WO2023061142A1 - 一种混合动力车辆及其供电控制方法和系统 - Google Patents

一种混合动力车辆及其供电控制方法和系统 Download PDF

Info

Publication number
WO2023061142A1
WO2023061142A1 PCT/CN2022/118956 CN2022118956W WO2023061142A1 WO 2023061142 A1 WO2023061142 A1 WO 2023061142A1 CN 2022118956 W CN2022118956 W CN 2022118956W WO 2023061142 A1 WO2023061142 A1 WO 2023061142A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
fuel cell
vehicle
power
supply mode
Prior art date
Application number
PCT/CN2022/118956
Other languages
English (en)
French (fr)
Inventor
郭婉露
康明明
秦庆民
韩雷
谢嘉欣
Original Assignee
中车株洲电力机车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车株洲电力机车有限公司 filed Critical 中车株洲电力机车有限公司
Publication of WO2023061142A1 publication Critical patent/WO2023061142A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the invention belongs to a transportation vehicle powered by a hybrid power supply of hydrogen fuel and a power battery in the rail transit industry, and in particular relates to a hybrid vehicle powered by hydrogen fuel and a storage battery and a power supply control method and system thereof.
  • Hydrogen energy has the advantages of greenness, high efficiency, high calorific value, and sustainability.
  • Fuel cells are an important way to efficiently utilize hydrogen energy. Hydrogen fuel cells have the advantages of high power generation efficiency, low temperature, only water, short refueling time, clean, environmentally friendly, and safe. They can be widely used in automobiles, rail transit, and ships, reducing dependence on oil and natural gas, and realizing Zero carbon emission, effectively alleviate the greenhouse effect and environmental pollution.
  • green and environmentally friendly hydrogen energy is used as the power source of shunting locomotives to improve energy utilization, zero emissions, no pollution, low noise, and reduce pollution/materials and carbon emission, reduce investment in environmental protection, and improve the working environment of operators.
  • the fuel cell includes a hydrogen storage container and an electric stack, and the hydrogen storage container supplies hydrogen to the electric stack through a pipeline.
  • the hybrid electric vehicle is shut down, there is no need to supply power to the locomotive electrical system, shutting off the hydrogen fuel cell only makes the hydrogen storage container no longer supply, but there is still hydrogen in the pipeline between the hydrogen storage container and the stack, if this part is not Hydrogen consumption, long-term storage will pose a safety risk
  • the problem to be solved by the present invention is to provide a hybrid vehicle and its power supply control method and system for the safety risk of unconsumed hydrogen in the fuel cell when the existing hybrid vehicle is shut down.
  • the technical solution adopted by the present invention is: a hybrid electric vehicle power supply control method, the power supply mode of the hybrid electric vehicle includes a fuel cell power supply mode, a battery power supply mode, and a hybrid power supply mode, and the hybrid electric vehicle Power supply control methods include:
  • the vehicle operating condition is the parking condition, turn off the fuel cell and obtain the SOC value of the battery; keep on for a preset time; if SOC ⁇ A1, keep the fuel cell output end electrically connected to the power consumption element for consuming electric energy for a second preset time;
  • the fuel cell is turned off, and the output terminal of the fuel cell is kept electrically connected to the power consumption element for consuming electric energy within a second preset time;
  • A1 is the first preset value
  • SOC is the percentage value of the current electric quantity and the total capacity of the storage battery.
  • the power supply mode of the hybrid vehicle can be selected as a fuel cell power supply mode, a storage battery power supply mode, and a hybrid power supply mode.
  • the fuel cell is turned off so that the hydrogen storage device no longer supplies hydrogen, and the DC/DC converter is kept on for the first preset time, so that the hydrogen storage device of the fuel cell and the stack
  • the hydrogen in the pipeline can continue to react and be consumed in the stack, so as to charge the battery, effectively use energy and ensure safety.
  • SOC ⁇ A1 indicates that the current power of the storage battery is lower than a certain value, so it can be charged.
  • hybrid power supply refers to common power supply of storage battery and fuel cell. When the DC/DC converter between the output of the fuel cell and the input of the battery is turned on, the fuel cell can charge the battery.
  • the power consumption element is used to consume energy, so as to avoid causing safety problems.
  • hybrid vehicle power supply control method also includes:
  • the power supply mode is hybrid power supply mode
  • the vehicle working condition is traction working condition
  • the SOC value of the battery is obtained:
  • the power supply mode is kept as a hybrid power supply mode
  • the power supply mode is adjusted to the fuel cell power supply mode; wherein, C1 is a second preset value, and C1 ⁇ A1.
  • the SOC value of the battery is obtained:
  • the SOC ⁇ B1 Since the output power of the fuel cell is generally low, when the SOC ⁇ B1, it does not supply power to some vehicle auxiliary systems to reduce power consumption. If the SOC is lower, ie D1 ⁇ SOC ⁇ C1, the hybrid vehicle operates with reduced power. If SOC ⁇ D1, then in order to avoid the power consumption of the battery, make the battery no longer supply power to the traction system.
  • the power supply mode if the vehicle operating condition is the traction condition, and the vehicle demand power is greater than the fuel cell output power, and SOC ⁇ C1, the power supply mode is adjusted to the hybrid power supply mode.
  • the fuel cell power supply mode or the hybrid power supply mode if the vehicle operating condition is the traction condition, and the vehicle demand power is less than the fuel cell output power, and the SOC ⁇ A1, the fuel cell is used as the storage battery through the DC/DC converter Charge.
  • the fuel cell when the required power of the vehicle is less than the output power of the fuel cell, the fuel cell is used to charge the storage battery, so that the energy generated by the fuel cell can be effectively utilized.
  • the output power of the fuel cell is reduced.
  • the traction system of the vehicle does not need to supply power, thus reducing the output power of the fuel cell and saving energy.
  • the required power of the vehicle is the sum of the required power of the vehicle traction system and the required power of the vehicle auxiliary system, and the required power of the vehicle traction system is proportional to the level of the vehicle driver controller.
  • the required power of the vehicle traction system by setting the required power of the vehicle traction system to be proportional to the level of the vehicle driver controller, it is convenient to determine the required power of the vehicle traction system, and further facilitate the determination of the required power of the vehicle.
  • the present invention also provides a hybrid vehicle power supply control system, including computer equipment; the computer equipment is configured or programmed to execute the steps of any one of the hybrid vehicle power supply control methods described above.
  • the present invention also provides a hybrid vehicle, including the hybrid vehicle power supply control system as described above.
  • the present invention uses the above-mentioned power supply control method, when the vehicle is parked, the fuel cell is turned off so that the hydrogen storage device no longer supplies hydrogen, and the DC/DC converter is at the first preset Keep it open for a certain period of time, so that the hydrogen in the pipeline between the hydrogen storage device of the fuel cell and the electric stack can continue to react and be consumed in the electric stack, thereby charging the battery, effectively utilizing energy, and ensuring safety.
  • Fig. 1 is a schematic diagram of the energy flow of the fuel cell alone in the embodiment of the present invention
  • Fig. 2 is a schematic diagram of the flow of energy supplied by a storage battery alone in an embodiment of the present invention
  • FIG. 3 is a schematic diagram of energy flow in a hybrid power supply mode according to an embodiment of the present invention.
  • Fig. 4 is a control logic diagram of the fuel cell independent power supply mode of the embodiment of the present invention.
  • Fig. 5 is a control logic diagram of a battery-only power supply mode according to an embodiment of the present invention.
  • FIG. 6 is a control logic diagram of a hybrid power supply mode according to an embodiment of the present invention.
  • the power supply system of the hybrid vehicle of the present invention adopts a structure in which the fuel cell 1 and the storage battery 2 supply power.
  • the fuel cell 1 is a hydrogen fuel cell.
  • the vehicle of the present invention may be a locomotive.
  • the hybrid vehicle power supply control method of the locomotive of the present invention is as follows.
  • the hydrogen fuel cell supplies power alone, the energy is provided to the vehicle system, and the excess energy is used for charging the storage battery 2 .
  • the schematic diagram of energy flow of hydrogen fuel cell alone power supply is shown in Figure 1. After passing through the DC/DC converter 31, the output voltage of the hydrogen fuel cell 1 passes through the traction converter 41 and the auxiliary converter 42 respectively, so as to supply power for the traction motor 5 and vehicle auxiliary systems (such as electrical appliances such as air conditioners on the vehicle).
  • the hydrogen fuel cell working mode still requires the battery 2 to be put in.
  • the battery 2 needs to provide high voltage, and then the battery 2 is mounted in the main circuit for power supplementation.
  • the power that can be exerted by the shaft end is linearly controlled with the vehicle driver's controller level, and the traction system responds to the driver's controller level signal, and sends the power signal together with the power demand of the vehicle auxiliary system to the hydrogen fuel cell controller (hydrogen fuel cell controller).
  • the characteristics of the fuel cell determine that its response time to power demand is slow), and its traction characteristic curve is executed according to the hydrogen fuel mode characteristic curve.
  • the required power of the vehicle is the sum of the required power of the vehicle traction system and the required power of the vehicle auxiliary system, and the required power of the vehicle traction system is directly proportional to the level of the vehicle driver controller.
  • the power supply mode is the fuel cell 1 power supply mode, if it is judged that the vehicle operating condition is the traction condition, and it is judged that the vehicle demand power is greater than the fuel cell 1 output power, and it is judged that the SOC ⁇ C1, then the power supply mode is adjusted from the fuel cell 1 power supply mode For hybrid power supply mode.
  • the locomotive control system When the traction system is suddenly interrupted due to a fault, the locomotive control system immediately sends a shutdown operation to the hydrogen fuel cell through the MVB bus. During the shutdown process, the energy generated is electrically connected to the power consumption element electrically connected to the output of the hydrogen fuel cell.
  • the power consumption element and the hydrogen fuel cell can remain electrically connected within a second preset time.
  • the power dissipation element can be used to dissipate the power of the hydrogen fuel cell.
  • the power dissipation components can be integrated with the hydrogen fuel cell, inside the system where the hydrogen fuel cell is located.
  • the second preset time can be determined according to the characteristics of the fuel cell 1 and the characteristics of the power consumption components.
  • the locomotive control system responds to the electric brake request signal of the driver controller, reduces the system output power, and only guarantees the power demand of the on-board auxiliary system.
  • the hydrogen fuel cell responds to the signal that the driver's controller handle level is zero, the traction system first blocks the output, and secondly the hydrogen fuel cell turns off the power output.
  • the chopper charging that is, the DC/DC converters 31, 32
  • the energy generated by the hydrogen fuel cell shutdown delay is used to charge the storage battery 2 .
  • the control logic diagram of hydrogen fuel power supply mode is shown in Fig. 4. The output of the hydrogen fuel cell 1 passes through the DC/DC converter 31 and the DC/DC converter 32 in sequence to charge the storage battery 2 .
  • A1 is a first preset value
  • SOC is a percentage value of the current electric quantity of the battery 2 to the total capacity.
  • the first preset time can be determined according to the characteristics of the fuel cell 1 and the charging characteristics of the battery 2 by the fuel cell 1 .
  • the fuel cell 1 If it is judged that SOC ⁇ A1 and the vehicle operating condition is a parking condition, the fuel cell 1 is turned off, and the output terminal of the fuel cell 1 is kept electrically connected to the power consumption element for consuming electric energy for a second preset time.
  • the power consumption elements can be in the form of existing technologies, such as resistors, capacitors, etc., which can be understood by those skilled in the art.
  • the storage battery 2 supplies power independently, and the energy is directly provided to the vehicle system.
  • the schematic diagram of the energy flow of the battery 2 alone power supply is shown in Fig. 2 .
  • the output voltage of the battery 2 After passing through the DC/DC converter 32, the output voltage of the battery 2 passes through the traction converter 41 and the auxiliary converter 42 respectively, so as to supply power to the traction motor 5 and the vehicle auxiliary system respectively.
  • the hydrogen fuel cell does not output power, and the power demand of the vehicle system is only provided by the battery 2 .
  • the power play is performed according to the traction characteristic curve and the power play curve of the locomotive. Due to the high current discharge limit of the battery 2, when the system voltage is lower than the limit value, the system will operate with reduced power (considering the high current discharge rate).
  • the power supply mode of battery 2 is shown in FIG. 5 .
  • the power supply mode is the battery 2 power supply mode, if it is judged that the output voltage of the battery 2 is lower than the preset voltage, the hybrid vehicle runs with reduced power.
  • the power supply mode is the battery 2 power supply mode, existing control technology can be used, which can be understood by those skilled in the art.
  • the hydrogen fuel and the storage battery 2 supply power to the vehicle system at the same time.
  • the schematic diagram of energy flow in hybrid power supply mode is as shown in Figure 3 .
  • the DC voltage of the output voltage of the hydrogen fuel cell 1 passing through the DC/DC converter 31 and the DC voltage of the output voltage of the battery 2 passing through the DC/DC converter 32 are added, and then pass through the traction converter 41 and the auxiliary converter 42 respectively. , thereby supplying power to the traction motor 5 and the vehicle auxiliary system respectively.
  • the hybrid power supply strategy in this mode comprehensively considers the vehicle power demand and the capacity SOC of the battery 2 to confirm the output power of the fuel cell 1 .
  • the network control system controls the output state of the battery 2 and the hydrogen fuel cell according to the SOC value of the battery 2 and the on-board power demand value calculated by the traction system, so as to meet the requirements of vehicle operation.
  • the traction system responds to the level signal of the driver controller and calculates the power demand.
  • the fuel cell 1 If it is judged that the traction system of the vehicle is faulty, the fuel cell 1 is turned off, and the output terminal of the fuel cell 1 is kept electrically connected to the power consumption element for consuming electric energy for a second preset time.
  • the hybrid power supply control method further includes: judging that the vehicle working condition is one of traction working condition, braking working condition and parking working condition; condition, then determine the SOC value of battery 2:
  • the power supply mode is battery 2 power supply mode
  • the power supply mode is fuel cell 1 power supply mode
  • the output power of the fuel cell 1 is the maximum output power, and the vehicle demand power and the output power of the fuel cell 1 are compared:
  • the power supply mode is a hybrid power supply mode
  • the power supply mode is the fuel cell 1 power supply mode
  • the hybrid vehicle operates with reduced power. Derating here may refer to a reduction in tractive power and/or power supplying auxiliary systems.
  • A1 may range from 70% to 85%.
  • B1 may range from 50% to 70%.
  • C1 may range from 35% to 50%.
  • D1 may range from 20% to 35%.
  • the fuel cell 1 charges the battery 2 through the DC/DC converters 31 and 32 .
  • the hydrogen fuel cell responds to the electric braking request signal of the driver controller, reduces the output power of the system, and only guarantees the power demand of the auxiliary system.
  • the hydrogen fuel cell responds to the level signal of the driver’s controller handle and shuts down the system power output. Due to the delay in shutting down the hydrogen fuel cell, when the driver’s controller’s handle level is 0, the traction system blocks the IGBT output. If SOC ⁇ A1, the IGBT output can be turned on
  • the wave charging circuit (DC/DC converters 31, 32) charges the storage battery 2 to consume the energy generated by the shutdown delay of the hydrogen fuel cell.
  • the DC/DC converters 31, 32 can be kept on for a first preset time.
  • the control logic diagram of hybrid power supply mode is shown in Figure 6.
  • the excess energy brought by the hydrogen fuel cell shutdown delay is used for charging the battery 2 at the first time; when the capacity of the battery 2 is saturated
  • the output of the hydrogen fuel cell is electrically connected to the power consumption element, and the power consumption element can be used to consume the electricity of the hydrogen fuel cell.
  • the power dissipation components can be integrated with the hydrogen fuel cell, inside the system where the hydrogen fuel cell is located.
  • the fuel cell 1 If it is judged that SOC ⁇ A1 and the vehicle operating condition is a parking condition, the fuel cell 1 is turned off, and the output terminal of the fuel cell 1 is kept electrically connected to the power consumption element for consuming electric energy for a second preset time.
  • the present invention also provides a hybrid vehicle power supply control system, including computer equipment; the computer equipment is configured or programmed to execute the steps of any one of the hybrid vehicle power supply control methods described above.
  • the present invention also provides a hybrid vehicle, including the hybrid vehicle power supply control system as described above.
  • a hybrid vehicle may be a rail vehicle.
  • This application studies the output power control strategy of the hybrid power supply mode, that is, the power supply control method, solves the optimization of the net output power during the fuel cell load change process, and realizes the energy response and management of the hybrid power supply mode when the load changes or is interrupted.
  • the vehicle energy management strategy of the present invention combines factors such as vehicle power supply mode selection, traction/braking instructions, battery capacity monitoring, and vehicle demand power demand calculation to make comprehensive judgments and optimize energy distribution; when the vehicle brakes, the output The fixed value power is used for the necessary consumption of the system; when the vehicle is stopped, the DC/DC converter is activated by the vehicle control system to consume the excess energy caused by the shutdown delay of the hydrogen fuel cell.
  • the hydrogen fuel cell independently calculates the power demand of the axle end to control the output power; or the hydrogen fuel cell directly responds to the level control signal of the locomotive driver's controller handle, and participates in the traction characteristic control of the locomotive.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明提供一种混合动力车辆及其供电控制方法和系统。所述混合动力车辆供电控制方法包括:在燃料电池供电模式或混合供电模式下,若车辆工况为停车工况,则关断燃料电池并获取蓄电池的SOC值:若SOC<A1,则令燃料电池的输出端与蓄电池的输入端之间的DC/DC变换器在第一预设时间内保持开启;若SOC≥A1,则令燃料电池输出端与用于消耗电能的功耗元件在第二预设时间内保持电连接。本发明通过上述供电控制方法,车辆停车时,关断燃料电池使得储氢装置不再供应氢气,而DC/DC变换器在第一预设时间内保持开启,使得燃料电池的储氢装置与电堆之间的管路中的氢气可以继续在电堆中反应而消耗掉,从而为蓄电池充电,有效利用能量的同时,可以保证安全。

Description

一种混合动力车辆及其供电控制方法和系统 技术领域
本发明属于轨道交通行业中氢燃料与动力电池混合供电的交通车辆,具体涉及氢燃料与蓄电池供电的混合动力车辆及其供电控制方法和系统。
背景技术
氢能具有绿色、高效、热值高、可持续的优点。燃料电池是氢能高效利用的重要途径。氢燃料电池具有发电效率高、温度低、产物只有水、补充燃料时间短、清洁环保、安全等优点,可广泛的应用于汽车、轨道交通和船舶等领域,降低对石油和天然气的依赖,实现零碳排放,有效缓解温室效应和环境污染。针对传统内燃调车机车排放大、噪声大和效率低等缺点,采用绿色环保的氢能作为调车机车的动力能源,提高能源利用率,零排放、无污染、低噪声,降低污染/物和碳排放,降低环保投入,改善作业人员工作环境。目前氢燃料电池技术在电动汽车及小功率的轨道车辆上投入使用,氢燃料的系统响应时间较慢,其发挥的功率与车辆储能系统的能量分配及管理是控制的难点。燃料电池包括储氢容器、电堆,储氢容器通过管路向电堆供应氢气。当混合动力车辆停机时,无需为机车电气系统供电,关断氢燃料电池仅使得储氢容器不再供应,但储氢容器与电堆之间的管路中仍存在氢气,如果不将这部分氢气消耗,长期放置会存在安全风险
发明内容
本发明要解决的问题是针对现有混合动力车辆停机时燃料电池中未被消耗的氢气存在安全风险的问题,提供一种混合动力车辆及其供电控制方法和系统。
为解决上述技术问题,本发明采用的技术方案是:一种混合动力车辆供电控制方法,所述混合动力车辆的供电模式包括燃料电池供电模式、蓄电池供电模式、混合供电模式,所述混合动力车辆供电控制方法包括:
在燃料电池供电模式或混合供电模式下,
若车辆工况为停车工况,则关断燃料电池并获取蓄电池的SOC值;若SOC<A1,则令燃料电池的输出端与蓄电池的输入端之间的DC/DC变换器在第一预设时间内保持开启;若SOC≥A1,则令燃料电池输出端与用于消耗电能的功耗元件在第二预设时间内保持电连接;
若判断车辆牵引系统故障,则关断燃料电池,并令燃料电池输出端与用于消耗电能的功耗元件在第二预设时间内保持电连接;
其中,A1为第一预设值,SOC为所述蓄电池的当前电量与总容量的百分比值。
本发明中,可选择混合动力车辆的供电模式为燃料电池供电模式、蓄电池供电模式、混合供电模式。通过上述设置,车辆停车时,关断燃料电池使得储氢装置不再供应氢气,而DC/DC变换器在第一预设时间内保持开启,使得燃料电池的储氢装置与电堆之间的管路中的氢气可以继续在电堆中反应而消耗掉,从而为蓄电池充电,有效利用能量的同时,可以保证安全。SOC<A1表明蓄电池的当前电量低于一定值,因此可被充电。本发明中,混合供电指蓄电池、燃料电池共同供电。燃料电池的输出端与蓄电池的输入端之间的DC/DC变换器开启,则燃料电池可为蓄电池充电。
本发明中,若判断车辆牵引系统故障(即燃料电池的输出端无法通过DC/DC变换器与蓄电池电连接),或判断SOC≥A1且车辆工况为停车工况(即蓄电池电量较高无法被充电),则利用功耗元件消耗能量,避免造成安全问题。
进一步地,所述混合动力车辆供电控制方法还包括:
在供电模式为混合供电模式下,若车辆工况为牵引工况,则获取蓄电池的SOC值:
若SOC≥A1,则将供电模式调整为蓄电池供电模式;
若SOC<C1,则将供电模式调整为燃料电池供电模式;
若C1≤SOC<A1,则将燃料电池的输出功率调整为最大输出功率,并比较车辆需求功率与燃料电池输出功率的大小:
若车辆需求功率大于燃料电池输出功率,则将供电模式保持为混合供电模式;
若车辆需求功率不大于燃料电池输出功率,则将供电模式调整为燃料电池供电模式;其中,C1为第二预设值,C1<A1。
进一步地,在混合供电模式下,若判断车辆工况为牵引工况,则获取蓄电池的SOC值:
若SOC<B1,且燃料电池输出功率、蓄电池输出功率之和小于车辆需求功率,则令燃料电池的输出端以及蓄电池的输出端与部分车载辅助系统的供电端的连接断开;
若D1≤SOC<C1,且燃料电池输出功率以及蓄电池输出功率之和小于车辆需求功率,则令混合动力车辆降功率运行;
若SOC<D1,则将蓄电池输出端与混合动力车辆的牵引系统之间的连接断开;其中,B1、D1分别为第三预设值、第四预设值,且D1<C1<B1<A1。
由于燃料电池的输出功率一般较低,因此当SOC<B1时,则不为部分车载辅助系统供电,降低功率消耗。如果SOC更低,即D1≤SOC<C1,则混合动力车辆降功率运行。如果SOC<D1,则为了避免蓄电池的电量耗尽,则使得蓄电池不再为牵引系统 供电。
进一步地,在燃料电池供电模式下,若车辆工况为牵引工况,且车辆需求功率大于燃料电池输出功率,且SOC≥C1,则将供电模式调整为混合供电模式。
进一步地,在燃料电池供电模式或混合供电模式下,若车辆工况为牵引工况,且车辆需求功率小于燃料电池输出功率,且SOC<A1,则令燃料电池通过DC/DC变换器为蓄电池充电。
本发明中,车辆需求功率小于燃料电池输出功率时,利用燃料电池为蓄电池充电,从而可有效利用燃料电池产生的能量。
进一步地,在燃料电池供电模式或混合供电模式下,若车辆工况为制动工况,则降低燃料电池的输出功率。
本发明中,若判断车辆工况为制动工况,则车辆牵引系统无需供电,因此降低燃料电池的输出功率,节约能量。
进一步地,所述车辆需求功率为车辆牵引系统需求功率与车载辅助系统需求功率之和,所述车辆牵引系统需求功率与车辆司机控制器级位成正比。
