WO2023061113A1 - 便携式远程超声扫查系统与安全超声扫查柔顺控制方法 - Google Patents

便携式远程超声扫查系统与安全超声扫查柔顺控制方法 Download PDF

Info

Publication number
WO2023061113A1
WO2023061113A1 PCT/CN2022/117694 CN2022117694W WO2023061113A1 WO 2023061113 A1 WO2023061113 A1 WO 2023061113A1 CN 2022117694 W CN2022117694 W CN 2022117694W WO 2023061113 A1 WO2023061113 A1 WO 2023061113A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning
mechanical arm
ultrasonic
force
movement
Prior art date
Application number
PCT/CN2022/117694
Other languages
English (en)
French (fr)
Inventor
程栋梁
刘振
Original Assignee
合肥合滨智能机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥合滨智能机器人有限公司 filed Critical 合肥合滨智能机器人有限公司
Priority to EP22880056.1A priority Critical patent/EP4306057A1/en
Publication of WO2023061113A1 publication Critical patent/WO2023061113A1/zh
Priority to US18/425,261 priority patent/US20240164759A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/56Details of data transmission or power supply
    • A61B8/565Details of data transmission or power supply involving data transmission via a network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4209Details of probe positioning or probe attachment to the patient by using holders, e.g. positioning frames
    • A61B8/4218Details of probe positioning or probe attachment to the patient by using holders, e.g. positioning frames characterised by articulated arms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4245Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient
    • A61B8/4254Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient using sensors mounted on the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4272Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue
    • A61B8/429Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue characterised by determining or monitoring the contact between the transducer and the tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4411Device being modular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4416Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to combined acquisition of different diagnostic modalities, e.g. combination of ultrasound and X-ray acquisitions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4427Device being portable or laptop-like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/56Details of data transmission or power supply
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/58Testing, adjusting or calibrating the diagnostic device
    • A61B8/582Remote testing of the device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/02Hand grip control means
    • B25J13/025Hand grip control means comprising haptic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/085Force or torque sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J3/00Manipulators of master-slave type, i.e. both controlling unit and controlled unit perform corresponding spatial movements
    • B25J3/04Manipulators of master-slave type, i.e. both controlling unit and controlled unit perform corresponding spatial movements involving servo mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • B25J9/1666Avoiding collision or forbidden zones
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • A61B2090/065Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension for measuring contact or contact pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • A61B2090/066Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension for measuring torque

Definitions

  • the invention relates to the technical field of remote ultrasonic scanning, in particular to a portable remote ultrasonic scanning system and a safe ultrasonic scanning compliance control method.
  • the existing remote ultrasonic scanning system equipment consists of two parts: the master device and the slave scanning robot. Doctors remotely control the slave scanning robot through the master device to perform ultrasonic examination.
  • the Chinese patent publication number is CN109998590A remote ultrasonic operating system and the control method of the remote ultrasonic operating system.
  • the remote operating device that is, the master device includes a human body forming device and an operator.
  • the human body forming device is suitable for receiving 3D scanning
  • the 3D data signal collected by the sensor is used to form a profiling body similar to the part of the patient to be detected according to the 3D data signal.
  • the Chinese patent authorization number is CN108994861B remote ultrasonic operator device and remote ultrasonic detection system.
  • the spatial position information of the operator is obtained by touching the position sensor below the bottom of the operator. Move on the touch screen of the position sensor to obtain the spatial position information of the operator.
  • the Chinese Patent Publication No. is CN110993087A, a remote ultrasonic scanning manipulation device and method.
  • the master device includes a simulated skin platform for simulating the movement of the actual ultrasonic probe on the skin.
  • the two-dimensional coordinates of the surface of the platform and based on the two-dimensional coordinates, remotely control the movement of the ultrasound probe on the skin.
  • the operating equipment on the doctor’s end that is, the main end, is complex, and cannot be moved at will after installation, and requires a specific working surface to simulate the movement of the ultrasonic probe on the skin, which cannot be carried around. question.
  • the master-end operating equipment and slave-end remote scanning robot technology mostly use position mapping and multi-stage force control mapping methods. Position mapping cannot ensure the continuity of the slave-end remote scanning robot’s motion, and multi-stage force control mapping cannot ensure the continuity of the terminal force.
  • the remote scanning robot from the end cannot realize joint force control and full process compliance control.
  • the doctor cannot obtain the contact force information between the ultrasonic probe and the scanning part of the human body from the main-side operating device.
  • the present invention provides a portable remote ultrasonic scanning system, which uses a master-end device to remotely control a slave-end scanning robot to perform ultrasonic inspection.
  • the present invention adopts the following technical solutions, including:
  • a portable remote ultrasonic scanning system including a master device and a slave device;
  • the master device includes: a handheld device, a master computer connected to the handheld device;
  • the slave device includes: a slave scanning robot, a slave ultrasound device, and a data transceiver unit connected to the slave scan robot and the slave ultrasound device respectively;
  • the handheld device sends the track information of its movement to the host computer; the handheld device also sends the pressure it receives to the host computer; wherein, the track information of the handheld device includes: the handheld device on any working surface Speed information of movement and angular velocity information of rotation in space;
  • the host computer is in communication with the data transceiver unit, and the host computer sends the track information and pressing force of the handheld device to the data transceiver unit;
  • the slave-end ultrasound equipment is used to perform ultrasound scans, collect ultrasound images, and send the collected ultrasound images to the data transceiver unit, and the data transceiver unit sends the ultrasound images to the master computer;
  • the slave-end ultrasonic equipment includes: an ultrasonic probe;
  • the scanning robot from the end includes; a mechanical arm, a controller for controlling the movement of the mechanical arm;
  • the ultrasonic probe is arranged at the end of the mechanical arm
  • the data transceiving unit sends the trajectory information and pressing force of the handheld device to the controller;
  • the controller controls the movement of the end effector of the robotic arm on the horizontal plane according to the speed information of the handheld device moving on the working surface, so that the moving speed of the ultrasonic probe at the end of the mechanical arm on the horizontal plane is the same as the moving speed of the handheld device on the working surface consistent;
  • the controller controls the attitude movement of the end effector of the manipulator in space according to the angular velocity information of the hand-held device rotating in space, so that the rotation speed of the ultrasonic probe at the end of the manipulator in space is consistent with the rotation speed of the hand-held device in space ;
  • the controller controls the end effector of the mechanical arm to move along the normal direction of the scanning surface according to the pressing force of the handheld device, so that the contact force between the ultrasonic probe on the end of the mechanical arm and the scanning part of the human body, that is, the actual contact force of the ultrasonic probe Consistent with the pressing force of the handheld device;
  • a depth camera is provided at the end of the mechanical arm to obtain a depth image; the depth camera is connected to a controller to send the depth image to the controller, and the controller sends the depth image to the host computer through a data transceiver unit.
  • the depth camera acquires the depth image of the human body surface
  • the main-end computer performs three-dimensional modeling of the human body according to the depth image of the human body surface to obtain a three-dimensional model of the human body
  • the main-end computer identifies the scanning parts of the human body according to the three-dimensional model of the human body, and sets the human body
  • the initial position of the ultrasonic scanning of the scanning part using the three-dimensional model of the human body and the path planning algorithm to generate a collision-free path from the current position of the robotic arm to the initial position of the ultrasonic scanning, and send the non-collision path to the controller through the data transceiver unit
  • the controller controls the end effector of the manipulator to move along the collision-free path, so that the ultrasonic probe at the end of the manipulator automatically reaches the initial position of the ultrasonic scan.
  • the hand-held device obtains the speed information of the hand-held device moving on the working surface through the photoelectric speed sensor, and controls the movement of the end effector of the mechanical arm on the horizontal plane through the speed mapping method.
  • the data transceiving unit includes: a robot data interface for data transmission with the slave scanning robot, and an ultrasound data interface for data transmission with the slave ultrasound equipment.
  • the controller sends the actual contact force of the ultrasonic probe to the data transceiver unit, and the data transceiver unit sends the actual contact force of the ultrasonic probe to the master computer; the master computer sends the actual contact force of the ultrasonic probe to the handheld device;
  • the handheld device is provided with a display screen for real-time display of the actual contact force of the ultrasonic probe and the pressing force of the handheld device, and real-time display of the difference between the actual contact force of the ultrasonic probe and the pressing force of the handheld device;
  • the handheld device is also provided with a vibration module, and the vibration module is used to generate vibration according to the difference between the actual contact force of the ultrasonic probe and the pressing force of the handheld device; if the difference is greater than the set threshold, then The vibration module generates vibration, and the greater the difference, the greater the vibration intensity.
  • the slave device also includes: a slave environment perception unit;
  • the slave-end environment perception unit includes a global camera and a communication device
  • the global camera is used to obtain the overall video of the scanning robot from the end and the position and posture video of the mechanical arm; the global camera is connected with the data transceiver unit, and the global camera will scan the overall video and the video of the robot from the end through the data transceiver unit.
  • the position and posture video of the robotic arm is sent to the host computer and displayed in real time on the host computer;
  • the communication device is used to realize real-time communication between doctors and patients.
  • the mechanical arm is provided with a torque sensor for obtaining joint torque
  • the controller is connected with the torque sensor, and according to the joint torque of the mechanical arm obtained by the torque sensor, the ultrasonic probe on the end of the mechanical arm and the human body scanning position are calculated The contact force between them is the actual contact force of the ultrasonic probe.
  • the present invention also provides a compliant control method for safe ultrasonic scanning.
  • the entire movement process of the mechanical arm is controlled compliantly.
  • the specific method is as follows:
  • the movement of the mechanical arm is controlled by impedance, that is, the movement of the end effector of the mechanical arm on the horizontal plane and the movement in the normal direction of the scanning plane are all impedance-controlled;
  • the non-ultrasonic scanning process Refers to: the process in which the controller controls the movement of the robotic arm so that the ultrasonic probe reaches the scanning site of the human body; in the non-ultrasonic scanning process, the contact force between the ultrasonic probe and the scanning site of the human body, that is, the actual contact force of the ultrasonic probe is 0 .
  • the movement of the mechanical arm is controlled by a mixture of impedance and constant force, that is, the movement of the end effector of the mechanical arm on the horizontal plane is controlled by impedance, and the movement in the normal direction of the scanning surface is controlled by constant force;
  • the ultrasonic scanning process refers to: the controller controls the movement of the mechanical arm to make the ultrasonic probe perform ultrasonic scanning on the scanning part of the human body; during the ultrasonic scanning process, the contact force between the ultrasonic probe and the scanning part of the human body , that is, the actual contact force of the ultrasonic probe is greater than 0.
  • the pressing force of the hand-held device is mapped to the expected force value controlled by the constant force by adopting variable force segmental mapping or variable force continuous mapping, and the contact force between the ultrasonic probe and the scanning part of the human body follows the expected value;
  • variable force segmentation mapping refers to: mapping the pressing force of the handheld device to the controller in intervals, and the controller controls the movement of the mechanical arm to drive the ultrasonic probe to perform ultrasonic scanning on the scanning parts of the human body. If the pressing force of the handheld device When it is in a certain interval, the expected force value of constant force control does not change, and the expected force value is a certain value in this interval; if the interval where the pressing force of the handheld device is located changes, the constant The expected force value of the force control changes accordingly, and the expected force value is a certain value in the interval after the change;
  • variable force continuous mapping refers to: the pressing force of the handheld device is continuously mapped to the controller in proportion, and the controller controls the movement of the mechanical arm to drive the ultrasonic probe to perform ultrasonic scanning on the scanning parts of the human body.
  • the expected force value of the constant force control Continuous changes follow the occurrence of the handheld device.
  • the hand-held device of the present invention adopts an integrated design, and can be operated on any working surface. It does not need other auxiliary equipment such as a touch table, and can be connected with a computer to form a doctor-side device, that is, a main-side device. It has a simple structure and is easy to carry , to facilitate ultrasound scanning of patients in a home environment.
