RAF-Inhibitor, ERK-Inhibitor, RAS-Inhibitor, SHP2-Inhibitor und/oder c-Met-Inhibitor handeln kann. Ein RAF-Inhibitor kann hierbei insbesondere ein BRAF-Inhibitor, RAFl-Inhibitor und/oder ARAFl-Inhibitor sein. Ein RAS-Inhibitoren kann hierbei insbesondere ein KRAS-Inhibitor und/oder NRAS-Inhibitoren sind. In einer weiteren Ausführungsform ist der pharmazeutische Hemmwirkstoff ausgewählt aus der Gruppe bestehend aus VEGFR- Inhibitor, mTOR-Inhibitor, PDGFR-Inhibitor, PARP-Inhibitor, PI3K-Inhibitor, FGFR-Inhibitor, NTRK-Inhibitor, BRAF-Inhibitor und beliebigen Kombinationen davon. Dafür wird eine DNA- Methylierungsanalyse von mindestens einem CpG-Dinukleotid des Gens CLDN4 von Zellen der malignen Erkrankung durchgeführt, um die Ansprechwahrscheinlichkeit zu bestimmen. Im Gegensatz zu den obigen Ausführungsbeispielen hat sich hierbei gezeigt, dass ein Ansprechen auf die Behandlung wahrscheinlicher bzw. wahrscheinlich ist, wenn das mindestens eine CpG-Dinukleotid bei einem überwiegenden Teil der Zellen der malignen Erkrankung eine Methylierung aufweist, d. h. methyliert ist. Umgekehrt ist ein Ansprechen auf die Behandlung unwahrscheinlicher bzw. unwahrscheinlich, wenn das mindestens eine CpG-Dinukleotid bei einem überwiegenden Teil der Zellen der malignen Erkrankung unmethyliert ist.
Die DNA-Methylierungsanalyse von CLDN4 hat sich zur Bestimmung der Ansprechwahrscheinlichkeit auf eine Behandlung mit einem PI3K-Inhibitor und/oder mTOR-Inhibitor als besonders geeignet erwiesen, insbesondere einen Hemmwirkstoff, der sowohl PI3K als auch mTOR inhibiert, sowie auf eine Behandlung mit einem VEGFR- Inhibitor und/oder PDGFR-Inhibitor, insbesondere einen Hemmwirkstoff, der sowohl VEGFR als auch PDGFR inhibiert.
Am RAS/RAF/MEK/ERK-Signalweg sind GTPasen, Kinasen und Transkriptionsfaktoren beteiligt. GTPasen des RAS/RAF/MEK/ERK- Signalwegs sind beispielsweise die „RAS" (Rat sarcoma) GTPasen „KRAS" (Kirsten rat sarcoma virus), „NRAS" (Neuroblastoma RAS viral oncogene homolog) und „HRAS" (Harvey Rat sarcoma virus), die durch die Gene KRAS (auch als KRAS Protoonkogen bezeichnet, GTPase), NRAS (NRAS Protoonkogen, GTPase) beziehungsweise HRAS (HRas Protoonkogen, GTPase) codiert sind. Kinasen des RAS/RAF/MEK/ERK-Signalwegs sind beispielsweise die „RAF" (Rapidly Accelerated Fibrosarcoma) Kinasen „BRAF", „RAF1" und „ARAF", die durch die Gene BRAF (auch bezeichnet als B-Raf Protoonkogen, Serin/Threonin-Kinase), RAF1 (auch bezeichnet als Raf-1 Protoonkogen, Serin/Threonin-Kinase) bzw. ARAF (auch bezeichnet als A-Raf Protoonkogen, Serin/Threonin-Kinase) codiert sind. Kinasen des RAS/RAF/MEK/ERK-Signalwegs sind auch die beiden „MEK" (Mitogen-activated protein kinase) Kinasen MEK1 (auch bezeichnet als Serin/Threonin-Proteinkinase MEK1) und MEK2 (auch bezeichnet als MAP2K2, Mitogen-aktiviertes Protein- (MAP)- Kinase-Kinase 2), welche durch die Gene MEK1 beziehungsweise MAP2K2 codiert sind. Kinasen des RAS/RAF/MEK/ERK-Signalwegs sind außerdem die beiden „ERK" (extracellular signal-regulated kinases) Kinasen ERK1 (auch bezeichnet als Mitogen-aktivierte Proteinkinase 3, MAP-Kinase 3, MAPK3) und ERK2 (auch bezeichnet als Mitogen-aktivierte Proteinkinase 1, MAPK1), welche durch die Gene MAPK3 beziehungsweise MAPK1 codiert sind. Ein Transkriptionsfaktor des RAS/RAF/MEK/ERK-Signalwegs ist beispielsweise SHP2 (K-box region and MADS-box transcription factor family protein), welcher durch das Gen SHP2 codiert ist. Kinasen des RAS/RAF/MEK/ERK-Signalwegs sind außerdem die Ephrinrezeptoren der Subklassen EphA und EphB. Ein Ephrinrezeptor des RAS/RAF/MEK/ERK-Signalwegs ist beispielsweise EPHA2 (Ephrinrezeptor A2), welcher durch das Gen EPHA2 (EPH receptor A2) codiert ist. Zu den Kinasen des RAS/RAF/MEK/ERK- Signalwegs gehört außerdem c-Met, auch bezeichnet als Hepatozytenwachstumsfaktorrezeptor (HGFR), welcher durch das Gen MET (MET proto-oncogene, receptor tyrosine kinase) codiert ist.
In bevorzugten Ausführungsformen ist der pharmazeutische Hemmwirkstoff ein RAS/RAF/MEK/ERK-Signalweginhibitor. Als „RAS/RAF/MEK/ERK-Signalweginhibitoren" werden hier pharmazeutische Hemmwirkstoffe bezeichnet, welche die Aktivität eines oder mehrerer Signalwegproteine aus der Gruppe bestehend aus RAS, RAF, MEK, ERK, SHP2, Ephrinrezeptoren und c-Met inhibieren .
In bevorzugten Ausführungsformen ist der RAS/RAF/MEK/ERK- Signalweginhibitor ein MEK-Inhibitor, RAF-Inhibitor, RAS- Inhibitor, ERK-Inhibitor, SHP2-Inhibitor, c-Met-Inhibitor und/oder EPHA2-Inhibitor. Vorzugsweise ist der RAF-Inhibitor ein BRAF-Inhibitor, RAF1-Inhibitor und/oder ARAF-Inhibitor, besonders bevorzugt ein BRAF-Inhibitor. Vorzugsweise ist der RAS-Inhibitor ein KRAS-Inhibitor und/oder NRAS-Inhibitor.
In bevorzugten Ausführungsformen ist der RAS/RAF/MEK/ERK- Signalweginhibitor ein MEK-Inhibitor. „MEK-Inhibitoren" sind RAS/RAF/MEK/ERK-Signalweginhibitoren, die MEK1 und/oder MEK2 inhibieren. Geeignete MEK-Inhibitoren sind beispielsweise Trametinib, Refametinib, Selumetinib, Mirdametinib, Binimetinib, Cobimetinib, FCN-159 (Fochon Pharmaceuticals), Pimasertib, CI- 1040 (CAS No. 212631-79-3), TAK-733 (GAS No. 1035555-63-5), AZD8330 (GAS No. 869357-68-6), GDC-0623 (GAS No. 1168091-68-6), BI-847325 (GAS No. 1207293-36-4), APS-2-79 (GAS No. 2002381-31- 7), PD318088 (GAS No. 391210-00-7), VS-6766 (Verastem Oncology), RO5126766 (GAS No. 946128-88-7), RO4987655 (GAS No.: 874101-00- 5), Honokiol (GAS No. 35354-74-6), ATR-002 (Atriva Therapeutics GmbH), CS3006 (CStone), WX-554 (Wilex), SHR 7390 (Jiangsu Hengrui Medicine Co.), HL-085 (Kechow Pharma, Inc.), SHR7390 (Jiangsu Hengrui Medicine Co.) und/oder BI 3011441 (LNP3794).
Vorzugsweise ist der MEK-Inhibitor ausgewählt aus der Gruppe bestehend aus Refametinib, Trametinib, Selumetinib, Mirdametinib und beliebigen Kombinationen davon. In bevorzugten Ausführungsformen ist der RAS/RAF/MEK/ERK- Signalweginhibitor ein RAS-Inhibitor. „RAS-Inhibitoren" sind RAS/RAF/MEK/ERK-Signalweginhibitoren, die KRAS, NRAS und/oder HRAS inhibieren. Geeignete RAS-Inhibitoren sind beispielsweise BI 1701963 (Boehringer Ingelheim), Adagrasib,Sotorasib, Lonafarnib, JDQ443 (Novartis), JNJ-74699157 (ARS-3248, Johnson and Johnson), Salirasib und/oder MCP110 (CAS No. 521310-51-0).
In bevorzugten Ausführungsformen ist der RAS/RAF/MEK/ERK- Signalweginhibitor ein KRAS-Inhibitor. „KRAS-Inhibitoren" sind RAS-Inhibitoren und daher auch RAS/RAF/MEK/ERK- Signalweginhibitoren, die KRAS inhibieren. Geeignete KRAS- Inhibitoren sind beispielsweise BI 1701963 (Boehringer Ingelheim), Adagrasib,Sotorasib, Lonafarnib, JDQ443 (Novartis), JNJ-74699157 (ARS-3248, Johnson and Johnson), RG6330 (Roche/Genentech), BI-2852 (GAS No. 2375482-51-0), BI-3406 (GAS No. 2230836-55-0), MRTX-1257 (GAS No. 2206736-04-9), LY3537982 (Eli Lilly) und/oder 6H05 (GAS No. 2061344-88-3).
In bevorzugten Ausführungsformen ist der RAS/RAF/MEK/ERK- Signalweginhibitor ein NRAS-Inhibitor. Ein „NRAS-Inhibitor" ist ein RAS-Inhibitor bzw. ein RAS/RAF/MEK/ERK-Signalweginhibitor, der NRAS inhibiert. Geeignete NRAS-Inhibitoren sind beispielsweise Lonafarnib und/oder MCP110 (GAS No. 521310-51-0).
In bevorzugten Ausführungsformen ist der RAS/RAF/MEK/ERK- Signalweginhibitor ein HRAS-Inhibitor. Ein „HRAS-Inhibitor" ist ein RAS-Inhibitor bzw. ein RAS/RAF/MEK/ERK-Signalweginhibitor, der HRAS inhibiert. Geeignete HRAS-Inhibitoren sind beispielsweise Lonafarnib, MCP110 (GAS No. 521310-51-0) und/oder Kobe0065 (GAS No. 436133-68-5). In bevorzugten Ausführungsformen ist der RAS/RAF/MEK/ERK- Signalweginhibitor ein RAF-Inhibitor. „RAF-Inhibitoren" sind RAS/RAF/MEK/ERK-Signalweginhibitoren, welche die RAF Kinasen BRAF, RAF1 und/oder ARAF inhibieren. Geeignete RAF-Inhibitoren sind beispielsweise Belvarafenib, Naporafenib, Encorafenib, RAF265 (CAS No. 927880-90-8), VS-6766 (Verastem Oncology), RO5126766 (GAS No. 946128-88-7), TAK-580 (MLN 2480, BIIB-024, GAS No. 1096708-71-2) und/oder ARQ 736 (GAS No. 1228237-57-7).
In bevorzugten Ausführungsformen ist der RAS/RAF/MEK/ERK- Signalweginhibitor ein BRAF-Inhibitor. Ein „BRAF-Inhibitor" ist ein RAF-Inhibitor und somit ebenfalls ein RAS/RAF/MEK/ERK- Signalweginhibitor, der die Aktivität von BRAF inhibiert. Geeignete BRAF-Inhibitoren sind beispielsweise Dabrafenib, Encorafenib, Vemurafenib, Sorafenib, Belvarafenib, Naporafenib, Regorafenib, PLX-4720 (GAS No. 918505-84-7), AZ 628 (GAS No. 878739-06-1), SB590885 (GAS No. 405554-55-4), GDC-0879 (GAS No. 905281-76-7), RAF265 (GAS No. 927880-90-8), HG-6-64-1 (GAS No. 1315329-43-1), Lifirafenib, RO5126766 (GAS No. 946128-88-7), TAK-580 (MLN 2480, BIIB-024, GAS No.: 1096708-71-2),TAK-632 (GAS No. 1228591-30-7), VS-6766 (Verastem Oncology), ABM-1310 (ABM Therapeutics), HLX 208 (RX208, Shanghai Henlius Biotech), ARQ 736 (GAS No. 1228237-57-7) und/oder BGB-3245 (MapKure, LLC).
In bevorzugten Ausführungsformen ist der RAS/RAF/MEK/ERK- Signalweginhibitor ein RAFl-Inhibitor. Ein „RAFl-Inhibitor" ist ein RAF-Inhibitor bzw. ein RAS/RAF/MEK/ERK-Signalweginhibitor, der RAF1 inhibiert. Geeignete RAFl-Inhibitoren sind beispielsweise Naporafenib, Encorafenib, Vemurafenib,Sorafenib, RO5126766 (GAS No. 946128-88-7), TAK-580 (MLN 2480, BIIB-024, GAS No.: 1096708-71-2), RAF265 (GAS No. 927880-90-8), Belvarafenib und/oder ARQ 736 (GAS No. 1228237-57-7). In bevorzugten Ausführungsformen ist der RAS/RAF/MEK/ERK- Signalweginhibitor ein ARAF-Inhibitor. Ein „ARAF-Inhibitor" ist ein RAF-Inhibitor bzw. ein RAS/RAF/MEK/ERK-Signalweginhibitor, der ARAF inhibiert. Geeignete ARAF-Inhibitoren sind beispielsweise Naporafenib, TAK-580 (MLN 2480, BIIB-024, GAS No.: 1096708-71-2), RAF265 (GAS No. 927880-90-8) und/oder ARQ 736 (GAS No. 1228237-57-7).
In bevorzugten Ausführungsformen ist der RAS/RAF/MEK/ERK- Signalweginhibitor ein ERK-Inhibitor. „ERK-Inhibitoren" sind RAS/RAF/MEK/ERK-Signalweginhibitoren, die ERK1 und/oder ERK2 inhibieren. Geeignete ERK-Inhibitoren sind beispielsweise Ulixertinib, Ravoxertinib, AZD0364 (GAS No. 2097416-76-5), SCH772984 (GAS No. 942183-80-4), MK-8353 (GAS No. 1184173-73-6), LY3214996 (GAS No. 1951483-29-6), Magnolin (GAS No. 31008-18-1), VX-lle (GAS No. 896720-20-0), FR 180204 (GAS No. 865362-74-9), ASTX029 (Astex Pharmaceuticals), ASN007 (Asana BioSciences), KO- 947 (CAS No. 1695533-89-1) und/oder JSI-1187 (JS InnoPharm, LLC).
In bevorzugten Ausführungsformen ist der RAS/RAF/MEK/ERK- Signalweginhibitor ein SHP2-Inhibitor. Geeignete SHP2- Inhibitoren sind beispielsweise RMC-4630 (Revolution Medicine), TNO155 (CAS No. 1801765-04-7), ERAS-601, RG6433 (Roche/Genentech), BBP-398 (IACS-15509, Navire Pharma Inc., CAS No. 2160546-07-4), JAB-3068 (CAS No. 2169223-48-5), JAB-3312 (Abbvie), RMC-4550 (CAS No. 2172651-73-7), SHP099 (CAS No. 1801747-42-1), RLY-1971 (Relay Therapeutics) und/oder SH3809 (Nanjing Sanhome Pharmaceutical, Co., Ltd.).
In bevorzugten Ausführungsformen ist der RAS/RAF/MEK/ERK-
Signalweginhibitor ein EPHA2-Inhibitor. Geeignete EPHA2-
Inhibitoren sind beispielsweise BT5528 (Bicycle Tx Limited), DS- 8895a (Daiichi Sankyo Co., Ltd.), Sitravatinib, SL-701 (Menarini Group) und/oder MEDI-547 (Medlmmune LLC).
In bevorzugten Ausführungsformen ist der RAS/RAF/MEK/ERK- Signalweginhibitor ein c-Met-Inhibitor. „c-Met-Inhibitoren" sind RAS/RAF/MEK/ERK-Signalweginhibitoren, die c-Met inhibieren. Geeignete c-Met-Inhibitoren sind beispielsweise Capmatinib, Tepotinib, Amivantamab, Glumetinib, Tivantinib, Foretinib, Volitinib, Crizotinib, Vebreltinib, Bozitinib, Savolitinib, Telisotuzumab vedotin (ABBV-399), Telisotuzumab, AMG 337 (CAS No. 1173699-31-4), Kanitinib, TQ-B3139 (Chia Tai Tianqing), Cabozantinib, Sitravatinib, PHA-665752 (CAS No. 477575-56-7), SU11274 (CAS No. 658084-23-2), SGX-523 (CAS No. 1022150-57-7), BMS-777607 (CAS No. 1025720-94-8), MK-8033 (CAS No. 1001917-37- 8) ABN401 (Abion Inc), SAR125844 (CAS No. 1116743-46-4), YYB101 (CellabMED), Merestinib, SHR-A1403 (ADC HTI-1066, HTI 1066, HTI- 1066) JNJ-38877605 (CAS No. 943540-75-8), PF-04217903 (CAS No. 956905-27-4), GST-HG161 (WuXi AppTec / Fujian Cosunter Pharmaceutical), CKD-702 (Chong Kun Dang Pharmaceutical), EMB-01 (EpimAb), MGCD-265 (CAS No. 875337-44-3), AMG-208 (CAS No. 1002304-34-8), HLX55 (Henlix, Inc), MK-2461 (CAS No. 917879-39- 1), JNJ-38877618 (CAS No. 943540-74-7), BPI-9016M (CAS No. 1528546-94-2), AL2846 (Chia Tai Tianqing Pharmaceutical Group Co., Ltd.), NVP-BVU972 (CAS No. 1185763-69-2), S49076 (CAS No. 1265965-22-7), Ficlatuzumab, AMG-458 (CAS No. 913376-83-7), BAY- 474 (CAS No. 1033767-86-0), RC108-ADC (RemeGen Co., Ltd.), AMG-1 (CAS No. 913376-84-8), EMD 1214063 (Merck Serono), EMD 1204831 (Merck Serono), NPS-1034 (CAS No. 1221713-92-3), SAR125844 (CAS
No. 1116743-46-4), Rilotumumab, TR1801-ADC (Tanabe Research Laboratories USA Inc), BMS-794833 (CAS No. 1174046-72-0), HS- 10241 (Jiangsu Hansoh Pharmaceutical Co., Ltd.), SAIT301 (anti- C-met monoklonaler Antikörper), Amivantamab, MCLA-129 (Merus), ARGX-111 (Argenx), Golvatinib, Ningetinib und/oder Altiratinib. Die ERBB-Proteinfamilie umfasst vier Rezeptortyrosinkinasen, welche strukturell mit dem Epidermalen Wachstumsfaktorrezeptor (epidermal growth factor receptor, „EGER") verwandt sind. Die vier Mitglieder der „ERBB-Proteinfamilie" umfassen die ERBB- Rezeptoren „EGER" (ERBB1, HER1), „HER2" (HER-2/neu, ERBB2), HER3 (ERBB3) und HER4 (ERBB4), welche durch die Gene EGFR, ERBB2, ERBB3 beziehungsweise ERBB4 codiert sind.
In bevorzugten Ausführungsformen ist der ist der pharmazeutische Hemmwirkstoff ein ERBB-Inhibitor. „ERBB-Inhibitoren" sind Hemmwirkstoffe, welche die Aktivität von mindestens einem Mitglied der ERBB-Proteinfamilie inhibieren. In einer Ausführungsform ist der ERBB-Inhibitor ein EGFR-Inhibitor. „EGFR-Inhibitoren" sind Hemmwirkstoffe, welche die Aktivität von EGFR inhibieren. In einer Ausführungsform ist der ERBB-Inhibitor ein HER2-Inhibitor. „HER2-Inhibitoren" sind Hemmwirkstoffe, welche die Aktivität von HER2 inhibieren. In bestimmten Ausführungsformen ist der ERBB-Inhibitor sowohl ein EGFR- Inhibitor als auch ein HER2-Inhibitor.
Geeignete ERBB-Inhibitoren sind beispielsweise Afatinib, Pyrotinib, Dacomitinib, Neratinib, Lapatinib, Varlitinib, Tesevatinib, Mobocertinib, BMS-599626 (GAS No. 714971-09-2), FCN-411 (Fochon Pharmaceuticals), DZD9008 (Dizal Pharma), Tarloxotinib, PF-06804103 (Pfizer), BMS-690514 (GAS No. 859853- 30-8), CDX-3379 (Celldex Therapeutics), BMS-599626 (GAS No. 714971-09-2), BDTX-189 (GAS No. 2414572-47-5), Epertinib (GAS No. 2071195-74-7), Canertinib, Sapitinib, CP-724714 (GAS No. 537705-08-1), AC480 (GAS No. 714971-09-2), AEE788 (GAS No. 497839-62-0) und/oder Poziotinib. Geeignete HER2-Inhibitoren sind beispielsweise Trastuzumab, Pertuzumab, Afatinib,Lapatinib, Canertinib, Mubritinib, PF- 06804103 (Pfizer), Pyrotinib, Dacomitinib,Tucatinib, Neratinib, Tarloxotinib, ARX788 (Ambrx Inc.), KN026 (Alphamab Oncology), DZD9008 (Dizal Pharma), TAS0728 (CAS No. 2088323-16-2), BMS- 599626 (GAS No. 714971-09-2), Tesevatinib, Varlitinib, BMS- 690514 (GAS No. 859853-30-8), FCN-411 (Fochon Pharmaceuticals), Inetetamab, Zanidatamab, BDTX-189 (GAS No. 2414572-47-5), Epertinib (GAS No. 2071195-74-7), Sapitinib, CP-724714 (GAS No. 537705-08-1), AC480 (GAS No. 714971-09-2), AEE788 (GAS No. 497839-62-0), BDC-1001 (Bolt Biotherapeutics), Poziotinib, HLX22 (Henlius), B002 (Shanghai Pharmaceuticals Holding Co., Ltd),
NJH395 (Novartis), Cinrebafusp Alfa (PRS-343, Pieris Pharmaceuticals), GQ1001 (GeneQuantum Healthcare), BAY2701439, BAY2701438, Trastuzumab Deruxtecan, SBT6050 (Silverback Therapeutics), ZW49 (Zymeworks), MT-5111 (Molecular Templates), M802 (Wuhan YZY Biopharma Co.) und/oder AIP-303.
Geeignete EGFR-Inhibitoren sind beispielsweise Cetuximab, Afatinib, Erlotinib, Pelitinib, Gefitinib, Lapatinib, Neratinib, Lazertinib, Osimertinib, Nazartinib, Pyrotinib, Zorifertinib, Rociletinib, Icotinib, Almonertinib, Naquotinib, Alflutinib, Tesevatinib, Necitumumab, Dacomitinib, Mavelertinib, Tarloxotinib, Brigatinib, Vandetanib, Poziotinib, Mobocertinib, Varlitinib, Amivantamab, Matuzumab, Panitumumab, CLN-081 (CAS No. 1661854-97-2), PF-06804103 (Pfizer), GC1118 (Green Cross Corporation), Abivertinib, Larotinib, D-0316 (InventisBio, Betta Pharmaceuticals), SCT200 (Sinocelltech), CPGJ602 (Sunshine Guojian), DBPR112 (CAS No. 1226549-49-0), BMS-599626 (CAS No. 714971-09-2), Depatuxizumab-Mafodotin, TY-9591 (TYK Medicine), BPI-7711 (Beta Pharma), HLX07 (Henlius), PF-06459988 (CAS No. 1428774-45-1), BPI-15086 (Betta Pharmaceuticals), BMS-690514 (CAS No. 859853-30-8), RO5083945 (Roche), DZD9008 (Dizal Pharma) und Lifirafenib, ZN-e4 (KP-673), FCN-411 (Fochon Pharmaceuticals), Epertinib (CAS No. 2071195-74-7), Canertinib, Sapitinib, CP-724714 (CAS No. 537705-08-1), AC480 (CAS No. 714971-09-2) und/oder AEE788 (CAS No. 497839-62-0).
In bevorzugten Ausführungsformen ist der ist der pharmazeutische Hemmwirkstoff ein CDK4-und-CDK6-Inhibitor. Die „Cyclin-abhängige Kinase 4" (CDK4) und „Cyclin-abhängige Kinase 6" (CDK6) sind durch die Gene CDK4 beziehungsweise CDK6 codiert. CDK4 und CDK6 sind Mitglieder der Serin/Threonin-Proteinkinase Familie. Im Sinne der Erfindung sind „CDK4-und-CDK6-Inhibitoren" Hemmwirkstoffe, welche die Aktivität der Cyclin-abhängigen Kinase 4 und/oder der Cyclin-abhängigen Kinase 6 inhibieren. Geeignete CDK4-und-CDK6-Inhibitoren sind beispielsweise Palbociclib, Ribociclib, Abemaciclib, Trilaciclib, CGP-082996 (CAS No. 359886-84-3), CGP-60474 (CAS No. 164658-13-3), Lerociclib, Dalpiciclib, Voruciclib, FCN-437 (Fochon Pharmaceuticals), CS3002 (CStone), Alvocidib, Auceliciclib, PF- 06873600 (2185857-97-8), Roniciclib, HS-10342 (Jiangsu Hansoh Pharmaceutical), Riviciclib, AMG 925 (CAS No. 1401033-86-0), Birociclib, BPI-1178 (Betapharma), BPI-16350 (Bettapharma), BEBT-209 (Bibet), PF-06842874 (Pfizer) und MM-D37K (MetaMax) und/oder AT-7519 (CAS No. 844442-38-2).
In bevorzugten Ausführungsformen ist der pharmazeutische Hemmwirkstoff ein PARP-Inhibitor. „PARP" bezeichnet die Familie der Poly (ADP-Ribose)-Polymerasen, welche beispielsweise durch die Gene PARP1 (auch bekannt als Poly (ADP-Ribose)-Polymerase 1, PARP1), PARP2 (auch bekannt als Poly (ADP-Ribose)-Polymerase 2, PARP2), PARP3 (auch bekannt als Poly (ADP-Ribose)-Polymerase Familienmitglied 3), PARP4 (auch bekannt als Poly (ADP-Ribose)- Polymerase Familienmitglied 4), TNKS (auch bekannt als Tankyrase oder PARP5A), TNKS2 (auch bekannt als Tankyrase 2 oder PARP5B), PARP6 (auch bekannt als Poly (ADP-Ribose)-Polymerase Familienmitglied 6), TIPARP (TCDD-induzierbare Poly (ADP-Ribose)- Polymerase oder PARP7), PARP8 (auch bekannt als Poly(ADP- Ribose)-Polymerase Familienmitglied 8), PARP9 (auch bekannt als Poly (ADP-Ribose)-Polymerase Familienmitglied 9), PARP10 (auch bekannt als Poly (ADP-Ribose)-Polymerase Familienmitglied 10), PARP11 (auch bekannt als Poly (ADP-Ribose)-Polymerase Familienmitglied 11), PARP12 (auch bekannt als Poly (ADP-Ribose)- Polymerase Familienmitglied 12), PARP14 (auch bekannt als Poly (ADP-Ribose)-Polymerase Familienmitglied 14), PARP15 (auch bekannt als Poly (ADP-Ribose)-Polymerase Familienmitglied member 15) und PARP16 (auch bekannt als Poly (ADP-Ribose)-Polymerase Familienmitglied 16) codiert sind. „PARP-Inhibitoren" sind erfindungsgemäß pharmazeutische Hemmwirkstoffe, welche die Aktivität von PARP-Polymerasen inhibieren. Bevorzugte PARP- Inhibitoren können PARP1 und/oder PARP2 inhibieren. Geeignete PARP-Inhibitoren sind beispielsweise Olaparib, Veliparib, Talazoparib, Rucaparib, Niraparib, Pamiparib, Fluzoparib, Iniparib, Amelparib, Venadaparib, Stenoparib, Senaparib, Simmiparib, AG-14361 (CAS No. 328543-09-5), AZD2461 (GAS No. 1174043-16-3), E7449 (GAS No. 1140964-99-3), E7016 (Eisai), RBN- 2397 (GAS No. 2381037-82-5), CEP-9722 (GAS No. 916574-83-9), 3- Aminobenzamid, INO-1001 (GAS No. 3544-24-9), AZD5305 (GAS No. 2589531-76-8), JPI-547 (Jeil Pharmaceutical Co.), NMS-03305293 (NMS Group), SC10914 (Jiangxi Qingfeng Pharmaceutical Co. Ltd.) und/oder A-966492 (CAS No. 934162-61-5).
In bevorzugten Ausführungsformen ist der pharmazeutische Hemmwirkstoff ein SRC-Inhibitor. „SRC" bezeichnet eine Familie von Nicht-Rezeptor-Kinasen mit neun Mitgliedern. Diese neun Mitglieder sind „SRC" (SRC Protoonkogen, codiert durch das Gen SRC), YES1 (YES Protoonkogen 1, codiert durch das Gen YES1), FYN (FYN Protoonkogen, codiert durch das Gen FYN), FGR (FGR Protoonkogen, codiert durch das Gen FGR), LCK (LCK Protoonkogen, codiert durch das Gen LCK), HCK (HCK Protoonkogen, codiert durch das Gen HCK), BLK (BLK Protoonkogen, codiert durch das Gen BLK), LYN (LYN Protoonkogen, codiert durch das Gen LYN) und FRK („fyn- verwandte Src Familientyrosinkinase", fyn related Src family tyrosine kinase, codiert durch das Gen FRK). Im Sinne der Erfindung sind „SRC-Inhibitoren" pharmazeutische Hemmwirkstoffe, welche die Aktivität mindestens einer Nicht-Rezeptor-Kinasen der SRC-Familie, beispielsweise SRC, inhibieren. Geeignete SRC- Inhibitoren sind z. B. Bosutinib, Dasatinib, Saracatinib, Ponatinib, Rivoceranib, WH-4-023 (CAS No. 837422-57-8), A-770041 (CAS No. 869748-10-7), eCF506 (CAS No. 1914078-41-3), DGY-06-116 (CAS No. 2556836-50-9), UM-164 (CAS No. 903564-48-7), 1-NM-PP1 (CAS No. 221244-14-0), Repotrectinib, XL228 (CAS No. 898280-07- 4), Tirbanibulin (CAS No. 897016-82-9), PP121 (CAS No. 1092788- 83-4), TPX-0046 (Turning Point Therapeutics, Inc.) und/oder Ibrutinib.
In bevorzugten Ausführungsformen ist der pharmazeutische Hemmwirkstoff ein NTRK-Inhibitor. „NTRK" bezeichnet die Familie der „Neurotrophe Rezeptortyrosinkinasen" („neurotrophic receptor tyrosine kinases"), auch bekannt als Tropomyosin-Rezeptorkinasen („tropomyosin receptor kinases", TRKs), die durch die Mitglieder TRKA, TRKB und TRKC gebildet wird. TRKA, TRKB und TRKC werden durch die Gene NTRK1 (TRKA), NTRK2 (TRKB) bzw. NTRK3 (TRKC) codiert. Im Sinne der Erfindung sind „NTRK-Inhibitoren" pharmazeutische Hemmwirkstoffe, welche die Aktivität mindestens eines Mitglieds der NTRK-Familie inhibieren. Geeignete NTRK- Inhibitoren sind beispielsweise Larotrectinib, Entrectinib, Repotrectinib, Altiratinib, Taletrectinib, Selitrectinib, Belizatinib, PF-06273340 (CAS No. 1402438-74-7), CH7057288 (CAS No. 2095616-82-1), GNF-5837 (CAS No. 1033769-28-6), SP600125 (CAS No. 129-56-6), Danusertib, BMS-754807 (CAS No. 1001350-96- 4), PBI-200 und PBI-100 (Pyramid Biosciences), GW441756 (CAS No. 504433-23-2), UNC2025 (CAS No. 1429881-91-3), BMS-935177 (CAS No. 1231889-53-4) und/oder Sitravatinib.
In bevorzugten Ausführungsformen ist der pharmazeutische
Hemmwirkstoff ein VEGFR-Inhibitor. „VEGFR" bezeichnet die Familie der Vaskulären Endothelialen Wachstumsfaktorrezeptoren vascular endothelial growth factor receptors'), welche durch die Mitglieder VEGFR1, VEGFR2 und VEGFR3 gebildet ist. VEGFR1 ist auch bekannt als FLTI („fms related receptor tyrosine kinase 1") und ist durch das Gen FLTI codiert. VEGFR2 ist auch bekannt als KDR („kinase insert domain receptor") und ist durch das Gen KDR codiert. VEGFR3 ist auch bekannt als FLT4 („fms related receptor tyrosine kinase 4") und ist durch das Gen FLT4 codiert. „VEGFR- Inhibitoren" sind pharmazeutische Hemmwirkstoffe, welche die Aktivität von einem oder mehreren VEGFR, beispielsweise KDR, inhibieren. Geeignete VEGFR-Inhibitoren sind beispielsweise, Axitinib, Sorafenib, Sitravatinib, Cediranib, Tivozanib, RAF265 (CAS No. 927880-90-8), BI 836880 (Boehringer Ingelheim), IBI305 (Innovent), Famitinib, Glesatinib, Sunitinib, Rivoceranib, Lenvatinib, Tesevatinib, Vandetanib, BMS-690514 (CAS No. 859853- 30-8), Anlotinib, Brivanib, Vatalanib, Foretinib, Brivanib Alaninat, Apatinib, Ponatinib, Motesanib, Dovitinib, Nintedanib, Lucitanib, Telatinib, Surufatinib, Linifanib, Pazopanib, XL999 (CAS No. 705946-27-6), Cabozantinib, MGCD-265 (CAS No. 875337- 44-3), K18751 (CAS No. 228559-41-9), Regorafenib, Golvatinib, Semaxanib, OSI-930 (CAS No. 728033-96-3), Ningetinib, Sulfatinib, Fruquintinib, BMS-794833 (CAS No. 1174046-72-0), Toceranib, ZM 323881 HCl (CAS No. 193000-39-4), Donafenib, K120227 (CAS No. 623142-96-1), SU14813 (CAS No. 627908-92-3), ODM-203 (CAS No. 1430723-35-5), Ramucirumab, Altiratinib, BFH772 (CAS No. 890128-81-1), BAW2881 (CAS No. 861875-60-7), SU5402 (CAS No. 215543-92-3), LY2874455 (CAS No. 1254473-64-7), AZD2932 (CAS No. 883986-34-3), SKLB1002 (CAS No. 1225451-84-2), Vorolanib, SKLB 610 (CAS No. 1125780-41-7), Erdafitinib, Bevacizumab, Sevacizumab, PDGFR inhibitor 1 (CAS No. 1225278-16- 9), KSI-501 (Kodiak Sciences), HLX06 (Henlix), AK109 (Akeso), JY025 (Beijing Dongfang Biotech Co., Ltd.), Ranibizumab, Olinvacimab, LY09004, HB0025 (Huabo Biopharm Co., Ltd.), CEP- 11981 (ESK981, CAS No. 856691-93-5), Chiauranib, Kanitinib, HB002.1T (Huabo Biopharm Co., Ltd.) und/oder Tanibirumab.
In bevorzugten Ausführungsformen ist der pharmazeutische Hemmwirkstoff ein PDGFR-Inhibitor „PDGFR" sind Blutplättchenabgeleitete Wachstumsfaktorrezeptoren (platelet-derived growth factor receptors'). PDGFR sind Rezeptortyrosinkinasen, welche Blutplättchen-abgeleitete Wachstumsfaktoren (platelet-derived growth factor, PDGF) binden. Die PDGF binden an die PDGFR- Isoformen PDGFR-a und PDGFR-ß. Nach Bindung des PDGF dimerisieren die beiden PDGFR-Isoformen und bilden so die möglichen Dimere PDGFR-aa, PDGFR-ßß und PDGFR-aß. PDGFR-a ist durch das Gen PDGFRA codiert. PDGFR-ß ist durch das Gen PDGFRB codiert. „PDGFR-Inhibitoren" sind demzufolge pharmazeutische Hemmwirkstoffe, welche die Aktivität von PDGFR-a und/oder PDGFR- ß inhibieren. Geeignete PDGFR-Inhibitoren sind beispielsweise Linifanib, Tivozanib, Imatinib, Axitinib, Masitinib, Amuvatinib, Crenolanib, Famitinib, Lucitanib, Nintedanib, Orantinib, Ponatinib, Cediranib, Sorafenib, Lenvatinib, Vatalanib, Sunitinib, Regorafenib, Telatinib, Pazopanib, Motesanib, OSI-930 (CAS No. 728033-96-3), K18751 (CAS No. 228559-41-9), XL999 (CAS No. 705946-27-6), K120227 (CAS No. 623142-96-1), SU14813 (CAS No. 627908-92-3), Toceranib, BAW2881 (CAS No. 861875-60-7), SU5402 (CAS No. 215543-92-3), AZD2932 (CAS No. 883986-34-3), Vorolanib, Erdafitinib, PDGFR inhibitor 1 (CAS No. 1225278-16- 9), Foretinib, Avapritinib, CP-673451 (CAS No. 343787-29-1), Chiauranib und/oder Sitravatinib. In bestimmten Ausführungsformen kann ein PDGFR-Inhibitor bzw. ein VEGFR-Inhibitor sowohl ein PDGFR-Inhibitor als auch ein VEGFR-Inhibitor sein, d. h. derselbe Hemmwirkstoff ist in der Lage, die Aktivität von PDGFR und VEGFR zu inhibieren. Geeignete pharmazeutische Hemmwirkstoffe, die in diesem Sinne PDGFR- und VEGFR-Inhibitoren sind, sind beispielsweise Sorafenib, Sunitinib, Midostaurin, Linifanib, Tivozanib, Axitinib, Pazopanib, Orantinib, Axitinib, Nintedanib, Lenvatinib, Ponatinib, Lucitanib, Regorafenib, Cediranib, Telatinib, Vatalanib, Motesanib, XL999 (GAS No. 705946-27-6), OSI-930 (GAS No. 728033-96-3), K18751 (GAS No. 228559-41-9), Sitravatinib, K120227 (GAS No. 623142-96-1), SU14813 (GAS No. 627908-92-3), BAW2881 (GAS No. 861875-60-7), Toceranib, SU5402 (GAS No. 215543-92-3), AZD2932 (GAS No. 883986-34-3), Vorolanib, Erdafitinib, PDGFR inhibitor 1 (GAS No. 1225278-16-9), Chiauranib und/oder Foretinib.
In bevorzugten Ausführungsformen ist der pharmazeutische Hemmwirkstoff ein FGFR-Inhibitor. „FGFR" bezeichnet die Rezeptortyrosinkinase-Familie der Fibroblasten- Wachstumsfaktorrezeptoren (fibroblast growth factor receptors') und umfasst die Mitglieder FGFR1, FGFR2, FGFR3 und FGFR4. Der Fibroblasten-Wachstumsfaktorrezeptor 1 (fibroblast growth factor receptor 1, FGFR1) ist durch das Gen FGFR1 codiert. Der Fibroblasten-Wachstumsfaktorrezeptor 2 (fibroblast growth factor receptor 2, FGFR2) ist durch das Gen FGFR2 codiert. Der Fibroblasten-Wachstumsfaktorrezeptor 3 (fibroblast growth factor receptor 3, FGFR3) ist durch das Gen FGFR3 codiert. Der Fibroblasten-Wachstumsfaktorrezeptor 4 (fibroblast growth factor receptor 4, FGFR4) ist durch das Gen FGFR4 codiert. „FGFR- Inhibitoren" sind demzufolge pharmazeutische Hemmwirkstoffe, welche die Aktivität von mindestens einem Mitglied der FGFR inhibieren. Geeignete FGFR-Inhibitoren sind beispielsweise Erdafitinib, Rogaratinib, Infigratinib, Anlotinib, Alofanib, Pemigatinib, ASP5878 (CAS No. 1453208-66-6), AZD4547 (GAS No. 1035270-39-3), Debio 1347 (GAS No. 1265229-25-1), Derazantinib, Fisogatinib, Futibatinib, PRN1371 (GAS No. 1802929-43-6), E7090 (GAS No.1622204-21-0), CPL304110 (GAS No. 1627826-19-0), HMPL- 453 (HutchMed), MAX-40279 (GAS No. 2070931-57-4), LY3076226 (Eli Lilly), Bemarituzumab, Vofatamab, Brivanib, Brivanib Alaninat, PD173074 (GAS No. 219580-11-7), Nintedanib, FP-1039 (Five Prime), Aprutumab Ixadotin, Aprutumab, Dovitinib, Lucitanib, Ponatinib, Danusertib, Masitinib, Orantinib, Surufatinib, XL228 (GAS No. 898280-07-4), XL999 (GAS No. 705946-27-6), Roblitinib, H3B-6527 (GAS No. 1702259-66-2), INCB062079 (Incyte), LY2874455 (GAS No. 1254473-64-7), S49076 (GAS No. 1265965-22-7), BMS- 794833 (GAS No. 1174046-72-0), Golvatinib, Cediranib, Sulfatinib, ODM-203 (GAS No. 1430723-35-5), Ningetinib, SU5402 (GAS No. 215543-92-3) und/oder Altiratinib.
In bevorzugten Ausführungsformen ist der pharmazeutische Hemmwirkstoff ein PI3K-Inhibitor. „PI3K" sind Phosphoinositid-3- Kinasen, die auch als Phosphatidylinositol-3-Kinasen bezeichnet werden. Die PI3K-Familie ist in vier unterschiedliche Klassen (Klasse I-IV) aufgeteilt. Klasse I PI3K katalysieren die Umwandlung von Phosphatidylinositol-4,5-bisphosphaten zu Phosphatidylinositol-3,4,5-trisphosphaten . Klasse I PI3K sind heterodimere Moleküle, die aus einer regulatorischen und einer katalytischen Untereinheit bestehen. Klasse I PI3K sind weiter in die Subgruppen IA und IB unterteilt. Klasse IA PI3K sind gebildet aus einer pllO katalytischen Untereinheit und einer p85 regulatorischen Untereinheit. Die pllO katalytische Untereinheit wird wiederum gebildet aus den Proteinen pllO-a, pllO-ß, pllO-y und/oder pll0-5, welche durch die Gene PIK3CA, PIK3CB, PIK3CG beziehungsweise PIK3CD codiert sind. „PI3K-Inhibioren" sind erfindungsgemäß Inhibitoren, welche die katalytische Aktivität mindestens eines der Proteine pllO-a, pllO-ß, pllO-y und/oder pll0-5 inhibieren. Geeignete Inhibitoren von pllO-a, pllO-ß, pllO-y und/oder pll0-5 sind beispielsweise Copanlisib, Idelalisib, Duvelisib, Gedatolisib, Dactolisib, Capivasertib, Paxalisib, Alpelisib, Buparlisib, Inavolisib, Sapanisertib, Eganelisib, Torkinib, Bimiralisib, Voxtalisib, Omipalisib, Tenalisib, Linperlisib, Serabelisib, Leniolisib, Parsaclisib, Pilaralisib, Pictilisib, MEN1611 (CAS No. 1007207-67-1), WX-037 (UCB-1370037, Wilex), SF1126 (GAS No. 936487-67-1), BGT226 (NVP- BGT226) maleate (GAS No. 1245537-68-1), Fimepinostat, RG6114
(GAS No. 2060571-02-8), PF-05212384 (GAS No. 1197160-78-3), CYH33 (GAS Nro. 1494684-28-4), HS-10352 (Jiangsu Hansoh Pharmaceutical Co., Ltd.), HMPL-689 (HutchMed), ETP-46464 (GAS No. 1345675-02-6), GDC-0349 (GAS No. 1207360-89-1), OSI-027 (GAS No. 936890-98-1), Samotolisib, GSK1059615 (GAS No. 958852-01-2), PF-04691502 (GAS No. 1013101-36-4), Apitolisib, GNE-477 (GAS No. 1032754-81-6), PI-103 (GAS No. 371935-74-9), SF2523 (GAS No. 1174428-47-7), NU7441 (GAS No. 503468-95-9), HEC68498 (HEG Pharm), BGB-10188 (BeiGene), AZD8186 (GAS No. 1627494-13-6), GSK2636771 (GAS No. 1372540-25-4), TQ-B3525 (Chia Tai Tianqing Pharmaceutical Group Co., Ltd.), Umbralisib, Taselisib, TL117 (Suzhou Junde Biotechnology Co., Ltd), SHC014748M (Nanjing Sanhome Pharmaceutical, Co., Ltd.), CYH33 (CAS No. 1494684-28-4) und/oder ZX-101A (Hangzhou Zenshine Pharmaceuticals Co., Ltd.).
In bevorzugten Ausführungsformen ist der pharmazeutische Hemmwirkstoff ein PKB-Inhibitor. „PKB" (Proteinkinasen B), auch bekannt als „AKT", bezeichnet eine Familie von Serin/Threonin- Proteinkinasen . AKT wird durch PI3K aktiviert. Ein AKT-Inhibitor ist daher ein pharmazeutischer Hemmwirkstoff, welcher in der Lage ist, die Aktivität von PI3K zu inhibieren. Ein AKT- Inhibitor ist daher im Sinn der Erfindung auch ein PI3K- Inhibitor. Zu der Familie gehören die AKT-Isoformen PKBa (auch bekannt als AKT1), PKBß (auch bekannt als AKT2) und PKBy (auch bekannt als AKT3), welche durch die Gene AKT1, AKT2 beziehungsweise AKT3 codiert werden. So, wie der Begriff hier verwendet wird, sind „AKT-Inhibitoren" demnach pharmazeutische Hemmwirkstoffe, welche die Aktivität von PKBa, PKBß und/oder PKBy inhibieren. In bestimmten Ausführungsformen kann ein AKT- Inhibitor die Kinaseaktivität der wildtypischen und/oder mutierten Variante von PKBa, PKBß und/oder PKBy inhibieren. Geeignete AKT-Inhibitoren sind beispielsweise Ipatasertib, Miransertib, Afuresertib, Capivasertib, Uprosertib, Borussertib, BAY1125976 (GAS No. 1402608-02-9), MK-2206 (GAS No. 1032350-13- 2), TAS-117 (GAS No. 1402602-94-1), GSK690693 (GAS No. 937174- 76-0), PF-04691502 (GAS No. 1013101-36-4), AT7867 (GAS No. 857531-00-1), A-674563 (GAS No. 552325-73-2), AT13148 (GAS No. 1056901-62-2), Alobresib, Deguelin,Triciribine (GAS No. 35943- 35-2), TAS0612 (Taiho Oncology, Inc.), LY2780301 (Eli Lilly) und/oder M2698 (MSC2363318A, GAS No. 1379545-95-5).
In bevorzugten Ausführungsformen ist der pharmazeutische Hemmwirkstoff ein mTOR-Inhibitor. Das „mechanistische Ziel von Rapamycin" („mechanistic target of rapamycin", „mTOR") ist eine Kinase, die durch das Gen MTOR codiert ist. mTOR bildet den Kern von den zwei Protein-Komplexen mTOR-Komplex 1 (mTORCl) und mTOR- Komplex 2 (mTORC2). mTORCl wird gebildet durch mTOR, „regulatorisch-assoziiertes Protein von mTOR" („regulatory- associated protein of mTOR", RAPTOR, codiert durch das Gen RAPTOR), „tödlich in Säugetieren mit SEC13 Protein 8"
(„mammalian lethal with SEC13 protein 8", MLST8, codiert durch das Gen MLST8) und die nicht-Kernkomponenten PRAS40 (codiert durch das Gen AKT1S1) und DEPTOR (codiert durch das Gen DEPTOR). mTORC2 ist zusammengesetzt aus mTOR, „Rampamycin-insensitiver Begleiter von mTOR" („rapamycin-insensitive companion of mTOR", codiert durch das Gen RICTOR), MLST8 und dem „Stress-aktivierten Proteinkinase-interagierenden Protein 1" („stress-activated protein kinase interacting protein 1", SIN1, codiert durch das Gen MAPKAP1). Im Sinne der Erfindung sind „mTOR-Inhibitoren" pharmazeutische Hemmwirkstoffe, welche die Aktivität von mTOR, mTORCl und/oder mTORC2 inhibieren. Geeignete mTOR-Inhibitoren sind beispielsweise Temsirolimus, Dactolisib, Pictilisib, Vistusertib, Gedatolisib, Sapanisertib, Torkinib, PF-04691502
(GAS No. 1013101-36-4), AZD8055 (GAS No. 1009298-09-2), Ridaforolimus, RMC-5552 (Revolution Medicines), BGT226 (NVP- BGT226) maleate (GAS No. 1245537-68-1), Paxalisib, Omipalisib, Everolimus, PF-05212384 (GAS No. 1197160-78-3), Rapamycin, WYE- 125132 (GAS No. 1144068-46-1), ABI-009 (Nab-Sirolimus), Voxtalisib, Zotarolimus, Torin 2 (GAS No. 1223001-51-1), Torin 1 (GAS No. 1222998-36-8), ETP-46464 (GAS No. 1345675-02-6), GDC- 0349 (GAS No. 1207360-89-1), OSI-027 (GAS No. 936890-98-1), WYE- 354 (GAS No. 1062169-56-5), WYE-687 (GAS No. 1062161-90-3), CZ415 (GAS No. 1429639-50-8), WAY-600 (GAS No. 1062159-35-6), XL388 (GAS No. 1251156-08-7), Samotolisib, GSK1059615 (GAS No. 958852-01-2), Bimiralisib, PP121 (GAS No. 1092788-83-4), Onatasertib, Apitolisib, GNE-477 (GAS No. 1032754-81-6), CC-115 (GAS No. 1228013-15-7), PI-103 (GAS No. 371935-74-9), SF2523 (GAS No. 1174428-47-7), NU7441 (GAS No. 503468-95-9), KU-0063794 (GAS No. 938440-64-3), Palomid 529 (P529, GAS No. 914913-88-5), RTB101 (resTORbio), HEC68498 (HEG Pharm) und/oder RMC-5552 (GAS No. 382768-62-7).
In bestimmten Ausführungsformen kann ein PI3K-Inhibitor bzw. ein mTOR-Inhibitor sowohl ein PI3K-Inhibitor als auch ein mTOR- Inhibitor sein, d. h. derselbe Hemmwirkstoff ist in der Lage, die Aktivität von PI3K und mTOR zu inhibieren. PI3K-und-mTOR- Inhibitoren sind demzufolge Hemmwirkstoffe, welche die katalytische Aktivität mindestens eines der Proteine ausgewählt aus der Gruppe bestehend aus pllO-a, pllO-ß, pllO-y und pllO-5 und die Aktivität mindestens eines der Proteine ausgewählt aus der Gruppe bestehend aus mTOR, mTORCl oder mTORC2 inhibieren. Geeignete PI3K-und-mTOR-Inhibitoren sind beispielsweise Dactolisib, Pictilisib, Omipalisib, Buparlisib, Apitolisib, Gedatolisib, Bimiralisib, Paxalisib,Voxtalisib, Samotolisib, Sapanisertib, Torkinib, PF-04691502 (GAS No. 1013101-36-4), BGT226 (NVP-BGT226) maleate (GAS No. 1245537-68-1), GSK1059615 (GAS No. 958852-01-2), Voxtalisib, NVP-BGT226 (GAS No. 1245537- 68-1), PKI-402 (GAS No. 1173204-81-3), VS-5584 (SB2343, GAS No. 1246560-33-7), GNE-477 (GAS No. 1032754-81-6), PF-05212384 (GAS No. 1197160-78-3), ETP-46464 (GAS No. 1345675-02-6), GDC-0349 (GAS No. 1207360-89-1), OSI-027 (GAS No. 936890-98-1), Samotolisib, GSK1059615 (GAS No. 958852-01-2), Apitolisib, GNE- 477 (GAS No. 1032754-81-6), PI-103 (GAS No. 371935-74-9), SF2523 (GAS No. 1174428-47-7), NU7441 (GAS No. 503468-95-9) und/oder HEC68498 (HEG Pharm).
Es versteht sich, dass das erfindungsgemäße Verfahren auch beliebige Kombinationen der vorgenannten Ausführungsformen hinsichtlich der pharmazeutischen Hemmwirkstoffe umfassen kann.
In bevorzugten Ausführungsformen ist der pharmazeutische Hemmwirkstoff ein Kinase-Inhibitor, insbesondere ein Tyrosinkinase-Inhibitor. In einigen Ausführungsformen kann der pharmazeutische Hemmwirkstoff verschiedene Tyrosinkinasen aus verschiedenen Familien inhibieren.
In weiteren bevorzugten Ausführungsformen ist der pharmazeutische Hemmwirkstoff ein GTPase-Inhibitor.
In weiteren Ausführungsformen ist der pharmazeutische Hemmwirkstoff ein Transkriptionsfaktor-Inhibitor. Vorzugsweise ist der pharmazeutische Hemmwirkstoff bzw. Inhibitor eine niedermolekulare Verbindung oder ein, insbesondere monoklonaler, Antikörper.
Überraschenderweise hat sich gezeigt, dass das erfindungsgemäße Verfahren im Hinblick auf die Art der malignen Erkrankung nicht sonderlich beschränkt ist, sondern vielmehr eine zuverlässige Vorhersage der Ansprechwahrscheinlichkeit bei einer Vielzahl verschiedener maligner Erkrankungen ermöglicht. Diesbezüglich wird auch auf die nachfolgenden Ausführungsbeispiele verwiesen.
Die maligne Erkrankung kann insbesondere ein Melanom, ein Karzinom, ein Sarkom, ein Glioblastom, ein Lymphom und/oder eine Leukämie umfassen. Das Karzinom kann zum Beispiel ein Adenokarzinom, ein Plattenepithelkarzinom, ein kleinzelliges Karzinom, ein neuroendokrines Karzinom, ein Nierenzellkarzinom, ein Urothelkarzinom, ein hepatozelluläres Karzinom, ein Analkarzinom, ein Bronchialkarzinom, ein Endometriumkarzinom, ein cholangiozelluläres Karzinom, ein hepatozelluläres Karzinom, ein Hodenkarzinom, ein kolorektales Karzinom, ein Karzinom des Kopf- und Halsbereichs, ein Karzinom des Ösophagus, ein Magenkarzinom, ein Mammakarzinom, ein Nierenkarzinom, ein Ovarialkarzinom, ein Pankreaskarzinom, ein Prostatakarzinom, ein Schilddrüsenkarzinom und/oder ein Zervixkarzinom umfassen. Ein Sarkom kann beispielsweise ein Angiosarkom, ein Chondrosarkom, ein Ewing-Sarkom, ein Fibrosarkom, ein Kaposi-Sarkom, ein Liposarkom, ein Leiomyosarkom, ein malignes fibröses Histiozytom, ein neurogenes Sarkom, ein Osteosarkom oder ein Rhabdomyosarkom sein. Eine Leukämie kann beispielsweise eine akute myeloische Leukämie (AML), eine akute lymphatische Leukämie (ALL), eine chronische lymphatische Leukämie (CLL), oder eine chronische myeloische Leukämie (CML) sein. Ein Lymphom kann ein Hodgkin-Lymphom oder Non-Hodgkin-Lymphom sein. Ein Non- Hodgkin-Lymphom kann ein B-Zell-Lymphom oder ein T-Zell-Lymphom sein. Insbesondere handelt es sich bei der malignen Erkrankung um ein, gegebenenfalls metastasiertes, malignes Melanom oder Karzinom.
Das Gen PPP1R18 oder „Proteinphosphatase 1 regulierende Untereinheit 18" ist auch bekannt unter den Synonymen HKMT1098 und KIAA1949. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von PPP1R18 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (6:30675116-30688275). Besonders bevorzugt ist das mindestens eine CpG-Dinukleotid in einem Teil der Promotorregion von PPP1R18 enthalten (6:30683976-30687272, SEQ ID NO:1). Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von PPP1R18 sind in Beispiel 1 beschrieben.
Das Gen RUNX1 oder „RUNX family transcription factor 1" ist auch bekannt unter den Synonymen AML1, CBFA2, EVI-1, AMLCR1, PEBP2aB, CBF2alpha, AML1-EVI-1 und PEBP2alpha. Bevorzugte CpG- Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von RUNX1 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen, enthalten (21:34780187-36019819). Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von RUNX1 mindestens ein CpG-Dinukleotid in einem Teil der Promotorregion (21:35045377-35053986, SEQ ID NO:37). Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von RUNX1 sind in Beispiel 1 beschrieben.
Das Gen PLEC oder „plectin" ist auch bekannt unter den Synonymen EBS1, EBSMD, EBSND, EBSO, EBSOG, EBSPA, HD1, LGMD2Q, LGMDR17, PCN1, PLEClb und PLTN. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von PLEC sind beispielsweise in den Transkript-codierenden Bereichen, dem Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (8:143910841-143983887). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von PLEC zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (8:143934771-143952510, SEQ ID NO:90). Weitere bevorzugte CpG- Dinukleotide für die Methylierungsanalyse von PLEC sind in Beispiel 2 beschrieben.
Das Gen LAMB3 oder „Laminin Untereinheit Beta 3, laminin subunit beta 3" ist auch bekannt unter den Synonymen ALIA, BM600-125KDA, LAM5 und LAMNB1. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von LAMB3 sind beispielsweise in den Transkript-codierenden Bereichen, dem Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (1:209607146-209659806). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von LAMB3 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (1:209641284-209659200, SEQ ID NO:24). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von LAMB3 sind in Beispiel 2 beschrieben.
Das Gen TINAGL1 oder „tubulointerstitial nephritis antigen like 1" ist auch bekannt unter den Synonymen ARG1, LCN7, LIECG3 und TINAGRP. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von TINAGL1 sind beispielsweise in den Transkript-codierenden Bereichen, dem Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (1:31565939-31592973). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von TINAGL1 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (1:31572254-315797 8, SEQ ID NO:75). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von TINAGL1 sind in Beispiel 2 beschrieben.
Das Gen CI9orf33 oder „chromosome 19 open reading frame 33" ist auch bekannt unter den Synonymen „hepatocyte growth factor activator inhibitor type 2-related small protein" und IMUP H2RSP, IMUP-1 und IMUP-2. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von Cl9orf33 sind beispielsweise in den Transkript-codierenden Bereichen, dem Genkörper, sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (19:38280165-38319236). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von CI9orf33 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (19:38302227-38305800, SEQ ID NO:43). Weitere bevorzugte CpG-Dinukleotide für die Methylierungsanalyse von CI9orf33 sind in Beispiel 2 beschrieben.
Das Gen IL18 oder „Interleukin 18" ist auch bekannt unter den Synonymen IGIF, IL-18, IL-lg und IL1F4. Bevorzugte CpG- Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von IL18 sind beispielsweise in den Transkript-codierenden Bereichen, dem Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (11:112137936-112168855). Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von IL18 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (11:112155341-112165931, SEQ ID NO:355) . Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von IL18 sind in Beispiel 2 beschrieben.
Das Gen S100A2 oder „S100 Kalzium-bindendes Protein A2" (englisch: S100 calcium binding protein A2) ist auch bekannt unter den Synonymen CAN19 und S100L. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von S100A2 sind beispielsweise in den Transkript-codierenden Bereichen, dem Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (1:153557345-153575491). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von S100A2 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (1:153563538-153569327, SEQ ID NO:356). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von S100A2 sind in Beispiel 2 beschrieben.
Das Gen TOBI oder „Transducer von ERBB2, 1" (englisch: transducer of ERBB2 1) ist auch bekannt unter den Synonymen APRO5, APRO6, PIG49, TOB, TROB und TROB1. Bevorzugte CpG- Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von TOBI sind beispielsweise in den Transkript-codierenden Bereichen, dem Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und der langen nicht-codierenden TOBI Antisense RNA 1, codiert durch ENSG00000229980 enthalten (17:50861408-50915767). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von TOBI zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers der langen nichtcodierenden TOBI Antisense RNA 1 (17:50890636-50896863, SEQ ID NO:357) . Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von TOBI sind in Beispiel 2 beschrieben.
