WO2023061475A1 - 一种电池串、电池模组制备工艺及电池模组 - Google Patents

一种电池串、电池模组制备工艺及电池模组 Download PDF

Info

Publication number
WO2023061475A1
WO2023061475A1 PCT/CN2022/125343 CN2022125343W WO2023061475A1 WO 2023061475 A1 WO2023061475 A1 WO 2023061475A1 CN 2022125343 W CN2022125343 W CN 2022125343W WO 2023061475 A1 WO2023061475 A1 WO 2023061475A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
preparation process
battery string
tin
electrodes
Prior art date
Application number
PCT/CN2022/125343
Other languages
English (en)
French (fr)
Inventor
武宇涛
Original Assignee
武宇涛
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武宇涛 filed Critical 武宇涛
Publication of WO2023061475A1 publication Critical patent/WO2023061475A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the technical field of photovoltaic cells, in particular to a battery string, a battery module preparation process and a battery module.
  • the main grid lines that is, the bus electrodes
  • the main grid lines are constantly increasing, from the initial two grid lines to the current 9 grid lines or even 12 grid lines, and there are also 18 grid lines with the same effect; the cell size has changed from 156mm
  • the increase in the number of busbars and the benefits of multi-cut cells reduce the conduction current on each interconnection bar, which can directly reduce the cross-sectional area of the interconnection bar, thereby reducing the usage of the interconnection bar.
  • the interconnection strip usage of each module is generally about 150-200g. .
  • the size and width of the rectangular ribbon when it corresponds to 5 grids and 6 grids is generally above 0.6mm, and the mainstream is 0.8-1.0mm. If the width of the rectangular ribbon is further reduced, Stringers cannot guarantee alignment accuracy. If it is necessary to further reduce the width of the ribbon, considering the limitations of the ribbon processing technology and the alignment process of the stringer, the rectangular ribbon will naturally be transformed into a circular ribbon, because the circular ribbon is smaller than the rectangular ribbon that is close to the square. Belts are easier to produce and easier to locate problems while in use. At present, the diameter of the mainstream 9-grid and 12-grid round ribbon is 0.30-0.35mm.
  • the alignment accuracy will be reduced, or the number will need to be increased.
  • the square pad points with a side length of 0.6-0.8mm or more have been made on the Internet. If you want to increase the number, too many pad points will reduce the efficiency of the cell, and reduce the amount of solder ribbon, increase the power, and increase the defect Compared with the rate, the gain outweighs the gain. The same problem exists in the triangular ribbon process.
  • the present invention provides a battery string, a battery module preparation process and a battery module, which can further reduce the amount of interconnection material (welding strip) and adhesive material (EVA), avoid the problem of fragmentation after thinning, and improve Large-size batteries have more production efficiency after slitting.
  • a battery string preparation process comprising the following steps: S1, printing a conductive paste on at least one bus electrode of a battery sheet; S2, curing the battery sheet at a high temperature to form an interconnecting electrode on the battery sheet; S3, printing the adjacent The upper and lower electrodes of the battery sheet are interconnected to form a battery string through interconnection ribbon series welding; the height of the conductive paste printed on the bus electrode is 50-200um, and the width is 50-1000um.
  • the distance between the PAD point on the battery sheet and the interconnection electrode is 0.1-1.5 mm from the edge of the battery sheet.
  • multiple interconnected electrodes are connected to the same PAD point.
  • the length of the PAD point is 0.5-5 mm, and the width is 0.5-5 mm.
  • the conductive paste includes the following components by mass fraction: conductive phase 50%-80%, binder phase 10%-50%, additives 7-15%, and the conductive phase has a particle size of 5 -100um copper powder or silver powder.
  • the conductive phase is copper powder, and an anti-oxidation coating is provided on the surface of the copper powder.
  • the thickness of the anti-oxidation coating is 0.5-5um, and the content of the anti-oxidation coating accounts for 2-15% by weight of the entire conductive phase.
  • the binder phase is low-melting metal particles with a particle size of 5-60um
  • the low-melting metal particles are one of tin powder, tin-lead alloy powder, tin-copper-silver alloy powder, and tin-bismuth alloy powder one or more species.
  • the auxiliary agent is formed by mixing resin, rosin, solvent, activator and additives.
  • a battery module preparation process comprising the following steps: A1, connecting several battery strings prepared by the battery string preparation process described in any one of claims 1-9 in series or in parallel to form a battery string; A2, Place glass, EVA, battery strings, EVA, and backplane from top to bottom, and glue the above materials together through lamination process; A3, installation accessories, after testing and sorting, make battery molds Group.
  • the interconnected electrodes prepared by printing can greatly improve the positioning accuracy, which solves the problem of positioning deviation of conventional flat and round soldering strips, allowing the design of smaller (narrower) interconnecting electrodes and reducing PAD
  • the use of dots increases the illuminated area on the surface of the cell, thereby improving the efficiency of the cell.
  • interconnected electrodes with smaller size make it possible to use thinner adhesive materials, thereby saving the use of adhesive materials and further reducing costs.
  • This printing process can process more cells at the same time, and it can also process more cells at the same time when they are interconnected and connected in series. This method of "increasing parallelism" is very effective for improving production efficiency.
  • a battery string preparation process in this embodiment includes the following steps: S1. Print the conductive paste on the bus electrodes on at least one side of the battery sheet by screen printing or stencil printing, and most of them have a front electrode structure
  • the interconnection electrode can be set on the front of the battery sheet; for the battery sheet of the double-sided power generation type, the interconnection electrode can be set according to the structure of the back electrode. For example, the back electrode of the N-type double-sided battery has continuity.
  • the electrode structure is more suitable for setting the interconnecting electrode; it is also possible not to set the interconnecting electrode.
  • the back electrode of a P-type double-sided battery is generally a discontinuous structure, and the interconnecting electrode is preferably not provided; no matter what kind of battery sheet, the back electrode
  • the interconnection electrode may not be provided on the battery sheet, and at this time, it can be replaced by an ultra-soft interconnection tape; S2.
  • the temperature of the high-temperature curing is 100-300°C.
  • the lowest melting points of pure tin, tin-lead, and tin-bismuth alloys are around 210 degrees, 180 degrees and 140 degrees, so the preferred sintering temperature is between 160-260 degrees, and the specific temperature range depends on the composition of the conductive paste and the preparation effect of the electrode to adjust; S3, connect the upper and lower electrodes of the adjacent battery sheets to form a battery string through interconnection belt series welding; the height of the conductive paste printed on the bus electrode is 50-200um, and the width is 50-1000um, and the conductive paste The height of the material after sintering and solidification is 50-200um, and the width is 50-1000um.
  • the interconnected electrodes prepared by printing in this battery string preparation process can greatly improve the positioning accuracy, which solves the problem of positioning deviation of conventional flat and round soldering strips, thus allowing the design of smaller (narrower) interconnecting electrodes and Reducing the use of PAD points increases the illuminated area on the surface of the battery sheet, thereby improving battery efficiency; the smaller-sized interconnection electrodes allow the design of a greater number of interconnection electrodes to become generally possible.
  • I2R theory This allows conductive electrodes with smaller cross-sectional areas to become possible, thereby greatly saving the amount of conductive materials used; more interconnected electrodes, greatly reduced the amount of current that the finger grid lines need to carry, which can reduce the finger grid line.
  • the present invention has a significant role in promoting the reduction of the cost of metallization paste for cells, especially heterojunction cells;
  • the small size (lower height) of the interconnected electrodes makes it possible to use thinner adhesive materials, thereby saving the use of adhesive materials and further reducing costs; in addition, the smaller-sized interconnected electrodes have smaller stress, thus It is more suitable for the requirements of interconnection materials in the trend of thinning in the future; this printing process can process a larger number of cells at the same time, and can also process more quantities at the same time when interconnected and connected in series. This "increased parallelism" It is very effective in improving production efficiency.
  • the interconnection strip can be a conventional copper-based tin-plated (or tin-lead, tin-bismuth, etc.) material, including a coating with a thickness of 0.05-0.25 mm and a width of 0.3-2.0 mm.
  • the interconnection belt uses the conventional tin-plated copper flat belt preparation process, with a thickness of 0.1mm and a width of 0.5-1.0mm.
  • the interconnection strip with tin-bismuth alloy layer connected in series with the mass junction battery, the coating thickness is 0.03mm.
  • the battery sheet can be a whole sheet, or can be divided into 1/2 sheet, 1/3 sheet, 1/4, 1/5, 1/6, etc.
  • the PAD point connected to the interconnection electrode on the battery sheet, the distance between the PAD point and the edge of the battery sheet is 0.1-1.5mm, and the length of the PAD point is 0.5-5mm, for example, 0.5mm mm, 2.5mm and 5mm, the width is 0.5-5mm, for example, 0.5mm, 2.5mm and 5mm, multiple interconnected electrodes are connected to the same PAD point, if multiple interconnected electrodes share one welding pad point, these several interconnected electrodes One end of the interconnected electrode gradually converges at the edge of the battery sheet; the interconnected electrode sharing the PAD point can be in the shape of a straight line or a curved line; the shape of the PAD can be rectangular, circular, Round shape, which can be solid, ring-shaped or hollow; the above design can significantly reduce the number of PADs.
  • interconnection tape For those with interconnected electrodes on the upper and lower sides, use interconnection tape to weld the PADs at the upper and lower ends of the cell. That is, for the battery sheet with only the front interconnection electrode, use the interconnection tape to interconnect and weld the PAD points of the back electrode and the front interconnection electrode. On the PAD point, it is interconnected and welded with the PAD point on the other side of another battery.
  • the advantage of this method is that it can operate multiple sets of battery slices or interconnection modules at the same time, greatly increasing production capacity.
  • the conductive paste includes the following components by mass fraction: conductive phase 50%-80%, binder phase 10%-50%, auxiliary agent 7-15%, and the conductive phase is
  • the binder phase is dispersed between the conductive phase particles, filling the gaps between the conductive phase particles, and playing a role of bonding, so that the conductive phase particles can fully contact and reduce the interconnection of electrodes.
  • the overall resistance; at the same time, the binder phase will also be coated on the outer surface of the conductive phase particles to protect against oxidation. While improving the conductivity, the reliability is greatly improved.
  • the conductive phase is preferably copper powder, and the copper powder can be flake copper powder, spherical copper powder, or a mixture of flake copper powder and spherical copper powder.
  • the copper powder Spherical or sub-spherical copper powder with a particle size of 15-65um is preferred.
  • the copper powder also has a flake-like dendritic shape.
  • the flake-like and dendritic copper powder has a large surface area, is easy to oxidize, and is not easy to be used as a metal anti-oxidation coating; Without considering the cost, silver powder can also be used as the conductive phase.
  • silver powder Since silver powder has very good oxidation resistance in high temperature environments, the surface of silver powder does not need to be coated with other metal materials.
  • the particle size, shape and particle distribution of silver powder The formula can be optimized according to the actual experimental results.
  • copper powder it is also possible to select copper powder plated with silver on the surface. At this time, the silver content accounts for 3-15% of the entire conductive phase powder.
  • the conductive paste used for photovoltaic cells has sufficient conductivity after sintering and solidification, and at the same time has the function of collecting and collecting the current of the fine grid lines and conducting the collected current, so there is no need to solder tinned electrodes on the bus electrodes for subsequent interconnection.
  • the interconnect brazing strips enhance the conductivity of the bus electrodes.
  • the surface of the copper powder is provided with an anti-oxidation coating to overcome the problem that the copper powder is easily oxidized
  • the anti-oxidation coating is silver, tin, nickel, tin-lead alloy, tin-bismuth alloy, tin-silver
  • the anti-oxidation coating is tin, tin-lead alloy, tin-bismuth alloy, tin-silver-copper alloy
  • the thickness of the anti-oxidation coating is is 0.5-5um, and the content of the anti-oxidation coating accounts for 2-15% of the weight of the entire conductive phase.
  • the anti-oxidation coating also plays a role in promoting bonding and curing.
  • the binder phase is a low melting point metal particle with a particle size of 5-60um
  • the low melting point metal particle is tin powder, tin-lead alloy powder, tin-copper-silver alloy powder, tin-bismuth alloy powder
  • the shape of the above-mentioned powder is generally spherical
  • the binder phase is a low melting point metal particle with a particle size of 5-35um, such as two sizes of 5-15um and 15-35um, Small particle powder can better fill the gaps between the conductive phase particles, making the conductivity better.
  • the auxiliary agent is mixed with resin, rosin, solvent, activator and additives, and the auxiliary agent can promote the bonding phase to fully and uniformly wrap the conductive phase, so that the conductive phase is uniformly dispersed therein, At the same time, the chemical and physical properties of the slurry body are kept stable.
  • the activator can ionize free H+ ions in the solvent above the active point, and react with the oxide on the surface of the metal material to achieve the purpose of removing the oxide layer and reducing the surface tension of the metal.
  • the solvent is mainly used to provide an ionized environment.
  • the additive is a mixture of one or more of thixotropic agent, paste forming agent, stabilizer, and surfactant.
  • the main function of the paste forming agent is to enhance the conductive paste as a whole to maintain a viscous paste Shape ability, can be polyethylene glycol 2000, polyethylene glycol 4000, polyethylene glycol 6000, etc.
  • the role of the stabilizer is to enhance the stability of the conductive paste viscous, can be paraffin; surfactant and thixotropic
  • the agent can be selected from conventional formulation materials, such as octylphenol ethoxylate, nonylphenol ethoxylate, hydrogenated castor oil, amide compounds, etc.
  • the rosin can be a modified rosin that is a mixture of one or more of hydrogenated rosin, polymerized rosin, and disproportionated rosin.
  • the resin is a thermosetting resin
  • the rosin is maleic rosin.
  • Acid modified rosin, fumaric acid modified rosin, acrylic acid modified rosin or a mixture of one or more, maleic acid modified rosin, fumaric acid modified rosin, acrylic acid modified rosin contain epoxy resin It is a reactive functional group that can react with thermosetting resins to improve the physical and chemical temperature properties of additives and interconnect electrodes after high temperature.
  • the activator is aliphatic monobasic acid, dibasic acid, tribasic acid, hydroxy acid, aromatic acid, alkenoic acid, amino acid, acetic acid, succinic acid, gum acid, fatty acid, oxalic acid, A mixture of one or more of salicylic acid, benzoic acid, lactic acid, tartaric acid, citric acid, malic acid, oleic acid, glutamic acid, and glycine.
  • two substances are selected in a 1:1 ratio Works best when mixed than mixed.
  • the solvent is benzene, toluene, benzyl alcohol, ethylene glycol, ethanol, butanol, acetone, ethylbenzene, aromatic naphtha, terpineol, turpentine, ethyl acetate, One of Methyl Ether, Trimethyl Phosphate, Triethyl Phosphate, Propylene Glycol Monomethyl Ether, Butyl Cellosolve, Diethylene Glycol Diethyl Ether, Methyl Carbitol, Ethyl Carbitol, Dingji Carbitol or a mixture of several to provide an ionizing environment.
  • a battery module manufacturing process in this embodiment includes the following steps: A1, connecting several battery strings prepared by the battery string manufacturing process described in Embodiment 1 in series or in parallel to form a battery string; , EVA, battery strings, EVA, and the back panel are placed from top to bottom, and the above materials are cured and glued together through a lamination process, which is generally called "lamination" in the industry, and the back panel can be glass; A3 .
  • Installation accessories, the accessories include frame, junction box, identification and other existing parts used to form the battery module, which are made into battery modules after testing and sorting,
  • the conductive phase accounts for 60-80% of the weight of the entire conductive paste, and tin-bismuth-coated copper powder or tin-plated copper powder is used.
  • the copper powder is spherical, and the tin-bismuth or tin coating accounts for 10-15% of the weight of the entire conductive phase, the average size of copper powder particles is 20-60um;
  • the binder phase accounts for 10-20% of the weight of the entire conductive paste, which is tin-bismuth alloy powder with a melting point of 140 degrees; tin-bismuth alloy
  • the powder particles are spherical or ellipsoidal or other shapes, the average particle size is 10-40um, and the specific distribution is 15-38um;
  • the flux accounts for 7-13% of the weight of the entire conductive paste;
  • the resin (rosin) accounts for 30-50%, 40-60% solvent, 0.5-3% activator, 1-5% other additives; uniformly mixed according to the above formula, stored at 3-10 degrees.
  • heterojunction battery technology has developed rapidly. Since heterojunction batteries have strict requirements on temperature and temperature, generally the process temperature should not exceed 200 degrees Celsius. Therefore, the bonding phase of this type of conductive paste is usually selected with a lower melting point. Tin-bismuth alloy, the lowest melting point can reach 138 degrees Celsius.
  • the conductive phase accounts for 60-80% of the weight of the whole conductive paste, adopts tin-plated copper powder, the copper powder is spherical, the tin-plated layer accounts for 5-15% of the whole conductive phase weight, copper
  • the average size of the powder particles is 20-60um;
  • the binder phase accounts for 10%-20% of the weight of the entire conductive paste, which is lead-free tin alloy powder, which can be tin-silver, tin-copper, tin-silver-copper and other alloy powders.
  • the conductive phase accounts for 60-80% of the weight of the whole conductive paste, adopts tin-plated copper powder, the copper powder is spherical, the tin-plated layer accounts for 5-15% of the whole conductive phase weight, copper
  • the average particle size of the powder is 20-60um; the binder phase accounts for 10%-20% of the weight of the entire conductive paste, and it is a tin-lead alloy powder.
  • the tin-lead ratio in the tin-lead alloy is 63:37, and the tin-lead alloy powder particles are Spherical or ellipsoid or other shapes, the average particle size is 10-38um, and the specific distribution is 15-35um; flux accounts for 7-13%; resin (rosin) accounts for 30-50% in the entire flux, and solvent accounts for 40% -60%, activator accounts for 0.5-3%, and other additives account for 1-5%. According to the above formula, it is evenly mixed and stored in an environment of 3-10 degrees.
  • the peak curing and sintering temperature of this type of conductive paste is generally 200-250 degrees, and it is mainly used for metallization enhancement of conventional battery sheets that can be sintered at high temperature.
  • the conductive phase accounts for 70-80% of the weight of the whole conductive paste, adopts copper powder coated with tin and bismuth, the copper powder is spherical, and the tin-lead coating accounts for 5% of the weight of the whole powder.
  • the average size of copper powder particles is 10-60 microns
  • the binder phase accounts for 10% of the weight of the entire conductive paste, which is tin-bismuth alloy powder, wherein the tin-lead ratio in tin-bismuth alloy is 60:40, tin-bismuth Alloy powder particles are spherical or ellipsoidal or other shapes, the average particle size is 10-50 microns, and the specific distribution is 5-30 microns
  • the organic binder phase accounts for 3-5%, which is a thermosetting resin such as acrylic resin or epoxy resin ; Flux accounts for 10%, of which resin (rosin) accounts for 3-5%, solvent accounts for 2-5%, activator accounts for 0.5-1%, surfactant accounts for 0.5-1%, and other additives account for 0.5-1% ; According to the above formula, it is evenly mixed and stored in an environment of 3-10 degrees.
  • the fine grid lines on the surface are prepared by using low-temperature curing silver paste.
  • low-temperature curing thermosetting resin is also added to this type of conductive paste.
  • the bonding effect of the solidified slurry body can be fixed on the surface of the battery sheet, and at the same time inside the slurry body, the conductivity type between the metal particles can be enhanced through the bonding effect of the tin-bismuth alloy.
  • the conductive paste of the present invention is mainly used to enhance the conductivity of the bus electrodes on the battery sheet or replace the bus electrodes to conduct directly with the fine grid lines.
  • thin grid lines and bus electrodes have been prepared on the surface of the cell, and the thin grid lines are connected to the bus electrodes.
  • the conductive paste is prepared on the bus electrodes by printing or dispensing Above the electrode, after curing and sintering, all the organic matter in the conductive paste is volatilized or sintered, and the conductive paste itself forms electrical conduction with the bus electrode through the bonding phase.
  • the body of the conductive paste indirectly connects with the fine grid through the bus electrode
  • a complete thin grid line is prepared on the surface of the cell, but the bus electrode is not completely prepared or not prepared, and the adjacent thin grid lines have no electrical conduction.
  • the conductive paste can also be directly printed and prepared on the surface of the cell according to the set pattern and spacing, and after high-temperature curing and sintering, the conductive paste is directly connected to the fine grid lines.
  • the conductive pastes of the above-mentioned several different embodiments can be used for different types of battery sheets, among which the conductive pastes of the fourth and fifth embodiments, especially the conductive pastes of the fifth embodiment can be used for current conventional sizes including BSF, PERC, PERL, PERT, TOPcon, etc., including single crystal and polycrystalline, need to undergo a high-temperature process above 500 degrees Celsius; in this type of battery, the melting point of the binder phase in the conductive paste is generally at 200 degrees About, so the actual sintering temperature should be above 200 degrees, and such a high temperature cannot be tolerated for heterojunction cells.
  • the conductive paste of Example 3 and Example 6 especially the conductive paste of Example 3, can also be used. Considering the conductivity problem, it may not be the most preferred, but it is indeed available; For the conductive pastes of Example 3 and Example 6, it is preferable to use the low-temperature process batteries such as heterojunction batteries. The curing and sintering temperature of these two kinds of pastes will not exceed 200 degrees, so it is the best choose.
  • the conductive paste of Example 6 is used in heterojunction cells, the conductive paste can be directly connected to the fine grid lines, and at this time no bus electrodes or only incomplete bus electrodes can be provided.
  • the bonding phase is mainly connected to the bus electrode after being melted at high temperature, so when preparing a battery sheet, it is preferably necessary to prepare a complete and continuous bus electrode; for Example 6
  • the conductive paste also includes the bonding of the thermosetting resin to the surface of the cell. Relying on the bonding effect can also provide sufficient connection tension, so at this time, the interconnection electrode can be canceled or partially Cancel it.

Abstract

本发明公开了一种电池串、电池模组制备工艺及电池模组,所述电池串制备工艺包括以下步骤:S1、将导电浆料印刷于电池片的至少一面的汇流电极上;S2、对电池片进行高温固化,在电池片上形成互联电极;S3、将相邻电池片的上下电极通过互联带串焊互联成电池串;所述导电浆料印刷于汇流电极上的高度为50-200um,宽度为50-1000um。本发明提供了一种电池串、电池模组制备工艺及电池模组,它能进一步降低互联材料(焊带)和胶联材料(EVA)用量,避免薄片化之后的破片问题,并提高大尺寸电池更多分切后的生产效率。

Description

一种电池串、电池模组制备工艺及电池模组 技术领域
本发明涉及光伏电池技术领域,具体涉及一种电池串、电池模组制备工艺及电池模组。
背景技术
互联工艺的的发展有个规律,主栅线即汇流电极不断增加,从最初的两栅线到现在的9栅线甚至12栅线,还有相同的效果的18栅线;电池片从156mm尺寸的整片封装过渡到目前主流的切半封装,这些趋势都是一个目的,因为电池片上总的电流大小是一定的,主栅线上越多,就可以减小每根互联条上传导的电流Isc大小,根据功率损耗的公式I2R,这就可以减小组件内部功率损耗,增加模组输出功率,从实际数据来看,多主栅和半片封装工艺的叠加使用,可以有效提升输出功率10-20W。可见通过对电池片上互联电极图形的进一步优化,也即对互联电极的传导电流量的进一步优化,可以进一步减小电池内部在细栅上和互联电极这些金属化图形上的功率损耗,从而增加输出功率。
另外,主栅线数量的增加以及电池片多切带来的效益,使每根互联条上传导电流的减小,就可以直接减小互联条的截面积,从而减小互联条的使用量。
目前常规的5栅6栅矩形焊带叠加半片工艺或9栅圆形焊带叠加半片工艺或7栅9栅三角形焊带叠加半片工艺,每块组件的互联条使用量一般都在150-200g左右。
当前/158mm/166mm/182mm/210mm的电池片,矩形焊带在对应5栅6栅时的尺寸宽度一般在0.6mm以上、主流的为0.8-1.0mm,矩形焊带的宽度如果进一步减小,串焊机无法保证对准精度。如果要进一步减小焊带宽度,考虑到焊带加工工艺和串焊机对准工艺的限制,矩形焊带自然而然的就转变成了圆形焊带,因为圆形焊带比接近正方形的矩形焊带更容易生产,而且在使用时更容易定位问题。目前主流的9栅12栅圆形焊带直径在0.30-0.35mm,再进一步缩小焊带直径的话,会导致对准精度降低,或者要增加数量,但是圆焊带因为定位精度问题,在汇流电极上已经制作了0.6-0.8mm边长以上的正方形pad点,如果要增加数量,过多的pad点,会带来电池片效率降低,与减小的焊带用量、增加的功率、增加的不良率相比,得不偿失。三角形焊带工艺也存在同样的问题。
另外,硅片进一步减薄,是未来的必然趋势,尤其是异质结电池,可以显著降低硅片的厚度,从而大幅降低成本,但是目前的互联焊带,厚度大,机械应力大,对于超薄硅片很容易造成损伤和破裂,可见当前的封装工艺并不适合于未来的发展趋势。
电池片的另一个趋势是尺寸不断增大,从早期的100mm/125mm/156mm,到现在主流的158.75mm/182mm/210mm,对于电池的整个制造环节都提出了很大的挑战,需要解决很多问题, 就组件端来说,目前切成半片的封装方式已经成为主流,可是210Mm大硅片即使切半后还是比目前的156mm的硅片切半后大很多,这就导致电池片必然还有较大的内阻损耗,除非大硅片进行三分切或四分切,才能进一步降低内阻损耗,但是在目前的封装工艺下——即一根互联带同时搭在电池正反两面的方式——又会大幅影响生产效率,这又是一个需要解决的问题。
近年来的多主栅半片工艺虽然可以有效提升组件功率,但是由于焊带高度的增加,都要导致EVA用量的增大,同时由于现有串焊机对准精度以及材料本身的较直问题,很难再使用更小尺寸和更多的互联条;另外未来的硅片薄片化和大尺寸的趋势,都对现有互联工艺提出了更多挑战。
发明内容
1、发明要解决的技术问题
针对现有串焊工艺无法进一步降低互联材料(焊带)和胶联材料(EVA)用量,无法解决薄片化之后的破片问题,也无法解决大尺寸电池更多分切后的生产效率降低的技术问题,本发明提供了一种电池串、电池模组制备工艺及电池模组,它能进一步降低互联材料(焊带)和胶联材料(EVA)用量,避免薄片化之后的破片问题,并提高大尺寸电池更多分切后的生产效率。
2、技术方案
为解决上述问题,本发明提供的技术方案为:
一种电池串制备工艺,包括以下步骤:S1、将导电浆料印刷于电池片的至少一面的汇流电极上;S2、对电池片进行高温固化,在电池片上形成互联电极;S3、将相邻电池片的上下电极通过互联带串焊互联成电池串;所述导电浆料印刷于汇流电极上的高度为50-200um,宽度为50-1000um。
可选地,所述电池片上与互联电极相连的PAD点,所述PAD点距离电池片边缘的距离为0.1-1.5mm。
可选地,多个所述互联电极与同一PAD点相连。
可选地,所述PAD点的长度为0.5-5mm,宽度为0.5-5mm。
可选地,所述导电浆料按质量分数包括以下组分:导电相50%-80%,粘结相10%-50%,助剂7-15%,所述导电相为颗粒尺寸为5-100um的铜粉或银粉。
可选地,所述导电相为铜粉,所述铜粉表面设有抗氧化镀层。
可选地,所述抗氧化镀层的厚度为0.5-5um,所述抗氧化镀层的含量占整个导电相重量的2-15%。
可选地,所述粘结相为颗粒尺寸为5-60um的低熔点金属颗粒,所述低熔点金属颗粒为锡粉、锡铅合金粉、锡铜银合金粉、锡铋合金粉中的一种或多种。
可选地,所述助剂由树脂、松香、溶剂、活化剂和添加剂混合而成。
一种电池模组制备工艺,包括以下步骤:A1、将若干由上述权利要求1-9任意一项所述的电池串制备工艺制备而成的电池串串联或并联,形成电池组串;A2、将玻璃、EVA、电池组串、EVA、背板由上至下摆放,并经过层压工艺将上述材料固化胶联在一起;A3、安装辅件,经测试、分选后制成电池模组。
3、有益效果
采用本发明提供的技术方案,与现有技术相比,具有如下有益效果:
(1)采用印刷方式制备的互联电极可以大幅提高定位精度,这就解决了常规扁焊带和圆焊带的定位偏离问题,从而允许更小尺寸(更窄)的互联电极的设计并且减少PAD点的使用,这就增大了电池片表面的光照面积,从而提高了电池效率。
(2)更小尺寸的互联电极又允许了更多数量的互联电极的设计成为普遍可能,基于I2R理论可知,这就允许更小截面积的导电电极成为可能,从而大幅节省导电材料的使用量;更多数量的互联电极,大幅缩小的指栅线需要承载的电流量,这就可以减小指栅线的截面积,从而节省银浆,另外没有汇流电极的设计,又可以进一步节省大量银浆,所以本发明对于降低电池片尤其是异质结电池的金属化浆料成本具有显著的促进作用。
(3)同时更小尺寸(高度更低)的互联电极,又使更薄的胶联材料的使用成为可能,从而节省胶联材料的使用,进一步降低成本。
(4)更小尺寸的互联电极具有更小的应力,从而更加适应于未来薄片化趋势对互联材料的要求。
(5)这种印刷的工艺,可以同时处理更多数量的电池片,互联串焊的时候也可以同时处理更多的数量,这种“增加并行度”的方式,对提高生产效率非常有效。
具体实施方式
为进一步了解本发明的内容,实施例对本发明作详细描述。
实施例一
本实施例的一种电池串制备工艺,包括以下步骤:S1、将导电浆料通过丝网印刷或钢板印刷的方式印刷于电池片的至少一面的汇流电极上,对于绝大部分具有正面电极结构的电池片,该互联电极都可以设置在电池片的正面;对于双面发电类型的电池片,根据背面电极结构的不同,可以设置该互联电极,比如N型双面电池背面电极具有连续性的电极结构,比较适合设置该互联电极;也可以不设置该互联电极,比如P型双面电池的背面电极一般是不连续的结构,优选地不设置该互联电极;不论哪种电池片,背面电极上都可以不设置该互联电极,此时,可以用超柔软的互联带代替;S2、对电池片进行高温固化,在电池片上形成互联 电极,所述高温固化的温度为100-300℃,由于纯锡、锡铅、锡铋合金的最低熔点在210度、180度和140度左右,所以优选的烧结温度为160-260度之间,具体温度区间根据导电浆料的成分和电极的制备效果来调节;S3、将相邻电池片的上下电极通过互联带串焊互联成电池串;所述导电浆料印刷于汇流电极上的高度为50-200um,宽度为50-1000um,所述导电浆料烧结固化后的高度为50-200um,宽度为50-1000um。
本电池串制备工艺采用印刷方式制备的互联电极可以大幅提高定位精度,这就解决了常规扁焊带和圆焊带的定位偏离问题,从而允许更小尺寸(更窄)的互联电极的设计并且减少PAD点的使用,这就增大了电池片表面的光照面积,从而提高了电池效率;更小尺寸的互联电极又允许了更多数量的互联电极的设计成为普遍可能,基于I2R理论可知,这就允许更小截面积的导电电极成为可能,从而大幅节省导电材料的使用量;更多数量的互联电极,大幅缩小的指栅线需要承载的电流量,这就可以减小指栅线的截面积,从而节省银浆,另外没有汇流电极的设计,又可以进一步节省大量银浆,所以本发明对于降低电池片尤其是异质结电池的金属化浆料成本具有显著的促进作用;同时更小尺寸(高度更低)的互联电极,又使更薄的胶联材料的使用成为可能,从而节省胶联材料的使用,进一步降低成本;另外更小尺寸的互联电极具有更小的应力,从而更加适应于未来薄片化趋势对互联材料的要求;这种印刷的工艺,可以同时处理更多数量的电池片,互联串焊的时候也可以同时处理更多的数量,这种“增加并行度”的方式,对提高生产效率非常有效。
作为本发明的可选方案,所述互联带可以为常规的铜基镀锡(或锡铅、锡铋等)材质,包含镀层的厚度为0.05-0.25mm,宽度为0.3-2.0mm,所述互联带使用常规的镀锡铜扁带的制备工艺,厚度0.1mm、宽度0.5-1.0mm,一种是用于高温烧结型电池串联的镀有锡铅合金的互联带,一种是用于异质结电池串联的具有锡铋合金层的互联带,镀层厚度0.03mm。
作为本发明的可选方案,所述电池片可以为整片,也可以为1/2片、1/3片、1/4、1/5、1/6分片等多分片。
作为本发明的可选方案,所述电池片上与互联电极相连的PAD点,所述PAD点距离电池片边缘的距离为0.1-1.5mm,所述PAD点的长度为0.5-5mm,例如,0.5mm、2.5mm和5mm,宽度为0.5-5mm,例如,0.5mm、2.5mm和5mm,多个所述互联电极与同一PAD点相连,若多根互联电极共用一个焊接pad点,则这几根互联电极的一端在电池片的边缘逐步汇聚到一起;共用PAD点的互联电极,其形状可以为直线条,也可以含有曲线条;PAD的形状可以为矩形、圆形、
Figure PCTCN2022125343-appb-000001
圆形,可以为实心状,也可以为环形或空心状;上述设计可明显减少PAD的数量,对于上下两面都设置了互联电极的,用互联带将分别位于电池片上下两端的PAD互联焊接起来即可,对于只设置了正面互联电极的电池片,用互联带将背面电极和正面互联电极的PAD 点互联焊接即可,在批量生产时,可以提前先将互联带焊接固定在电池片一面的PAD点上,再与另一张电池的另一面的PAD点互联焊接,该方式的优点是可以同时操作多组电池片或互联模块,大幅提高产能。
作为本发明的可选方案,在互联电极或PAD点上焊接互联带时,优选地使用激光或铬铁进行局部焊接,如果使用传统的红外加热方式,由于其辐射区域大,会对已经烧结固化好的互联电极造成损坏。
作为本发明的可选方案,所述导电浆料按质量分数包括以下组分:导电相50%-80%,粘结相10%-50%,助剂7-15%,所述导电相为颗粒尺寸为5-100um的铜粉或银粉,粘结相分散在导电相颗粒之间,填补导电相颗粒之间的空隙,起到粘结的作用,使导电相颗粒能充分接触,降低互联电极的整体电阻;同时,粘结相也会包覆在导电相颗粒的外表面,起到防止氧化的保护作用,提高导电性的同时,使可靠性得到了极大的提升,本实施例中,考虑到成本因素,所述导电相优先为铜粉,所述铜粉可以为片状铜粉、球状铜粉或者是片状铜粉和球状铜粉的混合,本实施例中,所述铜粉优选为颗粒尺寸为15-65um的球形或亚球形铜粉,铜粉还有片状的树枝状的,片状和树枝状铜粉表面积大,容易氧化,且不容易做金属防氧化涂层;在不考虑成本的情况下,导电相也可以采用银粉,由于银粉在高温环境下具有非常好的抗氧化性,所以银粉表面也可以不包覆其他金属材料,银粉的颗粒大小、形状、颗粒分布可以根据实际实验效果进行优化配方。选用铜粉时,也可以选用表面镀银的铜粉,此时银含量占整个导电相粉体的3-15%。
本用于光伏电池的导电浆料在烧结固化后具有足够的导电能力,同时具有汇总收集细栅线电流并传导所收集电流的作用,所以后续互联时不需要再在汇流电极上焊接镀锡的互联铜焊带来增强汇流电极的导电能力。
作为本发明的可选方案,所述铜粉表面设有抗氧化镀层,以克服铜粉易氧化的问题,所述抗氧化镀层为银、锡、镍、锡铅合金、锡铋合金、锡银铜合金中的一种或多种,考虑到后续的烧结和粘结,优选为,所述抗氧化镀层为锡、锡铅合金、锡铋合金、锡银铜合金,所述抗氧化镀层的厚度为0.5-5um,所述抗氧化镀层的含量占整个导电相重量的2-15%,此时该抗氧化镀层也起到促进粘结固化作用。
作为本发明的可选方案,所述粘结相为颗粒尺寸为5-60um的低熔点金属颗粒,所述低熔点金属颗粒为锡粉、锡铅合金粉、锡铜银合金粉、锡铋合金粉中的一种或多种,上述粉末的形状一般为球形,优选的,所述粘结相为颗粒尺寸为5-35um的低熔点金属颗粒,例如5-15um和15-35um两种尺寸,小颗粒的粉末可以更好的填充导电相颗粒间的空隙,使得导电性能更好。
作为本发明的可选方案,所述助剂由树脂、松香、溶剂、活化剂和添加剂混合而成,助剂能够促粘结相充分均匀地包裹导电相、使导电相均匀地分散在其中、同时使浆料本体的化学和物理性能保持稳定活化剂在活性点以上在溶剂中能够电离出游离的H+离子,与金属材料表面的氧化物反应,达到去除氧化层、降低金属表面张力的目的,溶剂主要用于提供一种电离环境,所述添加剂为触变剂、成膏剂、稳定剂、表面活性剂中的一种或多种的混合物,成膏剂主要作用是增强导电膏整体保持粘稠膏状的能力,可以为聚乙二醇2000、聚乙二醇4000、聚乙二醇6000等,稳定剂的作用是增强导电膏粘稠状的稳定型,可以为石蜡;表面活性剂和触变剂可以选用常规的配方材料,比如辛基酚聚氧乙烯醚、壬基酚聚氧乙烯醚、氢化蓖麻油、酰胺化合物等。
作为本发明的可选方案,所述松香可以为改性松香为氢化松香、聚合松香、歧化松香中的一种或多种的混合物,若所述树脂为热固性树脂,则所述松香为马来酸改性松香、富马酸改性松香、丙烯酸改性松香中的一种或多种的混合物,马来酸改性松香、富马酸改性松香、丙烯酸改性松香中含有对环氧树脂为反应性的官能团,能够与热固性树脂反应,提高助剂和高温后互联电极的物理化学温度性。
作为本发明的可选方案,所述活化剂为脂肪族一元酸、二元酸、三元酸、羟基酸、芳香酸、烯酸、氨基酸、乙酸、琥珀酸、胶酸、肥酸、草酸、水杨酸、苯甲酸、乳酸、酒石酸、柠檬酸、苹果酸、油酸、谷氨酸、甘氨酸中的一种或多种的混合物,优选地,选择其中两种物质以质量1:1的配比混合后的混合效果最好。
作为本发明的可选方案,所述溶剂为笨、甲苯、苯甲醇、乙二醇、乙醇、丁醇、丙酮、乙基苯、芳香族石脑油、松油醇、松节油、乙酸乙酯、甲醚、磷酸三甲酯、磷酸三乙酯、丙二醇单甲基醚、丁基溶纤剂、二甘醇二乙醚、甲基卡必醇、乙基卡必醇、丁集卡必醇中的一种或多种的混合物,以提供一种电离环境。
实施例二
本实施例的一种电池模组制备工艺,包括以下步骤:A1、将若干由实施例一所述的电池串制备工艺制备而成的电池串串联或并联,形成电池组串;A2、将玻璃、EVA、电池组串、EVA、背板由上至下摆放,并经过层压工艺将上述材料固化胶联在一起,行业内一般叫“叠层”,所述背板可以为玻璃;A3、安装辅件,所述辅件包括边框、接线盒、标识等用于组成电池模组的现有零件,经测试、分选后制成电池模组,
实施例三
本实施例的一种导电浆料,导电相占整个导电浆料重量的60-80%,采用锡铋包覆的铜粉或镀锡铜粉,铜粉为球形,锡铋或锡涂层占整个导电相重量的10-15%,铜粉颗粒平均尺寸为 20-60um;粘结相占整个导电浆料重量的10-20%,为锡铋合金粉,其熔点为140度;锡铋合金粉颗粒为球形或椭球形或其他形状,颗粒平均尺寸为10-40um,具体分布为15-38um;助焊剂占整个导电浆料重量的7-13%;在整个助焊剂中树脂(松香)占30-50%,溶剂占40-60%,活化剂占0.5-3%,其他添加剂占1-5%;按上述配方经均匀混合而成,保存于3-10度环境下。近年来,异质结电池技术发展迅速,由于异质结电池对与温度有严格的要求,一般要求工艺温度不能超过200摄氏度,所以这一类导电浆料的粘结相通常选用熔点更低的锡铋合金,最低熔点可以达到138摄氏度。
实施例四
本实施例的一种导电浆料,导电相占整个导电浆料重量的60-80%,采用镀锡铜粉,铜粉为球形,镀锡层占整个导电相重量的5-15%,铜粉颗粒平均尺寸为20-60um;粘结相占整个导电浆料重量的10%-20,为无铅的锡合金粉,可以为锡银、锡铜、锡银铜等合金粉,颗粒平均尺寸为10-38um,具体分布为15-35um;助焊剂占整个导电浆料重量的7-13%;在整个助焊剂中树脂(松香)占30-50%,溶剂占40-60%,活化剂占0.5-3%,其他添加剂占1-5%;按上述配方经均匀混合而成,保存于3-10度环境下。该类导电浆料的粘结相不含铅,其熔化温度铋锡铅的高,一般固化烧结温度峰值在230-280之间,由于不含铅,可以用于对于无铅化有较高要求的产品上。
实施例五
本实施例的一种导电浆料,导电相占整个导电浆料重量的60-80%,采用镀锡铜粉,铜粉为球形,镀锡层占整个导电相重量的5-15%,铜粉颗粒平均尺寸为20-60um;粘结相占整个导电浆料重量的10%-20,为锡铅合金粉,其中锡铅合金中的锡铅比例为63:37,锡铅合金粉颗粒为球形或椭球形或其他形状,颗粒平均尺寸为10-38um,具体分布为15-35um;助焊剂占比7-13%;在整个助焊剂中树脂(松香)占30-50%,溶剂占40-60%,活化剂占0.5-3%,其他添加剂占1-5%;按上述配方经均匀混合而成,保存于3-10度环境下。该类导电浆料的固化烧结温度峰值一般在200-250度,主要用于可以进行高温烧结的常规电池片的金属化增强。
实施例五
本实施例的一种导电浆料,导电相占整个导电浆料重量的70-80%,采用锡铋包覆的铜粉,铜粉为球形,锡铅涂层占整个粉体重量比例为5-10%,铜粉颗粒平均尺寸为10-60微米;粘结相占整个导电浆料重量的10%,为锡铋合金粉,其中锡铋合金中的锡铅比例为60:40,锡铋合金粉颗粒为球形或椭球形或其他形状,颗粒平均尺寸为10-50微米,具体分布为5-30微米;有机粘结相占比3-5%,为丙烯酸树脂或环氧树脂等热固性树脂;助焊剂占比10%,其中树脂(松香)占3-5%,溶剂占2-5%,活化剂占0.5-1%,表面活性剂占0.5-1%,其他添加剂占0.5-1%; 按上述配方经均匀混合而成,保存于3-10度环境下。对于异质结电池,由于不能进行高温烧结,其表面的细栅线都是采用的低温固化银浆来制备,这样,在这一类导电浆料中也添加了低温固化的热固性树脂,通过树脂的粘结作用可以将固化的浆料本体固定在电池片表面,同时在浆料本体内部,又可以通过锡铋合金的粘结作用增强金属颗粒之间的导电型。
本发明导电浆料主要用于对电池片上的汇流电极进行导电性增强或替代汇流电极直接与细栅线相导通。在第一种情况下,电池片表面已经制备好了细栅线和汇流电极,细栅线与汇流电极导通,此时,通过印刷或、点胶喷射的方式将该导电浆料制备于汇流电极上方,经过固化烧结后,导电浆料中的有机物全部挥发或烧结掉,导电浆料本身也与汇流电极通过粘结相形成电学导通,此时导电浆料本体通过汇流电极间接与细栅线相连,从而将细栅线上的电流全部收集汇总在第二种情况下,电池片表面制备有完整的细栅线,但是汇流电极没有完整制备或没有制备,相邻细栅线没有电学导通,此时,也可以将本导电浆料按照设定好的图形和间距直接印刷制备到电池片表面,通过高温固化烧结后,使导电浆料直接与细栅线相导通连接。
上述几种不同实施例的导电浆料可以用于不同类型的电池片,其中实施例四和实施例五的导电浆料尤其是实施例五的导电浆料可以用于目前常规的各种尺寸包含单晶多晶在内的BSF、PERC、PERL、PERT、TOPcon等需要经过500摄氏度以上高温工艺的各种电池;在这类电池片中,由于导电浆料中粘结相的熔点普遍在200度左右,所以实际的烧结温度要在200度以上,对于异质结电池无法容忍这么高的温度,同时,在此温度下,导电浆料中的所有有机物都会挥发或烧结掉;值得说明的是,在此类电池片中,实施例三和实施例六的导电浆料尤其是实施例三的导电浆也可以使用的,考虑到导电率问题,可能并不是最优选,但确实是可以用的;对实施例三和实施例六的导电浆料,优选地是用于异质结电池这类低温工艺的电池,这两种浆料的固化烧结温度都不会超过200度,所以是最佳的选择。在实施例六的导电浆料使用在异质结电池时,导电浆料可以直接与细栅线连接,此时可以不设置汇流电极或只设置不完整的汇流电极。
对于实施例三、四、五的导电浆料,主要依靠粘结相在高温下熔化后与汇流电极相连接,所以在制备电池片时,优选地需要制备完整连续的汇流电极;对于实施例六的导电浆料,除了金属粘结相的连接,也包括了热固性树脂对电池片表面的粘接,依靠粘接作用也可以提供足够的连接拉力,所以此时,互联电极就可以取消掉或部分取消掉。
以上示意性的对本发明及其实施方式进行了描述,该描述没有限制性,附图中所示的也只是本发明的实施方式之一,实际的结构并不局限于此。所以,如果本领域的普通技术人员受其启示,在不脱离本发明创造宗旨的情况下,不经创造性的设计出与该技术方案相似的结 构方式及实施例,均应属于本发明的保护范围。

Claims (11)

  1. 一种电池串制备工艺,其特征在于:包括以下步骤:
    S1、将导电浆料印刷于电池片的至少一面的汇流电极上;
    S2、对电池片进行高温固化,在电池片上形成互联电极;
    S3、将相邻电池片的上下电极通过互联带串焊互联成电池串;
    所述导电浆料印刷于汇流电极上的高度为50-200um,宽度为50-1000um。
  2. 根据权利要求1所述的一种电池串制备工艺,其特征在于:所述电池片上与互联电极相连的PAD点,所述PAD点距离电池片边缘的距离为0.1-1.5mm。
  3. 根据权利要求2所述的一种电池串制备工艺,其特征在于:多个所述互联电极与同一PAD点相连。
  4. 根据权利要求2所述的一种电池串制备工艺,其特征在于:所述PAD点的长度为0.5-5mm,宽度为0.5-5mm。
  5. 根据权利要求1所述的一种电池串制备工艺,其特征在于:所述导电浆料按质量分数包括以下组分:导电相50%-80%,粘结相10%-50%,助剂7-15%,所述导电相为颗粒尺寸为5-100um的铜粉或银粉。
  6. 根据权利要求1所述的一种电池串制备工艺,其特征在于:所述导电相为铜粉,所述铜粉表面设有抗氧化镀层。
  7. 根据权利要求6所述的一种电池串制备工艺,其特征在于:所述抗氧化镀层的厚度为0.5-5um,所述抗氧化镀层的含量占整个导电相重量的2-15%。
  8. 根据权利要求5所述的一种电池串制备工艺,其特征在于:所述粘结相为颗粒尺寸为5-60um的低熔点金属颗粒,所述低熔点金属颗粒为锡粉、锡铅合金粉、锡铜银合金粉、锡铋合金粉中的一种或多种。
  9. 根据权利要求5所述的一种电池串制备工艺,其特征在于:所述助剂由树脂、松香、溶剂、活化剂和添加剂混合而成。
  10. 一种电池模组制备工艺,其特征在于:包括以下步骤:
    A1、将若干由上述权利要求1-9任意一项所述的电池串制备工艺制备而成的电池串串联或并联,形成电池组串;
    A2、将玻璃、EVA、电池组串、EVA、背板由上至下摆放,并经过层压工艺将上述材料固化胶联在一起;
    A3、安装辅件,经测试、分选后制成电池模组。
  11. 一种电池模组,其特征在于:由权利要求10所述的电池模组制备工艺制备而成。
PCT/CN2022/125343 2021-10-14 2022-10-14 一种电池串、电池模组制备工艺及电池模组 WO2023061475A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111198141.5 2021-10-14
CN202111198141.5A CN113948610A (zh) 2021-10-14 2021-10-14 一种电池串、电池模组制备工艺及电池模组

Publications (1)

Publication Number Publication Date
WO2023061475A1 true WO2023061475A1 (zh) 2023-04-20

Family

ID=79330467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125343 WO2023061475A1 (zh) 2021-10-14 2022-10-14 一种电池串、电池模组制备工艺及电池模组

Country Status (2)

Country Link
CN (1) CN113948610A (zh)
WO (1) WO2023061475A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116673645A (zh) * 2023-06-12 2023-09-01 无锡市斯威克科技有限公司 一种光伏组件焊接方式

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117457253A (zh) * 2021-10-14 2024-01-26 武宇涛 一种用于光伏电池的导电浆料
CN113948610A (zh) * 2021-10-14 2022-01-18 武宇涛 一种电池串、电池模组制备工艺及电池模组

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120031465A1 (en) * 2009-01-09 2012-02-09 Energetica Holding Gmbh Solar module in an insulating glass composite method for production and use
CN107799615A (zh) * 2017-10-20 2018-03-13 杭州瞩日能源科技有限公司 太阳能电池片单元、光伏电池模组及其制备工艺
CN108231952A (zh) * 2017-12-29 2018-06-29 杭州瞩日能源科技有限公司 光伏电池模组及其制备工艺
CN111640822A (zh) * 2020-06-10 2020-09-08 蒙城县比太新能源发展有限公司 一种用铜丝做主栅的晶硅电池及其组件的制备方法
CN111916509A (zh) * 2020-09-08 2020-11-10 天合光能股份有限公司 晶体硅太阳能电池背电极图形结构
CN113948610A (zh) * 2021-10-14 2022-01-18 武宇涛 一种电池串、电池模组制备工艺及电池模组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120031465A1 (en) * 2009-01-09 2012-02-09 Energetica Holding Gmbh Solar module in an insulating glass composite method for production and use
CN107799615A (zh) * 2017-10-20 2018-03-13 杭州瞩日能源科技有限公司 太阳能电池片单元、光伏电池模组及其制备工艺
CN108231952A (zh) * 2017-12-29 2018-06-29 杭州瞩日能源科技有限公司 光伏电池模组及其制备工艺
CN111640822A (zh) * 2020-06-10 2020-09-08 蒙城县比太新能源发展有限公司 一种用铜丝做主栅的晶硅电池及其组件的制备方法
CN111916509A (zh) * 2020-09-08 2020-11-10 天合光能股份有限公司 晶体硅太阳能电池背电极图形结构
CN113948610A (zh) * 2021-10-14 2022-01-18 武宇涛 一种电池串、电池模组制备工艺及电池模组

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116673645A (zh) * 2023-06-12 2023-09-01 无锡市斯威克科技有限公司 一种光伏组件焊接方式
CN116673645B (zh) * 2023-06-12 2023-12-12 无锡市斯威克科技有限公司 一种光伏组件焊接方法

Also Published As

Publication number Publication date
CN113948610A (zh) 2022-01-18

Similar Documents

Publication Publication Date Title
WO2023061475A1 (zh) 一种电池串、电池模组制备工艺及电池模组
US20120231571A1 (en) Method for producing a solar cell
TWI585781B (zh) 厚膜導電組合物及其用途
US20140026953A1 (en) Electroconductive Paste Compositions and Solar Cell Electrodes and Contacts Made Therefrom
CN108431964A (zh) 用于太阳能电池正面电极的浆料组合物及利用该浆料组合物的太阳能电池
CN107004457A (zh) 导电性组合物
KR20140027372A (ko) 태양전지 및 태양전지의 알루미늄 전극 형성용 페이스트 조성물
US11802074B2 (en) High-tension busbar silver paste applied to N-type solar cell and preparation method therefor
CN106531282B (zh) 光伏太阳能电池导电银浆
TW201446698A (zh) 太陽電池電極用組成物及使用其製作的電極
CN109659068B (zh) 全铝背场晶体硅太阳能电池用低温固化型背面银浆
CN112216421A (zh) 一种perc晶体硅太阳电池背面银浆及其制备方法与应用
JP2015164171A (ja) 太陽電池、太陽電池モジュール、電極付部品、半導体装置及び電子部品
RU2496166C1 (ru) Токопроводящая серебряная паста для тыльного электрода солнечного элемента
WO2015115565A1 (ja) 電極形成用組成物、電極、太陽電池素子及びその製造方法並びに太陽電池
CN113571258B (zh) 一种用金属复合浆料替代hjt光伏低温银浆的方法
TWI364847B (en) An electroconductive paste for solar cell
WO2013069727A1 (ja) 導電性ペースト、及び貫通電極の製造方法
WO2023061476A1 (zh) 一种用于光伏电池的导电浆料
KR20140048465A (ko) 전극형성용 페이스트 조성물, 이를 이용한 실리콘 태양전지
TWI550641B (zh) 導電組合物及其製造方法
Letize et al. Pilot scale production and reliability testing of solar cell modules based on a low cost copper electroplating process
CN107546298A (zh) 一种晶硅电池背面银浆印刷方法
TW201428771A (zh) 可提升拉力、轉換效率及開路電壓之太陽能電池用導電膠
CN114346348B (zh) 一种光伏电池片及回流焊接工艺制备光伏电池片栅极的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880411

Country of ref document: EP

Kind code of ref document: A1