  • the present invention also generates a three-dimensional model of the human body according to the depth image of the human body surface, which is convenient for doctors to observe the ups and downs of the human body surface, and to identify the scanning parts of the human body according to the three-dimensional model of the human body.
  • the controller controls the mechanical arm to make the end effector move according to the corresponding collision-free path, so that the ultrasonic probe on the end of the mechanical arm automatically reaches the position designated by the doctor, which is convenient for the doctor to scan.
  • the hand-held device of the present invention directly obtains the speed information of its movement on the working surface through its internal photoelectric speed sensor, and the movement control of the end effector of the mechanical arm on the horizontal plane can be realized by using the speed information, thereby It can be operated on any working surface, such as desktop, human skin model surface or human body surface, etc., without other auxiliary equipment such as touch table.
  • the slave-end scanning robot and the slave-end ultrasonic equipment of the present invention are two independent devices.
  • the data of the two is fused through the data transceiver unit and transmitted to the master-end computer in a unified manner.
  • the slave-end scanning robot can be applied to various models Ultrasound equipment can be combined with different ultrasound scanning equipment in different hospitals for ultrasound scanning, and the slave scanning robot can also be adapted to portable ultrasound scanning equipment.
  • the remote ultrasonic scanning system of the present invention uses a communication device, a torque sensor, a display screen, and a vibration module to form a sense of presence of hearing and force when the doctor remotely controls the scanning robot from the end to perform ultrasonic scanning.
  • the remote ultrasonic scanning system of the present invention is convenient for doctors to observe the position and posture of the scanning robot from the end by displaying the depth image of the human body surface, the three-dimensional model of the human body, the overall video of the scanning robot from the end, and the video of the position and posture of the mechanical arm.
  • the overall situation, the position and posture of the robotic arm, the ups and downs of the human body surface, and the specific conditions of the scanned parts of the human body form the doctor's visual presence when performing remote ultrasonic scanning.
  • the joints of the scanning robot from the end of the present invention are equipped with torque sensors, which is beneficial to realize the force control of the joints and the compliance control of the whole process, and ensure the safety of the patient.
  • the hand-held device of the present invention uses the velocity information moving on the working surface and the angular velocity information rotating in space to control the movement of the end effector of the mechanical arm on the horizontal plane and the attitude motion in space, that is, the velocity mapping way to ensure the continuity of the entire motion process of the scanning robot from the end.
  • the hand-held device of the present invention controls the movement of the end effector of the mechanical arm along the normal direction of the scanning surface by using the pressing force, wherein a variable force continuous mapping method is adopted to ensure the continuity of the contact force between the ultrasonic probe and the human body.
  • Fig. 1 is a structural block diagram of a portable remote ultrasonic scanning system of the present invention.
  • FIG. 2 is an overall schematic diagram of a portable remote ultrasonic scanning system of the present invention.
  • a portable remote ultrasonic scanning system includes a master device and a slave device; wherein, the master device is a remote-controlled doctor's device, and the slave device is a patient device for ultrasonic scanning.
  • the host device includes: a handheld device 1 , and a host computer 2 connected to the handheld device 1 .
  • the slave end equipment includes: a slave end scanning robot, a slave end ultrasonic device, a slave end environment perception unit, and a data transceiver unit 8 connected to the slave end scanning robot, slave end ultrasound equipment, and slave end environment perception unit respectively .
  • the handheld device 1 is used to simulate the posture movement of the ultrasonic probe 4 in space.
  • the doctor holds the handheld device 1 to move on any working surface, and the handheld device 1 obtains the speed information of its movement on the working surface through a photoelectric speed sensor; the doctor
  • the handheld device 1 rotates in space, and the handheld device 1 acquires angular velocity information of its rotation in space through an attitude angular velocity sensor.
  • the handheld device 1 sends the trajectory information of its motion to the host computer 2, and the trajectory information is the velocity information of the handheld device 1 moving on the working surface and the angular velocity information of the rotation in space.
  • the handheld device 1 obtains the pressing force it receives through a pressure sensor, and the handheld device 1 also sends the pressing force it receives to the host computer 2 .
  • the master computer 2 and the data transceiver unit 8 are connected by 5G network communication, the master computer 2 sends the track information and pressing force of the handheld device 1 to the data transceiver unit 8, and the data transceiver unit 8 sends the track information of the handheld device 1 And the pressing force is sent to the slave scanning robot.
  • the slave ultrasound equipment is used for ultrasound scanning, collects ultrasound images, and sends the collected ultrasound images to the data transceiver unit 8 , and the data transceiver unit 8 sends the ultrasound images to the master computer 2 .
  • the slave scanning robot includes: a mechanical arm 31 and a controller 32 for controlling the movement of the mechanical arm 31 .
  • the slave ultrasonic equipment includes: an ultrasonic probe 4 arranged on the end of the mechanical arm 31 .
  • the controller 32 is connected with the data transceiving unit 8 to receive the trajectory information and pressing force of the handheld device 1 .
  • the controller 32 controls the movement of the end effector of the mechanical arm 31 on the horizontal plane according to the speed information of the hand-held device 1 moving on the working surface, so that the moving speed of the ultrasonic probe 4 on the end of the mechanical arm 31 on the horizontal plane is the same as that of the hand-held device. 1.
  • the moving speed on the working surface is consistent; the controller 32 controls the posture movement of the end effector of the mechanical arm 31 in space according to the angular velocity information of the hand-held device 1 rotating in space, so that the ultrasonic probe 4 on the end of the mechanical arm 31 is The rotational angular velocity in space is consistent with the rotational angular velocity of the handheld device 1 in space; the handheld device 1 obtains the pressing force of the handheld device 1 through the pressure sensor, and the controller 32 controls the end effector of the mechanical arm 31 to move along the
  • the normal movement of the scanning surface makes the contact force between the ultrasonic probe 4 on the end of the mechanical arm 31 and the scanning part of the human body, that is, the actual contact force of the ultrasonic probe 4 , consistent with the pressing force of the handheld device 1 .
  • the scanning surface refers to the scanning surface when the ultrasonic probe on the end of the end-scanning robot scans the scanning part of the human body, and the normal direction of the scanning surface is the direction perpendicular to the scanning surface.
  • the controller 32 sends the actual contact force of the ultrasonic probe 4 to the data transceiver unit 8 , and the data transceiver unit 8 sends the actual contact force of the ultrasonic probe 4 to the host computer 2 .
  • the data transceiving unit 8 includes: a robot data interface for data transmission with the slave scanning robot, and an ultrasound data interface for data transmission with the slave ultrasound equipment.
  • the handheld device 1 is a profiling ultrasonic probe, which adopts an integrated design and includes: a housing, a velocity acquisition module, an angular velocity acquisition module, a force acquisition module, a vibration module, a display screen, and a data acquisition module arranged on the housing. Processing module, pressing module.
  • the speed acquisition module adopts a photoelectric speed sensor and is arranged in the housing; a speed detection window is provided on the housing, the photoelectric detection end of the speed acquisition module is aligned with the speed detection window, and the photoelectric detection is performed through the speed detection window to obtain Velocity information of the handheld device moving on the work surface.
  • the handheld device of the present invention can be operated on any working surface, such as a desktop, the surface of a human skin model or the surface of a human body, etc., and does not need other auxiliary equipment such as a touch table.
  • the speed information of the upper movement can be used to realize the movement control of the end effector of the mechanical arm on the horizontal plane.
  • the angular velocity acquisition module adopts an attitude angular velocity sensor, which is arranged in the housing, and is used to obtain the angular velocity information of the handheld device rotating in space, that is, obtain the angular velocity information of the handheld device rotating around the three axes of x, y, and z in space; Wherein, the x and y axes form a horizontal plane, and the z axis is a vertical direction perpendicular to the horizontal plane.
  • the speed information of the handheld device moving on the working surface includes the speed information on the x axis and the speed information on the y axis.
  • the force acquisition module that is, the pressure sensor, is connected to the pressing module, and is used to collect the pressing force on the outer surface of the pressing module, that is, the pressing surface of the handheld device, and obtain the pressing force of the handheld device.
  • the speed acquisition module, angular velocity acquisition module, and force acquisition module are all connected to the data processing module, and respectively send the speed information of the handheld device moving on the working surface, the angular velocity information of the rotation in space, and the pressing force of the handheld device to the Data processing module.
  • the data processing module is connected with the master computer 2, and sends the speed information of the hand-held device 1 moving on the working surface and the rotation in space to the controller 32 of the slave scanning robot through the master computer 2 and the data transceiver unit 8.
  • the angular velocity information of , and the pressing force of the handheld device 1 is connected with the master computer 2, and sends the speed information of the hand-held device 1 moving on the working surface and the rotation in space to the controller 32 of the slave scanning robot through the master computer 2 and the data transceiver unit 8.
  • the angular velocity information of , and the pressing force of the handheld device 1 is connected with the master computer 2, and sends the speed information of the hand-held device 1 moving on the working surface and the rotation in space.
  • the host computer 2 also sends the actual contact force of the ultrasonic probe 4 to the data processing module in real time.
  • the data processing module is connected with the display screen, and sends the pressing force of the handheld device, the actual contact force of the ultrasonic probe and the difference between them to the display screen, and displays them on the display screen.
  • the real-time display of the pressing force of the display screen on the handheld device, the actual contact force of the ultrasonic probe and the difference between the two enables the doctor to observe more clearly and intuitively, so as to know the impact of the actual contact force of the ultrasonic probe on the handheld device.
  • the tracking error of the pressing force provides force feedback, which is convenient for the doctor to adjust the pressing force of the handheld device 1 in time.
  • the data processing module and the vibration module send the difference between the pressing force of the handheld device and the actual contact force of the ultrasonic probe to the vibration module; the vibration module is used to generate vibration according to the size of the difference between the two, if the If the difference is greater than the set threshold, the vibration module will vibrate, and the greater the difference, the greater the vibration intensity.
  • the vibration module generates vibrations of different intensities according to the difference between the two to form force feedback, which is convenient for the doctor to adjust the pressing force of the handheld device 1 in time.
  • the mechanical arm mechanism 3 of the scanning robot from the end includes: a mechanical arm 31, a controller 32 for controlling the movement of the mechanical arm 31, a clamping mechanism 33 arranged at the end of the mechanical arm 31, and a clamping mechanism 33 arranged at the end of the mechanical arm.
  • the depth camera 34 at the end of 31 is set on the torque sensor 35 on the mechanical arm 31 .
  • the robotic arm 31 is a multi-joint flexible robotic arm.
  • the controller 32 is connected to the data transceiving unit 8 , and the controller 32 receives the trajectory information and pressing force of the handheld device 1 sent by the host computer 2 through the data transceiving unit 8 .
  • the controller 32 is used to control the movement of the end effector of the mechanical arm 31 on the horizontal plane, the posture movement in space, and the movement in the normal direction of the scanning plane according to the trajectory information and the pressing force of the handheld device 1 .
  • the torque sensor 35 is used to obtain the joint torque of the mechanical arm 31, the controller 32 is connected to the torque sensor 35, and calculates the ultrasonic probe on the end of the mechanical arm 31 according to the joint torque of the mechanical arm 31 obtained by the torque sensor 35.
  • the torque sensor 35 is used to obtain accurate joint torque, thereby obtaining the contact force between the ultrasonic probe on the end of the mechanical arm and the scanning part of the human body, which is conducive to accurately controlling the contact between the ultrasonic probe and the scanning part of the human body force.
  • the joints of the scanning robot from the end are equipped with torque sensors, which is also conducive to realizing joint force control and full process compliance control, and ensuring the safety of patients.
  • the controller 32 is also connected to the clamping mechanism 33 for controlling the clamping and releasing of the clamping mechanism 33 .
  • the controller 32 is set with a control program for the clamping and loosening of the ultrasonic probe 4, and sends a clamping or loosening control command to the controller 32 through the host computer 2 and the data transceiver unit 8, and the controller 32 according to the control command
  • Controlling the clamping or loosening of the clamping mechanism 33 enables the doctor to remotely control the clamping mechanism 33 for clamping and replacing the ultrasonic probe 4 , and to automatically apply the coupling agent.
  • the depth camera 34 is disposed at the end of the mechanical arm 31 for acquiring depth images.
  • the depth camera 34 is connected with the controller 32 and sends the depth image to the controller 32 , and the controller 32 sends the depth image to the host computer 2 through the data transceiver unit 8 .
  • the main-end computer 2 performs three-dimensional reconstruction according to the depth image to obtain a three-dimensional model; the main-end computer 2 displays the three-dimensional model, which is convenient for doctors to observe; the main-end computer 2 can set the trajectory according to the three-dimensional model, and pass the data
  • the transceiver unit 8 sends the motion trajectory to the controller 32, and the controller 32 controls the end effector of the mechanical arm 31 to move according to the motion trajectory, so as to ensure that the ultrasonic probe on the end of the mechanical arm can reach the set position while avoiding collisions.
  • Position such as reaching the set position above the surface of the human body, is convenient for doctors to observe and operate further.
  • the initial position of the end of the mechanical arm 31 is above the surface of the human body, but the distance between it and the surface of the human body is relatively large, or the end of the mechanical arm 31
  • the initial position of the robot is located on the side of the human body surface. Therefore, according to the depth image, the end of the mechanical arm 31 can be moved from the initial position to a set position above the human body surface, which is convenient for doctors to observe and operate further.
  • the depth camera 34 can also acquire a depth image of the human body surface, and send the depth image of the human body surface to the host computer 2 through the data transceiver unit 8 .
  • the main-end computer 2 performs three-dimensional modeling of the human body according to the depth image of the human body surface to obtain a three-dimensional model of the human body; the main-end computer 2 displays the three-dimensional model of the human body, which is convenient for doctors to observe the fluctuations of the human body surface; the main-end computer 2 can , set the initial position of the ultrasonic scanning of the human body scanning part, use the three-dimensional model of the human body and the path planning algorithm to generate a collision-free path from the current position of the mechanical arm to the initial position of the ultrasonic scanning, and send the non-collision path through the data transceiver unit 8 Controller 32; the controller 32 controls the end effector of the mechanical arm 31 to move along the collision-free path, so that the ultrasonic probe 4 on the end of the mechanical arm 31 automatically reaches the initial position for ultrasonic scanning.
  • the controller 32 controls the mechanical arm 31 to make the end effector move according to the corresponding non-collision path, so that the end of the mechanical arm 31
  • the ultrasonic probe 4 on the top automatically arrives at the position designated by the doctor, which is convenient for the doctor to perform scanning operations.
  • the whole motion process includes: non-ultrasonic scanning process and ultrasonic scanning process.
  • the non-ultrasonic scanning process refers to: the controller 32 controls the movement of the mechanical arm 31 so that the ultrasonic probe 4 reaches the scanning part of the human body.
  • the actual contact force of the ultrasonic probe 4 is zero.
  • the ultrasonic scanning process refers to the process in which the controller 32 controls the movement of the mechanical arm 31 so that the ultrasonic probe 4 performs ultrasonic scanning on the scanning part of the human body.
  • the ultrasonic probe 4 is in contact with the scanning part of the human body.
  • the actual contact force of the ultrasonic probe 4 is greater than zero.
  • the entire movement process of the mechanical arm 31 is compliant control;
  • the compliant control refers to the use of a certain control strategy to actively control the mechanical arm 31, so that the mechanical arm 31 can be in contact with the external environment.
  • the compliance control method for safe ultrasonic scanning is as follows:
  • the movement of the mechanical arm 31 in the non-ultrasonic scanning process adopts impedance control, that is, the movement of the end effector of the mechanical arm 31 on the horizontal plane and in the normal direction of the scanning plane is controlled by impedance, and the impedance on the horizontal plane and the movement on the scanning plane The impedance in the normal direction of the inspection surface is different.
  • the movement of the mechanical arm 31 is controlled by a mixture of impedance and constant force, that is, the movement of the end effector of the mechanical arm 31 on the horizontal plane is controlled by impedance, and the movement in the normal direction of the scanning surface is controlled by constant force.
  • the expected force value of the end effector of the mechanical arm 31 in the normal direction of the scanning surface is obtained by mapping the pressing force of the handheld device 1, and the expected force of the constant force control can be realized through two mapping methods Value mapping, the two mapping methods are: variable force segmentation mapping method, variable force continuous mapping method; these two mapping methods can be switched during actual operation.
  • the variable force segmentation mapping refers to: mapping the pressing force of the hand-held device 1 to the controller 32, and the controller 32 controls the movement of the mechanical arm 31 to drive the ultrasonic probe 4 to perform ultrasonic scanning on the scanning parts of the human body.
  • the expected force value of the constant force control does not change, and the expected force value is a certain value in the interval; if the pressing force of the handheld device 1 is in the interval
  • the expected force value of the constant force control changes accordingly, and the expected force value is a certain value within the interval after the change.
  • variable force continuous mapping refers to: directly map the pressing force of the handheld device 1 to the controller 32, and the controller 32 controls the movement of the mechanical arm 31 to drive the ultrasonic probe 4 to perform ultrasonic scanning on the scanning parts of the human body.
  • the expected force value changes continuously following the movement of the handheld device 1 .
  • the slave ultrasonic device includes an ultrasonic probe 4 and an ultrasonic scanning host 5 , the ultrasonic probe 4 is connected to the ultrasonic scanning host 5 , and the ultrasonic scanning host 5 is connected to a data transceiver unit 8 .
  • the ultrasonic probe 4 is used to perform ultrasonic scanning and collect ultrasonic images; the ultrasonic probe 4 sends the collected ultrasonic images to the ultrasonic scanning host 5, and the ultrasonic scanning host 5 sends the ultrasonic images to the host computer through the data transceiver unit 8 2.
  • the host computer 2 displays the ultrasound images collected by the ultrasound probe 4 in real time.
  • the main computer 2 is also used to set the scanning parameters of the ultrasonic scanning host 5; the main computer 2 sends the scanning parameters to the ultrasonic scanning host 5 through the data transceiver unit 8; the scanning parameters are Refers to the relevant control parameters of the ultrasonic scanning host 5 during ultrasonic scanning; the ultrasonic scanning host 5 controls the ultrasonic scanning of the ultrasonic probe 4 based on the scanning parameters sent by the host computer 2 .
  • the slave-end environment perception unit includes: a global camera 7, a communication device 6;
  • the global camera 7 is used to acquire the on-site video of the slave end, that is, the patient end of the ultrasonic scan, including the overall video of the slave scan robot and the position and posture video of the mechanical arm 31 .
  • the global camera 7 and the data transceiver unit 8 the global camera 7 sends the overall video of the scanning robot from the end and the position and posture video of the mechanical arm 31 to the data transceiver unit 8, and the data transceiver unit 8 scans the slave end through the 5G network.
  • the overall video of the robot and the position and posture video of the mechanical arm 31 are sent to the master computer 2, and the master computer 2 displays the overall video of the slave scanning robot and the position and posture video of the mechanical arm 31 in real time.
  • the communication device 6 is connected with the host computer 2 for real-time communication between the doctor and the patient; the communication device 6 includes a microphone and a loudspeaker.
  • the present invention by displaying the depth image of the human body surface, the three-dimensional model of the human body, the overall video of the scanning robot from the end, and the position and posture video of the mechanical arm 31, it is convenient for the doctor to observe the overall situation of the scanning robot from the end, the mechanical arm 31
  • the position and posture of the human body, the ups and downs of the human body surface, and the specific conditions of the scanned parts of the human body form the visual presence of the doctor when performing remote ultrasonic scanning.
  • a sense of presence of hearing and force sense is formed when the doctor remotely controls the slave scanning robot to perform ultrasonic scanning.
  • 5G network communication is used between the master device and the slave device.
  • Both the master device and the slave device send the data to be transmitted to the corresponding base station through the 5G communication device, and then the base station uploads the data to the cloud server.
  • Both the end device and the slave end device obtain the data to be received from the cloud server through the 5G communication device and the corresponding base station.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Primary Health Care (AREA)
  • Acoustics & Sound (AREA)
  • Epidemiology (AREA)
  • General Business, Economics & Management (AREA)
  • Business, Economics & Management (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

本发明公开了一种便携式远程超声扫查系统,主端设备包括手持装置、主端计算机;从端设备包括从端扫查机器人、从端超声设备、从端环境感知单元、数据收发单元;手持装置将其移动的速度和旋转的角速度以及按压力通过主端计算机、数据收发单元发送给从端扫查机器人的控制器,控制器控制机械臂在水平面上的移动、在空间中的姿态运动、沿扫查面的法向的移动;主端计算机显示超声扫查图像,便于医生观察扫查状态;机械臂的整个运动过程均为柔顺控制,能够仿照人臂,与外部环境接触时对外部作用力产生顺从,能够确保超声扫查时病人的安全;本发明还能够确保从端扫查机器人的整个运动过程的连续性,以及确保超声探头与人体之间接触力的连续性。

Description

便携式远程超声扫查系统与安全超声扫查柔顺控制方法
本申请主张2021年10月14日申请的申请号为202111199054.1的“便携式远程超声扫查系统与安全超声扫查柔顺控制方法”的优先权,原受理机构为中国。
技术领域
本发明涉及远程超声扫查技术领域,尤其是便携式远程超声扫查系统与安全超声扫查柔顺控制方法。
背景技术
现有的远程超声扫查系统设备由主端设备、从端扫查机器人两部分组成,医生通过主端设备远程控制从端扫查机器人进行超声检查。
经检索,中国专利公开号为CN109998590A的远程超声操作系统及远程超声操作系统的控制方法,该专利中,远程操作装置即主端设备包括人体成型装置和操作手,人体成型装置适于接收3D扫描器收集到的3D数据信号并根据3D数据信号形成与病人待检测部位相似的仿形体。
经检索,中国专利授权号为CN108994861B的远程超声操作手装置及远程超声检测系统,该专利中,操作手底部通过触摸下方的位置传感器获取操作手的空间位置信息,即,操作手必须在设有位置传感器的触摸屏上进行移动,获取操作手的空间位置信息。
经检索,中国专利公开号为CN110993087A的一种远程超声扫描操纵设备及方法,该专利中,主端设备包括用于模拟实际超声探头在皮肤上运动的模拟皮肤平台,获取模拟超声探头在模拟皮肤平台表面的二维坐标,并基于该二维坐标远程控制超声探头在皮肤上的运动。
综上所述,现有的远程超声扫查系统中存在:医生端即主端的操作设备复杂,安装好之后不能随意移动,需要一个特定的工作面模拟超声探头在皮肤上运动,无法随身携带的问题。
另外,现有的远程超声扫查系统中,还存在以下问题:
主端操作设备与从端远程扫查机器人技术多采用位置映射和多段力控映射方法,位置映射无法确保从端远程扫查机器人运动的连续性,多段力控映射无法确保末端力的连续性。
从端远程扫查机器人无法实现关节力控和全流程柔顺控制。
医生无法从主端操作设备上获知超声探头与人体扫查部位之间的接触力信息。
发明内容
为了克服上述现有技术中的缺陷,本发明提供一种便携式远程超声扫查系统,利用主端设备远程控制从端扫查机器人进行超声检查。
为实现上述目的,本发明采用以下技术方案,包括:
一种便携式远程超声扫查系统,包括主端设备、从端设备;
所述主端设备包括:手持装置,与手持装置相连接的主端计算机;
所述从端设备包括:从端扫查机器人,从端超声设备,分别与从端扫查机器人和从端超声设备相连接的数据收发单元;
所述手持装置将其运动的轨迹信息发送给主端计算机;所述手持装置还将其所受到的按压力发送给主端计算机;其中,手持装置的轨迹信息包括:手持装置在任意工作面上移动的速度信息和在空间中旋转的角速度信息;
所述主端计算机与数据收发单元之间通信连接,主端计算机将手持装置的轨迹信息和按压力发送给数据收发单元;
所述从端超声设备用于进行超声扫查,采集的超声影像,并将所采集的超声影像发送给数据收发单元,数据收发单元将超声影像发送给主端计算机;
所述从端超声设备包括:超声探头;
所述从端扫查机器人包括;机械臂,用于控制机械臂运动的控制器;
所述超声探头设置于机械臂的末端;
所述数据收发单元将手持装置的轨迹信息和按压力发送给控制器;
控制器根据手持装置在工作面上移动的速度信息控制机械臂的末端执行器 在水平面上的移动,使得机械臂末端上的超声探头在水平面上的移动速度与手持装置在工作面上的移动速度一致;
控制器根据手持装置在空间中旋转的角速度信息控制机械臂的末端执行器在空间中的姿态运动,使得机械臂末端上的超声探头在空间中的转动速度与手持装置在空间中的转动速度一致;
控制器根据手持装置的按压力控制机械臂的末端执行器沿扫查面的法向移动,使得机械臂末端上的超声探头与人体扫查部位之间的接触力,即超声探头的实际接触力与手持装置的按压力一致;
所述机械臂的整个运动过程均为柔顺控制。
所述机械臂末端上设有深度相机,用于获取深度图像;所述深度相机与控制器相连接,将深度图像发送给控制器,控制器通过数据收发单元将深度图像发送给主端计算机。
深度相机获取人体表面的深度图像,所述主端计算机根据人体表面的深度图像进行人体三维建模,得到人体三维模型;所述主端计算机根据该人体三维模型,识别人体扫查部位,设置人体扫查部位的超声扫查初始位置,利用人体三维模型和路径规划算法生成机械臂从当前位置到达超声扫查初始位置的无碰撞路径,并通过数据收发单元将该无碰撞路径发送控制器;控制器控制机械臂的末端执行器按照该无碰撞路径进行运动,使得机械臂末端上的超声探头自动到达该超声扫查初始位置。
手持装置通过光电式速度传感器获取手持装置在工作面上移动的速度信息,通过速度映射的方式,控制机械臂的末端执行器在水平面上的移动。
所述数据收发单元包括:用于与从端扫查机器人进行数据传输的机器人数据接口,用于与从端超声设备进行数据传输的超声数据接口。
所述控制器将超声探头的实际接触力发送给数据收发单元,所述数据收发单元将超声探头的实际接触力发送给主端计算机;所述主端计算机将超声探头的实际接触力发送给手持装置;
所述手持装置上设有显示屏,用于实时显示超声探头的实际接触力和手持 装置的按压力,以及实时显示超声探头的实际接触力和手持装置的按压力之间的差值;
所述手持装置中还设有振动模块,所述振动模块用于根据超声探头的实际接触力和手持装置的按压力之间差值的大小,产生振动;若该差值大于设定阈值,则振动模块产生振动,且该差值越大,振动强度越大。
从端设备还包括:从端环境感知单元;
所述从端环境感知单元包括全局相机和通话装置;
所述全局相机用于获取从端扫查机器人的整体视频和机械臂的位置姿态视频;所述全局相机与数据收发单元相连接,全局相机通过数据收发单元将从端扫查机器人的整体视频和机械臂的位置姿态视频发送给发送给主端计算机,并在主端计算机上进行实时显示;
所述通话装置用于实现医生与病患之间的实时通话。
所述机械臂上设有用于获取关节力矩的力矩传感器,所述控制器与力矩传感器相连接,根据力矩传感器所获取的机械臂的关节力矩,计算机械臂末端上的超声探头与人体扫查部位之间的接触力,即超声探头的实际接触力。
本发明还提供了一种安全超声扫查柔顺控制方法,机械臂的整个运动过程均为柔顺控制,具体方式如下所示:
非超声扫查过程中,机械臂的运动采用阻抗控制,即,机械臂的末端执行器在水平面上的移动和在扫查面的法向上的移动均为阻抗控制;所述非超声扫查过程是指:控制器控制机械臂运动使得超声探头到达人体扫查部位的过程;在非超声扫查过程中,超声探头与人体扫查部位之间的接触力,即超声探头的实际接触力为0。
超声扫查过程中,机械臂的运动采用阻抗与恒力的混合控制,即,机械臂的末端执行器在水平面上的移动为阻抗控制,在扫查面的法向上的移动为恒力控制;所述超声扫查过程是指:控制器控制机械臂运动使得超声探头在人体扫查部位上进行超声扫查的过程;在超声扫查过程中,超声探头与人体扫查部位之间的接触力,即超声探头的实际接触力大于0。
超声扫查过程中,采用变力分段映射或变力连续映射的方式,将手持装置的按压力映射为恒力控制的期望力值,且超声探头与人体扫查部位之间的接触力跟随该期望力值;
所述变力分段映射是指:将手持装置的按压力分区间段映射给控制器,控制器控制机械臂运动带动超声探头在人体扫查部位上进行超声扫查,若手持装置的按压力位于某个区间段内时,则恒力控制的期望力值不发生变化,且期望力值为该区间段内的某个值;若手持装置的按压力所在的区间段发生变化时,则恒力控制的期望力值发生对应的变化,且期望力值为变化后的所在区间段内的某个值;
所述变力连续映射是指:将手持装置的按压力按比例连续映射给控制器,控制器控制机械臂运动带动超声探头在人体扫查部位上进行超声扫查,恒力控制的期望力值跟随手持装置的发生连续的变化。
本发明的优点在于:
(1)本发明的手持装置采用一体化设计,可以在任意工作面上进行操作,不需要触摸台等其他辅助设备,与计算机相连即可构成医生端设备即主端设备,结构简单,方便携带,方便在居家环境中对病人进行超声扫查。
(2)本发明还根据人体表面的深度图像生成人体三维模型,便于医生观察人体表面的起伏,以及根据该人体三维模型识别人体扫查部位,例如,在非扫查阶段,自动识别胃、胸等部位,设置人体扫查部位的超声扫查初始位置,利用人体三维模型和路径规划算法生成机械臂从当前位置到达超声扫查初始位置的无碰撞路径,当医生选择设置机械臂末端去到指定部位的上方位置即超声扫查初始位置时,控制器控制机械臂使得末端执行器按照对应的无碰撞路径进行运动,使得机械臂末端上的超声探头自动到达医生指定的部位,方便医生扫查操作。
(3)本发明的手持装置直接通过其内部的光电式速度传感器获取其在工作面上移动的速度信息,利用该速度信息即可实现对机械臂的末端执行器在水平面上的移动控制,从而实现在任意工作面上均可进行操作,例如桌面、人体 皮肤模型表面或人体表面等,不需要触摸台等其他辅助设备。
(4)本发明的从端扫查机器人与从端超声设备为独立的两个设备,通过数据收发单元把二者数据融合,统一传输给主端计算机,从端扫查机器人可以适用多种型号的超声设备,可以与不同医院的不同超声扫查设备结合进行超声扫查,且从端扫查机器人也可以适配便携式超声扫查设备。
(5)本发明的远程超声扫查系统通过通话装置、力矩传感器、显示屏、振动模块,形成医生远程控制从端扫查机器人进行超声扫查时的听觉、力觉的临场感。
(6)本发明的远程超声扫查系统通过对人体表面的深度图像、人体三维模型、从端扫查机器人的整体视频、机械臂的位置姿态视频的显示,便于医生观察从端扫查机器人的整体情况、机械臂的位置姿态、人体表面的起伏,人体扫查部位的具体情况,形成医生进行远程超声扫查时的视觉临场感。
(7)本发明从端扫查机器人的关节设有力矩传感器,有利于实现关节力控和全流程柔顺控制,保障病人的安全。
(8)本发明的机械臂的整个运动过程均为柔顺控制,能够最大限度保障病人的安全。
(9)本发明的手持装置利用在工作面上移动的速度信息和在空间中旋转的角速度信息,控制机械臂的末端执行器在水平面上的移动和空间中的姿态运动,即采用速度映射的方式,以确保从端扫查机器人的整个运动过程的连续性。本发明的手持装置利用按压力控制机械臂的末端执行器沿扫查面的法向移动,其中,采用变力连续映射方式,以确保超声探头与人体之间接触力的连续性。
附图说明
图1为本发明的一种便携式远程超声扫查系统的结构框图。
图2为本发明的一种便携式远程超声扫查系统的整体示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是 全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
由图1和图2所示,一种便携式远程超声扫查系统,包括主端设备和从端设备;其中,主端为远程控制的医生端,从端为超声扫查的病患端。
所述主端设备包括:手持装置1,与手持装置1相连接的主端计算机2。
所述从端设备包括:从端扫查机器人,从端超声设备,从端环境感知单元,以及分别与从端扫查机器人、从端超声设备、从端环境感知单元相连接的数据收发单元8。
所述手持装置1用于模拟超声探头4在空间中的姿态运动,医生手持手持装置1在任意工作面上移动,手持装置1通过光电式速度传感器获取其在工作面上移动的速度信息;医生手持手持装置1在空间中旋转,手持装置1通过姿态角速度传感器获取其在空间中旋转的角速度信息。
所述手持装置1将其运动的轨迹信息发送给主端计算机2,所述轨迹信息即为手持装置1在工作面上移动的速度信息和在空间中旋转的角速度信息。
所述手持装置1通过压力传感器获取获取其所受到的按压力,所述手持装置1还将其所受到的按压力发送给主端计算机2。
所述主端计算机2与数据收发单元8之间5G网络通信连接,主端计算机2将手持装置1的轨迹信息和按压力发送给数据收发单元8,数据收发单元8将手持装置1的轨迹信息和按压力发送给从端扫查机器人。
所述从端超声设备用于进行超声扫查,采集的超声影像,并将所采集的超声影像发送给数据收发单元8,数据收发单元8将超声影像发送给主端计算机2。
所述从端扫查机器人包括;机械臂31,用于控制机械臂31运动的控制器32。所述从端超声设备包括:设置于机械臂31末端上的超声探头4。所述控制器32与数据收发单元8相连接,接收手持装置1的轨迹信息和按压力。
所述控制器32根据手持装置1在工作面上移动的速度信息控制机械臂31的末端执行器在水平面上的移动,使得机械臂31末端上的超声探头4在水平面上的移动速度与手持装置1在工作面上的移动速度一致;控制器32根据手持装 置1在空间中旋转的角速度信息控制机械臂31的末端执行器在空间中的姿态运动,使得机械臂31末端上的超声探头4在空间中的转动角速度与手持装置1在空间中的转动角速度一致;手持装置1通过压力传感器获取获取手持装置1按压力,控制器32根据手持装置1的按压力控制机械臂31的末端执行器沿扫查面的法向移动,使得机械臂31末端上的超声探头4与人体扫查部位之间的接触力,即超声探头4的实际接触力,与手持装置1的按压力一致。
其中,扫查面是指从端扫查机器人末端上的超声探头在人体扫查部位上进行扫查时的扫查面,扫查面的法向即为垂直于扫查面的方向。
所述控制器32将超声探头4的实际接触力发送给数据收发单元8,数据收发单元8将超声探头4的实际接触力发送给主端计算机2。
所述数据收发单元8包括:用于与从端扫查机器人进行数据传输的机器人数据接口,用于与从端超声设备进行数据传输的超声数据接口。
本发明中,所述手持装置1为仿型超声探头,采用一体化设计,包括:壳体,设置于壳体上的速度采集模块、角速度采集模块、力采集模块、振动模块、显示屏、数据处理模块、按压模块。
所述速度采集模块采用光电式速度传感器,设置于壳体中;所述壳体上开设有速度检测窗口,速度采集模块的光电检测端与速度检测窗口对齐,通过速度检测窗口进行光电检测,获取手持装置在工作面上移动的速度信息。
本发明的手持装置可以在任意工作面上进行操作,例如桌面、人体皮肤模型表面或人体表面等,不需要触摸台等其他辅助设备,直接通过手持装置内部的光电式速度传感器获取其在工作面上移动的速度信息,利用该速度信息即可实现对机械臂的末端执行器在水平面上的移动控制。
所述角速度采集模块采用姿态角速度传感器,设置于壳体中,用于获取手持装置在空间中旋转的角速度信息,即获取手持装置在空间中绕x、y、z三个轴旋转的角速度信息;其中,x、y轴构成水平面,z轴为垂直于水平面的竖直方向,手持装置在工作面移动的速度信息即包括在x轴上的速度信息和在y轴上的速度信息。
所述力采集模块即压力传感器与按压模块相连接,用于采集按压模块的外表面即手持装置的按压面所受到的按压力,获取手持装置的按压力。
所述速度采集模块、角速度采集模块、力采集模块均与数据处理模块相连接,分别将手持装置在工作面上移动的速度信息和在空间中旋转的角速度信息,以及手持装置的按压力发送给数据处理模块。
所述数据处理模块与主端计算机2相连接,通过主端计算机2和数据收发单元8向从端扫查机器人的控制器32发送手持装置1在工作面上移动的速度信息和在空间中旋转的角速度信息,以及手持装置1的按压力。
所述主端计算机2还将超声探头4的实际接触力实时发送给数据处理模块。
所述数据处理模块与显示屏相连接,将手持装置的按压力和超声探头的实际接触力以及二者差值发送至显示屏,并在显示屏上进行显示。本发明中,显示屏的对手持装置的按压力和超声探头的实际接触力以及二者差值的实时显示,使得医生能够更加清晰直观的观察,从而知晓超声探头的实际接触力对手持装置的按压力的跟踪误差,得到力的反馈,便于医生及时调节手持装置1的按压力。
所述数据处理模块与振动模块,将手持装置的按压力和超声探头的实际接触力之间的差值发送给振动模块;所述振动模块用于根据二者差值的大小产生振动,若该差值大于设定阈值,则振动模块产生振动,且该差值越大,振动强度越大。本发明中,振动模块根据二者差值的大小产生不同强度的振动,形成力觉反馈,便于医生及时调节手持装置1的按压力。
本发明中,所述从端扫查机器人的机械臂机构3包括:机械臂31,用于控制机械臂31运动的控制器32,设置于机械臂31末端的夹持机构33,设置于机械臂31末端的深度相机34,设置于机械臂31上的力矩传感器35。
所述机械臂31为多关节柔性机械臂。
所述控制器32与数据收发单元8相连接,控制器32通过数据收发单元8接收主端计算机2所发送的手持装置1的轨迹信息和按压力。
所述控制器32用于根据手持装置1的轨迹信息和按压力,控制机械臂31 的末端执行器在水平面上的移动,在空间中的姿态运动,以及在扫查面的法向上的移动。
所述力矩传感器35用于获取机械臂31的关节力矩,所述控制器32与力矩传感器35相连接,根据力矩传感器35所获取的机械臂31的关节力矩,计算机械臂31末端上的超声探头4与人体扫查部位之间的接触力,即超声探头4的实际接触力。
本发明中,通过力矩传感器35,获取准确的关节力矩,从而得到机械臂末端上的超声探头与人体扫查部位之间的接触力,有利于精确控制超声探头与人体扫查部位之间的接触力。本发明从端扫查机器人的关节设有力矩传感器,还有利于实现关节力控和全流程柔顺控制,保障病人的安全。
所述控制器32还与夹持机构33相连接,用于控制夹持机构33的夹持和松开。控制器32中设定有超声探头4的夹持和松开的控制程序,通过主端计算机2和数据收发单元8向控制器32发送夹持或松开的控制命令,控制器32根据控制命令控制夹持机构33的夹持或松开,从而实现医生远程控制夹持机构33对超声探头4的夹持、更换,以及自动涂抹耦合剂。
所述深度相机34设置于机械臂31的末端,用于获取深度图像。所述深度相机34与控制器32相连接,将深度图像发送给控制器32,控制器32通过数据收发单元8将深度图像发送给主端计算机2。
本发明中,主端计算机2根据深度图像进行三维重建,得到三维模型;主端计算机2对三维模型进行显示,便于医生观察;主端计算机2可以根据该三维模型,设置运动轨迹,并通过数据收发单元8将运动轨迹发送控制器32,控制器32控制机械臂31的末端执行器按照该运动轨迹进行运动,保证机械臂能够在避免碰撞的情况下,使得其末端上的超声探头到达设定位置,如达到人体表面的上方的设定位置,便于医生进一步观察和操作,机械臂31末端的初始位置位于人体表面的上方,但与人体表面之间的距离较大,或者,机械臂31末端的初始位置位于人体表面的侧边,因此,可根据深度图像,将机械臂31末端从初始位置移动至人体表面的上方的设定位置,便于医生进一步观察和操作。
所述深度相机34还可以获取人体表面的深度图像,并通过数据收发单元8将人体表面的深度图像发送给主端计算机2。
主端计算机2根据人体表面的深度图像进行人体三维建模,得到人体三维模型;主端计算机2对人体三维模型进行显示,便于医生观察人体表面的起伏;主端计算机2可以根据该人体三维模型,设置人体扫查部位的超声扫查初始位置,利用人体三维模型和路径规划算法生成机械臂从当前位置到达超声扫查初始位置的无碰撞路径,并通过数据收发单元8将该无碰撞路径发送控制器32;控制器32控制机械臂31的末端执行器按照该无碰撞路径进行运动,使得机械臂31末端上的超声探头4自动到达该超声扫查初始位置。例如,在非扫查阶段,自动识别胃、胸等部位,设置人体扫查部位的超声扫查初始位置,利用人体三维模型和路径规划算法生成机械臂从当前位置到达超声扫查初始位置的无碰撞路径,当医生选择设置机械臂末端去到指定部位的上方位置即超声扫查初始位置时,控制器32控制机械臂31使得末端执行器按照对应的无碰撞路径进行运动,使得机械臂31末端上的超声探头4自动到达医生指定的部位,方便医生扫查操作。
从端扫查机器人的机械臂31在上电启动后,整个运动过程包括:非超声扫查过程和超声扫查过程。其中,非超声扫查过程是指:控制器32控制机械臂31运动使得超声探头4到达人体扫查部位的过程,非超声扫查过程中,超声探头4与人体扫查部位之间不接触,超声探头4的实际接触力为0。超声扫查过程是指:控制器32控制机械臂31运动使得超声探头4在人体扫查部位上进行超声扫查的过程,超声扫查过程中,超声探头4与人体扫查部位之间相接触,超声探头4的实际接触力大于0。
本发明的便携式远程超声扫查系统,机械臂31的整个运动过程均为柔顺控制;所述柔顺控制是指利用一定的控制策略主动控制机械臂31,使机械臂31在与外部环境接触时能够对外部作用力产生顺从,安全超声扫查柔顺控制方法如下所示:
非超声扫查过程中机械臂31的运动采用阻抗控制,即机械臂31的末端执 行器在水平面上和在扫查面的法向上的移动均为阻抗控制,且在水平面上的阻抗和在扫查面的法向上的阻抗不同。超声扫查过程中机械臂31的运动采用阻抗与恒力的混合控制,即机械臂31的末端执行器在水平面上的移动为阻抗控制,在扫查面的法向上的移动为恒力控制。
超声扫查过程中,机械臂31的末端执行器在扫查面的法向上恒力控制的期望力值为手持装置1的按压力映射得到,可以通过两种映射方式实现恒力控制的期望力值映射,该两种映射方式分别为:变力分段映射方式、变力连续映射方式;该两种映射方式在实际操作过程中可进行切换。
所述变力分段映射是指:将手持装置1的按压力分区间段映射给控制器32,控制器32控制机械臂31运动带动超声探头4在人体扫查部位上进行超声扫查,若手持装置1的按压力位于某个区间段内时,则恒力控制的期望力值不发生变化,期望力值为该区间段内的某个值;若手持装置1的按压力所在的区间段发生变化时,则恒力控制的期望力值发生对应的变化,期望力值为变化后的所在区间段内的某个值。所述变力连续映射是指:将手持装置1的按压力直接映射给控制器32,控制器32控制机械臂31运动带动超声探头4在人体扫查部位上进行超声扫查,恒力控制的期望力值跟随手持装置1的发生连续的变化。
本发明中,从端超声设备包括超声探头4和超声扫查主机5,所述超声探头4与超声扫查主机5相连接,所述超声扫查主机5与数据收发单元8相连接。
所述超声探头4用于进行超声扫查,采集超声影像;超声探头4将所采集超声影像发送给超声扫查主机5,超声扫查主机5通过数据收发单元8将超声影像发送给主端计算机2,所述主端计算机2对超声探头4所采集的超声影像进行实时显示。
所述主端计算机2还用于设置超声扫查主机5的扫查参数;所述主端计算机2将该扫查参数通过数据收发单元8发送给超声扫查主机5;所述扫查参数是指超声扫查主机5的进行超声扫查时的相关控制参数;所述超声扫查主机5基于主端计算机2所发送的扫查参数控制超声探头4的超声扫查。
所述从端环境感知单元包括:全局相机7、通话装置6;
所述全局相机7用于获取从端即超声扫查的病患端的现场视频,包括从端扫查机器人的整体视频和机械臂31的位置姿态视频。所述全局相机7与数据收发单元8,全局相机7将从端扫查机器人的整体视频和机械臂31的位置姿态视频发送给数据收发单元8,数据收发单元8通过5G网络将从端扫查机器人的整体视频和机械臂31的位置姿态视频发送给主端计算机2,主端计算机2对从端扫查机器人的整体视频和机械臂31的位置姿态视频进行实时显示。
所述通话装置6与主端计算机2相连接,用于实现医生与病患之间的实时通话;所述通话装置6包括麦克风、扬声器。
本发明中,通过对人体表面的深度图像、人体三维模型、从端扫查机器人的整体视频、机械臂31的位置姿态视频的显示,便于医生观察从端扫查机器人的整体情况、机械臂31的位置姿态、人体表面的起伏,人体扫查部位的具体情况,形成医生进行远程超声扫查时的视觉临场感。
本发明中,通过通话装置6、力矩传感器35、振动模块,形成医生远程控制从端扫查机器人进行超声扫查时的听觉、力觉的临场感。
本发明中,主端设备与从端设备之间采用5G网络通信,主端设备和从端设备均通过5G通信装置将待传输的数据发送给对应的基站,再由基站上传给云服务器,主端设备和从端设备均通过5G通信装置和对应的基站从云服务器获取待接收的数据。
以上仅为本发明创造的较佳实施例而已,并不用以限制本发明创造,凡在本发明创造的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明创造的保护范围之内。

Claims (10)

  1. 一种便携式远程超声扫查系统,其特征在于,包括主端设备、从端设备;
    所述主端设备包括:手持装置(1),与手持装置(1)相连接的主端计算机(2);
    所述从端设备包括:从端扫查机器人,从端超声设备,分别与从端扫查机器人和从端超声设备相连接的数据收发单元(8);
    所述手持装置(1)将其运动的轨迹信息发送给主端计算机(2);所述手持装置(1)还将其所受到的按压力发送给主端计算机(2);其中,手持装置(1)的轨迹信息包括:手持装置(1)在任意工作面上移动的速度信息和在空间中旋转的角速度信息;
    所述主端计算机(2)与数据收发单元(8)之间通信连接,主端计算机(2)将手持装置(1)的轨迹信息和按压力发送给数据收发单元(8);
    所述从端超声设备用于进行超声扫查,采集的超声影像,并将所采集的超声影像发送给数据收发单元(8),数据收发单元(8)将超声影像发送给主端计算机(2);
    所述从端超声设备包括:超声探头(4);
    所述从端扫查机器人包括;机械臂(31),用于控制机械臂(31)运动的控制器(32);
    所述超声探头(4)设置于机械臂(31)的末端;
    所述数据收发单元(8)将手持装置(1)的轨迹信息和按压力发送给控制器(32);
    控制器(32)根据手持装置(1)在工作面上移动的速度信息控制机械臂(31)的末端执行器在水平面上的移动,使得机械臂(31)末端上的超声探头(4)在水平面上的移动速度与手持装置(1)在工作面上的移动速度一致;
    控制器(32)根据手持装置(1)在空间中旋转的角速度信息控制机械臂(31)的末端执行器在空间中的姿态运动,使得机械臂(31)末端上的超声探头(4)在空间中的转动速度与手持装置(1)在空间中的转动速度一致;
    控制器(32)根据手持装置(1)的按压力控制机械臂(31)的末端执行器 沿扫查面的法向移动,使得机械臂(31)末端上的超声探头(4)与人体扫查部位之间的接触力,即超声探头(4)的实际接触力与手持装置(1)的按压力一致;
    所述机械臂(31)的整个运动过程均为柔顺控制。
  2. 根据权利要求1所述的一种便携式远程超声扫查系统,其特征在于,所述机械臂(31)末端上设有深度相机(34),用于获取深度图像;所述深度相机(34)与控制器(32)相连接,将深度图像发送给控制器(32),控制器通过数据收发单元(8)将深度图像发送给主端计算机(2)。
  3. 根据权利要求2所述的一种便携式远程超声扫查系统,其特征在于,深度相机获取(34)人体表面的深度图像,所述主端计算机(2)根据人体表面的深度图像进行人体三维建模,得到人体三维模型;所述主端计算机(2)根据该人体三维模型,识别人体扫查部位,设置人体扫查部位的超声扫查初始位置,利用人体三维模型和路径规划算法生成机械臂从当前位置到达超声扫查初始位置的无碰撞路径,并通过数据收发单元(8)将该无碰撞路径发送控制器(32);控制器(32)控制机械臂(31)的末端执行器按照该无碰撞路径进行运动,使得机械臂(31)末端上的超声探头(4)自动到达该超声扫查初始位置。
  4. 根据权利要求1所述的一种便携式远程超声扫查系统,其特征在于,手持装置(1)通过光电式速度传感器获取手持装置(1)在工作面上移动的速度信息,通过速度映射的方式,控制机械臂(31)的末端执行器在水平面上的移动。
  5. 根据权利要求1所述的一种便携式远程超声扫查系统,其特征在于,所述数据收发单元(8)包括:用于与从端扫查机器人进行数据传输的机器人数据接口,用于与从端超声设备进行数据传输的超声数据接口。
  6. 根据权利要求1所述的一种便携式远程超声扫查系统,其特征在于,所述控制器(32)将超声探头(4)的实际接触力发送给数据收发单元(8),所述数据收发单元(8)将超声探头(4)的实际接触力发送给主端计算机(2);所述主端计算机(2)将超声探头(4)的实际接触力发送给手持装置(1);
    所述手持装置(1)上设有显示屏,用于实时显示超声探头(4)的实际接触力和手持装置(1)的按压力,以及实时显示超声探头(4)的实际接触力和手持装置(1)的按压力之间的差值;
    所述手持装置(1)中还设有振动模块,所述振动模块用于根据超声探头(4)的实际接触力和手持装置(1)的按压力之间差值的大小,产生振动;若该差值大于设定阈值,则振动模块产生振动,且该差值越大,振动强度越大。
  7. 根据权利要求1所述的一种便携式远程超声扫查系统,其特征在于,从端设备还包括:从端环境感知单元;
    所述从端环境感知单元包括全局相机(7)和通话装置(6);
    所述全局相机(7)用于获取从端扫查机器人的整体视频和机械臂(31)的位置姿态视频;所述全局相机(7)与数据收发单元(8)相连接,全局相机(7)通过数据收发单元(8)将从端扫查机器人的整体视频和机械臂(31)的位置姿态视频发送给发送给主端计算机(2),并在主端计算机(2)上进行实时显示;
    所述通话装置(6)用于实现医生与病患之间的实时通话。
  8. 根据权利要求1所述的一种便携式远程超声扫查系统,其特征在于,所述机械臂(31)上设有用于获取关节力矩的力矩传感器(35),所述控制器(32)与力矩传感器(35)相连接,根据力矩传感器(35)所获取的机械臂(31)的关节力矩,计算机械臂(31)末端上的超声探头(4)与人体扫查部位之间的接触力,即超声探头(4)的实际接触力。
  9. 一种应用于权利要求1所述的便携式远程超声扫查系统的安全超声扫查柔顺控制方法,其特征在于,机械臂(31)的整个运动过程均为柔顺控制,具体方式如下所示:
    非超声扫查过程中,机械臂(31)的运动采用阻抗控制,即,机械臂(31)的末端执行器在水平面上的移动和在扫查面的法向上的移动均为阻抗控制;所述非超声扫查过程是指:控制器(32)控制机械臂(31)运动使得超声探头(4)到达人体扫查部位的过程;在非超声扫查过程中,超声探头(4)与人体扫查部位之间的接触力,即超声探头(4)的实际接触力为0;
    超声扫查过程中,机械臂(31)的运动采用阻抗与恒力的混合控制,即,机械臂(31)的末端执行器在水平面上的移动为阻抗控制,在扫查面的法向上的移动为恒力控制;所述超声扫查过程是指:控制器(32)控制机械臂(31)运动使得超声探头(4)在人体扫查部位上进行超声扫查的过程;在超声扫查过程中,超声探头(4)与人体扫查部位之间的接触力,即超声探头(4)的实际接触力大于0。
  10. 根据权利要求9所述的一种安全超声扫查柔顺控制方法,其特征在于,超声扫查过程中,采用变力分段映射或变力连续映射的方式,将手持装置(1)的按压力映射为恒力控制的期望力值,且超声探头(4)与人体扫查部位之间的接触力跟随该期望力值;
    所述变力分段映射是指:将手持装置(1)的按压力分区间段映射给控制器(32),控制器(32)控制机械臂(31)运动带动超声探头(4)在人体扫查部位上进行超声扫查,若手持装置(1)的按压力位于某个区间段内时,则恒力控制的期望力值不发生变化,且期望力值为该区间段内的某个值;若手持装置(1)的按压力所在的区间段发生变化时,则恒力控制的期望力值发生对应的变化,且期望力值为变化后的所在区间段内的某个值;
    所述变力连续映射是指:将手持装置(1)的按压力按比例连续映射给控制器(32),控制器(32)控制机械臂(31)运动带动超声探头(4)在人体扫查部位上进行超声扫查,恒力控制的期望力值跟随手持装置(1)的发生连续的变化。
PCT/CN2022/117694 2021-10-14 2022-09-08 便携式远程超声扫查系统与安全超声扫查柔顺控制方法 WO2023061113A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22880056.1A EP4306057A1 (en) 2021-10-14 2022-09-08 Portable remote ultrasound scanning system and compliance control method for safe ultrasound scanning
US18/425,261 US20240164759A1 (en) 2021-10-14 2024-01-29 Portable remote ultrasound scanning systems and compliance control methods for safe ultrasound scanning

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111199054.1 2021-10-14
CN202111199054.1A CN113842165B (zh) 2021-10-14 2021-10-14 便携式远程超声扫查系统与安全超声扫查柔顺控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/425,261 Continuation-In-Part US20240164759A1 (en) 2021-10-14 2024-01-29 Portable remote ultrasound scanning systems and compliance control methods for safe ultrasound scanning

Publications (1)

Publication Number Publication Date
WO2023061113A1 true WO2023061113A1 (zh) 2023-04-20

Family

ID=78978443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117694 WO2023061113A1 (zh) 2021-10-14 2022-09-08 便携式远程超声扫查系统与安全超声扫查柔顺控制方法

Country Status (4)

Country Link
US (1) US20240164759A1 (zh)
EP (1) EP4306057A1 (zh)
CN (1) CN113842165B (zh)
WO (1) WO2023061113A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113842165B (zh) * 2021-10-14 2022-12-30 合肥合滨智能机器人有限公司 便携式远程超声扫查系统与安全超声扫查柔顺控制方法
WO2023123255A1 (zh) * 2021-12-30 2023-07-06 西门子(中国)有限公司 一种机器人的远程控制方法及装置
CN114425130B (zh) * 2022-02-23 2022-09-02 湖南省万卓医疗器械有限公司 一种自动化的移动超声治疗系统
CN114848019A (zh) * 2022-04-19 2022-08-05 山东大学 基于柔性协作机器人的自动心脏超声检测系统及方法
CN114789445B (zh) * 2022-05-25 2023-07-07 广东轻工职业技术学院 一种应用于远程心脏彩超机器人的操作手系统及方法
CN115998331B (zh) * 2023-02-21 2023-08-01 汕头市超声仪器研究所股份有限公司 一种用于远程超声诊断的探头控制系统及控制方法
CN117481682B (zh) * 2023-09-12 2024-04-09 中山大学 彩超探头的遥控方法和装置、系统、电子设备及介质

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6425865B1 (en) * 1998-06-12 2002-07-30 The University Of British Columbia Robotically assisted medical ultrasound
CN103829973A (zh) * 2014-01-16 2014-06-04 华南理工大学 一种远程控制的超声探头扫描系统及其方法
US20150366546A1 (en) * 2014-06-18 2015-12-24 Siemens Medical Solutions Usa, Inc. System and method for real-time ultrasound guided prostate needle biopsies using a compliant robotic arm
CN209004045U (zh) * 2018-08-24 2019-06-21 深圳华大智造科技有限公司 医生端控制台和远程超声检测系统
CN109998590A (zh) 2019-04-15 2019-07-12 深圳华大智造科技有限公司 远程超声操作系统及远程超声操作系统的控制方法
CN110755110A (zh) * 2019-11-20 2020-02-07 浙江伽奈维医疗科技有限公司 一种基于机械臂单元的三维超声扫查装置及方法
CN110993087A (zh) 2019-11-06 2020-04-10 上海交通大学 一种远程超声扫描操纵设备及方法
CN108994861B (zh) 2018-06-14 2021-01-05 昆山华大智造云影医疗科技有限公司 远程超声操作手装置及远程超声检测系统
CN112206006A (zh) * 2020-09-27 2021-01-12 上海交通大学 自主评估甲状腺结节良恶性的智能辅助识别设备及方法
CN112274178A (zh) * 2020-11-24 2021-01-29 武汉库柏特科技有限公司 一种基于遥操作的机器人超声诊断装置及方法
CN112754517A (zh) * 2020-12-30 2021-05-07 中国科学院长春光学精密机械与物理研究所 一种超声检测装置、超声检测方法、超声系统
CN113842165A (zh) * 2021-10-14 2021-12-28 合肥合滨智能机器人有限公司 便携式远程超声扫查系统与安全超声扫查柔顺控制方法
CN114449971A (zh) * 2019-09-26 2022-05-06 奥瑞斯健康公司 使用对象模型来避免碰撞的系统和方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2104455A2 (en) * 2006-09-25 2009-09-30 Koninklijke Philips Electronics N.V. Haptic feedback medical scanning methods and systems
JP5105450B2 (ja) * 2010-03-15 2012-12-26 学校法人立命館 マスタスレーブシステム及びその制御方法
US20170143303A1 (en) * 2015-11-20 2017-05-25 General Electric Company Automated ultrasound knee scanner
US20170252002A1 (en) * 2016-03-07 2017-09-07 Toshiba Medical Systems Corporation Ultrasonic diagnostic apparatus and ultrasonic diagnosis support apparatus
CN112288742B (zh) * 2019-12-31 2021-11-19 无锡祥生医疗科技股份有限公司 用于超声探头的导航方法、装置、存储介质以及电子设备
CN112998749B (zh) * 2021-02-18 2023-06-02 江苏省人民医院(南京医科大学第一附属医院) 一种基于视觉伺服的自动超声检查系统

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6425865B1 (en) * 1998-06-12 2002-07-30 The University Of British Columbia Robotically assisted medical ultrasound
CN103829973A (zh) * 2014-01-16 2014-06-04 华南理工大学 一种远程控制的超声探头扫描系统及其方法
US20150366546A1 (en) * 2014-06-18 2015-12-24 Siemens Medical Solutions Usa, Inc. System and method for real-time ultrasound guided prostate needle biopsies using a compliant robotic arm
CN108994861B (zh) 2018-06-14 2021-01-05 昆山华大智造云影医疗科技有限公司 远程超声操作手装置及远程超声检测系统
CN209004045U (zh) * 2018-08-24 2019-06-21 深圳华大智造科技有限公司 医生端控制台和远程超声检测系统
CN109998590A (zh) 2019-04-15 2019-07-12 深圳华大智造科技有限公司 远程超声操作系统及远程超声操作系统的控制方法
CN114449971A (zh) * 2019-09-26 2022-05-06 奥瑞斯健康公司 使用对象模型来避免碰撞的系统和方法
CN110993087A (zh) 2019-11-06 2020-04-10 上海交通大学 一种远程超声扫描操纵设备及方法
CN110755110A (zh) * 2019-11-20 2020-02-07 浙江伽奈维医疗科技有限公司 一种基于机械臂单元的三维超声扫查装置及方法
CN112206006A (zh) * 2020-09-27 2021-01-12 上海交通大学 自主评估甲状腺结节良恶性的智能辅助识别设备及方法
CN112274178A (zh) * 2020-11-24 2021-01-29 武汉库柏特科技有限公司 一种基于遥操作的机器人超声诊断装置及方法
CN112754517A (zh) * 2020-12-30 2021-05-07 中国科学院长春光学精密机械与物理研究所 一种超声检测装置、超声检测方法、超声系统
CN113842165A (zh) * 2021-10-14 2021-12-28 合肥合滨智能机器人有限公司 便携式远程超声扫查系统与安全超声扫查柔顺控制方法

Also Published As

Publication number Publication date
EP4306057A1 (en) 2024-01-17
CN113842165A (zh) 2021-12-28
CN113842165B (zh) 2022-12-30
US20240164759A1 (en) 2024-05-23

Similar Documents

Publication Publication Date Title
WO2023061113A1 (zh) 便携式远程超声扫查系统与安全超声扫查柔顺控制方法
CN105411681B (zh) 分体式微创手术机器人的手眼协调控制系统及方法
WO2021023315A1 (zh) 一种基于人眼凝视点的手眼协调抓取方法
CN110993087A (zh) 一种远程超声扫描操纵设备及方法
CN112568998A (zh) 一种远程主从交互式医疗系统及方法
JP2009119579A (ja) 情報処理装置、情報処理方法
WO2023061112A1 (zh) 一种用于远程超声检查的便携式遥操作手持装置
CN114788735A (zh) 具有主端力反馈的远程交互式超声引导穿刺系统及方法
Tan et al. A flexible and fully autonomous breast ultrasound scanning system
CN113499094B (zh) 一种依靠视觉及力反馈引导的心脏彩超检查装置和方法
CN111702787B (zh) 人机协作控制系统及控制方法
JP2022519307A (ja) ロボット手術システム用のハンドアイ協働システム
US20230157666A1 (en) System for robot-assisted ultrasound scanning
WO2023000085A1 (en) System and apparatus for remote interaction with an object
US11648075B2 (en) Robotic surgical system control arm including dual encoders
CN113180738A (zh) 一种用于远程心脏超声的虚拟探头及诊疗系统
Zhou et al. Real-time interaction of a 7-DOF robot for teleoperated ultrasonic scanning
US20240173018A1 (en) System and apparatus for remote interaction with an object
CN215078870U (zh) 一种远程超声检测装置
KR20160020140A (ko) 3차원 스캐너용 제어 장치
CN214805207U (zh) 一种远程交互式超声引导穿刺系统
US20230218270A1 (en) System and apparatus for remote interaction with an object
DK180880B1 (en) Robotic system for performing an ultrasound scan
CN115869009B (zh) 一种远程超声诊断系统及交互控制方法
CN217219055U (zh) 远程操作手及远程超声系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880056

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022880056

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022880056

Country of ref document: EP

Effective date: 20231009