Das Gen TOR4A oder „Torsin Familie 4 Mitglied A" (englisch: torsin family 4 member A) ist auch bekannt unter dem Synonym C9orfl67. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von TOR4A sind beispielsweise in den Transkript-codierenden Bereichen, dem Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (9:137274720-137283779). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von TOR4A zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (9:137276024-137280343, SEQ ID NO:358). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von TOR4A sind in Beispiel 2 beschrieben.
Das Gen FBRSL1 codiert für „Fibrosin-ähnlich 1" (englisch: fibrosin like 1). Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von FBRSL1 sind beispielsweise in den Transkript-codierenden Bereichen, dem Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (12:132483422-132589876). Besonders bevorzugt umfasst erfindungsgemäße DNA-Methylierungsanalyse von FBRSL1 zumindest ein CpG-Dinukleotid in einem Teil der Genkörperregion (12:132514348-132533034, SEQ ID NO:359). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von FBRSL1 sind in Beispiel 2 beschrieben.
Das Gen S100A10 oder „S100 Kalzium-bindendes Protein A10" (englisch: S100 calcium binding protein A10) ist auch bekannt unter den Synonymen 42C, ANX2L, ANX2LG, CAL1L, CLP11, Ca[1], GPU , Pli und plO. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von S100A10 sind beispielsweise in den Transkript-codierenden Bereichen, dem Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (1:151979735-151998987). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von S100A10 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (1:151990418-151997244, SEQ ID NQ:360). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von S100A10 sind in Beispiel 2 beschrieben.
Das Gen LRRFIP2 oder „LRR bindendes FLII interagierendes Protein 2" (englisch: LRR binding FLII interacting protein 2) ist auch bekannt unter dem Synonym HUFI-2. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von LRRFIP2 sind beispielsweise in den Transkript-codierenden Bereichen, dem Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und dem Gen ENSG00000271993 (3:37049702-37191264) enthalten, welches für eine IRRFIP2-Antisense RNA codiert. Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von LRRFIP2 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion von LRRFIP2 und des für die LRRFIP2-Antisense RNA codierenden Gens ENSG00000271993 (3:37175758-37189914, SEQ ID NO:361). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von LRRFIP2 sind in Beispiel 2 beschrieben.
Das Gen SPIDR oder „Gerüstprotein involviert in DNA-Reparatur" (englisch: scaffold protein involved in DNA repair) ist auch bekannt unter dem Synonym KIAA0146. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von SPIDR sind beispielsweise in den Transkript-codierenden Bereichen, dem Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (8:47256649-47738528). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von SPIDR zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (8:47349863-47359489, SEQ ID NO:362). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von SPIDR sind in Beispiel 2 beschrieben.
Das Gen ASB1 oder „Ankyrin-Wiederholung und SOCS-Box enthaltend 1" (englisch: ankyrin repeat and SOGS box containing 1) ist auch bekannt unter dem Synonym ASB-1. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von ASB1 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (2:238422129-238457801). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von ASB1 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (2:238435501-238446259, SEQ ID NO:363). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von ASB1 sind in Beispiel 2 beschrieben.
Das Gen LAMA3 oder „Laminin Untereinheit Alpha 3, laminin subunit alpha 3" ist auch bekannt unter den Synonymen El70, LOGS, BM600, und LAMNA. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von LAMA3 sind beispielsweise in den Transkript-codierenden Bereichen, dem Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (18:23675244-23970826). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von LAMA3 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (18:23865846-23880913, SEQ ID NO:17). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von LAMA3 sind in Beispiel 2 beschrieben.
Das Gen ENSG00000229672 codiert für eine lange nicht-codierende RNA. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von ENSG00000229672 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (10:3739910-3772752). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von ENSG00000229672 zumindest ein CpG-Dinukleotid in einem Teil des Promotors (10:3761335-3766181, SEQ ID NO:364). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von ENSG00000229672 sind in Beispiel 2 beschrieben. Das Gen MYH16 oder „Myosin schwere Kette 16 Pseudogen, myosin heavy chain 16 pseudogene" ist auch bekannt unter den Synonymen MYH5, MHC20 und MYH16P. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von MYH16 sind beispielsweise in den Transkript-codierenden Bereichen, dem Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (7:99234452-99331846). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von MYH16 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (7:99272482-99275507, SEQ ID NO:27). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von MYH16 sind in Beispiel 2 beschrieben.
Das Gen GRID1 oder „inonotroper Glutamatrezeptor δ-Typ Untereinheit 1, glutamate ionotropic receptor delta type subunit 1" ist auch bekannt unter dem Synonym GluDl. Bevorzugte CpG- Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von GRID1 sind beispielsweise in den Transkript-codierenden Bereichen, dem Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und den GRID1-Antisense RNAs (beispielsweise ENSG00000270002) enthalten (10:85578586- 86379598) . Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von GRID1 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers von GRID1 und der Promotorregion der GRID1-Antisense RNA ENSG00000270002 (10:85637128-85653498, SEQ ID NO:28). Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von GRID1 sind in Beispiel 2 beschrieben.
Das Gen CHD2 oder „chromodomain helicase DNA binding protein 2" ist auch bekannt unter dem Synonymen EEOC und DEE94. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von CHD2 sind beispielsweise in den Transkript-codierenden Bereichen, dem Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (15:92893529-93032259). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von CHD2 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (15:92897248- 92927312, SEQ ID NO:30). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von CHD2 sind in Beispiel 2 beschrieben .
Das Gen TAFAZZIN oder „tafazzin, phospholipid-lysophospholipid transacylase" ist auch bekannt unter den Synonymen BTHS, CMD3A, EFE, EFE2, G4.5, LVNCX, TAZ und Tazl. Bevorzugte CpG- Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von TAFAZZIN sind beispielsweise in den Transkript-codierenden Bereichen, dem Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (X:154406693-154423207). Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von TAFAZZIN zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (X:154408091-154411364, SEQ ID NO:62). Die Promotorregion von TAFAZZIN ist ebenfalls die Promotorregion des Gens DNASE1I1. Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von TAFAZZIN sind in Beispiel 3 beschrieben.
Das Gen GNG7 codiert für das Protein „G-Protein Untereinheit Gamma 1, G protein subunit gamma 7". Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von GNG7 sind beispielsweise in den Transkript-codierenden Bereichen, dem Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (19:2505778-2710194). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von GNG7 zumindest ein CpG-Dinukleotid in einem Teil der alternativen Promotorregion (19:2535289-2548878, SEQ ID NO:34). Weitere bevorzugte CpG-Dinukleotide für die Methylierungsanalyse von GNG7 sind in Beispiel 3 beschrieben.
Das Gen ANXA11 oder „Annexin All" ist auch bekannt unter den Synonymen ALS23, ANX11, CAP-50 und CAP50. Bevorzugte CpG- Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von ANXA11 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (10:80145436-80216216). Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von ANXA11 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (10:80197502-80212413, SEQ ID NO:366) . Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von ANXA11 sind in Beispiel 3 beschrieben.
Das Gen ANXA2 oder „Annexin A2" ist auch bekannt unter den Synonymen ANX2 ANX2L4, CAL1H, HEL-S-270, LIP2, LPC2, LPC2D, P36 und PAP-IV. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von ANXA2 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (15:60340237-60407620). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von ANXA2 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (15:60387415-60403797, SEQ ID NO:367). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von ANXA2 sind in Beispiel 3 beschrieben.
Das Gen MAFG oder „MAE bZIP Transkriptionsfaktor G" (englisch: MAF bZIP transcription factor G) ist auch bekannt unter dem Synonym hMAF. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von MAFG sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (17:81915678-81931532). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von MAFG zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (17:81919353-81927992, SEQ ID NO:368). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von MAFG sind in Beispiel 3 beschrieben.
Das Gen PKP3 codiert für „Plakophilin 3" (englisch: plakophilin 3). Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von PKP3 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (11:387251-409900). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von PKP3 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (11:391907- 396042, SEQ ID NO:369). Weitere bevorzugte CpG-Dinukleotide für die Methylierungsanalyse von PKP3 sind in Beispiel 3 beschrieben .
Das Gen ABTB2 oder „Ankyrin-Wiederholung und BTB-Domäne enthaltend 2" (englisch: ankyrin repeat and BTB domain containing 2) ist auch bekannt unter den Synonymen ABTB2A und BTBD22. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von ABTB2 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (11:34147635-34368643). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von ABTB2 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (11:34195474- 34280454) . Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von ABTB2 sind in Beispiel 3 beschrieben. Das Gen ENSG00000287625 codiert für eine lange nicht-codierende RNA. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von ENSG00000287625 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (2:84922387-84970135). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von ENSG00000287625 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (2:84938759-84955130, SEQ ID NO:372). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von ENSG00000287625 sind in Beispiel 3 beschrieben.
Das Gen ARL14 oder „ADP-Ribosylierungsfaktor ähnliche GTPase 14" (englisch: ADP ribosylation factor like GTPase 14) ist auch bekannt unter dem Synonym ARF7. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von ARL14 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (3:160670428-160686282). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von ARL14 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (3:160675790-160679619, SEQ ID NO:373). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von ARL14 sind in Beispiel 3 beschrieben.
Das Gen BCAR3 oder „BCAR Adapterprotein, NSP-Familienmitglied" (englisch: BCAR3 adaptor protein, NSP family member) ist auch bekannt unter den Synonymen AND-34, MIG7, NSP2 und SH2D3B. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von BCAR3 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (1:93557549-93855963). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von BCAR3 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (1:93694082- 93712201, SEQ ID NO:374). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von BCAR3 sind in Beispiel 3 beschrieben .
Das Gen BIK oder „BCL2 interagierender Killer" (englisch: „BCL2 interacting killer") ist auch bekannt unter den Synonymen BIP1, BP4 und NBK. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von BIK sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (22:43105101-43136810). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von BIK zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (22:43121022-43133479, SEQ ID NO:375). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von BIK sind in Beispiel 3 beschrieben.
Das Gen CCND3 codiert für „Cyclin D3" (englisch: „cyclin D3"). Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von CCND3 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (6:41930373-42057212). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von CCND3 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (6:41957336- 41972623, SEQ ID NO:376). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von CCND3 sind in Beispiel 3 beschrieben .
Das Gen CMIP oder „c-MAF induzierendes Protein" (englisch: „c-
Maf inducing protein") ist auch bekannt unter dem Synonym TCMIP. Bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von CMIP sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (16:81439687-81717715). Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von CMIP zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (16:81480995-81512636, SEQ ID NO:377) und/oder einem Teil des Genkörpers (16:81618351- 81648447, SEQ ID NO:378). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von CMIP sind in Beispiel 3 beschrieben .
Das Gen EIK3 oder „ETS Transkriptionsfaktor ELK3" (englisch: „EIS transcription factor EIK3") ist auch bekannt unter den Synonymen ERP, NET, SAP-2 und SAP2. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von EIK3 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (12:96190623-96274427). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von EIK3 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion und/oder des Genkörpers (12:96191446-96224107, SEQ ID NO:379). Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von EIK3 sind in Beispiel 3 beschrieben.
Das Gen HRH1 oder „Histaminrezeptor Hl" (englisch: „histamine receptor Hl") ist auch bekannt unter den Synonymen Hl-R, H1R, HH1R und hisHl. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von HRH1 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (3:11127806-11268802). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von HRH1 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (3:11132402-11144858, SEQ ID NO:380). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von HRH1 sind in Beispiel 3 beschrieben.
Das Gen SAP30BP oder „SAP30 bindendes Protein" (englisch: „SAP30 binding protein") ist auch bekannt unter den Synonymen HCNGP, HTRG und HTRP. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von SAP30BP sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (17:75665360-75709925). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von SAP30BP zumindest ein CpG-Dinukleotid in einem Teil der Region des alternativen Promotors (17:75680008-75709106, SEQ ID NO:381) . Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von SAP30BP sind in Beispiel 3 beschrieben.
Das Gen NOS1AP oder „Stickoxid-Synthase 1 Adaptorprotein" (englisch: „nitric oxide synthase 1 adaptor protein") ist auch bekannt unter den Synonymen 6330408P19Rik, CAPON und NPHS22. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von NOS1AP sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (1:162060444-162374712). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von NOS1AP zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (1:162126194- 162145446, SEQ ID NO:382). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von NOS1AP sind in Beispiel 3 beschrieben . Das Gen RALB codiert für das „RAS-ähnliches Protoonkogen B" (englisch: „RAS like proto-oncogene B"). Bevorzugte CpG- Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von RALB sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (2:120234285-120299970). Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von RALB zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (2:120235984-120258633, SEQ ID NO:383) . Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von RALB sind in Beispiel 3 beschrieben.
Das Gen TGFBL oder „Transformierender Wachstumsfaktor Betainduziert" (englisch: „transforming growth factor beta induced") ist auch bekannt unter dem Synonym BLGH3, CDB1, CDG2, CDGG1, CSD, CSD1, CSD2, CSD3, EBMD und LCD1. Bevorzugte CpG- Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von TGFBL sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (5:136024636-136067670). Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von TGFBL zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (5:136026401-136036592, SEQ ID NO:384) . Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von TGFBL sind in Beispiel 3 beschrieben.
Das Gen ENSG00000235726 codiert für eine lange nicht-codierende RNA. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von ENSG00000235726 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (2:234799342-234922807). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von ENSG00000235726 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (2:234878128-234886995, SEQ ID NO:385). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von ENSG00000235726 sind in Beispiel 3 beschrieben ist.
Das Gen CAB39 oder „Kalzium-bindendes Protein 39" (englisch: „calcium binding protein 39") ist auch bekannt unter dem Synonym CGI-66 und M025. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von CAB39 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (2:230706432-230823645). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von CAB39 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (2:230778214-230808224, SEQ ID NO:386). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von CAB39 sind in Beispiel 3 beschrieben.
Das Gen CIRBP oder „kalt induzierbares RNA-Bindeprotein" (englisch: „cold inducible RNA binding protein") ist auch bekannt unter dem Synonym CIRP. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von CIRBP sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (19:1255182-1278398). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von CIRBP zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (19:1259044-1271843, SEQ ID NO:387). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von CIRBP sind in Beispiel 3 beschrieben.
Das Gen DIAPH1 oder „Diaphanes verwandtes Formin 1" (englisch: „diaphanous related formin 1") ist auch bekannt unter den Synonymen DIA1, DRF1, DFNA1, LFHL1, SCBMS und hDIAl. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von DIAPH1 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (5:141509770-141628116). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von DIAPH1 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (5:141598738- 141612327, SEQ ID NO:388). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von DIAPH1 sind in Beispiel 3 beschrieben .
Das Gen FGD6 oder „FYVE, RhoGEF und PH-Domäne-enthaltend 6" (englisch: „FYVE, RhoGEF and PH domain containing 6") ist auch bekannt unter dem Synonym ZFYVE24. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von FGD6 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (12:95069744-95225462). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von FGD6 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (12:95196683-95213579, SEQ ID NO:389). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von FGD6 sind in Beispiel 3 beschrieben.
Das Gen LMO7 oder „LIM-Domäne 7" (englisch: „LIM domain 7") ist auch bekannt unter den Synonymen FBX20, FBXO20, LMO7b und LOMP. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von LMO7 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (13:75615473-75864623). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von LMO7 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (13:75708404- 75724258, SEQ ID NO:390). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von LMO7 sind in Beispiel 3 beschrieben .
Das Gen MICAL2 oder „Mikrotubulus-assoziierte Monooxygenase, Calponin- und LIM-Domäne enthaltend 2" (englisch: „microtubule associated monooxygenaser calponin and LIM domain containing 2") ist auch bekannt unter den Synonymen Ebiteinl, MICAL-2, MICAL2PV1, MICAL2PV2 und MICALCL. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von MICAL2 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (11:12083488-12364914). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von MICAL2 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (11:12161131-12174720, SEQ ID NO:391). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von MICAL2 sind in Beispiel 3 beschrieben.
Das Gen STMN1 oder „Stathmin 1" (englisch: „stathmin 1") ist auch bekannt unter den Synonymen Clorf215, LAP18, Lag, OP18, PP17, PPI9, PR22 und SMN. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von STMN1 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (1:25881610-25911621). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von STMN1 zumindest ein CpG-Dinukleotid in einem Teil der alternativen Promotorregion (1:25888471-25896397, SEQ ID NO:392). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von STMN1 sind in Beispiel 3 beschrieben. Das Gen MNT oder „MAX Netzwerk transkriptioneller Repressor" (englisch: „MAX network transcriptional repressor") ist auch bekannt unter den Synonymen MAD6, MXD6, ROX, bHLHd3 und IncRNA- HAL. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von MNT sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (17:2381980-2411009). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von MNT zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (17:2389492- 2411009, SEQ ID NO:393). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von MNT sind in Beispiel 3 beschrieben .
Das Gen PC oder „Pyruvat-Carboxylase" (englisch: „pyruvate carboxylase") ist auch bekannt unter dem Synonym PCB. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von PC sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (11:66845983-66969991). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von PC zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (11:66887951- 66895877, SEQ ID NO:394). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von PC sind in Beispiel 3 beschrieben ist.
Das Gen PLEKHG5 oder „Pleckstrin-Homologie und RhoGEF-Domäne enthaltend G5" (englisch: „pleckstrin homology and RhoGEF domain containing G5") ist auch bekannt unter den Synonymen CMTRIC, DSMA4, GEF720, Syx und Tech. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von PLEKHG5 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (1:6465001-6526155). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von PLEKHG5 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (1:6488283-6495077, SEQ ID NO:395). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von PLEKHG5 sind in Beispiel 3 beschrieben.
Das Gen PRORP oder „Protein-alleinige RNase P katalytische Untereinheit" (englisch: „protein only RNase P catalytic subunit") ist auch bekannt unter den Synonymen KIAA0391 und MRPP3. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von PRORP sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (14:35116632-35281977). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von PRORP zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (14:35153221- 35165111, SEQ ID NO:396). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von PRORP sind in Beispiel 3 beschrieben .
Das Gen RDX oder „Radixin" (englisch: „radixin") ist auch bekannt unter dem Synonym DFNB24. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von RDX sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (11:109857101-110302174). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von RDX zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (11:110191822-110205411, SEQ ID NO:397). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von RDX sind in Beispiel 3 beschrieben. Das Gen SERP1 oder „Stress-assoziiertes Endoplasmatisches Retikulum Protein 1" (englisch: „stress associated endoplasmic reticulum protein 1") ist auch bekannt unter dem Synonym RAMP4. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von SERP1 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (3:150539978-150609060). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von SERP1 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (3:150596474-150607869, SEQ ID NO:398), welcher ebenfalls Teil der Promotorregion des Gens SELENOT darstellt. Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von SERP1 sind in Beispiel 3 beschrieben.
Das Gen SLCO3A1 oder „Löslicher organischer Anionen-Transporter Familienmitglied 3A1" (englisch: „solute carrier organic anion transporter family member 3A1") ist auch bekannt unter den Synonymen OATP-D, OATP-RP3, OATP3A1, OATPD, OATPRP3 und SLC21A11 . Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von SLCO3A1 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (15:91849057-92179181). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von SLCO3A1 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (15:92065431- 92073357, SEQ ID NO:399). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von SLCO3A1 sind in Beispiel 3 beschrieben .
Das Gen SUFU oder „SUFU negativer Regulator des Hedgehog- Signals" (englisch: „SUFU negative regulator of hedgehog signaling") ist auch bekannt unter den Synonymen JBTS32, PRO1280, SUFUH und SUFUXL. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von SUFU sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (10:102498765-102636930). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von SUFU zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (10:102592829-102609815, SEQ ID N0:400). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von SUFU sind in Beispiel 3 beschrieben.
Das Gen TANGO6 oder „Transport und Golgi Organisation 6 Homolog" (englisch: „transport and golgi organization 6 homolog") ist auch bekannt unter dem Synonym TMCO7. Bevorzugte CpG- Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von TANGO6 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (16:68839936-69088520). Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von TANGO6 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (16:69069900-69076694, SEQ ID NO:401). Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von TANGO6 sind in Beispiel 3 beschrieben.
Das Gen EGFR oder „Epidermaler Wachstumsfaktorrezeptor" (englisch: „epidermal growth factor receptor") ist auch bekannt unter den Synonymen ERBE, ERBB1, ERRP, HER1, NISBD2, PIG61 und mENA. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von EGFR sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (7:55011530-55218211). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von EGFR zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (7:55061106- 55086109, SEQ ID NO:402). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von EGFR sind in Beispiel 3 beschrieben.
Das Gen PINX1 oder „PIN2 (TERF1) interagierender Telomeraseinhibitor 1" (englisch: „PIN2 (TERFI) interacting telomerase inhibitor 1") ist auch bekannt unter den Synonymen Gnol, LPTL, LPTS und Pxrl. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von PINX1 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (8:10758795-10845431). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von PINX1 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (8:10795951-10805576, SEQ ID NO:403). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von PINX1 sind in Beispiel 3 beschrieben.
Das Gen SSBP2 oder „Einzelstrang DNA Bindeprotein 2" (englisch: „single stranded DNA binding protein 2") ist auch bekannt unter den Synonymen HSPC116 und S0SS-B2. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von SSBP2 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (5:81410404-81759780). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von SSBP2 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (5:81739698-81763435, SEQ ID NQ:404) und/oder zumindest einen Teil oder mehrere Teile des Genkörpers (5:81412171-81427995, SEQ ID NQ:405 und/oder 5:81615123-81643212, SEQ ID NQ:406). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von SSBP2 sind in Beispiel 3 beschrieben.
Das Gen TRERF1 oder „Transkriptioneller Regulierungsfaktor 1" (englisch: „transcriptional regulating factor 1") ist auch bekannt unter den Synonymen BCAR2, HSA277276, RAPA, TREP132, TReP-132 und dJ139D8.5. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von TRERF1 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (6:42221228-42461884). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von TRERF1 zumindest ein CpG-Dinukleotid in einem Teil oder mehreren Teilen des Genkörpers (6:42312265-42342490, SEQ ID NO:407, 6:42223347- 42232133, SEQ ID NO:408 und/oder 6:42395546-42408432, SEQ ID NO:409) . Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von TRERF1 sind in Beispiel 3 beschrieben.
Das Gen GPT2 oder „Glutamin-Pyruvat Transaminase 2" (englisch: „glutamic-pyruvic transaminase 2") ist auch bekannt unter den Synonymen ALT2, GPT 2, MRT49 und NEDSPM. Bevorzugte CpG- Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von GPT2 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen, enthalten (16:46845716-46939147). Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von GPT2 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (16:46853286-46881544, SEQ ID NO:410) . Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von GPT2 sind in Beispiel 3 beschrieben.
Das Gen HEG1 oder „Herzentwicklungsprotein mit EGF-ähnlicher Domäne 1" (englisch: „heart development protein with EGF like domains 1") ist auch bekannt unter den Synonymen HEG, MST112 und MSTP112 . Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von HEG1 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (3:124959217-125061707). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von HEG1 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (3:125048750- 125060074, SEQ ID NO:411). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von HEG1 sind in Beispiel 3 beschrieben .
Das Gen ENSG00000231740 codiert für eine lange nicht-codierende RNA. Bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von ENSG00000231740 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (1:58837145-58858662). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von ENSG00000231740 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (1:58846707-58852314, SEQ ID NO:412). Die Promotorregion von ENSG00000231740 liegt im Genkörper von ENSG00000234807. ENSG00000234807 (1:58782061-58905503) ist ebenfalls ein bevorzugter Teil für die DNA-Methylierungsanalyse von ENSG00000231740 . Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von ENSG00000231740 sind in Beispiel 3 beschrieben .
Das Gen PPM1H oder „Proteinphosphatase, Mg2+/Mn2+ abhängig 1H" (englisch: „protein phosphatase, Mg2+/Mn2+ dependent 1H") ist auch bekannt unter den Synonymen ARHCL1, NERPP-2C und URCC2. Bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von PPM1H sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (12:62639994-62942938). Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von PPM1H zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (12:62783039-62797194, SEQ ID NO:413). Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von PPM1H sind in Beispiel 3 beschrieben.
Das Gen PRDM10 oder „PR/SET-Domäne 10" (englisch: „PR/SET domain 10") ist auch bekannt unter den Synonymen PFM7 und TRIS. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von PRDM10 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (11:129897664-130008082). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von PRDM10 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (11:129955771- 129968794, SEQ ID NO:414). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von PRDM10 sind in Beispiel 3 beschrieben .
Das Gen RAD18 oder „RAD18 E3 Ubiquitin-Proteinligase" (englisch: „RAD18 E3 ubiquitin protein ligase") ist auch bekannt unter dem Synonym RNF73. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von RAD18 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (3:8773370-8969292). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von RAD18 zumindest ein CpG-Dinukleotid einem Teil des Genkörpers (3:8866868-8875927, SEQ ID NO:415). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von RAD18 sind in Beispiel 3 beschrieben. Das Gen ENSG00000231185 codiert für die lange nicht-codierende SPRY4 antisense RNA 1 (SPRY4-AS1). Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von ENSG00000231185 sind beispielsweise in den Transkript- codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (5:142321168- 142681303) . Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von ENSG00000231185 zumindest ein CpG- Dinukleotid einem Teil des Genkörpers (5:142470158-142478084, SEQ ID NO:416). Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von ENSG00000231185 sind in Beispiel 3 beschrieben .
Das Gen SYNPO codiert für „Synaptopodin" (englisch: „synaptopodin") . Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von SYNPO sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (5:150596520-150661638). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von SYNPO zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (5:150636723-150646915, SEQ ID NO:417). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von SYNPO sind in Beispiel 3 beschrieben.
Das Gen TNFRSF10B oder „TNF-Rezeptorsuperfamilie Mitglied 10b" (englisch: „TNF receptor superfamily member 10b") ist auch bekannt unter den Synonymen CD262, DR5, KILLER, KILLER/DR5, TRAIL-R2, TRAILR2, TRICK2, TRICK2A, TRICK2B, TRICKB und ZTNFR9. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von TNFRSF1OB sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (8:23018023-23076910). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von TNFRSF10B zumindest einen Teil der Promotorregion (8:23062823-23075280, SEQ ID NO:418). Weiterhin bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von TNFRSF10B zumindest ein CpG- Dinukleotid in einem Teil der Region, welche die benachbarten und co-regulierten Gene der TNF-Rezeptorsuperfamilie TNFRSF10A, TNFRSF10C, TNFRSF10D enthält (8:23011161-23238227). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von TNFRSF10B sind in Beispiel 3 beschrieben.
Das Gen T0M1L2 codiert für „Ziel von mybl-ähnlich 2 Membrantransportprotein" (englisch: „target of mybl like 2 membrane trafficking protein"). Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von T0M1L2 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (17:17842032-17976233). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von T0M1L2 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (17:17951951-17962142, SEQ ID NO:419). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von T0M1L2 sind in Beispiel 3 beschrieben.
Das Gen TPRG1 oder „Tumorprotein p63-reguliert 1" (englisch: „tumor protein p63 regulated 1") ist auch bekannt unter dem Synonym FAM79B. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von TPRG1 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (3:188938804-189336311). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von TPRG1 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (3:188941701-188956988, SEQ ID NO:420). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von TPRG1 sind in Beispiel 3 beschrieben.
Das Gen VRK2 codiert für die „VRK Serin/Threonin-Kinase 2" (englisch: „VRK serine/threonine kinase 2"). Bevorzugte CpG- Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von VRK2 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (2:57903066-58164107). Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von VRK2 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (2:58103868-58114626, SEQ ID NO:421). Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von VRK2 sind in Beispiel 3 beschrieben.
Das Gen ENSG00000249149 codiert für ein Mitglied der „Hoch- Mobilität Nukleosomen-bindende Domäne-enthaltend Proteinfamilie" (englisch: „high mobility group nucleosome-binding domain- containing protein family"). Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von ENSG00000249149 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (5:73359733-73420441). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von ENSG00000249149 zumindest ein CpG-Dinukleotid einem Teil der Promotorregion (5:73366895-73375762, SEQ ID NO:422). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von ENSG00000249149 sind in Beispiel 3 beschrieben.
Das Gen NC0R2 oder „Nuklear-Rezeptor Co-Repressor 2" (englisch: „nuclear receptor corepressor 2") ist auch bekannt unter den Synonymen CTG26, N-CoR2, SMAP270, SMRT, SMRTE, SMRTE-tau, TNRC14, TRAC, TRAC-1 und TRAGI. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von NC0R2 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (12:124319987-124607641). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von NC0R2 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (12:124589305-124596665, SEQ ID NO:423). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von NC0R2 sind in Beispiel 3 beschrieben.
Das Gen ENSG00000258077 codiert für eine lange nicht-codierende RNA. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von ENSG00000258077 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (12:75558548-75990334). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von ENSG00000258077 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (12:75946679-75957592, SEQ ID NO:424). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von ENSG00000258077 sind in Beispiel 3 beschrieben.
Das Gen NINJ2 codiert für „Ninjurin 2" (englisch: „ninjurin 2"). Bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von NINJ2 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (12:562510-669531). Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von NINJ2 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (12:564035-574700, SEQ ID NO:425). Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von NINJ2 sind in Beispiel 3 beschrieben.
Das Gen ENSG00000257746 codiert für eine lange nicht-codierende RNA. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von ENSG00000257746 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (12:92994918-93221418). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von ENSG00000257746 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (12:93081904-93099457, SEQ ID NO:426). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von ENSG00000257746 sind in Beispiel 3 beschrieben.
Das Gen B3GNTL1 oder „UDP-GlcNAc:betaGal beta-1,3-N- Acetylglucosaminyltransferase-ähnlich 1" (englisch: „UDP- GlcNAc :betaGal beta-1,3-N-acetylglucosaminyltransferase like 1") ist auch bekannt unter den Synonymen 3-Gn-T8, B3GNT8, BGnT-8, beta-1, beta3Gn-T8 und beta3GnTLl. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von B3GNTL1 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (17:82936878-83062018). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von B3GNTL1 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (17:83044334-83052973, SEQ ID NO:427). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von B3GNTL1 sind in Beispiel 3 beschrieben.
Das Gen DCP2 oder „mRNA Entkappung 2" (englisch: „decapping mRNA 2") ist auch bekannt unter dem Synonym NUDT20. Bevorzugte CpG- Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von DCP2 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (5:112968673-113029827). Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von DCP2 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (5:113014888-113027911, SEQ ID NO:428) . Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von DCP2 sind in Beispiel 3 beschrieben.
Das Gen ENSG00000242759 codiert für die lange intergenische nicht-Protein-codierende RNA 882 (englisch: „long intergenic non-protein coding RNA 882"). Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von ENSG00000242759 sind beispielsweise in den Transkript- codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (3:106444967- 107254139) . Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von ENSG00000242759 zumindest ein CpG- Dinukleotid in einem Teil des Genkörpers (3:106722279-106735868, SEQ ID NO:429). Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von ENSG00000242759 sind in Beispiel 3 beschrieben .
Locus Chromosom 3 zytogenetische Bande p23 (Locus Chr.3p23) ist im Sinne der Erfindung ein Bereich auf Chromosom 3 innerhalb der zytogenetischen Bande p23, in dem bisher keine Gene identifiziert wurden. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse sind in dem Bereich 3:31073969-31083028 (SEQ ID NO:430) enthalten. Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von Locus Chr.3p23 zumindest ein CpG-Dinukleotid in einem Teil der Region 3:31075281-31078856. Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von Locus Chr.3p23 sind in Beispiel 3 beschrieben.
Das Gen OGDH oder „Oxoglutarat-Dehydrogenase" (englisch: „oxoglutarate dehydrogenase") ist auch bekannt unter den Synonymen AKGDH, Elk, KGD1, OGDC und 0GDH2. Bevorzugte CpG- Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von OGDH sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (7:44603525-44717340). Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von OGDH zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (7:44632469-44643793, SEQ ID NO:431). Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von OGDH sind in Beispiel 3 beschrieben.
Das Gen PDZRN3 oder „PDZ Domäne-enthaltend Ringfinger 3" (englisch: „PDZ domain containing ring finger 3") ist auch bekannt unter den Synonymen LNX3, SEMACAP3 und SEMCAP3. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von PDZRN3 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (3:73379855-73630137). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von PDZRN3 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (3:73541303- 73554892, SEQ ID NO:432). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von PDZRN3 sind in Beispiel 3 beschrieben .
Das Gen PLXNB2 oder „Plexin B2" (englisch: „plexin B2") ist auch bekannt unter den Synonymen MM1, Nbla00445, PLEXB2 und dJ402Gll .3. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von PLXNB2 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (22:50273726-50311664). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von PLXNB2 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (22:50280218-50284352, SEQ ID NO:433). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von PLXNB2 sind in Beispiel 3 beschrieben.
Das Gen ENSG00000228793 codiert für eine lange nicht-codierende RNA. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von ENSG00000228793 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (6:3577234-3725591). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von ENSG00000228793 zumindest ein CpG-Dinukleotid einem Teil des Genkörpers (6:3582962-3604478, SEQ ID NO:434). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von ENSG00000228793 in Beispiel 3 beschrieben.
Das Gen C6orf132 oder „Chromosom 6 offener Leserahmen 132" (englisch: „chromosome 6 open reading frame 132") ist auch bekannt unter dem Synonym bA7K24.2. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von C6orf132 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (6:42086629-42109278). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von C6orf132 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers und der nachgelagerten Sequenz (6:42095755-42105946, SEQ ID NO:435). Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von C6orfl32 sind in Beispiel 3 beschrieben .
Das Gen ENSG00000254561 codiert für eine lange nicht-codierende RNA, welche eine Antisense RNA zu PVRL1 ist. Bevorzugte CpG- Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von ENSG00000254561 sind beispielsweise in den Transkriptcodierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (11:119606540-119662598). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von ENSG00000254561 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (11:119611136-119621327, SEQ ID NO:436). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von ENSG00000254561 sind in Beispiel 3 beschrieben.
Das Gen ENSG00000233321 codiert für die lange intergenische nicht-Protein-codierende RNA 2669, welche auch bekannt ist unter dem Synonym LNC02669. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von ENSG00000233321 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (10:3429520-3509927). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von ENSG00000233321 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (10:3462995-3475451, SEQ ID NO:437). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von ENSG00000233321 sind in Beispiel 3 beschrieben.
Das Gen SPATA12 oder „Spermatogenese-assoziiert 12" (englisch: „spermatogenesis associated 12") ist auch bekannt unter dem Synonym SRG5. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von SPATA12 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (3:57055791-57079006). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von SPATA12 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (3:57057839-57062934, SEQ ID NO:438). Die Promotorregion von SPATA12 überlappt mit dem Gen ARHGEF3. Weiterhin bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von SPATA12 daher auch zumindest ein CpG- Dinukleotid in einem Teil des ARHGEF3 Gens, dessen vor- und/oder nachgelagerten Sequenzen (3:56716823-57086585). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von SPATA12 sind in Beispiel 3 beschrieben.
Das Gen ERBB2 oder „erb-b2 receptor tyrosine kinase 2" ist auch bekannt unter den Synonymen NEU, NGL, HER2, TKR1, CD340, HER-2, MLN 19 und HER-2/neu. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von ERBB2 sind beispielsweise in den Transkript-codierenden Bereichen, dem Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (17:39681935-39734595). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von ERBB2 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (17:39698513-39701727, SEQ ID NO:51). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von ERBB2 sind in Beispiel 3 beschrieben.
Das Gen ZBTB38 oder „Zinkfinger und BTB-Domäne enthaltend 38" (englisch: „zinc finger and BTB domain containing 38") ist auch bekannt unter den Synonymen CIBZ, PPP1R171 und ZNF921. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von ZBTB38 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (3:141316185-141457181). Bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von ZBTB38 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (3:141364416-141371142, SEQ ID NO:441). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von ZBTB38 zumindest ein CpG-Dinukleotid in einem Teil der zentralen Promotorregion (3:141367808-141368887). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von ZBTB38 sind in Beispiel 4 beschrieben.
Das Gen MAFK oder „MAE bZIP Transkriptionsfaktor K" (englisch: „MAE bZIP transcription factor K") ist auch bekannt unter den Synonymen NFE2U und P18. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von MAFK sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (7:1528821-1546374). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von MAFK zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (7:1529262-1540502, SEQ ID NO:439). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von MAFK sind in Beispiel 4 beschrieben.
Das Gen NEDD4L oder „NEDD4-ähnliche E3 Ubiquitin-Proteinligase" (englisch: „NEDD4 like E3 ubiquitin protein ligase'") ist auch bekannt unter den Synonymen NEDD4-2, NEDD4.2, PVNH7, RSP5 und hNEDD4-2. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von NEDD4L sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (18:58035172-58410596). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von NEDD4L zumindest ein CpG-Dinukleotid in einem Teil der Region des alternativen Promotors (18:58215872-58228329, SEQ ID NO:440). Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von NEDD4L sind in Beispiel 4 beschrieben.
Das Gen DIP2C oder „Disco-interagierendes Protein 2 Homolog C" (englisch: „disco interacting protein 2 homolog C") ist auch bekannt unter dem Synonym KIAA0934. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von DIP2C sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (10:267772-695857). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von DIP2C zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion und/oder des Genkörpers (10:682143-695166, SEQ ID NO:442 und/oder 10:319301-330625, SEQ ID NO:443). Weitere bevorzugte CpG-Dinukleotide für die Methylierungsanalyse von DIP2C sind in Beispiel 4 beschrieben.
Das Gen CAPN2 oder „Calpain 2" (englisch: „calpain 2") ist auch bekannt unter den Synonymen CANP2, CANPL2, CANPml und mCANP. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von CAPN2 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (1:223690715-223778847). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von CAPN2 zumindest ein CpG-Dinukleotid in einem Teil der Region von zwei Promotoren (1:223695643-223717861, SEQ ID NO:445) und/oder zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (1:223768582-223775521, SEQ ID NO:444). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von CAPN2 sind in Beispiel 4 beschrieben. Das Gen IER3 oder „sofortige frühe Antwort 3" (englisch: „immediate early response 3") ist auch bekannt unter den Synonymen DIF-2, DIF2, GLY96, IEX-1, IEX-1L, IEX1 und PRG1. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von IER3 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (6:30738181-30760830). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von IER3 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (6:30740330- 30758622, SEQ ID NO:446). Die Promotorregion von IER3 überlappt mit der codierenden Sequenz der langen nicht-codierenden RNA ENSG00000228022 (HLA-Komplex Gruppe 20; englisch „HLA complex group 20"). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von IER3 daher auch zumindest ein CpG- Dinukleotid in einer Region des Gens ENSG00000228022, dessen vor- und/oder nachgelagerte Sequenzbereichen (6:30739218- 30796409) . Die Promotorregion von IER3 überlappt ebenfalls mit dem Gen FLOT1. Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von IER3 daher auch zumindest ein CpG- Dinukleotid in einem Teil des Gens FLOT1, dessen vor- und/oder nachgelagerten Sequenzbereichen (6:30724525-30753969). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von IER3 sind in Beispiel 4 beschrieben.
Das Gen TM4SF19 oder „Transmembran 4 L Sechs Familienmitglied 19" (englisch: „transmembrane 4 L six family member 19") ist auch bekannt unter dem Synonym OCTM4. Bevorzugte CpG- Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von TM4SF19 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (3:196313253- 196343829) . Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von TM4SF19 zumindest ein CpG- Dinukleotid in einem Teil der Promotorregion (3:196334860- 196346137, SEQ ID NO:447). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von TM4SF19 sind in Beispiel 4 beschrieben .
Das Gen RPTOR oder „regulierend assoziiertes Protein des MTOR Komplex 1" (englisch: „regulatory associated protein of MTOR complex 1") ist auch bekannt unter den Synonymen KOG1 und Mipl. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von RPTOR sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (17:80530563-80971671). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von RPTOR zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (17:80779489-80810457, SEQ ID NO:448, 17:80844268-80875012, SEQ ID NO:449 und/oder 17:80875012-80904251, SEQ ID NQ:450). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von RPTOR sind in Beispiel 4 beschrieben.
Das Gen S100A16 oder „S100 Kalzium-bindendes Protein A16" (englisch: „S100 calcium binding protein A16") ist auch bekannt unter den Synonymen AAG13, DT1P1A7 und S100F. Bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von S100A16 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (1:153602503-153621188). Bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von S100A16 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (1:153606408-153613450, SEQ ID NO:451). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von S100A16 zumindest ein CpG-Dinukleotid in einem Teil der zentralen Promotorregion (1:153608184-153610335). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von S100A16 sind in Beispiel 4 beschrieben.
Das Gen BCL9L oder „BCL9-ähnlich" (englisch: „BCL9 like") ist auch bekannt unter den Synonymen B9L, BCL9-2 und DLNB11. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von BCL9L sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (11:118890163-118935462). Bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von BCL9L zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (11:118907364-118932161, SEQ ID NO:452). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von BCL9L zumindest ein CpG-Dinukleotid in einem Teil der zentralen Promotorregion (11:118909735-118912492). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von BCL9L sind in Beispiel 4 beschrieben.
Das Gen KCNMA1 oder „Kalium Kalzium-aktivierter Kanal Unterfamilie M Alpha 1" (englisch: „potassium calcium-activated channel subfamily M alpha 1") ist auch bekannt unter den Synonymen BKTM, CADEDS, IEG16, KCal.1, LINAS, MaxiK, PNKD3, SAKCA, SLO, SLO-ALPHA, SLO1, bA205K10.1, hSlo und mSLOl. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von KCNMA1 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen, enthalten (10:76859079-77651263). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von KCNMA1 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (10:76863515-77655134). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von KCNMA1 sind in Beispiel 4 beschrieben .
Das Gen GALE oder „UDP-Galaktose-4-Epimerase" (englisch: „UDP- galactose-4-epimerase'") ist auch bekannt unter dem Synonym SDR1E1. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von GALE sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (1:23794724-23802450). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von GALE zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (1:23797154- 23802299), insbesondere zumindest einen Teil der zentralen Promotorregion (1:23798440-23801012, SEQ ID NO:455). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von GALE sind in Beispiel 4 beschrieben.
Das Gen PCLD2 oder „PCI-Domäne-enthaltend 2" (englisch: „PCL domain containing 2") ist auch bekannt unter dem Synonym F10. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von PCLD2 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (13:113174967-113212905). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von PCLD2 zumindest ein CpG-Dinukleotid in einem Teil der alternativen Promotorregion und/oder des angrenzenden Genkörpers (13:113183171-113191810, SEQ ID NO:456). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von PCLD2 sind in Beispiel 4 beschrieben. Das Gen SH3TC1 codiert für „SH3-Domäne und Tetratricopeptid Wiederholungen 1" (englisch: „SH3 domain and tetratricopeptide repeats 1"). Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von SH3TC1 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (4:8178307-8244558). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von SH3TC1 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (4:8186081-8195074, SEQ ID NO:457). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von SH3TC1 sind in Beispiel 4 beschrieben.
Das Gen SSH1 oder „Katapult-Proteinphosphatase 1" (englisch: „slingshot protein phosphatase 1") ist auch bekannt unter dem Synonym SSH1L. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von SSH1 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (12:108772030-108865460). Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von SSH1 zumindest ein CpG-Dinukleotid in einem Teil der alternativen Promotorregion und/oder des angrenzenden Genkörpers (12:108818418-108837010, SEQ ID NO:458). Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von SSH1 sind in Beispiel 4 beschrieben.
Das Gen AVPI1 oder „Arginin-Vasopressin-induziert 1" (englisch: „arginine vasopressin induced 1") ist auch bekannt unter den Synonymen PP5395, VIP32 und VIT32. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von AVPI1 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (10:97670645-97697257). Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von AVPI1 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (10:97680054-97694209, SEQ ID NO:459) . Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von AVPI1 sind in Beispiel 4 beschrieben.
Das Gen MAP3K14 oder „Mitogen-aktivierte Proteinkinase Kinase Kinase 14" (englisch: „mitogen-activated protein kinase kinase kinase 14") ist auch bekannt unter den Synonymen FTDCR1B, HS, HSNIK und NIK. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von MAP3K14 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (17:45260858-45323711). Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von MAP3K14 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (17:45280967-45306566, SEQ ID NO:460), insbesondere zumindest einem Teil der zentralen Promotorregion (17:45289527-45298809). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von MAP3K14 sind in Beispiel 4 beschrieben.
Das Gen MIR23AHG ist auch genannt „miR-23a/27a/24-2 Cluster Host-Gen" (englisch: „miR-23a/27a/24-2 d uster host gene"). Das Gen umfasst auch die Gene, die für die miRNAs microRNA 24-2 (ENSG00000284387), microRNA 27a (ENSG00000207808) und microRNA 23a (ENSG00000207980) codieren, welche sich im Sequenzbereich 19:13835240-13837738 befinden. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von MIR23AHG sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (19:13821147-13857386). Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von MIR23AHG zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (19:13833062-13847218, SEQ ID NO:461) von MIR23AHG. Weiterhin bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von MIR23AHG zumindest ein CpG-Dinukleotid einem Teil der Transkript-codierenden Bereiche, der vor- und nachgelagerten Sequenzen und/oder der Promotoren der miRNAs microRNA 24-2, microRNA 27a und/oder microRNA 23a (19:13835240-13837738). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von MIR23AHG sind Beispiel 4 beschrieben.
Das Gen EPHA2 oder „EPH-Rezeptor A2" (englisch: „EPH receptor A2'") ist auch bekannt unter den Synonymen ARCC2, CTPA, CTPP1, CTRCT6 und ECK. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von EPHA2 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (1:16118861-16159630). Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von EPHA2 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (1:16140758-16159964, SEQ ID NO:462) . Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von EPHA2 sind in Beispiel 4 beschrieben.
Das Gen ENSG00000233785 codiert für eine lange nicht-codierende RNA. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von ENSG00000233785 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (X:23772172-23787075). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von ENSG00000233785 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (X:23779234-23784341, SEQ ID NO:463). Der Promoter von ENSG00000233785 überlappt mit dem Promotor des Gens SAT1. Bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von ENSG00000233785 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion von SAT1 (X:23777825-23789716). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von ENSG00000233785 sind in Beispiel 4 beschrieben.
Das Gen ACVR1 oder „Aktivin A Rezeptor Typ 1" (englisch: „activin A receptor type 1") ist auch bekannt unter den Synonymen ACTRIA, ACVRLK2, ALK2, FOP, SKR1, TSRI und ACVR1. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von ACVR1 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (2:157729592-157882479). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von ACVR1 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (2:157826504-157840100, SEQ ID NO:464) und/oder einen alternativen Promotor (2:157834936-157844561). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von ACVR1 sind in Beispiel 4 beschrieben.
Das Gen ENSG00000282849 codiert für eine lange nicht-codierende RNA. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von ENSG00000282849 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (1:200470700-200499012). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von ENSG00000282849 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (1:200479260-200488319, SEQ ID NO:465). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von ENSG00000282849 sind in Beispiel 4 beschrieben.
Das Gen COX7A2L oder „Zytochrom C Oxidase Untereinheit 7A2- ähnlich" (englisch: „cytochrome c oxidase subunit 7A2 like") ist auch bekannt unter den Synonymen COX7AR, COX7RP, EB1, SCAF1, SCAFI und SIG81. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von COX7A2L sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (2:42325400-42431854). Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von COX7A2L zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (2:42414934-42428523, SEQ ID NO:466) . Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von COX7A2L sind in Beispiel 4 beschrieben.
Das Gen ENSG00000234476 codiert für die lange intergenische nicht-Protein-codierende RNA 2765 (englisch: „long intergenic non-protein coding RNA 2765"). Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von ENSG00000234476 sind beispielsweise in den Transkript- codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (1:225437436-225469711). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von ENSG00000234476 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers und/oder der dem Gen nachgelagerten Sequenz (1:225440616- 225452506, SEQ ID NO:467). Die dem Gen ENSG00000234476 nachgelagerte Sequenz umfasst beispielsweise auch den Promotor des Gens LBR. Weiterhin bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von ENSG00000234476 zumindest ein CpG- Dinukleotid in einem Teil des Promotors des Gens LBR (1:225421581-225447061). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von ENSG00000234476 sind in Beispiel 4 beschrieben.
Das Gen LRRC2 codiert für „Leucin-reiche Wiederholung-enthaltend 2" (englisch: „leucine rich repeat containing 2"). Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von LRRC2 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (3:46511046-46584091). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von LRRC2 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers und/oder der dem Gen nachgelagerten Sequenz (3:46514226-46522718, SEQ ID NO:468) . Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von LRRC2 sind in Beispiel 4 beschrieben.
Das Gen PLXNB1 oder „Plexin Bl" (englisch: „plexin Bl") ist auch bekannt unter den Synonymen PLEXIN-Bl, PLXN5 und SEP. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von PLXNB1 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (3:48398058-48434297). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von PLXNB1 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers und/oder der dem Gen nachgelagerten Sequenz (3:48398407-48408032, SEQ ID NO:469) . Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von PLXNB1 sind in Beispiel 4 beschrieben.
Das Gen PPTC7 oder „Proteinphosphatase zielend auf COQ7" (englisch: „protein phosphatase targeting COQ7") ist auch bekannt unter den Synonymen TA-PP2C und TAPP2C. Bevorzugte CpG- Dinukleotide für die erfindungsgemäßen DNA-Methylierungsanalyse von PPTC7 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (12:110530192- 110590779) . Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von PPTC7 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (12:110572968-110586617, SEQ ID NO:470) . Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von PPTC7 sind in Beispiel 4 beschrieben.
Das Gen RB1CC1 oder „RB1 inducible coiled-coil 1" (englisch) ist auch bekannt unter den Synonymen ATG17, CC1, FIP200 und PPP1R131. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von RB1CC1 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (8:52617519-52751719). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von RB1CC1 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (8:52691480- 52698840, SEQ ID NO:471). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von RB1CC1 sind in Beispiel 4 beschrieben .
Das Gen SLC2A1 oder „Löslicher Transporter Familie 2 Mitglied 1" (englisch: „solute carrier family 2 member 1") ist auch bekannt unter den Synonymen CSE, DYT17, DYT18, DYT9, EIG12, GLUT, GLUT- 1, GLUT1, GLUT1DS, HTLVR, PED und SDCHCN. Bevorzugte CpG- Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von SLC2A1 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (1:42921303- 42963771) . Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von SLC2A1 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (1:42938229-42947715, SEQ ID NO:472). Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von SLC2A1 sind in Beispiel 4 beschrieben.
Das Gen SLC39A11 oder „Löslicher Transporter Familie 39 Mitglied 11" (englisch: „solute carrier family 39 member 11") ist auch bekannt unter den Synonymen C17orf26, ZIP-11 und ZIP11. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von SLC39A11 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (17:72643200-73100730). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von SLC39A11 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (17:72714613-72720275, SEQ ID NO:473). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von SLC39A11 sind in Beispiel 4 beschrieben.
Das Gen TBC1D14 codiert für „TBCl-Domäne Familienmitglied 14" (englisch: „TBC1 domain family member 14"). Bevorzugte CpG- Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von TBC1D14 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (4:6904581- 7037649) . Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von TBC1D14 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (4:6940038-6945133, SEQ ID NO:474). Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von TBC1D14 sind in Beispiel 4 beschrieben.
Das Gen TIMP2 oder „TIMP Metalloprotease-Inhibitor 2" (englisch: „TIMP metallopeptidase inhibitor 2") ist auch bekannt unter den Synonymen CSC-21K und DDC8. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von TIMP2 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (17:78850969-78930243). Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von TIMP2 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (17:78860378-78864341, SEQ ID NO:475). Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von TIMP2 sind in Beispiel 4 beschrieben.
Das Gen ENSG00000276527 codiert für eine lange nicht-codierende RNA. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von ENSG00000276527 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (13:44673141-44730897). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von ENSG00000276527 zumindest ein CpG-Dinukleotid in einen Teil der Promotorregion (13:44706332-44721620, SEQ ID NO:476). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von ENSG00000276527 sind in Beispiel 4 beschrieben.
Das Gen CFAP20DC oder „CFAP2O-Domäne-enthaltend" (englisch: „CFAP20 domain containing") ist auch bekannt unter dem Synonym C3orf67 . Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von CFAP20DC sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (3:58701609-59060611). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von CFAP20DC zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (3:58994710- 59004335, SEQ ID NO:477). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von CFAP20DC sind in Beispiel 4 beschrieben .
Das Gen PHLDA1 oder „Pleckstrin Homologie-ähnlich Domäne Familie A Mitglied 1" (englisch: „pleckstrin homology like domain family A member 1") ist auch bekannt unter den Synonymen DT1P1B11, PHRIP und TDAG51. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von PHLDA1 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (12:76018034-76036153). Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von PHLDA1 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers und/oder der dem Gen nachgelagerten Sequenz (12:76020299-76028225, SEQ ID NO:478). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von PHLDA1 sind in Beispiel 4 beschrieben.
Das Gen TESC oder „Tescalcin" (englisch: „tescalcin") ist auch bekannt unter den Synonymen CHP3+ TSC. Bevorzugte CpG- Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von TESC sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (12:117036475- 117104990) . Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von TESC zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (12:117040788-117045883, SEQ ID NO:479) . Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von TESC sind in Beispiel 4 beschrieben.
Das Gen LTMA1 oder „LIM-Domäne und Aktin-bindend 1" (englisch: „LIM domain and actin binding 1") ist auch bekannt unter den Synonymen EPLIN, LDLCQ8 und SREBP3. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von LIMA1 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (12:50173475-50288989). Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von LIMA1 zumindest ein CpG-Dinukleotid in einem Teil der alternativen Promotorregion und/oder des Genkörpers (12:50240641-50255929, SEQ ID NO:480). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von LIMA1 sind in Beispiel 4 beschrieben.
Das Gen ASPSCR1 oder „ASPSCR1 tether for SLC2A4, UBX domain containing" (englisch) ist auch bekannt unter den Synonymen ASPCR1, ASPL, ASPS, RCC17, TUG, UBXD9 und UBXN9. Bevorzugte CpG- Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von ASPSCR1 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (17:81972463- 82021726) . Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von ASPSCR1 zumindest ein CpG-Dinukleotid in einem Teil der alternativen Promotorregion und/oder des Genkörpers (17:81996878-82011599, SEQ ID NO:481). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von ASPSCR1 sind in Beispiel 4 beschrieben.
Das Gen CAMKID oder „Kalzium/Kalmodulin-anhängige Proteinkinase ID" (englisch: „calcium/calmodulin dependent protein kinase ID") ist auch bekannt unter den Synonymen CKLiK, CaM-Kl und CaMKID. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von CAMKID sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (10:12342542-12846504). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von CAMK1D zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (10:12441419-12456706, SEQ ID NO:482). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von CAMK1D sind in Beispiel 4 beschrieben.
Das Gen CAMK2D oder „Kalzium/Kalmodulin-anhängige Proteinkinase II delta" (englisch: „calcium/calmodulin dependent protein kinase II delta") ist auch bekannt unter dem Synonym CAMKD. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von CAMK2D sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (4:113443497-113771922). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von CAMK2D zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (4:113463882-113476338, SEQ ID NO:483). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von CAMK2D sind in Beispiel 4 beschrieben.
Das Gen CFAP57 oder „Wimpern und Geißel-assoziiertes Protein 57" (englisch: „cilia and flagella associated protein 57") ist auch bekannt unter den Synonymen VWS2 und WDR65. Bevorzugte CpG- Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von CFAP57 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (1:43168905- 43262902) . Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von CFAP57 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (1:43199549-43214270, SEQ ID NO:484). Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von CFAP57 sind in Beispiel 4 beschrieben. Das Gen CHCHD6 oder „coiled-coil-helix-coiled-coil-helix domain containing 6" (englisch) ist auch bekannt unter den Synonymen CHCM1, MIC0S25, Mic25 und PPP1R23. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von CHCHD6 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (3:126691799-126968129). Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von CHCHD6 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (3:126904209-126920063, SEQ ID NO:485) . Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von CHCHD6 sind in Beispiel 4 beschrieben.
Das Gen DRAP1 oder „DRl-assziiertes Protein 1" (englisch: „DR1 associated protein 1") ist auch bekannt unter dem Synonym NC2- alpha. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von DRAP1 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (11:65905972-65931452). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von DRAP1 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (11:65909705-65922504, SEQ ID NO:486). Die Promotorregion von DRAP1 überlappt mit dem Genkörper und den vor- und nachgelagerten Sequenzen des Gens CIlorf68 (auch bekannt unter den Synonymen BLES03 und P5326). Bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von DRAP1 sind daher beispielsweise auch in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen von Cllorf68 (11:65915129-65921081) enthalten. Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von DRAP1 sind in Beispiel 4 beschrieben. Das Gen ENC1 oder „Ektodermal-neural Kortex 1" (englisch: „ectodermal-neural cortex 1") ist auch bekannt unter den Synonymen CCL28, ENC-1, KLHL35, KLHL37, NRPB, PIG10 und TP53I10. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von ENC1 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (5:74624641-74648422). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von ENC1 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (5:74636598- 74645657, SEQ ID NO:487). Die Promotorregion von ENC1 überlappt mit dem Genkörper und dem Promotor des Gens HEXE (auch bekannt unter den Synonymen ENC-1AS, HEL-248 und HEL-S-111). Bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von ENC1 sind daher beispielsweise auch in den Transkript-codierenden Bereichen, im Genkörper sowie den Promotoren von HEXB (5:74636532-74728830) enthalten. Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von ENC1 sind in Beispiel 4 beschrieben.
Das Gen ARHGAP32 oder „Rho GTPase-aktivierendes Protein 32" (englisch: „Rho GTPase activating protein 32") ist auch bekannt unter den Synonymen GC-GAP, GRIT, PX-RICS, RTCS, p200RhoGAP und p250GAP. Bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von ARHGAP32 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (11:128954478-129289132). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von ARHGAP32 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (11:129131715-129160026, SEQ ID NO:488). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von ARHGAP32 sind in Beispiel 4 beschrieben. Das Gen ABL2 oder „ABL Protoonkogen 2, Nichtrezeptor- Tyrosinkinase" (englisch: „ABL proto-oncogene 2r non-receptor tyrosine kinase") ist auch bekannt unter den Synonymen ABLL und ARG. Bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von ABL2 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (1:179096875-179238075). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von ABL2 zumindest ein CpG-Dinukleotid in einem Teil der alternativen Promotorregion und/oder des Genkörpers (1:179132347-179152810, SEQ ID NO:489). Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von ABL2 sind in Beispiel 4 beschrieben.
Das Gen ENSG00000250754 codiert die lange intergenische nicht- Protein-codierende RNA 2436 (englisch: „long intergenic non- protein coding RNA 243"). Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von ENSG00000250754 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (4:185047564-185119477). Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von ENSG00000250754 zumindest ein CpG- Dinukleotid in einem Teil des Genkörpers (4:185105388-185115579, SEQ ID NO:490). Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von ENSG00000250754 sind in Beispiel 4 beschrieben .
Locus Chromosom 1 zytogenetische Bande q42.3 (Locus Chr.lq42.3) ist im Sinne der Erfindung ein Bereich auf Chromosom 1, innerhalb der zytogenetischen Bande q42.3, in dem bisher keine Gene identifiziert wurden. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse des Locus Chr.lq42.3 sind in dem Bereich 1:235005582-235018381 (SEQ ID NO:491) enthalten. Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von Locus Chr.lq42.3 zumindest ein CpG- Dinukleotid Teil der Region 1:234990630-235048809. Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von Locus Chr.lq42.3 sind in Beispiel 4 beschrieben.
Das Gen MYO16 oder „Myosin XVI" (englisch: „myosin XVI") ist auch bekannt unter den Synonymen MYAP3, MYR8, MyolOb, NYAP3 und PPP1R107. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von MYO16 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (13:108587425-109218794). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von MYO16 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (13:108955554-108964613, SEQ ID NO:492). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von MYO16 sind in Beispiel 4 beschrieben.
Das Gen MYOF oder „Myoferlin" (englisch: „myoferlin") ist auch bekannt unter den Synonymen FER1L3 und HAE7. Bevorzugte CpG- Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von MYOF sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (10:93297681- 93487941) . Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von MYOF zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (10:93430533-93443556, SEQ ID NO:493). Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von MYOF sind in Beispiel 4 beschrieben. Das Gen PTPRK oder „Protein-Tyrosin-Phosphatase-Rezeptor Typ K" (englisch: „protein tyrosine phosphatase receptor type K") ist auch bekannt unter dem Synonym R-PTP-kappa. Bevorzugte CpG- Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von PTPRK sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (6:127963171- 128535084) . Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von PTPRK zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (6:128505772-128525024, SEQ ID NO:494) . Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von PTPRK sind in Beispiel 4 beschrieben.
Das Gen RBKS oder „Ribokinase" (englisch: „ribokinase") ist auch bekannt unter den Synonymen RBSK und RK. Bevorzugte CpG- Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von RBKS sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (2:27777732- 27896077) . Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von RBKS zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (2:27795917-27806109, SEQ ID NO:495). Der Genlocus von RBSK überlappt mit dem Genlocus von MRPL33. Vorzugsweise umfasst die DNA-Methylierungsanalyse von RBKS zumindest ein CpG-Dinukleotid in einem Teil des Gens MRPL33, dessen vor- bzw. nachgelagerten regulatorischen Elementen und/oder Sequenzen (2:27766058-27895728). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von RBKS sind in Beispiel 4 beschrieben.
Das Gen SH3RF2 oder „SH3-Domäne-enthaltender Ringfinger 2" (englisch: „SH3 domain containing ring finger 2") ist auch bekannt unter den Synonymen HEPP1, POSHER, PPP1R39 und RNF158. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von SH3RF2 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (5:145932920-146086373). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von SH3RF2 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (5:145943178-145954502, SEQ ID NO:496). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von SH3RF2 sind in Beispiel 4 beschrieben.
Das Gen SILC1 oder „sciatic injury induced lincRNA upregulator of SOX11" (englisch) ist auch bekannt unter dem Synonym LINC01105. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von SILC1 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (2:5928211-6010316). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von SILC1 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (2:5965649- 5976973, SEQ ID NO:497). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von SILC1 sind in Beispiel 4 beschrieben .
Das Gen SRI ocodiert für „Spl Transkriptionsfaktor von SOX11" (englisch: „Spl transcription factor"). Bevorzugte CpG- Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von SRI sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (12:53375735- 53421600) . Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von SRI zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (12:53376933-53389389, SEQ ID NO:498) . Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von SP1 sind in Beispiel 4 beschrieben.
Das Gen SPAG6 oder „Sperma-assoziiertes Antigen 6" (englisch: „sperm associated antigen 6") ist auch bekannt unter den Synonymen CFAP194, CT141, FAP194, Repro-SA-1 und pfl6. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von SPAG6 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (10:22334820-22456564). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von SPAG6 zumindest ein CpG-Dinukleotid einem Teil des Genkörpers (10:22423788-22437377, SEQ ID NO:499). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von SPAG6 sind in Beispiel 4 beschrieben.
Das Gen SRGAP1 oder „SLIT-ROBO Rho GTPase-aktivierendes Protein 1" (englisch: „SLIT-ROBO Rho GTPase activating protein 1") ist auch bekannt unter den Synonymen ARHGAP13 und NMTC2. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von SRGAP1 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (12:63840361-64168219). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von SRGAP1 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (12:64081933-64096088, SEQ ID NQ:500). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von SRGAP1 sind in Beispiel 4 beschrieben.
Das Gen SYTL3 oder „Synaptotagmin-ähnlich 3" (englisch: „synaptotagmin like 3") ist auch bekannt unter dem Synonym SLP3. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von SYTL3 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (6:158648904-158767816). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von SYTL3 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (6:158715789-158725980, SEQ ID NO:501). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von SYTL3 sind in Beispiel 4 beschrieben.
Das Gen TMEM248 oder „Transmembranprotein 248" (englisch: „transmembrane protein 248") ist auch bekannt unter dem Synonym C7orf42 . Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von TMEM248 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (7:66917852-66964283). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von TMEM248 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (7:66948778- 66956138, SEQ ID NO:503). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von TMEM248 sind in Beispiel 4 beschrieben .
Das Gen UTP25 oder „UTP25 kleine Untereinheit Prozessorkomponente" (englisch: „UTP25 small subunit processor component") ist auch bekannt unter den Synonymen ClorflOl, DEE, DIEXF und DJ434O14.5. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von UTP25 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (1:209825659-209861332). Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von UTP25 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (1:209833653-209842712, SEQ ID NO:504) . Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von UTP25 sind in Beispiel 4 beschrieben.
Das Gen WDFY3 oder „WD-Wiederholung und FYVE-Domäne-enthaltend 3" (englisch: „WD repeat and FYVE domain containing 3") ist auch bekannt unter den Synonymen AIFY, BCHS, MCPH18 und ZFYVE25. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von WDFY3 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (4:84663857-84972463). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von WDFY3 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (4:84688272- 84697331, SEQ ID NO:505). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von WDFY3 sind in Beispiel 4 beschrieben .
Das Gen WIPF2 oder „WAS/WASL-interagierendes Protein Familienmitglied 2" (englisch: „WAS/WASI interacting protein family member 2") ist auch bekannt unter den Synonymen WICH und WIRE. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von WIPF2 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (17:40215423-40289035). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von WIPF2 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers und/oder der nachgelagerten Sequenz (17:40280324-40285420, SEQ ID NO:506). Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von WIPF2 sind in Beispiel 4 beschrieben. Das Gen WSB2 oder „WD-Wiederholung- und SOCS-Box-enthaltend 2" (englisch: „WD repeat and SOGS box containing 2") ist auch bekannt unter dem Synonym SBA2. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von WSB2 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (12:118031129-118069633). Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von WSB2 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers und/oder der Region des alternativen Promotors (12:118050165-118055260, SEQ ID NO:507). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von WSB2 sind in Beispiel 4 beschrieben.
Das Gen ZCCHC14 oder „Zinkfinger CCHC-Typ-enthaltend 14" (englisch: „zinc finger CCHC-type containing 14") ist auch bekannt unter den Synonymen BDG-29 und BDG29. Bevorzugte CpG- Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von ZCCHC14 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (16:87404598- 87498029) . Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von ZCCHC14 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (16:87454494-87461288, SEQ ID NO:508) . Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von ZCCHC14 sind in Beispiel 4 beschrieben.
Das Gen ZSWIM1 oder „Zinkfinger SWIM-Typ-enthaltend 1" (englisch: „zinc finger SWIM-type containing 1") ist auch bekannt unter dem Synonym C20orfl62. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von ZSWIM1 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (20:45879834-45885948). Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von ZSWIM1 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers und/oder der nachgelagerten Sequenz (20:45882837-45886936, SEQ ID NO:509). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von ZSWIM1 sind in Beispiel 4 beschrieben.
Das Gen ENSG00000226380 codiert für eine lange nicht-codierende RNA. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von ENSG00000226380 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (7:130847110-130935786). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von ENSG00000226380 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers und/oder eines alternativen Promotors (7:130897587- 130915321, SEQ ID NO:510). ENSG00000226380 überlappt mit den Genen ENSG00000285106 und ENSG00000233559, welche für lange nicht-codierende RNAs codieren. Bevorzugte weitere CpG- Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von ENSG00000226380 sind beispielsweise in den Transkript- codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen von ENSG00000285106 und/oder ENSG00000233559 enthalten (7:130785211- 131117033) . Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von ENSG00000226380 sind in Beispiel 4 beschrieben .
Das Gen ENTPD6 oder „Ektonukleosidtriphosphat-Diphosphohydrolase 6" (englisch: „ectonucleoside triphosphate diphosphohydrolase 6") ist auch bekannt unter den Synonymen CD39L2, IL-6SAG, IL6ST2, NTPDase-6 und dJ738P15.3. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von ENTPD6 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (20:25189304-25235735). Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von ENTPD6 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers und/oder der nachgelagerten Sequenz (20:25218815-25232404, SEQ ID NO:511). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von ENTPD6 sind in Beispiel 4 beschrieben.
Das Gen ENSG00000285517 codiert für die lange intergenische nicht-Protein-codierende RNA 941. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von ENSG00000285517 sind beispielsweise in den Transkript- codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (12:30786572-30885665). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von ENSG00000285517 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (12:30789185-30803341, SEQ ID NO:512). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von ENSG00000285517 sind in Beispiel 4 beschrieben.
Das Gen CAPRIN2 oder „Caprin Familienmitglied 2" (englisch: „caprin family member 2") ist auch bekannt unter den Synonymen C1QDC1, EEG-1, EEG1 und RNG140. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von CAPRIN2 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (12:30706091-30760450). Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von CAPRIN2 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (12:30721446-30731637, SEQ ID NO:513) . Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von CAPRIN2 sind in Beispiel 4 beschrieben.
Das Gen MTPN oder „Myotrophin" (englisch: „myotrophin") ist auch bekannt unter den Synonymen GCDP und V-l. Bevorzugte CpG- Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von MTPN sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (7:135921876- 135988693) . Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von MTPN zumindest ein CpG-Dinukleotid Teil des Genkörpers und/oder der nachgelagerten Sequenz (7:135916072-135931079, SEQ ID NO:514). MTPN überlappt mit dem Gen ENSG00000224746, das für eine lange nicht-codierende Antisense-RNA von MTPN codiert. Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von MTPN sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- bzw. nachgelagerten regulatorischen Elementen und/oder Sequenzen von ENSG00000224746 enthalten (7:135766091-135940495). Weitere Bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von MTPN sind in Beispiel 4 beschrieben .
Das Gen ADAM17 oder „ADAM Metallopeptidase-Domäne 17" (englisch: „ADAM metallopeptidase domain 17") ist auch bekannt unter den Synonymen ADAMIS, CD156B, CSVP, NISBD, NISBD1 und TAGE. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von ADAM17 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (2:9483620-9576484). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von ADAM17 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (2:9549370- 9573152, SEQ ID NO:515). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von ADAM17 sind in Beispiel 4 beschrieben .
Das Gen ATG14 oder „Autophagie-verwandt 14" (englisch: „autophagy related 14") ist auch bekannt unter den Synonymen ATG14L, BARKOR und KIAA0831. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von ATG14 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (14:55360269-55419158). Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von ATG14 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (14:55394876-55407333, SEQ ID NO:516). Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von ATG14 sind in Beispiel 4 beschrieben.
Das Gen ENSG00000258583 codiert für die lange intergenische nicht-Protein-codierende RNA 1500 (LINC01500). Bevorzugte CpG- Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von ENSG00000258583 sind beispielsweise in den Transkript- codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (14:58696512-58787111). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von ENSG00000258583 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (14:58725174-58743859, SEQ ID NO:517). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von ENSG00000258583 sind in Beispiel 4 beschrieben.
Das Gen ITGB5 codiert für „Integrin-Untereinheit Beta 5" (englisch: „integrin subunit beta 5"). Bevorzugte CpG- Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von ITGB5 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (3:124755559- 124906181) . Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von ITGB5 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (3:124873906-124896555, SEQ ID NO:518) . Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von ITGB5 sind in Beispiel 4 beschrieben.
Das Gen VGLL4 oder „vestigial like family member 4" ist auch bekannt unter dem Synonym VGL-4. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von VGLL4 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (3:11551262-11777762). Bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von VGLL4 zumindest ein CpG-Dinukleotid in einem Teil der Region des alternativen Promotors und/oder Genkörpers (3:11565768- 11571995, SEQ ID NO:519). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von VGLL4 zumindest ein CpG-Dinukleotid in einem Teil der zentralen Region des alternativen Promotors (3:11568540-11569011). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von VGLL4 sind in Beispiel 5 beschrieben.
Das Gen CDCP1 oder „CUB domain containing protein 1" ist auch bekannt unter den Synonymen CD318 SIMA135 und TRASK. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von CDCP1 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (3:45074059-45158995). Bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von CDCP1 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (3:45124238-45151983, SEQ ID NO:520). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von CDCP1 zumindest ein CpG-Dinukleotid in einem Teil der Promotorflankenregion (3:45131323-45141462). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von CDCP1 sind in Beispiel 5 beschrieben.
Das Gen RASA3 oder „RAS p21 protein activator 3" ist auch bekannt unter den Synonymen GAP1IP4BP und GAPIII. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von RASA3 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (13:113975248-114140593). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von RASA3 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (13:114105649-114128377, SEQ ID NO:521) und/oder zumindest einem Teil des Genkörpers (13:114062455-114066811, SEQ ID NO:522). Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von RASA3 sind in Beispiel 5 beschrieben.
Das Gen PTTG1IP oder „PTTG1 interacting protein" ist auch bekannt unter den Synonymen C21orfl C21orf3 und PBF. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von PTTG1IP sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (21:44846942-44879217). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von PTTG1IP zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (21:44865977-44876735, SEQ ID NO:523). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von PTTG1IP sind in Beispiel 5 beschrieben.
Das Gen ASAP2 oder „ArfGAP with SH3 domain, ankyrin repeat and PH domain 2" ist auch bekannt unter den Synonymen AMAP2, CENTB3, DDEF2, PAG3, PAP, Pap-alpha und SHAG1. Bevorzugte CpG- Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von ASAP2 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (2:9189545- 9412647) . Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von ASAP2 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (2:9230183-9241659, SEQ ID NO:524 und 2:9275684-9297427, SEQ ID NO:525). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von ASAP2 sind in Beispiel 5 beschrieben.
Das Gen ENSG00000242282 codiert für eine lange nicht-codierende RNA. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von ENSG00000242282 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (2:3530801-3538728). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von ENSG00000242282 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (2:3534728-3537892, SEQ ID NO:526). Das Gen ENSG00000242282 überlappt mit dem bisher nicht näher beschriebenen Proteincodierenden Gen ENSG00000286905. Bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von ENSG00000242282 zumindest ein CpG-Dinukleotid in einem Teil von ENSG00000286905 und/oder dessen vor- bzw. nachgelagerten Sequenzen (2:3528688- 3564361) . Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von ENSG00000242282 sind in Beispiel 5 beschrieben .
Locus Chromosom 3 zytogenetische Bande q29 (Locus Chr.3q29) ist im Sinne der Erfindung ein Bereich auf Chromosom 3, innerhalb der zytogenetischen Bande q29, in dem bisher keine Gene identifiziert wurden. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse sind in dem Bereich 3:193846105-193957656 enthalten. Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von Locus Chr.3p23 zumindest ein CpG-Dinukleotid in einem Teil der Region 3:193868829-193871078 (SEQ ID NO:527). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von Locus Chr.3q29 sind in Beispiel 5 beschrieben.
Das Gen TMCO4 codiert für „transmembrane and coiled-coil domains 4". Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von TMCO4 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (1:19682086-19805528). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von TMCO4 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (1:19760862- 19771053, SEQ ID NO:528). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von TMCO4 sind in Beispiel 5 beschrieben .
Das Gen UBXN11 oder „UBX domain protein 11" ist auch bekannt unter den Synonymen COA-1, PP2243, SOC, SOCI und UBXD5. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von UBXN11 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (1:26279900-26322368). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von UBXN11 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (1:26283080- 26291573, SEQ ID NO:529). Vorzugsweise umfasst die DNA- Methylierungsanalyse von UBXN11 auch zumindest ein CpG- Dinukleotid in einem Teil des SH3BGRL3 Gens (1:26279900- 26282767), da dessen nachgelagerte Sequenzen mit UBXN11 überlappen. Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von UBXN11 sind in Beispiel 5 beschrieben.
Das Gen MAP3K5 oder „mitogen-activated protein kinase kinase kinase 5" ist auch bekannt unter den Synonymen ASK1, MAPKKK5 und MEKK5. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von MAP3K5 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (6:136554489-136801939). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von MAP3K5 zumindest ein CpG-Dinukleotid einem Teil des Genkörpers (6:136586548-136600703, SEQ ID NO:530). Weitere bevorzugte CpG- Dinukleotide für die Methylierungsanalyse von MAP3K5 sind in Beispiel 5 beschrieben.
Das Gen ASTN2 oder „astrotactin 2" ist auch bekannt unter dem Synonym bA67K19.1. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von ASTN2 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (9:117345773-117430710). Besonders bevorzugt umfasst die erfindungsgemäße DNA- Methylierungsanalyse von ASTN2 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (9:117366574-117385825, SEQ ID NO:531) . Weitere bevorzugte CpG-Dinukleotide für die DNA- Methylierungsanalyse von ASTN2 sind in Beispiel 5 beschrieben.
Das Gen ENSG00000258082 codiert für eine lange nicht-codierende RNA. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von ENSG00000258082 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen und Sequenzen enthalten (1:234975256-234989412). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von ENSG00000258082 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (1:234979046-234982307, SEQ ID NO:532). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von ENSG00000258082 sind in Beispiel 5 beschrieben.
Das Gen SYNJ2 oder „Synaptojanin 2" ist auch bekannt unter dem Synonym INPP5H. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA-Methylierungsanalyse von SYNJ2 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (6:157977609-158103316). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von SYNJ2 zumindest ein CpG-Dinukleotid in einem Teil des Genkörpers (6:158054401-158064027, SEQ ID NO:351). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von SYNJ2 sind in Beispiel 6 beschrieben.
Das Gen WWTR1 oder „WW-Domäne enthaltender Transkriptionsregulator 1" (englisch: WW domain containing transcription regulator 1) ist auch bekannt unter dem Synonym TAZ. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von WWTR1 sind beispielsweise in den Transkript-codierenden Bereichen, im Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (3:149513215-149741413). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von WWTR1 zumindest ein CpG-Dinukleotid in einem Teil der Promotorregion (3:149654894-149660454, SEQ ID NO:365). Weitere bevorzugte CpG- Dinukleotide für die DNA-Methylierungsanalyse von WWTR1 sind in Beispiel 6 beschrieben.
Das Gen CLDN4 oder „Claudin 4" ist auch bekannt unter den Synonymen CPE-R, CPER, CPETR, CPETR1, WBSCR8 und hCPE-R. Bevorzugte CpG-Dinukleotide für die erfindungsgemäße DNA- Methylierungsanalyse von CLDN4 sind beispielsweise in den Transkript-codierenden Bereichen, dem Genkörper sowie den vor- und nachgelagerten regulatorischen Elementen enthalten (7:73791741-73838739). Besonders bevorzugt umfasst die erfindungsgemäße DNA-Methylierungsanalyse von CLDN4 zumindest ein CpG-Dinukleotid in einem Teil der Promotor- und Genkörperregion (7:73826348-73836540, SEQ ID NO:354). Weitere bevorzugte CpG-Dinukleotide für die DNA-Methylierungsanalyse von CLDN4 sind in Beispiel 7 beschrieben.
Die DNA-Methylierungsanalyse kann im Grunde genommen mit allen gängigen Methoden durchgeführt werden, die dem Durchschnittsfachmann zu diesem Zweck aus der einschlägigen Literatur bekannt sind.
Ein geeignetes Verfahren umfasst beispielsweise die folgenden Schritte: A) Bereitstellen von DNA der Zellen der malignen Erkrankung; B) Umwandeln zumindest eines Teils der in der DNA aus A) enthaltenen Cytosine in Uracil oder eine andere Base mit einem von Cytosin unterscheidbaren Basenpaarungsverhalten und/oder Molekulargewicht; C) Untersuchung der aus Schritt B) erhaltenen DNA, nachfolgend auch als „umgewandelte DNA" bezeichnet, auf eine DNA-Methylierung des entsprechenden Gens bzw. des Teils davon, insbesondere mindestens eines in dem Teil enthaltenen CpG-Dinukleotids.
Die Umwandlung der DNA in Schritt B) kann im Prinzip mit allen im Stand der Technik für diesen Zweck bekannten und geeigneten Methoden erfolgen. Typischerweise handelt es sich um eine chemische oder enzymatische Umwandlung, beispielsweise durch kontaktieren der DNA mit Bisulfit, z. B. Natriumbisulfit oder Ammoniumbisulfit .
Die Untersuchung der DNA auf eine DNA-Methylierung des entsprechenden Gens bzw. des Teils davon kann z. B. mithilfe der Real-Time PCR (qPCR), eines Methylierungs-Arrays oder mithilfe von DNA-Sequenzierung erfolgen.
In einer bevorzugten Variante wird zunächst eine Polymerasekettenreaktion (PCR) mit Oligonukleotiden, sogenannten Primern, durchgeführt, welche dazu ausgelegt sind, einen Abschnitt der umgewandelten DNA zu amplifizieren, welcher mindestens ein CpG-Dinukleotid enthält, von dem die DNA- Methylierungsanalyse durchgeführt werden soll. Es ist möglich, dass die für die DNA-Methylierungsanalyse bestimmten CpG- Dinukleotide zwischen den Primern liegen und daher die Primer den umgewandelten Genabschnitt unabhängig vom Methylierungszustand des mindestens einen CpG-Dinukleotids amplifizieren . Anschließend erfolgt vorzugsweise eine Sequenzierung zumindest eines Teils des Amplifikats, zum Beispiel eine Sanger-Sequenzierung, Pyrosequenzierung, massenspektrometrische Sequenzierung oder eine Sequenzierung der zweiten oder dritten Generation, welche auch als „Massive Parallel Sequencing", „Next Generation Sequencing" (NGS) oder als Nanoporensequenzierung bezeichnet werden. Es ist auch möglich, im Anschluss an die PCR eine Hybridisierung mit methylierungsspezifischen Oligonukleotiden (Sonden) durchzuführen, beispielsweise in Form eines DNA-Microarrays.
Vorzugsweise werden die Primer auch derart ausgelegt, dass sie mit einer Multiplex-PCR kompatibel sind, in der eine Vielzahl von Primerpaaren zur gleichzeitigen Amplifikation einer Vielzahl von verschiedenen zu untersuchenden Bereichen der umgewandelten DNA eingesetzt werden. Anschließend erfolgt die Untersuchung der Vielzahl von PCR-Amplifikaten beispielsweise mittels Next Generation Sequencing.
Die DNA-Methylierungsanalyse kann auch durch quantitative Echtzeit-PCR (quantitative real-time PCR, qPCR) durchgeführt werden. Beispielsweise kann die qPCR mit mindestens einer Sonde durchgeführt werden, welche spezifisch entweder den methylierten oder den unmethylierten Zustand des mindestens einen CpG- Dinukleotids bindet. Die DNA-Methylierung kann auch durch modifizierte PCR-basierte Verfahren, wie beispielsweise ARMES (Amplification Refractory Mutation System) oder MSP (methylierungsspezifische PCR) bestimmt werden. Bei der MSP befindet sich das mindestens eine zu untersuchende CpG- Dinukleotid innerhalb der Primerbindestelle und es werden Primer verwendet, die derart ausgelegt sind, dass sie entweder nur den methylierten oder den unmethylierten Zustand des CpG- Dinukleotids binden. Es ist möglich, ARMES und MSP als quantitative Echtzeit-PCR durchzuführen. Zweckdienliche Laborhandbücher für diese Techniken und Methoden stehen dem Fachmann ohne Weiteres zur Verfügung, beispielsweise „Molecular Cloning, A Laboratory Manual" von M. R. Green und J. Sambrook, 4th Edition, 2012, Cold Spring Harbor Laboratory Press; „Next- Generation Sequencing: Current Technologies and Applications" von Jianping Xu, 2014, Caister Academic Press; „Next-Generation DNA Sequencing Informatics" von Stuart M. Brown, 2nd Edition, 2015, Gold Spring Harbor Laboratory Press.
In einer weiteren bevorzugten Ausgestaltung erfolgt die DNA- Methylierungsanalyse über eine multiplexierte, ligationsabhängige Sondenamplifikation (MLPA). Die für die MLPA verwendeten Sonden werden dazu in einer Weise ausgelegt, dass sie an den zu bestimmenden CpG-Dinukleotiden binden und beispielsweise bei Vorliegen einer Methylierung eines CpG- Dinukleotids ligiert werden. Im Anschluss können die ligierten Sonden zum Beispiel mithilfe einer PCR amplifiziert und gegebenenfalls sequenziert werden.
In wiederum anderen bevorzugten Varianten kann eine PCR entfallen, beispielsweise bei einer Analyse mittels der BeadChip-Technologie, wie sie beispielsweise bei der Infinium Plattform (Illumina, Inc., CA, USA) Anwendung findet. Es ist auch möglich, die DNA-Methylierungsanalyse der umgewandelten DNA mittels „Whole Genome Shotgun Bisulfite Sequencing" (WGSBS) oder einer direkten Nanoporensequenzierung durchzuführen. Bei der WGSBS wird die DNA fragmentiert, anschließend werden Adapter an die DNA Fragmente ligiert. Uber die Adapter ist im Anschluss eine Amplifikation und Sequenzierung möglich. Es ist auch möglich bei der WGSBS den Schritt der Fragmentierung wegzulassen, da die DNA zum Beispiel durch die Umwandlung durch Bisulfit-Behandlung bereits fragmentiert vorliegen kann. Protokolle für die Durchführung einer WGSBS sind dem Fachmann einschlägig bekannt. Bei der Nanoporensequenzierung wird ein DNA Molekül durch eine Pore geschleust. Die Nukleotide lösen bei der Passage ein messbares elektrisches Signal aus, welches charakteristisch für die in der Nanopore befindlichen Nukleotide ist und diesen so zugeordnet werden kann. In einer anderen bevorzugten Variante kann vor der PCR Amplifikation eine Hybridisierung mit spezifischen Oligonukleotiden (Sonden) erfolgen, die im Falle des Bindens ligiert werden und anschließend mittels PCR amplifiziert werden. Geeignete Methoden und Protokolle, wie zum Beispiel eine „multiplex ligation dependent probe amplification" (MLPA) sind dem Fachmann bekannt. In einer anderen bevorzugten Variante wird die Mutationsanalyse mittels quantitativer Echtzeit-PCR durchgeführt.
Es ist auch möglich, die DNA-Methylierungsanalyse ohne eine Umwandlung der DNA durchzuführen. Ein geeignetes Verfahren umfasst beispielsweise die folgenden Schritte: A) Bereitstellen von DNA der Zellen der malignen Erkrankung; B) Durchführen einer Spaltungs- oder Präzipitationsreaktion mit der DNA aus A) in Abhängigkeit von der Methylierung des zu untersuchenden CpG- Dinukleotids; C) Untersuchung der aus Schritt B) erhaltenen DNA auf gespaltene DNA oder präzipitierte DNA bezeichnet. Die Spaltung der DNA in Abhängigkeit von der Methylierung des CpG- Dinukleotids kann beispielsweise mittels methylierungsspezifischer Restriktionsenzyme durchgeführt werden. Die Präzipitation der DNA in Abhängigkeit von der Methylierung des CpG-Dinukleotids kann beispielsweise mittels methylierungsspezifisch DNA-bindenden Proteinen durchgeführt werden.
Die DNA der Zellen der malignen Erkrankung kann aus verschiedenen Quellen stammen, beispielsweise aus operativ oder bioptisch entnommenem Gewebe, Spülflüssigkeit, Feinnadelaspirat oder Sputum. Die DNA kann auch aus Blut, Blutserum oder Blutplasma stammen, beispielsweise in Form von frei zirkulierender DNA, exosomaler DNA oder in Form von frei zirkulierenden Zellen der malignen Erkrankung. Die DNA kann auch aus weiteren Körperflüssigkeiten wie z. B. Lymphflüssigkeit, Urin, Pleuraergüssen oder Aszites stammen sowie aus nicht- konservierten Zellen oder Geweben. Mit besonderem Vorteil lässt sich das erfindungsgemäße Verfahren auch auf fixierte Zellen, Gewebe und Körperflüssigkeiten anwenden, wobei die Fixierung beispielsweise durch präzipitierende Fixative wie z. B. Ethanol und andere Alkohole oder durch quervernetzende Fixative wie z. B. Formaldehyd erfolgt sein kann. Insbesondere kann es sich auch um Formalin-fixiertes und Paraffin-gebettetes Gewebe (FFPET) handeln. Die DNA kann auch aus beliebigen Kombinationen dieser Quellen stammen. In bevorzugten Ausführungsformen umfasst die DNA frei zirkulierender DNA, DNA aus Exosomen und/oder DNA aus frei zirkulierenden Zellen der malignen Erkrankung aus einer Körperflüssigkeit.
Es versteht sich, dass die erfindungsgemäße DNA- Methylierungsanalyse auch mehrere CpG-Dinukleotide des jeweiligen Gens umfassen kann. Ein Ansprechen auf die Behandlung ist dementsprechend wahrscheinlich, wenn diese CpG-Dinukleotide jeweils bei einem überwiegenden Teil der Zellen der malignen Erkrankung keine Methylierung aufweisen, also unmethyliert sind. Eine Ausnahme hiervon bildet das Gen CLDN4, das ein wahrscheinliches Ansprechen anzeigt, wenn diese CpG-Dinukleotide jeweils bei einem überwiegenden Teil der Zellen der malignen Erkrankung methyliert sind. Dem Fachmann ist jedoch bekannt, dass die CpG-Dinukleotide eines bestimmten Gens in einer Zelle in der Regel komethyliert vorliegen, d. h. entweder im Wesentlichen alle methyliert oder alle unmethyliert sind. Daher ist der Methylierungszustand eines CpG-Dinukleotids eines erfindungsgemäßen Gens grundsätzlich repräsentativ für den Methylierungszustand weiterer in dem Gen enthaltender CpG- Dinukleotide, sodass die DNA-Methylierungsanalyse eines CpG- Dinukleotid eines erfindungsgemäßen Gens für eine zuverlässige Vorhersage der Ansprüche Wahrscheinlichkeit ausreichend und zweckmäßig ist. Im Sinne der vorliegenden Erfindung bedeutet „ein überwiegender Teil" grundsätzlich mehr als 50%. Selbstverständlich kann ein „überwiegender Teil" auch mehr als 60%, mehr als 70%, mehr als 75%, mehr als 80%, mehr als 85%, mehr als 90%, mehr als 95% oder 100% bedeuten, wobei mehr als 75% oder mehr als 85% besonders bevorzugt sind. Je stärker der Teil der Zellen der malignen Erkrankung überwiegt, bei dem das mindestens eine CpG- Dinukleotid unmethyliert bzw. im Fall von CLDN4 methyliert vorliegt, desto wahrscheinlicher ist nach Erkenntnis des Erfinders das Ansprechen der malignen Erkrankung auf die Behandlung. Umgekehrt ist die Ansprechwahrscheinlichkeit umso geringer, je größer der Anteil der Zellen der malignen Erkrankung ist, bei denen das mindestens eine CpG-Dinukleotid methyliert bzw. im Fall von CLDN4 unmethyliert vorliegt. Anders ausgedrückt ist ein Ansprechen wahrscheinlich, wenn weniger als 50%, weniger als 40%, weniger als 30%, weniger als 25%, weniger als 20%, weniger als 15%, weniger als 10%, weniger als 5% oder 0% der Zellen der malignen Erkrankung eine DNA-Methylierung des mindestens einen CpG-Dinukleotids bzw. im Fall von CLDN4 keine DNA-Methylierung des mindestens einen CpG-Dinukleotids aufweisen, wobei weniger als 25% oder weniger als 15% besonders bevorzugt sind.
Ein besonderer Vorteil des erfindungsgemäßen Verfahrens liegt demnach in der überraschend hohen Trennschärfe zwischen erkrankten Personen, die auf Behandlung ansprechen und erkrankten Personen, die nicht oder nur unzureichend auf die Behandlung ansprechen. Diesbezüglich wird auch auf die nachfolgenden Ausführungsbeispiele verwiesen. In bevorzugten Ausführungsformen ist ein Ansprechen auf die Behandlung wahrscheinlich, wenn das mindestens eine CpG-Dinukleotid bei mehr als 75% oder mehr als 85% der Zellen der malignen Erkrankung unmethyliert ist, d. h. weniger als 25% oder weniger als 15% der Zellen weisen eine DNA-Methylierung des CpG- Dinukleotids auf, und unwahrscheinlich, wenn das mindestens eine CpG-Dinukleotid bei mehr als 70% oder mehr als 80% der Zellen der malignen Erkrankung methyliert ist, d. h. mehr als 70% oder mehr als 80% der Zellen weisen eine DNA-Methylierung des CpG- Dinukleotids auf. Selbstverständlich sind diese Verhältnisse im Fall von CLDN4 wiederum umgekehrt. Aufgrund dieser hohen Trennschärfe ist die Fehlerwahrscheinlichkeit des Verfahrens besonders gering, wodurch sich zeit- und kostenintensive Fehltherapien mit hoher Zuverlässigkeit vermeiden lassen.
Dem Fachmann sind verschiedene Verfahren zur Bestimmung der Anzahl bzw. des Anteils von Zellen einer malignen Erkrankung in einer Probe bekannt. Der Anteil der Zellen der malignen Erkrankung kann beispielsweise histopathologisch bestimmt werden. Besonders geeignet ist die Bestimmung des Anteils von Zellkernen von Zellen der malignen Erkrankung in Relation zu der Anzahl der gesamten Zellkerne in einer Probe. Es ist auch möglich, den Anteil der Zellen der malignen Erkrankung anhand einer Eigenschaft zu bestimmen, die spezifisch für die Zellen der malignen Erkrankung ist. Eine besonders geeignete Eigenschaft ist eine Veränderung der DNA, die nur in Zellen der malignen Erkrankung vorkommt. Diese Veränderung kann beispielsweise eine Mutation sein. Besonders geeignete Mutationen sind Mutationen der Gene TP53, NRAS, EGFR und BRAF, insbesondere BRAFV600E. Mithilfe der Anzahl bzw. des Anteils der Zellen der malignen Erkrankung in der Probe kann die erfindungsgemäße DNA-Methylierungsanalyse normalisiert werden, beispielsweise durch Multiplikation mit dem prozentualen Anteil der Zellen der malignen Erkrankung. Es ist möglich, die DNA-Methylierungsanalyse mit einer Mutationsanalyse zu kombinieren, die vorzugsweise ebenfalls mit der umgewandelten DNA durchgeführt wird. Ein geeignetes Verfahren zur Mutationsanalyse in umgewandelter DNA ist z. B. aus DE 102015 009187 B3 bekannt. Auf diese Weise kann das Ansprechen auf die Behandlung mit dem pharmazeutischen Hemmwirkstoff noch genauer vorhergesagt bzw. eine noch differenziertere Entscheidungshilfe für die medikamentöse Behandlung der erkrankten Person bereitgestellt werden. In bevorzugten Ausführungsformen umfasst die Mutationsanalyse mindestens ein Gen aus der Gruppe bestehend aus BRAF, NRAS, KRAS, PTEN und MEK1 EGER, BRCA2, BRCA1, ATM, CHEK2, PALB2, BRIP1, BARD1, RAD51C, RAD51D, NBN, PIK3CA, FGFR3, FGFR2, FGFR1, CCND1, NTRK1, NTRK2, NTRK3 und beliebigen Kombinationen davon. Unter „Mutationsanalyse" wird hier insbesondere die Bestimmung verstanden, ob ein Gen eine Veränderung gegenüber einem Wildtyp, insbesondere eine Mutation, Fusion oder Amplifikation, aufweist.
In einer Ausführungsform kann z. B. die Bestimmung der Ansprechwahrscheinlichkeit einer malignen Erkrankung auf eine Behandlung mit einem RAS/RAF/MEK/ERK-Signalweginhibitor ausgewählt aus der Gruppe bestehend aus MEK-Inhibitor, RAF- Inhibitor, RAS-Inhibitor, ERK-Inhibitor, SHP2-Inhibitor, c-Met- Inhibitor, EPHA2-Inhibitor und beliebigen Kombinationen davon eine DNA-Methylierungsanalyse von mindestens einem CpG- Dinukleotid eines Gens ausgewählt aus der Gruppe bestehend aus PPP1R18, RUNX1, PLEC, LAMB3, TINAGL1, C19orf33, IL18, S100A2, TOBI, TOR4A, FBRSL1, S100A10, LRRFIP2, SPIDR, ASB1, LAMA3, ENSG00000229672, MYH16, GRID1, CHD2, ZBTB38, TAFAZZIN, ANXA11, MAFK, NEDD4L, DIP2C, CAPN2, IER3, TM4SF19, RPTOR, S100A16, BCL9L, KCNMA1, GALE, PCID2, GNG7, ANXA2, MAFG, PKP3, ABTB2, ENSG00000287625, ARL14, BCAR3, BIK, CCND3, CMIP, ELK3, HRH1, SAP30BP, NOS1AP, RALB, TGFBI, ENSG00000235726, CAB39, CIRBP, DIAPH1, FGD6, LMO7, MICAL2, STMN1, MNT, PC, PLEKHG5, PRORP, RDX, SERP1, SLCO3A1, SUFU, TANGOS, EGER, PINX1, SSBP2, TRERF1, GPT2, HEG1, ENSGO0000231740, PPM1H, PRDM10, RAD18, ENSGO0000231185, SYNPO, TNFRSF10B, T0M1L2, TPRG1, VRK2, ENSG00000249149, NC0R2, ENSGO0000258077, NINJ2, ENSGO0000257746, B3GNTL1, DCP2, ENSG00000242759, Locus Chr.3p23, OGDH, PDZRN3, PLXNB2, ENSGO0000228793, C6orfl32, ENSG00000254561, ENSGO0000233321, SPATA12, ERBB2, SH3TC1, SSH1, AVPI1, MAP3K14, MIR23AHG, EPHA2, ENSG00000233785, ACVR1, ENSG00000282849, COX7A2L, ENSG00000234476, LRRC2, PLXNB1, PPTC7, RB1CC1, SLC2A1, SLC39A11, TBC1D14, TIMP2, ENSGO0000276527, CFAP20DC, PHLDA1, TESC, LIMA1, ASPSCR1, CAMKID, CAMK2D, CFAP57, CHCHD6, DRAP1, ENC1, ARHGAP32, ABL2, ENSGO0000250754, Locus Chr.lq42.3, MYO16, MYOF, PTPRK, RBKS, SH3RF2, SILC1, SP1, SPAG6, SRGAP1, SYTL3, TMEM248, UTP25, WDFY3, WIPF2, WSB2, ZCCHC14, ZSWIM1, ENSGO0000226380, ENTPD6, ENSGO0000285517, CAPRIN2, MTPN, ADAM17, ATG14, ENSG00000258583, ITGB5, VGLL4, CDCP1, RASA3, PTTG1IP, ASAP2, ENSGO0000242282, Locus Chr.3q29, TMCO4, UBXN11, MAP3K5, ASTN2, ENSGO0000258082, SYNJ2 und WWTR1 und beliebigen Kombinationen davon und eine Mutationsanalyse von mindestens einem Gen ausgewählt aus der Gruppe bestehend aus BRAE, NRAS, KRAS, PTEN und MEK1 und beliebigen Kombinationen davon von Zellen der malignen Erkrankung umfassen.
Hierbei hat sich gezeigt, dass ein Ansprechen auf die Behandlung mit einem RAS/RAF/MEK/ERK-Signalweginhibitor ausgewählt aus der Gruppe bestehend aus MEK-Inhibitor und RAF-Inhibitor besonders wahrscheinlich ist, wenn bei einem überwiegenden Teil der Zellen der malignen Erkrankung das mindestens eine CpG-Dinukleotid unmethyliert ist und gleichzeitig eine BRAF Mutation, beispielsweise ein B_RAFV600E-Mutation, und/oder keine NRAS Mutation vorliegt. Es versteht sich, dass umgekehrt das Ansprechen auf die Behandlung besonders unwahrscheinlich ist, wenn bei einem überwiegenden Teil der Zellen der malignen Erkrankung das mindestens eine CpG-Dinukleotid methyliert ist und gleichzeitig NRAS eine Mutation aufweist und/oder BRAF keine Mutation aufweist. Es hat sich auch gezeigt, dass ein Ansprechen auf die Behandlung mit einem RAS-Inhibitor besonders wahrscheinlich ist, wenn bei einem überwiegenden Teil der Zellen der malignen Erkrankung das mindestens eine CpG-Dinukleotid unmethyliert ist und gleichzeitig KRAS eine Mutation, beispielsweise eine KRASG12C-Mutation, aufweist.
In einer Ausführungsform kann z. B. die Bestimmung der Ansprechwahrscheinlichkeit einer malignen Erkrankung auf eine Behandlung mit einem ERBB-Inhibitor ausgewählt aus der Gruppe bestehend aus EGFR-Inhibitor und HER2-Inhibitor und Kombinationen davon eine DNA-Methylierungsanalyse von mindestens einem CpG-Dinukleotid eines Gens ausgewählt aus der Gruppe bestehend aus PLEC, LAMB3, TINAGL1, C19orf33, IL18, S100A2, TOBI, TOR4A, FBRSL1, S100A10, LRRFIP2, SPIDR, ASB1, LAMA3, ENSG00000229672, MYH16, GRID1, CHD2, ZBTB38, TAFAZZIN, ANXA11, MAFK, NEDD4L, DIP2C, CAPN2, IER3, TM4SF19, RPTOR, S100A16, BCL9L, KCNMA1, GALE, PCID2, GNG7, ANXA2, MAFG, PKP3, ABTB2, ENSG00000287625, ARL14, BCAR3, BIK, CCND3, CMIP, ELK3, HRH1, SAP30BP, NOS1AP, RALB, TGFBI, ENSG00000235726, CAB39, CIRBP, DIAPH1, FGD6, LMO7, MICAL2, STMN1, MNT, PC, PLEKHG5, PRORP, RDX, SERP1, SLCO3A1, SUFU, TANGOS, EGFR, PINX1, SSBP2, TRERF1, GPT2, HEG1, ENSG00000231740, PPM1H, PRDM10, RAD18, ENSG00000231185, SYNPO, TNFRSF10B, T0M1L2, TPRG1, VRK2, ENSG00000249149, NC0R2, ENSG00000258077, NINJ2, ENSG00000257746, B3GNTL1, DCP2, ENSG00000242759, Locus Chr.3p23, OGDH, PDZRN3, PLXNB2, ENSG00000228793, C6orfl32, ENSG00000254561, ENSG00000233321, SPATA12, ERBB2, SH3TC1, SSH1, AVPI1, MAP3K14, MIR23AHG, EPHA2, ENSG00000233785, ACVR1, ENSG00000282849, COX7A2L, ENSG00000234476, LRRC2, PLXNB1, PPTC7, RB1CC1, SLC2A1, SLC39A11, TBC1D14, TIMP2, ENSGO0000276527, CFAP20DC, PHLDA1, TESC, LIMA1, ASPSCR1, CAMKID, CAMK2D, CFAP57, CHCHD6, DRAP1, ENC1, ARHGAP32, ABL2, ENSGO0000250754, Locus Chr.lq42.3, MYO16, MYOF, PTPRK, RBKS, SH3RF2, SILC1, SP1, SPAG6, SRGAP1, SYTL3, TMEM248, UTP25, WDFY3, WIPF2, WSB2, ZCCHC14, ZSWIM1, ENSGO0000226380, ENTPD6, ENSGO0000285517, CAPRIN2, MTPN, ADAM17, ATG14, ENSG00000258583 und ITGB5 und beliebigen Kombinationen davon und eine Mutationsanalyse von mindestens einem Gen ausgewählt aus der Gruppe bestehend aus EGER, KRAS und NRAS und beliebigen Kombinationen davon oder eine Amplifikation von ERBB2 von Zellen der malignen Erkrankung umfassen.
Hierbei hat sich gezeigt, dass ein Ansprechen auf die Behandlung mit einem EGFR-Inhibitor besonders wahrscheinlich ist, wenn bei einem überwiegenden Teil der Zellen der malignen Erkrankung das mindestens eine CpG-Dinukleotid unmethyliert ist und gleichzeitig eine Mutation des Gens EGER vorliegt, welche bekannt dafür ist, das Ansprechen auf einen EGFR-Inhibitor vorherzusagen, beispielsweise EGFRL858R, und/oder keine Muation der Gene EGER, KRAS oder NRAS vorliegt, beispielsweise EGFRT790M, welche bekannt dafür sind, das Nichtansprechen auf eine Behandlung mit einem EGFR-Inhibitor vorherzusagen oder eine Amplifikation des ERBB2 Gens vorliegt.
In einer Ausführungsform kann z. B. die Bestimmung der Ansprechwahrscheinlichkeit einer malignen Erkrankung auf eine Behandlung mit einem PARP-Inhibitor eine DNA- Methylierungsanalyse von mindestens einem CpG-Dinukleotid eines Gens ausgewählt aus der Gruppe bestehend aus PPP1R18, RUNX1, SYNJ2 WWTR1 und CLDN4 und beliebigen Kombinationen davon und eine Mutationsanalyse von mindestens einem DNA-Reparaturgen ausgewählt aus der Gruppe bestehend aus BRCA2, BRCA1, ATM, CHEK2, PALB2, BRIP1, BARD1, RAD51C, RAD51D, NBN und beliebigen Kombinationen davon von Zellen der malignen Erkrankung umfassen.
Hierbei hat sich gezeigt, dass ein Ansprechen auf die Behandlung besonders wahrscheinlich ist, wenn bei einem überwiegenden Teil der Zellen der malignen Erkrankung das mindestens eine CpG- Dinukleotid unmethyliert beziehungsweise im Fall von CLDN4 methyliert ist und gleichzeitig mindestens eines der DNA- Reparaturgene der Zellen der malignen Erkranungeine Mutation aufweist. Es versteht sich, dass umgekehrt das Ansprechen auf die Behandlung besonders unwahrscheinlich ist, wenn das mindestens eine CpG-Dinukleotid bei einem überwiegenden Teil der Zellen der malignen Erkrankung methyliert beziehungsweise im Fall von CLDN4 unmethyliert ist und die Zellen der malignen Erkrankung keine Mutation des DNA-Reparaturgens aufweisen.
In einer Ausführungsform kann z. B. die Bestimmung der Ansprechwahrscheinlichkeit einer malignen Erkrankung auf eine Behandlung mit einem PI3K-Inhibitor eine DNA- Methylierungsanalyse von mindestens einem CpG-Dinukleotid eines Gens ausgewählt aus der Gruppe bestehend aus PPP1R18, RUNX1 und CLDN4 und beliebigen Kombinationen davon und eine Mutationsanalyse von PIK3CA von Zellen der malignen Erkrankung umfassen .
Hierbei hat sich gezeigt, dass ein Ansprechen auf die Behandlung mit einem PI3K-Inhibitor besonders wahrscheinlich ist, wenn bei einem überwiegenden Teil der Zellen der malignen Erkrankung das mindestens eine CpG-Dinukleotid unmethyliert bzw. im Fall von CLDN4 methyliert ist und gleichzeitig PIK3CA eine Mutation aufweist. Es versteht sich, dass umgekehrt das Ansprechen auf die Behandlung besonders unwahrscheinlich ist, wenn das mindestens eine CpG-Dinukleotid bei einem überwiegenden Teil der Zellen der malignen Erkrankung methyliert bzw. im Fall von CLDN4 unmethyliert ist und PIK3CA keine Mutation aufweist.
In einer Ausführungsform kann z. B. die Bestimmung der Ansprechwahrscheinlichkeit einer malignen Erkrankung auf eine Behandlung mit einem FGFR-Inhibitor eine DNA- Methylierungsanalyse von mindestens einem CpG-Dinukleotid eines Gens ausgewählt aus der Gruppe bestehend aus PPP1R18, RUNX1 und CLDN4 und beliebigen Kombinationen davon und eine Bestimmung einer Mutation, Fusion oder Amplifikation eines Gens ausgewählt aus der Gruppe bestehend aus FGFR3, FGFR2, FGFR1, CCND1 und beliebigen Kombinationen davon von Zellen der malignen Erkrankung umfassen.
Hierbei hat sich gezeigt, dass ein Ansprechen auf die Behandlung besonders wahrscheinlich ist, wenn bei einem überwiegenden Teil der Zellen der malignen Erkrankung das mindestens eine CpG- Dinukleotid unmethyliert bzw. im Fall von CLDN4 methyliert ist und gleichzeitig mindestens eines der Gene FGFR3, FGFR2 FGFR1 und CCND1 eine Mutation, Fusion oder Amplifikation aufweist. Es versteht sich, dass umgekehrt das Ansprechen auf die Behandlung besonders unwahrscheinlich ist, wenn bei einem überwiegenden Teil der Zellen der malignen Erkrankung das mindestens eine CpG- Dinukleotid methyliert bzw. im Fall von CLDN4 unmethyliert ist und die Zellen der malignen Erkrankung keine Mutation, Fusion oder Amplifikation der Gene FGFR3, FGFR2, FGFR1 und CCND1 aufweisen .
In einer Ausführungsform kann z. B. die Bestimmung der Ansprechwahrscheinlichkeit einer malignen Erkrankung auf eine Behandlung mit einem NTRK-Inhibitor eine DNA- Methylierungsanalyse von mindestens einem CpG-Dinukleotid eines Gens ausgewählt aus der Gruppe bestehend aus PPP1R18, RUNX1 und CLDN4 und beliebigen Kombinationen davon und eine Bestimmung einer Fusion oder Mutation mindestens eines Gens ausgewählt aus der Gruppe bestehend aus NTRK1, NTRK2 und NTRK3 und beliebigen Kombinationen davon von Zellen der malignen Erkrankung umfassen.
Hierbei hat sich gezeigt, dass ein Ansprechen auf die Behandlung besonders wahrscheinlich ist, wenn bei einem überwiegenden Teil der Zellen der malignen Erkrankung das mindestens eine CpG- Dinukleotid unmethyliert beziehungsweise im Fall von CLDN4 methyliert ist und gleichzeitig mindestens eines der Gene NTRK1, NTRK2 und NTRK3 eine Fusion oder Mutation aufweist. Es versteht sich, dass umgekehrt das Ansprechen auf die Behandlung besonders unwahrscheinlich ist, wenn bei einem überwiegenden Teil der Zellen der malignen Erkrankung das mindestens eine CpG- Dinukleotid methyliert beziehungsweise im Fall von CLDN4 unmethyliert ist und die Zellen der malignen Erkrankung keine Fusion oder Mutation der Gene NTRK1, NTRK2 und NTRK3 aufweisen.
Es versteht sich, dass die Erkenntnisse des Erfinders in gleicher Weise die Möglichkeit einer verbesserten medizinischen Behandlung von Personen mit malignen Erkrankungen mit pharmazeutischen Hemmwirkstoffen eröffnen. Das Wissen um die Wahrscheinlichkeit des Ansprechens einer Person bzw. einer malignen Erkrankung auf die Behandlung mit einer bestimmten Gruppe von pharmazeutischen Hemmwirkstoffen im Vorfeld der Therapie ermöglicht eine zielführende Auswahl eines bestimmten Wirkstoffes einer Gruppe und kann somit zu einem schnelleren und besseren Behandlungserfolg führen.
Vor diesem Hintergrund stellt die vorliegende Erfindung in einem zweiten Aspekt einen pharmazeutischen Hemmwirkstoff zur Anwendung in einem Verfahren zur Behandlung einer malignen Erkrankung einer Person bzw. ein Verfahren zur medizinischen Behandlung einer Person mit einer malignen Erkrankung durch Verabreichen einer pharmazeutisch wirksamen Dosis eines pharmazeutischen Hemmwirkstoffs bereit.
In einer Ausführungsform ist der pharmazeutische Hemmwirkstoff ausgewählt aus der Gruppe bestehend aus RAS/RAF/MEK/ERK- Signalweginhibitor, CDK4-und-CDK6-Inhibitor, PARP-Inhibitor, PI3K-Inhibitor, mTOR-Inhibitor, VEGFR-Inhibitor, PDGFR- Inhibitor, SRC-Inhibitor, FGFR-Inhibitor, NTRK-Inhibitor und beliebigen Kombinationen davon. Dabei ist von der erkrankten Person bekannt, dass mindestens ein CpG-Dinukleotid eines Gens ausgewählt aus der Gruppe bestehend aus PPP1R18, RUNX1 und beliebigen Kombinationen davon bei einem überwiegenden Teil von Zellen der malignen Erkrankung unmethyliert ist.
In einer weiteren Ausführungsform ist der pharmazeutische Hemmwirkstoff ausgewählt aus der Gruppe bestehend aus ERBB- Inhibitor, RAS/RAF/MEK/ERK-Signalweginhibitor und beliebigen Kombinationen davon. Dabei ist von der Person bekannt, dass mindestens ein CpG-Dinukleotid eines Gens ausgewählt aus der Gruppe bestehend aus PLEC, LAMB3, TINAGL1, C19orf33, IL18, S100A2, TOBI, TOR4A, FBRSL1, S100A10, LRRFIP2, SPIDR, ASB1, LAMA3, ENSG00000229672, MYH16, GRID1, CHD2 und beliebigen Kombinationen davon bei einem überwiegenden Teil von Zellen der malignen Erkrankung unmethyliert ist.
In einer weiteren Ausführungsform ist der pharmazeutische Hemmwirkstoff ausgewählt aus der Gruppe bestehend aus ERBB- Inhibitor, RAS/RAF/MEK/ERK-Signalweginhibitor, CDK4-und-CDK6- Inhibitor, SRC-Inhibitor und beliebigen Kombinationen davon. Dabei ist von der Person bekannt, dass mindestens ein CpG- Dinukleotid eines Gens ausgewählt aus der Gruppe bestehend aus ZBTB38, TAFAZZIN, ANXA11, MAFK, NEDD4L, DIP2C, CAPN2, IER3, TM4SF19, RPTOR, S100A16, BCL9L, KCNMA1, GALE, PCID2, GNG7, ANXA2, MAFG, PKP3, ABTB2, ENSGO0000287625, ARL14, BCAR3, BIK, CCND3, CMIP, ELK3, HRH1, SAP30BP, NOS1AP, RALB, TGFBI, ENSG00000235726, CAB39, CIRBP, DIAPH1, FGD6, LMO7, MICAL2, STMN1, MNT, PC, PLEKHG5, PRORP, RDX, SERP1, SLCO3A1, SUFU, TANGOS, EGER, PINX1, SSBP2, TRERF1, GPT2, HEG1, ENSGO0000231740, PPM1H, PRDM10, RAD18, ENSGO0000231185, SYNPO, TNFRSF10B, T0M1L2, TPRG1, VRK2, ENSG00000249149, NC0R2, ENSGO0000258077, NINJ2, ENSGO0000257746, B3GNTL1, DCP2, ENSG00000242759, Locus Chr.3p23, OGDH, PDZRN3, PLXNB2, ENSG00000228793, C6orfl32, ENSG00000254561, ENSGO0000233321, SPATA12, ERBB2, SH3TC1, SSH1, AVPI1, MAP3K14, MIR23AHG, EPHA2, ENSG00000233785, ACVR1, ENSG00000282849, COX7A2L, ENSG00000234476, LRRC2, PLXNB1, PPTC7, RB1CC1, SLC2A1, SLC39A11, TBC1D14, TIMP2, ENSGO0000276527, CFAP20DC, PHLDA1, TESC, LIMA1, ASPSCR1, CAMKID, CAMK2D, CFAP57, CHCHD6, DRAP1, ENC1, ARHGAP32, ABL2, ENSG0000025075 , Locus Chr.lq42.3, MYO16, MYOF, PTPRK, RBKS, SH3RF2, SILC1, SP1, SPAG6, SRGAP1, SYTL3, TMEM248, UTP25, WDFY3, NIPF2, WSB2, ZCCHC14, ZSWIM1, ENSGO0000226380, ENTPD6, ENSGO0000285517, CAPRIN2, MTPN, ADAM17, ATG14, ENSG00000258583, ITGB5 und beliebigen Kombinationen davon bei einem überwiegenden Teil von Zellen der malignen Erkrankung unmethyliert ist.
In einer Ausführungsform ist der pharmazeutische Hemmwirkstoff ausgewählt aus der Gruppe bestehend aus CDK4-und-CDK6-Inhibitor, RAS/RAF/MEK/ERK-Signalweginhibitor , SRC-Inhibitor und beliebigen Kombinationen davon. Dabei ist von der Person bekannt, dass mindestens ein CpG-Dinukleotid eines Gens ausgewählt aus der Gruppe bestehend aus VGLL4, CDCP1, RASA3, PTTG1IP, ASAP2, ENSGO0000242282, Locus Chr.3q29, TMCO4, UBXN11, MAP3K5, ASTN2, ENSG00000258082 und beliebigen Kombinationen davon bei einem überwiegenden Teil von Zellen der malignen Erkrankung unmethyliert ist. In einer Ausführungsform ist der pharmazeutische Hemmwirkstoff ausgewählt aus der Gruppe bestehend aus CDK4-und-CDK6-Inhibitor, PARP-Inhibitor, mTOR-Inhibitor, RAS/RAF/MEK/ERK- Signalweginhibitor, SRC-Inhibitor und beliebigen Kombinationen davon. Dabei ist von der Person bekannt, dass mindestens ein CpG-Dinukleotid eines Gens ausgewählt aus der Gruppe bestehend aus SYNJ2, WWTR1 und beliebigen Kombinationen davon bei einem überwiegenden Teil von Zellen der malignen Erkrankung unmethyliert ist.
In einer weiteren Ausführungsform ist der pharmazeutische Hemmwirkstoff ausgewählt aus der Gruppe bestehend aus VEGFR- Inhibitor, mTOR-Inhibitor, PDGFR-Inhibitor, PARP-Inhibitor, PI3K-Inhibitor, FGFR-Inhibitor, NTRK-Inhibitor, ERBB-Inhibitor, BRAF-Inhibitor und beliebigen Kombinationen davon. Dabei ist von der Person bekannt, dass mindestens ein CpG-Dinukleotid des Gens CLDN4 bei einem überwiegenden Teil von Zellen der malignen Erkrankung methyliert ist.
Mit besonderem Vorteil wird z. B. ein RAS/RAF/MEK/ERK- Sinalweginhibitor ausgewählt aus der Gruppe bestehend aus MEK- Inhibitor, RAF-Inhibitor, RAS-Inhibitor, ERK-Inhibitor, SHP2- Inhibitor, c-Met-Inhibitor, EPHA2-Inhibitor und beliebigen Kombinationen davon in dem Behandlungsverfahren angewendet, wenn von der erkrankten Person bekannt ist, dass mindestens ein CpG- Dinukleotid eines Gens ausgewählt aus der Gruppe bestehend aus PPP1R18, RUNX1, PLEC, LAMB3, TINAGL1, C19orf33, IL18, S100A2, TOBI, TOR4A, FBRSL1, S100A10, LRRFIP2, SPIDR, ASB1, LAMA3, ENSG00000229672, MYH16, GRID1, CHD2, ZBTB38, TAFAZZIN, ANXA11, MAFK, NEDD4L, DIP2C, CAPN2, IER3, TM4SF19, RPTOR, S100A16, BCL9L, KCNMA1, GALE, PCID2, GNG7, ANXA2, MAFG, PKP3, ABTB2, ENSG00000287625, ARL14, BCAR3, BIK, CCND3, CMIP, ELK3, HRH1, SAP30BP, NOS1AP, RALB, TGFBI, ENSG00000235726, CAB39, CIRBP, DIAPH1, FGD6, LMO7, MICAL2, STMN1, MNT, PC, PLEKHG5, PRORP, RDX, SERP1, SLCO3A1, SUFU, TANGOS, EGFR, PINX1, SSBP2, TRERF1, GPT2, HEG1, ENSG00000231740, PPM1H, PRDM10, RAD18, ENSG00000231185, SYNPO, TNFRSF10B, T0M1L2, TPRG1, VRK2, ENSG00000249149, NC0R2, ENSG00000258077, NINJ2, ENSG00000257746, B3GNTL1, DCP2, ENSG00000242759, Locus Chr.3p23, OGDH, PDZRN3, PLXNB2, ENSG00000228793, C6orfl32, ENSG00000254561, ENSG00000233321, SPATA12, ERBB2, SH3TC1, SSH1, AVPI1, MAP3K14, MIR23AHG, EPHA2, ENSG00000233785, ACVR1, ENSG00000282849, COX7A2L, ENSG00000234476, LRRC2, PLXNB1, PPTC7, RB1CC1, SLC2A1, SLC39A11, TBC1D14, TIMP2, ENSG00000276527, CFAP20DC, PHLDA1, TESC, LIMA1, ASPSCR1, CAMKID, CAMK2D, CFAP57, CHCHD6, DRAP1, ENC1, ARHGAP32, ABL2, ENSG00000250754, Locus Chr.lq42.3, MYO16, MYOF, PTPRK, RBKS, SH3RF2, SILC1, SP1, SPAG6, SRGAP1, SYTL3, TMEM248, UTP25, WDFY3, WIPF2, WSB2, ZCCHC14, ZSWIM1, ENSG00000226380, ENTPD6, ENSG00000285517, CAPRIN2, MTPN, ADAM17, ATG14, ENSG00000258583, ITGB5, VGLL4, CDCP1, RASA3, PTTG1IP, ASAP2, ENSG00000242282, Locus Chr.3q29, TMCO4, UBXN11, MAP3K5, ASTN2, ENSG00000258082, SYNJ2 und WWTR1 und beliebigen Kombinationen davon bei einem überwiegenden Teil von Zellen der malignen Erkrankung unmethyliert ist und der überwiegende Teil der Zellen der malignen Erkrankung außerdem mindestens eine Mutation in mindestens einem DNA-Reparaturgen ausgewählt aus der Gruppe bestehend aus BRAE, NRAS, KRAS, PTEN, MEK1 und beliebigen Kombinationen aufweist.
Mit besonderem Vorteil wird z. B. ein ERBB2-Inhibitor, beispielsweise ein EGFR-Inhibitor oder ein HER2-Inhibitor, in dem Behandlungsverfahren angewendet, wenn von der erkrankten Person bekannt ist, dass mindestens ein CpG-Dinukleotid eines Gens ausgewählt aus der Gruppe bestehend aus PLEC, LAMB3, TINAGL1, C19orf33, IL18, S100A2, TOBI, TOR4A, FBRSL1, S100A10, LRRFIP2, SPIDR, ASB1, LAMA3, ENSG00000229672, MYH16, GRID1, CHD2, ZBTB38, TAFAZZIN, ANXA11, MAFK, NEDD4L, DIP2C, CAPN2, IER3, TM4SF19, RPTOR, S100A16, BCL9L, KCNMA1, GALE, PCID2, GNG7, ANXA2, MAFG, PKP3, ABTB2, ENSG00000287625, ARL14, BCAR3, BIK, CCND3, CMIP, ELK3, HRH1, SAP30BP, NOS1AP, RALB, TGFBI, ENSG00000235726, CAB39, CIRBP, DIAPH1, FGD6, LMO7, MICAL2, STMN1, MNT, PC, PLEKHG5, PRORP, RDX, SERP1, SLCO3A1, SUFU, TANGOS, EGER, PINX1, SSBP2, TRERF1, GPT2, HEG1, ENSG00000231740, PPM1H, PRDM10, RAD18, ENSGO0000231185, SYNPO, TNFRSF10B, T0M1L2, TPRG1, VRK2, ENSG00000249149, NC0R2, ENSGO0000258077, NINJ2, ENSGO0000257746, B3GNTL1, DCP2, ENSG00000242759, Locus Chr.3p23, OGDH, PDZRN3, PLXNB2, ENSG00000228793, C6orfl32, ENSG00000254561, ENSGO0000233321, SPATA12, ERBB2, SH3TC1, SSH1, AVPI1, MAP3K14, MIR23AHG, EPHA2, ENSG00000233785, ACVR1, ENSG00000282849, COX7A2L, ENSG00000234476, LRRC2, PLXNB1, PPTC7, RB1CC1, SLC2A1, SLC39A11, TBC1D14, TIMP2, ENSGO0000276527, CFAP20DC, PHLDA1, TESC, LIMA1, ASPSCR1, CAMKID, CAMK2D, CFAP57, CHCHD6, DRAP1, ENC1, ARHGAP32, ABL2, ENSG00000250754, Locus Chr.lq42.3, MYO16, MYOF, PTPRK, RBKS, SH3RF2, SILC1, SP1, SPAG6, SRGAP1, SYTL3, TMEM248, UTP25, WDFY3, NIPF2, WSB2, ZCCHC14, ZSWIM1, ENSGO0000226380, ENTPD6, ENSGO0000285517, CAPRIN2, MTPN, ADAM17, ATG14, ENSG00000258583 und ITGB5 und beliebigen Kombinationen davon bei einem überwiegenden Teil von Zellen der malignen Erkrankung unmethyliert ist und der überwiegende Teil der Zellen der malignen Erkrankung außerdem mindestens eine Mutation in mindestens einem Gen ausgewählt aus der Gruppe bestehend aus EGFR, KRAS, NRAS und beliebigen Kombinationen davon oder eine Amplifikation des Gens ERBB2 aufweist.
Mit besonderem Vorteil wird z. B. ein PARP-Inhibitor in dem Behandlungsverfahren angewendet, wenn von der erkrankten Person bekannt ist, dass mindestens ein CpG-Dinukleotid eines Gens ausgewählt aus der Gruppe bestehend aus PPP1R18, RUNX1, SYNJ2 WWTR1, CLDN4 und beliebigen Kombinationen davon bei einem überwiegenden Teil von Zellen der malignen Erkrankung unmethyliert beziehungsweise im Fall von CLDN4 methyliert ist und der überwiegende Teil der Zellen der malignen Erkrankung außerdem mindestens eine Mutation in mindestens einem DNA- Reparaturgen ausgewählt aus der Gruppe bestehend aus BRCA2, BRCA1, ATM, CHEK2, PALB2, BRIP1, BARD1, RAD51C, RAD51D, NBN und beliebigen Kombinationen davon aufweist.
Mit besonderem Vorteil wird z. B. ein PI3K-Inhibitor in dem Behandlungsverfahren angewendet, wenn von der erkrankten Person bekannt ist, dass mindestens ein CpG-Dinukleotid eines Gens ausgewählt aus der Gruppe bestehend aus PPP1R18, RUNX1 und CLDN4 und beliebigen Kombinationen davon bei einem überwiegenden Teil von Zellen der malignen Erkrankung unmethyliert beziehungsweise im Fall von CLDN4 methyliert ist und der überwiegende Teil der Zellen der malignen Erkrankung außerdem eine Mutation des Gens PIK3CA aufweist.
Mit besonderem Vorteil wird z. B. ein FGFR-Inhibitor in dem Behandlungsverfahren angewendet, wenn von der erkrankten Person bekannt ist, dass mindestens ein CpG-Dinukleotid eines Gens ausgewählt aus der Gruppe bestehend aus PPP1R18, RUNX1 und CLDN4 und beliebigen Kombinationen davon bei einem überwiegenden Teil von Zellen der malignen Erkrankung unmethyliert beziehungsweise im Fall von CLDN4 methyliert ist und der überwiegende Teil der Zellen der malignen Erkrankung außerdem mindestens eine Mutation, Fusion oder Amplifikation von mindestens einem Gen ausgewählt aus der Gruppe bestehend aus FGFR3, FGFR2, FGFR1, CCND1 und beliebigen Kombinationen davon aufweist.
Mit besonderem Vorteil wird z. B. ein NTRK-Inhibitor in dem Behandlungsverfahren angewendet, wenn von der erkrankten Person bekannt ist, dass mindestens ein CpG-Dinukleotid eines Gens ausgewählt aus der Gruppe bestehend aus PPP1R18, RUNX1 und CLDN4 und beliebigen Kombinationen davon bei einem überwiegenden Teil von Zellen der malignen Erkrankung unmethyliert beziehungsweise im Fall von CLDN4 methyliert ist und der überwiegende Teil der Zellen der malignen Erkrankung außerdem mindestens eine Fusion oder Mutation von mindestens einem der Gene ausgewählt aus der Gruppe bestehend aus NTRK1, NTRK2, NTRK3 und beliebigen Kombinationen davon aufweist.
Selbstverständlich sind auch beliebige Kombinationen der vorgenannten Ausführungsformen möglich.
Wie bereits oben dargelegt hat sich überraschenderweise gezeigt, dass sich der DNA-Methylierungszustand der in den Ausführungsformen der Erfindung genannten Gene universell für die Vorhersage der Ansprechwahrscheinlichkeit maligner Erkrankungen auf die Therapie mit den entsprechenden pharmazeutischen Hemmwirkstoffen eignet. Unabhängig von der Art der malignen Erkrankung und dem erkrankten Organ bzw. dem erkrankten Gewebe konnte der Erfinder zeigen, dass der DNA- Methylierungszustand der erfindungsgemäßen Gene auch unabhängig von genomischen Veränderungen der Zellen der malignen Erkrankung eine zuverlässige Vorhersagekraft in Bezug auf das Ansprechen auf eine Therapie mit den betreffenden Hemmwirkstoffen entfaltet. In bestimmten Ausführungsformen ist daher vorgesehen, dass von der erkrankten Person zusätzlich bekannt ist, dass die Zellen der malignen Erkrankung eine genomische Veränderung mindestens eines Gens ausgewählt aus der Gruppe bestehend aus EGFR FGFR NTRK und beliebigen Kombinationen davon aufweist. Die genomische Veränderung kann insbesondere eine aktivierende oder deaktivierende Mutation, eine Amplifikation, eine Translokation oder/oder eine Genfusion sein. Umgekehrt bietet die Erfindung die Möglichkeit, Personen mit malignen Erkrankungen, von denen analog zu den vorgenannten Ausführungsformen anhand der DNA-Methylierung der betreffenden Gene bekannt ist, dass das Ansprechen auf eine Behandlung mit dem entsprechenden pharmazeutische Hemmwirkstoff unwahrscheinlich ist, entweder mit einem pharmazeutischen Hemmwirkstoff aus einer anderen Gruppe oder mit einer anderen Wirkstoffklasse wie z. B. einem Immuntherapeutikum
(beispielsweise einem Immun-Checkpoint-Inhibitor), einem Histon- Deacetylase (HDAC)-Inhibitor oder einem DNA-Methyltransferase (DNMT)-Inhibitor zu behandeln, um einen schnellstmöglichen Therapieerfolg zu erzielen.
Ein geeigneter Immun-Checkpoint-Inhibitor ist beispielsweise ausgewählt aus der Gruppe Nivolumab, Pembrolizumab, Cemiplimab, Spartalizumab, Camrelizumab, Sintilimab, Tislelizumab, Toripalimab, Dostarlimab, INCMGA00012 (MGA012), AMP-224, AMP-514 (MEDI0680), JTX-4014, Atezolizumab, Avelumab, Durvalumab, KN035, CK-301, AUNP12, CA-170, BMS-986189, Relatlimab, Tremelimumab, Ipilimumab, Varlilumab, BMS-986218, BMS-986288, BMS-986249, KN044, CS-1002, ONC-392, ADG116, ADG126, Zalifrelimab, AGEN1181, Quavonlimab, ATOR-1015, BA3071, IBI310, BCD-145, XmAb841, XmAb20717, XmAb717, KN046, AK-104, MEDI5752, MGD019, Cetrelimab, Tislelizumab, MEDI0680, AMP-514, AMP-224, Pimivalimab, Balstilimab, Tebotelimab, CS1003, CS2006, XmAblO4, BMS-936559, , DX-1105, LY3300054, CX-072, KN035, CA-327, CA-170, Sugemalimab, ADG104, ONC-895, Relatlimab, MK-4280, LAG525, MGD013, IMP321, XmAb841, AB154, Tiragolumab, Ociperlimab, Vibostolimab, BMS-, 86207, AZD2936, Etigilimab, Domvanalimab, IBI939, M6223, OMP-, 13M32, COM902, Utomilumab, Urelumab, BGB-A425, Sym023, TSR-022, RO7121661, RG-7769; RO-7121661 , LY3321367, MBG453, LY3415244, INCAGN02390, BMS-986258, CA-327, AZD4635, Oleclumab, BMS-986179, IPH53, CPI-006, CPI-444, NIR178, PBF-509, CS3005, REGN6569, BMS- 86156, TRX518, OMP-336B11, ASP1951, INCAGN01876, MK-4166, MEDI6469, PF-04518600, BMS-986178, INBRX-106, XmAblO4, MEDI-570 und Vopratelimab.
Ein geeigneter HDAC-Inhibitor ist beispielsweise ausgewählt aus der Gruppe Vorinostat, Tefinostat, Abexinostat, Mocetinostat, Quisinostat, Entinostat, Resminostat, Domatinostat, Chidamide, Belinostat, Alteminostat, Pracinostat, Givinostat, KA2507 (Karus Therapeutics Limited), Panobinostat, Ricolinostat, Nanatinostat, Martinostat, Fimepinostat, Romidepsin, Citarinostat (ACY-241), AR-42 (CAS No. 935881-37-1), CKD-504, Pivanex, CXD101 (CAS No. 934828-12-3) und FRM-0334. Ein geeigneter DNMT-Inhibitor ist beispielsweise ausgewählt aus der Gruppe Decitabin, Guadecitabin, Azacytidin, NTX-301 und Capecitabin.
In alternativen Ausführungsformen ist daher z. B. ein Immuntherapeutikum, insbesondere ein Immun-Checkpoint-Inhibitor, ein Histon-Deacetylase (HDAC)-Inhibitor oder ein DNA- Methyltransferase (DNMT)-Inhibitor zur Anwendung in einem Verfahren zur Behandlung einer malignen Erkrankung einer Person vorgesehen, wobei von der Person bekannt ist, dass mindestens ein CpG-Dinukleotid eines der vorgenannten Gene oder Kombinationen davon bei einem überwiegenden Teil von Zellen der malignen Erkrankung methyliert ist bzw. im Fall von CLDN4 unmethyliert ist.
Schließlich stellt die vorliegende Erfindung in einem dritten Aspekt ein Kit zur Durchführung des Verfahrens zur Bestimmung der Ansprechwahrscheinlichkeit gemäß dem ersten Aspekt sowie zur Durchführung des Verfahrens zur Behandlung einer malignen Erkrankung gemäß dem zweiten Aspekt bzw. zur Verwendung in einem dieser Verfahren bereit. In einer Ausführungsform umfasst das Kit Reagenzien für die DNA- Methylierungsanalyse von zumindest einem CpG-Dinukleotid eines Gens ausgewählt aus der Gruppe bestehend aus PPP1R18, RUNX1 und beliebigen Kombinationen von Zellen der malignen Erkrankung.
In einer Ausführungsform umfasst das Kit Reagenzien für die DNA- Methylierungsanalyse von zumindest einem CpG-Dinukleotid eines Gens ausgewählt aus der Gruppe bestehend aus PLEC, LAMB3, TINAGL1, C19orf33, IL18, S100A2, TOBI, TOR4A, FBRSL1, S100A10, LRRFIP2, SPIDR, ASB1, LAMA3, ENSGO0000229672, MYH16, GRID1, CHD2 und beliebigen Kombinationen davon von Zellen der malignen Erkrankung .
In einer Ausführungsform umfasst das Kit Reagenzien für die DNA- Methylierungsanalyse von zumindest einem CpG-Dinukleotid eines Gens ausgewählt aus der Gruppe bestehend aus ZBTB38, TAFAZZIN, ANXA11, MAFK, NEDD4L, DIP2C, CAPN2, IER3, TM4SF19, RPTOR, S100A16, BCL9L, KCNMA1, GALE, PCID2, GNG7, ANXA2, MAFG, PKP3, ABTB2, ENSGO0000287625, ARL14, BCAR3, BIK, CCND3, CMIP, ELK3, HRH1, SAP30BP, NOS1AP, RALB, TGFBI, ENSG00000235726, CAB39, CIRBP, DIAPH1, FGD6, LMO7, MICAL2, STMN1, MNT, PC, PLEKHG5, PRORP, RDX, SERP1, SLCO3A1, SUFU, TANGOS, EGER, PINX1, SSBP2, TRERF1, GPT2, HEG1, ENSGO0000231740, PPM1H, PRDM10, RADI8, ENSGO0000231185, SYNPO, TNFRSF10B, T0M1L2, TPRG1, VRK2, ENSG00000249149, NC0R2, ENSGO0000258077, NINJ2, ENSGO0000257746, B3GNTL1, DCP2, ENSG00000242759, Locus Chr.3p23, OGDH, PDZRN3, PLXNB2, ENSGO0000228793, C6orfl32, ENSG00000254561, ENSGO0000233321, SPATA12, ERBB2, SH3TC1, SSH1, AVPI1, MAP3K14, MIR23AHG, EPHA2, ENSG00000233785, ACVR1, ENSG00000282849, COX7A2L, ENSG00000234476, LRRC2, PLXNB1, PPTC7, RB1CC1, SLC2A1, SLC39A11, TBC1D14, TIMP2, ENSGO0000276527, CFAP20DC, PHLDA1, TESC, LIMA1, ASPSCR1, CAMKID, CAMK2D, CFAP57, CHCHD6, DRAP1, ENGI, ARHGAP32, ABL2, ENSG00000250754, Locus Chr.lq42.3, MYO16,
MYOF, PTPRK, RBKS, SH3RF2, SILC1, SP1, SPAG6, SRGAP1, SYTL3, TMEM248, UTP25, WDFY3, WIPF2, WSB2, ZCCHC14, ZSWIM1,
ENSGO0000226380, ENTPD6, ENSGO0000285517, CAPRIN2, MTPN, ADAM17, ATG14, ENSG00000258583, ITGB5 und beliebigen Kombinationen davon von Zellen der malignen Erkrankung.
In einer Ausführungsform umfasst das Kit Reagenzien für die DNA- Methylierungsanalyse von zumindest einem CpG-Dinukleotid eines Gens ausgewählt aus der Gruppe bestehend aus VGLL4, CDCP1, RASA3, PTTG1IP, ASAP2, ENSGO0000242282, Locus Chr.3q29, TMCO4, UBXN11, MAP3K5, ASTN2, ENSG00000258082 und beliebigen Kombinationen davon von Zellen der malignen Erkrankung.
In einer Ausführungsform umfasst das Kit Reagenzien für die DNA- Methylierungsanalyse von zumindest einem CpG-Dinukleotid eines Gens ausgewählt aus der Gruppe bestehend aus SYNJ2, WWTR1 und beliebigen Kombinationen davon von Zellen der malignen Erkrankung .
In einer Ausführungsform umfasst das Kit Reagenzien für die DNA- Methylierungsanalyse von zumindest einem CpG-Dinukleotid des Gens CLDN4 von Zellen der malignen Erkrankung.
Das Kit weist vorzugsweise getrennte Kompartimente auf, in denen die Reagenzien für die DNA-Methylierungsanalyse enthalten sind.
Insbesondere können die Reagenzien mindestens ein Oligonukleotid oder mindestens ein Paar von Oligonukleotiden umfassen. Das Oligonukleotid bzw. Paar von Oligonukleotiden kann dazu eingerichtet sein, an einen Sequenzabschnitt der DNA von den Zellen der malignen Erkrankung zu hybridisieren, welcher das mindestens eine CpG-Dinukleotid des Gens enthält, dessen DNA- Methylierung zu bestimmen ist, nachdem in der DNA enthaltene Cytosine in Uracil oder eine andere Base mit einem von Cytosin unterscheidbaren Basenpaarungsverhalten und/oder Molekulargewicht umgewandelt wurden, um die Sequenz zu amplifizieren und/oder zu detektieren. Selbstverständlich können die Reagenzien auch mehrere Oligonukleotide oder mehrere Paare von Oligonukleotiden umfassen, um die DNA-Methylierung der von der Erfindung umfassten Kombinationen von Genen bzw. den CpG- Dinukleotiden davon zu bestimmen.
Mindestens eines der Oligonukleotide kann dazu eingerichtet sein, zwischen umgewandelter methylierter DNA und umgewandelter unmethylierter DNA zu unterscheiden, sodass der Sequenzabschnitt methylierungsabhängig amplifiziert bzw. detektiert wird. Beispielsweise kann das Oligonukleotid revers-komplementär zu einer Hybridisierungssequenz in dem Sequenzabschnitt sein, die das mindestens eine CpG-Dinukleotid enthält, dessen Methylierung zu bestimmen ist. Das Oligonukleotid kann z. B. reverskomplementär zu der Hybridisierungssequenz sein, wenn das Cytosin in dem CpG-Dinukleotid umgewandelt wurde, also ursprünglich unmethyliert vorlag. Alternativ kann das Oligonukleotid revers-komplementär zu der Hybridisierungssequenz sein, wenn das Cytosin in dem CpG-Dinukleotid nicht umgewandelt wurde, also ursprünglich methyliert vorlag. Auf diese Weise wird erreicht, dass eine Amplifikation bzw. Detektion nur stattfindet, wenn die Hybridisierungssequenz bzw. der Sequenzabschnitt methyliert bzw. unmethyliert vorliegt.
Das Paar von Oligonukleotiden kann auch dazu eingerichtet sein, den Sequenzabschnitt unabhängig von einer DNA-Methylierung zu amplifizieren . Vorzugsweise sind die Oligonukleotide dann revers-komplementär zu Hybridisierungssequenzen, welche kein zu analysierendes CpG-Dinukleotid enthalten. Vorzugsweise befindet sich das mindestens eine zu analysierenden CpG-Dinukleotid zwischen den Hybridisierungssequenzen der Oligonukleotide. Das Kit kann zusätzlich eine oder mehrere Hybridisierungssonden enthalten, welche zwischen umgewandeltem methyliertem Sequenzabschnitt und umgewandeltem unmethyliertem Sequenzabschnitt unterscheiden, sodass der amplifizierte Sequenzabschnitt methylierungsabhängig detektiert wird. Aus dem Signalverhältnis der Sonden lässt sich dann das Ausmaß der DNA- Methylierung ablesen.
Bevorzugte CpG-Dinukleotide und Sequenzen der in den Ausführungsformen des Kits genannten Gene entsprechen denen des ersten Aspektes der Erfindung.
Das Kit umfasst vorzugsweise eine Gebrauchsanweisung für die Durchführung des Verfahrens zur Bestimmung der Ansprechwahrscheinlichkeit gemäß dem ersten Aspekt, zur Durchführung des Verfahrens zur Behandlung einer malignen Erkrankung gemäß dem zweiten Aspekt und/oder zur Verwendung des Kits in einem dieser Verfahren. Insbesondere kann das Kit Instruktionen zur Bestimmung der Ansprechwahrscheinlichkeit anhand der DNA-Methylierung eines oder mehrerer der erfindungsgemäßen Gene bzw. der CpG-Dinukleotide davon enthalten .
Im Übrigen können sich die im Zusammenhang mit dem ersten Aspekt der Erfindung genannten Merkmale und Ausführungsformen, soweit anwendbar, selbstverständlich auch auf den zweiten und dritten Aspekt der Erfindung beziehen. Merkmale, die vorstehend und im Folgenden im Zusammenhang mit dem erfindungsgemäßen Verfahren zur Bestimmung der Ansprechwahrscheinlichkeit offenbart sind, können sich daher auch auf das medizinische Behandlungsverfahren bzw. das Kit beziehen und umgekehrt. Weitere Vorteile und Merkmale der Erfindung sind aus der nachstehenden detaillierten Beschreibung, den Zeichnungen und den Patentansprüchen ersichtlich. Auch wenn die Erfindung anhand ihrer bevorzugten Ausführungsformen erläutert wird, können viele weitere Variationen vorgenommen werden, ohne über den Umfang der vorliegenden Erfindung hinauszugehen. Daher ist es vorgesehen, dass die beiliegenden Patentansprüche Variationen und Kombinationen von Merkmalen abdecken, die im tatsächlichen Umfang der Erfindung enthalten sind, auch wenn diese nicht ausdrücklich in den Ansprüchen abgebildet sind.
Kurze Beschreibung der Figuren
Fig. 1 zeigt ein Streudiagramm zur erfindungsgemäßen Korrelation des Ansprechens maligner Zellen auf eine Behandlung mit dem pharmazeutischen Hemmwirkstoff Trametinib (logIC50, y-Achse) in Abhängigkeit von der relativen Methylierung der CpG-Dinukleotide in SEQ ID NO:76 des Gens PLEC in den Zellen;
Fig. 2 zeigt ein Streudiagramm zur erfindungsgemäßen Korrelation des Ansprechens maligner Zellen auf eine Behandlung mit dem pharmazeutischen Hemmwirkstoff Afatinib (logIC50, y- Achse) in Abhängigkeit von der relativen Methylierung der CpG-Dinukleotide in SEQ ID NO:76 des Gens PLEC in den Zellen;
Fig. 3 zeigt ein Streudiagramm zur erfindungsgemäßen Korrelation des Ansprechens maligner Zellen auf eine Behandlung mit dem pharmazeutischen Hemmwirkstoff Trametinib (logIC50, y-Achse) in Abhängigkeit von der relativen Methylierung der CpG-Dinukleotide in SEQ ID NO:103 des Gens IL18 in den Zellen;
Fig. 4 zeigt ein Streudiagramm zur erfindungsgemäßen Korrelation des Ansprechens maligner Zellen auf eine Behandlung mit dem pharmazeutischen Hemmwirkstoff Afatinib (logIC50, y- Achse) in Abhängigkeit von der relativen Methylierung der CpG-Dinukleotide in SEQ ID NO:103 des Gens IL18 in den Zellen;
Fig. 5 zeigt ein Streudiagramm zur erfindungsgemäßen Korrelation des Ansprechens maligner Zellen auf eine Behandlung mit dem pharmazeutischen Hemmwirkstoff Trametinib (logIC50, y-Achse) in Abhängigkeit von der relativen Methylierung der CpG-Dinukleotide in SEQ ID NO:54 des Gens TAFAZZIN in den Zellen;
Fig. 6 zeigt ein Streudiagramm zur erfindungsgemäßen Korrelation des Ansprechens maligner Zellen auf eine Behandlung mit dem pharmazeutischen Hemmwirkstoff Afatinib (logIC50, y- Achse) in Abhängigkeit von der relativen Methylierung der CpG-Dinukleotide in SEQ ID NO:54 des Gens TAFAZZIN in den malignen Zellen;
Fig. 7 zeigt eine Kaplan-Meier Analyse des Gesamtüberlebens von 51 Patienten mit Urothelkarzinomen während einer Immuntherapie, die dazu ausgelegt ist, den PD-l-Immun- Checkpoint-Signalweg zu inhibieren. Die Patienten wurden anhand der DNA-Methylierung des Gens PPP1R18 gruppiert. 17 Patienten wiesen Tumoren mit einer DNA-Methylierung des PPP1R18 Gens von unter 50% auf. Die Tumoren der übrigen 34 Patienten zeigten eine DNA-Methylierung des PPP1R18 Gens von über 50%. Fig. 8 zeigt ein Boxplot-Diagramm zum Ansprechen von Patienten mit malignen Melanomen auf eine Behandlung mit RAS/RAF/MEK/ERK-Signalweginhibitoren (x-Achse) in Abhängigkeit von der Methylierung des PPP1R18 Gens (y- Achse).
Detaillierte Beschreibung von Ausführungsbeispielen
Im Folgenden wird die Erfindung anhand von Beispielen und Versuchsergebnissen näher beschrieben. Diese Beispiele sind als Erläuterungen gedacht und nicht als Beschränkung auf spezifische Details .
Beispiel 1: Bestimmung der Ansprechwahrscheinlichkeit einer malignen Erkrankung auf eine Behandlung mit RAS/RAF/MEK/ERK- Signalweginhibitoren, CDK4-und-CDK6-Inhibitoren, PARP- Inhibitoren, PI3K-Inhibitoren, mTOR-Inhibitoren, PI3K und mTOR- Inhibitoren, VEGFR-Inhibitoren, PDGFR-Inhibitoren, PDGFR und VEGFR-Inhibitoren, SRC-Inhibitoren, FGFR-Inhibitoren und NTRK- Inhibitoren anhand einer erfindungsgemäßen DNA- Methylierungsanalyse der Gene PPP1R18 und RUNX1
Das erfindungsgemäße Verfahren wurde zur Bestimmung der Ansprechwahrscheinlichkeit maligner Erkrankungen auf eine Behandlung mit verschiedenen RAS/RAF/MEK/ERK- Signalweginhibitoren angewendet. Beispielsweise wurde die Vorhersagekraft in Bezug auf das Ansprechen auf verschiedene MEK-Inhibitoren und BRAF-Inhibitoren getestet, unter anderem die fünf MEK-Inhibitoren Trametinib, Refametinib, Selumetinib, CI- 1040 und Mirdametinib sowie die fünf BRAF-Inhibitoren AZ 628, Dabrafenib, HG-6-64-1, PLX4720 und SB590885. Des Weiteren wurde das erfindungsgemäße Verfahren zur Vorhersage des Ansprechens maligner Erkrankungen auf verschiedenen VEGFR- Inhibitoren, PDGFR-Inhibitoren sowie Inhibitoren, die gleichzeitig PDGFR und VEGFR inhibieren, angewendet. Unter anderem wurde die Vorhersagekraft in Bezug auf die drei VEGFR- Inhibitoren Foretinib, Cabozantinib und OSI-930, die sieben PDGFR und VEGFR-Inhibitoren Sorafenib, Sunitinib, Midostaurin, Linifanib, Tivozanib, Axitinib und Pazopanib sowie die zwei PDGFR-Inhibitoren Imatinib und Masitinib getestet.
Das erfindungsgemäße Verfahren wurde außerdem zur Vorhersage des Ansprechens maligner Erkrankungen auf verschiedene PARP- Inhibitoren, SRC-Inhibitoren und CDK4-und-CDK6-Inhibitoren angewendet. Unter anderem wurde die Vorhersagekraft in Bezug auf die vier PARP-Inhibitoren Veliparib, AG-014699, Talazoparib und Olaparib, die fünf SRC-Inhibitoren A-770041, Saracatinib, Bosutinib, Dasatinib und WH-4-023 sowie die vier CDK4-und-CDK6- Inhibitoren CGP-082996, CGP-60474, AT-7519 und Palbociclib getestet .
Schließlich wurde das erfindungsgemäße Verfahren zur Vorhersage des Ansprechens maligner Erkrankungen auf eine Behandlung mit verschiedenen PI3K-Inhibitoren, mTOR-Inhibitoren sowie Inhibitoren, die sowohl PI3K als auch mTOR inhibieren, FGFR- Inhibitoren und einen NTRK-Inhibitor angewendet. Unter anderem wurde die Vorhersagekraft in Bezug auf die drei PI3K-Inhibitoren AS605240, Idelalisib und PIK-93, die zwei PI3K und mTOR- Inhibitoren Dactolisib und Omipalisib, die zwei mTOR-Inhibitoren Temsirolimus und AZD8055, die zwei FGFR-Inhibitoren PD-173074 und Masitinib, sowie der NTRK-Inhibitor Lestaurtinib untersucht.
Das Ansprechen von malignen Zellen auf einen pharmazeutischen Hemmwirkstoff lässt sich beispielsweise anhand der mittleren inhibitorischen Konzentration (IC50) bestimmen. Die IC50 beschreibt diejenige Konzentration eines Hemmwirkstoffs, bei der eine halbmaximale Inhibierung des Zellwachstums beobachtet wird. Daher ist die IC50 ein geeignetes Maß für das Ansprechen maligner Zellen auf eine Behandlung mit einem pharmazeutischen Hemmwirkstoff .
Im Rahmen der vorliegenden Erfindung wurde die IC50 für jeden getesteten Hemmwirkstoff und jede Zelllinie anhand von Dosis- Wirkungs-Kurven bestimmt. Zur Abschätzung der Dosis-Wirkungs- Kurve wurden die Zellen der malignen Erkrankungen in 384-er Mikrotiterplatten ausgesät und in Zellkulturmedium mit 10% fetalem Kälberserum und Penicillin/Streptomycin inkubiert. Die IC50 Bestimmung adhärenter Zellen erfolgte bei einer Konfluenz von ca. 15-20%. Adhärente Zellen wurden entweder mit neun Verdünnungsstufen einer 1:2 Verdünnungsreihe oder fünf Verdünnungsstufen einer 1:4 Verdünnungsreihe des getesteten Hemmwirkstoffs inkubiert. Anschließend wurden die Zellen mit 10% Formalin für 30 Minuten fixiert und dann mit 1 pM des Nukleinsäure-spezifischen Fluoreszenz-Farbstoffs Syto60 (Invitrogen) für eine Stunde angefärbt. Suspensionskulturen wurden mit 55 pg/ml Resazurin (Sigma) in Glutathion-freiem Medium für vier Stunden gefärbt. Die Viabilität der malignen Zelllinien wurde anhand der Fluoreszenz bei 630/695 nm Anregungs-/Emmisionswellenlänge für SytoöO bzw. bei 535/595 nm Anregungs-/Emmisionswellenlänge für Resazurin bestimmt. Die IC50-Werte wurden anhand der Dosis-Wirkungs-Kurve mittels eines mehrstufigen Modells abgeschätzt, wie es beispielsweise in Vis et al. (Pharmacogenomics 2016, 17, 691-700) beschrieben ist. Die IC50s wurde als natürlicher Logarithmus der halbmaximalen inhibitorischen Konzentration (in pM) dargestellt und für die Berechnungen der Vorhersage des Ansprechens auf eine Behandlung mit dem jeweils getesteten Hemmwirkstoff herangezogen. Die DNA-Methylierungsanalyse der Zellen der malignen Erkrankungen erfolgte mittels der Infinium Technologie (Illumina, Inc. San Diego, CA, USA). Zunächst wurde die DNA der malignen Zellen beispielsweise mittels des QIAamp DNA Micro Kit (Qiagen, Hilden, Germany) nach Herstellerangaben extrahiert. Die DNA-Konzentration wurde dann mittels UV-Vis Spektrophotometrie bei 260 nm bestimmt. Die Bisulfit-Umwandlung von 500 ng genomischer DNA wurde im Anschluss mittels des EZ DNA Methylation Kits (Zymo Research, Irvine, CA, USA) nach Herstellerangaben durchgeführt. 200 ng der Bisulfitkonvertierten DNA wurden für die HumanMethylation450 BeadChip Analyse (Illumina) entsprechend der Vorgaben des Herstellers verwendet. Die Methylierungswerte wurden in Form von -Werten als Verhältnis der Fluoreszenzintensitäten für jedes untersuchte CpG-Dinukleotid angegeben. Die -Werte wurden näherungsweise als prozentuale Methylierung angenommen.
Unterschiede bezüglich des Ansprechens verschiedener maligner Zellen, bei denen die untersuchten CpG-Dinukleotide jeweils überwiegend methyliert oder überwiegend unmethyliert waren, wurden mittels der t-Statistik charakterisiert und t-Werte sowie p-Werte der t-Statistik wurden dargestellt. Mittels der t- Statistik wurden die Unterschiede in den Mittelwerten der IC50 der malignen Zelllinien mit überwiegend unmethylierten CpG- Dinukleotiden und den Mittelwerten der IC50 der malignen Zelllinien mit überwiegend methylierten CpG-Dinukleotiden beschrieben. Ein negatives t, welches signifikant unterhalb des angenommenen Signifikanzniveaus (p < 0,05) ist, drückt aus, dass der Mittelwert der IC50 der malignen Zellen mit überwiegend methylierten CpG-Dinukleotiden höher ist als derjenige der malignen Zellen mit überwiegend unmethylierten CpG- Dinukleotiden. Das bedeutet, dass die malignen Zellen mit überwiegend methylierten CpG-Dinukleotiden deutlich schlechter auf eine Behandlung mit dem jeweiligen Hemmwirkstoff ansprachen bzw. weniger inhibiert wurden. Dadurch ist es grundsätzlich möglich, das Ansprechen bzw. Nichtansprechen maligner Zellen auf einen pharmazeutischen Hemmwirkstoff durch eine DNA- Methylierungsanalyse vorherzubestimmen.
In diesem Beispiel wurden Zelllinien maligner Zellen verwendet, die von verschiedenen malignen Erkrankungen abstammten. Insbesondere wurden maligne Zellen von Karzinomen untersucht, darunter verschiedene Adenokarzinome und Plattenepithelkarzinome. Unter diesen Karzinomen befanden sich Plattenepithelkarzinome des Kopf- und Halsbereichs, Adeno- und Plattenepithelkarzinome des Ösophagus, Adenokarzinome der Brust, maligne Tumoren der Gallengänge, Leberzellkarzinome, Nierenzellkarzinome, kolorektale Adenokarzinome, Adeno- und Plattenepithelkarzinome der Lunge, kleinzellige Lungenkarzinome, Adenokarzinome des Pankreas, Plattenepithelkarzinome des Zervix und der Eierstöcke, Adenokarzinome des Endometriums und der Prostata, Schilddrüsenkarzinome, Urothelkarzinome und Magenkarzinome .
Zusätzlich wurden in diesem Beispiel Zelllinien maligner Zellen von Melanomen, Gliomen, Glioblastomen, Medulloblastomen, Neuroblastomen, Keimzelltumoren, Chondrosarkomen, Ewing- Sarkomen, Osteosarkomen, Fibrosarkomen, Rhabdomyosarkomen und Mesotheliomen untersucht.
Des Weiteren wurden Zelllinien maligner Zellen, die aus Zellen des Blutsystems oder des blutbildenden (hämatopoetischen) Systems hervorgegangen sind, in dieses Beispiel eingeschlossen. Diese malignen Zellen umfassten beispielsweise maligne Zellen akuter myeloischer Leukämien (AML), chronischer myeloischer Leukämien (CML), akuter lymphatische Leukämien (ALL) sowie von B-Zell-Leukämien, Haarzellenleukämien, B-Zell-Lymphomen, Burkitt-Lymphomen, Hodgkin Lymphomen und Myelomen.
Insgesamt wurden bis zu 902 verschiedene Zelllinien untersucht.
Die DNA-Methylierung von CpG-Dinukleotiden des PPP1R18 Gens wurde an insgesamt zehn Positionen im Gen untersucht (SEQ ID NO:2 bis SEQ ID NO:11), welche insbesondere repräsentativ für die DNA-Methylierung im Promotor (6:30683976-30687272, SEQ ID NO:1) des PPP1R18 Gens sind. Die DNA-Methylierung der Positionen wurde über die HumanMethylation450 BeadChip Sonden gemessen, die in den nachfolgenden Tabellen 1-4 aufgeführt sind.
Die DNA-Methylierung von CpG-Dinukleotiden des RUNX1 Gens wurde an insgesamt zwei Positionen im Gen untersucht (SEQ ID NO:35 und SEQ ID NO:36), welche insbesondere repräsentativ die DNA- Methylierung im Promotor (21:35045377-35053986, SEQ ID NO:37) des RUNX1 Gens sind. Die DNA-Methylierung der Positionen wurde über die HumanMethylation450 BeadChip Sonden gemessen, die in den nachfolgenden Tabellen 1-4 aufgeführt sind.
Die Ergebnisse dieser Untersuchungen sind in den Tabellen 1-5 zusammengefasst .
Tabelle 1 zeigt, dass es möglich war, durch die erfindungsgemäße DNA-Methylierungsanalyse der untersuchten Teile der Gene PPP1R18 und RUNX1 das Ansprechen der malignen Zellen auf die RAS/RAF/MEK/ERK-Signalweginhibitoren wie beispielsweise MEK- Inhibitoren und BRAF-Inhibitoren vorherzusagen. Aus den Tabellendaten ist ersichtlich, dass Zelllinien maligner Zellen, bei denen die untersuchten CpG-Dinukleotide überwiegend methyliert waren, eine signifikant (p < 0,05) höhere IC50 im Vergleich zu malignen Zellen mit überwiegend unmethylierten CpG- Dinukleotiden aufwiesen, was an dem negativen t der t-Statistik zu erkennen ist. Das bedeutet, dass die malignen Zellen mit den überwiegend methylierten CpG-Dinukleotiden signifikant weniger durch die untersuchten Hemmwirkstoffe inhibiert wurden, also schlecht auf die Behandlung ansprachen.
Tabelle 2 und Tabelle 3 zeigen, dass es möglich war, durch die erfindungsgemäße DNA-Methylierungsanalyse der untersuchten Teile der Gene PPP1R18 und RUNX1 das Ansprechen der malignen Zellen auf PARP-Inhibitoren, SRC-Inhibitoren sowie CDK4-und-CDK6- Inhibitoren vorherzusagen. Aus den Tabellendaten ist ersichtlich, dass Zelllinien maligner Zellen, bei denen die untersuchten CpG-Dinukleotide überwiegend methyliert waren, eine signifikant (p < 0,05) höhere IC50 im Vergleich zu malignen Zellen mit überwiegend unmethylierten CpG-Dinukleotiden aufwiesen, was an dem negativen t der t-Statistik zu erkennen ist. Das bedeutet, dass die malignen Zellen mit den überwiegend methylierten CpG-Dinukleotiden signifikant weniger durch die untersuchten Hemmwirkstoffe inhibiert wurden, also schlecht auf die Behandlung ansprachen.
Tabelle 4 zeigt, dass es möglich war, durch die erfindungsgemäße DNA-Methylierungsanalyse der untersuchten Teile der Gene PPP1R18 und RUNX1 das Ansprechen der malignen Zellen auf VEGFR- Inhibitoren, PDGFR-Inhibitoren sowie Inhibitoren, die gleichzeitig PDGFR und VEGFR inhibieren, vorherzusagen. Aus den Tabellendaten ist ersichtlich, dass Zelllinien maligner Zellen, bei denen die untersuchten CpG-Dinukleotide überwiegend methyliert waren, eine signifikant (p < 0,05) höhere IC50 im Vergleich zu malignen Zellen mit überwiegend unmethylierten CpG- Dinukleotiden aufwiesen, was an dem negativen t der t-Statistik zu erkennen ist. Das bedeutet, dass die malignen Zellen mit den überwiegend methylierten CpG-Dinukleotiden signifikant weniger durch die untersuchten Hemmwirkstoffe inhibiert wurden, also schlecht auf die Behandlung ansprachen.
Tabelle 5 zeigt, dass es möglich war, durch die erfindungsgemäße DNA-Methylierungsanalyse der untersuchten Teile der Gene PPP1R18 und RUNX1 das Ansprechen der malignen Zellen auf PI3K- Inhibitoren, PI3K und mTOR-Inhibitoren, mTOR-Inhibitoren, FGFR- Inhibitoren und den NTRK-Inhibitor vorherzusagen. Aus den Tabellendaten ist ersichtlich, dass Zelllinien maligner Zellen, bei denen die untersuchten CpG-Dinukleotide überwiegend methyliert waren, eine signifikant (p < 0,05) höhere IC50 im Vergleich zu malignen Zellen mit überwiegend unmethylierten CpG- Dinukleotiden aufwiesen, was an dem negativen t der t-Statistik zu erkennen ist. Das bedeutet, dass die malignen Zellen mit den überwiegend methylierten CpG-Dinukleotiden signifikant weniger durch die untersuchten Hemmwirkstoffe inhibiert wurden, also schlecht auf die Behandlung ansprachen.
Zusammenfassend zeigen die Ergebnisse, dass die erfindungsgemäße DNA-Methylierungsanalyse der Gene PPP1R18 und RUNX1 die Ansprechwahrscheinlichkeit maligner Zellen auf RAS/RAF/MEK/ERK- Signalweginhibitoren, CDK4-und-CDK6-Inhibitoren, PARP- Inhibitoren, PI3K-Inhibitoren, mTOR-Inhibitoren, PI3K und mTOR- Inhibitoren, VEGFR-Inhibitoren, PDGFR-Inhibitoren, PDGFR und VEGFR-Inhibitoren, SRC-Inhibitoren, FGFR-Inhibitoren und NTRK- Inhibitoren unabhängig von der Art und/oder Ursache der malignen Erkrankung zuverlässig vorhersagt.
Beispiel 2: Bestimmung der Ansprechwahrscheinlichkeit einer malignen Erkrankung auf eine Behandlung mit ERBB-Inhibitoren und RAS/RAF/MEK/ERK-Signalweginhibitoren anhand einer Methylierungsanalyse der Gene PLEC, LAMB3, TINAGL1, CI9orf33, IL18, S100A2, TOBI, TOR4A, FBRSL1, S100A10, LRRFIP2, SPIDR, ASB1, LAMA3, ENSG00000229672, MYH16, GRID1 und CHD2
Das erfindungsgemäße Verfahren wurde zur Bestimmung der Ansprechwahrscheinlichkeit maligner Erkrankungen auf eine Behandlung mit verschiedenen ERBB-Inhibitoren angewendet, darunter verschiedene EGFR-Inhibitoren. Insbesondere wurde die Vorhersagekraft in Bezug auf die vier EGFR-Inhibitoren Afatinib, Gefitinib, Cetuximab und Lapatinib untersucht.
Des Weiteren wurde das erfindungsgemäße Verfahren zur Bestimmung der Ansprechwahrscheinlichkeit maligner Erkrankungen auf eine Behandlung mit verschiedenen RAS/RAF/MEK/ERK- Signalweginhibitoren angewendet. Insbesondere wurde die Vorhersagekraft in Bezug auf verschiedene MEK-Inhibitoren geprüft, darunter die vier MEK-Inhibitoren Trametinib, Refametinib, Selumetinib und Mirdametinib.
Die Bestimmung der IC50 für die in diesem Beispiel untersuchten Hemmwirkstoffe und die Durchführung der DNA-Methylierungsanalyse der Gene PLEC, LAMB3, TINAGL1, C19orf33, IL18, S100A2, TOBI, TOR4A, FBRSL1, S100A10, LRRFIP2, SPIDR, ASB1, LAMA3, ENSG00000229672, MYH16, GRID1 und CHD2 erfolgten wie in Beispiel 1 beschrieben. Die untersuchten malignen Zellen entsprachen ebenfalls denen aus Beispiel 1.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens PLEC wurde an insgesamt 14 Positionen untersucht (SEQ ID NO:76 bis SEQ ID NO:89), welche insbesondere die DNA-Methylierung im Promotor (8:143934771-143952510, SEQ ID NO:90) des PLEC Gens widerspiegeln . Die DNA-Methylierung von CpG-Dinukleotiden des Gens LAMB3 wurde an insgesamt sechs Positionen untersucht (SEQ ID NO:18 bis SEQ ID NO:23), welche insbesondere repräsentativ die DNA- Methylierung im Promotor (1:209641284-209659200, SEQ ID NO:24) des LAMB3 Gens sind.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens TINAGL1 wurde an insgesamt zwölf Positionen untersucht (SEQ ID NO:63 bis SEQ ID NO:74), welche insbesondere die DNA-Methylierung im Promotor (1:31572254-31579748, SEQ ID NO:75) des TINAGL1 Gens widerspiegeln .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens CI9orf33 wurde an insgesamt fünf Positionen untersucht (SEQ ID NO:38 bis SEQ ID NO:42), welche insbesondere die DNA-Methylierung im Promotor (19:38302227-38305800, SEQ ID NO:43) des C19orf33 Gens widerspiegeln .
Die DNA-Methylierung von CpG-Dinukleotiden des IL18 Gens wurde an insgesamt drei Positionen untersucht (SEQ ID NO:102 bis SEQ ID NO:104), welche insbesondere die DNA-Methylierung im Promotor (11:112155341-112165931, SEQ ID NO:355) des IL18 Gens widerspiegeln .
Die DNA-Methylierung von CpG-Dinukleotiden des S100A2 Gens wurde an insgesamt drei Positionen untersucht (SEQ ID NO:237 bis SEQ ID NO:239), welche insbesondere die DNA-Methylierung im Promotor (1:153563538-153569327, SEQ ID NO:356) des S100A2 Gens widerspiegeln .
Die DNA-Methylierung von CpG-Dinukleotiden des TOBI Gens wurde an insgesamt zwei Positionen untersucht (SEQ ID NO:246 und SEQ ID NO:247), welche insbesondere die DNA-Methylierung im Genkörper der langen nicht-codierenden TOBI Antisense RNA 1, codiert durch ENSG00000229980, widerspiegeln (17:50890636- 50896863, SEQ ID NO:357).
Die DNA-Methylierung von CpG-Dinukleotiden des TOR4A Gens wurde an insgesamt zwei Positionen untersucht (SEQ ID NO:248 und SEQ ID NO:249), welche insbesondere die DNA-Methylierung im Promotor (9:137276024-137280343, SEQ ID NO:358) des TOR4A Gens widerspiegeln .
Die DNA-Methylierung von CpG-Dinukleotiden des FBRSL1 Gens wurde an einer Position untersucht (SEQ ID NO:331), welche insbesondere die DNA-Methylierung im Genkörper (12:132514348- 132533034, SEQ ID NO:359) von FBRSL1 widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des S100A10 Gens wurde an einer Position untersucht (SEQ ID NO:335), welche insbesondere die DNA-Methylierung im Promotor (1:151990418- 151997244, SEQ ID NO:360) des S100A10 Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des LRRFIP2 Gens wurde an einer Position untersucht (SEQ ID NO:340), welche insbesondere die DNA-Methylierung im Promotor des LRRFIP2 Gens und des für die LRRFIP2 Antisense RNA codierenden Gens ENSG00000271993 widerspiegelt (3:37175758-37189914, SEQ ID NO:361).
Die DNA-Methylierung von CpG-Dinukleotiden des SPIDR Gens wurde an einer Position untersucht (SEQ ID NO:343), welche insbesondere die DNA-Methylierung im Genkörper (8:47349863- 47359489, SEQ ID NO:362) des SPIDR Gens widerspiegelt. Die DNA-Methylierung von CpG-Dinukleotiden des ASB1 Gens wurde an einer Position untersucht (SEQ ID NO:344), welche insbesondere die DNA-Methylierung im Genkörper (2:238435501- 238446259, SEQ ID NO:363) des ASB1 Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens LAMA3 wurde an insgesamt fünf Positionen im Gen untersucht (SEQ ID NO:12 bis SEQ ID NO:16), welche insbesondere die DNA-Methylierung im Promotor (18:23865846-23880913, SEQ ID NO:17) des LAMA3 Gens widerspiegeln .
Die DNA-Methylierung von CpG-Dinukleotiden des ENSG00000229672 Gens wurde an drei Positionen untersucht (SEQ ID NO:121 bis SEQ ID NO:123), welche insbesondere die DNA-Methylierung im Promotor (10:3761335-3766181, SEQ ID NO:364) des ENSG00000229672 Gens widerspiegeln .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens MYH16 wurde an insgesamt zwei Positionen im Gen untersucht (SEQ ID NO:25 bis SEQ ID NO:26), welche insbesondere die DNA-Methylierung im Genkörper (7:99272482-99275507, SEQ ID NO:27) des MYH16 Gens widerspiegeln .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens GRID1 wurde an einer Position im Gen untersucht (SEQ ID NO:29), welche insbesondere die DNA-Methylierung der codierenden Region und Promotorregion (10:85637128-85653498, SEQ ID NO:28) der GRID1 Antisense RNA (ENSG00000270002) widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens CHD2 wurde an einer Position im Gen untersucht (SEQ ID NO:31), welche insbesondere die DNA-Methylierung der Promotorregion (15:92897248-92927312, SEQ ID NO:30) des CHD2 Gens widerspiegelt .
Die DNA-Methylierung der Positionen wurde über die HumanMethylation450 BeadChip Sonden gemessen, die in Tabelle 6 aufgeführt sind.
Die Ergebnisse sind in Fig. 1-4 und Tabelle 6 gezeigt.
Fig. 1 und Fig. 2 zeigen exemplarisch jeweils ein Streudiagramm zur Korrelation des Ansprechens der malignen Zellen auf die Behandlung mit dem pharmazeutischen Hemmwirkstoff Trametinib bzw. Afatinib (logIC50, y-Achse) in Abhängigkeit von der relativen DNA-Methylierung (%, x-Achse) der CpG-Dinukleotide in SEQ ID NO:76 des Gens PLEC. Trametinib ist ein MEK-Inhibitor aus der Gruppe der RAS/RAF/MEK/ERK-Signalweginhibitoren. Afatinib ist ein EGFR-Inhibitor aus der Gruppe der ERBB- Signalweginhibitoren . Das Ansprechen der malignen Zellen auf die Behandlung wurde anhand der logarithmischen mittleren inhibitorischen Konzentration (logIC50) bestimmt, wobei eine niedrige logIC50 ein Ansprechen und eine hohe logIC50 ein Nichtansprechen auf die Behandlung anzeigte. Die DNA- Methylierung des Gens PLEC in der SEQ ID NO:76 spiegelt die DNA- Methylierung im Promotor (8:143934771-143952510, SEQ ID NO:90) des Gens wider. Es ist deutlich erkennbar, dass maligne Zellen, bei denen die untersuchten CpG-Dinukleotide überwiegend methyliert waren (PLEC DNA-Methylierung > 50%) nur zu einem geringen Teil auf die Behandlung ansprachen, während maligne Zellen, bei denen die untersuchten CpG-Dinukleotide überwiegend unmethyliert waren (PLEC DNA-Methylierung < 50%) größtenteils auf die Behandlung ansprachen. Fig. 3 und Fig. 4 zeigen weitere exemplarische Streudiagramme zur Korrelation des Ansprechens der malignen Zellen auf die Behandlung mit dem pharmazeutischen Hemmwirkstoff Trametinib bzw. Afatinib (logIC50, y-Achse) in Abhängigkeit von der relativen DNA-Methylierung (%, x-Achse) der CpG-Dinukleotide in SEQ ID NO:103 des Gens IL18. Die DNA-Methylierung des Gens IL18 in der SEQ ID NO:103 spiegelt die DNA-Methylierung im Promotor (11:112155341-112165931, SEQ ID NO:355) des Gens wider. Es ist wiederum deutlich erkennbar, dass maligne Zellen, bei denen die untersuchten CpG-Dinukleotide überwiegend methyliert waren (IL18 DNA-Methylierung > 50%) nur zu einem geringen Teil auf die Behandlung ansprachen, während maligne Zellen, bei denen die untersuchten CpG-Dinukleotide überwiegend unmethyliert waren (IL18 DNA-Methylierung < 50%) größtenteils auf die Behandlung ansprachen .
Die Tabellenwerte in Tabelle 6 zeigen im Einzelnen, dass es möglich war, durch die erfindungsgemäße DNA-Methylierungsanalyse der untersuchten CpG-Dinkleotide der Gene PLEC, LAMB3, TINAGL1, C19orf33, IL18, S100A2, TOBI, TOR4A, FBRSL1, S100A10, LRRFIP2, SPIDR, ASB1, LAMA3, ENSG00000229672, MYH16, GRID1 und CHD2 das Ansprechen der malignen Zellen auf RAS/RAF/MEK/ERK- Signalweginhibitoren wie z. B. MEK-Inhibitoren und ERBB- Inhibitoren wie z. B. EGFR-Inhibitoren zuverlässig vorherzusagen. Aus den Tabellendaten ist ersichtlich, dass Zelllinien maligner Zellen, bei denen die untersuchten CpG- Dinukleotide überwiegend methyliert waren, eine signifikant (p < 0,05) höhere IC50 im Vergleich zu malignen Zellen mit überwiegend unmethylierten CpG-Dinukleotiden aufwiesen, was an dem negativen t der t-Statistik zu erkennen ist. Das bedeutet, dass die malignen Zellen mit den überwiegend methylierten CpG- Dinukleotiden signifikant weniger durch die untersuchten Hemmwirkstoffe inhibiert wurden, also schlecht auf die Behandlung ansprachen.
Zusammenfassend zeigen die Ergebnisse, dass die erfindungsgemäße DNA-Methylierungsanalyse der Gene PLEC, LAMB3, TINAGL1, C19orf33, IL18, S100A2, TOBI, TOR4A, FBRSL1, S100A10, LRRFIP2, SPIDR, ASB1, LAMA3, ENSGO0000229672, MYH16, GRID1 und CHD2 die Ansprechwahrscheinlichkeit maligner Zellen auf ERBB-Inhibitoren und RAS/RAF/MEK/ERK-Signalweginhibitoren unabhängig von der Art und/oder Ursache der malignen Erkrankung zuverlässig vorhersagt.
Beispiel 3: Bestimmung der Ansprechwahrscheinlichkeit einer malignen Erkrankung auf eine Behandlung mit ERBB-Inhibitoren, RAS/RAF/MEK/ERK-Signalweginhibitoren, SRC-Inhibitoren sowie CDK4-und-CDK6-Inhibitoren anhand einer DNA-Methylierungsanalyse von TAFAZZIN, GNG7, ANXA11, ANXA2, MAFG, PKP3, ABTB2, ENSGO0000287625, ARL14, BCAR3, BIK, CCND3, CMIP, ELK3, HRH1, SAP30BP, NOS1AP, RALB, TGFBI, ENSG00000235726, CAB39, CIRBP, DIAPH1, FGD6, LMO7, MICAL2, STMN1, MNT, PC, PLEKHG5, PRORP, RDX, SERP1, SLCO3A1, SUFU, TANGOS, EGFR, PINX1, SSBP2, TRERF1, GPT2, HEG1, ENSGO0000231740, PPM1H, PRDM10, RAD18, ENSGO0000231185, SYNPO, TNFRSF10B, T0M1L2, TPRG1, VRK2, ENSG00000249149, NC0R2, ENSGO0000258077, NINJ2, ENSGO0000257746, B3GNTL1, DCP2, ENSG00000242759, Locus Chr.3p23, OGDH, PDZRN3, PLXNB2, ENSGO0000228793, C6orfl32, ENSG00000254561, ENSGO0000233321, SPATAl2 und ERBB2
Das erfindungsgemäße Verfahren wurde zur Bestimmung der Ansprechwahrscheinlichkeit maligner Erkrankungen auf eine Behandlung mit verschiedenen ERBB-Inhibitoren angewendet. Beispielsweise wurde die Vorhersagekraft in Bezug auf das Ansprechen auf verschiedene EGFR-Inhibitoren getestet, darunter die fünf EGFR-Inhibitoren Afatinib, Gefitinib, Cetuximab, Lapatinib und Erlotinib.
Des Weiteren wurde das erfindungsgemäße Verfahren zur Bestimmung der Ansprechwahrscheinlichkeit maligner Erkrankungen auf eine Behandlung mit verschiedenen RAS/RAF/MEK/ERK- Signalweginhibitoren angewendet. Beispielsweise wurde die Vorhersagekraft in Bezug auf das Ansprechen auf verschiedene MEK-Inhibitoren getestet, darunter die fünf MEK-Inhibitoren Trametinib, Refametinib, Selumetinib, CI-1040 und Mirdametinib.
Weiterhin wurde das erfindungsgemäße Verfahren zur Vorhersage des Ansprechens maligner Erkrankungen auf eine Behandlung mit verschiedenen SRC-Inhibitoren angewendet, darunter die fünf SRC- Inhibitoren A-770041, Saracatinib, Bosutinib, Dasatinib und WH- 4-023.
Schließlich wurde das erfindungsgemäße Verfahren zur Vorhersage des Ansprechens maligner Erkrankungen auf eine Behandlung mit verschiedenen CDK4-und-CDK6-Inhibitoren angewendet, darunter die drei CDK4-und-CDK6-Inhibitoren CGP-082996, CGP-60474 und Palbociclib .
Die Bestimmung der IC50 für die in diesem Beispiel untersuchten pharmazeutischen Hemmwirkstoffe und die Durchführung der DNA- Methylierungsanalyse der Gene TAFAZZIN, GNG7, ANXA11, ANXA2, MAFG, PKP3, ABTB2, ENSGO0000287625, ARL14, BCAR3, BIK, CCND3, CMIP, ELK3, HRH1, SAP30BP, NOS1AP, RALB, TGFBI, ENSG00000235726, CAB39, CIRBP, DIAPH1, FGD6, LMO7, MICAL2, STMN1, MNT, PC, PLEKHG5, PRORP, RDX, SERP1, SLCO3A1, SUFU, TANGOS, EGER, PINX1, SSBP2, TRERF1, GPT2, HEG1, ENSGO0000231740, PPM1H, PRDM10, RAD18, ENSGO0000231185, SYNPO, TNFRSF10B, T0M1L2, TPRG1, VRK2, ENSG00000249149, NC0R2, ENSGO0000258077, NINJ2, ENSGO0000257746, B3GNTL1, DCP2, ENSG00000242759, Locus Chr.3p23, OGDH, PDZRN3, PLXNB2, ENSGO0000228793, C6orfl32, ENSG00000254561, ENSG00000233321, SPATA12 und ERBB2 erfolgten wie in Beispiel 1 beschrieben .
Für die Untersuchungen wurden Zelllinien von verschiedenen malignen Erkrankungen verwendet. Insbesondere wurden maligne Zellen von Karzinomen untersucht, darunter Adenokarzinome und Plattenepithelkarzinome. Unter den Karzinomen befanden sich z. B. Plattenepithelkarzinome des Kopf- und Halsbereichs, Adeno- und Plattenepithelkarzinome des Ösophagus, Adenokarzinome der Brust, maligne Tumoren der Gallengänge, Leberzellkarzinome, Nierenzellkarzinome, kolorektale Adenokarzinome, Adeno- und Plattenepithelkarzinome der Lunge, kleinzellige Lungenkarzinome, Adenokarzinome des Pankreas, Plattenepithelkarzinome des Zervix und der Eierstöcke, Adenokarzinome des Endometriums und der Prostata, Schilddrüsenkarzinome, Urothelkarzinome und Magenkarzinome .
Zusätzlich wurden maligne Zellen von Melanomen, Gliomen, Glioblastomen, Medulloblastomen, Neuroblastomen, Keimzelltumoren, Chondrosarkomen, Ewing-Sarkomen, Osteosarkomen, Fibrosarkomen, Rhabdomyosarkomen und Mesotheliomen verwendet.
Insgesamt wurden bis zu 714 verschiedene maligne Zelltypen untersucht .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens TAFAZZIN wurde an insgesamt zehn Positionen im Gen untersucht (SEQ ID NO:52 bis SEQ ID NO:61), welche insbesondere die DNA- Methylierung im Promotor (X:154408091-154411364, SEQ ID NO:62) des TAFAZZIN Gens widerspiegeln. Die DNA-Methylierung von CpG-Dinukleotiden des Gens GNG7 wurde an insgesamt zwei Positionen im Gen untersucht (SEQ ID NO:32 bis SEQ ID NO:33), welche insbesondere die DNA-Methylierung im alternativen Promotor (19:2535289-2548878, SEQ ID NO:34) des GNG7 Gens widerspiegeln.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens ANXA11 wurde an insgesamt fünf Positionen untersucht (SEQ ID NO:91 bis SEQ ID NO:95), welche insbesondere die DNA-Methylierung im Promotor (10:80197502-80212413, SEQ ID NO:366) des ANXA11 Gens widerspiegeln .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens ANXA2 wurde an insgesamt fünf Positionen untersucht (SEQ ID NO:97 bis SEQ ID NO:101), welche insbesondere die DNA-Methylierung im Promotor (15:60387415-60403797, SEQ ID NO:367) des ANXA2 Gens widerspiegeln .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens MAFG wurde an insgesamt vier Positionen untersucht (SEQ ID NO:105 bis SEQ ID NO:108), welche insbesondere die DNA-Methylierung im Promotor (17:81919353-81927992, SEQ ID NO:368) des MAFG Gens widerspiegeln .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens PKP3 wurde an insgesamt drei Positionen untersucht (SEQ ID NO:115 bis SEQ ID NO:117), welche insbesondere die DNA-Methylierung im Promotor (11:391907-396042, SEQ ID NO:369) des PKP3 Gens widerspiegeln.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens ABTB2 wurde an insgesamt zwei Positionen untersucht (SEQ ID NO:118 und SEQ ID NO:119), welche insbesondere die DNA-Methylierung im Genkörper (11:34195474-34280454) des ABTB2 Gens widerspiegeln. Beispielsweise spiegelt der Teil mit der SEQ ID NO:118 die DNA- Methylierung des Genkörperteils 11:34233542-34264793 (SEQ ID NO:370) und der Teil mit der SEQ ID NO:119 die DNA-Methylierung des Genkörperteils 11:34197244-34227887 (SEQ ID NO:371) wider.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens ENSG00000287625 wurde an einer Position untersucht (SEQ ID NO:120), welche insbesondere die DNA-Methylierung im Genkörper (2:84938759-84955130, SEQ ID NO:372) des ENSG00000287625 Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens ARL14 wurde an einer Position untersucht (SEQ ID NO:125), welche insbesondere die DNA-Methylierung im Promotor (3:160675790- 160679619, SEQ ID NO:373) des ARL14 Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens BCAR3 wurde an einer Position untersucht (SEQ ID NO:127), welche insbesondere die DNA-Methylierung im Genkörper (1:93694082- 93712201, SEQ ID NO:374) des BCAR3 Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens BIK wurde an einer Position untersucht (SEQ ID NO:128), welche insbesondere die DNA-Methylierung im Promotor (22:43121022-43133479, SEQ ID NO:375) des BIK Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens CCND3 wurde an einer Position untersucht (SEQ ID NO:129), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (6:41957336-41972623, SEQ ID NO:376) des CCND3 Gens widerspiegelt . Die DNA-Methylierung von CpG-Dinukleotiden des Gens CMIP wurde an insgesamt zwei Positionen untersucht (SEQ ID NO:130 und SEQ ID NO:131), welche insbesondere die DNA-Methylierung im Promotor (16:81480995-81512636, SEQ ID NO:377) bzw. in einem Teil des Genkörpers (16:81618351-81648447, SEQ ID NO:378) des CMIP Gens widerspiegeln .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens ELK3 wurde an insgesamt drei Positionen untersucht (SEQ ID NO:132 bis SEQ ID NO:134), welche insbesondere die DNA-Methylierung im Promotor und im Genkörper (12:96191446-96224107, SEQ ID NO:379) des ELK3 Gens widerspiegeln.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens HRH1 wurde an insgesamt drei Positionen untersucht (SEQ ID NO:138 bis SEQ ID NO:140), welche insbesondere die DNA-Methylierung im Promotor (3:11132402-11144858, SEQ ID NO:380) des HRH1 Gens widerspiegeln .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens SAP30BP wurde an insgesamt zwei Positionen untersucht (SEQ ID NO:141 und SEQ ID NO:142), welche insbesondere die DNA-Methylierung im alternativen Promotor (17:75680008-75709106, SEQ ID NO:381) des SAP30BP Gens widerspiegeln.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens NOS1AP wurde an einer Position untersucht (SEQ ID NO:146), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (1:162126194-162145446, SEQ ID NO:382) des NOS1AP Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens RALB wurde an einer Position untersucht (SEQ ID NO:147), welche insbesondere die DNA-Methylierung im Promotor (2:120235984- 120258633, SEQ ID NO:383) des RABB Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens TGFBI wurde an insgesamt zwei Positionen untersucht (SEQ ID NO:148 und SEQ ID NO:149), welche insbesondere die DNA-Methylierung im Promotor (5:136026401-136036592, SEQ ID NO:384) des TGFBI Gens widerspiegeln .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens ENSG00000235726 wurde an einer Position untersucht (SEQ ID NO:156), welche insbesondere die Methylierung eines Teils des Genkörpers (2:234878128-234886995, SEQ ID NO:385) des ENSG00000235726 Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens CAB39 wurde an einer Position untersucht (SEQ ID NO:160), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (2:230778214-230808224, SEQ ID NO:386) des CAB39 Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens CIRBP wurde an einer Position untersucht (SEQ ID NO:161), welche insbesondere die DNA-Methylierung im Promotor (19:1259044- 1271843, SEQ ID NO:387) des CIRBP Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens DIAPH1 wurde an einer Position untersucht (SEQ ID NO:163), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (5:141598738-141612327, SEQ ID NO:388) des DIAPH1 Gens widerspiegelt . Die DNA-Methylierung von CpG-Dinukleotiden des Gens FGD6 wurde an einer Position untersucht (SEQ ID NO:164), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (12:95196683-95213579, SEQ ID NO:389) des FGD6 Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens LMO7 wurde an einer Position untersucht (SEQ ID NO:166), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (13:75708404-75724258, SEQ ID NO:390) des LMO7 Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens MICAL2 wurde an einer Position untersucht (SEQ ID NO:168), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (11:12161131-12174720, SEQ ID NO:391) des MICAL2 Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens STMN1 wurde an einer Position untersucht (SEQ ID NO:189), welche insbesondere die DNA-Methylierung im alternativen Promotor (1:25888471-25896397, SEQ ID NO:392) des STMN1 Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens MNT wurde an einer Position untersucht (SEQ ID NO:195), welche insbesondere die DNA-Methylierung im Promotor (17:2389492-2411009, SEQ ID NO:393) des MNT Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens PC wurde an einer Position untersucht (SEQ ID NO:196), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (11:66887951- 66895877, SEQ ID NO:394) des PC Gens widerspiegelt. Die DNA-Methylierung von CpG-Dinukleotiden des Gens PLEKHG5 wurde an einer Position untersucht (SEQ ID NO:197), welche insbesondere die DNA-Methylierung im Promotor (1:6488283- 6495077, SEQ ID NO:395) des PLEKHG5 Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens PRORP wurde an einer Position untersucht (SEQ ID N0:200), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (14:35153221-35165111, SEQ ID NO:396) des PRORP Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens RDX wurde an einer Position untersucht (SEQ ID NO:202), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (11:110191822- 110205411, SEQ ID NO:397) des RDX Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens SERP1 wurde an einer Position untersucht (SEQ ID NO:203), welche insbesondere die DNA-Methylierung im Promotor (3:150596474- 150607869, SEQ ID NO:398) des SERP1 Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens SLCO3A1 wurde an einer Position untersucht (SEQ ID NO:206), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (15:92065431-92073357, SEQ ID NO:399) des SLCO3A1 Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens SUFU wurde an einer Position untersucht (SEQ ID NO:207), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (10:102592829-102609815, SEQ ID N0:400) des SUFU Gens widerspiegelt . Die DNA-Methylierung von CpG-Dinukleotiden des Gens TANGOS wurde an einer Position untersucht (SEQ ID NO:208), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (16:69069900-69076694, SEQ ID NO:401) des TANGOS Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens EGFR wurde an einer Position untersucht (SEQ ID NO:222), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (7:55061106-55086109, SEQ ID NQ:402) des EGFR Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens PINX1 wurde an einer Position untersucht (SEQ ID NO:224), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (8:10795951-10805576, SEQ ID NQ:403) des PINX1 Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens SSBP2 wurde an insgesamt drei Positionen untersucht (SEQ ID NO:240 bis SEQ ID NO:242), welche insbesondere die DNA-Methylierung im Promotor (5:81739698-81763435, SEQ ID NQ:404) und Teilen des Genkörpers (5:81412171-81427995, SEQ ID NQ:405 und 5:81615123-81643212, SEQ ID NO:406) des SSBP2 Gens widerspiegeln.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens TRERF1 wurde an insgesamt vier Positionen untersucht (SEQ ID NO:250 bis SEQ ID NO:253), welche insbesondere die DNA-Methylierung von Teilen des Genkörpers (6:42312265-42342490, SEQ ID NO:407 und 6:42223347-42232133, SEQ ID NO:408 und 6:42395546-42408432, SEQ ID NO:409) des TRERF1 Gens widerspiegeln. Die DNA-Methylierung von CpG-Dinukleotiden des Gens GPT2 wurde an einer Position untersucht (SEQ ID NO:269), welche insbesondere die DNA-Methylierung im Promotor (16:46853286- 46881544, SEQ ID NO:410) des GPT2 Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens HEG1 wurde an einer Position untersucht (SEQ ID NQ:270), welche insbesondere die DNA-Methylierung im Promotor (3:125048750- 125060074, SEQ ID NO:411) und der im Promotor gelegenen CpG- Insel (3:125055332-125056318) des HEG1 Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens ENSG00000231740 wurde an einer Position untersucht (SEQ ID NO:271), welche insbesondere die DNA-Methylierung im Promotor (1:58846707-58852314, SEQ ID NO:412) des ENSG00000231740 Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens PPM1H wurde an einer Position untersucht (SEQ ID NO:276), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (12:62783039-62797194, SEQ ID NO:413) des PPM1H Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens PRDM10 wurde an einer Position untersucht (SEQ ID NO:277), welche insbesondere die DNA-Methylierung von Teilen des Genkörpers (11:129955771-129968794, SEQ ID NO:414) des PRDM10 Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens RAD18 wurde an einer Position untersucht (SEQ ID NO:279), welche insbesondere die DNA-Methylierung von Teilen des Genkörpers (3:8866868-8875927, SEQ ID NO:415) des RAD18 Gens widerspiegelt. Die DNA-Methylierung von CpG-Dinukleotiden des Gens ENSG00000231185 wurde an einer Position untersucht (SEQ ID NO:287), welche insbesondere die DNA-Methylierung von Teilen des Genkörpers (5:142470158-142478084, SEQ ID NO:416) des ENSG00000231185 Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens SYNPO wurde an einer Position untersucht (SEQ ID NO:289), welche insbesondere die DNA-Methylierung des Promotors (5:150636723- 150646915, SEQ ID NO:417) des SYNPO Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens TNFRSF10B wurde an einer Position untersucht (SEQ ID NO:294), welche insbesondere die DNA-Methylierung im Promotor (8:23062823- 23075280, SEQ ID NO:418) des TNFRSF10B Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens T0M1L2 wurde an einer Position untersucht (SEQ ID NO:295), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (17:17951951-17962142, SEQ ID NO:419) des T0M1L2 Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens TPRG1 wurde an einer Position untersucht (SEQ ID NO:296), welche insbesondere die DNA-Methylierung im Promotor (3:188941701- 188956988, SEQ ID NO:420) des TPRG1 Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens VRK2 wurde an einer Position untersucht (SEQ ID NO:299), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (2:58103868-58114626, SEQ ID NO:421) des VRK2 Gens widerspiegelt . Die DNA-Methylierung von CpG-Dinukleotiden des Gens ENSG00000249149 wurde an einer Position untersucht (SEQ ID NO:305), welche insbesondere die DNA-Methylierung im Promotor (5:73366895-73375762, SEQ ID NO:422) des ENSG00000249149 Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens NC0R2 wurde an einer Position untersucht (SEQ ID NO:310), welche insbesondere die DNA-Methylierung im Promotor (12:124589305- 124596665, SEQ ID NO:423) des NC0R2 Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens ENSG00000258077 wurde an einer Position untersucht (SEQ ID NO:314), welche insbesondere die DNA-Methylierung im Promotor (12:75946679-75957592, SEQ ID NO:424) des ENSG00000258077 Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens NINJ2 wurde an zwei Positionen untersucht (SEQ ID NO:316 und SEQ ID NO:317), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (12:564035-574700, SEQ ID NO:425) des NINJ2 Gens widerspiegeln .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens ENSG00000257746 wurde an einer Position untersucht (SEQ ID NO:319), welche insbesondere die DNA-Methylierung im Promotor (12:93081904-93099457, SEQ ID NO:426) des ENSG00000257746 Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens B3GNTL1 wurde an einer Position untersucht (SEQ ID NO:323), welche insbesondere die DNA-Methylierung im Promotor (17:83044334- 83052973, SEQ ID NO:427) des B3GNTL1 Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens DCP2 wurde an einer Position untersucht (SEQ ID NO:325), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (5:113014888-113027911, SEQ ID NO:428) des DCP2 Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens ENSG00000242759 wurde an einer Position untersucht (SEQ ID NO:327), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (3:106722279-106735868, SEQ ID NO:429) des ENSG00000242759 Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Locus Chr.3p23 wurde an einer Position untersucht (SEQ ID NO:328), welche insbesondere die DNA-Methylierung des Locus Chr.3p23 im Bereich 3:31073969-31083028 (SEQ ID NO:430) und 3:31075281-31078856 widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens OGDH wurde an einer Position untersucht (SEQ ID NO:329), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (7:44632469-44643793, SEQ ID NO:431) des OGDH Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens PDZRN3 wurde an einer Position untersucht (SEQ ID NO:330), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (3:73541303-73554892, SEQ ID NO:432) des PDZRN3 Gens widerspiegelt . Die DNA-Methylierung von CpG-Dinukleotiden des Gens PLXNB2 wurde an insgesamt drei Positionen untersucht (SEQ ID NO:332, SEQ ID NO:333 und SEQ ID NO:334), welche insbesondere die DNA- Methylierung im Promotor (22:50280218-50284352, SEQ ID NO:433) des PLXNB2 Gens widerspiegeln.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens ENSG00000228793 wurde an einer Position untersucht (SEQ ID NO:336), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (6:3582962-3604478, SEQ ID NO:434) des ENSG00000228793 Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens C6orf132 wurde an einer Position untersucht (SEQ ID NO:337), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers des Gens und der dem Gen C6orf132 nachgelagerten Sequenz (6:42095755-42105946, SEQ ID NO:435) widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens ENSG00000254561 wurde an einer Position untersucht (SEQ ID NO:338), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (11:119611136-119621327, SEQ ID NO:436) des ENSG00000254561 Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens ENSG00000233321 wurde an einer Position untersucht (SEQ ID NO:339), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (10:3462995-3475451, SEQ ID NO:437) des ENSG00000233321 Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens SPATA12 wurde an zwei Positionen untersucht (SEQ ID NO:341 und SEQ ID NO:342), welche insbesondere die DNA-Methylierung im Promotor (3:57057839-57062934, SEQ ID NO:438) des SPATA12 Gens widerspiegeln .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens ERBB2 wurde an insgesamt sieben Positionen untersucht (SEQ ID NO:44 bis SEQ ID NO:50) welche insbesondere die DNA-Methylierung im Promotor (17:39698513-39701727, SEQ ID NO:51) des ERBB2 Gens widerspiegeln .
Die DNA-Methylierung von CpG-Dinukleotiden der genannten Positionen wurde über die HumanMethylation450 BeadChip Sonden gemessen, die in Tabelle 7 und Tabelle 8 aufgeführt sind.
Die Ergebnisse dieser Untersuchungen sind in Fig. 5 und Fig. 6 sowie Tabelle 7 und Tabelle 8 gezeigt.
Fig. 5 und Fig. 6 zeigen exemplarisch jeweils ein Streudiagramm zur Korrelation des Ansprechens der malignen Zellen auf die Behandlung mit dem pharmazeutischen Hemmwirkstoff Trametinib bzw. Afatinib (logIC50, y-Achse) in Abhängigkeit von der relativen DNA-Methylierung (%, x-Achse) der CpG-Dinukleotide in SEQ ID NO:54 des Gens TAFAZZIN. Trametinib ist ein MEK-Inhibitor aus der Gruppe der RAS/RAF/MEK/ERK-Signalweginhibitoren. Afatinib ist ein EGFR-Inhibitor aus der Gruppe der ERBB- Signalweginhibitoren . Das Ansprechen der malignen Zellen auf die Behandlung wurde anhand der logarithmischen mittleren inhibitorischen Konzentration (logIC50) bestimmt, wobei eine niedrige logIC50 ein Ansprechen und eine hohe logIC50 ein Nichtansprechen auf die Behandlung anzeigte. Die DNA- Methylierung des Gens TAFAZZIN in der SEQ ID NO:54 spiegelt die DNA-Methylierung im Promotor (X:154408091-154411364, SEQ ID NO:62) des Gens wider. Es ist deutlich erkennbar, dass maligne Zellen, bei denen die untersuchten CpG-Dinukleotide überwiegend methyliert waren (TAFAZZIN DNA-Methylierung > 50%) nur zu einem geringen Teil auf die Behandlung ansprachen, während maligne Zellen, bei denen die untersuchten CpG-Dinukleotide überwiegend unmethyliert waren (TAFAZZIN DNA-Methylierung < 50%) größtenteils auf die Behandlung ansprachen.
Die Tabellenwerte in Tabelle 7 und Tabelle 8 zeigen im Einzelnen, dass es möglich war, durch die erfindungsgemäße DNA- Methylierungsanalyse der untersuchten Teile der Gene TAFAZZIN, GNG7, ANXA11, ANXA2, MAFG, PKP3, ABTB2, ENSGO0000287625, ARL14, BCAR3, BIN, CCND3, CMIP, ELK3, HRH1, SAP30BP, NOS1AP, RABB, TGFBI, ENSG00000235726, CAB39, CIRBP, DIAPH1, FGD6, LMO7, MICAL2, STMN1, MNT, PC, PLEKHG5, PRORP, RDX, SERP1, SLCO3A1, SUFU, TANGOS, EGER, PINX1, SSBP2, TRERF1, GPT2, HEG1, ENSGO0000231740, PPM1H, PRDM10, RAD18, ENSGO0000231185, SYNPO, TNFRSF10B, T0M1L2, TPRG1, VRK2, ENSG00000249149, NC0R2, ENSGO0000258077, NINJ2, ENSGO0000257746, B3GNTL1, DCP2, ENSG00000242759, Locus Chr.3p23, OGDH, PDZRN3, PLXNB2, ENSGO0000228793, C6orfl32, ENSG00000254561, ENSGO0000233321, SPATA12 und ERBB2 das Ansprechen der verschiedenen malignen Erkrankungen auf RAS/RAF/MEK/ERK-Signalweginhibitoren, wie beispielsweise MEK-Inhibitoren sowie auf ERBB-Inhibitoren, wie beispielsweise EGFR-Inhibitoren sowie CDK4-und-CDK6-Inhibitoren sowie SRC-Inhibitoren zuverlässig vorherzusagen. Aus den Tabellendaten ist ersichtlich, dass Zelllinien maligner Zellen, bei denen die untersuchten CpG-Dinukleotide überwiegend methyliert waren, eine signifikant (p < 0,05) höhere IC50 im Vergleich zu malignen Zellen mit überwiegend unmethylierten CpG- Dinukleotiden aufwiesen, was an dem negativen t der t-Statistik zu erkennen ist. Das bedeutet, dass die malignen Zellen mit den überwiegend methylierten CpG-Dinukleotiden signifikant weniger durch die untersuchten Hemmwirkstoffe inhibiert wurden, also schlecht auf die Behandlung ansprachen. Zusammenfassend zeigen die Ergebnisse, dass die erfindungsgemäße DNA-Methylierungsanalyse von TAFAZZIN, GNG7, ANXA11, ANXA2, MAFG, PKP3, ABTB2, ENSGO0000287625, ARL14, BCAR3, BIK, CCND3, CMIP, ELK3, HRH1, SAP30BP, NOS1AP, RALB, TGFBI, ENSG00000235726, CAB39, CIRBP, DIAPH1, FGDS, LMO7, MICAL2, STMN1, MNT, PC, PLEKHG5, PRORP, RDX, SERP1, SLCO3A1, SUFU, TANGOS, EGER, PINX1, SSBP2, TRERF1, GPT2, HEG1, ENSGO0000231740, PPM1H, PRDM10, RAD18, ENSGO0000231185, SYNPO, TNFRSF10B, T0M1L2, TPRG1, VRK2, ENSG00000249149, NC0R2, ENSGO0000258077, NINJ2, ENSGO0000257746, B3GNTL1, DCP2, ENSG00000242759, Locus Chr.3p23, OGDH, PDZRN3, PLXNB2, ENSGO0000228793, C6orfl32, ENSG00000254561, ENSGO0000233321, SPATA12 und ERBB2 jeweils die Ansprechwahrscheinlichkeit maligner Erkrankungen auf ERBB- Inhibitoren, RAS/RAF/MEK/ERK-Signalweginhibitoren, SRC- Inhibitoren sowie CDK4-und-CDK6-Inhibitoren zuverlässig vorhersagt. Insbesondere zeigen die Ergebnisse, dass die erfindungsgemäße DNA-Methylierungsanalyse der Gene TAFAZZIN, GNG7, ANXA11, ANXA2, MAFG, PKP3, ABTB2, ENSGO0000287625, ARL14, BCAR3, BIK, CCND3, CMIP, EIK3, HRH1, SAP30BP, NOS1AP, RAIB, TGFBI, ENSG00000235726, CAB39, CIRBP, DIAPH1, FGDS, IMO7, MICAI2, STMN1, MNT, PC, PIEKHG5, PRORP, RDX, SERP1, SICO3A1, SUFU, TANGOS, EGFR, PINX1, SSBP2, TRERF1, GPT2, HEG1, ENSGO0000231740, PPM1H, PRDM10, RAD18, ENSGO0000231185, SYNPO, TNFRSF10B, T0M1I2, TPRG1, VRK2, ENSG00000249149, NC0R2, ENSGO0000258077, NINJ2, ENSGO0000257746, B3GNTI1, DCP2, ENSG00000242759, Locus Chr.3p23, OGDH, PDZRN3, PIXNB2, ENSGO0000228793, CSorfl32, ENSG00000254561, ENSGO0000233321, SPATA12 und ERBB2 jeweils eine zuverlässige Vorhersage des Ansprechens maligner Erkrankungen auf MEK-Inhibitoren und EGFR- Inhibitoren ermöglicht, welches Beispiele für RAS/RAF/MEK/ERK- Signalweginhibitoren beziehungsweise ERBB-Inhibitoren sind. Beispiel 4: Bestimmung der Ansprechwahrscheinlichkeit einer malignen Erkrankung auf eine Behandlung mit ERBB-Inhibitoren, RAS/RAF/MEK/ERK-Signalweginhibit oren, CDK4-und-CDK6-Inhibitoren und SRC-Inhibitoren anhand einer DNA-Methylierungsanalyse von ZBTB38, MAFK, NEDD4L, DIP2C, CAPN2, IER3, TM4SF19, RPTOR, S100A16, BCL9L, KCNMA1, GALE, PCID2, SH3TC1, SSH1, AVPI1, MAP3K14, MIR23AHG, EPHA2, ENSG00000233785, ACVR1, ENSG00000282849, COX7A2L, ENSG00000234476, LRRC2, PLXNB1, PPTC7, RB1CC1, SLC2A1, SLC39A11, TBC1D14, TIMP2, ENSG00000276527, CFAP20DC, PHLDA1, TESC, LIMA1, ASPSCR1, CAMKID, CAMK2D, CFAP57, CHCHD6, DRAP1, ENGI, ARHGAP32, ABL2, ENSG00000250754, Locus Chr.lq42.3, MYO16, MYOF, PTPRK, RBKS, SH3RF2, SILC1, SP1, SPAG6, SRGAP1, SYTL3, TMEM248, UTP25, WDFY3, WIPF2, WSB2, ZCCHC14, ZSWIM1, ENSG00000226380, ENTPD6, ENSG00000285517, CAPRIN2, MTPN, ADAM17, ATG14, ENSG00000258583 und ITGB5
Das erfindungsgemäße Verfahren wurde zur Bestimmung der Ansprechwahrscheinlichkeit maligner Erkrankungen auf eine Behandlung mit verschiedenen RAS/RAF/MEK/ERK- Signalweginhibitoren angewendet. Beispielsweise wurde die Vorhersagekraft in Bezug auf das Ansprechen auf eine Behandlung mit verschiedenen MEK-Inhibitoren und BRAF-Inhibitoren untersucht, darunter die fünf MEK-Inhibitoren Trametinib, Refametinib, Selumetinib, CI-1040 und Mirdametinib sowie die vier BRAF-Inhibitoren AZ 628, Dabrafenib, HG-6-64-1 und PLX4720.
Des Weiteren wurde das erfindungsgemäße Verfahren zur Bestimmung der Ansprechwahrscheinlichkeit maligner Erkrankungen auf eine Behandlung mit verschiedenen ERBB-Inhibitoren angewendet. Beispielsweise die Vorhersagekraft in Bezug auf das Ansprechen auf eine Behandlung mit verschiedenen EGFR-Inhibitoren getestet, darunter die fünf EGFR-Inhibitoren Afatinib, Gefitinib, Cetuximab, Erlotinib und Lapatinib. Schließlich wurde das erfindungsgemäße Verfahren zur Vorhersage des Ansprechens maligner Erkrankungen auf eine Behandlung mit verschiedenen CDK4-und-CDK6-Inhibitoren sowie SRC-Inhibitoren angewendet. Beispielsweise wurde die Vorhersagekraft in Bezug auf das Ansprechen auf eine Behandlung mit den fünf SRC- Inhibitoren A-770041, Saracatinib, Bosutinib, Dasatinib und WH- 4-023 sowie den drei CDK4-und-CDK6-Inhibitoren CGP-082996, CGP- 60474 und Palbociclib untersucht.
Die Bestimmung der IC50 für die in diesem Beispiel untersuchten Hemmwirkstoffe und die Durchführung der DNA-Methylierungsanalyse der Gene ZBTB38, MAFK, NEDD4L, DIP2C, CAPN2, IER3, TM4SF19, RPTOR, S100A16, BCL9L, KCNMA1, GALE, PCID2, SH3TC1, SSH1, AVPI1, MAP3K14, MIR23AHG, EPHA2, ENSG00000233785, ACVR1, ENSG00000282849, COX7A2L, ENSG00000234476, LRRC2, PLXNB1, PPTC7, RB1CC1, SLC2A1, SLC39A11, TBC1D14, TIMP2, ENSGO0000276527, CFAP20DC, PHLDA1, TESC, LIMA1, ASPSCR1, CAMKID, CAMK2D, CFAP57, CHCHD6, DRAP1, ENGI, ARHGAP32, ABL2, ENSG00000250754, Locus Chr.lq42.3, MYO16, MYOF, PTPRK, RBKS, SH3RF2, SILC1, SP1, SPAG6, SRGAP1, SYTL3, TMEM248, UTP25, WDFY3, WIPF2, WSB2, ZCCHC14, ZSWIM1, ENSGO0000226380, ENTPD6, ENSGO0000285517, CAPRIN2, MTPN, ADAM17, ATG14, ENSG00000258583 und ITGB5 erfolgten wie in Beispiel 1 beschrieben.
Die in diesem Beispiel untersuchten Zellen maligner Erkrankungen waren die gleichen wie in Beispiel 3.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens ZBTB38 wurde an fünf Positionen untersucht (SEQ ID NO:175 bis SEQ ID NO:179), welche insbesondere die DNA-Methylierung im Promotor (3:141364416-141371142, SEQ ID NO:441) des ZBTB38 Gens widerspiegeln . Die DNA-Methylierung von CpG-Dinukleotiden des Gens MAFK wurde an drei Positionen untersucht (SEQ ID NO:109, SEQ ID NO:110 und SEQ ID NO:111), welche insbesondere die DNA-Methylierung im Promotor (7:1529262-1540502, SEQ ID NO:439) des MAFK Gens widerspiegeln .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens NEDD4L wurde an drei Positionen untersucht (SEQ ID NO:112, SEQ ID NO:113 und SEQ ID NO:114), welche insbesondere die DNA-Methylierung im alternativen Promotor (18:58215872-58228329, SEQ ID NO:440) des NEDD4L Gens widerspiegeln.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens DIP2C wurde an drei Positionen untersucht (SEQ ID NO:264, SEQ ID NO:265 und SEQ ID NO:266), welche insbesondere die DNA-Methylierung des Promotors und des nachgelagerten Abschnitts des Genkörpers (10:682143-695166, SEQ ID NO:442) sowie eines weiteren Teils des Genkörpers (10:319301-330625, SEQ ID NO:443) des DIP2C Gens widerspiegeln .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens CAPN2 wurde an sechs Positionen untersucht (SEQ ID NO:169 bis SEQ ID NO:174), welche insbesondere die DNA-Methylierung im Genkörper (1:223768582-223775521, SEQ ID NO:444) und zwei Promotoren (1:223695643-223717861, SEQ ID NO:445) des CAPN2 Gens widerspiegeln .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens IER3 wurde an sechs Positionen untersucht (SEQ ID NO:180 bis SEQ ID NO:185), welche insbesondere die DNA-Methylierung im Promotor (6:30740330-30758622, SEQ ID NO:446) des IER3 Gens widerspiegeln . Die DNA-Methylierung von CpG-Dinukleotiden des Gens TM4SF19 wurde an fünf Positionen untersucht (SEQ ID NO:150 bis SEQ ID NO:154), welche insbesondere die DNA-Methylierung im Promotor (3:196334860-196346137, SEQ ID NO:447) des TM4SF19 Gens widerspiegeln .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens RPTOR wurde an drei Positionen untersucht (SEQ ID NO:186, SEQ ID NO:187 und SEQ ID NO:188), welche insbesondere die DNA-Methylierung von Teilen des Genkörpers (17:80779489-80810457, SEQ ID NO:448, 17:80844268-80875012, SEQ ID NO:449 und 17:80875012-80904251, SEQ ID NO:450) des RPTOR Gens widerspiegeln.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens S100A16 wurde an fünf Positionen untersucht (SEQ ID NO:232 bis SEQ ID NO:236), welche insbesondere die DNA-Methylierung im Promotor (1:153606408-153613450, SEQ ID NO:451) und dessen Zentrum (1:153608184-153610335) des S100A16 Gens widerspiegeln.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens BCL9L wurde an vier Positionen untersucht (SEQ ID NO:155 bis SEQ ID NO:258), welche insbesondere die DNA-Methylierung im Promotor (11:118907364-118932161, SEQ ID NO:452) des BCL9L Gens widerspiegeln .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens KCNMA1 wurde an zwei Positionen untersucht (SEQ ID NO:216 und SEQ ID NO:217), welche insbesondere die DNA-Methylierung von zwei Teilen des Genkörpers (10:77343586-77364673, SEQ ID NO:453 und 10:77580549- 77606859, SEQ ID NO:454) des KCNMA1 Gens widerspiegeln. Die DNA-Methylierung von CpG-Dinukleotiden des Gens GALE wurde an drei Positionen untersucht (SEQ ID NO:135, SEQ ID NO:136 und SEQ ID NO:137), welche insbesondere die DNA-Methylierung im zentralen Promotor (1:23798440-23801012, SEQ ID NO:455) des GALE Gens widerspiegeln.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens PCLD2 wurde an zwei Positionen untersucht (SEQ ID NO:220 und SEQ ID NO:221), welche insbesondere die DNA-Methylierung im alternativen Promotor und angrenzendem Genkörper (13:113183171-113191810, SEQ ID NO:456) des PCLD2 Gens widerspiegeln.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens SH3TC1 wurde an zwei Positionen untersucht (SEQ ID NO:282 und SEQ ID NO:283), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (4:8186081-8195074, SEQ ID NO:457) des SH3TC1 Gens widerspiegeln .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens SSH1 wurde an zwei Positionen untersucht (SEQ ID NO:243 und SEQ ID NO:244), welche insbesondere die DNA-Methylierung im alternativen Promotor und angrenzendem Genkörper (12:108818418-108837010, SEQ ID NO:458) des SSH1 Gens widerspiegeln.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens AVPL1 wurde an einer Position untersucht (SEQ ID NO:126), welche insbesondere die DNA-Methylierung im Promotor (10:97680054- 97694209, SEQ ID NO:459) des AVPL1 Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens MAP3K14 wurde an einer Position untersucht (SEQ ID NO:143), welche insbesondere die DNA-Methylierung im Promotor (17:45280967- 45306566, SEQ ID NO:460) des MAP3K14 Gens widerspiegelt. Die DNA-Methylierung von CpG-Dinukleotiden des Gens MIR23AHG wurde an zwei Positionen untersucht (SEQ ID NO:144 und SEQ ID NO:145), welche insbesondere die DNA-Methylierung im Promotor (19:13833062-13847218, SEQ ID NO:461) des MIR23AHG Gens widerspiegeln .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens EPHA2 wurde an einer Position untersucht (SEQ ID NO:155), welche insbesondere die DNA-Methylierung im Promotor (1:16140758- 16159964, SEQ ID NO:462) des EPHA2 Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens ENSG00000233785 wurde an einer Position untersucht (SEQ ID NO:157), welche insbesondere die DNA-Methylierung im Promotor (X:23779234-23784341, SEQ ID NO:463) des ENSG00000233785 Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens ACVR1 wurde an einer Position untersucht (SEQ ID NO:158), welche insbesondere die DNA-Methylierung im Genkörper (2:157826504- 157840100, SEQ ID NO:464) des ACVR1 Gens widerspiegelt. Dieser Teil des Genkörpers umfasst auch einen Teil eines alternativen Promotors.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens ENSG00000282849 wurde an einer Position untersucht (SEQ ID NO:159), welche insbesondere die DNA-Methylierung im Promotor (1:200479260-200488319, SEQ ID NO:465) des ENSG00000282849 Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens COX7A2L wurde an einer Position untersucht (SEQ ID NO:162), welche insbesondere die DNA-Methylierung im Genkörper (2:42414934- 42428523, SEQ ID NO:466) des COX7A2L Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens ENSG00000234476 wurde an einer Position untersucht (SEQ ID NO:165), welche insbesondere die DNA-Methylierung im Genkörper und der dem Gen nachgelagerten Sequenz (1:225440616-225452506, SEQ ID NO:467) des ENSG00000234476 Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens LRRC2 wurde an einer Position untersucht (SEQ ID NO:167), welche insbesondere die DNA-Methylierung im Genkörper und der dem Gen nachgelagerten Sequenz (3:46514226-46522718, SEQ ID NO:468) des LRRC2 Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens PLXNB1 wurde an einer Position untersucht (SEQ ID NO:198), welche insbesondere die DNA-Methylierung im Genkörper und der dem Gen nachgelagerten Sequenz (3:48398407-48408032, SEQ ID NO:469) des PLXNB1 Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens PPTC7 wurde an einer Position untersucht (SEQ ID NO:199), welche insbesondere die DNA-Methylierung im Promotor (12:110572968- 110586617, SEQ ID NO:470) des PPTC7 Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens RB1CC1 wurde an einer Position untersucht (SEQ ID NO:201), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (8:52691480-52698840, SEQ ID NO:471) des RB1CC1 Gens widerspiegelt . Die DNA-Methylierung von CpG-Dinukleotiden des Gens SLC2A1 wurde an einer Position untersucht (SEQ ID NO:204), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (1:42938229-42947715, SEQ ID NO:472) des SLC2A1 Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens SLC39A11 wurde an einer Position untersucht (SEQ ID NQ:205), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (17:72714613-72720275, SEQ ID NO:473) des SLC39A11 Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens TBC1D14 wurde an einer Position untersucht (SEQ ID NQ:209), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (4:6940038-6945133, SEQ ID NO:474) des TBC1D14 Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens TIMP2 wurde an einer Position untersucht (SEQ ID NQ:210), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (17:78860378-78864341, SEQ ID NO:475) des TIMP2 Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens ENSG00000276527 wurde an einer Position untersucht (SEQ ID NO:213), welche insbesondere die DNA-Methylierung im Promotor (13:44706332-44721620, SEQ ID NO:476) des ENSG00000276527 Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens CFAP20DC wurde an einer Position untersucht (SEQ ID NO:215), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (3:58994710-59004335, SEQ ID NO:477) des CFAP20DC Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens PHLDA1 wurde an einer Position untersucht (SEQ ID NO:223), welche insbesondere die DNA-Methylierung im Genkörper und der dem Gen nachgelagerten Sequenz (12:76020299-76028225, SEQ ID NO:478) des PHLDA1 Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens TESC wurde an einer Position untersucht (SEQ ID NO:245), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (12:117040788-117045883, SEQ ID NO:479) des TESC Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens LIMA1 wurde an einer Position untersucht (SEQ ID NO:254), welche insbesondere die DNA-Methylierung im alternativen Promotor und Genkörper (12:50240641-50255929, SEQ ID NQ:480) des LIMA1 Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens ASPSCR1 wurde an einer Position untersucht (SEQ ID NO:259), welche insbesondere die DNA-Methylierung im alternativen Promotor und Genkörper (17:81996878-82011599, SEQ ID NO:481) des ASPSCR1 Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens CAMK1D wurde an einer Position untersucht (SEQ ID NQ:260), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (10:12441419-12456706, SEQ ID NO:482) des CAMK1D Gens widerspiegelt . Die DNA-Methylierung von CpG-Dinukleotiden des Gens CAMK2D wurde an einer Position untersucht (SEQ ID NO:261), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (4:113463882-113476338, SEQ ID NO:483) des CAMK2D Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens CFAP57 wurde an einer Position untersucht (SEQ ID NO:262), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (1:43199549-43214270, SEQ ID NO:484) des CFAP57 Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens CHCHD6 wurde an einer Position untersucht (SEQ ID NO:263), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (3:126904209-126920063, SEQ ID NO:485) des CHCHD6 Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens DRAP1 wurde an einer Position untersucht (SEQ ID NO:267), welche insbesondere die DNA-Methylierung im Promotor (11:65909705- 65922504, SEQ ID NO:486) des DRAP1 Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens ENC1 wurde an einer Position untersucht (SEQ ID NO:268), welche insbesondere die DNA-Methylierung im Promotor (5:74636598- 74645657, SEQ ID NO:487) des ENC1 Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens ARHGAP32 wurde an einer Position untersucht (SEQ ID NO:124), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (11:129131715-129160026, SEQ ID NO:488) des ARHGAP32 Gens widerspiegelt . Die DNA-Methylierung von CpG-Dinukleotiden des Gens ABL2 wurde an einer Position untersucht (SEQ ID NO:96), welche insbesondere die DNA-Methylierung in Teilen des alternativen Promotors und des Genkörpers (1:179132347-179152810, SEQ ID NO:489) des ABL2 Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens ENSG00000250754 wurde an einer Position untersucht (SEQ ID NO:272), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (4:185105388-185115579, SEQ ID NQ:490) des ENSG00000250754 Gens widerspiegelt.
Die DNA-Methylierung des Locus Chr.lq42.3 wurde an einer Position untersucht (SEQ ID NO:273), welche insbesondere die DNA-Methylierung des Locus Chr.lq42.3 im Bereich 1:235005582- 235018381 (SEQ ID NO:491) und 3:31075281-31078856 widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens MYO16 wurde an einer Position untersucht (SEQ ID NO:274), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (13:108955554-108964613, SEQ ID NO:492) des MYO16 Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens MYOF wurde an einer Position untersucht (SEQ ID NO:275), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (10:93430533-93443556, SEQ ID NO:493) des MYOF Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens PTPRK wurde an einer Position untersucht (SEQ ID NO:278), welche insbesondere die DNA-Methylierung im Promotor (6:128505772- 128525024, SEQ ID NO:494) des PTPRK Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens RBKS wurde an einer Position untersucht (SEQ ID NO:280), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (2:27795917-27806109, SEQ ID NO:495) des RBKS Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens SH3RF2 wurde an einer Position untersucht (SEQ ID NO:281), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (5:145943178-145954502, SEQ ID NO:496) des SH3RF2 Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens SILC1 wurde an einer Position untersucht (SEQ ID NO:284), welche insbesondere die DNA-Methylierung eines Teils der Promotorregion (2:5965649-5976973, SEQ ID NO:497) des SILC1 Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens SP1 wurde an einer Position untersucht (SEQ ID NO:285), welche insbesondere die DNA-Methylierung im Promotor (12:53376933-53389389, SEQ ID NO:498) des SP1 Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens SPAG6 wurde an einer Position untersucht (SEQ ID NO:286), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (10:22423788-22437377, SEQ ID NO:499) des SPAG6 Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens SRGAP1 wurde an einer Position untersucht (SEQ ID NO:288), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (12:64081933-64096088, SEQ ID NO:500) des SRGAP1 Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens SYTL3 wurde an einer Position untersucht (SEQ ID NO:290), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (6:158715789-158725980, SEQ ID NQ:501) des SYTL3 Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens TMEM248 wurde an einer Position untersucht (SEQ ID NO:293), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (7:66948778-66956138, SEQ ID NQ:503) des TMEM248 Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens UTP25 wurde an einer Position untersucht (SEQ ID NO:298), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (1:209833653-209842712, SEQ ID NQ:504) des UTP25 Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens WDFY3 wurde an einer Position untersucht (SEQ ID NO:300), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (4:84688272-84697331, SEQ ID NQ:505) des WDFY3 Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens WIPF2 wurde an einer Position untersucht (SEQ ID NQ:301), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers und der nachgelagerten Sequenz (17:40280324-40285420, SEQ ID NQ:506) des WIPF2 Gens widerspiegelt. Die DNA-Methylierung von CpG-Dinukleotiden des Gens WSB2 wurde an einer Position untersucht (SEQ ID NO:302), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers und des alternativen Promotors (12:118050165-118055260, SEQ ID NO:507) des WSB2 Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens ZCCHC14 wurde an einer Position untersucht (SEQ ID NO:303), welche insbesondere die DNA-Methylierung des Genkörpers (16:87454494- 87461288, SEQ ID NO:508) des ZCCHC14 Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens ZSWIM1 wurde an einer Position untersucht (SEQ ID NO:304), welche insbesondere die DNA-Methylierung des Genkörpers und der nachgelagerten Sequenz (20:45882837-45886936, SEQ ID NO:509) des ZSWIM1 Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens ENSG00000226380 wurde an einer Position untersucht (SEQ ID NO:309), welche insbesondere die DNA-Methylierung des Genkörpers und eines alternativen Promotors (7:130897587-130915321, SEQ ID NO:510) des ENSG00000226380 Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens ENTPD6 wurde an einer Position untersucht (SEQ ID NO:312), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers und der nachgelagerten Sequenz (20:25218815-25232404, SEQ ID NO:511) des ENTPD6 Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens ENSG00000285517 wurde an einer Position untersucht (SEQ ID NO:313), welche insbesondere die DNA-Methylierung im Promotor (12:30789185-30803341, SEQ ID NO:512) des ENSG00000285517 Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens CAPRIN2 wurde an einer Position untersucht (SEQ ID NO:315), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (12:30721446-30731637, SEQ ID NO:513) des CAPRIN2 Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens MTPN wurde an einer Position untersucht (SEQ ID NO:318), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers und der nachgelagerten Sequenz (7:135916072-135931079, SEQ ID NO:514) des MTPN Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens ADAM17 wurde an einer Position untersucht (SEQ ID NO:320), welche insbesondere die DNA-Methylierung im Promotor (2:9549370- 9573152, SEQ ID NO:515) des ADAM17 Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens ATG14 wurde an einer Position untersucht (SEQ ID NO:322), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (14:55394876-55407333, SEQ ID NO:516) des ATG14 Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens ENSG00000258583 wurde an einer Position untersucht (SEQ ID NO:324), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (14:58725174-58743859, SEQ ID NO:517) des ENSG00000258583 Gens widerspiegelt. Die DNA-Methylierung von CpG-Dinukleotiden des Gens ITGB5 wurde an einer Position untersucht (SEQ ID NO:326), welche insbesondere die DNA-Methylierung im Promotor (3:124873906- 124896555, SEQ ID NO:518) des ITGB5 Gens widerspiegelt.
Die DNA-Methylierung der Positionen wurde jeweils über die HumanMethylation450 BeadChip Sonden gemessen, die in Tabellen 9- 11 aufgeführt sind.
Die Ergebnisse sind in den Tabellen 9-11 zusammengefasst. Die Tabellendaten zeigen, dass es möglich war, durch die erfindungsgemäße DNA-Methylierungsanalyse der untersuchten Teile der Gene ZBTB38, MAFK, NEDD4L, DIP2C, CAPN2, IER3, TM4SF19, RPTOR, S100A16, BCL9L, KCNMA1, GALE, PCID2, SH3TC1, SSH1, AVPI1, MAP3K14, MIR23AHG, EPHA2, ENSG00000233785, ACVR1, ENSG00000282849, COX7A2L, ENSG00000234476, LRRC2, PLXNB1, PPTC7, RB1CC1, SLC2A1, SLC39A11, TBC1D14, TIMP2, ENSG00000276527, CFAP20DC, PHLDA1, TESC, LIMA1, ASPSCR1, CAMKID, CAMK2D, CFAP57, CHCHD6, DRAP1, ENGI, ARHGAP32, ABL2, ENSG00000250754, Locus Chr.lq42.3, MYO16, MYOF, PTPRK, RBKS, SH3RF2, SILC1, SP1, SPAG6, SRGAP1, SYTL3, TMEM248, UTP25, WDFY3, WIPF2, WSB2, ZCCHC14, ZSWIM1, ENSG00000226380, ENTPD6, ENSG00000285517, CAPRIN2, MTPN, ADAM17, ATG14, ENSG00000258583 und ITGB5 das Ansprechen der verschiedenen malignen Erkrankungen auf ERBB-Inhibitoren, RAS/RAF/MEK/ERK-Signalweginhibitor en, CDK4-und-CDK6-Inhibitoren sowie SRC-Inhibitoren zuverlässig vorherzusagen. Aus den Tabellendaten ist ersichtlich, dass Zelllinien maligner Zellen, bei denen die untersuchten CpG-Dinukleotide überwiegend methyliert waren, eine signifikant (p < 0,05) höhere IC50 im Vergleich zu malignen Zellen mit überwiegend unmethylierten CpG- Dinukleotiden aufwiesen, was an dem negativen t der t-Statistik zu erkennen ist. Das bedeutet, dass die malignen Zellen mit den überwiegend methylierten CpG-Dinukleotiden signifikant weniger durch die untersuchten Hemmwirkstoffe inhibiert wurden, also schlecht auf die Behandlung ansprachen.
Zusammenfassend zeigen die Ergebnisse, dass die erfindungsgemäße DNA-Methylierungsanalyse von ZBTB38, MAFK, NEDD4L, DIP2C, CAPN2, IER3, TM4SF19, RPTOR, S100A16, BCL9L, KCNMA1, GALE, PCID2, SH3TC1, SSH1, AVPI1, MAP3K14, MIR23AHG, EPHA2, ENSG00000233785, ACVR1, ENSG00000282849, COX7A2L, ENSG00000234476, LRRC2, PLXNB1, PPTC7, RB1CC1, SLC2A1, SLC39A11, TBC1D14, TIMP2, ENSGO0000276527, CFAP20DC, PHLDA1, TESC, LIMA1, ASPSCR1, CAMK1D, CAMK2D, CFAP57, CHCHD6, DRAP1, ENGI, ARHGAP32, ABL2, ENSGO0000250754, Locus Chr.lq42.3, MYO16, MYOF, PTPRK, RBKS, SH3RF2, SILC1, SP1, SPAG6, SRGAP1, SYTL3, TMEM248, UTP25, WDFY3, WIPF2, WSB2, ZCCHC14, ZSWIM1, ENSGO0000226380, ENTPD6, ENSGO0000285517, CAPRIN2, MTPN, ADAM17, ATG14, ENSG00000258583 und ITGB5 jeweils die Ansprechwahrscheinlichkeit maligner Erkrankungen auf ERBB-Inhibitoren, RAS/RAF/MEK/ERK- Signalweginhibitoren, CDK4-und-CDK6-Inhibitoren sowie SRC- Inhibitoren zuverlässig vorhersagt, insbesondere das Ansprechen auf MEK-Inhibitoren und BRAF-Inhibitoren sowie EGFR-Inhibitoren, welches RAS/RAF/MEK/ERK-Signalweginhibitoren beziehungsweise ERBB-Inhibitoren sind.
Beispiel 5: Bestimmung der Ansprechwahrscheinlichkeit einer malignen Erkrankung auf eine Behandlung mit RAS/RAF/MEK/ERK- Signalweginhibitoren, CDK4-und-CDK6-Inhibitoren und SRC- Inhibitoren anhand einer DNA-Methylierungsanalyse von VGLL4, CDCP1, RASA3, PTTG1IP, ASAP2, ENSGO0000242282, Locus Chr.3q29, TMCO4, UBXN11, MAP3K5, ASTN2 und ENSG00000258082
Das erfindungsgemäße Verfahren wurde zur Bestimmung der Ansprechwahrscheinlichkeit maligner Erkrankungen auf eine Behandlung mit verschiedenen RAS/RAF/MEK/ERK- Signalweginhibitoren angewendet. Beispielsweise wurde die Vorhersagekraft in Bezug auf das Ansprechen auf verschiedene MEK-Inhibitoren und BRAF-Inhibitoren getestet, darunter die fünf MEK-Inhibitoren Trametinib, Refametinib, Selumetinib, CI-1040 und Mirdametinib sowie die vier BRAF-Inhibitoren AZ 628, Dabrafenib, HG-6-64-1 und PLX4720.
Des Weiteren wurde das erfindungsgemäße Verfahren zur Vorhersage des Ansprechens maligner Erkrankungen auf verschiedene CDK4-und- CDK6-Inhibitoren sowie SRC-Inhibitoren angewendet.
Beispielsweise wurde die Vorhersagekraft Bezug auf das Ansprechen auf die fünf SRC-Inhibitoren A-770041, Saracatinib, Bosutinib, Dasatinib und WH-4-023 sowie die drei CDK4-und-CDK6- Inhibitoren CGP-082996, CGP-60474 und Palbociclib untersucht.
Die Bestimmung der IC50 für die in diesem Beispiel untersuchten Hemmwirkstoffe und die Durchführung der DNA-Methylierungsanalyse der Gene VGLL4, CDCP1, RASA3, PTTG1IP, ASAP2, ENSGO0000242282, Locus Chr.3q29, TMCO4, UBXN11, MAP3K5, ASTN2 und ENSG00000258082 erfolgten wie in Beispiel 1 beschrieben.
Die in diesem Beispiel untersuchten Zellen maligner Erkrankungen entsprachen denen aus Beispiel 3.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens VGLL4 wurde an insgesamt vier Positionen untersucht (SEQ ID NO:190 bis SEQ ID NO:193), welche insbesondere die DNA-Methylierung im alternativen Promotor und Genkörper (3:11565768-11571995, SEQ ID NO:519) des VGLL4 Gens widerspiegeln.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens CDCP1 wurde an einer Position untersucht (SEQ ID NO:214), welche insbesondere die DNA-Methylierung im Promotor (3:45124238- 45151983, SEQ ID NO:520) des CDCP1 Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens RASA3 wurde an insgesamt fünf Positionen untersucht (SEQ ID NO:227 bis SEQ ID NO:238), welche insbesondere die DNA-Methylierung im Promotor (13:114105649-114128377, SEQ ID NO:521) und eines Teils des Genkörpers (13:114062455-114066811, SEQ ID NO:522) des RASA3 Gens widerspiegeln.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens PTTG1IP wurde an insgesamt zwei Positionen untersucht (SEQ ID NO:225 und SEQ ID NO:226), welche insbesondere die DNA-Methylierung im Promotor (21:44865977-44876735, SEQ ID NO:523) des PTTG1IP Gens widerspiegeln .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens ASAP2 wurde an insgesamt zwei Positionen untersucht (SEQ ID NO:306 und SEQ ID NO:307), welche insbesondere die DNA-Methylierung von Teilen des Genkörpers (2:9230183-9241659, SEQ ID NO:524 und 2:9275684- 9297427, SEQ ID NO:525) des ASAP2 Gens widerspiegeln.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens ENSG00000242282 wurde an insgesamt zwei Positionen untersucht (SEQ ID NO:211 und SEQ ID NO:212), welche insbesondere die DNA- Methylierung im Promotor (2:3534728-3537892, SEQ ID NO:526) des ENSG00000242282 Gens widerspiegeln.
Die DNA-Methylierung des Locus Chr.3q29 wurde an insgesamt zwei Positionen untersucht (SEQ ID NO:218 und SEQ ID NO:219), welche insbesondere die DNA-Methylierung im Bereich 3:193868829- 193871078 (SEQ ID NO:527) des Locus Chr.3q29 widerspiegeln. Die DNA-Methylierung von CpG-Dinukleotiden des Gens TMCO4 wurde an einer Position untersucht (SEQ ID NO:292), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (1:19760862-19771053, SEQ ID NO:528) des TMCO4 Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens UBXN11 wurde an einer Position untersucht (SEQ ID NO:297), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (1:26283080-26291573, SEQ ID NO:529) des UBXN11 Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens MAP3K5 wurde an einer Position untersucht (SEQ ID NQ:308), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (6:136586548-136600703, SEQ ID NQ:530) des MAP3K5 Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens ASTN2 wurde an einer Position untersucht (SEQ ID NO:321), welche insbesondere die DNA-Methylierung eines Teils des Genkörpers (9:117366574-117385825, SEQ ID NO:531) des ASTN2 Gens widerspiegelt .
Die DNA-Methylierung von CpG-Dinukleotiden des Gens ENSG00000258082 wurde an einer Position untersucht (SEQ ID NO:311), welche insbesondere die DNA-Methylierung im Promotor (1:234979046-234982307, SEQ ID NO:532) des ENSG00000258082 Gens widerspiegelt .
Die DNA-Methylierung der jeweiligen Positionen wurde über die HumanMethylation450 BeadChip Sonden gemessen, die in den Tabellen 12 und 13 aufgeführt sind. Die Ergebnisse sind in den Tabellen 11 und 12 zusammengefasst. Die Tabellenwerte zeigen, dass es möglich war, durch die erfindungsgemäße DNA-Methylierungsanalyse der untersuchten CpG- Dinukleotide der Gene VGLL4, CDCP1, RASA3, PTTG1IP, ASAP2, ENSGO0000242282, Locus Chr.3q29, TMCO4, UBXN11, MAP3K5, ASTN2 und ENSG00000258082 das Ansprechen der malignen Erkrankungen auf RAS/RAF/MEK/ERK-Signalweginhibitoren, wie beispielsweise MEK- Inhibitoren und BRAF-Inhibitoren, sowie CDK4-und-CDK6- Inhibitoren und SRC-Inhibitoren, zuverlässig vorherzusagen. Aus den Tabellendaten ist ersichtlich, dass Zelllinien maligner Zellen, bei denen die untersuchten CpG-Dinukleotide überwiegend methyliert waren, eine signifikant (p < 0,05) höhere IC50 im Vergleich zu malignen Zellen mit überwiegend unmethylierten CpG- Dinukleotiden aufwiesen, was an dem negativen t der t-Statistik zu erkennen ist. Das bedeutet, dass die malignen Zellen mit den überwiegend methylierten CpG-Dinukleotiden signifikant weniger durch die untersuchten Hemmwirkstoffe inhibiert wurden, also schlecht auf die Behandlung ansprachen.
Zusammenfassend zeigen die Ergebnisse, dass die erfindungsgemäße DNA-Methylierungsanalyse von VGLL4, CDCP1, RASA3, PTTG1IP, ASAP2, ENSGO0000242282, Locus Chr.3q29, TMCO4, UBXN11, MAP3K5, ASTN2 und ENSG00000258082 jeweils die Ansprechwahrscheinlichkeit maligner Erkrankungen auf eine Behandlung mit RAS/RAF/MEK/ERK- Signalweginhibitoren, CDK4-und-CDK6-Inhibitoren sowie SRC- Inhibitoren zuverlässig vorhersagt, insbesondere auf eine Behandlung mit MEK-Inhibitoren und BRAF-Inhibitoren sowie EGFR- Inhibitoren, welches RAS/RAF/MEK/ERK-Signalweginhibitoren beziehungsweise ERBB-Inhibitoren sind.
Beispiel 6: Bestimmung der Ansprechwahrscheinlichkeit einer malignen Erkrankung auf eine Behandlung mit CDK4-und-CDK6- Inhibitoren, PARP-Inhibitoren, mTOR-Inhibitoren, RAS/RAF/MEK/ERK-Signalweginhibitoren und SRC-Inhibitoren, anhand einer DNA-Methylierungsanalyse der Gene SYNJ2 und WWTR1
Das erfindungsgemäße Verfahren wurde zur Bestimmung der Ansprechwahrscheinlichkeit maligner Erkrankungen auf eine Behandlung mit verschiedenen CDK4-und-CDK6-Inhibitoren, PARP- Inhibitoren, mTOR-Inhibitoren, RAS/RAF/MEK/ERK- Signalweginhibitoren sowie SRC-Inhibitoren angewendet. Insbesondere wurde die Vorhersagekraft in Bezug auf das Ansprechen auf eine Behandlung mit verschiedenen MEK-Inhibitoren und BRAF-Inhibitoren getestet, welches RAS/RAF/MEK/ERK- Signalweginhibitoren sind, darunter die fünf MEK-Inhibitoren Trametinib, Refametinib, Selumetinib, CI-1040 und Mirdametinib sowie die vier BRAF-Inhibitoren AZ 628, Dabrafenib, HG-6-64-1 und PLX4720. Des Weiteren wurde die Vorhersagekraft in Bezug auf das Ansprechen auf eine Behandlung mit den drei PARP-Inhibitoren AG-014699, Talazoparib und Olaparib, den fünf SRC-Inhibitoren A- 770041, Saracatinib, Bosutinib, Dasatinib und WH-4-023, den drei CDK4-und-CDK6-Inhibitoren CGP-082996, AT-7519 und Palbociclib sowie den zwei mTOR-Inhibitoren Temsirolimus und AZD8055 untersucht .
Die Bestimmung der IC50 für die in diesem Beispiel untersuchten Hemmwirkstoffe und die Durchführung der DNA-Methylierungsanalyse der Gene SYNJ2 und WWTR1 erfolgten wie in Beispiel 1 beschrieben .
Darüber hinaus entsprachen die in diesem Beispiel untersuchten Zellen maligner Erkrankungen denjenigen aus Beispiel 3.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens SYNJ2 wurde an einer Position untersucht (SEQ ID NO:194), welche insbesondere die DNA-Methylierung des Genkörpers (6:158054401- 158064027, SEQ ID NO:351) des SYNJ2 Gens widerspiegelt.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens WWTR1 wurde an zwei Positionen untersucht (SEQ ID NO:352 und SEQ ID NO:353), welche insbesondere die DNA-Methylierung des Genkörpers (3:149654894-149660454, SEQ ID NO:365) des WWTR1 Gens widerspiegeln .
Die DNA-Methylierung in den genannten Positionen wurde über die HumanMethylation450 BeadChip Sonden gemessen, die in den Tabellen 14-16 aufgeführt ist.
Die Ergebnisse dieser Untersuchungen sind in den Tabellen 14-16 zusammengefasst. Die Tabellenwerte zeigen, dass es möglich war, durch die erfindungsgemäße DNA-Methylierungsanalyse der Gene SYNJ2 und WWTR1 jeweils das Ansprechen der malignen Zellen auf CDK4-und-CDK6-Inhibitoren, PARP-Inhibitoren, mTOR-Inhibitoren, RAS/RAF/MEK/ERK-Signalweginhibitoren sowie SRC-Inhibitoren zuverlässig vorherzusagen. Aus den Tabellendaten ist ersichtlich, dass Zelllinien maligner Zellen, bei denen die untersuchten CpG-Dinukleotide überwiegend methyliert waren, eine signifikant (p < 0,05) höhere IC50 im Vergleich zu malignen Zellen mit überwiegend unmethylierten CpG-Dinukleotiden aufwiesen, was an dem negativen t der t-Statistik zu erkennen ist. Das bedeutet, dass die malignen Zellen mit den überwiegend methylierten CpG-Dinukleotiden signifikant weniger durch die untersuchten Hemmwirkstoffe inhibiert wurden, also schlecht auf die Behandlung ansprachen.
Zusammenfassend zeigen die Ergebnisse, dass die erfindungsgemäße
DNA-Methylierungsanalyse der Gene SYNJ2 und WWTR1 jeweils die
Ansprechwahrscheinlichkeit maligner Erkrankungen auf eine Behandlung mit CDK4-und-CDK6-Inhibitoren, PARP-Inhibitoren, mTOR-Inhibitoren, RAS/RAF/MEK/ERK-Signalweginhibitoren sowie SRC-Inhibitoren zuverlässig vorhersagt, insbesondere auf eine Behandlung mit MEK-Inhibitoren und BRAF-Inhibitoren, welches RAS/RAF/MEK/ERK-Signalweginhibitoren im Sinne der Erfindung sind.
Beispiel 7: Bestimmung der Ansprechwahrscheinlichkeit einer malignen Erkrankung auf eine Behandlung mit VEGFR-Inhibitoren, mTOR-Inhibitoren, PDGFR-Inhibitoren, PARP-Inhibitoren, PI3K- Inhibitoren, FGFR-Inhibitoren, NTRK-Inhibitoren und BRAF- Inhibitoren anhand einer Methylierungsanalyse des Gens CLDN4
Das erfindungsgemäße Verfahren wurde zur Bestimmung der Ansprechwahrscheinlichkeit maligner Erkrankungen auf eine Behandlung mit verschiedenen PARP-Inhibitoren, PI3K-Inhibitoren, mTOR-Inhibitoren, PI3K und mTOR-Inhibitoren, VEGFR-Inhibitoren, PDGFR-Inhibitoren, PDGFR und VEGFR-Inhibitoren, FGFR- Inhibitoren, NTRK-Inhibitoren und BRAF-Inhibitoren angewendet.
Beispielsweise wurde die Vorhersagekraft in Bezug auf das Ansprechen maligner Erkrankungen auf eine Behandlung mit verschiedenen BRAF-Inhibitoren getestet, darunter AZ 628, Dabrafenib, HG-6-64-1, PLX4720 und SB590885, sowie in Bezug auf verschiedene PARP-Inhibitoren, darunter Veliparib, AG-014699, Talazoparib und Olaparib.
Außerdem wurde das erfindungsgemäße Verfahren zur Vorhersage des Ansprechens maligner Erkrankungen auf eine Behandlung mit verschiedenen VEGFR-Inhibitoren, PDGFR-Inhibitoren sowie PDGFR- und-VEGFR-Inhibitoren angewendet, darunter die drei VEGFR- Inhibitoren Foretinib, Cabozantinib und OSI-930, die sechs PDGFR-und-VEGFR-Inhibitoren Sorafenib, Sunitinib, Midostaurin, Linifanib, Tivozanib, Axitinib und Pazopanib sowie die zwei PDGFR-Inhibitoren Imatinib und Masitinib.
Schließlich wurde das erfindungsgemäße Verfahren zur Vorhersage des Ansprechens maligner Erkrankungen auf eine Behandlung mit verschiedenen PI3K-Inhibitoren, PI3K und mTOR-Inhibitoren, mTOR- Inhibitoren, FGFR-Inhibitoren und einem NTRK-Inhibitor angewendet, darunter die drei PI3K-Inhibitoren AS605240, Idelalisib und PIK-93, die zwei PI3K-und-mTOR-Inhibitoren Dactolisib und Omipalisib, die zwei mTOR-Inhibitoren Temsirolimus und AZD8055, die zwei FGFR-Inhibitoren PD-173074 und Masitinib sowie der NTRK-Inhibitor Lestaurtinib.
Die Bestimmung der IC50 für die in diesem Beispiel untersuchten Hemmwirkstoffe und die Durchführung der DNA-Methylierungsanalyse des Gens CLDN4 erfolgten wie in Beispiel 1 beschrieben. Darüber hinaus wurden die in Beispiel 1 verwendeten Zelllinien maligner Erkrankungen für die Untersuchungen verwendet.
Die DNA-Methylierung von CpG-Dinukleotiden des Gens CLDN4 wurde an insgesamt sechs Positionen untersucht (SEQ ID NO:345 bis SEQ ID NO:350), welche insbesondere die DNA-Methylierung im Promotor und Genkörper (7:73826348-73836540, SEQ ID NO:354) des CLDN4 Gens widerspiegeln. Die DNA-Methylierung der Positionen wurde über die HumanMethylation450 BeadChip Sonden gemessen, die in den Tabellen 17-20 aufgeführt sind.
Die Ergebnisse dieser Untersuchungen sind in den Tabellen 17-19 zusammengefasst. Die Tabellenwerte zeigen, dass es möglich war, durch die erfindungsgemäße DNA-Methylierungsanalyse der sechs untersuchten Teile des Gens CLDN4 jeweils das Ansprechen der malignen Zellen auf BRAF-Inhibitoren, PARP-Inhibitoren, VEGFR- Inhibitoren, PDGFR-Inhibitoren, PDGFR-und-VEGFR-Inhibitoren, PI3K-Inhibitoren, PI3K-und-mTOR-Inhibitoren, mTOR-Inhibitoren, FGFR-Inhibitoren und einen NTRK-Inhibitor zuverlässig vorherzusagen. Überraschenderweise zeigte sich, dass Zelllinien maligner Zellen, bei denen die untersuchten CpG-Dinukleotide überwiegend unmethyliert waren, eine signifikant (p < 0,05) höhere IC50 im Vergleich zu malignen Zellen mit überwiegend methylierten CpG-Dinukleotiden aufwiesen, was an dem negativen t der t-Statistik zu erkennen ist. Das bedeutet, dass die malignen Zellen mit den überwiegend unmethylierten CpG-Dinukleotiden signifikant weniger durch die untersuchten Hemmwirkstoffe inhibiert wurden, also schlecht auf die Behandlung ansprachen.
Zusammenfassend zeigen die Ergebnisse, dass die erfindungsgemäße DNA-Methylierungsanalyse des Gens CLDN4 jeweils die Ansprechwahrscheinlichkeit maligner Erkrankungen auf eine Behandlung mit PARP-Inhibitoren, PI3K-Inhibitoren, mTOR- Inhibitoren, PI3K und mTOR-Inhibitoren, VEGFR-Inhibitoren, PDGFR-Inhibitoren, PDGFR-und-VEGFR-Inhibitoren, FGFR- Inhibitoren, NTRK-Inhibitoren und BRAF-Inhibitoren zuverlässig vorhersagt .
Beispiel 8: Klinische Studie zur Vorhersage des Ansprechens einer malignen Erkrankung auf eine Inhibierung des PD-l-Immun- Checkpoint-Signalwegs anhand der DNA-Methylierung des Gens PPP1R18
Die Erfindung bietet außerdem die vorteilhafte Möglichkeit, Personen mit malignen Erkrankungen, von denen anhand der erfindungsgemäßen DNA-Methylierungsanalyse bekannt ist, dass das Ansprechen auf eine Behandlung mit dem entsprechenden pharmazeutischen Hemmwirkstoff unwahrscheinlich ist, mit einer anderen Wirkstoffklasse wie z. B. einem Immun-Checkpoint- Inhibitor zu behandeln, um einen schnellstmöglichen Therapieerfolg zu erzielen.
In diesem Beispiel wurde das erfindungsgemäße Verfahren zur Bestimmung der Ansprechwahrscheinlichkeit einer malignen Erkrankung auf eine Immuntherapie mit einem Immun-Checkpoint- Inhibitor angewendet.
Die untersuchte Patientenkohorte umfasste insgesamt 51 Patienten, bei denen metastasierte oder nicht-resezierbare Urothelkarzinome diagnostiziert wurden. Vor Beginn der immuntherapeutischen Behandlung wurden Tumorgewebeproben der Patienten genommen, durch Formalin fixiert und in Paraffin eingebettet. Die Patienten wurden mit einer anti-PD-l-Immun- Checkpoint-Blockade bzw. einer anti-PD-Ll-Immun-Checkpoint- Blockade durch Pembrolizumab, Nivolumab oder Atezolizumab behandelt .
Für die DNA-Methylierungsanalyse wurde zunächst von den Tumorgewebeproben Dünnschnitte mit einer Stärke von 10 pm angefertigt und auf Glasobjektträger aufgezogen. Anhand eines HE-Schnitts wurden die Tumorareale durch pathologische Begutachtung identifiziert und mit einem Skalpell von den Glasob ekträgern zur weiteren Behandlung heruntergekratzt. Bisulfit-konvertierte DNA wurde aus den Tumorarealen mit dem EpiTect Plus DNA Bisulfite Kit (Qiagen GmbH, Hilden, Deutschland) nach Herstellerangaben bereitgestellt. Anschließend wurde die Gesamtmenge umgewandelter DNA mithilfe eines NanoDrop ND-1000 Spektrophotometers (Thermo Fisher Scientific, Waltham, MA, USA) quantifiziert.
Im nächsten Schritt wurde eine DNA-Methylierungsanalyse durchgeführt, indem beispielsweise ein Teil des PPP1R18 Genlokus mithilfe einer quantitativen Echtzeit-PCR amplifiziert und gleichzeitig die DNA-Methylierung der darin enthaltenen CpG- Dinukleotide quantifiziert wurde. Dabei kam z. B. eine Echtzeit- PCR zum Einsatz, bei welcher innerhalb der gleichen Reaktion neben der Menge an methylierten Kopien des PPP1R18 Genlokus auch die Menge an unmethylierten Kopien quantifiziert wurde. Zu diesem Zweck wurden zwei Sonden verwendet, die jeweils die methylierte bzw. unmethylierte Variante des Bisulfitkonvertierten PPP1R18 Genlokus binden. Die Amplifikation des PPP1R18 Genlokus erfolgte mithilfe von Primern der Sequenzen SEQ ID NO:533 und SEQ ID NO:534. Diese Primer amplifizieren die Sequenz, die durch Bisulfit-Konversion der Sequenz SEQ ID NO:537 (6:30685813-30685924) entsteht. Diese Sequenz wird auch durch die Sonde der HumanMethylation450 BeadChip Sonde cgl8335326 mit der SEQ ID NO:10 gebunden. Im Fall von vollständiger DNA- Methylierung hat dieser umgewandelte Teil im Genom die Sequenz SEQ ID NO:538. Im unmethylierten Zustand hat dieser umgewandelte Teil im Genom die Sequenz SEQ ID NO:539. Die Detektion der methylierten Sequenz erfolgte mit einer Sonde der Sequenz SEQ ID NO:536, welche an 5' den Fluoreszenzfarbstoff 6-FAM und an 3' den Quencher BHQ-1 trug. Die Detektion der unmethylierten Sequenz erfolgte mit einer Sonde der Sequenz SEQ ID NO:535, welche an 5' den Fluoreszenzfarbstoff HEX und an 3' den Quencher BHQ-1 trug.
Die Echtzeit-PCR wurde in 20 pl PCR Reaktionen in jeweils drei unabhängigen Messungen durchgeführt, wobei sich insbesondere die folgende Reaktionszusammensetzung eignete: 35 mM Tris-HCl, pH 8,4, 6 mM MgC12, 50 mM KCl, 4% Glycerin, 0,25 mM jedes dNTP (dTTP, dATP, dGTP, dCTP), 2 U FastStart Tag DNA-Polymerase (Roche Applied Science, Penzberg, Deutschland), 0,4 pM jedes Primers und 0,3 pM jeder Detektionssonde. Die qPCR wurde z. B. mittels eines AB 7500 Fast Real-Time PCR System (Life Technologies Corporation, Carlsbad, CA, USA) durchgeführt. Ein geeignetes Temperaturprofil umfasste beispielsweise folgende Schritte: 20 min bei 95 °C, gefolgt von 45 Zyklen je 60 s bei 56 °C und 15 s bei 95 °C.
Der Anteil von PPP1R18 DNA-Methylierung in der konvertierten DNA wurde mittels der Delta-CT Methode berechnet und als Quantitativer Methylation Score (QMS) prozentual ausgedrückt: QMS = 100/(1+2˄ (CTmethylated-CTunmethylated)).
Für die Überlebensanalyse wurde der Progress der malignen Erkrankung bzw. der Tod als Endpunkt betrachtet. Die Uberlebensdauer wurde als der Zeitraum von der ersten Gabe des Immun-Checkpoint-Inhibitors bis zum Todeszeitpunkt, Progress bzw. bis zum letzten Kontakt definiert. Mit den Uberlebensdaten wurde eine Kaplan-Meier-Analyse mit Log-Rank-Test durchgeführt. Zur statistischen Analyse wurde SPSS, Version 23.0 verwendet (SPSS Inc., Chicago, IL, USA).
Figur 7 zeigt die Kaplan-Meier-Analyse des progressionsfreien Überlebens der 51 Patienten mit metastasierten oder nichtresezierbaren Urothelkarzinomen während der Immuntherapie. Die Patienten wurden entsprechend des QMS kategorisiert. Die Analyse zeigte dabei ein hochsignifikant (p = 0,002) verkürztes Überleben der Patienten, bei denen die untersuchten CpG- Dinukleotide des PPP1R18 Gens in den Tumorzellen überwiegend unmethyliert vorlagen (QMS < 50%). Diese 17 Patienten erlitten alle innerhalb von 500 Tagen einen Progress oder verstarben beziehungsweise waren zensiert. Von den 34 Patienten, bei denen die untersuchten CpG-Dinukleotide des PPP1R18 Gens in den Tumorzellen überwiegend methyliert waren (QMS > 50%), überlebten mehr als 20% länger als 1200 Tage progressionsfrei nach Beginn der Immuntherapie. Somit konnte der Erfinder erstmals zeigen, dass eine DNA- Methylierungsanalyse des Gens PPP1R18 von Zellen einer malignen Erkrankung mit hoher Zuverlässigkeit eine Vorhersage des Ansprechens der malignen Erkrankung auf eine Immuntherapie ermöglicht, die den PD-l-Immun-Checkpoint-Signalweg inhibiert. Entsprechend konnte auch gezeigt werden, dass Anwesenheit, Abwesenheit oder Ausmaß einer DNA-Methylierung von PPP1R18 einen zuverlässigen Biomarker zur Vorhersage eines Ansprechens der malignen Erkrankung auf eine solche Immuntherapie darstellt.
Die Tabellen 1-5 aus Beispiel 1 zeigen, dass die DNA- Methylierung von CpG-Dinukleotiden des Gens PPP1R18 in dem im vorliegenden Beispiel untersuchten Teil mit der SEQ ID NO:10 das Ansprechen der malignen Erkrankung mit RAS/RAF/MEK/ERK- Signalweginhibitoren, CDK4 und CDK6-Inhibitoren, PARP- Inhibitoren, PI3K-Inhibitoren, mTOR-Inhibitoren, PI3K und mTOR- Inhibitoren, VEGFR-Inhibitoren, PDGFR-Inhibitoren, PDGFR und VEGFR-Inhibitoren, SRC-Inhibitoren, FGFR-Inhibitoren und NTRK- Inhibitoren zuverlässig vorhersagt. Maligne Erkrankungen, deren Zellen überwiegend unmethylierte CpG-Dinukleotide in SEQ ID NO:10 aufwiesen und in dem vorliegenden Beispiel besonders schlecht auf eine Immuntherapie ansprechen, sprachen in Beispiel 1 besonders gut auf eine Behandlung mit RAS/RAF/MEK/ERK- Signalweginhibitoren, CDK4 und CDK6-Inhibitoren, PARP- Inhibitoren, PI3K-Inhibitoren, mTOR-Inhibitoren, PI3K und mTOR- Inhibitoren, VEGFR-Inhibitoren, PDGFR-Inhibitoren, PDGFR und VEGFR-Inhibitoren, SRC-Inhibitoren, FGFR-Inhibitoren und NTRK- Inhibitoren an.
Somit bietet sich eine vorteilhafte Möglichkeit, anhand der DNA- Methylierung der erfindungsgemäßen Gene eine informierte Auswahl aus einem pharmazeutischen Hemmwirkstoff und einem Immuntherapeutikum zu treffen, um eine erkrankte Person möglichst schnell, effizient und wirksam zu behandeln.
Beispiel 9: Bestimmung der Ansprechwahrscheinlichkeit von Melanomen auf eine Behandlung mit RAS/RAF/MEK/ERK- Signalweginhibitoren anhand einer Methylierungsanalyse des Gens PPP1R18
Das erfindungsgemäße Verfahren wurde zur Bestimmung der Ansprechwahrscheinlichkeit von Melanomen auf eine Behandlung mit verschiedenen RAS/RAF/MEK/ERK-Signalweginhibitoren angewendet. Beispielsweise wurde die Vorhersagekraft in Bezug auf das Ansprechen von Melanomen auf eine Behandlung mit verschiedenen BRAF-Inhibitoren getestet, darunter Vemurafenib, Encorafenib und Dabrafenib. Außerdem wurde das erfindungsgemäße Verfahren zur Vorhersage des Ansprechens von Melanomen auf eine Behandlung mit verschiedenen MEK-Inhibitoren angewendet, darunter die drei MEK- Inhibitoren Trametinib, Binimetinib und Cobimetinib.
Die Behandlung der Melanome erfolgte beispielsweise jeweils mit einer Kombination eines BRAF-Inhibitors und eines MEK- Inhibitors. Beispielsweise wurden die Patienten mit Vemurafenib und Cobimetinib oder mit Dabrafenib und Trametinib oder mit Encorafenib und Binimetinib behandelt.
Die untersuchte Patientenkohorte umfasste insgesamt 21 Patienten, bei denen metastasierte Melanome diagnostiziert wurden. Vor Beginn der Behandlung wurden Tumorgewebeproben der Patienten genommen, durch Formalin fixiert und in Paraffin eingebettet. Im nächsten Schritt wurde eine DNA- Methylierungsanalyse eines Teils des PPP1R18 Genlokus wie in Beispiel 8 beschrieben durchgeführt. Von den 21 Patienten zeigten 18 ein Ansprechen auf die Therapie mit RAS/RAF/MEK/ERK-Signalweginhibitoren. Das Ansprechen auf die Therapie zeigte sich bei neun Patienten durch eine gleichbleibende (stabile) Erkrankung und bei neun weiteren Patienten durch eine abnehmende Erkrankung (partielles Ansprechen) . Bei drei Patienten blieb ein Ansprechen auf die Therapie mit RAS/RAF/MEK/ERK-Signalweginhibitoren aus, was dadurch gekennzeichnet war, dass das Ausmaß der Melanome zunahm (progressive Erkrankung).
Figur 8 zeigt ein Boxplot-Diagramm der Methylierung des in diesem Beispiel analysierten Teils des PPP1R18 Genlokus in den Melanomen der Patientenkohorte, bevor diese mit RAS/RAF/MEK/ERK- Signalweginhibitoren behandelt wurden. Die Melanome wurden anhand des Ansprechens auf die Behandlung mit den RAS/RAF/MEK/ERK-Signalweginhibitoren gruppiert.
Die Ergebnisse zeigen, dass die Ansprechwahrscheinlichkeit umso geringer ist, je größer der Anteil der Zellen der malignen Erkrankung ist, bei denen die untersuchten CpG-Dinukleotide von PPP1R18 methyliert sind. Von den 21 Melanomen zeigten 15 (71%) eine Methylierung des PPP1R18 Genlokus von weniger als 30% und weisen damit eine hohe Ansprechwahrscheinlichkeit für eine Behandlung mit verschiedenen RAS/RAF/MEK/ERK- Signalweginhibitoren auf. Sechs der 21 Melanome (29%) zeigten eine Methylierung des PPP1R18 Genlokus von mehr als 30% und weisen eine geringe Ansprechwahrscheinlichkeit auf. Unter denjenigen Melanomen, welche eine Methylierung des PPP1R18 Genlokus von weniger als 30%, insbesondere weniger als 25%, weniger als 20%, weniger als 15% und weniger als 10% zeigten, befanden sich acht von neun (89%) Patienten mit partiellem Ansprechen auf die Therapie sowie sechs von acht (75%) Patienten mit stabiler Erkrankung, während nur einer von drei (33%) Patienten mit progressiver Erkrankung eine Methylierung des PPP1R18 Genlokus von weniger als 30% zeigte.
abelle 1: Vorhersage des Ansprechens maligner Erkrankungen auf eine Behandlung mit RAS/RAF/MEK/ERK-Signalweginhibitor nhand einer erfindungsgemäßen DNA-Methylierungsanalyse der Gene PPP1R18 und RUNX1. Die Sequenzbereiche (SEQ ID NO) urden mithilfe der jeweils zugeordneten Sonden des Infinium HumanMethylation450 BeadChip (Infinium Sonde) analysiert. ie Tabellenwerte sind die t-Werte der t-Statistik aus dem Vergleich der IC50 der malignen Zellen mit einer DNA- ethylierung der untersuchten CpG-Dinukleotide über 50% und unter 50%. Alle dargestellten Unterschiede sind statistisc ignifikant (p < 0,05).
Figure imgf000216_0001
abelle 2: Vorhersage des Ansprechens maligner Erkrankungen auf eine Behandlung mit SRC-Inhibitoren und CDK4-und-CDK6- nhibitoren anhand einer erfindungsgemäßen DNA-Methylierungsanalyse der Gene PPP1R18 und RUNX1. Die Sequenzbereiche (S D NO) wurden mithilfe der jeweils zugeordneten Sonden des Infinium HumanMethylation450 BeadChip (Infinium Sonde) nalysiert. Die Tabellenwerte sind die t-Werte der t-Statistik aus dem Vergleich der IC50 der malignen Zellen mit eine NA-Methylierung der untersuchten CpG-Dinukleotide über 50% und unter 50%. Alle dargestellten Unterschiede sind tatistisch signifikant (p < 0,05).
Figure imgf000217_0001
abelle 3: Vorhersage des Ansprechens maligner Zellen auf eine Behandlung mit PARP-Inhibitoren anhand einer rfindungsgemäßen DNA-Methylierungsanalyse der Gene PPP1R18 und RUNX1. Die Sequenzbereiche (SEQ ID NO) wurden mithilfe er jeweils zugeordneten Sonden des Infinium HumanMethylation450 BeadChip (Infinium Sonde) analysiert. Die Tabellenwer ind die t-Werte der t-Statistik aus dem Vergleich der IC50 der malignen Zellen mit einer DNA-Methylierung der ntersuchten CpG-Dinukleotide über 50% und unter 50%. Alle dargestellten Unterschiede sind statistisch signifikant (p ,05).
Figure imgf000218_0001
abelle 4: Vorhersage des Ansprechens maligner Zellen auf eine Behandlung mit VEGFR-Inhibitoren, PDGFR-Inhibitoren unc DGFR-und-VEGFR-Inhibitoren anhand einer erfindungsgemäßen DNA-Methylierungsanalyse der Gene PPP1R18 und RUNX1. Die equenzbereiche (SEQ ID NO) wurden mithilfe der jeweils zugeordneten Sonden des Infinium HumanMethylation450 BeadChip (Infinium Sonde) analysiert. Die Tabellenwerte sind die t-Werte der t-Statistik aus dem Vergleich der IC50 der maligne ellen mit einer DNA-Methylierung der untersuchten CpG-Dinukleotide über 50% und unter 50%. Alle dargestellten nterschiede sind statistisch signifikant (p < 0,05).
Figure imgf000219_0001
abelle 5: Vorhersage des Ansprechens maligner Zellen auf eine Behandlung mit PI3K-Inhibitoren, PI3K-und-mT0R- nhibitoren, mTOR-Inhibitoren, FGFR-Inhibitoren und NTRK-Inhibitoren anhand einer erfindungsgemäßen DNA- ethylierungsanalyse der Gene PPP1R18 und RUNX1. Die Sequenzbereiche (SEQ ID NO) wurden mithilfe der jeweils zugeordne onden des Infinium HumanMethylation450 BeadChip (Infinium Sonde) analysiert. Die Tabellenwerte sind die t-Werte der t tatistik aus dem Vergleich der IC50 der malignen Zellen mit einer DNA-Methylierung der untersuchten CpG-Dinukleotide ber 50% und unter 50%. Alle dargestellten Unterschiede sind statistisch signifikant (p < 0,05).
Figure imgf000220_0001
abelle 6: Vorhersage des Ansprechens maligner Zellen auf eine Behandlung mit ERBB-Inhibitoren und RAS/RAF/MEK/ERK- ignalweginhibitoren anhand einer erfindungsgemäßen DNA-Methylierungsanalyse der Gene PLEC, LAMB3, TINAGL1, C19orf33, L18, S100A2, TOBI, TOR4A, FBRSL1, S100A10, LRRFIP2, SPIDR, ASB1, LAMA3, ENSGO0000229672, MYH16, GRID1 und CHD2. Die equenzbereiche (SEQ ID NO) wurden mithilfe der jeweils zugeordneten Sonden des Infinium HumanMethylation450 BeadChip (Infinium Sonde) analysiert. Die Tabellenwerte sind die t-Werte der t-Statistik aus dem Vergleich der IC50 der maligne ellen mit einer DNA-Methylierung der untersuchten CpG-Dinukleotide über 50% und unter 50%. Alle dargestellten nterschiede sind statistisch signifikant (p < 0,05).
Figure imgf000221_0001
Figure imgf000222_0001
Figure imgf000223_0001
abelle 7: Vorhersage des Ansprechens maligner Zellen auf eine Behandlung mit ERBB-Inhibitoren und RAS/RAF/MEK/ERK-ignalweginhibitoren anhand einer erfindungsgemäßen DNA-Methylierungsanalyse von TAFAZZIN, GNG7, ANXA11, ANXA2, MAFG,KP3, ABTB2, ENSGO0000287625, ARL14, BCAR3, BIK, CCND3, CMIP, ELK3, HRH1, SAP30BP, NOS1AP, RALB, TGFBI, ENSG0000023572AB39, CIRBP, DIAPH1, FGD6, LMO7, MICAL2, STMN1, MNT, PC, PLEKHG5, PRORP, RDX, SERP1, SLC03A1, SUFU, TANGO6, EGFR, PITSBP2, TRERF1, GPT2, HEG1, ENSGO0000231740, PPM1H, PRDM10, RAD18, ENSGO0000231185, SYNPO, TNFRSF10B, T0M1L2, TPRG1, VINSG00000249149, NC0R2, ENSG00000258077, NINJ2, ENSG00000257746, B3GNTL1, DCP2, ENSG00000242759, Locus Chr.3p23, OGDH,DZRN3, PLXNB2, ENSGO0000228793, C6orfl32, ENSG00000254561, ENSG00000233321, SPATA12 und ERBB2. Die Sequenzbereiche (SD NO) wurden mithilfe der jeweils zugeordneten Sonden des Infinium HumanMethylation450 BeadChip (Infinium Sonde)nalysiert. Die Tabellenwerte sind die t-Werte der t-Statistik aus dem Vergleich der IC50 der malignen Zellen mit eineNA-Methylierung der untersuchten CpG-Dinukleotide über 50% und unter 50%. Alle dargestellten Unterschiede sindtatistisch signifikant (p < 0,05).
Figure imgf000224_0001
Figure imgf000225_0001
Figure imgf000226_0001
Figure imgf000227_0001
abelle 8: Vorhersage des Ansprechens maligner Zellen auf eine Behandlung mit SRC-Inhibitoren und CDK4-und-CDK6- nhibitoren anhand einer erfindungsgemäßen DNA-Methylierungsanalyse von TAFAZZIN, GNG7, ANXA11, ANXA2, MAFG, PKP3, ABI NSG00000287625, ARL14, BCAR3, BIK, CCND3, CMIP, ELK3, HRH1, SAP30BP, NOS1AP, RALB, TGFBI, ENSGO0000235726, CAB39, CIF IAPH1, FGD6, LMO7, MICAL2, STMN1, MNT, PC, PLEKHG5, PRORP, RDX, SERP1, SLC03A1, SUFU, TANGO6, EGFR, PINX1, SSBP2, RERF1, GPT2, HEG1, ENSGO0000231740, PPM1H, PRDM10, RAD18, ENSGO0000231185, SYNPO, TNFRSF10B, T0M1L2, TPRG1, VRK2, NSG00000249149, NC0R2, ENSG00000258077, NINJ2, ENSG00000257746, B3GNTL1, DCP2, ENSG00000242759, Locus Chr.3p23, OGDH, DZRN3, PLXNB2, ENSGO0000228793, C6orfl32, ENSG00000254561, ENSG00000233321, SPATA12 und ERBB2. Die Sequenzbereiche (S D NO) wurden mithilfe der jeweils zugeordneten Sonden des Infinium HumanMethylation450 BeadChip (Infinium Sonde) nalysiert. Die Tabellenwerte sind die t-Werte der t-Statistik aus dem Vergleich der IC50 der malignen Zellen mit eine NA-Methylierung der untersuchten CpG-Dinukleotide über 50% und unter 50%. Alle dargestellten Unterschiede sind tatistisch signifikant (p < 0,05).
Figure imgf000228_0001
Figure imgf000229_0001
Figure imgf000230_0001
Figure imgf000231_0001
abelle 9: Vorhersage des Ansprechens maligner Zellen auf eine Behandlung mit RAS/RAF/MEK/ERK-Signalweginhibitoren anh iner erfindungsgemäßen DNA-Methylierungsanalyse von ZBTB38, MAFK, NEDD4L, DIP2C, CAPN2, IER3, TM4SF19, RPTOR, SlOOAlt CL9L, KCNMA1, GALE, PCID2, SH3TC1, SSH1, AVPI1, MAP3K14, MIR23AHG, EPHA2, ENSG00000233785, ACVR1, ENSG00000282849, OX7A2L, ENSG00000234476, LRRC2, PLXNB1, PPTC7, RB1CC1, SLC2A1, SLC39A11, TBC1D14, TIMP2, ENSG00000276527, CFAP20DC, HLDA1, TESC, LIMA1, ASPSCR1, CAMKID, CAMK2D, CFAP57, CHCHD6, DRAP1, ENCI, ARHGAP32, ABL2, ENSG00000250754, Locus hr.lq42.3, MYO16, MYOF, PTPRK, RBKS, SH3RF2, SILC1, SP1, SPAG6, SRGAP1, SYTL3, TMEM248, UTP25, WDFY3, WIPF2, WSB2, CCHC14, ZSWIM1, ENSG00000226380, ENTPD6, ENSG00000285517, CAPRIN2, MTPN, ADAMI7, ATG14, ENSG00000258583 und ITGB5. Di equenzbereiche (SEQ ID NO) wurden mithilfe der jeweils zugeordneten Sonden des Infinium HumanMethylation450 BeadChip (Infinium Sonde) analysiert. Die Tabellenwerte sind die t-Werte der t-Statistik aus dem Vergleich der IC50 der maligne ellen mit einer DNA-Methylierung der untersuchten CpG-Dinukleotide über 50% und unter 50%. Alle dargestellten nterschiede sind statistisch signifikant (p < 0,05).
Figure imgf000232_0001
Figure imgf000233_0001
Figure imgf000234_0001
Figure imgf000235_0001
abelle 10: Vorhersage des Ansprechens maligner Zellen auf eine Behandlung mit ERBB-Inhibitoren und CDK4-und-CDK6- ignalweginhibitoren anhand einer erfindungsgemäßen DNA-Methylierungsanalyse von ZBTB38, MAFK, NEDD4L, DIP2C, CAPN2, ER3, TM4SF19, RPTOR, S100A16, BCL9L, KCNMA1, GALE, PCID2, SH3TC1, SSH1, AVPI1, MAP3K14, MIR23AHG, EPHA2, NSG00000233785, ACVR1, ENSG00000282849, COX7A2L, ENSG00000234476, LRRC2, PLXNB1, PPTC7, RB1CC1, SLC2A1, SLC39A11, BC1D14, TIMP2, ENSGO0000276527, CFAP20DC, PHLDA1, TESC, LIMA1, ASPSCR1, CAMKID, CAMK2D, CFAP57, CHCHD6, DRAP1, ENC1, RHGAP32, ABL2, ENSG00000250754, Locus Chr.lq42.3, MYO16, MYOF, PTPRK, RBKS, SH3RF2, SILC1, SP1, SPAG6, SRGAP1, SYTL3, MEM248, UTP25, WDFY3, WIPF2, WSB2, ZCCHC14, ZSWIM1, ENSGO0000226380, ENTPD6, ENSGO0000285517, CAPRIN2, MTPN, ADAMI7, TG14, ENSG00000258583 und ITGB5. Die Sequenzbereiche (SEQ ID NO) wurden mithilfe der jeweils zugeordneten Sonden des nfinium HumanMethylation450 BeadChip (Infinium Sonde) analysiert. Die Tabellenwerte sind die t-Werte der t-Statistik em Vergleich der IC50 der malignen Zellen mit einer DNA-Methylierung der untersuchten CpG-Dinukleotide über 50% und nter 50%. Alle dargestellten Unterschiede sind statistisch signifikant (p < 0,05).
Figure imgf000236_0001
Figure imgf000237_0001
Figure imgf000238_0001
Figure imgf000239_0001
abelle 11: Vorhersage des Ansprechens maligner Zellen auf eine Behandlung mit SRC-Inhibitoren anhand einer rfindungsgemäßen DNA-Methylierungsanalyse von ZBTB38, MAFK, NEDD4L, DIP2C, CAPN2, IER3, TM4SF19, RPTOR, S100A16, BCLS CNMA1, GALE, PCID2, SH3TC1, SSH1, AVPI1, MAP3K14, MIR23AHG, EPHA2, ENSG00000233785, ACVR1, ENSG00000282849, COX7A2L, NSG00000234476, LRRC2, PLXNB1, PPTC7, RB1CC1, SLC2A1, SLC39A11, TBC1D14, TIMP2, ENSG00000276527, CFAP20DC, PHLDA1, TE IMA1, ASPSCR1, CAMKID, CAMK2D, CFAP57, CHCHD6, DRAP1, ENCI, ARHGAP32, ABL2, ENSG00000250754, Locus Chr.lq42.3, MYO16, YOF, PTPRK, RBKS, SH3RF2, SILC1, SP1, SPAG6, SRGAP1, SYTL3, TMEM248, UTP25, WDFY3, WIPF2, WSB2, ZCCHC14, ZSWIM1, NSG00000226380, ENTPD6, ENSG00000285517, CAPRIN2, MTPN, ADAM17, ATG14, ENSG00000258583 und ITGB5. Die Sequenzbereiche (SEQ ID NO) wurden mithilfe der jeweils zugeordneten Sonden des Infinium HumanMethylation450 BeadChip (Infinium Sonde) nalysiert. Die Tabellenwerte sind die t-Werte der t-Statistik aus dem Vergleich der IC50 der malignen Zellen mit eine NA-Methylierung der untersuchten CpG-Dinukleotide über 50% und unter 50%. Alle dargestellten Unterschiede sind tatistisch signifikant (p < 0,05).
Figure imgf000240_0001
Figure imgf000241_0001
Figure imgf000242_0001
Figure imgf000243_0001
abelle 12: Vorhersage des Ansprechens maligner Zellen auf eine Behandlung mit RAS/RAF/MEK/ERK-Signalweginhibitoren nhand einer erfindungsgemäßen DNA-Methylierungsanalyse von VGLL4, CDCP1, RASA3, PTTG1IP, ASAP2, ENSG00000242282, Locu hr.3q29, TMCO4, UBXN11, MAP3K5, ASTN2 und ENSGO0000258082. Die Sequenzbereiche (SEQ ID NO) wurden mithilfe der jeweil ugeordneten Sonden des Infinium HumanMethylation450 BeadChip (Infinium Sonde) analysiert. Die Tabellenwerte sind die erte der t-Statistik aus dem Vergleich der IC50 der malignen Zellen mit einer DNA-Methylierung der untersuchten CpG- inukleotide über 50% und unter 50%. Alle dargestellten Unterschiede sind statistisch signifikant (p < 0,05).
Figure imgf000244_0001
Figure imgf000245_0001
abelle 13: Vorhersage des Ansprechens maligner Zellen auf eine Behandlung mit SRC-Inhibitoren und CDK4-und-CDK6- ignalweginhibitoren anhand einer erfindungsgemäßen DNA-Methylierungsanalyse von VGLL4, CDCP1, RASA3, PTTG1IP, ÄSÄP2, NSG00000242282, Locus Chr.3q29, TMC04, UBXN11, MAP3K5, ASTN2 und ENSG00000258082. Die Sequenzbereiche (SEQ ID NO) wur ithilfe der jeweils zugeordneten Sonden des Infinium HumanMethylation450 BeadChip (Infinium Sonde) analysiert. Die abellenwerte sind die t-Werte der t-Statistik aus dem Vergleich der IC50 der malignen Zellen mit einer DNA-Methylieru er untersuchten CpG-Dinukleotide über 50% und unter 50%. Alle dargestellten Unterschiede sind statistisch signifikant 0,05).
Figure imgf000246_0001
Figure imgf000247_0001
abelle 14: Vorhersage des Ansprechens maligner Zellen auf eine Behandlung mit RAS/RAF/MEK/ERK-Signalweginhibitoren nhand einer erfindungsgemäßen DNA-Methylierungsanalyse der Gene SYNJ2 und WWTR1. Die Sequenzbereiche (SEQ ID NO) wurc ithilfe der jeweils zugeordneten Sonden des Infinium HumanMethylation450 BeadChip (Infinium Sonde) analysiert. Die abellenwerte sind die t-Werte der t-Statistik aus dem Vergleich der IC50 der malignen Zellen mit einer DNA-Methylieru er untersuchten CpG-Dinukleotide über 50% und unter 50%. Alle dargestellten Unterschiede sind statistisch signifikant 0,05).
Figure imgf000248_0001
abelle 15: Vorhersage des Ansprechens maligner Zellen auf eine Behandlung mit PARP-Inhibitoren, CDK4-und-CDK6- nhibitoren und mTOR-Inhibitoren anhand einer erfindungsgemäßen DNA-Methylierungsanalyse der Gene SYNJ2 und WWTR1. Die equenzbereiche (SEQ ID NO) wurden mithilfe der jeweils zugeordneten Sonden des Infinium HumanMethylation450 BeadChip (Infinium Sonde) analysiert. Die Tabellenwerte sind die t-Werte der t-Statistik aus dem Vergleich der IC50 der maligne ellen mit einer DNA-Methylierung der untersuchten CpG-Dinukleotide über 50% und unter 50%. Alle dargestellten nterschiede sind statistisch signifikant (p < 0,05).
Figure imgf000249_0001
abelle 16: Vorhersage des Ansprechens maligner Zellen auf eine Behandlung mit SRC-Inhibitoren anhand einer rfindungsgemäßen DNA-Methylierungsanalyse der Gene SYNJ2 und WWTR1. Die Sequenzbereiche (SEQ ID NO) wurden mithilfe c eweils zugeordneten Sonden des Infinium HumanMethylation450 BeadChip (Infinium Sonde) analysiert. Die Tabellenwerte s ie t-Werte der t-Statistik aus dem Vergleich der IC50 der malignen Zellen mit einer DNA-Methylierung der untersuchten pG-Dinukleotide über 50% und unter 50%. Alle dargestellten Unterschiede sind statistisch signifikant (p < 0,05).
Figure imgf000250_0001
abelle 17: Vorhersage des Ansprechens maligner Zellen auf eine Behandlung mit PARP-Inhibitoren und BRAF-Inhibitoren nhand einer erfindungsgemäßen DNA-Methylierungsanalyse des Gens CLDN4. Die Sequenzbereiche (SEQ ID NO) wurden mithilf er jeweils zugeordneten Sonden des Infinium HumanMethylation450 BeadChip (Infinium Sonde) analysiert. Die Tabellenwer ind die t-Werte der t-Statistik aus dem Vergleich der IC50 der malignen Zellen mit einer DNA-Methylierung der ntersuchten CpG-Dinukleotide über 50% und unter 50%. Alle dargestellten Unterschiede sind statistisch signifikant (p ,05).
Figure imgf000251_0001
abelle 18: Vorhersage des Ansprechens maligner Zellen auf eine Behandlung mit VEGFR-Inhibitoren, PDGFR-Inhibitoren un DGFR-und-VEGFR-Inhibitoren anhand einer erfindungsgemäßen DNA-Methylierungsanalyse des Gens CLDN4. Die Sequenzbereich (SEQ ID NO) wurden mithilfe der jeweils zugeordneten Sonden des Infinium HumanMethylation450 BeadChip (Infinium Sonde) nalysiert. Die Tabellenwerte sind die t-Werte der t-Statistik aus dem Vergleich der IC50 der malignen Zellen mit eine NA-Methylierung der untersuchten CpG-Dinukleotide über 50% und unter 50%. Alle dargestellten Unterschiede sind tatistisch signifikant (p < 0,05).
Figure imgf000252_0001
abelle 19: Vorhersage des Ansprechens maligner Zellen auf eine Behandlung mit PI3K-Inhibitoren, PI3K-und-mT0R- nhibitoren, mTOR-Inhibitoren, FGFR-Inhibitoren und NTRK-Inhibitoren anhand einer Methylierungsanalyse des Gens CLDN4. etestet wurden beispielsweise drei PI3K-Inhibitoren, zwei PI3K und mTOR-Inhibitoren, zwei mTOR-Inhibitoren, zwei FGFF nhibitoren und ein NTRK-Inhibitor. Untersucht wurden die gelisteten Sequenzbereiche, die mittels der gelisteten Sonde es Infinium HumanMethylation450 BeadChip analysiert wurden. Dargestellt sind die t der t-Statistik aus dem Vergleich 050 der Zelllinien mit einer DNA-Methylierung der untersuchten CpG-Dinukleotide von über 50% und unter 50%. Alle argestellten Unterschiede sind statistisch signifikant (p < 0,05).
Figure imgf000253_0001

Claims

Patentansprüche
1. Ein Verfahren zur Bestimmung der Ansprechwahrscheinlichkeit einer malignen Erkrankung auf eine Behandlung mit einem pharmazeutischen Hemmwirkstoff ausgewählt aus der Gruppe bestehend aus RAS/RAF/MEK/ERK-Signalweginhibitor, CDK4-und- CDK6-Inhibitor, PARP-Inhibitor, PI3K-Inhibitor, mTOR- Inhibitor, VEGFR-Inhibitor, PDGFR-Inhibitor, SRC-Inhibitor, FGFR-Inhibitor, NTRK-Inhibitor und beliebigen Kombinationen davon, dadurch gekennzeichnet, dass eine DNA- Methylierungsanalyse von mindestens einem CpG-Dinukleotid eines Gens ausgewählt aus der Gruppe bestehend aus PPP1R18, RUNX1 und beliebigen Kombinationen davon von Zellen der malignen Erkrankung durchgeführt wird, um die Ansprechwahrscheinlichkeit zu bestimmen, wobei ein Ansprechen auf die Behandlung wahrscheinlich ist, wenn das mindestens eine CpG-Dinukleotid bei einem überwiegenden Teil der Zellen der malignen Erkrankung unmethyliert ist.
2. Ein pharmazeutischer Hemmwirkstoff zur Anwendung in einem Verfahren zur Behandlung einer malignen Erkrankung einer Person, wobei der pharmazeutische Hemmwirkstoff ausgewählt ist aus der Gruppe bestehend aus RAS/RAF/MEK/ERK- Signalweginhibitor, CDK4-und-CDK6-Inhibitor, PARP-Inhibitor, PI3K-Inhibitor, mTOR-Inhibitor, VEGFR-Inhibitor, PDGFR- Inhibitor, SRC-Inhibitor, FGFR-Inhibitor, NTRK-Inhibitor und beliebigen Kombinationen davon, dadurch gekennzeichnet, dass von der erkrankten Person bekannt ist, dass mindestens ein CpG-Dinukleotid eines Gens ausgewählt aus der Gruppe bestehend aus PPP1R18, RUNX1 und beliebigen Kombinationen davon bei einem überwiegenden Teil von Zellen der malignen Erkrankung unmethyliert ist. Ein Verfahren zur Bestimmung der Ansprechwahrscheinlichkeit einer malignen Erkrankung auf eine Behandlung mit einem pharmazeutischen Hemmwirkstoff ausgewählt aus der Gruppe bestehend aus ERBB-Inhibitor, RAS/RAF/MEK/ERK- Signalweginhibitor und beliebigen Kombinationen davon, dadurch gekennzeichnet, dass eine DNA-Methylierungsanalyse von mindestens einem CpG-Dinukleotid eines Gens ausgewählt aus der Gruppe bestehend aus PLEC, LAMB3, TINAGL1, CI9orf33, IL18, S100A2, TOBI, TOR4A, FBRSL1, S100A10, LRRFIP2, SPIDR, ASB1, LAMA3, ENSGO0000229672, MYH16, GRID1, CHD2 und beliebigen Kombinationen davon von Zellen der malignen Erkrankung durchgeführt wird, um die Ansprechwahrscheinlichkeit zu bestimmen, wobei ein Ansprechen auf die Behandlung wahrscheinlich ist, wenn das mindestens eine CpG-Dinukleotid bei einem überwiegenden Teil der Zellen der malignen Erkrankung unmethyliert ist. Ein pharmazeutischer Hemmwirkstoff zur Anwendung in einem Verfahren zur Behandlung einer malignen Erkrankung einer Person, wobei der pharmazeutische Hemmwirkstoff ausgewählt ist aus der Gruppe bestehend aus ERBB-Inhibitor, RAS/RAF/MEK/ERK-Signalweginhibitor und beliebigen Kombinationen davon, dadurch gekennzeichnet, dass von der erkrankten Person bekannt ist, dass mindestens ein CpG- Dinukleotid eines Gens ausgewählt aus der Gruppe bestehend aus PLEC, LAMB3, TINAGL1, C19orf33, IL18, S100A2, TOBI, TOR4A, FBRSL1, S100A10, LRRFIP2, SPIDR, ASB1, LAMA3, ENSGO0000229672, MYH16, GRID1, CHD2 und beliebigen Kombinationen davon bei einem überwiegenden Teil von Zellen der malignen Erkrankung keine Methylierung aufweist. Ein Verfahren zur Bestimmung der Ansprechwahrscheinlichkeit einer malignen Erkrankung auf eine Behandlung mit einem pharmazeutischen Hemmwirkstoff ausgewählt aus der Gruppe bestehend aus ERBB-Inhibitor, RAS/RAF/MEK/ERK- Signalweginhibitor, CDK4-und-CDK6-Inhibitor, SRC-Inhibitor und beliebigen Kombinationen davon, dadurch gekennzeichnet, dass eine DNA-Methylierungsanalyse von mindestens einem CpG- Dinukleotid eines Gens ausgewählt aus der Gruppe bestehend aus ZBTB38, TAFAZZIN, ANXA11, MAFK, NEDD4L, DIP2C, CAPN2, IER3, TM4SF19, RPTOR, S100A16, BCL9L, KCNMA1, GALE, PCID2, GNG7, ANXA2, MAFG, PKP3, ABTB2, ENSGO0000287625, ARL14, BCAR3, BIK, CCND3, CMIP, ELK3, HRH1, SAP30BP, NOS1AP, RALB, TGFBI, ENSG00000235726, CAB39, CIRBP, DIAPH1, FGD6, LMO7, MICAL2, STMN1, MNT, PC, PLEKHG5, PRORP, RDX, SERP1, SLCO3A1, SUFU, TANGOS, EGER, PINX1, SSBP2, TRERF1, GPT2, HEG1, ENSGO0000231740, PPM1H, PRDM10, RAD18, ENSGO0000231185, SYNPO, TNFRSF10B, T0M1L2, TPRG1, VRK2, ENSG00000249149, NC0R2, ENSGO0000258077, NINJ2, ENSGO0000257746, B3GNTL1, DCP2, ENSG00000242759, Locus Chr.3p23, OGDH, PDZRN3, PLXNB2, ENSGO0000228793, C6orfl32, ENSG00000254561, ENSGO0000233321, SPATA12, ERBB2, SH3TC1, SSH1, AVPI1, MAP3K14, MIR23AHG, EPHA2, ENSG00000233785, ACVR1, ENSG00000282849, COX7A2L, ENSG00000234476, LRRC2, PLXNB1, PPTC7, RB1CC1, SLC2A1, SLC39A11, TBC1D14, TIMP2, ENSGO0000276527, CFAP20DC, PHLDA1, TESC, LIMA1, ASPSCR1, CAMKID, CAMK2D, CFAP57, CHCHD6, DRAP1, ENCI, ARHGAP32, ABL2, ENSG00000250754, Locus Chr.lq42.3, MYO16, MYOF, PTPRK, RBKS, SH3RF2, SILC1, SP1, SPAG6, SRGAP1, SYTL3, TMEM248, UTP25, WDFY3, NIPF2, WSB2, ZCCHC14, ZSWIM1, ENSGO0000226380, ENTPD6, ENSGO0000285517, CAPRIN2, MTPN, ADAM17, ATG14, ENSG00000258583, ITGB5 und beliebigen Kombinationen davon von Zellen der malignen Erkrankung durchgeführt wird, um die Ansprechwahrscheinlichkeit zu bestimmen, wobei ein Ansprechen auf die Behandlung wahrscheinlich ist, wenn das mindestens eine CpG-Dinukleotid bei einem überwiegenden Teil der Zellen der malignen Erkrankung unmethyliert ist. Ein pharmazeutischer Hemmwirkstoff zur Anwendung in einem Verfahren zur Behandlung einer malignen Erkrankung einer Person, wobei der pharmazeutische Hemmwirkstoff ausgewählt ist aus der Gruppe bestehend aus ERBB-Inhibitor, RAS/RAF/MEK/ERK-Signalweginhibitor, CDK4-und-CDK6-Inhibitor, SRC-Inhibitor und beliebigen Kombinationen davon, dadurch gekennzeichnet, dass von der erkrankten Person bekannt ist, dass mindestens ein CpG-Dinukleotid eines Gens ausgewählt aus der Gruppe bestehend aus ZBTB38, TAFAZZIN, ANXA11, MAFK, NEDD4L, DIP2C, CAPN2, IER3, TM4SF19, RPTOR, S100A16, BCL9L, KCNMA1, GALE, PCID2, GNG7, ANXA2, MAFG, PKP3, ABTB2, ENSGO0000287625, ARL14, BCAR3, BIK, CCND3, CMIP, ELK3, HRH1, SAP30BP, NOS1AP, RALB, TGFBI, ENSG00000235726, CAB39, CIRBP, DIAPH1, FGD6, LMO7, MICAL2, STMN1, MNT, PC, PLEKHG5, PRORP, RDX, SERP1, SLCO3A1, SUFU, TANGOS, EGER, PINX1, SSBP2, TRERF1, GPT2, HEG1, ENSGO0000231740, PPM1H, PRDM10, RADI8, ENSGO0000231185, SYNPO, TNFRSF10B, T0M1L2, TPRG1, VRK2, ENSG00000249149, NC0R2, ENSGO0000258077, NINJ2, ENSGO0000257746, B3GNTL1, DCP2, ENSG00000242759, Locus Chr.3p23, OGDH, PDZRN3, PLXNB2, ENSG00000228793, C6orfl32, ENSG00000254561, ENSGO0000233321, SPATA12, ERBB2, SH3TC1, SSH1, AVPI1, MAP3K14, MIR23AHG, EPHA2, ENSG00000233785, ACVR1, ENSG00000282849, COX7A2L, ENSG00000234476, LRRC2, PLXNB1, PPTC7, RB1CC1, SLC2A1, SLC39A11, TBC1D14, TIMP2, ENSGO0000276527, CFAP20DC, PHLDA1, TESC, LIMA1, ASPSCR1, CAMKID, CAMK2D, CFAP57, CHCHD6, DRAP1, ENC1, ARHGAP32, ABL2, ENSGO0000250754, Locus Chr.lq42.3, MYO16, MYOF, PTPRK, RBKS, SH3RF2, SILC1, SP1, SPAG6, SRGAP1, SYTL3, TMEM248, UTP25, WDFY3, WIPF2, WSB2, ZCCHC14, ZSWIM1, ENSGO0000226380, ENTPD6, ENSG00000285517, CAPRIN2, MTPN, ADAM17, ATG14, ENSG00000258583, ITGB5 und beliebigen Kombinationen davon bei einem überwiegenden Teil von Zellen der malignen Erkrankung keine Methylierung aufweist. Ein Verfahren zur Bestimmung der Ansprechwahrscheinlichkeit einer malignen Erkrankung auf eine Behandlung mit einem pharmazeutischen Hemmwirkstoff ausgewählt aus der Gruppe bestehend aus CDK4-und-CDK6-Inhibitor, RAS/RAF/MEK/ERK- Signalweginhibitor, SRC-Inhibitor und beliebigen Kombinationen davon, dadurch gekennzeichnet, dass eine DNA- Methylierungsanalyse von mindestens einem CpG-Dinukleotid eines Gens ausgewählt aus der Gruppe bestehend aus VGLL4, CDCP1, RASA3, PTTG1IP, ASAP2, ENSGO0000242282, Locus Chr.3q29, TMCO4, UBXN11, MAP3K5, ASTN2, ENSG00000258082 und beliebigen Kombinationen davon von Zellen der malignen Erkrankung durchgeführt wird, um die Ansprechwahrscheinlichkeit zu bestimmen, wobei ein Ansprechen auf die Behandlung wahrscheinlich ist, wenn das mindestens eine CpG-Dinukleotid bei einem überwiegenden Teil der Zellen der malignen Erkrankung unmethyliert ist. Ein pharmazeutischer Hemmwirkstoff zur Anwendung in einem Verfahren zur Behandlung einer malignen Erkrankung einer Person, wobei der pharmazeutische Hemmwirkstoff ausgewählt ist aus der Gruppe bestehend aus CDK4-und-CDK6-Inhibitor, RAS/RAF/MEK/ERK-Signalweginhibitor , SRC-Inhibitor und beliebigen Kombinationen davon, dadurch gekennzeichnet, dass von der erkrankten Person bekannt ist, dass mindestens ein CpG-Dinukleotid eines Gens ausgewählt aus der Gruppe bestehend aus VGLL4, CDCP1, RASA3, PTTG1IP, ASAP2,
ENSGO0000242282, Locus Chr.3q29, TMCO4, UBXN11, MAP3K5, ASTN2, ENSG00000258082 und beliebigen Kombinationen davon bei einem überwiegenden Teil von Zellen der malignen Erkrankung keine Methylierung aufweist. Ein Verfahren zur Bestimmung der Ansprechwahrscheinlichkeit einer malignen Erkrankung auf eine Behandlung mit einem pharmazeutischen Hemmwirkstoff ausgewählt aus der Gruppe bestehend aus CDK4-und-CDK6-Inhibitor, PARP-Inhibitor, mTOR- Inhibitor, RAS/RAF/MEK/ERK-Signalweginhibitor, SRC-Inhibitor und beliebigen Kombinationen davon, dadurch gekennzeichnet, dass eine DNA-Methylierungsanalyse von mindestens einem CpG- Dinukleotid eines Gens ausgewählt aus der Gruppe bestehend aus SYNJ2 WWTR1 und beliebigen Kombinationen davon von Zellen der malignen Erkrankung durchgeführt wird, um die Ansprechwahrscheinlichkeit zu bestimmen, wobei ein Ansprechen auf die Behandlung wahrscheinlich ist, wenn das mindestens eine CpG-Dinukleotid bei einem überwiegenden Teil der Zellen der malignen Erkrankung unmethyliert ist. Ein pharmazeutischer Hemmwirkstoff zur Anwendung in einem Verfahren zur Behandlung einer malignen Erkrankung einer Person, wobei der pharmazeutische Hemmwirkstoff ausgewählt ist aus der Gruppe bestehend aus CDK4-und-CDK6-Inhibitor, PARP-Inhibitor, mTOR-Inhibitor, RAS/RAF/MEK/ERK- Signalweginhibitor, SRC-Inhibitor und beliebigen Kombinationen davon, dadurch gekennzeichnet, dass von der erkrankten Person bekannt ist, dass mindestens ein CpG- Dinukleotid eines Gens ausgewählt aus der Gruppe bestehend aus SYNJ2, WWTR1 und beliebigen Kombinationen davon bei einem überwiegenden Teil von Zellen der malignen Erkrankung keine Methylierung aufweist. Ein Verfahren zur Bestimmung der Ansprechwahrscheinlichkeit einer malignen Erkrankung auf eine Behandlung mit einem pharmazeutischen Hemmwirkstoff ausgewählt aus der Gruppe bestehend aus VEGFR-Inhibitor, mTOR-Inhibitor, PDGFR- Inhibitor, PARP-Inhibitor, PI3K-Inhibitor, FGFR-Inhibitor, NTRK-Inhibitor, BRAF-Inhibitor und beliebigen Kombinationen davon, dadurch gekennzeichnet, dass eine DNA- Methylierungsanalyse von mindestens einem CpG-Dinukleotid des Gens CLDN4 von Zellen der malignen Erkrankung durchgeführt wird, um die Ansprechwahrscheinlichkeit zu bestimmen, wobei ein Ansprechen auf die Behandlung wahrscheinlich ist, wenn das mindestens eine CpG-Dinukleotid bei einem überwiegenden Teil der Zellen der malignen Erkrankung methyliert ist. Ein pharmazeutischer Hemmwirkstoff zur Anwendung in einem Verfahren zur Behandlung einer malignen Erkrankung einer Person, wobei der pharmazeutische Hemmwirkstoff ausgewählt ist aus der Gruppe bestehend aus VEGFR-Inhibitor, mTOR- Inhibitor, PDGFR-Inhibitor, PARP-Inhibitor, PI3K-Inhibitor, FGFR-Inhibitor, NTRK-Inhibitor, BRAF-Inhibitor und beliebigen Kombinationen davon, dadurch gekennzeichnet, dass von der Person bekannt ist, dass mindestens ein CpG-Dinukleotid des Gens CLDN4 von Zellen der malignen Erkrankung bei einem überwiegenden Teil von Zellen der malignen Erkrankung eine Methylierung aufweist. Das Verfahren bzw. der pharmazeutische Hemmwirkstoff nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass der Hemmwirkstoff ausgewählt ist aus der Gruppe bestehend aus Kinase-Inhibitor, GTPase-Inhibitor, Transkriptionsfaktor- Inhibitor und beliebigen Kombinationen davon. Das Verfahren bzw. der pharmazeutische Hemmwirkstoff nach Anspruch 13, dadurch gekennzeichnet, dass der Kinase- Inhibitor ein Tyrosinkinase-Inhibitor ist. Das Verfahren nach einem der Ansprüche 1, 3, 5, 7 oder 9 bzw. der pharmazeutische Hemmwirkstoff nach einem der Ansprüche 2, 4, 6, 8 oder 10, dadurch gekennzeichnet, dass der RAS/RAF/MEK/ERK-Sinalweginhibitor ausgewählt ist aus der Gruppe bestehend aus MEK-Inhibitor, RAF-Inhibitor, RAS- Inhibitor, ERK-Inhibitor, SHP2-Inhibitor, c-Met-Inhibitor, EPHA2-Inhibitor und beliebigen Kombinationen davon. Das Verfahren bzw. der pharmazeutische Hemmwirkstoff nach Anspruch 15, dadurch gekennzeichnet, dass der RAF-Inhibitor ein BRAF-Inhibitor ist. Das Verfahren nach einem der Ansprüche 3 und 5 bzw. der pharmazeutische Hemmwirkstoff nach einem der Ansprüche 4 oder 6, dadurch gekennzeichnet, dass der ERBB-Inhibitor ausgewählt ist aus der Gruppe bestehend aus EGFR-Inhibitor, HER2- Inhibitor und beliebigen Kombinationen davon. Das Verfahren nach einem der Ansprüche 1 oder 11 bzw. der pharmazeutische Hemmwirkstoff nach einem der Ansprüche 2 oder 12, dadurch gekennzeichnet, dass der VEGFR-Inhibitor und/oder der PDGFR-Inhibitor sowohl ein VEGFR-Inhibitor als auch ein PDGFR-Inhibitor ist. Das Verfahren nach einem der Ansprüche 1 oder 11 bzw. der pharmazeutische Hemmwirkstoff nach einem der Ansprüche 2 oder 12, dadurch gekennzeichnet, dass der PI3K-Inhibitor und/oder der mTOR-Inhibitor sowohl ein PI3K-Inhibitor als auch ein mTOR-Inhibitor ist. Das Verfahren bzw. der pharmazeutische Hemmwirkstoff nach Anspruch 13, dadurch gekennzeichnet, dass der MEK-Inhibitor ausgewählt ist aus der Gruppe bestehend aus Refametinib, Trametinib, Selumetinib, Mirdametinib und beliebigen Kombinationen davon.
21. Das Verfahren bzw. der pharmazeutische Hemmwirkstoff nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das mindestens eine CpG-Dinukleotid bei mehr als 70% der Zellen der malignen Erkrankung unmethyliert ist.
22. Das Verfahren bzw. der pharmazeutische Hemmwirkstoff nach einem der Ansprüche 11 oder 12, dadurch gekennzeichnet, dass das mindestens eine CpG-Dinukleotid bei mehr als 70% der Zellen der malignen Erkrankung methyliert ist.
23. Das Verfahren bzw. der pharmazeutische Hemmwirkstoff nach einem der Ansprüche 1 bis 22, dadurch gekennzeichnet, dass das mindestens eine CpG-Dinukleotid in einem Teil einer Promotorregion des Gens enthalten ist.
24. Das Verfahren bzw. der pharmazeutische Hemmwirkstoff nach einem der Ansprüche 1 bis 22, dadurch gekennzeichnet, dass das mindestens eine CpG-Dinukleotid in einem Teil vom Genkörper des Gens enthalten ist.
25. Ein Kit zur Durchführung eines Verfahrens zur Bestimmung der Ansprechwahrscheinlichkeit nach einem der Ansprüche 1, 3, 5, 7, 9, 11, 13-24, dadurch gekennzeichnet, dass das Kit getrennte Kompartimente aufweist, in denen Reagenzien für die DNA-Methylierungsanalyse des zumindest einen CpG-Dinukleotids enthalten sind.
PCT/EP2022/078478 2021-10-14 2022-10-13 Verfahren zur bestimmung der ansprechwahrscheinlichkeit einer malignen erkrankung auf eine behandlung mit einem pharmazeutischen hemmwirkstoff WO2023062115A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22805787.3A EP4416306A1 (de) 2021-10-14 2022-10-13 Verfahren zur bestimmung der ansprechwahrscheinlichkeit einer malignen erkrankung auf eine behandlung mit einem pharmazeutischen hemmwirkstoff

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021126650.5A DE102021126650A1 (de) 2021-10-14 2021-10-14 Verfahren zur bestimmung der ansprechwahrscheinlichkeit einer malignen erkrankung auf eine behandlung mit einem pharmazeutischen hemmwirkstoff
DE102021126650.5 2021-10-14

Publications (1)

Publication Number Publication Date
WO2023062115A1 true WO2023062115A1 (de) 2023-04-20

Family

ID=84359668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/078478 WO2023062115A1 (de) 2021-10-14 2022-10-13 Verfahren zur bestimmung der ansprechwahrscheinlichkeit einer malignen erkrankung auf eine behandlung mit einem pharmazeutischen hemmwirkstoff

Country Status (3)

Country Link
EP (1) EP4416306A1 (de)
DE (1) DE102021126650A1 (de)
WO (1) WO2023062115A1 (de)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10317955A1 (de) * 2003-04-17 2004-11-25 Epigenomics Ag Verfahren und Nukleinsäuren für die verbesserte Behandlung von proliferativen Erkrankungen von Brustzellen
US20050272083A1 (en) 2004-06-04 2005-12-08 Somasekar Seshagiri EGFR mutations
US20080234264A1 (en) 2004-03-31 2008-09-25 The General Hospital Corporation Method to determine responsiveness of cancer to epidermal growth factor receptor targeting treatments
US20090258361A1 (en) 1999-06-10 2009-10-15 University Of Iowa Research Foundation Variant tlr4 nucleic acid and uses thereof
US20110275084A1 (en) 2010-03-14 2011-11-10 The Translational Genomics Research Institute Methods of determining susceptibility of tumors to tyrosine kinase inhibitors
US20130296326A1 (en) 2012-05-07 2013-11-07 Translational Genomics Research Institute Susceptibility of tumors to tyrosine kinase inhibitors and treatment thereof
US20160265067A1 (en) 2011-12-09 2016-09-15 Roche Molecular Systems, Inc. Identification of non-responders to her2 inhibitors
DE102015009187B3 (de) 2015-07-16 2016-10-13 Dimo Dietrich Verfahren zur Bestimmung einer Mutation in genomischer DNA, Verwendung des Verfahrens und Kit zur Durchführung des Verfahrens
DE102016005947B3 (de) * 2016-05-16 2017-06-08 Dimo Dietrich Verfahren zur Abschätzung der Prognose und zur Prädiktion des Ansprechens auf eine Immuntherapie von Patienten mit malignen Erkrankungen
DE102017125780B3 (de) * 2017-11-05 2018-12-13 Dimo Dietrich Verfahren zur Bestimmung des Ansprechens einer malignen Erkrankung auf eine Immuntherapie
US20200138809A1 (en) 2017-06-02 2020-05-07 Janssen Pharmaceutica Nv Fgfr2 inhibitors for the treatment of cholangiocarcinoma
WO2020169826A1 (en) * 2019-02-21 2020-08-27 Universität Heidelberg Biomarker panel for diagnosis and prognosis of cancer
US10787713B2 (en) 2004-03-02 2020-09-29 The Johns Hopkins University Mutations of the PIK3CA gene in human cancers
US10980804B2 (en) 2013-01-18 2021-04-20 Foundation Medicine, Inc. Methods of treating cholangiocarcinoma

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090258361A1 (en) 1999-06-10 2009-10-15 University Of Iowa Research Foundation Variant tlr4 nucleic acid and uses thereof
DE10317955A1 (de) * 2003-04-17 2004-11-25 Epigenomics Ag Verfahren und Nukleinsäuren für die verbesserte Behandlung von proliferativen Erkrankungen von Brustzellen
US10787713B2 (en) 2004-03-02 2020-09-29 The Johns Hopkins University Mutations of the PIK3CA gene in human cancers
US20080234264A1 (en) 2004-03-31 2008-09-25 The General Hospital Corporation Method to determine responsiveness of cancer to epidermal growth factor receptor targeting treatments
US20050272083A1 (en) 2004-06-04 2005-12-08 Somasekar Seshagiri EGFR mutations
US20110275084A1 (en) 2010-03-14 2011-11-10 The Translational Genomics Research Institute Methods of determining susceptibility of tumors to tyrosine kinase inhibitors
US20160265067A1 (en) 2011-12-09 2016-09-15 Roche Molecular Systems, Inc. Identification of non-responders to her2 inhibitors
US20130296326A1 (en) 2012-05-07 2013-11-07 Translational Genomics Research Institute Susceptibility of tumors to tyrosine kinase inhibitors and treatment thereof
US10980804B2 (en) 2013-01-18 2021-04-20 Foundation Medicine, Inc. Methods of treating cholangiocarcinoma
DE102015009187B3 (de) 2015-07-16 2016-10-13 Dimo Dietrich Verfahren zur Bestimmung einer Mutation in genomischer DNA, Verwendung des Verfahrens und Kit zur Durchführung des Verfahrens
DE102016005947B3 (de) * 2016-05-16 2017-06-08 Dimo Dietrich Verfahren zur Abschätzung der Prognose und zur Prädiktion des Ansprechens auf eine Immuntherapie von Patienten mit malignen Erkrankungen
US20200138809A1 (en) 2017-06-02 2020-05-07 Janssen Pharmaceutica Nv Fgfr2 inhibitors for the treatment of cholangiocarcinoma
DE102017125780B3 (de) * 2017-11-05 2018-12-13 Dimo Dietrich Verfahren zur Bestimmung des Ansprechens einer malignen Erkrankung auf eine Immuntherapie
WO2020169826A1 (en) * 2019-02-21 2020-08-27 Universität Heidelberg Biomarker panel for diagnosis and prognosis of cancer

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
BADY PIERRE ET AL: "The DNA methylome of DDR genes and benefit from RT or TMZ in IDH mutant low-grade glioma treated in EORTC 22033", ACTA NEUROPATHOLOGICA, SPRINGER VERLAG, BERLIN, DE, vol. 135, no. 4, 24 January 2018 (2018-01-24), pages 601 - 615, XP036464433, ISSN: 0001-6322, [retrieved on 20180124], DOI: 10.1007/S00401-018-1810-6 *
CAS , no. 1001350-96- 4
CAS, no. 1174428-47-7
CLAUS RAINER ET AL: "Quantitative DNA Methylation Analysis Identifies a Single CpG Dinucleotide Important for ZAP-70 Expression and Predictive of Prognosis in Chronic Lymphocytic Leukemia", JOURNAL OF CLINICAL ONCOLOGY, vol. 30, no. 20, 10 July 2012 (2012-07-10), US, pages 2483 - 2491, XP093020263, ISSN: 0732-183X, DOI: 10.1200/JCO.2011.39.3090 *
HOW KIT ALEXANDRE ET AL: "DNA methylation based biomarkers: Practical considerations and applications", BIOCHIMIE, vol. 94, no. 11, 1 November 2012 (2012-11-01), FR, pages 2314 - 2337, XP093019965, ISSN: 0300-9084, DOI: 10.1016/j.biochi.2012.07.014 *
HSU PING-CHING ET AL: "Genome-wide DNA methylation signatures to predict pathologic complete response from combined neoadjuvant chemotherapy with bevacizumab in breast cancer", PLOS ONE, vol. 15, no. 4, 16 April 2020 (2020-04-16), pages e0230248, XP093020252, Retrieved from the Internet <URL:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7162481/pdf/pone.0230248.pdf> DOI: 10.1371/journal.pone.0230248 *
MARINA BIBIKOVA ET AL: "High density DNA methylation array with single CpG site resolution", GENOMICS, ACADEMIC PRESS, SAN DIEGO, US, vol. 98, no. 4, 26 July 2011 (2011-07-26), pages 288 - 295, XP028304083, ISSN: 0888-7543, [retrieved on 20110802], DOI: 10.1016/J.YGENO.2011.07.007 *
TSUBOI KOUKI ET AL: "Single CpG site methylation controls estrogen receptor gene transcription and correlates with hormone therapy resistance", JOURNAL OF STEROID BIOCHEMISTRY & MOLECULAR BIOLOGY, ELSEVIER SCIENCE LTD., OXFORD, GB, vol. 171, 12 April 2017 (2017-04-12), pages 209 - 217, XP085043298, ISSN: 0960-0760, DOI: 10.1016/J.JSBMB.2017.04.001 *
VIS ET AL., PHARMACOGENOMICS, vol. 17, 2016, pages 691 - 700
VON JIANPING XU: "Next-Generation Sequencing: Current Technologies and Applications", 2014, CAISTER ACADEMIC PRESS
VON M. R. GREENJ. SAMBROOK: "Molecular Cloning, A Laboratory Manual", 2012, COLD SPRING HARBOR LABORATORY PRESS
VON STUART M. BROWN: "Next-Generation DNA Sequencing Informatics", 2015, COLD SPRING HARBOR LABORATORY PRESS
XIAOKE HAO ET AL: "DNA methylation markers for diagnosis and prognosis of common cancers", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, vol. 114, no. 28, 26 June 2017 (2017-06-26), pages 7414 - 7419, XP055668394, ISSN: 0027-8424, DOI: 10.1073/pnas.1703577114 *

Also Published As

Publication number Publication date
EP4416306A1 (de) 2024-08-21
DE102021126650A1 (de) 2023-04-20

Similar Documents

Publication Publication Date Title
Kumar et al. The multiple myelomas—current concepts in cytogenetic classification and therapy
Kurscheid et al. Chromosome 7 gain and DNA hypermethylation at the HOXA10 locus are associated with expression of a stem cell related HOX-signature in glioblastoma
Sturm et al. Paediatric and adult glioblastoma: multiform (epi) genomic culprits emerge
US20190360029A1 (en) A method of targeting patient-specific oncogenes in extrachromosomal dna to treat glioblastoma
US20160095920A1 (en) Kras mutations and resistance to anti-egfr treatment
US20170321281A1 (en) Methods and compositions for treatment of glioblastoma
CN117597456A (zh) 用于确定肿瘤生长的速度的方法
US9198910B2 (en) Methods for the treatment of cancer
US20230295734A1 (en) Bcor rearrangements and uses thereof
BR112019013391A2 (pt) Adaptador de ácido nucleico, e, método para detecção de uma mutação em uma molécula de dna circulante tumoral (ctdna) de fita dupla.
US20220392638A1 (en) Precision enrichment of pathology specimens
WO2023284736A1 (en) Biomarkers for colorectal cancer treatment
WO2023086951A1 (en) Circulating tumor dna fraction and uses thereof
WO2023062115A1 (de) Verfahren zur bestimmung der ansprechwahrscheinlichkeit einer malignen erkrankung auf eine behandlung mit einem pharmazeutischen hemmwirkstoff
WO2022187554A1 (en) Methods and systems for diagnosis, classification, and treatment of small cell lung cancer and other high-grade neuroendocrine carcinomas
WO2022241293A9 (en) Cd274 mutations for cancer treatment
Li et al. Novel molecular subtypes of intracranial germ cell tumors expand therapeutic opportunities
WO2017201331A2 (en) Oligonucleotide sequences for detection of low abundance target sequences and kits thereof
WO2024168146A1 (en) Braf gene fusions and uses thereof
WO2023114948A2 (en) Methods of removing embedding agents from embedded samples
WO2023235822A1 (en) Igf1r activation mutations and uses thereof
WO2024007015A2 (en) Ret gene fusions and uses thereof
WO2023230444A2 (en) Abl1 fusions and uses thereof
WO2024050437A2 (en) Methods for evaluating clonal tumor mutational burden
JP2023542273A (ja) Amlを処置するための治療、ならびにraraアゴニスト、低メチル化剤、およびbcl-2阻害剤の使用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22805787

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022805787

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022805787

Country of ref document: EP

Effective date: 20240514