本发明中,通过设置车辆牵引系统需求功率与车辆司机控制器级位成正比,从而便于确定车辆牵引系统需求功率,进而便于确定车辆需求功率。
本发明还提供一种混合动力车辆供电控制系统,包括计算机设备;所述计算机设备被配置或编程为用于执行上述任一项所述的混合动力车辆供电控制方法的步骤。
本发明还提供一种混合动力车辆,包括如上述所述的混合动力车辆供电控制系统。
由于采用了上述技术方案,与现有技术相比较,本发明通过上述供电控制方法,车辆停车时,关断燃料电池使得储氢装置不再供应氢气,而DC/DC变换器在第一预设时间内保持开启,使得燃料电池的储氢装置与电堆之间的管路中的氢气可以继续在电堆中反应而消耗掉,从而为蓄电池充电,有效利用能量的同时,可以保证安全。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例的燃料电池单独供电能量流向示意图;
图2是本发明实施例的蓄电池单独供电能量流向示意图;
图3是本发明实施例的混合供电模式能量流向示意图;
图4是本发明实施例的燃料电池单独供电模式控制逻辑图;
图5是本发明实施例的蓄电池单独供电模式控制逻辑图;
图6是本发明实施例的混合供电模式控制逻辑图;
上述附图中,1-燃料电池,2-蓄电池,31,32-DC/DC变换器,41-牵引变流器,42、辅助变流器,5、牵引电机。
具体实施方式
下面将结合本申请的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本发明的混合动力车辆的供电系统采用燃料电池1与蓄电池2供电的结构。本实施例中,燃料电池1为氢燃料电池。根据机车供电模式选择及氢燃料电池和蓄电池2的功率输出能力。本发明的车辆可为机车。
本发明的机车的混合动力车辆供电控制方法如下。
A、氢燃料供电模式
氢燃料电池单独供电,能量提供给车载系统,多余的能量用于蓄电池2充电。氢燃料电池单独供电能量流向示意图如图1所示。氢燃料电池1输出电压经过DC/DC变换器31后,分别经过牵引变流器41、辅助变流器42,从而分别为牵引电机5、车辆辅助系统(例如车辆上空调等用电器)供电。
氢燃料电池工作模式实际上仍需要蓄电池2投入,其启动时需要蓄电池2提供高压,之后蓄电池2挂载在主电路中,进行功率补充。
A.1机车牵引工况
将轴端可发挥的功率与车辆司机控制器级位进行线性控制,由牵引系统响应司机控制器级位信号,并将该功率信号与车载辅助系统功率需求一起发送给氢燃料电池控制器(氢燃料电池的特性决定其响应功率需求的时间较慢),其牵引特性曲线根据氢燃料模式特性曲线执行。
所述车辆需求功率为车辆牵引系统需求功率、车载辅助系统需求功率之和,车辆牵引系统需求功率与车辆司机控制器级位成正比。
A.1.1当氢燃料电池输出功率大于实际使用功率时,多余功率通过斩波充电回路给 蓄电池2充电。若判断车辆工况为牵引工况,且判断车辆需求功率小于燃料电池1输出功率,且判断SOC<A1,则燃料电池1通过DC/DC变换器31、32为蓄电池2充电。
A.1.2当出现车辆负载突投时,氢燃料电池响应较慢,此时蓄电池2直接输出功率来承担系统额外超出的负载功率需求。当供电模式为燃料电池1供电模式时,若判断车辆工况为牵引工况,且判断车辆需求功率大于燃料电池1输出功率,且判断SOC≥C1,则将供电模式由燃料电池1供电模式调整为混合供电模式。
A.1.3当牵引系统因为故障,出现突然中断时,此时机车控制系统第一时间通过MVB总线向氢燃料电池发出停机操作,因氢燃料电池响应时间的延迟性,在接受到停机指令到完全停机的过程中,产生的能量,由与氢燃料电池输出电连接的功耗元件电连接。功耗元件与氢燃料电池可在第二预设时间内保持电连接。功耗元件可用于消耗氢燃料电池的电量。功耗元件可与氢燃料电池集成在一起,位于氢燃料电池所在系统的内部。第二预设时间可根据燃料电池1的特性、功耗元件的特性确定。
A.2机车电制动工况
机车控制系统响应司机控制器电制动请求信号,减小系统输出功率,仅保证车载辅助系统功率需求。
A.3机车停机操作
机车停机后,氢燃料电池响应司机控制器手柄级位为零的信号,牵引系统首先封锁输出,其次氢燃料电池关闭功率输出。但因氢燃料电池存在关闭延迟,在司机控制器手柄级位为零后,若SOC<A1,则斩波充电(即DC/DC变换器31,32)依然保持回路开启,可在第一预设时间内保持开启,氢燃料电池关闭延迟所产生的能量用来向蓄电池2充电。氢燃料供电模式控制逻辑图如图4所示。氢燃料电池1输出依次经过DC/DC变换器31、DC/DC变换器32后为蓄电池2充电。
A1为第一预设值,SOC为所述蓄电池2的当前电量与总容量的百分比值。第一预设时间可根据燃料电池1的特性、燃料电池1为蓄电池2的充电特性确定。
若判断SOC≥A1且车辆工况为停车工况,则关断燃料电池1,且令燃料电池1输出端与用于消耗电能的功耗元件在第二预设时间内保持电连接。功耗元件可采用现有技术的形式,例如电阻、电容等,本领域技术人员可以理解。
B、蓄电池2供电模式
蓄电池2单独供电,能量直接提供给车载系统。蓄电池2单独供电能量流向示意 图如图2所示。蓄电池2输出电压经过DC/DC变换器32后,分别经过牵引变流器41、辅助变流器42,从而分别为牵引电机5、车辆辅助系统供电。
此供电模式下,氢燃料电池不输出功率,车载系统功率需求仅由蓄电池2提供。功率发挥按照机车牵引特性曲线和功率发挥曲线执行。因蓄电池2大电流放电限制,当系统电压低于限定值时,系统降功运行(考虑大电流放电倍率)。蓄电池2供电模式如图5所示。当供电模式为蓄电池2供电模式时,若判断蓄电池2输出电压小于预设电压,则混合动力车辆降功率运行。当供电模式为蓄电池2供电模式时,可采用现有的控制技术,本领域技术人员可以理解。
C、混合供电模式
混合供电模式即氢燃料和蓄电池2同时向车载系统供电。混合供电模式能量流向示意图如图3所述。氢燃料电池1输出电压经过DC/DC变换器31后的直流电压与蓄电池2输出电压经过DC/DC变换器32后的直流电压相加后,分别经过牵引变流器41、辅助变流器42,从而分别为牵引电机5、车辆辅助系统供电。该模式下的混合供电策略综合考虑车载功率需求以及蓄电池2的容量SOC,来确认燃料电池1输出功率。网络控制系统依据蓄电池2的SOC值及牵引系统计算的车载功率需求值,对蓄电池2和氢燃料电池的输出状态进行控制,以满足车辆运行的需求。
C.1机车牵引工况
C.1.1牵引系统响应司机控制器级位信号,并计算功率需求。
C.1.2若判断车辆牵引系统故障,则关断燃料电池1,且令燃料电池1输出端与用于消耗电能的功耗元件在第二预设时间内保持电连接。
所述混合动力车辆供电控制方法还包括:判断车辆工况为牵引工况、制动工况、停车工况中的一种;当供电模式为混合供电模式时,若判断车辆工况为牵引工况,则确定蓄电池2的SOC值:
若SOC≥A1,则供电模式为蓄电池2供电模式;
若SOC<C1,则供电模式为燃料电池1供电模式;
若C1≤SOC<A1,则燃料电池1的输出功率为最大输出功率,且比较车辆需求功率、燃料电池1输出功率:
若车辆需求功率大于燃料电池1输出功率,则供电模式为混合供电模式;
若车辆需求功率不大于燃料电池1输出功率,则供电模式为燃料电池1供电模式;
若SOC<B1,且判断燃料电池1输出功率、蓄电池2输出功率之和小于车辆需求功率,则令燃料电池1的输出端、蓄电池2的输出端与部分车载辅助系统的供电端的连接断开;
若D1≤SOC<C1,且判断燃料电池1可输出功率、蓄电池2可输出功率之和小于车辆需求功率,则混合动力车辆降功率运行。此处降功率可指牵引功率和/或供应辅助系统的功率降低。
若SOC<D1,则蓄电池2输出端与混合动力车辆的牵引系统之间的连接断开;其中,C1为第二预设值,B1、D1分别为第三预设值、第四预设值,且D1<C1<B1<A1。
A1的范围可为70%-85%。B1的范围可为50%-70%。C1的范围可为35%-50%。D1的范围可为20%-35%。
C.1.3若判断车辆需求功率小于燃料电池1输出功率,且判断SOC<A1,则燃料电池1通过DC/DC变换器31,32为蓄电池2充电。
C.2机车电制动工况
氢燃料电池响应司机控制器电制动请求信号,减小系统输出功率,仅保证辅助系统功率需求。
C.3机车停机操作
氢燃料电池响应司机控制器手柄级位信号,关闭系统功率输出,因氢燃料电池关闭时间延迟,在司机控制器手柄级位0时,牵引系统封锁IGBT输出,若SOC<A1,则可开启斩波充电回路(DC/DC变换器31,32),向蓄电池2充电,来消耗氢燃料电池关闭延迟所产生的能量。DC/DC变换器31,32可在第一预设时间内保持开启。
混合供电模式控制逻辑图如图6所示。混合供电模式下,为保障系统匹配性,在机车制动和系统急停模式下,由氢燃料电池关机延迟所带来的多余的能量,第一时间用于蓄电池2充电;在蓄电池2容量饱和情况下,氢燃料电池输出电连接功耗元件,功耗元件可用于消耗氢燃料电池的电量。功耗元件可与氢燃料电池集成在一起,位于氢燃料电池所在系统的内部。
若判断SOC≥A1且车辆工况为停车工况,则关断燃料电池1,且令燃料电池1输出端与用于消耗电能的功耗元件在第二预设时间内保持电连接。
混合供电模式下,能量管理策略中蓄电池2的SOC与燃料电池1功率关系如下表:
Figure PCTCN2022118956-appb-000001
本发明还提供一种混合动力车辆供电控制系统,包括计算机设备;所述计算机设备被配置或编程为用于执行上述任一项所述的混合动力车辆供电控制方法的步骤。
本发明还提供一种混合动力车辆,包括如上述所述的混合动力车辆供电控制系统。混合动力车辆可为轨道车辆。
本申请研究混合供电模式输出功率控制策略即供电控制方法,解决燃料电池变载过程中净输出功率最优化,实现了负载突变或者中断时混合供电模式的能量响应和管理。
本发明的车辆能量管理策略,结合车辆供电模式选择、牵引/制动指令、蓄电池容量监控以及车辆需求功率需求计算等因素,进行综合判断,对能量进行优化分配;在车辆实施制动时,输出固定值功率,用于系统必要消耗;在停机时,通过车辆控制系统启动DC/DC变换器,用于消耗氢燃料电池关机延迟带来的多余能量。
本发明可由氢燃料电池单独计算机车轴端功率需求,进行输出功率控制;或氢燃料电池直接响应机车司机控制器手柄级位控制信号,参与机车牵引特性控制。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
以上对本发明的实施例进行了详细说明,但所述内容仅为本发明的较佳实施例,不能被认为用于限定本发明的实施范围。凡依本发明范围所作的均等变化与改进等,均应仍归属于本专利涵盖范围之内。在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落入本申请所附权利要求所限定的范围。在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。

Claims (9)

  1. 一种混合动力车辆供电控制方法,所述混合动力车辆的供电模式包括燃料电池(1)供电模式、蓄电池(2)供电模式、混合供电模式,其特征在于:所述混合动力车辆供电控制方法包括:
    在燃料电池(1)供电模式或混合供电模式下,
    若车辆工况为停车工况,则关断燃料电池(1)并获取蓄电池(2)的SOC值:若SOC<A1,则令燃料电池(1)的输出端与蓄电池(2)的输入端之间的DC/DC变换器(31,32)在第一预设时间内保持开启;若SOC≥A1,则令燃料电池(1)输出端与用于消耗电能的功耗元件在第二预设时间内保持电连接;
    若车辆牵引系统故障,则关断燃料电池(1),并令燃料电池(1)输出端与用于消耗电能的功耗元件在第二预设时间内保持电连接;
    其中,A1为第一预设值,SOC为蓄电池(2)的当前电量与总容量的百分比值。
  2. 根据权利要求1所述的混合动力车辆供电控制方法,其特征在于:
    在混合供电模式下,若车辆工况为牵引工况,则获取蓄电池(2)的SOC值:
    若SOC≥A1,则将供电模式调整为蓄电池(2)供电模式;
    若SOC<C1,则将供电模式调整为燃料电池(1)供电模式;
    若C1≤SOC<A1,则将燃料电池(1)的输出功率调整为最大输出功率,并比较车辆需求功率与燃料电池(1)输出功率的大小:
    若车辆需求功率大于燃料电池(1)输出功率,则将供电模式保持为混合供电模式;
    若车辆需求功率不大于燃料电池(1)输出功率,则将供电模式调整为燃料电池(1)供电模式;
    其中,C1为第二预设值,C1<A1。
  3. 根据权利要求2所述的混合动力车辆供电控制方法,其特征在于:在混合供电模式下,若车辆工况为牵引工况,则获取蓄电池(2)的SOC值:
    若SOC<B1,且燃料电池(1)输出功率、蓄电池(2)输出功率之和小于车辆需求功率,则令燃料电池(1)的输出端以及蓄电池(2)的输出端与部分车载辅助系统的供电端的连接断开;
    若D1≤SOC<C1,且燃料电池(1)输出功率以及蓄电池(2)输出功率之和小于车辆需求功率,则令混合动力车辆降功率运行;
    若SOC<D1,则将蓄电池(2)输出端与混合动力车辆的牵引系统之间的连接断开;
    其中,B1、D1分别为第三预设值、第四预设值,且D1<C1<B1<A1。
  4. 根据权利要求2所述的混合动力车辆供电控制方法,其特征在于:在燃料电池(1)供电模式下,若车辆工况为牵引工况,且车辆需求功率大于燃料电池(1)输出功率,且SOC≥C1,则将供电模式调整为混合供电模式。
  5. 根据权利要求2所述的混合动力车辆供电控制方法,其特征在于:在燃料电池(1)供电模式或混合供电模式下,若车辆工况为牵引工况,且车辆需求功率小于燃料电池(1)输出功率,且SOC<A1,则令燃料电池(1)通过DC/DC变换器(31,32)为蓄电池(2)充电。
  6. 根据权利要求2所述的混合动力车辆供电控制方法,其特征在于:在燃料电池(1)供电模式或混合供电模式下,若车辆工况为制动工况,则降低燃料电池(1)的输出功率。
  7. 根据权利要求2所述的混合动力车辆供电控制方法,其特征在于:所述车辆需求功率为车辆牵引系统需求功率与车载辅助系统需求功率之和;所述车辆牵引系统需求功率与车辆司机控制器级位成正比。
  8. 一种混合动力车辆供电控制系统,其特征在于,包括计算机设备;所述计算机设备被配置或编程为用于执行权利要求1-7中任一项所述的混合动力车辆供电控制方法的步骤。
  9. 一种混合动力车辆,其特征在于,包括如权利要求8所述的混合动力车辆供电控制系统。
PCT/CN2022/118956 2021-10-12 2022-09-15 一种混合动力车辆及其供电控制方法和系统 WO2023061142A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111185281.9 2021-10-12
CN202111185281.9A CN113844338A (zh) 2021-10-12 2021-10-12 混合动力车辆及其供电控制方法和系统

Publications (1)

Publication Number Publication Date
WO2023061142A1 true WO2023061142A1 (zh) 2023-04-20

Family

ID=78978149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118956 WO2023061142A1 (zh) 2021-10-12 2022-09-15 一种混合动力车辆及其供电控制方法和系统

Country Status (2)

Country Link
CN (1) CN113844338A (zh)
WO (1) WO2023061142A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116995641A (zh) * 2023-09-26 2023-11-03 北京交通大学 一种应用于轨道交通储能的能量管理架构及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113844338A (zh) * 2021-10-12 2021-12-28 中车株洲电力机车有限公司 混合动力车辆及其供电控制方法和系统
CN115743192A (zh) * 2022-11-15 2023-03-07 中车株洲电力机车有限公司 一种氢燃料混合动力机车的停机控制方法及相关设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040045744A (ko) * 2002-11-25 2004-06-02 현대자동차주식회사 연료 전지 하이브리드 전기 차량의 동력 분배 제어방법
CN101786413A (zh) * 2010-02-05 2010-07-28 新源动力股份有限公司 基于燃料电池的混合动力装置的能量管理系统
CN105313709A (zh) * 2015-04-15 2016-02-10 西南交通大学 一种用于混合动力有轨电车的能量管理系统
CN107791856A (zh) * 2016-09-05 2018-03-13 现代自动车株式会社 燃料电池车辆的关闭系统及控制方法
CN108394401A (zh) * 2018-01-30 2018-08-14 清华大学 汽车动力装置的控制方法、系统、装置及存储介质
CN109159720A (zh) * 2018-09-20 2019-01-08 北京汇通有利能源科技有限公司 燃料电池与系统、控制方法、控制系统及电动设备
CN109795374A (zh) * 2019-01-25 2019-05-24 汉腾汽车有限公司 一种混合动力汽车中氢燃料电池的控制方法及系统
CN113844338A (zh) * 2021-10-12 2021-12-28 中车株洲电力机车有限公司 混合动力车辆及其供电控制方法和系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112005000264T5 (de) * 2004-02-12 2007-01-18 Toyota Jidosha K.K., Toyota Brennstoffzellensystem und Verfahren zum Entfernen eines Brenngasrestes
JP2021022419A (ja) * 2019-07-24 2021-02-18 三菱自動車工業株式会社 燃料電池システム
CN110861538B (zh) * 2019-11-01 2021-11-12 深圳国氢新能源科技有限公司 燃料电池汽车混合动力控制方法及系统
CN111952645A (zh) * 2020-07-02 2020-11-17 摩氢科技有限公司 一种燃料电池控制系统、方法及存储介质
CN112959901A (zh) * 2021-03-10 2021-06-15 陈俊霖 一种燃料电池汽车的控制方法
CN113459810B (zh) * 2021-06-30 2022-04-29 东风汽车集团股份有限公司 基于全功率电电混合燃料电池汽车的下电控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040045744A (ko) * 2002-11-25 2004-06-02 현대자동차주식회사 연료 전지 하이브리드 전기 차량의 동력 분배 제어방법
CN101786413A (zh) * 2010-02-05 2010-07-28 新源动力股份有限公司 基于燃料电池的混合动力装置的能量管理系统
CN105313709A (zh) * 2015-04-15 2016-02-10 西南交通大学 一种用于混合动力有轨电车的能量管理系统
CN107791856A (zh) * 2016-09-05 2018-03-13 现代自动车株式会社 燃料电池车辆的关闭系统及控制方法
CN108394401A (zh) * 2018-01-30 2018-08-14 清华大学 汽车动力装置的控制方法、系统、装置及存储介质
CN109159720A (zh) * 2018-09-20 2019-01-08 北京汇通有利能源科技有限公司 燃料电池与系统、控制方法、控制系统及电动设备
CN109795374A (zh) * 2019-01-25 2019-05-24 汉腾汽车有限公司 一种混合动力汽车中氢燃料电池的控制方法及系统
CN113844338A (zh) * 2021-10-12 2021-12-28 中车株洲电力机车有限公司 混合动力车辆及其供电控制方法和系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116995641A (zh) * 2023-09-26 2023-11-03 北京交通大学 一种应用于轨道交通储能的能量管理架构及方法
CN116995641B (zh) * 2023-09-26 2023-12-22 北京交通大学 一种应用于轨道交通储能的能量管理架构及方法

Also Published As

Publication number Publication date
CN113844338A (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
WO2023061142A1 (zh) 一种混合动力车辆及其供电控制方法和系统
CN107499155B (zh) 一种基于燃料电池和锂电池的混动车控制方法及控制系统
CN110040038B (zh) 一种氢-电混合燃料电池客车能量管理控制方法及系统
CN101207331B (zh) 一种混合动力汽车dc-dc控制方法
CN111347940B (zh) 一种电电混合燃料电池汽车能量管理控制方法
CN104163111B (zh) 基于双向dc/dc的电动车复合能源增程系统
CN110861538A (zh) 燃料电池汽车混合动力控制方法及系统
CN114290916B (zh) 一种氢燃料混合动力重型卡车能量管理方法及系统
CN111430751B (zh) 燃料电池系统的怠速供氧控制方法及系统
CN204586537U (zh) 增程式全电驱动低速牵引车
KR20080044097A (ko) 수퍼커패시터를 이용한 연료전지 차량의 회생제동 시스템
CN103231662A (zh) 一种高可靠性燃料电池轿车动力系统控制方法
KR102400639B1 (ko) 다중발전원을 갖는 전기차 충전시스템 및 그 제어방법
CN111361434B (zh) 一种氢燃料电池客车用动力系统
CN110165654A (zh) 轨道交通用氢燃料电池电气系统架构
CN109278765B (zh) 一种干线混合动力机车组控制系统
CN113968170A (zh) 一种机车用燃料电池混合动力系统能量管理方法
CN205220414U (zh) 一种基于燃料电池的电电混合电动汽车供电系统
WO2017161842A1 (zh) 一种轮胎式龙门起重机三动力混合节能系统
CN106427606A (zh) 一种利用超级电容的自卸车动力系统
CN102545584B (zh) 直流高低压转换器的电压设定点的控制方法
US9912025B2 (en) Usage of regenerative brake power for system restart in start-stop operation of fuel cell hybrid vehicles
WO2021003881A1 (zh) 一种混合动力有轨电车电制动功率分配方法、装置和介质
CN109131380B (zh) 内燃机车主辅传动系统及内燃机车
CN112829607B (zh) 混合动力系统控制方法、系统、存储介质、设备及轨道车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE