WO2023061310A1 - 衍射光波导、显示设备及衍射光波导设计方法 - Google Patents

衍射光波导、显示设备及衍射光波导设计方法 Download PDF

Info

Publication number
WO2023061310A1
WO2023061310A1 PCT/CN2022/124268 CN2022124268W WO2023061310A1 WO 2023061310 A1 WO2023061310 A1 WO 2023061310A1 CN 2022124268 W CN2022124268 W CN 2022124268W WO 2023061310 A1 WO2023061310 A1 WO 2023061310A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
sub
diffractive optical
grating
partitions
Prior art date
Application number
PCT/CN2022/124268
Other languages
English (en)
French (fr)
Inventor
赵兴明
范真涛
朱庆峰
隋磊
田克汉
Original Assignee
嘉兴驭光光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 嘉兴驭光光电科技有限公司 filed Critical 嘉兴驭光光电科技有限公司
Publication of WO2023061310A1 publication Critical patent/WO2023061310A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings

Definitions

  • the invention relates to a display technology based on diffraction, in particular to a diffractive optical waveguide that can be used for augmented reality display, a display device including the diffractive optical waveguide, and a design method for the diffractive optical waveguide.
  • AR Augmented Reality
  • display can provide human beings with more dimensional information, and has attracted widespread attention.
  • AR glasses are one of the important mediums in the field of augmented reality display.
  • the existing AR glasses based on geometric optics use a free-form surface solution, which has size limitations; the design principle of AR glasses based on arrayed optical waveguides is relatively simple, but the process is difficult and is not suitable for mass production. The need to match specific optics also restricts its large-scale promotion.
  • Diffractive optical waveguides have the advantages of strong mass production, thinness, etc., and are gradually recognized in the field of AR display, and are expected to become the mainstream technology development direction in the field of AR in the future.
  • the diffractive optical waveguide used for AR display especially the two-dimensional grating waveguide, because the grating has multi-order diffraction and the grating is sensitive to polarization, the entire waveguide coupling system has high irregularity. If the grating area is not partitioned and optimized , then within the range of the final eyebox, the light intensity received by the human eye at different positions is different, which will make it difficult for the display module using the diffractive optical waveguide as the AR glasses to be accepted by the human senses.
  • the object of the present invention is to provide a diffractive optical waveguide for optical pupil expansion, a display device comprising the diffractive optical waveguide and a diffractive optical waveguide design method, which can improve the light energy distribution uniformity of the exit light field of the diffractive optical waveguide, At least partially overcome the deficiencies in the prior art.
  • a diffractive optical waveguide for optical pupil expansion which includes a waveguide substrate and an in-coupling grating and an out-coupling grating arranged on or in the waveguide substrate, the in-coupling The grating is configured to couple an input beam into the waveguide substrate to be coupled to the outcoupling grating by total reflection, wherein the outcoupling grating is at least partially formed on a randomly partitioned area, the randomly partitioned
  • the region includes a plurality of sections having randomly formed shapes, sizes and/or positions, the outcoupling grating includes a plurality of sub-gratings formed in the plurality of sections, and the sub-gratings in at least some of the sections have different optical structure.
  • the plurality of sub-gratings are configured such that the optical energy distribution of the outgoing light field of the diffractive optical waveguide is substantially uniform.
  • the plurality of sub-gratings comprises a two-dimensional grating, and the two-dimensional grating has a first grating vector, a second grating vector and a third grating vector.
  • the two-dimensional gratings in the plurality of sub-gratings have the same grating vectors as each other.
  • the outcoupling grating may be symmetrical about a central axis.
  • the plurality of partitions are Voronoi partitions divided according to Voronoi diagrams.
  • the plurality of partitions are Voronoi partitions based on Voronoi diagrams formed based on randomly scattered points.
  • the plurality of partitions include non-diffractive partitions in which the sub-gratings are not formed, and the area of the non-diffractive partitions is smaller than a predetermined threshold, and the predetermined threshold is smaller than or equal to the average pupil area of a human eye, preferably smaller than or equal to a human eye. One-half of the average pupil area of the eye. More preferably, the plurality of sub-sections includes at least one sub-section having an area smaller than or equal to at least one of the non-diffracting sub-sections and in which the sub-grating is formed.
  • the optical structures of the sub-gratings in at least one subsection have a different cross-sectional shape and/or size than the optical structures of the sub-gratings in another subsection.
  • the optical structure of the sub-gratings in at least one subregion has an irregular cross-sectional shape.
  • the optical structures of said sub-gratings in at least one subsection have a different height or depth than the optical structures of said sub-gratings in another subsection.
  • a display device which includes the above-mentioned diffractive optical waveguide.
  • the display device is a near-eye display device and includes a lens comprising the diffractive optical waveguide and a frame for holding the lens close to the eye.
  • the display device is an augmented reality display device.
  • the design method includes the following processing:
  • each of the sub-gratings includes a plurality of optical structures
  • the optimization variable includes the cross-sectional shape and/or size of the optical structure and/or the height or depth of the optical structure, and the optimization process makes all The sub-gratings have different optical structures.
  • the initialization makes the optical structure of each of the sub-gratings a columnar structure; and in the processing (3), the optimization process includes expanding the cross-section of the columnar structure and corrosion treatment.
  • the optimization target of the optimization process also includes the optical energy coupling efficiency of the diffractive optical waveguide.
  • the processing (1) may include: randomly sprinkling points in the target area, generating a Voronoi diagram based on the randomly sprinkling points, and performing partitioning according to the Voronoi diagram.
  • processing (2) may include:
  • the design method may also include the following processing:
  • the processing (1) may include: obtaining the number of sprinkle points M, randomly sowing M points in the target area, generating a Voronoi diagram based on the M points, and performing partitioning according to the Voronoi diagram; and processing ( 4) Including: changing the number M of points to be sprinkled, re-sprinkling points randomly in the target area based on the changed number of points to be sprinkled on, generating a new Voronoi diagram, and performing partitioning according to the new Voronoi diagram.
  • the design method may also include the following processing:
  • the design method may also include the following processing:
  • the divisions of the outcoupling grating are randomly formed in a certain area, different grating optical structures are used in different divisions, and the final waveguide effect is used as an evaluation for optimal design.
  • the regular partition and/or fixed grating structure has a higher degree of design freedom, and the optimization result can be closer to the optimal solution.
  • FIG. 1 is a schematic diagram of an example of a diffractive optical waveguide for optical pupil expansion according to an embodiment of the present invention, wherein the entire outcoupling grating of the diffractive optical waveguide is formed on a randomly partitioned area;
  • Fig. 2 schematically shows the incoupling, propagation and outcoupling of light by a diffractive optical waveguide according to an embodiment of the present invention
  • Fig. 3 schematically shows an example of the grating vectors of the in-coupling grating and the out-coupling grating of the diffractive optical waveguide according to an embodiment of the present invention
  • Fig. 4 schematically shows different examples of optical structures of sub-gratings outcoupling the grating
  • FIG. 5 is a schematic diagram of another example of a diffractive optical waveguide for optical pupil expansion according to an embodiment of the present invention, wherein a part of the outcoupling grating of the diffractive optical waveguide is formed on a randomly partitioned area;
  • FIG. 6 is a schematic diagram of another example of a diffractive optical waveguide for optical pupil expansion according to an embodiment of the present invention, wherein the outcoupling grating of the diffractive optical waveguide is an asymmetric structure;
  • FIG. 7 is a flowchart of a design method for a diffractive optical waveguide for optical pupil expansion according to an embodiment of the present invention.
  • Fig. 8 is the flow chart of an example of the random partition method that can be used for the diffractive optical waveguide design method shown in Fig. 7;
  • Figure 9 schematically shows an example of random partitioning according to the method shown in Figure 8.
  • Fig. 10 schematically shows an example of the division of the diffractive optical waveguide obtained according to the methods and examples shown in Fig. 8 and Fig. 9;
  • Fig. 11 is a flow chart of an extension example of the diffractive optical waveguide design method shown in Fig. 7;
  • Fig. 12 schematically shows another example of the division of the diffractive optical waveguide obtained according to the extension shown in Fig. 11;
  • Fig. 13 is a flowchart of another extension example of the diffractive optical waveguide design method shown in Fig. 7;
  • Fig. 14 schematically shows an example of a diffractive optical waveguide partition obtained according to the extension shown in Fig. 13, wherein a non-diffraction partition is provided;
  • Fig. 15 is a partially enlarged schematic diagram of the part indicated by the dotted circle in Fig. 14;
  • FIG. 16 schematically shows another example of a diffractive optical waveguide section obtained according to the extension shown in FIG. 13 , wherein non-diffractive sections different from those shown in FIG. 14 are provided.
  • FIG. 1 is a schematic diagram of a diffractive optical waveguide 10 , which is an example of a diffractive optical waveguide for optical pupil expansion according to an embodiment of the present invention.
  • Fig. 2 schematically shows the incoupling, propagation and outcoupling of light by a diffractive optical waveguide according to an embodiment of the present invention.
  • a diffractive optical waveguide 10 for optical pupil expansion includes a waveguide substrate 10 a and an in-coupling grating 11 and an out-coupling grating 12 disposed on or in the waveguide substrate 10 a. As shown more clearly in Fig.
  • the incoupling grating 11 is configured to couple the input beam b1 into the waveguide substrate 10a to be coupled to the outcoupling grating 12 by total reflection.
  • the outcoupling grating 12 expands the beam through continuous diffraction in two directions in the plane and at the same time partially The light is coupled out from the waveguide substrate 10a to achieve the effect of expanding the pupil in the plane, so that the observer can observe the display information carried by the incident light beam in the larger window EB (see FIG. 2 ).
  • the outcoupling grating 12 is formed on a randomly partitioned region 12a, which includes a plurality of partitions having a randomly formed shape, size and/or position (eg, as shown in FIG. 1 ). partition d1, d2, d3).
  • the outcoupling grating 12 of the diffractive optical waveguide 10 includes a plurality of sub-gratings formed in the plurality of divisions (for example, sub-gratings g1, g2, g3 formed in divisions d1, d2, d3), and at least The sub-gratings in some partitions have different optical structures.
  • the diffractive optical waveguide according to the embodiment of the present invention adopts randomly formed partitions in a certain area of the outcoupling grating, and adopts different grating optical structures in different partitions, so that the uniformity of light energy distribution in the outgoing light field can be targeted
  • Optimizing the sub-gratings in different partitions has a higher degree of design freedom than a diffractive optical waveguide with regular partitions and/or a fixed grating structure, and the optimization results are closer to the optimal solution.
  • the plurality of sub-gratings of the outcoupling grating are configured such that the light energy distribution of the outgoing light field of the diffractive optical waveguide is substantially uniform.
  • the multiple partitions in the randomly partitioned region 12 a of the outcoupling grating 12 are Voronoi partitions divided according to a Voronoi diagram. More preferably, the plurality of partitions are Voronoi partitions based on Voronoi diagrams formed based on randomly scattered points.
  • the Voronoi diagram is used to describe the spatial proximity relationship, which uses irregular small facets to approximate the irregular units in nature.
  • the Voronoi diagram especially the Voronoi diagram formed based on randomly scattered points, effectively realizes random partitioning, avoids and eliminates the fixed rules about shape, position and size in the partitioning process, and provides a diffractive optical waveguide
  • the optimal design of provides as high a degree of freedom as possible, so that the optimal design can approach the optimal solution as much as possible.
  • the coupling-in grating 11 is arranged centrally with respect to the out-coupling grating 12 in the vertical direction shown in the figure, wherein the central axis cc of the out-coupling grating 12 is on a plane perpendicular to the waveguide substrate 10a ( FIG. 1 In the drawing plane) through the coupling-in grating 11.
  • the outcoupling grating 12 may have a symmetrical structure relative to the central axis cc in the vertical direction, as shown in FIG. 1 .
  • the in-coupling grating 11 and the out-coupling grating 12 are shown as being formed on the same surface of the waveguide substrate 10a in FIG. In other cases, either one of the incoupling grating 11 and the outcoupling grating 12 may be formed inside the waveguide substrate 10a. It should be understood that the diffractive optical waveguide according to the present invention is not limited to any specific position of the in-coupling grating and the out-coupling grating in the waveguide substrate.
  • FIG. 3 schematically shows the grating vectors of the incoupling grating 11 and the outcoupling grating 12 of the diffractive optical waveguide 10 .
  • the coupling-in grating 11 can be a one-dimensional grating having a grating vector G0.
  • the plurality of sub-gratings outcoupling the grating 12 preferably comprise two-dimensional gratings, and preferably, as shown in FIG. 3, such two-dimensional sub-gratings have a first grating vector G1, a second grating vector G2 and a third grating vector G3.
  • the grating vectors G1, G2, G3 are drawn separately, but it should be understood that for the sub-grating as a two-dimensional grating, the above three gratings can exist/form at any one place vector.
  • the two-dimensional grating may include a plurality of optical structures s1/s2 periodically arranged in three directions, so as to form grating vectors in the three directions respectively.
  • the direction of the "grating vector” is the direction along which the structure of the grating is periodically changed/arranged (for example, the direction perpendicular to the grating lines/grooves), and the size of the "grating vector” is 2 ⁇ /t, where t is the period/pitch of the grating structure in the direction of the "grating vector”.
  • the two-dimensional sub-gratings in the multiple sections of the outcoupling grating 12 have the same grating vectors as each other.
  • the outcoupling grating in the diffractive optical waveguide may also include two one-dimensional gratings respectively having the first grating vector G1 and the second grating vector G2 as shown in FIG. 3 , although there is no is shown, but the two one-dimensional gratings may be respectively formed on two surfaces of the waveguide substrate 10 a facing each other, for example.
  • the random partitioning in the random partitioning region 12a of the outcoupling grating 12 as shown in FIG. 1 can, for example, be similarly applied to the two one-dimensional gratings, so as to achieve the same or similar technical effect.
  • the following discussion will take the sub-grating coupled out of the grating as a two-dimensional grating as an example.
  • FIG. 4 schematically shows examples of optical structures with different cross-sections that can be used for outcoupling grating sub-gratings.
  • Figure (a) in Figure 4 shows the optical structure s1 in the outcoupling grating sub-grating as a two-dimensional grating, and the optical structure s1 is a columnar structure with a square cross section;
  • the optical structure s2 in the outcoupling grating sub-grating of the grating, the optical structure s2 is a columnar structure with an irregular cross section.
  • the sub-grating optical structure adopted by the outcoupling grating in the diffractive optical waveguide according to the present invention may have other different cross-sectional shapes, such as circular Basic geometric shapes such as triangles, parallelograms, ellipses, or shapes formed by simple combinations (including “addition” or “subtraction") of these basic geometric shapes, referred to herein as "regular shapes".
  • regular shapes refers to the above-mentioned basic geometric shapes and shapes other than the "regular shape”.
  • the optical structures of the sub-gratings of different partitions can also have different cross-sectional dimensions.
  • the optical structures of the sub-gratings of the outcoupling grating of the diffractive optical waveguide may also have different heights or depths (in the direction perpendicular to the plane of FIG. 4 ).
  • the plurality of subsections of the randomly subdivided region 12a outcoupling the grating 12 may include non-diffractive subregions in which no sub-gratings are formed, such non-diffractive subregions having an area smaller than a predetermined threshold, preferably smaller than or equal to ⁇ .
  • the average pupil area of the eye is preferably less than or equal to 1/2 of the average pupil area of the human eye.
  • the non-diffraction zone because no grating structure is formed, the light continues to propagate in the waveguide substrate through total reflection in this zone without being coupled out, so the outcoupling light intensity in the non-diffraction zone is theoretically zero; but because The area of the non-diffraction partition is smaller than the average pupil area of the human eye, so the situation that the outcoupled light intensity is zero is not directly felt by the human eye.
  • a non-diffraction partition By setting such a non-diffraction partition, on the one hand, it can be used as a means to adjust or suppress the light outcoupling efficiency in a specific area, increasing the degree of freedom in optimal design, and on the other hand, it can save the need for sub-grating in such a small area Reduce the workload of optical structure optimization and improve optimization efficiency.
  • the partitions whose area is smaller than the aforementioned predetermined threshold only a part of them can be selected to be set as non-diffractive partitions, so that at least one partition is included in the multiple partitions of the randomly partitioned region out of the grating, and its area is smaller than or equal to at least one A non-diffractive section and sub-gratings are formed therein.
  • the area of actually continuous non-diffractive subregions exceeds the average pupil area of the human eye.
  • non-diffractive partitions are set selectively, rather than according to fixed rules based on the area of the partitions, more degrees of freedom can be provided for optimal design, allowing better results to be achieved.
  • the setting of non-diffractive partitions will be described in more detail with reference to the accompanying drawings when introducing the diffractive optical waveguide design method according to the present invention, and will not be repeated here.
  • the entire outcoupling grating 12 of the diffractive optical waveguide 10 is formed on the random partition area 12 a, and the outcoupling grating 12 has a symmetrical structure with respect to the central axis cc.
  • the diffractive optical waveguide according to the embodiment of the present invention is not limited to the above configuration shown in FIG. 1 .
  • FIG. 5 is a schematic diagram of another example of a diffractive optical waveguide for optical pupil expansion according to an embodiment of the present invention, wherein a part of the outcoupling grating 12' of the diffractive optical waveguide 10' is formed on a random partition area 12a, and another A part is formed on other areas 12b, where "other areas" may be regularly divided areas or areas not further divided.
  • the randomly partitioned region 12a of the outcoupling grating 12' is arranged closer to the incoupling grating 11 than other regions 12b, because the light energy density propagating in the region close to the incoupling grating 11 is higher.
  • the pupil expansion capability of the outcoupling grating 12' (including, for example, the light energy distribution uniformity of the exit light field and the light outcoupling efficiency) is even greater, and it is more necessary to improve its pupil expansion capability by optimizing the design based on random partitions .
  • FIG. 6 is a schematic diagram of another example of a diffractive optical waveguide for optical pupil expansion according to an embodiment of the present invention, wherein the coupling grating 11 ′′ of the diffractive optical waveguide 10 ′′ is shown in FIG. 6 relative to the coupling grating 12 ′′ It is shown that it is biased in the up and down direction, and correspondingly the outcoupling grating 12 ′′ and the partitions in the random partition region 12a ′′ are formed as an asymmetric structure, so as to achieve good optical pupil expansion under the condition of biased light coupling.
  • the example shown in FIG. 6 is only for the purpose of illustration rather than limitation, and the diffractive optical waveguide according to the embodiment of the present invention may also adopt an asymmetric structure in other different situations.
  • the present invention also provides a display device including the diffractive optical waveguide as described above according to an embodiment of the present invention.
  • the display device is a near-eye display device and comprises a lens and a frame for holding the lens close to the eye, wherein the lens comprises a diffractive optical waveguide according to an embodiment of the present invention.
  • the display device is an augmented reality display device.
  • FIG. 7 is a flow chart of a design method 1 of a diffractive optical waveguide for optical pupil expansion according to an embodiment of the present invention.
  • the diffractive optical waveguide design method 1 includes the following processing:
  • S3 Perform optimization processing with at least one parameter of the optical structure of each sub-grating as an optimization variable, and obtain an optimization result.
  • the "target area" in the diffractive optical waveguide design method 1 according to the embodiment of the present invention corresponds to the randomly partitioned area of the outcoupling grating in the diffractive optical waveguide according to the embodiment of the present invention, such as the randomly partitioned area 12a shown in FIG. 1 and
  • the randomly partitioned area 12a' shown in Figure 5 is the area where the intention of the outcoupling grating is to optimize the design based on the random partition; the target area can be formed as the entire area of the outcoupling grating, or it can be the entire area occupied by the outcoupling grating. part.
  • the optimization target of the optimization process in the diffractive optical waveguide design method 1 includes the uniformity of the light energy distribution of the outgoing light field of the diffractive optical waveguide.
  • the non-uniformity of the light energy distribution within the range of the window EB (see Figure 3) (the range of human eye activity that can see the image) can be used to characterize the uniformity of the light energy distribution of the exit light field of the diffractive optical waveguide sex.
  • the light energy uniformity within the viewing angle range e (see Figure 3) that the human eye E can receive/see at any position can be used to characterize the light energy distribution uniformity of the outgoing light field of the diffractive optical waveguide .
  • the above two ways of characterizing the uniformity of light energy distribution may also be used in combination, for example, through weighted calculation.
  • the diffractive optical waveguide design method 1 according to the embodiment of the present invention may take the optical energy coupling efficiency r greater than or equal to a predetermined value as one of the optimization objectives.
  • Optimization processing here refers to such a processing process: by changing the assignment of optimization variables (such as at least one parameter of the sub-grating optical structure) to obtain multiple results corresponding to the optimization target (such as representing the uniformity of light energy distribution and/or or the magnitude of light energy coupling efficiency), and based on whether it meets the optimization goal, select one of the results and the assignment of the optimization variable corresponding to the result and other parameters (such as the non-diffraction described below with reference to Fig. 11 and Fig. 13 Raster partition setting and/or random partition) as the optimization result.
  • optimization variables such as at least one parameter of the sub-grating optical structure
  • results corresponding to the optimization target such as representing the uniformity of light energy distribution and/or or the magnitude of light energy coupling efficiency
  • FIG. 8 is a flowchart of an example of a random partition method that can be used in process S1 of the diffractive optical waveguide design method 1 .
  • the random partitioning method/processing S1 may include the following steps:
  • S1a randomly sprinkle points in the target area
  • S1b Generate a Voronoi diagram based on the randomly scattered points
  • the number M of randomly sprinkled points can be firstly determined based on, for example, the area of the target area.
  • FIG. 9 schematically shows an example of random partitioning according to the method shown in FIG. 8 .
  • the randomly scattered pattern A obtained by step S1a the Voronoi diagram B obtained by step S1b based on the randomly scattered pattern A, and the random pattern B obtained by step S1c based on the Voronoi diagram B are shown.
  • Zoning map C the randomly scattered pattern A obtained by step S1a, the Voronoi diagram B obtained by step S1b based on the randomly scattered pattern A, and the random pattern B obtained by step S1c based on the Voronoi diagram B are shown.
  • Zoning map C the randomly scattered pattern A obtained by step S1a, the Voronoi diagram B obtained by step S1b based on the randomly scattered pattern A, and the random pattern B obtained by step S1c based on the Voronoi diagram B are shown.
  • FIG. 10 further shows an example of the division of the diffractive optical waveguide obtained according to the methods and examples shown in FIG. 8 and FIG.
  • the input grating 110 and the outcoupling grating 120, and the outcoupling grating 120 forms partitions in the target area 120a as shown in the random partition diagram C in FIG. 9 .
  • the sub-gratings in the plurality of divisions are initialized.
  • the initialization obtains each sub-grating including multiple optical structures.
  • the two-dimensional sub-gratings in different partitions have the same grating vector.
  • the initialization may make the optical structure of each sub-grating a columnar structure, for example, a columnar optical structure with a square cross section as shown in graph (a) in FIG. 4 .
  • the expansion and erosion treatment of the cross-sections of these columnar structures can be included to obtain columnar structures with optimized cross-sections, such as irregular cross-sections as shown in figure (b) in Figure 4 columnar structure.
  • the shape and/or size of the cross-section of the optical structure of the sub-grating can be optimized using, for example, genetic algorithm (GA), particle swarm optimization (PSO), simulated annealing algorithm (SA) with the columnar structure as a starting point.
  • GA genetic algorithm
  • PSO particle swarm optimization
  • SA simulated annealing algorithm
  • the height or depth of the optical structure of the sub-grating may be used as an optimization variable for optimization processing.
  • at least part of the sub-gratings in the random partitions have different optical structures.
  • the optimization results obtained in processing S3 may include, but are not limited to, for example, divisions of diffractive optical waveguides, optimized optical structures of sub-gratings, and corresponding uniformity of light energy distribution.
  • the diffractive optical waveguide design method uses randomly formed partitions in a certain area of the outcoupling grating, and optimizes the optical structure of the sub-gratings in different partitions, so that fixed partition rules and regulations can be avoided/eliminated. / Or the limitation brought by the fixed grating structure to the design of the diffractive optical waveguide improves the design freedom, so that the optimization result is closer to the optimal solution.
  • FIG. 11 is a flow chart of an extended example of the diffractive optical waveguide design method shown in FIG. 7 (namely, the diffractive optical waveguide design method 2).
  • the diffractive optical waveguide design method 2 includes the following processing:
  • processing S1, processing S2 and processing S3 of the diffractive optical waveguide design method 2 are the same as the processing S1, processing S2 and processing S3 in the diffractive optical waveguide design method 1 shown in FIG. 7, and will not be repeated here.
  • the optimization target in the process S5 of the diffractive optical waveguide design method 2 can be consistent with the target of the optimization process in the process S3.
  • the processing S4 of the diffractive optical waveguide design method 2 may include: based on the random partitioning method shown in FIG. , generate a new Voronoi diagram, and partition according to the new Voronoi diagram.
  • the number of scattered points M is also used as a kind of optimization variable of the diffractive optical waveguide design method 2.
  • points may be re-scattered without changing the number of points to be scattered, a new Voronoi diagram may be generated, and partitioning may be performed according to the new Voronoi diagram.
  • the diffractive optical waveguide design method according to the embodiment of the present invention may not be limited to a specific random partitioning method, and in the case of not performing random partitioning based on the Voronoi diagram, in processing S4, the corresponding re-randomized method of partitioning.
  • FIG. 12 schematically shows another example of the new random partition of the diffractive optical waveguide obtained according to the diffractive optical waveguide design method 2, wherein the diffractive optical waveguide 200 includes a waveguide substrate 200a and a waveguide substrate 200a formed between the waveguide substrate 200a.
  • the in-coupling grating 210 and the out-coupling grating 220 on or in it, and the out-coupling grating 220 forms different partitions in the target region 220 a than those shown in the random partition diagram C in FIG. 9 .
  • the diffractive optical waveguide design method 2 after processing S4, it returns to execute processing S2 based on the new random partition, thereby repeatedly executing processing S2 to processing S3, and obtaining multiple optimization results.
  • the repeated execution process will not be repeated here.
  • the random partition itself is further used as the optimization variable, which further improves the degree of freedom of design and is conducive to obtaining closer to the optimal Excellent optimization structure.
  • FIG. 13 is a flow chart of another extended example of the diffractive optical waveguide design method shown in FIG. 7 (namely, the diffractive optical waveguide design method 3). As shown in Figure 13, the diffractive optical waveguide design method 3 includes the following processing:
  • S2a Selectively setting at least some of the partitions with areas smaller than a predetermined threshold as non-diffractive partitions
  • S3a Change the setting of the non-diffraction partition to form a new non-diffraction partition, and return to execute processing S2b based on the new non-diffraction partition, thereby repeatedly executing processing S2b to processing S3, and obtaining multiple optimization results corresponding to the same random partition ;
  • processing S1, processing S3 and processing S5' of the diffractive optical waveguide design method 3 are the same as the processing S1, processing S3 and processing S5 in the diffractive optical waveguide design method 2 shown in Fig. 11 , and will not be repeated here.
  • diffractive optical waveguide design method 3 differs from diffractive optical waveguide design method 2 in diffractive optical waveguide design method 3, non-diffractive partitions are further set on the basis of random partitions, and non-diffractive partitions are those in which no sub-gratings are formed. partition.
  • process S2a and process S2b shown in FIG. 13 .
  • a subregion with an area smaller than a predetermined threshold is selected as a non-diffractive partition, wherein the predetermined threshold is less than or equal to the average pupil area of the human eye, preferably less than or equal to one-half of the average pupil area of the human eye .
  • the outcoupling light intensity in the non-diffraction zone is theoretically zero; however, since the area of the non-diffraction zone is smaller than the average pupil area of the human eye, the above-mentioned zero outcoupling light intensity is not directly felt by the human eye.
  • Diffractive waveguide design method 3 By setting such non-diffractive partitions, on the one hand, the light outcoupling efficiency in a specific area can be adjusted or suppressed, increasing the degree of freedom in optimal design; The workload of optimizing the optical structure of the sub-grating is reduced, and the optimization efficiency is improved.
  • FIG. 14 schematically shows an example of a diffractive optical waveguide section, in which a non-diffraction section is provided;
  • the diffractive optical waveguide 200A shown in FIG. 14 has basically the same structure and partitions as the diffractive optical waveguide 200 shown in FIG. Non-diffractive partition 221 .
  • Non-diffractive partition 221 As shown more clearly in Figure 15, if several areas are smaller than the predetermined threshold but adjacent to each other sub-regions are all set as non-diffraction sub-regions (see non-diffraction sub-regions 221a, 221b and 221c shown in Figure 5), then these non-diffraction sub-regions A continuous non-diffractive region may be formed having an area greater than said predetermined threshold. Therefore, in the process S2a, it is advantageous to selectively set only a part of the partitions whose area is smaller than the aforementioned predetermined threshold as non-diffraction partitions.
  • non-diffractive partitions are set selectively, rather than according to fixed rules based on the area of the partitions, more degrees of freedom can be provided for optimal design, allowing better results to be achieved.
  • Fig. 16 schematically shows another example of a diffractive optical waveguide partition obtained according to the diffractive optical waveguide design method 3, wherein for partitions whose area is smaller than a predetermined threshold, only a part of the partitions are set as non-diffractive partition.
  • the diffractive optical waveguide 200B shown in FIG. 16 has basically the same structure and partitions as the diffractive optical waveguide 200A shown in FIG. Among the partitions with a predetermined threshold, only a part of the partitions are set as non-diffractive partitions.
  • Diffractive optical waveguide design method 3 optionally and preferably includes processing S3a.
  • design method 3 can use the setting of non-diffractive partition as an optimization variable, so that the optimized non-diffractive partition under the same random partition can be found As well as the optimized optical structure of the corresponding sub-gratings, the degree of freedom in design is improved, and it is beneficial to obtain a more optimized design solution.
  • process S2a and process S2b in the diffractive optical waveguide design method 3 can also be combined into, for example, the design method 1 shown in FIG. 7 to replace the process S2.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

公开了一种用于光学扩瞳的衍射光波导、包括其的显示设备以及其设计方法。该衍射光波导包括设置在基板之上或之中的耦入光栅和耦出光栅,其中耦出光栅至少部分地形成在一随机分区区域上,耦出光栅包括形成在随机分区区域的多个分区中的多个子光栅,并且至少部分分区中的子光栅具有不同的光学结构。根据本公开,能够为耦出光栅提供更高的设计自由度,并且其优化结果亦能够更趋近于最优解。

Description

衍射光波导、显示设备及衍射光波导设计方法
本申请要求享有于2021年10月15日提交中国专利局、申请号为202111202873.7、发明名称为“衍射光波导、显示设备及衍射光波导设计方法”的中国专利申请的优先权,其全部内容通过引用结合于此。
技术领域
本发明涉及基于衍射的显示技术,特别是可用于增强现实显示的衍射光波导、包括该衍射光波导的显示设备以及衍射光波导设计方法。
背景技术
随着半导体工艺的高度发展,人与计算机之间的交互方式正在飞速发展,其中增强现实(Augmented Reality,AR)显示可以提供给人类以更多维度的信息,得到人们的广泛关注。AR眼镜是增强现实显示领域的重要媒介之一。现有的基于几何光学的AR眼镜使用自由曲面方案,其存在尺寸限制;基于阵列光波导的AR眼镜的设计原理相对简单,但是工艺难度较大,不适合大规模量产,并且由于阵列光波导需要搭配特定光机也制约了其大规模推广。
衍射光波导具有可量产性强、轻薄等优势,在AR显示领域逐渐得到认可,并有望成为未来AR领域的主流技术发展方向。用于AR显示的衍射光波导,尤其是二维光栅波导,由于其光栅具有多级次衍射且光栅对偏振敏感,所以整个波导耦合系统具有很高的无规律性,若不对光栅区域进行分区优化,则最终视窗(eyebox)范围内,人眼在不同的位置接收到的光强不同,会使得使用衍射光波导作为AR眼镜的显示模组难以被人感官所接受。
发明内容
本发明的目的是提供一种用于光学扩瞳的衍射光波导、包括该衍 射光波导的显示设备以及衍射光波导设计方法,它们能够改善衍射光波导的出射光场的光能量分布均匀性,至少部分地克服了现有技术中的不足。
根据本发明的一个方面,提供了一种用于光学扩瞳的衍射光波导,其包括波导基板和设置在所述波导基板之上或之中的耦入光栅和耦出光栅,所述耦入光栅配置为将输入光束耦合到所述波导基板中以使之通过全反射被耦合到所述耦出光栅,其中,所述耦出光栅至少部分地形成在一随机分区区域上,所述随机分区区域包括具有随机形成的形状、大小及/或位置的多个分区,所述耦出光栅包括形成在所述多个分区中的多个子光栅,并且至少部分分区中的所述子光栅具有不同的光学结构。
根据本发明实施例,所述多个子光栅构造为使得所述衍射光波导的出射光场的光能量分布基本上均匀。
优选地,所述多个子光栅包括二维光栅,并且所述二维光栅具有第一光栅矢量、第二光栅矢量和第三光栅矢量。
优选地,所述多个子光栅中的二维光栅具有彼此相同的光栅矢量。
在一些实施例中,所述耦出光栅可以关于一中轴线对称。
优选地,所述多个分区为根据维诺图划分的维诺分区。
更优选地,所述多个分区为根据基于随机撒点形成的维诺图划分的维诺分区。
优选地,所述多个分区包括其中不形成所述子光栅的非衍射分区,所述非衍射分区的面积小于预定阈值,所述预定阈值小于或等于人眼平均瞳孔面积,优选小于或等于人眼平均瞳孔面积的二分之一。更优选地,所述多个分区包括至少一个分区,其面积小于或等于至少一个所述非衍射分区并且其中形成有所述子光栅。
优选地,至少一个分区中的所述子光栅的光学结构具有与另一个分区中的所述子光栅的光学结构不同的横截面形状及/或尺寸。
优选地,至少一个分区中的所述子光栅的光学结构具有不规则的横截面形状。
优选地,至少一个分区中的所述子光栅的光学结构具有与另一个 分区中的所述子光栅的光学结构不同的高度或深度。
根据本发明的另一个方面,提供了一种显示设备,该显示设备包括如上所述的衍射光波导。
优选地,所述显示设备为近眼显示设备,并且包括镜片和用于将镜片保持为靠近眼睛的框架,所述镜片包括所述衍射光波导。
优选地,所述显示设备为增强现实显示设备。
根据本发明的又一个方面,提供了一种用于光学扩瞳的衍射光波导的设计方法,该设计方法包括以下处理:
(1)在待形成耦出光栅的一目标区域中进行随机分区,形成多个分区,所述多个分区具有随机形成的形状、大小及/或位置;
(2)对所述多个分区中的子光栅进行初始化,其中每个所述子光栅包括多个光学结构;以及
(3)以每个所述子光栅的光学结构的至少一个参数为优化变量,进行优化处理,得到一项优化结果,其中所述优化处理的优化目标包括所述衍射光波导的出射光场的光能量分布均匀性。
优选地,处理(3)中,所述优化变量包括所述光学结构的横截面形状及/或尺寸以及/或者所述光学结构的高度或深度,并且所述优化处理使得至少部分分区中的所述子光栅具有不同的光学结构。
优选地,处理(2)中,所述初始化使得每个所述子光栅的光学结构为柱状结构;并且处理(3)中,所述优化处理包括通过对所述柱状结构的横截面的膨胀和腐蚀处理。
优选地,处理(3)中,所述优化处理的优化目标还包括所述衍射光波导的光能量耦合效率。
优选地,处理(1)可以包括:在所述目标区域中随机撒点,基于该随机撒点生成维诺图,并根据该维诺图进行分区。
优选地,处理(2)可以包括:
(2a)选择性地将面积小于预定阈值的分区中的至少一部分分区设置为非衍射分区,在所述非衍射分区中不形成所述子光栅,所述预定阈值小于或等于人眼平均瞳孔面积,优选小于或等于人眼平均瞳孔面积的二分之一;以及
(2b)对所述非衍射分区以外的分区中的子光栅进行初始化。
优选地,所述设计方法还可以包括以下处理:
(4)改变对所述目标区域的随机分区,形成新的多个分区,并基于所述新的多个分区,重复执行处理(2)至处理(3),得到多项优化结果;以及
(5)比较所述多项优化结果,根据最符合所述优化目标的一项优化结果,确定所述衍射光波导的分区和对应的子光栅的优化光学结构。
优选地,处理(1)可以包括:获取撒点数M,在所述目标区域中随机撒下M个点,基于该M个点生成维诺图,并根据该维诺图进行分区;并且处理(4)包括:改变撒点数M,基于该改变的撒点数M在所述目标区域中重新随机撒点,生成新的维诺图,并根据新的维诺图进行分区。
优选地,所述设计方法还可以包括以下处理:
(3a)改变对所述非衍射分区的设置,形成新的非衍射分区,并基于所述新的非衍射分区,重复执行处理(2b)和处理(3),得到对应于同一随机分区的优化结果。
优选地,所述设计方法还可以包括以下处理:
(4’)改变对所述目标区域的随机分区,形成新的多个分区,并基于所述新的多个分区,重复执行处理(2)、处理(3)和处理(3a),得到对应于多种随机分区的多项优化结果;以及
(5’)比较所述多项优化结果,根据最符合所述优化目标的一项优化结果,确定所述衍射光波导的分区和对应的子光栅的优化光学结构。
根据本发明实施例的衍射光波导及其设计方法中,在一定区域内随机形成耦出光栅的分区,在不同的分区中采用不同的光栅光学结构,以最终波导效果作为评价进行优化设计,相比于其它衍射光波导及其设计方法中规则分区及/或固定光栅结构具有更高的设计自由度,其优化结果亦能够更趋近于最优解。
附图说明
通过阅读参照以下附图所作的对非限制性实施例的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为根据本发明实施例的用于光学扩瞳的衍射光波导的一示例的示意图,其中衍射光波导的整个耦出光栅形成在随机分区区域上;
图2示意性地示出了根据本发明实施例的衍射光波导对光的耦入、传播和耦出情况;
图3示意性地示出了根据本发明实施例的衍射光波导的耦入光栅和耦出光栅的光栅矢量的示例;
图4示意性地示出了耦出光栅的子光栅的光学结构的不同示例;
图5为根据本发明实施例的用于光学扩瞳的衍射光波导的另一示例的示意图,其中衍射光波导的耦出光栅的一部分形成在随机分区区域上;
图6为根据本发明实施例的用于光学扩瞳的衍射光波导的又一示例的示意图,其中衍射光波导的耦出光栅为非对称结构的;
图7为根据本发明实施例的用于光学扩瞳的衍射光波导的设计方法的流程图;
图8为可用于图7所示衍射光波导设计方法的随机分区方法的一示例的流程图;
图9示意性地示出了根据图8所示方法进行随机分区的一个示例;
图10示意性地示出了根据图8和图9所示方法和示例得到的衍射光波导的分区的一个示例;
图11为图7所示衍射光波导设计方法的一个扩展例的流程图;
图12示意性地示出了根据图11所示扩展例得到的衍射光波导的分区的另一示例;
图13为图7所示衍射光波导设计方法的另一扩展例的流程图;
图14示意性地示出了根据图13所示扩展例得到的衍射光波导分区的一示例,其中设置有非衍射分区;
图15为图14中虚线圆圈所标示部分的局部放大示意图;
图16示意性地示出了根据图13所示扩展例得到的衍射光波导分区的另一示例,其中设置有不同于图14所示的非衍射分区。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。为了便于描述,附图中仅示出了与发明相关的部分。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
首先,参照附图介绍根据本发明实施例的用于光学扩瞳的衍射光波导。
图1为根据本发明实施例的用于光学扩瞳的衍射光波导的一示例即衍射光波导10的示意图。图2示意性地示出了根据本发明实施例的衍射光波导对光的耦入、传播和耦出情况。如图1所示,用于光学扩瞳的衍射光波导10包括波导基板10a和设置在波导基板10a之上或之中的耦入光栅11和耦出光栅12。如图2中更加清楚地显示的,耦入光栅11配置为将输入光束b1耦合到波导基板10a中以使之通过全反射被耦合到耦出光栅12。为了实现光学扩瞳,如图2所示,耦出光栅12在接收到来自耦入光栅11的较细的入射光束之后,通过在平面内的两个方向上不断衍射扩展光束并同时部分地将光从波导基板10a中耦出,实现在所述平面内扩展光瞳的作用,使得观察者能够在较大的视窗EB(见图2)内观察到入射光束所携带的显示信息。
返回参照图1,根据本发明实施例,耦出光栅12形成在随机分区区域12a上,该随机分区区域12a包括具有随机形成的形状、大小及/或位置的多个分区(例如图1所示分区d1、d2、d3)。根据本发明实施例,衍射光波导10的耦出光栅12包括形成在该多个分区中的多个子光栅(例如形成在分区d1、d2、d3中的子光栅g1、g2、g3),并且至少部分分区中的子光栅具有不同的光学结构。
根据本发明实施例的衍射光波导在耦出光栅的一定区域内采用随机形成的分区,并在不同的分区中采用不同的光栅光学结构,使得能够以出射光场的光能量分布均匀性为目标而对不同分区中的子光栅进 行优化,而且相比于具有规则的分区及/或固定的光栅结构的衍射光波导具有更高的设计自由度,其优化结果亦更趋近于最优解。
优选地,耦出光栅的多个子光栅构造为使得衍射光波导的出射光场的光能量分布基本上均匀。
根据本发明实施例,优选地,耦出光栅12的随机分区区域12a中的多个分区为根据维诺(Voronoi)图划分的维诺分区。更优选地,多个分区为根据基于随机撒点形成的维诺图划分的维诺分区。维诺图用于描述空间临近关系,其用不规则的小面块逼近自然界不规律的单元。在本发明中,利用维诺图,特别是基于随机撒点形成的维诺图,有效地实现了随机分区,避免和消除了分区过程中有关形状、位置和大小的固定规则,为衍射光波导的优化设计提供了尽可能高的自由度,从而使得能够通过优化设计尽可能地趋近于最优解。
在图1所示示例中,耦入光栅11相对于耦出光栅12在图中所示上下方向上对中布置,其中耦出光栅12的中轴线cc在垂直于波导基板10a的平面(图1的图纸平面内)经过耦入光栅11。这种情况下,为了在耦出光栅12的出射光场中获得均匀的光能量分布,优选地,耦出光栅12在上下方向上可以相对于中轴线cc呈对称结构,如图1所示。
尽管图2中将耦入光栅11和耦出光栅12示出为都形成在波导基板10a的同一表面上,但是在其它一些情况下耦入光栅11和耦出光栅12可以分别形成在波导基板10a的彼此相反的两个表面上,在另一些情况下耦入光栅11和耦出光栅12中的任一者还可以形成在波导基板10a的内部。应该理解,根据本发明的衍射光波导并不限于耦入光栅和耦出光栅在波导基板中的任何具体位置。
图3示意性地示出了衍射光波导10的耦入光栅11和耦出光栅12的光栅矢量。有利地,耦入光栅11可以采用一维光栅,其具有光栅矢量G0。耦出光栅12的多个子光栅优选包括二维光栅,并且优选地,如图3所示,这样的二维子光栅具有第一光栅矢量G1、第二光栅矢量G2和第三光栅矢量G3。在图3的图示中,为了清楚起见,将光栅矢量G1、G2、G3分开画出,但是应该理解,对于作为二维光栅的子光 栅,在任一处都可以同时存在/形成上述三个光栅矢量。例如参见图4,二维光栅中可以包括在三个方向上呈周期性布置的多个光学结构s1/s2,从而在三个方向上分别形成光栅矢量。在本申请中,“光栅矢量”的方向为光栅的结构周期性变化/布置所沿的方向(例如垂直于光栅刻线/线槽的方向),“光栅矢量”的大小为2π/t,其中t为光栅结构在“光栅矢量”的方向上的周期/间距。
为了提高衍射光波导的光耦合效率,优选地,耦出光栅12的多个分区中的二维子光栅具有彼此相同的光栅矢量。
应该理解的是,根据本发明实施例的衍射光波导中的耦出光栅也可以包括分别具有例如图3所示的第一光栅矢量G1和第二光栅矢量G2的两个一维光栅,尽管没有示出,但是这两个一维光栅例如可以分别形成于波导基板10a的彼此相对的两个表面上。这种情况下,如图1所示的耦出光栅12的随机分区区域12a中的随机分区可以例如同样地应用于这两个一维光栅,从而实现相同或类似的技术效果。为了讨论的清晰简洁起见,以下将以耦出光栅的子光栅为二维光栅为例进行讨论。
为了便于理解,图4示意性地示出了可用于耦出光栅子光栅的具有不同横截面的光学结构的示例。图4中的图形(a)中示出了作为二维光栅的耦出光栅子光栅中的光学结构s1,光学结构s1为横截面为正方形的柱状结构;图形(b)示出了作为二维光栅的耦出光栅子光栅中的光学结构s2,光学结构s2为横截面为不规则形状的柱状结构。应该理解,图4的图示仅为示例性的,而非限制性的,根据本发明的衍射光波导中的耦出光栅所采用的子光栅光学结构可以具有其它不同的横截面形状,例如圆形、三角形、平行四边形、椭圆形之类的基本几何形状或由这些基本几何形状简单组合(包括“相加”或“相减”)形成的、在此称为“规则形状”的形状。应该注意的是,本申请中出现的“不规则形状”指的是上述基本几何形状以及“规则形状”以外的形状。作为补充或替代,不同分区的子光栅的光学结构还可以具有不同的横截面尺寸。
此外,根据本发明实施例,衍射光波导的耦出光栅的子光栅的光 学结构还可以具有不同的高度或深度(垂直于图4的图面方向上)。
此外,尽管没有示出,耦出光栅12的随机分区区域12a的多个分区可以包括其中不形成子光栅的非衍射分区,这样的非衍射分区的面积小于预定阈值,预定阈值优选小于或等于人眼平均瞳孔面积,优选小于或等于人眼平均瞳孔面积的二分之一。在非衍射分区中,由于没有形成光栅结构,光在该区域中通过全反射在波导基板中继续传播,而不被耦出,所以非衍射分区中的耦出光强理论上为零;但是由于非衍射分区的面积小于人眼平均瞳孔面积,所以上述耦出光强为零的情况并不直接被人眼感受到。通过设置这样的非衍射分区,一方面可以作为调节或抑制特定区域中的光耦出效率的手段,增大优化设计的自由度,另一方面可以省去在这样较小的区域中进行子光栅光学结构优化的工作负担,提高优化效率。
优选地,对于面积小于上述预定阈值的分区,可以选择仅将其中的一部分设置为非衍射分区,从而耦出光栅的随机分区区域的多个分区中包括至少一个分区,其面积小于或等于至少一个非衍射分区并且其中形成有子光栅。这样,可以避免当若干个面积小于上述预定阈值的分区彼此邻接而又都被设置为非衍射分区时,实际上连续的非衍射分区的面积超出人眼平均瞳孔面积,给基于该衍射光波导的显示造成人眼可见的“暗区”。此外,由于非衍射分区的设置是有选择地进行的,而非基于分区的面积而按照固定的规则设置的,所以可以为优化设计提供更大的自由度,从而允许达到更优的效果。关于非衍射分区的设置在下文中介绍根据本发明的衍射光波导设计方法时参照附图更加详细地说明,在此不再赘述。
图1所示示例中,衍射光波导10的整个耦出光栅12都形成在随机分区区域12a上,而且耦出光栅12关于中轴线cc呈对称结构。然而,根据本发明实施例的衍射光波导并不限于图1所示的上述构造。
例如,图5为根据本发明实施例的用于光学扩瞳的衍射光波导的另一示例的示意图,其中衍射光波导10’的耦出光栅12’的一部分形成在随机分区区域12a上,另一部分形成其它区域12b上,这里“其它区域”可以时规则分区区域也可以不进一步分区的区域。如图5所示, 优选地,耦出光栅12’的随机分区区域12a布置为相对于其它区域12b更加靠近耦入光栅11,这是因为靠近耦入光栅11的区域中传播的光能量密度更高,耦出光栅12’的光瞳扩展能力(包括例如出射光场的光能量分布均匀性和光耦出效率)的影响更大,更加需要通过基于随机分区的优化设计来提高其光瞳扩展能力。
此外,图6为根据本发明实施例的用于光学扩瞳的衍射光波导的又一示例的示意图,其中衍射光波导10”的耦入光栅11”相对于耦出光栅12”在图6所示上下方向上被偏置,相应地耦出光栅12”及其随机分区区域12a”中的分区形成为非对称结构的,以在偏置的光耦入条件下实现良好的光学扩瞳。当然,应该理解,图6所示示例仅为举例说明的目的,而非限制性的,根据本发明实施例的衍射光波导还可能在其它不同情况下采取非对称结构。
尽管没有示出,本发明还提供一种显示设备,该显示设备包括根据本发明实施例的如上所述的衍射光波导。优选地,显示设备为近眼显示设备,并且包括镜片和用于将镜片保持为靠近眼睛的框架,其中镜片包括根据本发明实施例的衍射光波导。优选地,显示设备为增强现实显示设备。
接下来将参照附图介绍根据实施例的用于光学扩瞳的衍射光波导的设计方法。
图7为根据本发明实施例的用于光学扩瞳的衍射光波导的设计方法1的流程图。如图7所示,衍射光波导设计方法1包括以下处理:
S1:在待形成耦出光栅的一目标区域中进行随机分区,形成多个分区,该多个分区具有随机形成的形状、大小及/或位置;
S2:对多个分区中的子光栅进行初始化,其中每个子光栅包括多个光学结构;以及
S3:以每个子光栅的光学结构的至少一个参数为优化变量,进行优化处理,得到一项优化结果。
根据本发明实施例的衍射光波导设计方法1中的“目标区域”对应于根据本发明实施例的衍射光波导中的耦出光栅的随机分区区域,例如图1所示的随机分区区域12a以及图5所示的随机分区区域12a’, 即耦出光栅的意图要基于随机分区来优化设计的区域;该目标区域可以形成为耦出光栅的整个区域,也可以时耦出光栅所占区域的一部分。
根据本发明实施例的衍射光波导设计方法1中的优化处理的优化目标包括衍射光波导的出射光场的光能量分布均匀性。在一些实现方式中,可以采用视窗EB(见图3)的范围(能够看到图像的人眼活动范围)内的光能量分布非均匀性来表征衍射光波导的出射光场的光能量分布均匀性。在另一些实现方式中,可以采用人眼E在任一位置能够接收/看到的视角范围e(见图3)内的光能量均匀性来表征衍射光波导的出射光场的光能量分布均匀性。作为替代,在其它实现方式中,也可以结合采用上述两者表征光能量分布均匀性的方式,例如通过加权计算。
优选地,优化处理的优化目标还可以包括光能量耦合效率。若进入衍射光波导的耦入光栅的入射光能量为I in,从耦出光栅出射的视窗EB内的总光能量为I E,则衍射光波导的光能量耦合效率为r=I E/I in。作为示例,根据本发明实施例的衍射光波导设计方法1可以将光能量耦合效率r大于或等于一预定值作为优化目标之一。
“优化处理”在这里指的是这样一个处理过程:通过改变优化变量(例如子光栅光学结构的至少一个参数)的赋值获得对应于优化目标的多个结果(例如表示光能量分布均匀性及/或光能量耦合效率的量值),并以是否符合优化目标为标准,选择其中一个结果并将该结果对应的优化变量的赋值以及其它参数(例如以下参照图11和图13所介绍的非衍射光栅分区的设置情况以及/或者随机分区的情况)作为优化结果。
图8为随机分区方法的一示例的流程图,该随机分区方法可用于衍射光波导设计方法1的处理S1。如图所示,该随机分区方法/处理S1可以包括以下步骤:
S1a:在目标区域中随机撒点;
S1b:基于该随机撒点生成维诺图;以及
S1c:根据该维诺图进行分区。
优选地,在步骤S1a中可以首先基于例如目标区域的面积确定随 机撒点的点数M。
为了便于理解,图9示意性地示出了根据图8所示方法进行随机分区的一个示例。图9中从左到右依次示出了通过步骤S1a得到的随机撒点形图形A、通过步骤S1b基于随机撒点图形A得到的维诺图B以及通过步骤S1c基于维诺图B得到的随机分区图C。
图10进一步示出了根据图8和图9所示方法和示例得到的衍射光波导的分区的一个示例,其中衍射光波导100包括波导基板100a和形成在波导基板100a之上或之中的耦入光栅110和耦出光栅120,并且耦出光栅120在目标区域120a中形成有如图9中的随机分区图C所示的分区。
返回参照图7,衍射光波导设计方法1的处理S2中,对多个分区中的子光栅进行初始化。初始化得到包括多个光学结构的各个子光栅。优选,在处理S2中使得不同分区中的二维子光栅具有相同的光栅矢量。在一些实现方式中,该初始化可以使得每个子光栅的光学结构为柱状结构,例如为如图4中图形(a)所示的具有正方形横截面的柱状光学结构。在处理S3的优化处理中可以包括通过对这些柱状结构的横截面的膨胀和腐蚀处理,得到具有优化的横截面的柱状结构,例如如图4中图形(b)所示的具有不规则横截面的柱状结构。仅作为示例,可以采用例如遗传算法(GA)、粒子群算法(PSO)、模拟退火算法(SA),以柱状结构作为起始点优化子光栅的光学结构的横截面的形状及/或尺寸。上述介绍的通过膨胀和腐蚀处理对子光栅光学结构的横截面进行优化,为子光栅光学结构的设计提供了更高的自由度,从而使得优化结果能够更加趋于最优解。
此外,衍射光波导设计方法1的处理S3中还可以将子光栅的光学结构的高度或深度作为优化变量进行优化处理。总之,经过优化处理,随机分区中的至少部分分区的子光栅具有不同的光学结构。
处理S3中得到的优化结果可以包括但不限于例如衍射光波导的分区、子光栅的优化光学结构以及对应的光能量分布均匀性。
根据本发明实施例的衍射光波导设计方法在耦出光栅的一定区域内采用随机形成的分区,并对不同的分区中的子光栅的光学结构进行 优化,使得能够避免/消除固定的分区规则及/或固定的光栅结构对衍射光波导设计带来的局限,提高了设计自由度,从而使得优化结果亦更趋近于最优解。
图11为图7所示衍射光波导设计方法的一个扩展例(即衍射光波导设计方法2)的流程图。如图11所示,衍射光波导设计方法2包括以下处理:
S1:在待形成耦出光栅的一目标区域中进行随机分区,形成多个分区,该多个分区具有随机形成的形状、大小及/或位置;
S2:对多个分区中的子光栅进行初始化,其中每个子光栅包括多个光学结构;
S3:以子光栅的光学结构的至少一个参数为优化变量,进行优化处理,得到一项优化结果;
S4:改变对所述目标区域的随机分区,形成新的多个分区,并基于新的多个分区,返回执行处理S2,从而重复执行处理S2至处理S3,得到多项优化结果;以及
S5:比较多项优化结果,根据最符合优化目标的一项优化结果,确定所述衍射光波导的分区和对应的子光栅的优化光学结构。
衍射光波导设计方法2的上述处理S1、处理S2和处理S3与图7所示衍射光波导设计方法1中的处理S1、处理S2和处理S3相同,在此不再赘述。
衍射光波导设计方法2的处理S5中的优化目标可以与处理S3中的优化处理的目标一致,具体可以参见以上对图7所示设计方法1的优化处理的优化目标的讨论,在此不再赘述。
在优选实现方式中,衍射光波导设计方法2的处理S4可以包括:基于图9所示的随机分区方法,改变撒点数M,基于该改变的撒点数M在所述目标区域中重新随机撒点,生成新的维诺图,并根据新的维诺图进行分区。这种情况下,撒点数M亦作为衍射光波导设计方法2的一类优化变量。
在另一些实现方式中,在处理S4中也可以例如不改变撒点数而重新撒点,生成新的维诺图,并根据新的维诺图进行分区。
应该理解的是,根据本发明实施例的衍射光波导设计方法可以不限于特定的随机分区方法,而在不基于维诺图进行随机分区的情况下,在处理S4中,可以采用相应的重新随机分区的方法。
为了便于理解,图12示意性地示出了根据衍射光波导设计方法2得到的衍射光波导的新的随机分区的另一示例,其中衍射光波导200包括波导基板200a和形成在波导基板200a之上或之中的耦入光栅210和耦出光栅220,并且耦出光栅220在目标区域220a中形成有不同于图9中的随机分区图C所示的分区。
根据衍射光波导设计方法2,在处理S4之后,将基于新的随机分区,返回执行处理S2,从而重复执行处理S2至处理S3,得到多项优化结果。该重复执行的过程在此不再赘述。
总之,衍射光波导设计方法2中,在图7所示设计方法1的优化处理的基础上,进一步将随机分区本身作为优化变量,进一步提高了设计的自由度,有利于获得更加趋近于最优的优化结构。
图13为图7所示衍射光波导设计方法的另一扩展例(即衍射光波导设计方法3)的流程图。如图13所示,衍射光波导设计方法3包括以下处理:
S1:在待形成耦出光栅的一目标区域中进行随机分区,形成多个分区,该多个分区具有随机形成的形状、大小及/或位置;
S2a:选择性地将面积小于预定阈值的分区中的至少一部分分区设置为非衍射分区;
S2b:对所述非衍射分区以外的分区中的子光栅进行初始化
S3:在保持子光栅的光栅矢量不变的条件下,以子光栅的光学结构的至少一个参数为优化变量,进行优化处理,得到一项优化结果;
S3a:改变对非衍射分区的设置,形成新的非衍射分区,并基于新的非衍射分区,返回执行处理S2b,从而重复执行处理S2b至处理S3,得到对应于同一随机分区的多项优化结果;
S4’:改变对目标区域的随机分区,形成新的多个分区,并基于所述新的多个分区,返回执行处理S2a,从而重复执行处理S2a至处理S3,得到对应于多种随机分区的多项优化结果;以及
S5’:比较多项优化结果,根据最符合优化目标的一项优化结果,确定所述衍射光波导的分区和对应的子光栅的优化光学结构。
衍射光波导设计方法3的上述处理S1、处理S3和处理S5’与图11所示衍射光波导设计方法2中的处理S1、处理S3和处理S5相同,在此不再赘述。
衍射光波导设计方法3的处理S4’中改变对目标区域的随机分区可以通过与图11所示衍射光波导设计方法2中的处理S4中相同方式来实现,在此不再赘述。
衍射光波导设计方法3与衍射光波导设计方法2的主要不同之处在于,衍射光波导设计方法3中在随机分区的基础上进一步设置了非衍射分区,非衍射分区为其中不形成子光栅的分区。这样,在设计方法3中对随机分区中的子光栅进行初始化的处理分为了两个部分,即图13所示的处理S2a和处理S2b。在优选的实现方式中,在处理S2a中,选择面积小于预定阈值的分区作为非衍射分区,其中预定阈值小于或等于人眼平均瞳孔面积,优选小于或等于人眼平均瞳孔面积的二分之一。
如以上介绍根据本发明实施例的衍射光波导时所讨论的,在非衍射分区中,由于没有形成光栅结构,光在该区域中通过全反射在波导基板中继续传播,而不被耦出,所以非衍射分区中的耦出光强理论上为零;但是由于非衍射分区的面积小于人眼平均瞳孔面积,所以上述耦出光强为零的情况并不直接被人眼感受到。衍射光波导设计方法3通过设置这样的非衍射分区,一方面可以调节或抑制特定区域中的光耦出效率,增大优化设计的自由度,另一方面可以省去在这样较小的区域中进行子光栅光学结构优化的工作负担,提高优化效率。
优选地,在处理S2a中,对于面积小于上述预定阈值的分区,可以选择仅将其中的一部分设置为非衍射分区。这样,可以避免当若干个面积小于上述预定阈值的分区彼此邻接而又都被设置为非衍射分区时,实际上连续的非衍射区域的面积超出人眼平均瞳孔面积,给基于该衍射光波导的显示造成人眼可见的“暗区”。为了便于理解,图14示意性地示出了衍射光波导分区的一示例,其中设置有非衍射分区; 图15示出了图14中虚线圆圈所标示部分的局部放大示意图。图14所示衍射光波导200A具有与图12所示衍射光波导200基本上相同的结构和分区,不同之处主要在于在衍射光波导200A的耦出光栅220的随机分区区域220a中进一步设置了非衍射分区221。如图15更加清楚地示出的,如果若干个面积小于预定阈值但是彼此邻接的分区都被设置为非衍射分区(见图5所示非衍射分区221a、221b和221c),则这些非衍射分区可能形成面积大于所述预定阈值的连续的非衍射区域。所以,在处理S2a中,对于面积小于上述预定阈值的分区,有选择地仅将其中的一部分设置为非衍射分区是有利的。
此外,由于非衍射分区的设置是有选择地进行的,而非基于分区的面积而按照固定的规则设置的,所以可以为优化设计提供更大的自由度,从而允许达到更优的效果。
仅为示例的目的,图16示意性地示出了根据衍射光波导设计方法3得到的衍射光波导分区的另一示例,其中对于面积小于预定阈值的分区,仅将其中一部分分区设置为非衍射分区。具体而言,图16所示衍射光波导200B具有与图15所示衍射光波导200A基本上相同的结构和分区,不同之处仅在于:在衍射光波导200B中,随机分区区域220a的面积小于预定阈值的分区中,仅其中一部分分区设置为非衍射分区。
衍射光波导设计方法3可选并且优选包括处理S3a。通过在处理S3a中改变对非衍射分区的设置,并返回执行处理S2b和处理S3,设计方法3可以将非衍射分区的设置作为优化变量,这样使得能够找到同一随机分区下的优化的非衍射分区以及对应的子光栅的优化光学结构,提高了设计自由度,有利于获得更加优化的设计方案。
此外,应该理解的是,衍射光波导设计方法3中的处理S2a和处理S2b也可以被结合到例如图7所示的设计方法1中以替代处理S2。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合 而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (25)

  1. 一种用于光学扩瞳的衍射光波导,包括波导基板和设置在所述波导基板之上或之中的耦入光栅和耦出光栅,所述耦入光栅配置为将输入光束耦合到所述波导基板中以使之通过全反射被耦合到所述耦出光栅,其中,
    所述耦出光栅至少部分地形成在一随机分区区域上,所述随机分区区域包括具有随机形成的形状、大小及/或位置的多个分区,所述耦出光栅包括形成在所述多个分区中的多个子光栅,并且至少部分分区中的所述子光栅具有不同的光学结构。
  2. 如权利要求1所述的衍射光波导,其中,所述多个子光栅构造为使得所述衍射光波导的出射光场的光能量分布基本上均匀。
  3. 如权利要求1所述的衍射光波导,其中,所述多个子光栅包括二维光栅,并且所述二维光栅具有第一光栅矢量、第二光栅矢量和第三光栅矢量。
  4. 如权利要求3所述的衍射光波导,其中,所述多个子光栅中的二维光栅具有彼此相同的光栅矢量。
  5. 如权利要求1所述的衍射光波导,其中,所述耦出光栅关于一中轴线对称。
  6. 如权利要求1-5中任一项所述的衍射光波导,其中,所述多个分区为根据维诺图划分的维诺分区。
  7. 如权利要求6所述的衍射光波导,其中,所述多个分区为根据基于随机撒点形成的维诺图划分的维诺分区。
  8. 如权利要求1-5中任一项所述的衍射光波导,其中,所述多个分区包括其中不形成所述子光栅的非衍射分区,所述非衍射分区的面积小于预定阈值,所述预定阈值小于或等于人眼平均瞳孔面积,优选小于或等于人眼平均瞳孔面积的二分之一。
  9. 如权利要求8所述的衍射光波导,其中,所述多个分区包括至少一个分区,其面积小于或等于至少一个所述非衍射分区并且其中形成有所述子光栅。
  10. 如权利要求1-5中任一项所述的衍射光波导,其中,至少一个分区中的所述子光栅的光学结构具有与另一个分区中的所述子光栅的光学结构不同的横截面形状及/或尺寸。
  11. 如权利要求1-5中任一项所述的衍射光波导,其中,至少一个分区中的所述子光栅的光学结构具有不规则的横截面形状。
  12. 如权利要求1-5中任一项所述的衍射光波导,其中,至少一个分区中的所述子光栅的光学结构具有与另一个分区中的所述子光栅的光学结构不同的高度或深度。
  13. 一种显示设备,包括如权利要求1-12中任一项所述的衍射光波导。
  14. 如权利要求13所述的显示设备,其中,所述显示设备为近眼显示设备,并且包括镜片和用于将镜片保持为靠近眼睛的框架,所述镜片包括所述衍射光波导。
  15. 如权利要求13或14所述的显示设备,其中,所述显示设备为增强现实显示设备。
  16. 一种用于光学扩瞳的衍射光波导的设计方法,包括以下处理:
    (1)在待形成耦出光栅的一目标区域中进行随机分区,形成多个分区,所述多个分区具有随机形成的形状、大小及/或位置;
    (2)对所述多个分区中的子光栅进行初始化,其中每个所述子光栅包括多个光学结构;以及
    (3)以每个所述子光栅的光学结构的至少一个参数为优化变量,进行优化处理,得到一项优化结果,其中所述优化处理的优化目标包括所述衍射光波导的出射光场的光能量分布均匀性。
  17. 如权利要求16所述的衍射光波导的设计方法,其中,处理(3)中,所述优化变量包括所述光学结构的横截面形状及/或尺寸以及/或者所述光学结构的高度或深度,并且所述优化处理使得至少部分分区中的所述子光栅具有不同的光学结构。
  18. 如权利要求17所述的衍射光波导的设计方法,其中,处理(2)中,所述初始化使得每个所述子光栅的光学结构为柱状结构;并且处理(3)中,所述优化处理包括通过对所述柱状结构的横截面的膨胀和 腐蚀处理。
  19. 如权利要求16所述的衍射光波导的设计方法,其中,处理(3)中,所述优化处理的优化目标还包括所述衍射光波导的光能量耦合效率。
  20. 如权利要求16所述的衍射光波导的设计方法,其中,处理(1)包括:在所述目标区域中随机撒点,基于该随机撒点生成维诺图,并根据该维诺图进行分区。
  21. 如权利要求16所述的衍射光波导的设计方法,其中,处理(2)包括:
    (2a)选择性地将面积小于预定阈值的分区中的至少一部分分区设置为非衍射分区,在所述非衍射分区中不形成所述子光栅,所述预定阈值小于或等于人眼平均瞳孔面积,优选小于或等于人眼平均瞳孔面积的二分之一;以及
    (2b)对所述非衍射分区以外的分区中的子光栅进行初始化。
  22. 如权利要求16-21中任一项所述的衍射光波导的设计方法,还包括以下处理:
    (4)改变对所述目标区域的随机分区,形成新的多个分区,并基于所述新的多个分区,重复执行处理(2)至处理(3),得到多项优化结果;以及
    (5)比较所述多项优化结果,根据最符合所述优化目标的一项优化结果,确定所述衍射光波导的分区和对应的子光栅的优化光学结构。
  23. 如权利要求22所述的衍射光波导的设计方法,其中,处理(1)包括:获取撒点数M,在所述目标区域中随机撒下M个点,基于该M个点生成维诺图,并根据该维诺图进行分区;并且
    处理(4)包括:改变撒点数M,基于该改变的撒点数M在所述目标区域中重新随机撒点,生成新的维诺图,并根据新的维诺图进行分区。
  24. 如权利要求21所述的衍射光波导的设计方法,还包括以下处理:
    (3a)改变对所述非衍射分区的设置,形成新的非衍射分区,并 基于所述新的非衍射分区,重复执行处理(2b)和处理(3),得到对应于同一随机分区的优化结果。
  25. 如权利要求24所述的衍射光波导的设计方法,还包括以下处理:
    (4’)改变对所述目标区域的随机分区,形成新的多个分区,并基于所述新的多个分区,重复执行处理(2)、处理(3)和处理(3a),得到对应于多种随机分区的多项优化结果;以及
    (5’)比较所述多项优化结果,根据最符合所述优化目标的一项优化结果,确定所述衍射光波导的分区和对应的子光栅的优化光学结构。
PCT/CN2022/124268 2021-10-15 2022-10-10 衍射光波导、显示设备及衍射光波导设计方法 WO2023061310A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111202873.7A CN113960796A (zh) 2021-10-15 2021-10-15 衍射光波导、显示设备及衍射光波导设计方法
CN202111202873.7 2021-10-15

Publications (1)

Publication Number Publication Date
WO2023061310A1 true WO2023061310A1 (zh) 2023-04-20

Family

ID=79463961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/124268 WO2023061310A1 (zh) 2021-10-15 2022-10-10 衍射光波导、显示设备及衍射光波导设计方法

Country Status (2)

Country Link
CN (1) CN113960796A (zh)
WO (1) WO2023061310A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113960796A (zh) * 2021-10-15 2022-01-21 嘉兴驭光光电科技有限公司 衍射光波导、显示设备及衍射光波导设计方法
CN116719169B (zh) * 2023-08-10 2024-01-05 北京亮亮视野科技有限公司 一种衍射光栅波导及增强现实显示设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111065953A (zh) * 2017-06-02 2020-04-24 迪斯帕列斯有限公司 具有双周期性光栅的衍射元件
CN111656257A (zh) * 2018-03-28 2020-09-11 迪斯帕列斯有限公司 出射光瞳扩展器
CN111679361A (zh) * 2020-06-24 2020-09-18 深圳珑璟光电技术有限公司 一种光波导、近眼显示系统及光波导耦出区域的设计方法
CN113156581A (zh) * 2021-05-27 2021-07-23 Oppo广东移动通信有限公司 衍射波导装置、近眼显示设备及制造方法
CN113960796A (zh) * 2021-10-15 2022-01-21 嘉兴驭光光电科技有限公司 衍射光波导、显示设备及衍射光波导设计方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111025657A (zh) * 2019-12-31 2020-04-17 瑞声通讯科技(常州)有限公司 近眼显示装置
CN216561224U (zh) * 2021-10-15 2022-05-17 嘉兴驭光光电科技有限公司 衍射光波导以及包括其的显示设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111065953A (zh) * 2017-06-02 2020-04-24 迪斯帕列斯有限公司 具有双周期性光栅的衍射元件
CN111656257A (zh) * 2018-03-28 2020-09-11 迪斯帕列斯有限公司 出射光瞳扩展器
CN111679361A (zh) * 2020-06-24 2020-09-18 深圳珑璟光电技术有限公司 一种光波导、近眼显示系统及光波导耦出区域的设计方法
CN113156581A (zh) * 2021-05-27 2021-07-23 Oppo广东移动通信有限公司 衍射波导装置、近眼显示设备及制造方法
CN113960796A (zh) * 2021-10-15 2022-01-21 嘉兴驭光光电科技有限公司 衍射光波导、显示设备及衍射光波导设计方法

Also Published As

Publication number Publication date
CN113960796A (zh) 2022-01-21

Similar Documents

Publication Publication Date Title
WO2023061310A1 (zh) 衍射光波导、显示设备及衍射光波导设计方法
CN216561224U (zh) 衍射光波导以及包括其的显示设备
CN115166895B (zh) 显示设备、显示用衍射光波导及其设计方法
WO2023134670A1 (zh) 用于衍射显示的光学波导装置及显示设备
WO2023134669A1 (zh) 显示设备、显示用衍射光波导及其设计方法
JP6424418B2 (ja) 光学素子、投影装置および計測装置並びに製造方法
CN111679361A (zh) 一种光波导、近眼显示系统及光波导耦出区域的设计方法
KR20090108588A (ko) 조명 디바이스용 광 외부결합 구조
CN114384618B (zh) 一种二维光栅及其形成方法、光波导及近眼显示设备
CN115016057A (zh) 衍射光波导以及具有其的显示设备
CN115268065B (zh) 基于粒子群的二维衍射波导显示系统及其均匀性优化方法
CN110764255A (zh) 波导显示亚波长衍射光栅的设计与优化方法
CN114637116B (zh) 衍射光波导以及具有其的显示设备
CN114994825A (zh) 衍射光波导及其设计方法和形成方法、以及显示设备
CN114527537B (zh) 一种二维光栅及其形成方法、光波导及近眼显示设备
CN117233954A (zh) 光栅波导显示装置优化方法、装置及电子设备
CN214669691U (zh) 一种光栅结构及近眼显示系统
CN115047565B (zh) 一种衍射光波导以及具有其的显示设备
Yan et al. Diffractive optical element design based on vector diffraction theory and improved PSO-SA algorithm
CN116381937A (zh) 一种衍射波导装置中光栅优化的方法及衍射波导装置
CN221261298U (zh) 衍射光波导及显示模组
CN117170014B (zh) 一种耦入光栅、衍射光波导及ar光学系统
CN117930424B (zh) 一种ar衍射波导片及设计方法及ar装置
CN114325909B (zh) 一种二维光栅及其形成方法、光波导及近眼显示设备
CN115128809B (zh) 一种实现全息波导显示系统均匀成像的光栅效率分布表征与优化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880249

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE