WO2023061183A1 - 医疗导管及其形状控制系统、方法、手术机器人和存储介质 - Google Patents

医疗导管及其形状控制系统、方法、手术机器人和存储介质 Download PDF

Info

Publication number
WO2023061183A1
WO2023061183A1 PCT/CN2022/120684 CN2022120684W WO2023061183A1 WO 2023061183 A1 WO2023061183 A1 WO 2023061183A1 CN 2022120684 W CN2022120684 W CN 2022120684W WO 2023061183 A1 WO2023061183 A1 WO 2023061183A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide wire
catheter
real
time
shape
Prior art date
Application number
PCT/CN2022/120684
Other languages
English (en)
French (fr)
Inventor
张飘艺
占雄
王家寅
张晓波
Original Assignee
上海微创微航机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微创微航机器人有限公司 filed Critical 上海微创微航机器人有限公司
Publication of WO2023061183A1 publication Critical patent/WO2023061183A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0021Catheters; Hollow probes characterised by the form of the tubing
    • A61M25/0023Catheters; Hollow probes characterised by the form of the tubing by the form of the lumen, e.g. cross-section, variable diameter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/301Surgical robots for introducing or steering flexible instruments inserted into the body, e.g. catheters or endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/18General characteristics of the apparatus with alarm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow

Definitions

  • the present application relates to the field of interventional technology, in particular to a medical catheter, a shape control system, a control method, a surgical robot and a storage medium.
  • Interventional surgery can be divided into vascular intervention and non-vascular intervention.
  • non-vascular intervention refers to the use of various instruments under the guidance of medical imaging equipment such as X-ray, CT, B-ultrasound, and MRI, through channels other than blood vessels, such as through the natural opening of the physiological cavity of the human body or directly through the viscera.
  • non-vascular interventional therapy technology involves various systems of the body, such as balloon catheter dilatation and stent placement for malignant stenosis of the esophagus, gastroduodenum, colon, and biliary tract of the digestive system, gastrostomy, liver cancer B-ultrasound, CT Direct drug injection therapy under guidance; direct puncture drug injection or direct current therapy for lung cancer of the respiratory system, metal internal stent treatment for malignant tracheobronchial stenosis, intracavitary perfusion therapy for malignant pleural effusion; percutaneous nephrostomy and stent drainage for urinary system Treatment of malignant ureteral obstruction, intracavitary perfusion therapy for bladder cancer; central nervous system craniopharyngioma aspiration, sympathetic blockade; MRI-guided percutaneous laser resection of deep malignant tumors, etc.
  • Medical catheters play a very important role in non-vascular interventional operations. By controlling the head of the medical catheter to enter the lesion, drugs, medical devices, etc. can be delivered to the lesion.
  • the existing medical catheter cannot accurately control The deflection direction and angle of the catheter head cannot be efficiently controlled to reach the lesion position by the head of the medical catheter.
  • the purpose of this application is to provide a medical catheter and its shape control system, control method, surgical robot and storage medium, which can realize precise control of the shape of the head of the medical catheter, and can more efficiently control the head of the medical catheter to reach the lesion position .
  • the present application provides a medical catheter, including a first catheter, a second catheter, a plurality of guide wires and a driving device, and the plurality of guide wires are passed through the first catheter and the second catheter internal;
  • the distal end of the first catheter is connected to the proximal end of the second catheter;
  • the driving device includes a plurality of driving elements corresponding to the guide wires;
  • the proximal end of the guide wire passes through the proximal end of the first catheter and is connected to a driver, and the distal end of the guide wire is connected to the distal end of the second catheter;
  • the guide wire Under the action of the driving member, the guide wire can be extended and shortened along its axial direction, so that the second catheter can be bent in at least one direction.
  • the inside of the first catheter is provided with at least one first guide wire channel for passing the plurality of guide wires
  • the inside of the second catheter is provided with at least one channel for the multiple guide wires to pass through.
  • a second guide wire channel through which a guide wire passes, and the second guide wire channel is provided in a one-to-one correspondence with the first guide wire channel.
  • the number of the first guide wire channel and the second guide wire channel is one, and the plurality of guide wires are centrally threaded through the first guide wire channel and the second guide wire inside the channel.
  • the number of the first guide wire channels and the second guide wire channels is the same as the number of the guide wires, and each correspondingly set first guide wire channel and the second guide wire channel A guide wire is threaded through the channel.
  • the plurality of first guide wire channels are evenly arranged along the circumference of the first catheter, and the plurality of second guide wire channels are evenly arranged along the circumference of the second catheter.
  • the driving member includes a motor and a wire wheel, the wire wheel is connected to the output shaft of the motor, and the proximal end of the guide wire is wound on the wire wheel.
  • connection points between the plurality of guide wires and the distal end of the second catheter are distributed.
  • the inside of the first conduit is also provided with at least one first conveying channel for medical instruments to pass through
  • the inside of the second conduit is also provided with at least one first delivery channel for medical instruments to pass through and communicate with The first delivery channel corresponds to the second delivery channel.
  • an elastic member is provided on the guide wire, and a strain gauge is provided on the elastic member, and the strain gauge is used to detect the elastic deformation of the elastic member.
  • the elastic member is close to the location of the driving member.
  • the present application also provides a shape control method of a medical catheter, the medical catheter is the above-mentioned medical catheter, and the shape control method includes:
  • the driving member is controlled to drive the guide wire to perform a corresponding movement, so that the second catheter can be bent to the desired shape.
  • controlling the driving member to drive the guide wire to perform a corresponding movement according to the expected total amount of deformation of the guide wire includes:
  • the driving member is controlled to drive the guide wire to perform corresponding movements.
  • the acquiring the real-time elastic deformation of the guide wire includes:
  • the real-time elastic deformation of the guide wire is obtained according to the real-time pulling force of the guide wire.
  • the obtaining the real-time pulling force on the guide wire includes:
  • the real-time pulling torque received by the guide wire is obtained
  • the real-time pulling force on the guide wire is obtained.
  • the obtaining the real-time pulling torque on the guide wire according to the real-time output torque of the driving member includes:
  • the real-time pulling torque on the guidewire is acquired.
  • the acquiring the real-time output torque of the driving member connected to the guide wire includes:
  • the real-time output torque of the driving member is obtained according to the real-time input torque of the driving member and the real-time friction torque received by the driving member.
  • a strain gauge is installed on one end of the guide wire close to the driving element
  • the acquiring the real-time pulling force of the guide wire includes:
  • the real-time pulling force experienced by the guide wire is obtained.
  • the present application also provides a method for controlling the shape of a medical catheter, the medical catheter is the above-mentioned medical catheter, and the method includes:
  • the driving member is controlled to drive the guide wire to perform a corresponding movement, so that the second catheter can be bent to the desired shape.
  • the present application also provides a shape control system of a medical catheter, the shape control system includes a controller, the controller includes a processor and a memory, and a computer program is stored on the memory, and the computer program When executed by the processor, the above-mentioned method for controlling the shape of a medical catheter is realized.
  • the shape control system further includes a display communicated with the controller, and the display is used to display the expected shape of the second catheter.
  • the shape control system further includes an alarm connected to the controller, and the alarm is configured to give an alarm when the motion state of the medical catheter is abnormal.
  • the shape control system further includes an indicator light connected to the controller, and the indicator light is used to indicate the movement state of the medical catheter.
  • the present application also provides a readable storage medium, in which a computer program is stored, and when the computer program is executed by a processor, the above-mentioned method for controlling the shape of a medical catheter is realized .
  • the present application also provides a surgical robot, which includes the above-mentioned shape control system, a control end, and an operation end, the operation end includes at least one mechanical arm, and the control end is connected to the operation end.
  • the operating end has a master-slave control relationship and is used to control the operation of the mechanical arm. Both the control end and the operating end are communicatively connected to the controller, and the medical catheter is installed at the end of the mechanical arm.
  • the medical catheter and its shape control system, control method, surgical robot and storage medium provided by the present application have the following advantages:
  • the medical catheter provided by the present application includes a first catheter, a second catheter, a plurality of guide wires and a driving device, the plurality of guide wires are threaded inside the first catheter and the second catheter;
  • the distal end of the first catheter is connected to the proximal end of the second catheter;
  • the driving device includes a plurality of driving elements corresponding to the guide wire;
  • the proximal end of the guide wire passes through the The proximal end of the first catheter is connected to a driving member, and the distal end of the guide wire is connected to the distal end of the second catheter; under the action of the driving member, the guide wire can move along its axis elongate and shorten in a direction such that the second conduit can be bent in at least one direction.
  • the medical catheter provided by the present application can precisely control the length of the guide wire to be extended and shortened along its axial direction through the driving member, so that the direction and angle of bending of the second catheter can be precisely controlled to achieve the desired Precise control of the shape of the second catheter, thereby ensuring the smoothness of the movement of the medical catheter in the human body;
  • the shape control method of the medical catheter provided by the present application obtains the expected shape of the second catheter, and calculates the total amount of expected deformation of the guide wire according to the expected shape of the second catheter, and then according to the The desired total amount of deformation of the guide wire is controlled by the driving member to drive the guide wire to perform a corresponding movement, so that the second catheter can be bent to the desired shape, so as to achieve precise control of the shape of the second catheter ;
  • the shape control method of the medical catheter provided by the present application obtains the real-time elastic deformation of the guide wire, and corrects the expected total amount of deformation of the guide wire according to the real-time elastic deformation of the guide wire, To obtain the real-time expected total amount of deformation of the guide wire, and then according to the real-time expected total amount of deformation of the guide wire, control the driving member to drive the guide wire to perform a corresponding movement, so that the guide wire can be subjected to tension. Compensate for the elastic deformation of the second catheter to further realize the precise control of the shape of the second catheter;
  • the shape control method of the medical catheter obtaineds the desired shape of the second catheter and the real-time actual shape of the second catheter, and then calculates the desired shape and the real-time actual shape according to the desired shape and the real-time actual shape.
  • the real-time expected deformation of the guide wire, and finally according to the real-time expected deformation of the guide wire control the driving member to drive the guide wire to perform corresponding movements, so that the closed-loop control of the shape of the second catheter can be realized, so that the first The actual shape of the second conduit is closer to the expected shape, further improving the control accuracy of the shape of the second conduit.
  • the shape control system, surgical robot, and readable storage medium of the medical catheter provided by the application belong to the same inventive concept as the above-mentioned method for controlling the shape of the medical catheter, they have the characteristics of the medical catheter described above. All the advantages of the shape control method, so it will not be repeated here.
  • Fig. 1 is a schematic structural diagram of a medical catheter in an embodiment of the present application
  • FIG. 2 is a schematic diagram of a partial structure of a medical catheter in an embodiment of the present application.
  • Fig. 3 is a schematic transverse cross-sectional view of the first conduit in the first embodiment of the present application.
  • Fig. 4 is a schematic transverse cross-sectional view of the first catheter in the second embodiment of the present application.
  • Fig. 5 is a schematic transverse cross-sectional view of the first catheter in the third embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a method for controlling the shape of a medical catheter in the first embodiment of the present application
  • Fig. 7 is a schematic flow chart of the shape control method of the medical catheter in the second embodiment of the present application.
  • Fig. 8 is a schematic diagram of obtaining the real-time pulling force on the guide wire in the first embodiment of the present application.
  • FIG. 9 is a schematic diagram of reducing the friction between the guide wire and the guide wire channel in an embodiment of the present application.
  • Fig. 10 is a mathematical model diagram of a medical catheter in an embodiment of the present application.
  • Fig. 11 is a schematic diagram of the corresponding relationship between the frictional force and the pulling force of the acquisition guide wire in an embodiment of the present application;
  • Fig. 12 is a schematic diagram of the corresponding relationship between the frictional force and the pulling force of the acquisition guide wire in another embodiment of the present application;
  • Fig. 13 is a schematic diagram of obtaining the real-time pulling force on the guide wire in the second embodiment of the present application.
  • Fig. 14 is a schematic diagram of a partial structure of a medical catheter in another embodiment of the present application.
  • Fig. 15 is a schematic diagram of obtaining the real-time pulling force on the guide wire in the third embodiment of the present application.
  • FIG. 16 is a schematic flowchart of a method for controlling the shape of a medical catheter in a third embodiment of the present application.
  • Fig. 17 is a schematic diagram of the control of the driving member in an embodiment of the present application.
  • Fig. 18 is a schematic diagram of the control of the driver in another embodiment of the present application.
  • Fig. 19 is a schematic diagram of the shape control result of the medical catheter in the prior art.
  • Fig. 20 is a schematic diagram of the shape control result of the medical catheter in an embodiment of the present application.
  • Fig. 21 is a schematic block diagram of a shape control system in an embodiment of the present application.
  • Fig. 22 is a schematic diagram of the operating end of the surgical robot in an embodiment of the present application.
  • Controller-210 Processor-211; Memory-212; Display-220; Alarm-230; Indicator light-240;
  • the core idea of this application is to provide a medical catheter and its shape control system, control method, surgical robot and storage medium, so as to realize the precise control of the shape of the head of the medical catheter, and to more efficiently control the head of the medical catheter to reach the lesion position place.
  • the description herein is to deliver the head of the medical catheter (that is, the second catheter) to the position of the bronchial lesion, as those skilled in the art can understand, in some other embodiments, it is also possible to The head of the medical catheter (that is, the second catheter) is delivered to other lesion locations, which is not limited in this application.
  • proximal end referred to herein refers to the end close to the operator
  • distal end refers to the end far away from the operator, that is, the end near the lesion.
  • a plurality referred to herein includes the case of two.
  • Fig. 1 schematically shows the structural diagram of the medical catheter provided by an embodiment of the present application
  • Fig. 2 schematically shows A schematic diagram of a partial structure of a medical catheter provided in an embodiment of the present application is shown.
  • the medical catheter includes a first catheter 110, a second catheter 120, a plurality of guide wires 130 and a driving device 140, and the plurality of guide wires 130 are threaded through the first catheter 110 and the inside of the second catheter 120; the distal end of the first catheter 110 is connected to the proximal end of the second catheter 120; Driver 141; the proximal end of the guide wire 130 passes through the proximal end of the first catheter 110 and is connected to a driver 141, the distal end of the guide wire 130 is connected to the far end of the second catheter 120 The ends are connected; under the action of the driving member 141, the guide wire 130 can be extended and shortened along its axial direction, so that the second catheter 120 can be bent in at least one direction.
  • the driving member 141 is provided in one-to-one correspondence with the guide wire 130, that is, the length of the axial extension and shortening of different guide wires 130 is controlled by different driving members 141, thus, the present application
  • the provided medical catheter can precisely control the extension and shortening length of the guide wire 130 along its axial direction through the driving member 141, so that the bending direction and angle of the second catheter 120 can be precisely controlled, so as to realize the first
  • the precise control of the shape of the catheter 120 ensures the smooth movement of the medical catheter in the human body.
  • FIG. 3 schematically shows a schematic cross-sectional view of the first catheter provided in the first embodiment of the present application.
  • the medical catheter includes four guide wires 130 , and a first guide wire for passing the four guide wires 130 is provided inside the first catheter 110 .
  • wire channel 111, the inside of the second catheter 120 is provided with a second guide wire channel (not shown) for the passage of the four guide wires 130, the second guide wire channel and the
  • the first guide wire channel 111 is provided correspondingly, wherein the distal ends of the four guide wires 130 are respectively fixed at the four corners of the distal end of the second catheter 120 .
  • the second catheter 120 can be bent in four directions.
  • the second wire channel is aligned with the corresponding first wire channel 111 .
  • the overall structure of the medical catheter can be effectively simplified by threading the four guide wires 130 in a corresponding first guide wire channel 111 and a second guide wire channel.
  • the driving device 140 includes four driving parts 141, and each guide wire 130 is connected to a driving part 141 connected.
  • FIG. 4 schematically shows a schematic cross-sectional view of the first catheter provided in the second embodiment of the present application.
  • the medical catheter includes four guide wires 130, and the inside of the first catheter 110 is provided with four first guide wire channels 111, and the four first guide wires
  • the channels 111 are evenly arranged along the circumference of the first conduit 110 (that is, the inside of the first conduit 110 is uniformly arranged with four first conduits arranged parallel to the axis of the first conduit 110 around its axis.
  • the inside of the second catheter 120 is provided with four second guide wire channels (not shown in the figure) corresponding to the first guide wire channel 111 one by one, and the four second guide wire channels
  • the guide wire channel is evenly arranged along the circumference of the second catheter 120 (that is, the inside of the second catheter 120 is uniformly arranged with four second catheters 120 parallel to the axis of the second catheter 120 ).
  • guide wire channel wherein, each set of corresponding first guide wire channel 111 and second guide wire channel is used for a guide wire 130 to pass through.
  • the four second guide wire channels are respectively aligned with the corresponding first guide wire channels 111 .
  • FIG. 5 schematically shows a schematic transverse cross-sectional view of the first catheter provided in the third embodiment of the present application.
  • the difference between this embodiment and the second embodiment is that, in this embodiment, four first guide wire channels 111 are evenly arranged along the radial direction of the first catheter 110 (that is, the first The interior of a catheter 110 is uniformly provided with four first guide wire passages 111 parallel to the axis of the first catheter 110 along the radial direction of its section, and the four second guide wire channels are arranged along the diameter of the second guide wire 120.
  • first delivery channel (not shown in the figure) for passing medical instruments is provided inside the first catheter 110
  • second conduit 120 is further provided with at least one second delivery channel (not shown in the figure) for passing medical instruments and corresponding to the first delivery channel.
  • said first delivery channel is aligned with said second delivery channel.
  • the driving member 141 includes a motor 1411 and a wire wheel 1412, the wire wheel 1412 is connected to the output shaft of the motor 1411, and the proximal end of the guide wire 130 is wound around the wire Wheel 1412 on.
  • the motor 1411 can further accurately control the length of the guide wire 130 extending and shortening along its axial direction, so that the bending direction and angle of the second catheter 120 can be precisely controlled.
  • the overall structure of the driving device 140 is simplified. Specifically, when the motor 1411 rotates, the wire wheel 1412 rotates synchronously with the motor 1411, and the rotating wire wheel 1412 can make the guide wire 130 extend or shorten along its axial direction, as shown in FIG.
  • the wire wheel 1412 when the motor 1411 rotates counterclockwise, the wire wheel 1412 also rotates counterclockwise, and the wire wheel 1412 rotating counterclockwise can make more parts of the guide wire 130 wound on the wire wheel 1412, that is, The guide wire 130 is shortened in its axial direction.
  • the wire wheel 1412 When the motor 1411 rotates clockwise, the wire wheel 1412 also rotates clockwise, and the wire wheel 1412 rotating clockwise can release part of the guide wire 130 wound on the wire wheel 1412, that is, the guide wire 130
  • the wire 130 is elongated along its axial direction.
  • the driving member 141 including the motor 1411 and the wire wheel 1412 as an example, as those skilled in the art can understand, in some other implementation manners, the driving member 141 It may also include structures such as a motor 1411 and a screw rod capable of controlling the length of the guide wire 130 to extend and shorten along its axial direction, which is not limited in this application.
  • the present application also provides a shape control method of a medical catheter, please refer to FIG. 6 , which schematically shows a flow chart of the shape control method of a medical catheter provided in the first embodiment of the present application.
  • the shape control method includes the following steps:
  • Step S110 obtaining the desired shape of the second catheter
  • Step S120 calculating the expected total amount of deformation of the guide wire according to the expected shape of the second catheter;
  • Step S130 according to the expected amount of deformation of the guide wire, control the driving member to drive the guide wire to perform a corresponding movement, so that the second catheter can be bent to the desired shape.
  • the desired shape of the second conduit 120 (that is, the bending direction and angle of the second conduit 120 ) can be set by the operator according to the actual situation, according to the desired shape of the second conduit 120 and the first
  • the basic shape parameters of the second catheter 120 (including parameters such as the length and outer diameter of the second catheter 120), using the inverse kinematics model, can calculate the expected total amount of deformation of each guide wire 130 (that is, the extension of the guide wire 130).
  • the control amount of the corresponding driving member 141 can be obtained, so that the corresponding driving member can be controlled according to the control amount of the driving member 141 141 performs a corresponding movement, so that the second conduit 120 can be bent to the desired shape. It can be seen that the shape control method provided in this embodiment can realize precise control of the shape of the second conduit 120 .
  • FIG. 7 schematically shows a flow chart of a method for controlling the shape of a medical catheter provided in the second embodiment of the present application.
  • the shape control method includes the following steps:
  • Step S210 obtaining the desired shape of the second catheter
  • Step S220 calculating the expected total amount of deformation of the guide wire according to the expected shape of the second catheter;
  • Step S230 obtaining the real-time elastic deformation of the guide wire
  • Step S240 correcting the expected total deformation of the guide wire according to the real-time elastic deformation of the guide wire, so as to obtain the real-time expected total deformation of the guide wire;
  • Step S250 according to the real-time expected total amount of deformation of the guide wire, controlling the driving member to drive the guide wire to perform a corresponding movement.
  • the real-time elastic deformation of the guide wire 130 is obtained, and the expected total amount of deformation of the guide wire 130 is corrected according to the obtained real-time elastic deformation, so as to obtain the real-time elastic deformation of the guide wire 130.
  • the total amount of real-time expected deformation, according to the total amount of real-time expected deformation of the guide wire 130, the real-time control total amount of the corresponding driving member 141 can be obtained, and the real-time control amount of the corresponding driving member 141 can be controlled in real time.
  • the driving member 141 moves accordingly. Since this embodiment can compensate in real time the elastic deformation of the guide wire 130 due to tension, the precise control of the shape of the second catheter 120 can be further realized.
  • the acquiring the real-time elastic deformation of the guide wire includes:
  • the real-time elastic deformation of the guide wire is obtained according to the real-time pulling force of the guide wire.
  • the real-time pulling force F pulled by the guide wire 130 and the real-time elastic deformation ⁇ 1 of the guide wire 130 satisfy the following relationship:
  • K 1 is the Young's modulus of the guide wire 130 .
  • the real-time elastic deformation ⁇ 1 of the guide wire 130 can be obtained.
  • the guide wire 130 by acquiring the real-time pulling force on the guide wire 130, it can also be ensured that the guide wire 130 will not be broken, so that the guide wire 130 can always work within a reasonable range of pulling force.
  • FIG. 8 schematically shows a schematic diagram of acquiring the real-time pulling force on the guide wire provided by the first embodiment of the present application.
  • the acquisition of the real-time pulling force on the guide wire includes:
  • the real-time pulling torque received by the guide wire is obtained
  • the real-time pulling force on the guide wire is obtained.
  • the real-time pulling torque T pulled on the guide wire 130 and the real-time pulling force F pulled on the guide wire 130 satisfy the following relationship:
  • Lla is the tension arm
  • the real-time pulling force F pulled on the guide wire 130 can be obtained, wherein, when the driving member 141 includes a motor 1411 and the wire wheel 1412, the pull arm L is equal to the radius of the wire wheel 1412.
  • FIG. 9 schematically shows a schematic view of reducing friction between the guide wire and the guide wire channel provided by an embodiment of the present application.
  • the guide wire can be reduced by adding lubricant 150 to the area between the guide wire channel (including the first guide wire channel 111 and the second guide wire channel) and the guide wire 130.
  • the frictional force experienced by the wire 130 comes from the guide wire channel.
  • the added lubricant 150 can be either a liquid lubricant or a solid lubricant, or other suitable lubricants, and the present application does not limit this .
  • FIG. 10 schematically shows a mathematical model diagram of a medical catheter provided by an embodiment of the present application.
  • the real-time output torque of the driving member 141 ie, the output torque of the motor 1411
  • T M the real-time output torque received by the guide wire 130
  • T f the real-time friction torque received by the guide wire 130
  • T pull T M -T f
  • the real-time frictional torque T f experienced by the guide wire 130 and the friction force f from the guide wire channel experienced by the guide wire 130 satisfy the following relationship:
  • L f is the moment arm of the friction force.
  • the pulling torque T pull experienced by the guide wire 130 can be obtained.
  • the driving member 141 includes a connected motor 1411 and a wire wheel 1412
  • the force arm L f of the friction force is equal to the radius of the wire wheel 1412 .
  • the contact between the guide wire 130 and the second guide wire 130 can be reduced by lubricating or other means.
  • the friction between the guide wire channels, so that the friction force experienced by the guide wire 130 from the second guide wire channel can be ignored, so that only the friction force received by the guide wire 130 from the The frictional force of the first wire channel 111.
  • the frictional force from the first guide wire channel 111 that the guide wire 130 is subjected to is related to the pulling force F pulled on the guide wire 130 and the bending angle of the first catheter 110, it can be passed the test Measuring the value of the friction force between the guide wire 130 and the first guide wire channel 111 when the guide wire 130 is subjected to different tensions at different bending angles (bending angles of the first catheter 110), and Fitting is performed to obtain the corresponding relationship between the friction force experienced by the guide wire 130 and the pulling force experienced by the guide wire 130 under different bending angles.
  • the corresponding relationship under the corresponding bending angle can be selected, and the real-time pulling torque received by the guide wire 130 can be obtained according to the real-time output torque of the driving member 141.
  • the driving member 141 includes a motor 1411 and a wire wheel 1412 , the force arm of the friction force experienced by the guide wire 130 and the force arm of the pulling force experienced by the guide wire 130 are both equal to the radius of the wire wheel 1412 ).
  • the friction force f experienced by the guide wire 130 and the pulling force F pulled by the guide wire 130 satisfy the following relationship:
  • the real-time pulling torque T pulled by the guide wire 130 is equal to the real-time friction torque T f suffered by the guide wire 130 satisfy the following relationship:
  • the real-time pulling torque T pulled by the guide wire 130 is:
  • FIG. 11 schematically presents a principle diagram of the corresponding relationship between the frictional force and the pulling force on the acquisition guide wire provided by an embodiment of the present application.
  • FIG. 11 by bending the first catheter 110 into an angle, passing the two ends of the guide wire 130 out of the first catheter 110 and suspending the first catheter 110, Then connect a slide block 1 with a weight of G at one end of the guide wire 130, connect a tension gauge 2 at the other end of the guide wire 130, pull the slide block 1 through the tension gauge 2 to move at a constant speed, and record the reading F of the pull gauge 2, then
  • the frictional force on the guide wire 130 is F-G, then change the weight G of the slider 1, continue to pull the slider 1 to move at a constant speed, and record the reading F of the pull gauge 2, the reading F of the pull gauge 2 and the reading F of the slider 1
  • the difference in weight G is the frictional force experienced by the guide wire 130 .
  • the value of the friction force that the guide wire 130 is subjected to under different tensions can be obtained, and by fitting, the relationship between the friction force and the tension of the guide wire 130 at the bending angle can be obtained. Correspondence between.
  • FIG. 12 schematically presents a principle diagram of the corresponding relationship between the frictional force and the pulling force of the acquisition guide wire provided by another embodiment of the present application.
  • a slider 1 with a weight of G can be connected to one end of the guide wire 130, and a tension gauge 2 can be connected to the other end of the guide wire 130, and then pulled by the tension gauge 2 on a smooth plane.
  • Slider 1 moves at a constant speed, and records the reading F0 of the dynamometer 2, then changes the weight of the slider 1, continues to pull the slider 1 to move at a constant speed, and records the reading F0 of the dynamometer 2, thus, by continuously changing the slider 1, the reading F0 of the tension meter 2 under different slider 1 weights can be obtained.
  • FIG. 13 schematically shows the real-time pulling force of the acquisition guide wire provided by the second embodiment of the present application.
  • the acquisition of the real-time pulling force on the guide wire includes:
  • the real-time pulling torque received by the guide wire is obtained
  • the real-time pulling force on the guide wire is obtained.
  • the real-time pulling torque received by the wire 130 + the real-time friction torque received by the guide wire 130 thus, according to the real-time output torque T M of the driving member 141, the real-time pulling torque received by the guide wire 130 can be obtained. Torque T pulls .
  • the real-time input torque of the driving part 141 can be obtained according to the real-time current of the motor 1411, and the real-time input torque of the driving part 141 can be obtained according to the real-time rotational speed of the motor 1411.
  • the real-time friction torque experienced. Specifically, the real-time friction torque T Mf suffered by the driving member 141 can be obtained by the following formula:
  • B is the viscous friction coefficient of the motor 1411
  • C is the Coulomb friction coefficient of the motor 1411
  • V is the real-time rotational speed of the motor 1411
  • sign is the sign of the rotational speed (for example, when rotating counterclockwise, take the + sign, and when rotating clockwise, Take - sign).
  • the real-time pulling torque experienced by the guide wire 130 is equal to the real-time output torque of the driving member 141 T M (that is, the difference between the real-time input torque of the driving member 141 and the real-time friction torque received by the driving member 141 ).
  • the real-time pulling torque on the guide wire 130 is equal to the real-time output torque of the driving member 141 minus The real-time frictional torque experienced by the guide wire 130 is obtained. Therefore, according to the real-time output torque of the driving part, the real-time pulling torque suffered by the guide wire 130 is obtained, including:
  • the real-time pulling torque on the guide wire is obtained.
  • the corresponding relationship between the friction force experienced by the guide wire 130 and the pulling force experienced by the guide wire 130 can be obtained through the relevant test methods above. Because the moment arm of the friction force experienced by the guide wire 130 is equal to the moment arm of the tension force experienced by the guide wire 130 (wherein, when the driving member 141 includes a motor 1411 and a wire wheel 1412, the friction force The moment arm and the moment arm of the pulling force are equal to the radius of the wire wheel 1412), thus, according to the real-time input torque of the driver 141 and the real-time frictional torque suffered by the driver 141, the driver 141 can be obtained. The real-time output torque of the driving member 141 and the corresponding relationship between the friction force and the pulling force of the guide wire 130 obtained in advance can be obtained according to the real-time output torque of the driving member 141 The real-time pulling moment T pulled by the guide wire 130 can be calculated according to the following formula:
  • FIG. 14 schematically shows a partial structural view of a medical catheter provided in another embodiment of the present application.
  • an elastic member 160 is installed on the guide wire 130, and a strain gauge 161 is provided on the elastic member 160, and the strain gauge 161 is used to detect the tension of the elastic member 160. amount of elastic deformation. Therefore, by disposing the elastic member 160 including the strain gauge 161 on the guide wire 130 , the pulling force on the guide wire 130 can be detected in real time.
  • the elastic member 160 is close to the position of the driving member 141, that is, the elastic member 160 and the strain gauge 161 are arranged at the proximal end of the medical catheter, thus, the elastic member 160 and the strain gauge The setting of 161 will not affect the structural design of the second conduit 120 .
  • FIG. 15 schematically shows a flow chart of obtaining the real-time pulling force on the guide wire provided by the third embodiment of the present application.
  • the acquisition of the real-time pulling force on the guide wire includes:
  • the real-time pulling force experienced by the guide wire is obtained.
  • the elastic member 160 when the guide wire 130 is elastically deformed due to the tensile force, the elastic member 160 is also deformed accordingly, so that the strain gauge 161 is stretched or compressed to cause a change in resistance. Assuming that the resistance value variation of the strain gauge 161 is ⁇ R, the following relational expression is satisfied between the elastic deformation ⁇ 2 of the elastic member 160 and the resistance value variation ⁇ R:
  • R is the original resistance value of the strain gauge 161
  • k is the resistance change rate of the strain gauge 161 .
  • the real-time elastic deformation ⁇ 2 of the elastic member 160 can be obtained, and according to the real-time elastic deformation ⁇ 2 of the elastic member 160 and the Young’s modulus K 2 of the elastic member 160 is The real-time pulling force on the elastic member 160 can be calculated, and the real-time pulling force on the elastic member 160 is the real-time pulling force on the guide wire 130 .
  • FIG. 16 schematically shows a flow chart of a method for controlling the shape of a medical catheter provided in the third embodiment of the present application.
  • the shape control method includes the following steps:
  • Step S310 obtaining the desired shape of the second catheter
  • Step S320 acquiring the real-time actual shape of the second catheter
  • Step S330 calculating the real-time expected deformation of the guide wire according to the expected shape of the second catheter and the real-time actual shape of the second catheter;
  • Step S340 according to the real-time expected deformation of the guide wire, control the driving member to drive the guide wire to move accordingly, so that the second catheter can be bent to the desired shape.
  • this embodiment by obtaining the expected shape of the second catheter 120 and the real-time actual shape of the second catheter 120 , and then according to the expected shape of the second catheter 120 and the real-time actual shape of the second catheter 120 shape, calculate the real-time expected deformation of the guide wire 130, and according to the real-time expected deformation of the guide wire 130, the corresponding real-time control amount of the driver 141 can be obtained, and according to the real-time control of the driver 141 The amount can control the driving member 141 to move accordingly. Because this embodiment can realize the closed-loop control of the shape of the second conduit 120 , so that the actual shape of the second conduit 120 is closer to the desired shape, and further improves the control accuracy of the shape of the second conduit 120 .
  • the shape sensor can measure the bending direction and angle of the second conduit 120 in real time.
  • the shape sensor may be a pose sensor in the prior art, such as a magnetic sensor.
  • the present application also precisely controls the movement process of the motor 1411.
  • FIG. 17 schematically shows a control diagram of the driving member 141 provided by an embodiment of the present application.
  • the position information of the motor 1411 can be measured in real time through the position sensor 170 (such as an encoder) installed on the motor 1411 and fed back to the controller 210.
  • the controller 210 can compensate the control amount of the motor 1411 in real time, thereby realizing the closed-loop control of the motor 1411 and further improving the shape control accuracy of the second catheter 120 .
  • FIG. 18 schematically shows a control diagram of the driving member 141 provided in another embodiment of the present application.
  • the controller 210 can (measured by the position sensor 170) and real-time current, estimate the total disturbance suffered by the motor 1411, and perform real-time compensation on the control amount of the motor 1411 according to the estimated result, thereby improving the control accuracy of the motor 1411 and further improving
  • the shape of the second conduit 120 controls precision.
  • FIG. 19 schematically shows the shape control result of the medical catheter in the prior art.
  • Fig. 20 schematically shows the result of shape control of the medical catheter in an embodiment of the present application.
  • the distal end of the medical catheter cannot be bent to a certain angle, the distal end of the medical catheter in the prior art cannot approach the position of the bronchial lesion, and because the present application can accurately
  • the doctor can manipulate the second catheter 120 to bend to an ideal angle, so that the second catheter 120 can reach the lesion smoothly.
  • the present application also provides a shape control system for medical catheters.
  • FIG. 21 schematically shows a block structure diagram of the shape control system provided by an embodiment of the present application.
  • the shape control system includes a controller 210, the controller 210 includes a processor 211 and a memory 212, the memory 212 stores a computer program, and the computer program is executed by the processor 211 , implement the shape control method of the medical catheter described above. Since the shape control system provided by the present application can implement the above-mentioned method for controlling the shape of a medical catheter, and thus has all the advantages of the above-mentioned method for controlling the shape of a medical catheter, it will not be repeated here. Specifically, as shown in FIG.
  • the above-mentioned driving member 141 in the medical catheter is connected to the controller 210, so that the controller 210 can precisely control the movement of the driving member 141, so that The guide wire 130 can move accordingly, so as to realize the precise control of the shape of the second catheter 120 .
  • the shape control system further includes a display 220 communicatively connected with the controller 210 .
  • the input desired shape of the second catheter 120 can be displayed through the display 220 , so that the doctor can better manipulate the bending of the second catheter 120 to the desired shape.
  • the shape control system further includes an alarm 230 connected to the controller 210 . Therefore, by setting the alarm 230, an alarm can be issued when the motion state of the medical catheter is abnormal, thereby improving the safety of the medical catheter during shape control.
  • the shape control system further includes an indicator light 240 connected to the controller 210 .
  • the indicator light 240 By setting the indicator light 240, the movement state of the medical catheter can be displayed. Specifically, when the medical catheter moves normally, the indicator light 240 displays in one color, and when the medical catheter moves abnormally, the indicator light 240 displays in another color, so that Further improve the safety of medical catheters during shape control.
  • the processor 211 referred to in this application may be a central processing unit (Central Processing Unit, CPU), and may also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits ( Application Specific Integrated Circuit, ASIC), off-the-shelf programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or any conventional processor, etc.
  • the processor is the control center of the electronic device, and uses various interfaces and lines to connect various parts of the entire electronic device.
  • the memory 212 can be used to store the computer program, and the processor 211 implements various functions of the electronic device by running or executing the computer program stored in the memory 212 and calling the data stored in the memory 212. Function.
  • the memory 212 may include non-volatile and/or volatile memory.
  • Nonvolatile memory can include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory can include random access memory (RAM) or external cache memory.
  • RAM is available in many forms such as Static RAM (SRAM), Dynamic RAM (DRAM), Synchronous DRAM (SDRAM), Double Data Rate SDRAM (DDRSDRAM), Enhanced SDRAM (ESDRAM), Synchronous Chain Synchlink DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.
  • SRAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • DDRSDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced SDRAM
  • SLDRAM Synchronous Chain Synchlink DRAM
  • Rambus direct RAM
  • DRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM
  • the present application also provides a surgical robot, which includes the above-mentioned shape control system of the medical catheter, a control end and an operation end 300, the operation end 300 includes at least one mechanical arm 311, the control end and the operating end 300 have a master-slave control relationship and are used to control the operation of the mechanical arm 311, the control end and the operating end 300 are both connected to the shape control
  • the controller 200 in the system is connected in communication, and the medical catheter is installed at the end of the mechanical arm 311 . Since the surgical robot system provided by the present application includes the above-mentioned shape control system for medical catheters, and therefore has all the advantages of the above-mentioned shape control system for medical catheters, it will not be repeated here.
  • the operating end 300 includes an operating trolley 310, on which at least one mechanical arm 311 is arranged, wherein at least one end of the mechanical arm 311 is equipped with the above-mentioned medical device. catheter.
  • the controller 210 in the shape control system can be set in combination with any one or more devices in the surgical robot, for example, set at the control end, or at the operating end 300; In an example, the controller 210 can be set separately; and the controller 210 can be a specific hardware or software unit, or can be a combination of hardware and software. This application does not make any specific settings for the controller 210. limited.
  • the present application also provides a readable storage medium, in which a computer program is stored, and when the computer program is executed by the processor 211, the above-mentioned The shape control method of the medical catheter. Since the readable storage medium provided by this application belongs to the same inventive concept as the method for controlling the shape of a medical catheter described above, it has all the advantages of the method for controlling the shape of a medical catheter described above, so it will not be further discussed here. repeat.
  • the readable storage medium in the embodiments of the present application may use any combination of one or more computer-readable media.
  • the readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination thereof. More specific examples (non-exhaustive list) of computer readable storage media include: electrical connection with one or more wires, portable computer hard disk, hard disk, random access memory (RAM), read only memory (ROM), Erasable programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in combination with an instruction execution system, apparatus, or device.
  • a computer readable signal medium may include a data signal carrying computer readable program code in baseband or as part of a carrier wave. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium, which can send, propagate, or transmit a program for use by or in conjunction with an instruction execution system, apparatus, or device. .
  • Computer program code for carrying out the operations of the present application may be written in one or more programming languages, or combinations thereof, including object-oriented programming languages—such as Java, Smalltalk, C++, and conventional Procedural programming language-such as "C" or a similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer may be connected to the user computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (e.g., via an Internet connection using an Internet service provider). ).
  • LAN local area network
  • WAN wide area network
  • Internet service provider e.g., via an Internet connection using an Internet service provider
  • the medical catheter and its shape control system, control method, surgical robot and storage medium provided by the present application have the following advantages:
  • the medical catheter provided by the present application includes a first catheter, a second catheter, a plurality of guide wires and a driving device, the plurality of guide wires are threaded inside the first catheter and the second catheter;
  • the distal end of the first catheter is connected to the proximal end of the second catheter;
  • the driving device includes a plurality of driving elements corresponding to the guide wire;
  • the proximal end of the guide wire passes through the The proximal end of the first catheter is connected to a driving member, and the distal end of the guide wire is connected to the distal end of the second catheter; under the action of the driving member, the guide wire can move along its axis elongate and shorten in a direction such that the second conduit can be bent in at least one direction.
  • the medical catheter provided by the present application can precisely control the length of the guide wire to be extended and shortened along its axial direction through the driving member, so that the direction and angle of bending of the second catheter can be precisely controlled to achieve the desired Precise control of the shape of the second catheter, thereby ensuring the smoothness of the movement of the medical catheter in the human body;
  • the shape control method of the medical catheter provided by the present application obtains the expected shape of the second catheter, and calculates the total amount of expected deformation of the guide wire according to the expected shape of the second catheter, and then according to the The desired total amount of deformation of the guide wire is controlled by the driving member to drive the guide wire to perform a corresponding movement, so that the second catheter can be bent to the desired shape, so as to achieve precise control of the shape of the second catheter ;
  • the shape control method of the medical catheter provided by the present application obtains the real-time elastic deformation of the guide wire, and corrects the expected total amount of deformation of the guide wire according to the real-time elastic deformation of the guide wire, To obtain the real-time expected total amount of deformation of the guide wire, and then according to the real-time expected total amount of deformation of the guide wire, control the driving member to drive the guide wire to perform a corresponding movement, so that the guide wire can be subjected to tension. Compensate for the elastic deformation of the second catheter to further realize the precise control of the shape of the second catheter;
  • the shape control method of the medical catheter obtaineds the desired shape of the second catheter and the real-time actual shape of the second catheter, and then calculates the desired shape and the real-time actual shape according to the desired shape and the real-time actual shape.
  • the real-time expected deformation of the guide wire, and finally according to the real-time expected deformation of the guide wire control the driving member to drive the guide wire to perform corresponding movements, so that the closed-loop control of the shape of the second catheter can be realized, so that the first The actual shape of the second conduit is closer to the expected shape, further improving the control accuracy of the shape of the second conduit.
  • the shape control system, surgical robot, and readable storage medium of the medical catheter provided by the application belong to the same inventive concept as the above-mentioned method for controlling the shape of the medical catheter, they have the characteristics of the medical catheter described above. All the advantages of the shape control method, so it will not be repeated here.
  • each block in a flowchart or block diagram may represent a module, a program segment, or a portion of code that includes one or more programmable components for implementing specified logical functions.
  • Executable instructions, the module, program segment or part of the code contains one or more executable instructions for realizing the specified logic function.
  • the functions noted in the block may occur out of the order noted in the figures.
  • each block in the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations can be implemented in special purpose hardware-based systems that perform the specified functions or actions. implemented, or may be implemented by a combination of special purpose hardware and computer instructions.
  • the functional modules in the various embodiments herein can be integrated together to form an independent part, or each module can exist independently, or two or more modules can be integrated to form an independent part.

Abstract

本申请提供了一种医疗导管及其形状控制系统、控制方法、手术机器人和存储介质,该医疗导管,包括第一导管、第二导管、多个导丝以及驱动装置,多个导丝穿设于第一导管和第二导管的内部;第一导管的远端与第二导管的近端相连;驱动装置包括多个与导丝一一对应设置的驱动件;导丝的近端穿出第一导管的近端并与一驱动件相连,导丝的远端与第二导管的远端相连;在驱动件的作用下,导丝能够沿其轴向伸长和缩短,以使得第二导管能够沿至少一个方向弯曲。本申请通过驱动件可以精确控制导丝沿其轴向伸长和缩短的长度,从而能够精确控制第二导管弯曲的方向和角度,以实现第二导管的形状的精确控制,从而保证医疗导管在人体内运动的流畅性。

Description

医疗导管及其形状控制系统、方法、手术机器人和存储介质 技术领域
本申请涉及介入技术领域,特别涉及一种医疗导管、形状控制系统、控制方法、手术机器人和存储介质。
背景技术
微创外科手术兴起于20世纪80年代,介入手术为其重要分支。介入手术可分为血管介入和非血管介入。其中非血管介入是指在医学影像设备例如X射线、CT、B超、MRI的引导下,利用各种器械,通过血管以外的途径,如经人体生理腔道的自然开口或直接穿脏器对许多疾病进行诊断和治疗的技术。非血管介入治疗技术的应用则涉及全身各个系统,如消化系统的食管、胃十二指肠、结肠、胆道恶性狭窄球囊导管扩张并支架置入术,胃造瘘术,肝癌B超、CT导引下药物直接注射疗法;呼吸系统肺癌直接穿刺注药或直流电疗法,气管支气管恶性狭窄的金属内支架治疗,恶性胸腔积液的腔内灌注疗法;泌尿系统经皮肾造瘘和支架引流术治疗输尿管恶性梗阻,膀胱癌腔内灌注疗法;中枢神经系统颅咽管瘤抽吸、交感神经阻断术;MRI导引下经皮激光切除深部恶性肿瘤等。
医疗导管在非血管介入手术中起到非常重要的作用,通过控制医疗导管的头部进入病灶位置处,可以将药物、医疗器械等输送至病灶位置处,然而由于现有的医疗导管无法精确控制导管头部的偏转方向和角度,从而无法高效地控制医疗导管的头部到达病灶位置处。
发明内容
本申请的目的在于提供一种医疗导管及其形状控制系统、控制方法、手术机器人和存储介质,可以实现医疗导管头部形状的精确控制,能够更加高效地控制医疗导管的头部到达病灶位置处。
为实现上述目的,本申请提供一种医疗导管,包括第一导管、第二导管、多个导丝以及驱动装置,所述多个导丝穿设于所述第一导管和所述第二导管的内部;
所述第一导管的远端与所述第二导管的近端相连;
所述驱动装置包括多个与所述导丝一一对应设置的驱动件;
所述导丝的近端穿出所述第一导管的近端并与一所述驱动件相连,所述导丝的远端与所述第二导管的远端相连;
在所述驱动件的作用下,所述导丝能够沿其轴向伸长和缩短,以使得所述第二导管能够沿至少一个方向弯曲。
可选的,所述第一导管的内部设有至少一个用于供所述多个导丝穿过的第一导丝通道,所述第二导管的内部设有至少一个用于供所述多个导丝穿过的第二导丝通道,所述第二导丝通道与所述第一导丝通道一一对应设置。
可选的,所述第一导丝通道和所述第二导丝通道的数目均为1个,所述多个导丝集中穿设于所述第一导丝通道和所述第二导丝通道内。
可选的,所述第一导丝通道和所述第二导丝通道的数目均与所述导丝的数目相同,每一对应设置的所述第一导丝通道和所述第二导丝通道内穿设有一导丝。
可选的,所述多个第一导丝通道沿所述第一导管的周向均匀设置,所述多个第二导丝通道沿所述第二导管的周向均匀设置。
可选的,所述驱动件包括电机和丝轮,所述丝轮与所述电机的输出轴相连,所述导丝的近端缠绕于所述丝轮上。
可选的,所述多个导丝与所述第二导管的远端之间的连接点分散布置。
可选的,所述第一导管的内部还设有至少一个用于供医疗器械穿过的第一输送通道,所述第二导管的内部还设有至少一个用于供医疗器械穿过且与所述第一输送通道对应设置的第二输送通道。
可选的,所述导丝上设有弹性件,所述弹性件上设有应变片,所述应变片用于检测所述弹性件的弹性变形量。
可选的,所述弹性件靠近所述驱动件所在位置。
为实现上述目的,本申请还提供医疗导管的形状控制方法,所述医疗导管为上文所述的医疗导管,所述形状控制方法包括:
获取所述第二导管的期望形状;
根据所述第二导管的期望形状,计算所述导丝的期望变形总量;
根据所述导丝的期望变形总量,控制所述驱动件驱动所述导丝进行相应运动,以使得所述第二导管能够弯曲至所述期望形状。
可选的,所述根据所述导丝的期望变形总量,控制所述驱动件驱动所述导丝进行相应运动,包括:
获取所述导丝的实时弹性变形量;
根据所述导丝的实时弹性变形量,对所述导丝的期望变形总量进行修正,以获取所述导丝的实时期望变形总量;
根据所述导丝的实时期望变形总量,控制所述驱动件驱动所述导丝进行相应运动。
可选的,所述获取所述导丝的实时弹性变形量,包括:
获取所述导丝所受到的实时拉力;
根据所述导丝所受到的实时拉力,获取所述导丝的实时弹性变形量。
可选的,所述获取所述导丝所受到的实时拉力,包括:
获取与所述导丝相连的所述驱动件的实时输出力矩;
根据所述驱动件的实时输出力矩,获取所述导丝所受到的实时拉力矩;
根据所述导丝所受到的实时拉力矩,获取所述导丝所受到的实时拉力。
可选的,所述根据所述驱动件的实时输出力矩,获取所述导丝所受到的实时拉力矩,包括:
根据所述驱动件的实时输出力矩,以及预先获取的所述导丝所受到的摩擦力与所述导丝所受到的拉力之间的对应关系,获取所述导丝所受到的实时拉力矩。
可选的,所述获取与所述导丝相连的所述驱动件的实时输出力矩,包括:
获取与所述导丝相连的所述驱动件的实时输入力矩及所述驱动件所受到的实时摩擦力矩;
根据所述驱动件的实时输入力矩及所述驱动件所受到的实时摩擦力矩,获取所述所述驱动件的实时输出力矩。
可选的,所述导丝靠近所述驱动件的一端上安装有一应变片;
所述获取所述导丝的实时拉力,包括:
获取所述应变片的实时电阻变化量;
根据所述实时电阻变化量,获取所述导丝所受到的实时拉力。
为实现上述目的,本申请还提供一种医疗导管的形状控制方法,所述医疗导管为上文所述医疗导管,所述方法包括:
获取所述第二导管的期望形状;
获取所述第二导管的实时实际形状;
根据所述第二导管的期望形状以及所述第二导管的实时实际形状,计算所述导丝的实时期望变形量;
根据所述导丝的实时期望变形量,控制所述驱动件驱动所述导丝进行相应运动,以使得所述第二导管能够弯曲至所述期望形状。
为实现上述目的,本申请还提供一种医疗导管的形状控制系统,所述形状控制系统包括控制器,所述控制器包括处理器和存储器,所述存储器上存储有计算机程序,所述计算机程序被所述处理器执行时,实现上文所述的医疗导管的形状控制方法。
可选的,所述形状控制系统还包括与所述控制器通信连接的显示器,所述显示器用于对所述第二导管的期望形状进行显示。
可选的,所述形状控制系统还包括与所述控制器相连的报警器,所述报警器用于在所述医疗导管的运动状态出现异常时进行报警。
可选的,所述形状控制系统还包括与所述控制器相连的指示灯,所述指示灯用于对所述医疗导管的运动状态进行指示。
为达到上述目的,本申请还提供一种可读存储介质,所述可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时,实现上文所述的医疗导管的形状控制方法。
为达到上述目的,本申请还提供一种手术机器人,所述手术机器人包括上文所述的形状控制系统、控制端和操作端,所述操作端包括至少一条机械臂,所述控制端与所述操作端具有主从控制关系并用于 控制所述机械臂进行操作,所述控制端和所述操作端均与所述控制器通信连接,所述医疗导管安装于所述机械臂的末端。
与现有技术相比,本申请提供的医疗导管及其形状控制系统、控制方法、手术机器人和存储介质具有以下优点:
(1)由于本申请提供的医疗导管包括第一导管、第二导管、多个导丝以及驱动装置,所述多个导丝穿设于所述第一导管和所述第二导管的内部;所述第一导管的远端与所述第二导管的近端相连;所述驱动装置包括多个与所述导丝一一对应设置的驱动件;所述导丝的近端穿出所述第一导管的近端并与一所述驱动件相连,所述导丝的远端与所述第二导管的远端相连;在所述驱动件的作用下,所述导丝能够沿其轴向伸长和缩短,以使得所述第二导管能够沿至少一个方向弯曲。由此,本申请提供的医疗导管通过所述驱动件可以精确控制所述导丝沿其轴向伸长和缩短的长度,从而能够精确控制所述第二导管弯曲的方向和角度,以实现所述第二导管的形状的精确控制,从而保证医疗导管在人体内运动的流畅性;
(2)本申请提供的医疗导管的形状控制方法通过获取所述第二导管的期望形状,并根据所述第二导管的期望形状,计算所述导丝的期望变形总量,再根据所述导丝的期望变形总量,控制所述驱动件驱动所述导丝进行相应运动,从而能够使得所述第二导管能够弯曲至所述期望形状,以实现所述第二导管的形状的精确控制;
(3)本申请提供的医疗导管的形状控制方法通过获取所述导丝的实时弹性变形量,并根据所述导丝的实时弹性变形量,对所述导丝的期望变形总量进行修正,以获取所述导丝的实时期望变形总量,再根据所述导丝的实时期望变形总量,控制所述驱动件驱动所述导丝进行相应运动,从而可以对导丝因受到拉力而产生的弹性变形进行补偿,以进一步实现第二导管的形状的精确控制;
(4)本申请提供的医疗导管的形状控制方法,通过获取所述第二导管的期望形状以及所述第二导管的实时实际形状,再根据所述期望形状和所述实时实际形状,计算所述导丝的实时期望变形量,最后再根据所述导丝的实时期望变形量,控制所述驱动件驱动所述导丝进行相应运动,从而可以实现第二导管的形状的闭环控制,使得第二导管的实际形状更加接近期望形状,进一步提高第二导管的形状的控制精度。
(5)由于本申请提供的医疗导管的形状控制系统、手术机器人和可读存储介质与上文所述的医疗导管的形状控制方法属于同一发明构思,因此它们具有上文所述的医疗导管的形状控制方法的所有优点,故对此不再进行赘述。
附图说明
图1为本申请一实施方式中的医疗导管的结构示意图;
图2为本申请一实施方式中的医疗导管的局部结构示意图;
图3为本申请第一种实施方式中的第一导管的横向截面示意图;
图4为本申请第二种实施方式中的第一导管的横向截面示意图;
图5为本申请第三种实施方式中的第一导管的横向截面示意图;
图6为本申请第一种实施方式中的医疗导管的形状控制方法的流程示意图;
图7为本申请第二种实施方式中的医疗导管的形状控制方法的流程示意图;
图8为本申请第一种实施方式中的获取导丝所受到的实时拉力的示意图;
图9为本申请一实施方式中的减小导丝和导丝通道之间的摩擦力的示意图;
图10为本申请中一实施方式中的医疗导管的数学模型图;
图11为本申请一实施方式中的获取导丝所受到的摩擦力与拉力之间的对应关系的原理图;
图12为本申请另一实施方式中的获取导丝所受到的摩擦力与拉力之间的对应关系的原理图;
图13为本申请第二种实施方式中的获取导丝所受到的实时拉力的示意图;
图14为本申请另一实施方式中的医疗导管的局部结构示意图;
图15为本申请第三种实施方式中的获取导丝所受到的实时拉力的示意图;
图16为本申请第三种实施方式中的医疗导管的形状控制方法的流程示意图;
图17为本申请一实施方式中的驱动件的控制示意图;
图18为本申请另一实施方式中的驱动件的控制示意图;
图19为现有技术中的医疗导管的形状控制结果示意图;
图20为本申请一实施方式中的医疗导管的形状控制结果示意图;
图21为本申请一实施方式中的形状控制系统的方框结构示意图;
图22为本申请一实施方式中的手术机器人的操作端的示意图。
其中,附图标记如下:
第一导管-110;第二导管-120;导丝-130;驱动装置-140;驱动件-141;第一导丝通道-111;电机-1411;丝轮-1412;润滑剂-150;弹性件-160;应变片-161;位置传感器-170;
滑块-1;拉力计-2;
控制器-210;处理器-211;存储器-212;显示器-220;报警器-230;指示灯-240;
操作端-300;手术台车-310;机械臂-311。
具体实施方式
以下结合附图1至22和具体实施方式对本申请提出的医疗导管及其形状控制系统、控制方法、手术机器人和存储介质作进一步详细说明。根据下面说明,本申请的优点和特征将更清楚。需要说明的是,附图采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本申请实施方式的目的。为了使本申请的目的、特征和优点能够更加明显易懂,请参阅附图。须知,本说明书所附图式所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本申请实施的限定条件,任何结构的修饰、比例关系的改变或大小的调整,在与本申请所能产生的功效及所能达成的目的相同或近似的情况下,均应仍落在本申请所揭示的技术内容能涵盖的范围内。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本申请的核心思想在于提供一种医疗导管及其形状控制系统、控制方法、手术机器人和存储介质,以实现医疗导管头部形状的精确控制,能够更加高效地控制医疗导管的头部到达病灶位置处。需要说明的是,虽然本文是以将医疗导管的头部(即第二导管)输送至支气管病灶位置处进行说明,但是如本领域技术人员所能理解的,在其它一些实施方式中,还可以将所述医疗导管的头部(即第二导管)输送至其它病灶位置处,本申请对此并不进行限定。另外,需要说明的是,如本领域技术人员所能理解的,本文中所称的近端是指靠近操作者的一端,所称的远端是指远离操作者的一端,也即靠近病灶的一端,本文中所称的多个包括两个的情形。
为实现上述思想,本申请提供一种医疗导管,请参考图1和图2,其中图1示意性地给出了本申请一实施方式提供的医疗导管的结构示意图;图2示意性地给出了本申请一实施方式提供的医疗导管的局部结构示意图。如图1和图2所示,所述医疗导管包括第一导管110、第二导管120、多个导丝130以及驱动装置140,所述多个导丝130穿设于所述第一导管110和所述第二导管120的内部;所述第一导管110的远端与所述第二导管120的近端相连;所述驱动装置140包括多个与所述导丝130一一对应设置的驱动件141;所述导丝130的近端穿出所述第一导管110的近端并与一所述驱动件141相连,所述导丝130的远端与所述第二导管120的远端相连;在所述驱动件141的作用下,所述导丝130能够沿其轴向伸长和缩短,以使得所述第二导管120能够沿至少一个方向弯曲。由于所述驱动件141是与所述导丝130一一对应设置的,即不同的导丝130沿其轴向伸长和缩短的长度是由不同的驱动件141控制的,由此,本申请提供的医疗导管通过所述驱动件141可以精确控制所述导丝130沿其轴向伸长和缩短的长 度,从而能够精确控制所述第二导管120弯曲的方向和角度,以实现所述第二导管120的形状的精确控制,从而保证医疗导管在人体内运动的流畅性。
进一步地,请参考图3,其示意性地给出了本申请第一种实施方式提供的第一导管的横向截面示意图。如图3所示,在本实施方式中,所述医疗导管包括四根导丝130,所述第一导管110的内部设有一个用于供所述四根导丝130穿过的第一导丝通道111,所述第二导管120的内部设有一个用于供所述四根导丝130穿过的第二导丝通道(图中未示出),所述第二导丝通道与所述第一导丝通道111对应设置,其中,四根所述导丝130的远端分别固定在所述第二导管120的远端的四个角落处。由此,本申请通过在所述第一导管110和所述第二导管120的内部设置四根导丝130,可以使得所述第二导管120能够沿四个方向进行弯曲。优选地,所述第二导丝通道与对应的所述第一导丝通道111对准。此外,通过将四根导丝130集中穿设于对应设置的一个第一导丝通道111和一个第二导丝通道内,可以有效简化所述医疗导管的整体结构。另外,通过设置用于供所述导丝130穿过的第一导丝通道111和第二导丝通道,可以有效避免导丝130与输送的器械之间发生干扰。需要说明的是,如本领域技术人员所能理解的,当所述医疗导管包括四根导丝130时,所述驱动装置140包括四个驱动件141,每一根导丝130与一驱动件141相连。
请继续参考图4,其示意性地给出了本申请第二种实施方式提供的第一导管的横向截面示意图。如图4所示,在本实施方式中,所述医疗导管包括四根导丝130,所述第一导管110的内部设有四个第一导丝通道111,所述四个第一导丝通道111沿所述第一导管110的周向均匀布置(即所述第一导管110的内部绕其轴线方向均匀设置有四个与所述第一导管110的轴线平行设置的四个第一导丝通道111),所述第二导管120的内部设有四个与所述第一导丝通道111一一对应设置的第二导丝通道(图中未示出),所述四个第二导丝通道沿所述第二导管120的周向均匀布置(即所述第二导管120的内部绕其轴线方向均匀设置有四个与所述第二导管120的轴线平行设置的四个第二导丝通道),其中,每一组对应设置的第一导丝通道111和第二导丝通道用于供一根导丝130穿过。优选地,四个第二导丝通道分别与对应的所述第一导丝通道111对准。由于不同的导丝130是设置于不同的导丝通道(包括第一导丝通道111和第二导丝通道)内的,由此可以避免不同导丝130之间的相互干扰,进一步提高第二导管120的形状的控制精度。此外,由于四个所述第一导丝通道111是沿所述第一导管110的周向均匀设置的,四个所述第二导丝通道是沿所述第二导管120的周向均匀设置的,由此,此种设置不仅能够使得所述第二导管120在弯曲过程中受力更加均匀,更加易于第二导管120的形状控制,同时也能够更加便于医疗器械的输送,提高本申请提供的医疗导管在使用过程中的稳定性。
请继续参考图5,其示意性地给出了本申请第三种实施方式提供的第一导管的横向截面示意图。如图5所示,本实施方式与第二种实施方式的区别在于,在本实施方式中,四个第一导丝通道111沿所述第一导管110的径向均匀设置(即所述第一导管110的内部沿其截面半径方向均匀设置有四个与所述第一导管110的轴线平行的第一导丝通道111),四个第二导丝通道沿所述第二导管120的径向均匀设置(即所述第二导管120的内部沿其截面半径方向均匀设置有四个与所述第二导管120的轴线平行的第二导丝通道)。优选地,四个第二导丝通道分别与对应的所述第一导丝通道111对准。由此,此种设置,也可以避免不同导丝130之间的相互干扰,进一步提高第二导管120的形状的控制精度。
需要说明的是,虽然本文是以所述第一导管110和所述第二导管120内穿设有四根导丝130为例进行说明,但是如本领域技术人员所能理解的,在其它一些实施方式中,所述第一导管110和所述第二导管120内还可以穿设有其它数目的导丝130,例如一根导丝130、两根导丝130、三根导丝130、五根导丝130或更多数目的导丝130,本申请对此并不进行限定。此外,需要说明的是,如本领域技术人员所能理解的,所述第一导管110的内部还设有至少一个用于供医疗器械穿过的第一输送通道(图中未示出),所述第二导管120的内部还设有至少一个用于供医疗器械穿过且与所述第一输送通道对应设置的第二输送通道(图中未示出)。优选地,所述第一输送通道与所述第二输送通道对准。
进一步地,如图2所示,所述驱动件141包括电机1411和丝轮1412,所述丝轮1412与所述电机1411的输出轴相连,所述导丝130的近端缠绕于所述丝轮1412上。由此,通过电机1411能够进一步精确控制所述导丝130沿其轴向伸长和缩短的长度,从而能够精确控制所述第二导管120弯曲的方向和角度,通过设置丝轮1412,可以进一步简化驱动装置140的整体结构。具体地,当所述电机1411转动时,所述丝轮1412与所述电机1411同步转动,转动的丝轮1412能够使得所述导丝130沿其轴向伸长或缩短,以图2为例,当所述电机1411逆时针转动时,所述丝轮1412也逆时针转动,逆时针转动的丝轮1412能够使得所述导丝130的更多部分缠绕在所述丝轮1412上,即使得所述导丝130沿其轴向缩短。当所述电机1411顺时针转动时,所述丝轮1412也顺时针转动,顺时针转动的丝轮1412能够将缠绕在所述丝轮1412上的部分导丝130进行释放,即使得所述导丝130沿其轴向伸长。需要说明的是,虽然本文是以所述驱动件141包括电机1411和丝轮1412为例进行说明,但是,如本领域技术人员所能理解的,在其它一些实施方式中,所述驱动件141还可包括电机1411和丝杆等能够控制所述导丝130沿其轴向伸长和缩短的长度的结构,本申请对此并不进行限定。
基于同一发明构思,本申请还提供一种医疗导管的形状控制方法,请参考图6,其示意性地给出了本申请第一种实施方式提供的医疗导管的形状控制方法流程示意图。如图6所示,在本实施方式中,所述形状控制方法包括如下步骤:
步骤S110、获取所述第二导管的期望形状;
步骤S120、根据所述第二导管的期望形状,计算所述导丝的期望变形总量;
步骤S130、根据所述导丝的期望变形总量,控制所述驱动件驱动所述导丝进行相应运动,以使得所述第二导管能够弯曲至所述期望形状。
具体地,所述第二导管120的期望形状(即第二导管120的弯曲方向和角度)可以为操作者根据实际情况进行设定的,根据所述第二导管120的期望形状及所述第二导管120的基本形状参数(包括第二导管120的长度、外径等参数),采用逆运动学模型,即可计算出每一根导丝130的期望变形总量(即导丝130的伸长量或缩短量),根据每一根所述导丝130的期望变形总量,即可获取对应的驱动件141的控制量,从而可以根据所述驱动件141的控制量控制对应的驱动件141进行相应运动,即可使得所述第二导管120能够弯曲至所述期望形状,可见本实施方式提供的形状控制方法能够实现第二导管120的形状的精确控制。
请继续参考图7,其示意性地给出了本申请第二种实施方式提供的医疗导管的形状控制方法流程示意图。如图7所示,在本实施方式中,所述形状控制方法包括如下步骤:
步骤S210、获取所述第二导管的期望形状;
步骤S220、根据所述第二导管的期望形状,计算所述导丝的期望变形总量;
步骤S230、获取所述导丝的实时弹性变形量;
步骤S240、根据所述导丝的实时弹性变形量,对所述导丝的期望变形总量进行修正,以获取所述导丝的实时期望变形总量;
步骤S250、根据所述导丝的实时期望变形总量,控制所述驱动件驱动所述导丝进行相应运动。
由此,本实施方式通过获取所述导丝130的实时弹性变形量,并根据所获取的实时弹性变形量对所述导丝130的期望变形总量进行修正,以获取所述导丝130的实时期望变形总量,根据所述导丝130的实时期望变形总量,即可获取对应的驱动件141的实时控制总量,根据所述驱动件141的实时控制总量即可实时控制所述驱动件141进行相应运动。由于本实施方式可以对导丝130因受到拉力而产生的弹性变形进行实时补偿,从而可以进一步实现第二导管120的形状的精确控制。
进一步地,所述获取所述导丝的实时弹性变形量,包括:
获取所述导丝所受到的实时拉力;
根据所述导丝所受到的实时拉力,获取所述导丝的实时弹性变形量。
具体地,所述导丝130所受到的实时拉力F 与所述导丝130的实时弹性变形量ε 1之间满足如下关系式:
F =K 11
式中,K 1为所述导丝130的杨氏模量。
由此,根据所述导丝130所受到的实时拉力F 和所述导丝130的杨氏模量K 1,即可求得所述导丝130的实时弹性变形量ε 1。此外,通过获取所述导丝130所受到的实时拉力,还可以保证导丝130不会被拉断,从而使得导丝130能够始终工作在合理的拉力范围内。
更进一步地,请参考图8,其示意性地给出了本申请第一种实施方式提供的获取所述导丝所受到的实时拉力的示意图。如图8所示,在本实施方式中,所述获取所述导丝所受到的实时拉力,包括:
获取与所述导丝相连的所述驱动件的实时输出力矩;
根据所述驱动件的实时输出力矩,获取所述导丝所受到的实时拉力矩;
根据所述导丝所受到的实时拉力矩,获取所述导丝所受到的实时拉力。
具体地,可以通过在所述驱动件141的输出端设置力矩传感器,以获取所述驱动件141的实时输出力矩,根据所述驱动件141的实时输出力矩与所述导丝130所受到的实时拉力矩之间的关系,即可获取所述导丝130所受到的实时拉力矩(所述驱动件141的实时输出力矩=所述导丝130所受到的实时拉力矩+所述导丝130所受到的实时摩擦力矩)。其中,所述导丝130所受到的实时拉力矩T 与所述导丝130所受到的实时拉力F 之间满足如下关系式:
T =F *L
式中,L 为拉力力臂。
由此,根据所述导丝130所受到的实时拉力矩T 和拉力臂L ,即可求得所述导丝130所受到的实时拉力F ,其中,当所述驱动件141包括电机1411和丝轮1412时,所述拉力臂L 等于所述丝轮1412的半径。
如本领域技术人员所能理解的,当所述导丝130与所述导丝通道(包括第一导丝通道111和第二导丝通道)之间的摩擦力非常小,以致于可以忽略时,可设所述导丝130所受到的实时拉力矩等于所述驱动件141的实时输出力矩。请参考图9,其示意性地给出了本申请一实施方式提供的减少导丝和导丝通道之间的摩擦力的示意图。如图9所示,可以通过在所述导丝通道(包括第一导丝通道111和第二导丝通道)和所述导丝130之间的区域添加润滑剂150的方式减小所述导丝130所受到的来自于导丝通道的摩擦力。需要说明的是,如本领域技术人员所能理解的,所添加的润滑剂150既可以是液体润滑剂也可以是固体润滑剂,或其他适合形态的润滑剂,本申请对此并不进行限制。
请继续参考图10,其示意性地给出了本申请一实施方式提供的医疗导管的数学模型图。如图10所示,当所述导丝130与所述导丝通道之间的摩擦力较大以致于不可忽略时,假设所述驱动件141的实时输出力矩(即电机1411的输出力矩)为T M,所述导丝130所受到的实时拉力矩为T ,所述导丝130所受到的实时摩擦力矩为T f,则所述实时输出力矩T M、所述实时拉力矩T 、所述实时摩擦力矩T f之 间满足如下关系式:
T =T M-T f
具体地,所述导丝130所受到的实时摩擦力矩T f与所述导丝130所受到的来自于导丝通道的摩擦力f之间满足如下关系式:
T f=f*L f
式中,L f为摩擦力的力臂。
由此,根据所述驱动件141的输出力矩T M,以及所述导丝130所受到的T f即可求得所述导丝130所受到的拉力矩T 。其中,当所述驱动件141包括相连的电机1411和丝轮1412时,摩擦力的力臂L f等于丝轮1412的半径。
由于所述导丝130所受到的来自于所述第二导丝通道的摩擦力不容易测得,为此,在实际中,可通过润滑或其它方式减少所述导丝130与所述第二导丝通道之间的摩擦,以使得所述导丝130所受到的来自于所述第二导丝通道的摩擦力可以忽略不计,从而只需考虑所述导丝130所受到的来自于所述第一导丝通道111的摩擦力。又由于所述导丝130所受到的来自于第一导丝通道111的摩擦力与所述导丝130所受到的拉力F 及所述第一导管110的弯曲角度有关,由此可以通过试验分别在不同的弯曲角度(第一导管110的弯曲角度)下测量所述导丝130受到不同拉力时,所述导丝130与所述第一导丝通道111之间的摩擦力的值,并进行拟合,以分别得到不同弯曲角度下,所述导丝130所受到的摩擦力与所述导丝130所受到的拉力之间的对应关系。由此,根据所述第一导管110的实际弯曲角度,选择对应弯曲角度下的对应关系,即可根据所述驱动件141的实时输出力矩,求得所述导丝130所受到的实时拉力矩(当所述驱动件141包括电机1411丝轮1412时,导丝130所受到的摩擦力的力臂与导丝130所受到的拉力的力臂均等于丝轮1412的半径)。具体地,假设在某一弯曲角度下,所述导丝130所受到的摩擦力f与所述导丝130所受到的拉力F 之间满足如下关系:
f=Y(F )
由于摩擦力f的力臂L f与拉力F 的力臂L 相等,由此,所述导丝130所受到的实时拉力矩T 与所述导丝130所受到的实时摩擦力矩T f之间满足如下关系式:
Figure PCTCN2022120684-appb-000001
由此,所述导丝130所受到的实时摩擦力矩T f为:
Figure PCTCN2022120684-appb-000002
从而所述驱动件141的实时输出力矩T M与所述导丝130所受到的实时拉力矩T 之间满足如下关系式:
Figure PCTCN2022120684-appb-000003
由此,所述导丝130所受到的实时拉力矩T 为:
Figure PCTCN2022120684-appb-000004
进一步地,请参考图11,其示意性地给出了本申请一实施方式提供的获取导丝所受到的摩擦力与拉力之间的对应关系的原理图。如图11所示,在本实施方式中,可以通过将第一导管110弯曲成一角度,将导丝130的两端穿出所述第一导管110,并将所述第一导管110悬挂起来,然后在导丝130的一端连接重量为G的滑块1,在导丝130的另一端连接拉力计2,通过拉力计2拉动滑块1做匀速运动,记录下拉力计2的读数F,则导丝130所受到的摩擦力为F-G,然后改变滑块1的重量G,继续拉动滑块1做匀速运动,并记录下拉力计2的读数F,拉力计2的读数F与滑块1的重量G的差值即为导丝130所受到的摩擦力。由此,通过不断改变滑块1的重量,可以获得导丝130在不同拉力下所受到的摩擦力的值,通过拟合,即可获取导丝130在该弯曲角度下的摩擦力与拉力之间的对应关系。然后改变第一导管110的弯曲角度,并重复上述步骤,即可获取导丝130在不同弯曲角度下的摩擦力与拉力之间的对应关系。
请继续参考图12,其示意性地给出了本申请另一实施方式提供的获取导丝所受到的摩擦力与拉力之间的对应关系的原理图。如图12所示,在本实施方式中,可以在导丝130的一端连接重量为G的滑块1,在导丝130的另一端连接拉力计2,然后在光滑平面上通过拉力计2拉动滑块1做匀速运动,记录下拉力计2的读数F0,然后改变滑块1的重量,继续拉动滑块1做匀速运动,记录下拉力计2的读数F0,由此,通过不断改变滑块1的重量,可以获取不同滑块1重量下的拉力计2的读数F0。然后将导丝130的两端穿出所述第一导管110,将所述第一导管110弯曲成一角度,并在所述导丝130的一端连接滑块1,在导丝130的另一端连接拉力计2,通过拉力计2拉动滑块1做匀速运动,记录下拉力计2的读数F1,F1与对应滑块1重量下的F0的差值即为导丝130所受到的摩擦力的值,然后改变滑块1的重量,继续拉动滑块1做匀速运动,并记录下拉力计2的读数F1,F1与对应滑块1重量下的F0的差值即为导丝130所受到的摩擦力的值。由此,通过不断改变滑块1的重量,将对应滑块1重量下的F1与F0相减,即可获取导丝130在不同拉力下所受到的摩擦力的值,通过拟合,即可获取导丝130在该弯曲角度下的摩擦力与拉力之间的对应关系。然后改变第一导管110的弯曲角度,并重复上述步骤,即可获取导丝130在不同弯曲角度下的摩擦力与拉力之间的对应关系。
请继续参考图13,其示意性地给出了本申请第二种实施方式提供的获取导丝所受到的实时拉力的示意图。如图13所示,在本实施方式中,所述获取所述导丝所受到的实时拉力,包括:
获取与所述导丝相连的所述驱动件的实时输入力矩及所述驱动件所受到的实时摩擦力矩;
根据所述驱动件的实时输入力矩及所述驱动件所受到的实时摩擦力矩,获取所述驱动件的实时输出力矩;
根据所述驱动件的实时输出力矩,获取所述导丝所受到的实时拉力矩;
根据所述导丝所受到的实时拉力矩,获取所述导丝所受到的实时拉力。
由于所述驱动件141的实时输出力矩T M等于所述驱动件141的实时输入力矩减去所述驱动件141所受到的实时摩擦力矩,而所述驱动件141的实时输出力矩=所述导丝130所受到的实时拉力矩+所述导丝130所受到的实时摩擦力矩,由此,根据所述驱动件141的实时输出力矩T M,即可获取所述导丝130所受到的实时拉力矩T 。具体地,当所述驱动件141包括电机1411和丝轮1412时,可以根据所 述电机1411的实时电流获取所述驱动件141的实时输入力矩,根据电机1411的实时转速获取所述驱动件141所受到的实时摩擦力矩。具体地,所述驱动件141所受到的实时摩擦力矩T Mf可通过下式求得:
T Mf=B*sign(V)+C
式中,B为电机1411的粘性摩擦系数,C为电机1411的库伦摩擦系数,V为电机1411的实时转速,sign为转速的符号(例如逆时针转动时,取+号,顺时针转动时,取-号)。
当所述导丝130与所述第一导丝通道111之间的摩擦力非常小,以致于可以忽略时,所述导丝130所受到的实时拉力矩等于所述驱动件141的实时输出力矩T M(即所述驱动件141的实时输入力矩与所述驱动件141所受到的实时摩擦力矩的差值)。
当所述导丝130与所述第一导丝通道111之间的摩擦力较大以致于不可忽略时,所述导丝130所受到的实时拉力矩等于所述驱动件141的实时输出力矩减去所述导丝130所受到的实时摩擦力矩。因此,根据所述驱动件的实时输出力矩,获取所述导丝130所受到的实时拉力矩,包括:
根据所述驱动件的实时输出力矩以及预先获取的所述导丝所受到的摩擦力与所述导丝所受到的拉力之间的对应关系,获取所述导丝所受到的实时拉力矩。
其中,所述导丝130所受到的摩擦力与所述导丝130所受到的拉力之间的对应关系可以通过上文中的相关测试方法得到。由于所述导丝130所受到的摩擦力的力臂与导丝130所受到的拉力的力臂是相等的的(其中,当所述驱动件141包括电机1411和丝轮1412时,摩擦力的力臂和拉力的力臂均等于丝轮1412的半径),由此,根据所述驱动件141的实时输入力矩及所述驱动件141所受到的实时摩擦力矩,即可获取所述驱动件141的实时输出力矩,进而根据所述驱动件141的实时输出力矩以及预先获取的所述导丝130所受到的摩擦力与所述导丝130所受到的拉力之间的对应关系,即可获取所述导丝130所受到的实时拉力矩,根据上文的相关描述可知,可以根据下式计算所述导丝130所受到的实时拉力矩T
Figure PCTCN2022120684-appb-000005
请继续参考图14,其示意性地给出了本申请另一实施方式提供的医疗导管的局部结构示意图。如图14所示,在本实施方式中,所述导丝130上安装有一弹性件160,所述弹性件160上设有应变片161,所述应变片161用于检测所述弹性件160的弹性变形量。由此,通过在所述导丝130上设置包括应变片161的弹性件160,可以实时检测所述导丝130所受到的拉力。优选地,所述弹性件160靠近所述驱动件141所在位置,即所述弹性件160和应变片161设置在所述医疗导管的近端,由此,所述弹性件160和所述应变片161的设置不会影响所述第二导管120的结构设计。
请继续参考图15,其示意性地给出了本申请第三种实施方式提供的获取导丝所受到的实时拉力的流程示意图。如图15所示,在本实施方式中,所述获取所述导丝所受到的实时拉力,包括:
获取所述应变片的实时电阻变化量;
根据所述实时电阻变化量,获取所述导丝所受到的实时拉力。
具体地,当所述导丝130因受拉力而发生弹性变形时,所述弹性件160也会随之一起发生形变,从而导致应变片161伸长或压缩而引起电阻的变化。假设所述应变片161的电阻值变化量为ΔR,则所述弹性件160的弹性变形量ε 2与所述电阻值变化量ΔR之间满足以下关系式:
Figure PCTCN2022120684-appb-000006
式中,R为所述应变片161的原电阻值,k为应变片161的电阻变化率。
由此,根据上式,可以求出所述弹性件160的实时弹性变形量ε 2,根据所述弹性件160的实时弹性变形量ε 2及所述弹性件160的杨氏模量K 2即可计算出所述弹性件160所受到的实时拉力,所述弹性件160所受到的实时拉力即为所述导丝130所受到的实时拉力。
请继续参考图16,其示意性地给出了本申请第三种实施方式提供的医疗导管的形状控制方法的流程示意图。如图16所示,在本实施方式中,所述形状控制方法包括如下步骤:
步骤S310、获取所述第二导管的期望形状;
步骤S320、获取所述第二导管的实时实际形状;
步骤S330、根据所述第二导管的期望形状以及所述第二导管的实时实际形状,计算所述导丝的实时期望变形量;
步骤S340、根据所述导丝的实时期望变形量,控制所述驱动件驱动所述导丝进行相应运动,以使得所述第二导管能够弯曲至所述期望形状。
由此,本实施方式通过获取所述第二导管120的期望形状以及所述第二导管120的实时实际形状,再根据所述第二导管120的期望形状以及所述第二导管120的实时实际形状,计算所述导丝130的实时期望变形量,根据所述导丝130的实时期望变形量,即可获取对应的所述驱动件141的实时控制量,根据所述驱动件141的实时控制量即可控制所述驱动件141进行相应运动。由于,本实施方式可以实现第二导管120的形状的闭环控制,从而使得第二导管120的实际形状更加接近期望形状,进一步提高第二导管120的形状的控制精度。
具体地,可以通过在所述第二导管120上安装形状感测器,由此通过所述形状感测器可以实时测量所述第二导管120的弯曲方向和角度。需要说明的是,如本领域技术人员所能理解的,所述形状感测器可以为现有技术中的位姿传感器,例如磁传感器等。
当所述驱动件141包括电机1411和丝轮1412时,为了进一步提高医疗导管的形状控制精度,本申请还对所述电机1411的运动过程进行精确控制。具体地,请参考图17,其示意性地给出了本申请一实施方式提供的驱动件141的控制示意图。如图17所示,在本实施方式中,通过安装于所述电机1411上的位置传感器170(例如编码器)可以实时测得所述电机1411的位置信息,并反馈至控制器210,所述控制器210根据反馈回的所述电机1411的实时位置信息,可以对电机1411的控制量进行实时补偿,从而实现电机1411的闭环控制,进一步提高第二导管120的形状控制精度。
请继续参考图18,其示意性地给出了本申请另一实施方式提供的驱动件141的控制示意图。如图18所示,由于电机1411始终受到导丝130的拉力扰动,且拉力是不断变化的,由此,在本实施方式中,控制器210可以根据反馈回来的电机1411的实时转速、实时位置(由位置传感器170测得)和实时电流,对电机1411所受到的总扰动进行估算,并根据估算出来的结果对电机1411的控制量进行实时补偿,从而可以提高电机1411的控制精度,进一步提高第二导管120的形状控制精度。
请参考图19和图20,其中图19示意性地给出了现有技术中的医疗导管的形状控制结果示意图。图20示意性地给出了本申请一实施方式中的医疗导管的形状控制结果示意图。如图19和图20所示,现有技术中,由于医疗导管的远端不能弯曲到一定的角度,因此现有技术中的医疗导管的远端接近不了支气管病灶位置,而由于本申请能够精确控制第二导管120(即医疗导管的远端)的弯曲形状,由此,医生可以操控第二导管120弯曲成理想的角度,从而使得第二导管120能够顺利到达病灶位置。
基于同一发明构思,本申请还提供一种医疗导管的形状控制系统,请参考图21,其示意性地给出了本申请一实施方式提供的形状控制系统的方框结构示意图。如图21所示,所述形状控制系统包括控制器210,所述控制器210包括处理器211和存储器212,所述存储器212上存储有计算机程序,所述 计算机程序被所述处理器211执行时,实现上文所述的医疗导管的形状控制方法。由于本申请提供的形状控制系统能够实现上文所述的医疗导管的形状控制方法,由此,其具有上文所述的医疗导管的形状控制方法的所有优点,故对此不再进行赘述。具体地,如图21所示,上文所述的医疗导管中的驱动件141与所述控制器210相连,由此通过所述控制器210可以精确控制所述驱动件141进行运动,以使得所述导丝130能够随之进行相应运动,从而实现第二导管120的形状的精确控制。
进一步地,如图21所示,所述形状控制系统还包括与所述控制器210通信连接的显示器220。由此,通过所述显示器220可以对输入的所述第二导管120的期望形状进行显示,以便于医生更好的操控所述第二导管120弯曲至所述期望形状。
进一步地,如图21所示,所述形状控制系统还包括与所述控制器210相连的报警器230。由此,通过设置报警器230可以在所述医疗导管的运动状态出现异常时进行报警,从而提高医疗导管在形状控制过程中的安全性。
如图21所示,所述形状控制系统还包括与所述控制器210相连的指示灯240。由此,通过设置指示灯240,可以对所述医疗导管的运动状态进行显示。具体地,当所述医疗导管正常运动时,所述指示灯240以一种颜色进行显示,当所述医疗导管的运动出现异常时,所述指示灯240以另一种颜色进行显示,从而可以进一步提高医疗导管在形状控制过程中的安全性。
需要说明的是,本申请中所称处理器211可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等,所述处理器是所述电子设备的控制中心,利用各种接口和线路连接整个电子设备的各个部分。
所述存储器212可用于存储所述计算机程序,所述处理器211通过运行或执行存储在所述存储器212内的计算机程序,以及调用存储在存储器212内的数据,实现所述电子设备的各种功能。
所述存储器212可以包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
与上述的医疗导管的形状控制系统相对应,本申请还提供了一种手术机器人,所述手术机器人包括上文所述的医疗导管的形状控制系统、控制端和操作端300,所述操作端300包括至少一条机械臂311,所述控制端与所述操作端300具有主从控制关系并用于控制所述机械臂311进行操作,所述控制端和所述操作端300均与所述形状控制系统中的控制器200通信连接,所述医疗导管安装于所述机械臂311的末端。由于本申请提供的手术机器人系统包括上文所述的医疗导管的形状控制系统,由此其具有上文所述的医疗导管的形状控制系统的所有优点,故对此不再进行赘述。
请继续参考图22,其示意性地给出了本申请一实施方式提供的手术机器人的操作端的示意图。如图22所示,所述操作端300包括手术台车310,所述手术台车310上设有至少一条机械臂311,其中至少一条所述机械臂311的末端安装有上文所述的医疗导管。所述形状控制系统中的控制器210可与所述手术机器人中的任意一个或多个装置结合设置,例如设置在所述控制端处,或设置在所述操作端300处;在又一些实施例中,所述控制器210可以单独设置;并且所述控制器210可以为具体的硬件或者软件单元,也可以为硬件与软件相结合的设置,本申请对于所述控制器210的具体设置不作限定。
与上述的医疗导管的形状控制方法相对应,本申请还提供了一种可读存储介质,所述可读存储介质内存储有计算机程序,所述计算机程序被处理器211执行时可以实现上文所述的医疗导管的形状控制方法。由于本申请提供的可读存储介质与上文所述的医疗导管的形状控制方法属于同一发明构思,因此其具有上文所述的医疗导管的形状控制方法的所有优点,故对此不再进行赘述。
本申请实施方式的可读存储介质,可以采用一个或多个计算机可读的介质的任意组合。可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是但不限于电、磁、光、电磁、红外线或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机硬盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其组合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言-诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言-诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)连接到用户计算机,或者可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
综上所述,与现有技术相比,本申请提供的医疗导管及其形状控制系统、控制方法、手术机器人和存储介质具有以下优点:
(1)由于本申请提供的医疗导管包括第一导管、第二导管、多个导丝以及驱动装置,所述多个导丝穿设于所述第一导管和所述第二导管的内部;所述第一导管的远端与所述第二导管的近端相连;所述驱动装置包括多个与所述导丝一一对应设置的驱动件;所述导丝的近端穿出所述第一导管的近端并与一所述驱动件相连,所述导丝的远端与所述第二导管的远端相连;在所述驱动件的作用下,所述导丝能够沿其轴向伸长和缩短,以使得所述第二导管能够沿至少一个方向弯曲。由此,本申请提供的医疗导管通过所述驱动件可以精确控制所述导丝沿其轴向伸长和缩短的长度,从而能够精确控制所述第二导管弯曲的方向和角度,以实现所述第二导管的形状的精确控制,从而保证医疗导管在人体内运动的流畅性;
(2)本申请提供的医疗导管的形状控制方法通过获取所述第二导管的期望形状,并根据所述第二导管的期望形状,计算所述导丝的期望变形总量,再根据所述导丝的期望变形总量,控制所述驱动件驱动所述导丝进行相应运动,从而能够使得所述第二导管能够弯曲至所述期望形状,以实现所述第二导管的形状的精确控制;
(3)本申请提供的医疗导管的形状控制方法通过获取所述导丝的实时弹性变形量,并根据所述导丝的实时弹性变形量,对所述导丝的期望变形总量进行修正,以获取所述导丝的实时期望变形总量,再根据所述导丝的实时期望变形总量,控制所述驱动件驱动所述导丝进行相应运动,从而可以对导丝因受到拉力而产生的弹性变形进行补偿,以进一步实现第二导管的形状的精确控制;
(4)本申请提供的医疗导管的形状控制方法,通过获取所述第二导管的期望形状以及所述第二 导管的实时实际形状,再根据所述期望形状和所述实时实际形状,计算所述导丝的实时期望变形量,最后再根据所述导丝的实时期望变形量,控制所述驱动件驱动所述导丝进行相应运动,从而可以实现第二导管的形状的闭环控制,使得第二导管的实际形状更加接近期望形状,进一步提高第二导管的形状的控制精度。
(5)由于本申请提供的医疗导管的形状控制系统、手术机器人和可读存储介质与上文所述的医疗导管的形状控制方法属于同一发明构思,因此它们具有上文所述的医疗导管的形状控制方法的所有优点,故对此不再进行赘述。
应当注意的是,在本文的实施方式中所揭露的装置和方法,也可以通过其他的方式实现。以上所描述的装置实施方式仅仅是示意性的,例如,附图中的流程图和框图显示了根据本文的多个实施方式的装置、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现方式中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用于执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
另外,在本文各个实施方式中的各功能模块可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或两个以上模块集成形成一个独立的部分。
上述描述仅是对本申请较佳实施方式的描述,并非对本申请范围的任何限定,本申请领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于本申请的保护范围。

Claims (23)

  1. 一种医疗导管,其特征在于,包括第一导管、第二导管、多个导丝以及驱动装置,所述多个导丝穿设于所述第一导管和所述第二导管的内部;
    所述第一导管的远端与所述第二导管的近端相连;
    所述驱动装置包括多个与所述导丝一一对应设置的驱动件;
    所述导丝的近端穿出所述第一导管的近端并与一所述驱动件相连,所述导丝的远端与所述第二导管的远端相连;
    在所述驱动件的作用下,所述导丝能够沿其轴向伸长和缩短,以使得所述第二导管能够沿至少一个方向弯曲;
    所述导丝上设有弹性件,所述弹性件上设有应变片,所述应变片用于检测所述弹性件的弹性变形量。
  2. 根据权利要求1所述的医疗导管,其特征在于,所述第一导管的内部设有至少一个用于供所述多个导丝穿过的第一导丝通道,所述第二导管的内部设有至少一个用于供所述多个导丝穿过的第二导丝通道,所述第二导丝通道与所述第一导丝通道一一对应设置。
  3. 根据权利要求2所述的医疗导管,其特征在于,所述第一导丝通道和所述第二导丝通道的数目均为1个,所述多个导丝集中穿设于所述第一导丝通道和所述第二导丝通道内。
  4. 根据权利要求2所述的医疗导管,其特征在于,所述第一导丝通道和所述第二导丝通道的数目均与所述导丝的数目相同,每一对应设置的所述第一导丝通道和所述第二导丝通道内穿设有一导丝。
  5. 根据权利要求4所述的医疗导管,其特征在于,所述多个第一导丝通道沿所述第一导管的周向均匀设置,所述多个第二导丝通道沿所述第二导管的周向均匀设置。
  6. 根据权利要求1所述的医疗导管,其特征在于,所述驱动件包括电机和丝轮,所述丝轮与所述电机的输出轴相连,所述导丝的近端缠绕于所述丝轮上。
  7. 根据权利要求1所述的医疗导管,其特征在于,所述多个导丝与所述第二导管的远端之间的连接点分散布置。
  8. 根据权利要求1所述的医疗导管,其特征在于,所述第一导管的内部还设有至少一个用于供医疗器械穿过的第一输送通道,所述第二导管的内部还设有至少一个用于供医疗器械穿过且与所述第一输送通道对应设置的第二输送通道。
  9. 根据权利要求1所述的医疗导管,其特征在于,所述弹性件靠近所述驱动件所在位置。
  10. 一种医疗导管的形状控制方法,其特征在于,所述医疗导管为权利要求1至9中任一项所述的医疗导管,所述方法包括:
    获取所述第二导管的期望形状;
    根据所述第二导管的期望形状,计算所述导丝的期望变形总量;
    根据所述导丝的期望变形总量,控制所述驱动件驱动所述导丝进行相应运动,以使得所述第二导管能够弯曲至所述期望形状。
  11. 根据权利要求10所述的形状控制方法,其特征在于,所述根据所述导丝的期望变形总量,控制所述驱动件驱动所述导丝进行相应运动,包括:
    获取所述导丝的实时弹性变形量;
    根据所述导丝的实时弹性变形量,对所述导丝的期望变形总量进行修正,以获取所述导丝的实时期望变形总量;
    根据所述导丝的实时期望变形总量,控制所述驱动件驱动所述导丝进行相应运动。
  12. 根据权利要求11所述的形状控制方法,其特征在于,所述获取所述导丝的实时弹性变形量, 包括:
    获取所述导丝所受到的实时拉力;
    根据所述导丝所受到的实时拉力,获取所述导丝的实时弹性变形量。
  13. 根据权利要求12所述的形状控制方法,其特征在于,所述获取所述导丝所受到的实时拉力,包括:
    获取与所述导丝相连的所述驱动件的实时输出力矩;
    根据所述驱动件的实时输出力矩,获取所述导丝所受到的实时拉力矩;
    根据所述导丝所受到的实时拉力矩,获取所述导丝所受到的实时拉力。
  14. 根据权利要求13所述的形状控制方法,其特征在于,所述根据所述驱动件的实时输出力矩,获取所述导丝所受到的实时拉力矩,包括:
    根据所述驱动件的实时输出力矩,以及预先获取的所述导丝所受到的摩擦力与所述导丝所受到的拉力之间的对应关系,获取所述导丝所受到的实时拉力矩。
  15. 根据权利要求13所述的形状控制方法,其特征在于,所述获取与所述导丝相连的所述驱动件的实时输出力矩,包括:
    获取与所述导丝相连的所述驱动件的实时输入力矩及所述驱动件所受到的实时摩擦力矩;
    根据所述驱动件的实时输入力矩及所述驱动件所受到的实时摩擦力矩,获取所述驱动件的实时输出力矩。
  16. 根据权利要求12所述的形状控制方法,其特征在于,所述导丝靠近所述驱动件的一端上安装有所述应变片;
    所述获取所述导丝的实时拉力,包括:
    获取所述应变片的实时电阻变化量;
    根据所述实时电阻变化量,获取所述导丝所受到的实时拉力。
  17. 一种医疗导管的形状控制方法,其特征在于,所述医疗导管为权利要求1至9中任一项所述的医疗导管,所述方法包括:
    获取所述第二导管的期望形状;
    获取所述第二导管的实时实际形状;
    根据所述第二导管的期望形状以及所述第二导管的实时实际形状,计算所述导丝的实时期望变形量;
    根据所述导丝的实时期望变形量,控制所述驱动件驱动所述导丝进行相应运动,以使得所述第二导管能够弯曲至所述期望形状。
  18. 一种医疗导管的形状控制系统,其特征在于,所述形状控制系统包括控制器,所述控制器包括处理器和存储器,所述存储器上存储有计算机程序,所述计算机程序被所述处理器执行时,实现权利要求10至16中任一项所述的方法或权利要求17所述的方法。
  19. 根据权利要求18所述的形状控制系统,其特征在于,所述形状控制系统还包括与所述控制器通信连接的显示器,所述显示器用于对所述第二导管的期望形状进行显示。
  20. 根据权利要求18所述的形状控制系统,其特征在于,所述形状控制系统还包括与所述控制器相连的报警器,所述报警器用于在所述医疗导管的运动状态出现异常时进行报警。
  21. 根据权利要求18所述的形状控制系统,其特征在于,所述形状控制系统还包括与所述控制器相连的指示灯,所述指示灯用于对所述医疗导管的运动状态进行指示。
  22. 一种手术机器人,其特征在于,包括权利要求18至21中任一项所述的形状控制系统、控制端和操作端,所述操作端包括至少一条机械臂,所述控制端与所述操作端具有主从控制关系并用于控制所述机械臂进行操作,所述控制端和所述操作端均与所述形状控制系统中的控制器通信连接,所述医疗 导管安装于所述机械臂的末端。
  23. 一种可读存储介质,其特征在于,所述可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时,实现权利要求10至16中任一项所述的方法或权利要求17所述的方法。
PCT/CN2022/120684 2021-10-11 2022-09-23 医疗导管及其形状控制系统、方法、手术机器人和存储介质 WO2023061183A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111183968.9 2021-10-11
CN202111183968.9A CN114451998B (zh) 2021-10-11 2021-10-11 医疗导管及其形状控制系统、方法和手术机器人

Publications (1)

Publication Number Publication Date
WO2023061183A1 true WO2023061183A1 (zh) 2023-04-20

Family

ID=81405961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120684 WO2023061183A1 (zh) 2021-10-11 2022-09-23 医疗导管及其形状控制系统、方法、手术机器人和存储介质

Country Status (2)

Country Link
CN (1) CN114451998B (zh)
WO (1) WO2023061183A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114451998B (zh) * 2021-10-11 2024-04-19 上海微创微航机器人有限公司 医疗导管及其形状控制系统、方法和手术机器人

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160015937A1 (en) * 2013-03-14 2016-01-21 Hansen Medical, Inc. Torque-based catheter articulation
CN105662588A (zh) * 2016-03-16 2016-06-15 北京理工大学 一种主从式微创血管介入手术远程操作系统
CN108601603A (zh) * 2016-02-05 2018-09-28 得克萨斯系统大学董事会 手术设备
US20190142537A1 (en) * 2013-03-14 2019-05-16 Auris Health, Inc. Catheter tension sensing
CN111803216A (zh) * 2020-05-28 2020-10-23 中国科学院自动化研究所 一种支气管手术机器人及支气管手术系统
CN114452507A (zh) * 2021-10-11 2022-05-10 上海微创微航机器人有限公司 医疗导管末端外力作用的检测方法和调整方法
CN114451998A (zh) * 2021-10-11 2022-05-10 上海微创微航机器人有限公司 医疗导管及其形状控制系统、方法和手术机器人

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9744335B2 (en) * 2014-07-01 2017-08-29 Auris Surgical Robotics, Inc. Apparatuses and methods for monitoring tendons of steerable catheters
CN108158656B (zh) * 2017-11-27 2024-02-27 深圳爱博合创医疗机器人有限公司 血管腔内介入手术机器人导丝/导管操作扭矩检测装置
CN112336297B (zh) * 2020-10-31 2022-06-07 同济大学 体内导入装置的控制方法、系统和计算机可读存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160015937A1 (en) * 2013-03-14 2016-01-21 Hansen Medical, Inc. Torque-based catheter articulation
US20190142537A1 (en) * 2013-03-14 2019-05-16 Auris Health, Inc. Catheter tension sensing
CN108601603A (zh) * 2016-02-05 2018-09-28 得克萨斯系统大学董事会 手术设备
CN105662588A (zh) * 2016-03-16 2016-06-15 北京理工大学 一种主从式微创血管介入手术远程操作系统
CN111803216A (zh) * 2020-05-28 2020-10-23 中国科学院自动化研究所 一种支气管手术机器人及支气管手术系统
CN114452507A (zh) * 2021-10-11 2022-05-10 上海微创微航机器人有限公司 医疗导管末端外力作用的检测方法和调整方法
CN114451998A (zh) * 2021-10-11 2022-05-10 上海微创微航机器人有限公司 医疗导管及其形状控制系统、方法和手术机器人

Also Published As

Publication number Publication date
CN114451998B (zh) 2024-04-19
CN114451998A (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
US10903725B2 (en) Compact height torque sensing articulation axis assembly
JP5778585B2 (ja) 経頸静脈的肝内門脈大循環短絡術の方法、システム及び装置
JP6235013B2 (ja) 圧力センサカテーテルおよび関連する方法
WO2023061183A1 (zh) 医疗导管及其形状控制系统、方法、手术机器人和存储介质
US20170360376A1 (en) Intravascular sensing method and system
JP5095266B2 (ja) カテーテル硬化部材を有するカテーテルを含む医療器具
US11555692B2 (en) Calculation of redundant bend in multi-core fiber for safety
JP2018118138A (ja) 捻転に対する感度の低い形状センサを用いた絶対的3次元測定のための方法およびシステム
EP1951358A1 (en) Cell delivery catheters with distal tip high fidelity sensors
CN114343608A (zh) 具有冗余感测的形状传感器系统
JPWO2009069413A1 (ja) 駆動装置ならびにそれを備えた医療装置および訓練装置
CN114848144A (zh) 导管形状控制方法、介入手术系统、电子设备和存储介质
CN114452507B (zh) 医疗导管末端外力作用的检测方法和调整方法
US10695539B2 (en) Device for measuring length of tubular body structure
JP6397156B2 (ja) センサ化湾曲カテーテル
Back et al. Tension sensing for a linear actuated catheter robot
Hauptman et al. Technical advances in the treatment of hydrocephalus: current and future state
US20220395332A1 (en) System and method for determining position of a steerable assembly within tissue of an animal body
TW201420062A (zh) 磁控內視鏡系統及其磁控裝置
US9877796B2 (en) System and method for minimizing fiber twist in optical shape sensing enabled devices
WO2014170782A1 (en) Optimal lumen design for optical shape sensing device
US20220087776A1 (en) Device for moving a medical object and method for providing a signal
Hatzfeld et al. Measurement setup to evaluate haptic interaction in catheterization procedures for training purposes
Hartquist Mechanics of Catheter Herniation
US20230320711A1 (en) Articulation control of flexible medical systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880123

Country of ref document: EP

Kind code of ref document: A1