WO2023061015A1 - 一种磁流变抗冲击装置集群控制方法及系统 - Google Patents

一种磁流变抗冲击装置集群控制方法及系统 Download PDF

Info

Publication number
WO2023061015A1
WO2023061015A1 PCT/CN2022/111381 CN2022111381W WO2023061015A1 WO 2023061015 A1 WO2023061015 A1 WO 2023061015A1 CN 2022111381 W CN2022111381 W CN 2022111381W WO 2023061015 A1 WO2023061015 A1 WO 2023061015A1
Authority
WO
WIPO (PCT)
Prior art keywords
shock
impact
magnetorheological
magneto
rheological
Prior art date
Application number
PCT/CN2022/111381
Other languages
English (en)
French (fr)
Inventor
王成龙
王雪亭
张继伟
陈萌
曾庆良
尚欢
王成乐
赵潇楚
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Publication of WO2023061015A1 publication Critical patent/WO2023061015A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the invention belongs to the technical field of buffering, and in particular relates to a cluster control method and system for magnetorheological anti-shock devices.
  • rock burst refers to the dynamic phenomenon of sudden and violent destruction due to the instantaneous release of elastic deformation energy of the rock mass around the shaft or working face, often accompanied by coal and rock throwing, loud noise and air waves.
  • Coal mine rock burst is not only harmful and has a wide range of influences, but also is the root cause of other major accidents in coal mines. For example, the occurrence of rock burst may induce major disasters such as abnormal gas gushing and gas explosion.
  • a cluster control method for a magnetorheological anti-shock device comprising:
  • the corresponding number of magneto-rheological anti-shock devices are controlled to reduce their own damping force to make way.
  • analog and digital signals include dynamic data of the acceleration ⁇ , velocity v, pressure P in the hydraulic cylinder chamber and current I of the anti-shock device.
  • the first fuzzy control algorithm method for generating the synergistic effect of the magneto-rheological anti-shock device includes: fuzzifying the obtained analog and digital signals using a triangle membership function, and re-processing the fuzzified data Carry out fuzzy reasoning through preset fuzzy rules, and then defuzzify the data after fuzzy reasoning through the ordinary weighted average method, and finally use the data after defuzzification to determine the number of magnetorheological anti-shock devices that cooperate.
  • the preset fuzzy rules It is a rule determined empirically after several field tests.
  • the preset impact force threshold is ⁇ times the rated working pressure of the anti-shock hydraulic support, and the value of ⁇ is selected from five values of 1.2, 1.25, 1.3, 1.35, and 1.4 according to actual working conditions.
  • the anti-shock method of the magnetorheological anti-shock device includes:
  • the signal acquisition module collects the analog and digital signals uploaded by the anti-shock hydraulic support magnetorheological anti-shock device on site and uploads them to the DSP control module.
  • the DSP control module receives and generates PWM waveforms through the second fuzzy control algorithm based on the acquired signals;
  • the DSP control module sends the generated PWM waveform to the current drive module, and the current drive module receives and generates the corresponding current based on the PWM waveform;
  • the current drive module sends the generated current to the magnetorheological actuator, and the magnetorheological actuator receives and generates a corresponding damping force based on the magnitude of the current.
  • the current drive module feeds back part of the current to the signal acquisition module to form negative feedback with real-time adjustable damping force.
  • control detection module obtains various data processed by the DSP control module in real time and sends them to the communication module in real time, and the control detection module receives the input signal fed back by the communication module in real time, and sends the input signal to the DSP control module for parameter modification and communication. control.
  • a cluster control system for a magnetorheological shock-resistant device including a cluster controller, a comprehensive information analysis and processing system, and a plurality of magnetorheological shock-resistant devices, the cluster controller and the comprehensive information analysis and processing system have one-way data transmission, and the The cluster controller and the comprehensive information analysis and processing system communicate with each magneto-rheological anti-shock device through two-way data transmission through the communication module.
  • the comprehensive information analysis and processing system includes a data integrator for centralized data collection and a computer for analyzing and processing the collected data, and the data integrator and the computer have one-way data transmission.
  • a computer-readable storage medium stores a computer program on it, and when the program is executed by a processor, a method for cluster control of a magneto-rheological shock-resistant device is realized.
  • control detection module By setting up the control detection module, it can automatically carry out collaborative control and task assignment to the individuals in the group control according to the status in the monitoring process, and the operator can centrally control the group control individuals through the computer;
  • the cluster control system is set at the confluence connection of all anti-shock devices, and is connected with the magneto-rheological anti-shock device through a communication module.
  • the structure is simple and effective.
  • Fig. 1 is a schematic diagram of a cluster control system of a magnetorheological anti-shock device in a specific embodiment of the present invention
  • Fig. 2 is the first fuzzy control algorithm flowchart schematic diagram in the specific embodiment of the present invention.
  • Fig. 3 is a schematic diagram of the control system of a single magnetorheological anti-shock device in a specific embodiment of the present invention.
  • a cluster control method for a magnetorheological anti-shock device comprising:
  • the corresponding number of magneto-rheological anti-shock devices are controlled to reduce their own damping force to make way.
  • analog and digital signals include dynamic data of speed, acceleration, pressure and current.
  • the first fuzzy control algorithm method for generating the synergistic effect of the magneto-rheological anti-shock device includes: fuzzifying the obtained analog and digital signals using a triangle membership function, and re-processing the fuzzified data Carry out fuzzy reasoning through preset fuzzy rules, and then defuzzify the data after fuzzy reasoning through the ordinary weighted average method, and finally use the data after defuzzification to determine the number of magnetorheological anti-shock devices that cooperate.
  • the preset fuzzy rules It is a rule determined empirically after several field tests.
  • the preset impact force threshold is ⁇ times the rated working pressure of the anti-shock hydraulic support, and the value of ⁇ is selected from five values of 1.2, 1.25, 1.3, 1.35, and 1.4 according to actual working conditions.
  • the anti-shock method of the magnetorheological anti-shock device includes:
  • the signal acquisition module collects the analog and digital signals uploaded by the anti-shock hydraulic support magnetorheological anti-shock device on site and uploads them to the DSP control module.
  • the DSP control module receives and generates PWM waveforms through the second fuzzy control algorithm based on the acquired signals;
  • the DSP control module sends the generated PWM waveform to the current drive module, and the current drive module receives and generates the corresponding current based on the PWM waveform;
  • the current drive module sends the generated current to the magnetorheological actuator, and the magnetorheological actuator receives and generates a corresponding damping force based on the magnitude of the current.
  • the current drive module feeds back part of the current to the signal acquisition module to form negative feedback with real-time adjustable damping force.
  • control detection module obtains various data processed by the DSP control module in real time and sends them to the communication module in real time, and the control detection module receives the input signal fed back by the communication module in real time, and sends the input signal to the DSP control module for parameter modification and communication. control.
  • the control system of a single magnetorheological anti-shock device includes a power supply module, a signal acquisition module, a DSP control module, a current drive module, a control monitoring module, and a communication module.
  • the modules are connected sequentially through signal lines, and the current drive module provides feedback current for the signal acquisition module, the control monitoring module is connected with the DSP control module through cables, and transmits data with the communication module through wireless Bluetooth transmission.
  • the signal acquisition module is used to collect various dynamic data such as acceleration ⁇ , velocity v, pressure P in the hydraulic cylinder cavity, and current I of the magneto-rheological anti-shock device of the hydraulic support when an impact occurs.
  • the data is a multi-channel simulation Quantity, digital signal, and the signal is amplified, filtered and then sent to the control detection module.
  • the signal amplification and filtering process is a conventional technical means in the field, and will not be described in detail here.
  • the DSP control module analyzes and processes the signal after the signal acquisition module, and through the second fuzzy control algorithm, finally outputs a PWM waveform with a certain duty ratio, and the current drive module controls the current reaching the electromagnetic coil according to the PWM waveform input therein value, and feed back the current value to the signal acquisition module to form negative feedback, thereby realizing real-time adjustable damping force.
  • the control monitoring module performs real-time monitoring of various data entering the DSP control module, and first displays the data on the touch screen in the control monitoring module, and then transmits the data to the cluster control system through the communication module, that is, the connection between the control monitoring module and the DSP control module
  • the room also includes data input and output modules. Operators can not only modify and control parameters through the touch screen, but also modify and control parameters through the cluster control system to realize real-time monitoring and adjustment of data.
  • a cluster control system for a magnetorheological shock-resistant device including a cluster controller, a comprehensive information analysis and processing system, and a plurality of magnetorheological shock-resistant devices, the cluster controller and the comprehensive information analysis and processing system pass data unidirectionally through a wireless bluetooth module Transmission, the cluster controller and the comprehensive information analysis and processing system respectively communicate with each magneto-rheological anti-shock device through two-way data transmission with the communication module through cables.
  • the comprehensive information analysis and processing system includes a data integrator for centralized data collection and a computer for analyzing and processing the collected data, and the data integrator and the computer transmit data in one direction.
  • Multiple magnetorheological anti-shock devices are grouped as actuators, including communication modules, cluster controllers, and comprehensive information analysis and processing systems.
  • the comprehensive information analysis and processing systems include data integrators and computers.
  • the organization performs two-way data transmission, the cluster controller, the comprehensive information analysis and processing system and the communication module also perform two-way data transmission, and the cluster controller and the comprehensive information analysis and processing system perform one-way data transmission.
  • the cluster controller receives the signal-processed speed, acceleration, pressure, current and other dynamic data from the groups of magneto-rheological anti-shock devices through the communication module, and then adopts fuzzy Control algorithms and make intelligent decisions, and finally control the number of magneto-rheological anti-shock devices with specific coordinated actions.
  • the comprehensive information analysis and processing system includes a data integrator and a computer.
  • the data integrator receives the state parameters such as acceleration, acceleration, pressure, and current from each magneto-rheological shock resistance device through the communication module, and then analyzes and displays them on the computer, and Real-time monitoring of the operating status, and operations such as modifying parameters of the actuator can be performed remotely through the computer.
  • a computer-readable storage medium stores a computer program on it, and when the program is executed by a processor, a method for cluster control of a magneto-rheological shock-resistant device is realized.
  • a single magnetorheological anti-shock device collects and monitors the longitudinal acceleration ⁇ , velocity v, longitudinal force P and the feedback current I of the magnetorheological anti-shock device of the on-site anti-shock hydraulic support through the signal acquisition module;
  • the DSP control module receives the above data, filters and amplifies it, and generates PWM waveform through the second fuzzy control algorithm;
  • the current drive module generates corresponding current through PWM waveform control, and then controls the actuator to generate corresponding damping force.
  • the second fuzzy control The algorithm is to change two inputs into three inputs based on the first fuzzy control algorithm, and the output is still one output.
  • the control rule is determined according to the field test; the control monitoring module displays the above parameters on the touch screen and transmits them to the communication Module, in addition, parameters can be modified through commands passed in from the communication module.
  • the communication module receives and sends all the data and commands of the M anti-shock devices, and the communication module interacts with the cluster controller and the comprehensive information analysis and processing system; while the comprehensive information analysis and processing system receives the various states transmitted by the communication module
  • the parameters are displayed on the computer, and the operating status can be monitored in real time and the parameters can be modified. If there is an abnormality in a certain device, the precise positioning of the damaged device can be realized through real-time monitoring, and the impact process curve can be viewed to prevent impact. Ground pressure provides a basis.
  • the cluster controller receives the acceleration ⁇ , velocity v, pressure P and current I of the magneto-rheological anti-shock device of the anti-shock hydraulic support, and uses the first fuzzy control algorithm to intelligently decide and control the specific coordinated action.
  • the number of magnetorheological anti-shock devices has two specific action modes: one is that when the impact force exceeds the set threshold, the magnetorheological anti-shock device increases its own damping force to absorb more impact energy to resist the impact; Second, when the impact force is lower than the set threshold, the magneto-rheological anti-shock device reduces its own damping force to give way to achieve the give way effect.
  • the rated working pressure of the anti-shock hydraulic support is P1
  • the initial damping force provided by the magnetorheological anti-shock device is P2, P1 ⁇ P2.
  • the impact force when rock burst occurs is P, P>P1
  • the threshold set by the cluster controller is T
  • T is ⁇ times of P1
  • the value of ⁇ varies from 1.2, 1.25, 1.3, 1.35, 1.45 according to the actual working conditions Choose from values.
  • the cluster controller judges whether the impact force P at this time exceeds the set threshold T. If P>T, the No. 2 magneto-rheological anti-shock device is controlled to increase the damping force P3 to To resist impact, the impact process guarantees that P2 ⁇ P, so No.
  • the cluster controller controls No. 1, No. 3 or more devices to reduce the damping force while controlling No. 2 device , so that P>P3, at this time, these devices can give way to absorb energy to achieve the effect of multiple impact-resistant devices cooperating to protect the bracket.
  • the specific number of coordinated devices is realized by the first fuzzy control algorithm.
  • an alarm will be issued in the comprehensive information analysis and processing system and recorded in the memory, which is convenient for management personnel to check in time and trace back statistics in the later stage.
  • the above-mentioned first fuzzy control algorithm is shown in Figure 2.
  • the input of the fuzzy control is the longitudinal pressure deviation E and pressure deviation Ec of a certain anti-shock hydraulic support, and the output is the magnetorheological anti-shock device that cooperates near this device.
  • Quantity the fuzzy rules are determined based on experience after multiple tests on site, and the fuzzy rules can be modified in real time according to the experimental process to achieve the appropriate number of cooperative action devices. The process uses the ordinary weighted average method.
  • the whole workflow is that when a magneto-rheological anti-shock device receives an input signal, it performs fuzzy processing in the cluster controller, performs fuzzy reasoning through fuzzy rules, then performs defuzzification, and finally uses the data after defuzzification to determine the
  • the N devices cooperate to resist impact, and the control priority is that a device with a larger pressure deviation can control an adjacent device with a smaller pressure deviation.
  • the input variables are the longitudinal pressure deviation E and the pressure deviation change rate Ec of the anti-scouring hydraulic support
  • the output variables are the number of coordinated action devices.
  • T1 is the pressure limit value
  • the fuzzy universe of the pressure deviation E is [0, T2]
  • the values of P0, T1, T2 are determined according to the experiment.
  • Pressure deviation change rate Ec d(P-P1)/dt
  • its physical theoretical domain is [0, T3], where T3 is the pressure deviation rate when all magnetorheological anti-shock devices act in concert, and the number of coordinated action anti-shock devices
  • the physical theoretical domain is [0, T4], where T4 is the number of anti-shock devices.
  • the fuzzy theoretical domain is generally the same as the physical theoretical domain. The following content is analyzed according to four sets.
  • the second step is to determine the membership function. According to the fuzzy domain of E of the set pressure deviation, determine the membership function of E, as shown in Table 1.
  • the linguistic value in the first column of Table 1 is the linguistic variable of the pressure deviation E
  • the first row of Table 1 is the value of the fuzzy universe of the pressure deviation E, according to the fuzzy universe of the set pressure deviation change rate Ec,
  • the membership function to determine Ec is shown in Table 2.
  • the third step is to determine the fuzzy control rule table.
  • the fuzzy control rules are summarized by combining field control experience with expert knowledge.
  • the fuzzy control rules can be expressed by if...then..., if E is E i and Ec is Ec j then U is U ij .
  • the number of magneto-rheological anti-shock devices that cooperate can be obtained according to the input pressure deviation E and pressure deviation rate Ec.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Fluid-Damping Devices (AREA)
  • Feedback Control In General (AREA)

Abstract

一种磁流变抗冲击装置集群控制方法及系统,包括获取现场所有防冲液压支架磁流变抗冲击装置上传的模拟量和数字量信号,基于获取的所有信号通过第一模糊控制算法生成磁流变抗冲击装置协同作用的数量;当冲击地压的冲击力大于预设冲击力阈值时,控制对应数量的磁流变抗冲击装置增大自身阻尼力来吸收更多冲击能量以抵抗冲击;当冲击地压的冲击力小于预设冲击力阈值时,控制对应数量的磁流变抗冲击装置减小自身阻尼力来进行让位。方法解决现有抗冲击装置彼此之间独立工作、互不干扰的不足,使集群控制系统中的单个液压支架抗冲击装置能够通过与其他抗冲击装置的相互作用来实现复杂的协同抗冲击。

Description

一种磁流变抗冲击装置集群控制方法及系统 技术领域
本发明属于缓冲技术领域,具体地说涉及一种磁流变抗冲击装置集群控制方法及系统。
背景技术
随着煤炭资源开采深度和开采强度的增加,矿井冲击地压等动力灾害日益加剧,严重地威胁着煤矿开采的安全。冲击地压是指井巷或工作面周围岩体,由于弹性变形能的瞬时释放而产生突然剧烈破坏的动力现象,常伴有煤岩体抛出、巨响及气浪等现象。煤矿冲击地压不仅危害程度大、影响面广,而且是诱发其它煤矿重大事故的根源,例如,冲击地压的发生可能诱发瓦斯异常涌出、瓦斯爆炸等重特大灾害。针对冲击地压严重影响煤矿安全生产的问题,技术人员提出的许多方案是采用加装抗冲击装置的防冲液压支架。但目前的抗冲击装置均为独立工作,即单一的抗冲击装置服务于单一区域,彼此之间相互独立,互不干扰,这就使得每个防冲液压支架均是在单独、被动的进行局部支护,一旦发生冲击地压,受冲击的支架会独自承受局部工作面到来的巨大冲击力,从技术上来说这样的方式无法实现支架的集群抗冲击效应,冲击发生时抗冲击支架不能协同工作,会出现“袖手旁观”的现象。
因此,现有技术还有待于进一步发展和改进。
发明内容
针对现有技术的种种不足,为了解决上述问题,现提出一种磁流变抗冲击装置集群控制方法及系统。本发明提供如下技术方案:
一种磁流变抗冲击装置集群控制方法,包括:
获取现场所有防冲液压支架磁流变抗冲击装置上传的模拟量和数字量信号,基于获取的所有信号通过第一模糊控制算法生成磁流变抗冲击装置协同作用的数量;
当冲击地压的冲击力大于预设冲击力阈值时,控制对应数量的磁流变抗冲击装置增大自身阻尼力来吸收更多冲击能量以抵抗冲击;
当冲击地压的冲击力小于预设冲击力阈值时,控制对应数量的磁流变抗冲击装置减小自身阻尼力来进行让位。
进一步的,所述模拟量和数字量信号包括抗冲击装置的加速度α、速度v、液压缸腔内压力P以及电流I的动态数据。
进一步的,所述第一模糊控制算法生成磁流变抗冲击装置协同作用的数量方法包括:将获取的模拟量和数字量信号采用三角形隶属度函数模糊化处理,将模糊化处理后的数据再通过预设模糊规则进行模糊推理,然后将模糊推理后的数据通过普通加权平均法进行逆模糊,最后利用逆模糊后的数据确定协同动作的磁流变抗冲击装置数量,其中,预设模糊规则为现场多次试验后根据经验确定的规则。
进一步的,预设冲击力阈值为防冲液压支架额定工作压力的β倍,β取值 根据实际工况从1.2、1.25、1.3、1.35、1.4五个数值中进行选取。
进一步的,磁流变抗冲击装置抗冲击方法包括:
信号采集模块采集现场防冲液压支架磁流变抗冲击装置上传的模拟量和数字量信号并上传至DSP控制模块,DSP控制模块接收并基于获取的信号通过第二模糊控制算法生成PWM波形;
DSP控制模块将生成的PWM波形发送给电流驱动模块,电流驱动模块接收并基于PWM波形生成对应的电流;
电流驱动模块将生成的电流发送给磁流变执行机构,磁流变执行机构接收并基于电流大小产生对应的阻尼力。
进一步的,电流驱动模块将部分电流反馈给信号采集模块,形成阻尼力实时可调的负反馈。
进一步的,控制检测模块实时获取DSP控制模块处理的各项数据并将其实时发送至通信模块,控制检测模块实时接收通信模块反馈的输入信号,并将输入信号发送至DSP控制模块进行参数修改与控制。
一种磁流变抗冲击装置集群控制系统,包括集群控制器、综合信息分析处理系统以及多个磁流变抗冲击装置,所述集群控制器与综合信息分析处理系统单向数据传输,所述集群控制器和综合信息分析处理系统分别与各磁流变抗冲击装置通过通讯模块双向数据传输。
进一步的,所述综合信息分析处理系统包括用于集中收集数据的数据集成 器以及用于将收集的数据进行分析处理的计算机,所述数据集成器与计算机单向数据传输。
一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现一种磁流变抗冲击装置集群控制方法。
有益效果:
1、通过本申请的技术方案,形成集群效应来抵抗冲击,解决现有抗冲击装置彼此之间独立工作、互不干扰的不足,使集群控制系统中的单个液压支架抗冲击装置仅在局部感知能力下,能根据具体的冲击工况和支护需求与其他抗冲击装置的相互作用来实现复杂的协同抗冲击;
2、有效分担每个磁流变抗冲击装置压力,抗震效果好,延长磁流变抗冲击装置整体设备的使用寿命;
3、通过模糊算法确定协同作用时执行抗冲击动作的磁流变抗冲击装置数量,不干涉未协同动作的磁流变抗冲击装置,实现抗冲击过程的智能化。
4、通过设置控制检测模块,可自动根据监测过程中的状态对群控制中的个体进行协同控制与任务分配,并且操作者可以通过计算机对群控制个体进行集中控制;
5、集群控制系统设置于所有抗冲击装置线路汇流连接处,通过通讯模块与磁流变抗冲击装置相连,结构简单有效。
附图说明
图1是本发明具体实施例中一种磁流变抗冲击装置集群控制系统示意图;
图2是本发明具体实施例中第一模糊控制算法流程示意图;
图3是本发明具体实施例中单个磁流变抗冲击装置控制系统示意图。
具体实施方式
为了使本领域的人员更好地理解本发明的技术方案,下面结合本发明的附图,对本发明的技术方案进行清楚、完整的描述,基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的其它类同实施例,都应当属于本申请保护的范围。此外,以下实施例中提到的方向用词,例如“上”“下”“左”“右”等仅是参考附图的方向,因此,使用的方向用词是用来说明而非限制本发明创造。
一种磁流变抗冲击装置集群控制方法,包括:
获取现场所有防冲液压支架磁流变抗冲击装置上传的模拟量和数字量信号,基于获取的所有信号通过第一模糊控制算法生成磁流变抗冲击装置协同作用的数量;
当冲击地压的冲击力大于预设冲击力阈值时,控制对应数量的磁流变抗冲击装置增大自身阻尼力来吸收更多冲击能量以抵抗冲击;
当冲击地压的冲击力小于预设冲击力阈值时,控制对应数量的磁流变抗冲击装置减小自身阻尼力来进行让位。
进一步的,所述模拟量和数字量信号包括速度、加速度、压力以及电流的 动态数据。
进一步的,所述第一模糊控制算法生成磁流变抗冲击装置协同作用的数量方法包括:将获取的模拟量和数字量信号采用三角形隶属度函数模糊化处理,将模糊化处理后的数据再通过预设模糊规则进行模糊推理,然后将模糊推理后的数据通过普通加权平均法进行逆模糊,最后利用逆模糊后的数据确定协同动作的磁流变抗冲击装置数量,其中,预设模糊规则为现场多次试验后根据经验确定的规则。
进一步的,预设冲击力阈值为防冲液压支架额定工作压力的β倍,β取值根据实际工况从1.2、1.25、1.3、1.35、1.4五个数值中进行选取。
如图3所示,进一步的,磁流变抗冲击装置抗冲击方法包括:
信号采集模块采集现场防冲液压支架磁流变抗冲击装置上传的模拟量和数字量信号并上传至DSP控制模块,DSP控制模块接收并基于获取的信号通过第二模糊控制算法生成PWM波形;
DSP控制模块将生成的PWM波形发送给电流驱动模块,电流驱动模块接收并基于PWM波形生成对应的电流;
电流驱动模块将生成的电流发送给磁流变执行机构,磁流变执行机构接收并基于电流大小产生对应的阻尼力。
进一步的,电流驱动模块将部分电流反馈给信号采集模块,形成阻尼力实时可调的负反馈。
进一步的,控制检测模块实时获取DSP控制模块处理的各项数据并将其实时发送至通信模块,控制检测模块实时接收通信模块反馈的输入信号,并将输入信号发送至DSP控制模块进行参数修改与控制。
单个磁流变抗冲击装置控制系统包括电源模块、信号采集模块、DSP控制模块、电流驱动模块、控制监测模块、通信模块,电源模块为整个控制系统供电,信号采集模块、DSP控制模块、电流驱动模块依次通过信号线相连,且电流驱动模块为信号采集模块提供反馈电流,控制监测模块与DSP控制模块通过电缆相连,并通过无线蓝牙传输与通讯模块传输数据。需要说明的是,信号采集模块用于采集发生冲击时液压支架磁流变抗冲击装置的加速度α、速度v、液压缸腔内压力P以及电流I等各项动态数据,该数据为多路模拟量、数字量信号,并对该信号进行放大、滤波处理后再发送至控制检测模块,该信号放大、滤波处理过程为本领域常规技术手段,此处不再进行详细描述。DSP控制模块对经过信号采集模块后的信号进行分析处理,并通过第二模糊控制算法,最后输出一定占空比的PWM波形,电流驱动模块根据输入其中的PWM波形来控制到达电磁线圈上的电流值大小,并将电流值反馈给信号采集模块形成负反馈,从而实现实时可调的阻尼力。控制监测模块对进入DSP控制模块的各项数据进行实时监测,并将数据首先在控制监测模块中的触摸屏上进行显示,然后通过通信模块传输到集群控制系统,即控制监测模块与DSP控制模块之间还包括数据输入输出模块。操作人员不仅可以通过触摸屏进行参数修改与控制,而且可以通过集群控制系统对 其进行参数修改与控制,实现数据的实时监控与调整。
一种磁流变抗冲击装置集群控制系统,包括集群控制器、综合信息分析处理系统以及多个磁流变抗冲击装置,所述集群控制器与综合信息分析处理系统通过无线蓝牙模块单向数据传输,所述集群控制器和综合信息分析处理系统分别与各磁流变抗冲击装置通过电缆方式与通讯模块双向数据传输。
进一步的,所述综合信息分析处理系统包括用于集中收集数据的数据集成器以及用于将收集的数据进行分析处理的计算机,所述数据集成器与计算机单向数据传输。
多个磁流变抗冲击装置成组作为执行机构,包含了通信模块、集群控制器以及综合信息分析处理系统,综合信息分析处理系统包含了数据集成器以及计算机,其中通信模块与成组的执行机构进行双向数据传输,集群控制器、综合信息分析处理系统与通信模块同样进行双向数据传输,集群控制器与综合信息分析处理系统进行单向数据传输。需要说明的是,集群控制器通过通信模块接收成组的磁流变抗冲击装置传递来的经过信号处理后的速度、加速度、压力、电流等各项动态数据,然后根据接收到的数据采用模糊控制算法并进行智能决策,最终控制特定的协同动作的磁流变抗冲击装置的数量。具体动作方式有两种:其一是当冲击力超过设定阈值,则磁流变抗冲击装置增大自身阻尼力来吸收更多能量以抵抗冲击,其二是当冲击力低于设定阈值,则磁流变抗冲击装置减小自身阻尼力以达到让位效果。综合信息分析处理系统包括数据集成器以及 计算机,数据集成器通过通信模块接收各个磁流变抗冲击装置传递来的加速度、加速度、压力、电流等状态参数,然后在计算机上进行分析与显示,并实时监测运行状态,并可以通过计算机远程对执行机构进行修改参数等操作。
一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现一种磁流变抗冲击装置集群控制方法。
实施例
如图1所示,单个的磁流变抗冲击装置通过信号采集模块采集监测现场防冲液压支架磁流变抗冲击装置的纵向加速度α、速度v、纵向受力P以及装置的反馈电流I;DSP控制模块接收上述数据并对其进行滤波、放大,通过第二模糊控制算法产生PWM波形;电流驱动模块通过PWM波形控制产生对应的电流,进而控制执行机构产生对应的阻尼力,第二模糊控制算法是在第一模糊控制算法基础上将两个输入变为三个输入,输出仍为一个输出,控制规则依据现场试验进行确定;控制监测模块将上述参数在触摸屏上进行显示,并传递给通讯模块,除此之外还可通过通讯模块传递进来的命令来进行参数修改。
通讯模块接收以及发送的是所有的M个抗冲击装置的数据以及命令,通讯模块与集群控制器和综合信息分析处理系统进行交互;而综合信息分析处理系统则接收通讯模块传递来的各项状态参数并在计算机上进行显示,实时监测运行状态并可进行参数修改,如若某一装置出现了异常,则可以通过实时监测来实现对损坏装置的精确定位,并可查看冲击过程曲线,为防治冲击地压提供依据。
集群控制器通过接收到的防冲液压支架磁流变抗冲击装置的加速度α、速度v、液压缸腔内压力P以及电流I,并采用第一模糊控制算法来智能决策控制特定的协同动作的磁流变抗冲击装置的数量,具体动作方式有两种:其一是当冲击力超过设定阈值,则磁流变抗冲击装置增大自身阻尼力来吸收更多冲击能量以抵抗冲击;其二是当冲击力低于设定阈值,则磁流变抗冲击装置减小自身阻尼力来进行让位以达到让位效果。
具体的决策过程如下:
防冲液压支架的额定工作压力为P1,磁流变抗冲击装置提供的初始阻尼力为P2,P1<P2。发生冲击地压时的冲击力为P,P>P1,集群控制器设定的阈值为T,T为P1的β倍,β取值根据实际工况从1.2、1.25、1.3、1.35、1.4五个数值中进行选取。若冲击地压发生在2号装置上,则集群控制器判断此时的冲击力P是否超过设定阈值T,若P>T,则控制2号磁流变抗冲击装置增大阻尼力P3来抵抗冲击,冲击过程保证P2<P,故2号装置在吸收更大冲击能量的同时可以进行让位;若P<T,且P2>P,则无法使得缓冲器进行让位,此时需要控制2号磁流变抗冲击装置减小阻尼力P2来达到让位吸能,冲击过程保证P2<P。因冲击过程向周围支架蔓延,且周围支架收到的冲击力P较2号装置小,则集群控制器在控制2号装置的同时控制1号、3号或更多数量装置来减小阻尼力,使得P>P3,此时这些装置即可进行让位吸能来达到多个抗冲击装置协同动作保护支架的效果。
具体协同动作的装置数量由第一模糊控制算法实现。抗冲击过程结束则在 综合信息分析处理系统中进行报警并记录至存储器内,方便管理人员及时查看以及后期追溯统计。
上述第一模糊控制算法如图2所示,模糊控制的输入为某个防冲液压支架的纵向压力偏差E以及压力偏差Ec,输出为在此装置附近的协同动作的磁流变抗冲击装置的数量,模糊规则为现场多次试验后根据经验确定的规则,并且模糊规则可以根据实验过程进行实时的自适应修改以达到合适的协同动作装置数量,模糊化过程采用三角形隶属度函数,逆模糊化过程采用普通加权平均法。整个工作流程为当某个磁流变抗冲击装置接收到输入信号,则在集群控制器进行模糊化处理,通过模糊规则进行模糊推理,然后进行逆模糊,最后利用逆模糊化后的数据确定由N个装置协同动作来进行抗冲击,控制优先级为压力偏差较大的装置可以控制相邻的压力偏差较小的装置。
接下来具体说明第一模糊控制算法的实施过程,在这里使用了三个模糊变量,其中输入变量是防冲液压支架的纵向压力偏差E以及压力偏差变化率Ec,输出变量是协同动作装置数量。
第一步是输入变量模糊化,检测防冲液压支架纵向压力P,当P0≤P时开始模糊控制输入,压力偏差E=P-P0,其物理论域为[0,T1],P0为需要抗冲击装置动作的起始压力,T1为压力极限值,压力偏差E的模糊论域为[0,T2],P0,T1,T2的取值根据实验进行确定。压力偏差变化率Ec=d(P-P1)/dt,其物理论域为[0,T3],其中T3为全部磁流变抗冲击装置协同动作时的压力偏差率,协同动作抗冲 击装置数量的物理论域为[0,T4],其中T4为抗冲击装置数量,模糊论域一般与物理论域相同,下面内容按照四台进行分析。
第二步是确定隶属函数,根据设定的压力偏差的E的模糊论域,确定E的隶属度函数如表1所示。
表1:压力偏差E的隶属度函数
Figure PCTCN2022111381-appb-000001
上表中,表1第1列的语言值是压力偏差E的语言变量,表1第1行是压力偏差E的模糊论域取值,根据设定的压力偏差变化率Ec的模糊论域,确定Ec的隶属函数如表2所示。
表2:压力偏差变化率Ec的隶属函数
Figure PCTCN2022111381-appb-000002
Figure PCTCN2022111381-appb-000003
根据设定的协同抗冲击装置数量N的模糊论域,确定N的隶属度函数如表3所示。
表三:协同动作抗冲击装置数量N的隶属度函数
Figure PCTCN2022111381-appb-000004
第三步是确定模糊控制规则表,模糊控制规则是将现场控制经验结合专家知识总结而出的,模糊控制规则可以采用if...then...进行表述,if E is E i and Ec is Ec j then U is U ij
表四:确定模糊控制规则表
Figure PCTCN2022111381-appb-000005
在确定了上述表1~表4以后,就可以根据输入的压力偏差E和压力偏差率Ec,获得协同动作的磁流变抗冲击装置数量。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。
以上已将本发明做一详细说明,以上所述,仅为本发明之较佳实施例而已,当不能限定本发明实施范围,即凡依本申请范围所作均等变化与修饰,皆应仍属本发明涵盖范围内。

Claims (10)

  1. 一种磁流变抗冲击装置集群控制方法,其特征在于,包括:
    获取现场所有防冲液压支架磁流变抗冲击装置上传的模拟量和数字量信号,基于获取的所有信号通过第一模糊控制算法生成磁流变抗冲击装置协同作用的数量;
    当冲击地压的冲击力大于预设冲击力阈值时,控制对应数量的磁流变抗冲击装置增大自身阻尼力来吸收更多冲击能量以抵抗冲击;
    当冲击地压的冲击力小于预设冲击力阈值时,控制对应数量的磁流变抗冲击装置减小自身阻尼力来进行让位。
  2. 根据权利要求1所述的一种磁流变抗冲击装置集群控制方法,其特征在于,所述模拟量和数字量信号包括速度、加速度、压力以及电流的动态数据。
  3. 根据权利要求1所述的一种磁流变抗冲击装置集群控制方法,其特征在于,所述第一模糊控制算法生成磁流变抗冲击装置协同作用的数量方法包括:将获取的模拟量和数字量信号采用三角形隶属度函数模糊化处理,将模糊化处理后的数据再通过预设模糊规则进行模糊推理,然后将模糊推理后的数据通过普通加权平均法进行逆模糊,最后利用逆模糊后的数据确定协同动作的磁流变抗冲击装置数量,其中,预设模糊规则为现场多次试验后根据经验确定的规则。
  4. 根据权利要求1所述的一种磁流变抗冲击装置集群控制方法,其特征在于,预设冲击力阈值为防冲液压支架额定工作压力的β倍,β取值根据实际工况从1.2、1.25、1.3、1.35、1.4五个数值中进行选取。
  5. 根据权利要求1所述的一种磁流变抗冲击装置集群控制方法,其特征在于,磁流变抗冲击装置抗冲击方法包括:
    信号采集模块采集现场防冲液压支架磁流变抗冲击装置上传的模拟量和数字量信号并上传至DSP控制模块,DSP控制模块接收并基于获取的信号通过第二模糊控制算法生成PWM波形;
    DSP控制模块将生成的PWM波形发送给电流驱动模块,电流驱动模块接收并基于PWM波形生成对应的电流;
    电流驱动模块将生成的电流发送给磁流变执行机构,磁流变执行机构接收并基于电流大小产生对应的阻尼力。
  6. 根据权利要求5所述的一种磁流变抗冲击装置集群控制方法,其特征在于,电流驱动模块将电流反馈给信号采集模块,形成阻尼力实时可调的负反馈。
  7. 根据权利要求5所述的一种磁流变抗冲击装置集群控制方法,其特征在于,控制检测模块实时获取DSP控制模块处理的各项数据并将其实时发送至通信模块,控制检测模块实时接收通信模块反馈的输入信号,并将输入信号发送至DSP控制模块进行参数修改与控制。
  8. 一种磁流变抗冲击装置集群控制系统,其特征在于,包括集群控制器、综合信息分析处理系统以及多个磁流变抗冲击装置,所述集群控制器与综合信息分析处理系统单向数据传输,所述集群控制器和综合信息分析处理系统分别与各磁流变抗冲击装置通过通讯模块双向数据传输。
  9. 根据权利要求8所述的一种磁流变抗冲击装置集群控制系统,其特征在于,所述综合信息分析处理系统包括用于集中收集数据的数据集成器以及用于将收集的数据进行分析处理的计算机,所述数据集成器与计算机单向数据传输。
  10. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于:该程序被处理器执行时实现权利要求1至7中任一项所述的方法。
PCT/CN2022/111381 2021-10-13 2022-08-10 一种磁流变抗冲击装置集群控制方法及系统 WO2023061015A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111190465.4A CN114137830B (zh) 2021-10-13 2021-10-13 一种磁流变抗冲击装置集群控制方法及系统
CN202111190465.4 2021-10-13

Publications (1)

Publication Number Publication Date
WO2023061015A1 true WO2023061015A1 (zh) 2023-04-20

Family

ID=80395262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111381 WO2023061015A1 (zh) 2021-10-13 2022-08-10 一种磁流变抗冲击装置集群控制方法及系统

Country Status (2)

Country Link
CN (1) CN114137830B (zh)
WO (1) WO2023061015A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117686319A (zh) * 2024-02-02 2024-03-12 江苏英达机械有限公司 一种抛丸强度检测装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114137830B (zh) * 2021-10-13 2024-04-26 山东科技大学 一种磁流变抗冲击装置集群控制方法及系统
CN115013468A (zh) * 2022-05-25 2022-09-06 江苏省特种设备安全监督检验研究院 一种冲击载荷下的磁流变阻尼器减振控制系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08219513A (ja) * 1995-02-17 1996-08-30 Toshiba Corp トンネル換気制御装置
CN101509390A (zh) * 2009-02-25 2009-08-19 湖南大学 一种基于模糊控制的隧道通风控制方法
CN101750202A (zh) * 2008-12-15 2010-06-23 王炅 一种磁流变减振器冲击试验台架及冲击试验装置
CN109611966A (zh) * 2018-11-23 2019-04-12 镇江市高等专科学校 分布式自适应空气净化系统及控制方法
CN111367197A (zh) * 2020-03-23 2020-07-03 南京东瑞减震控制科技有限公司 一种磁流变隔减震装置控制系统
CN111930012A (zh) * 2020-07-24 2020-11-13 中北大学 一种磁流变执行器的闭环控制方法
CN114137830A (zh) * 2021-10-13 2022-03-04 山东科技大学 一种磁流变抗冲击装置集群控制方法及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08219513A (ja) * 1995-02-17 1996-08-30 Toshiba Corp トンネル換気制御装置
CN101750202A (zh) * 2008-12-15 2010-06-23 王炅 一种磁流变减振器冲击试验台架及冲击试验装置
CN101509390A (zh) * 2009-02-25 2009-08-19 湖南大学 一种基于模糊控制的隧道通风控制方法
CN109611966A (zh) * 2018-11-23 2019-04-12 镇江市高等专科学校 分布式自适应空气净化系统及控制方法
CN111367197A (zh) * 2020-03-23 2020-07-03 南京东瑞减震控制科技有限公司 一种磁流变隔减震装置控制系统
CN111930012A (zh) * 2020-07-24 2020-11-13 中北大学 一种磁流变执行器的闭环控制方法
CN114137830A (zh) * 2021-10-13 2022-03-04 山东科技大学 一种磁流变抗冲击装置集群控制方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG CHENGLONG, MIAO GEN-YUAN; LIU YAN-XI; ZENG QING-LIANG: "Anti Shock Support Based on Mr Damper", YEYA YU QIDONG = CHINESE HYDRAULICS & PNEUMATICS, BEIJING RESEARCH INSTITUTE OF AUTOMATION FOR MACHINE BUILDING INDUSTRY, CN, vol. 45, no. 6, 30 June 2021 (2021-06-30), CN , pages 33 - 40, XP093059126, ISSN: 1000-4858, DOI: 10.11832/j.issn.1000-4858.2021.06.006 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117686319A (zh) * 2024-02-02 2024-03-12 江苏英达机械有限公司 一种抛丸强度检测装置
CN117686319B (zh) * 2024-02-02 2024-04-12 江苏英达机械有限公司 一种抛丸强度检测装置

Also Published As

Publication number Publication date
CN114137830B (zh) 2024-04-26
CN114137830A (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
WO2023061015A1 (zh) 一种磁流变抗冲击装置集群控制方法及系统
CN104182902B (zh) 一种基于调度数据网集中运维系统的监控方法
CN105607127B (zh) 一种高应力集中区冲击地压的微震多参量预警方法
CN201040260Y (zh) 磨煤机自适应控制系统
CN104506385B (zh) 一种软件定义网络安全态势评估方法
CN107288677A (zh) 一种煤矿通风参数智能化监测调控装置及其控制方法
CN103291364A (zh) 一种冲击矿压的微震多维信息综合时序预警方法
CN104153805A (zh) 隧道内排烟系统及其方法
WO2012156507A2 (de) System zur bereitstellung von einen vibrationszustand repräsentierenden informationen für den betrieb vibrationsemittierender maschinen, insbesondere baumaschinen
CN109826663A (zh) 一种矿井灾变通风分布式区域联动与智能调控系统及方法
CN115526422A (zh) 一种煤矿瓦斯爆炸风险预测方法
CN107781343A (zh) 粘滞阻尼器
CN107942912A (zh) 一种煤矿生产控制管理一体化系统
CN104989455A (zh) 一种矿井瓦斯煤火协同防控方法及装置
CN203962019U (zh) 隧道内排烟系统
CN113361113B (zh) 一种能耗可调的高铁转向架孪生数据分配方法
CN107151990B (zh) 高陡边坡滚石的智能拦石装置
CN116177337B (zh) 一种多点分布式乘客异常行为电梯监测系统及方法
CN110609324A (zh) 一种用于深埋隧道岩爆预警微震事件筛选的方法
Cao et al. Hybrid-driven-based H∞ control for offshore steel jacket platforms in network environments
CN116050839A (zh) 一种基于物联网的建筑消防管控系统
CN203670253U (zh) 局部通风机监控系统
CN109978413A (zh) 基于瓦斯涌出特征迁移衍生煤体应力状态的评估方法
CN214043069U (zh) 一种应用于火力发电厂室内降噪系统
CN114531619A (zh) 一种基于边缘计算的施工工地监测方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22879962

Country of ref document: EP

Kind code of ref document: A1