WO2023060983A1 - 粘油水制备装置和方法、以及柴油乳化燃料制备系统和方法 - Google Patents

粘油水制备装置和方法、以及柴油乳化燃料制备系统和方法 Download PDF

Info

Publication number
WO2023060983A1
WO2023060983A1 PCT/CN2022/108083 CN2022108083W WO2023060983A1 WO 2023060983 A1 WO2023060983 A1 WO 2023060983A1 CN 2022108083 W CN2022108083 W CN 2022108083W WO 2023060983 A1 WO2023060983 A1 WO 2023060983A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
impact
surfactant
cylinder
diesel
Prior art date
Application number
PCT/CN2022/108083
Other languages
English (en)
French (fr)
Inventor
陈序泉
Original Assignee
深圳洛喀奔化工科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳洛喀奔化工科技有限公司 filed Critical 深圳洛喀奔化工科技有限公司
Publication of WO2023060983A1 publication Critical patent/WO2023060983A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
    • B01F25/51Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle in which the mixture is circulated through a set of tubes, e.g. with gradual introduction of a component into the circulating flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/81Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/82Combinations of dissimilar mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/80Forming a predetermined ratio of the substances to be mixed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/32Liquid carbonaceous fuels consisting of coal-oil suspensions or aqueous emulsions or oil emulsions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to the technical field of diesel engines, enables the diesel engines to burn both diesel and emulsified oil, and can be applied to the fields of various diesel engines and boilers.
  • Diesel emulsified fuel refers to an emulsion in which diesel oil is the continuous phase and water is the dispersed phase.
  • the working principle of diesel emulsified fuel used in the engine is: the emulsified fuel enters the engine cylinder and undergoes secondary atomization, making the oil particles finer and fully mixed with oxygen for combustion.
  • the existing emulsified fuel generally has the following problems: First, poor uniformity. DEF fuel performance depends on the uniformity of DEF fuel, and poor uniformity will have adverse effects on engine performance, such as unstable engine speed, high fuel consumption, and possible reduction of DEF water content, which may also lead to NOX, PM, HC and CO emissions higher.
  • the ratio of diesel oil to viscous oily water is difficult to control, often resulting in an excess of the necessary amount of surfactant.
  • Surfactants unlike hydrocarbons, do not generate water during combustion. Because the internal combustion engine is mainly driven by steam expansion rather than heat, if the surfactant is excessive, the water content will be relatively low, and the oxygen available for combustion will be relatively small, resulting in incomplete combustion.
  • the technical problem to be solved by the present invention is to propose a viscous oil-water preparation device and method, and a diesel emulsified fuel preparation system and method that use a simple structure and method to achieve precise ratio of raw materials.
  • a kind of viscous oily water preparation device comprise surfactant supply box, water supply box, surfactant dosage cylinder, water dosage cylinder, viscous oily water mixing tank and the second collision mixer;
  • the entrance of described surfactant dosage cylinder is by The surfactant supply pump is communicated with the surfactant supply tank, and the outlet of the surfactant dosage cylinder is communicated with the water dosage cylinder through a valve;
  • the bottom of the water dosage cylinder is connected with the bottom of the water supply tank by means of a water supply pump , the outlet of the water dosage cylinder is at least communicated with the feed pipe assembly that can feed directly into the lower part of the viscous oil-water mixing tank inside the viscous oil-water mixing tank through a valve;
  • the second impact mixer includes a The liquid inlet pipe of the liquid column nozzle outlet, the liquid outlet pipe with the liquid column nozzle outlet and the liquid outlet pipe of the impact nozzle outlet, the liquid inlet pipe of the second impact mixer is connected with the viscous oil-water mixing tank by
  • a method for preparing viscous oily water is provided. Based on the above-mentioned viscous oily water preparation device, mixing a surfactant and water to form viscous oily water includes the following steps:
  • the surfactant supply pump is opened, and the surfactant supply tank is filled with surfactant from the surfactant supply tank.
  • the surfactant supply pump is closed;
  • the water supply pump is turned on, and water is added to the water dosage cylinder from the water supply tank. When the water dosage cylinder is full, the water supply pump is closed;
  • the surfactant in the surfactant dosage cylinder and the water in the water dosage cylinder are premixed;
  • step (E) passes through the set time, and the prepared viscous water in the viscous oil-water mixing tank is discharged through the outlet at the bottom of the viscous oil-water mixing tank.
  • a diesel emulsified fuel preparation system including a diesel oil supply tank, a viscous oil water supply tank, an emulsion mixing tank, and also includes: the above viscous oil water used for mixing water and surfactants connected to the viscous oil water supply tank mixing device; and
  • a diesel dosage cylinder the inlet of the diesel dosage cylinder communicates with the diesel supply tank by means of a diesel supply pump, and the outlet of the diesel dosage cylinder communicates with the feed pipe assembly positioned inside the emulsion mixing tank through a valve;
  • the viscous oil-water dosage cylinder the inlet of the viscous oil-water dosage cylinder communicates with the viscous oil-water supply tank by means of the viscous oil-water supply pump, and the outlet of the viscous oil-water dosage cylinder is directly connected to the energy source located in the emulsion mixing tank through a valve.
  • the feeding pipe assembly sent to the lower part of the emulsion mixing tank is connected;
  • the first impact mixer includes a liquid inlet pipe with a liquid column nozzle outlet, a liquid outlet pipe with a liquid column nozzle outlet, and a liquid outlet pipe for the impact nozzle outlet, the inlet of the first impact mixer
  • the liquid pipe communicates with the funnel-shaped tank bottom of the emulsion mixing tank by means of the first circulation mixing pump, and the liquid column nozzle outlet and the impact nozzle outlet of the first impingement mixer are respectively arranged in the air space of the emulsion mixing tank ;
  • the capacity ratio of the diesel oil dosage cylinder and the viscous oil water dosage cylinder is equal to the set ratio of diesel oil and viscous oil water, and the sum of the capacities of the diesel oil dosage cylinder and the viscous oil water dosage cylinder is less than the capacity of the emulsion mixing tank.
  • a method for preparing diesel emulsified fuel is provided. Based on the above-mentioned diesel emulsified fuel preparation system, a surfactant and water are first mixed to form viscous oily water, and then viscous oily water is mixed with diesel oil to form an emulsified fuel, wherein the surfactant and water are mixed to form Sticky oily water involves the following steps:
  • the surfactant supply pump is opened, and the surfactant supply tank is filled with surfactant from the surfactant supply tank.
  • the surfactant supply pump is closed;
  • the water supply pump is turned on, and water is added to the water dosage cylinder from the water supply tank. When the water dosage cylinder is full, the water supply pump is closed;
  • the surfactant in the surfactant dosage cylinder and the water in the water dosage cylinder are premixed;
  • step (E) passes through the set time, and the prepared viscous oil in the viscous oil-water mixing tank is discharged through the outlet at the bottom of the viscous oil-water mixing tank;
  • Mixing viscous oily water with diesel oil to form emulsified fuel includes the following steps:
  • step (3) After the viscous oily water in the viscous oily water dosage cylinder in step (3) is all fed, open the outlet valve of the diesel oil dosage cylinder, the diesel oil from the diesel oil dosage cylinder will all enter the bottom of the emulsion mixing tank through the feed pipe assembly by gravity ;
  • the mixture in the emulsion mixing tank flows out from the funnel-shaped tank bottom of the emulsion mixing tank for circulation, and after being impacted and mixed inside the first impact mixer, it passes through the first The liquid column nozzle and the impact nozzle of the impact mixer are sprayed into the emulsion mixing tank;
  • step (6) After the set time of circulating mixing in step (5), the prepared fuel in the emulsion mixing tank is discharged through the outlet at the bottom of the emulsion mixing tank.
  • the dosage cartridge is adopted to realize the precise proportioning of raw materials with simple structure and method; and through the mixing structure formed by impact mixer, circulating mixing pump and mixing tank, raw It is transported to the bottom of the mixing tank through the feed pipe, pumped out by the circulating mixing pump before the raw materials are stratified, sent to the impact mixer for mixing, and then sprayed into the air space of the mixing tank to further break up the mixed particles, so that the cycle is mixed for a set time,
  • the uniformity of the emulsified fuel is greatly improved, and the emulsified fuel prepared by using the invention burns completely in the engine, the engine discharge is extremely low, and the power is sufficient.
  • Fig. 1 is the structural schematic diagram of the diesel emulsified fuel preparation system of the present invention
  • Fig. 2 is the structural principle schematic diagram of viscous oil-water mixing device of the present invention
  • Fig. 3 is the structural representation of the embodiment of the diesel emulsified fuel preparation system of the present invention.
  • Fig. 4 is a schematic diagram of the shape and structure of a mixing tank according to an embodiment of the present invention.
  • Fig. 5 is a schematic top view of a mixing tank according to an embodiment of the present invention.
  • FIG. 6 is a perspective view of a water supply tank according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural view of a feed pipe assembly according to an embodiment of the present invention.
  • Fig. 8 is a schematic structural view of an impact mixer according to an embodiment of the present invention.
  • Fig. 9 is a schematic structural view of a dosage cartridge according to an embodiment of the present invention.
  • Fig. 10 is a schematic diagram of the principle of inaccurate measurement when the dosage cartridge of the present invention is assumed to be set at an incline;
  • Fig. 11 is a schematic diagram of the spraying effect of the liquid column nozzle according to the embodiment of the present invention.
  • Fig. 12 is a schematic diagram of the injection effect of the impact nozzle of the embodiment of the present invention.
  • Fig. 13 is a schematic diagram of the spray effect of the defoaming nozzle according to the embodiment of the present invention.
  • a diesel emulsified fuel preparation system includes an emulsified fuel mixing module and a viscous oil-water mixing device.
  • the emulsified fuel mixing module includes a diesel dosage tank T1, a viscous oil-water dosing tank T2, an emulsion mixing tank T3, a diesel supply tank T4, a viscous oil-water supply tank T5, a first impact mixer M1, a diesel fuel supply pump P1, and a viscous oil-water tank.
  • the viscous oil-water mixing device is connected with the viscous oil-water supply tank T5 for mixing water and surfactant.
  • the inlet of the diesel dosing tank T1 communicates with the diesel supply tank T4 via the diesel supply pump P1, and the outlet of the diesel dosing tank T1 communicates with the feed pipe assembly FPA located inside the emulsion mixing tank T3 through a valve.
  • the inlet of the viscous oily water dosage cylinder T2 communicates with the viscous oily water supply tank T5 via the viscous oily water supply pump P2, and the outlet of the viscous oily water dosage cylinder T2 communicates with the feed pipe assembly FPA through a valve.
  • the first impingement mixer M1 includes a liquid inlet pipe with a liquid column nozzle outlet, a liquid outlet pipe with a liquid column nozzle outlet, and a liquid outlet pipe for the impact nozzle outlet.
  • the liquid inlet pipe of the first impingement mixer M1 is A circulating mixing pump P3 communicates with the funnel-shaped tank bottom of the emulsion mixing tank T3, and the liquid column nozzle outlet and impact nozzle outlet of the first impingement mixer M1 are respectively arranged on the upper part of the emulsion mixing tank T3.
  • the first impact mixer M1 and the first circulating mixing pump P3 form a fuel mixing loop.
  • the viscous oil-water mixing device is connected as a module with the viscous oil-water supply tank T5 of the diesel emulsified fuel preparation system.
  • the viscous oil-water mixing device can also be used as a single device to produce viscous oil-water, and is not connected with the diesel emulsified fuel preparation system.
  • the viscous oil-water mixing device as shown in Figure 2 includes a surfactant supply tank t7, a water supply tank t6, a surfactant dosage cylinder t2, a water dosage cylinder t1, a viscous oil-water mixing tank t3, a second impact mixer M2, Surfactant supply pump P4, water supply pump P5 and second circulation mixing pump P6.
  • the inlet of the surfactant dosage cylinder t2 is communicated with the surfactant supply tank t7 by means of the surfactant supply pump P4, and the outlet of the surfactant dosage cylinder t2 is communicated with the water dosage cylinder t1 through a valve; the water dosage cylinder
  • the bottom of t1 communicates with the bottom of the water supply tank t6 via the water supply pump P5, and the outlet of the water dosage cylinder t1 communicates with the feed pipe assembly FPA located inside the viscous oil-water mixing tank t3 at least through a valve.
  • the second impingement mixer M2 includes a liquid inlet pipe with a liquid column nozzle outlet, a liquid outlet pipe with a liquid column nozzle outlet, and a liquid outlet pipe for the impact nozzle outlet.
  • the liquid inlet pipe of the second impact mixer M2 is
  • the secondary circulation mixing pump P6 communicates with the funnel-shaped tank bottom of the viscous oil-water mixing tank t3, and the nozzle outlet and impact nozzle outlet of the second impingement mixer M2 are respectively arranged on the upper part of the viscous oil-water mixing tank t3.
  • the second impingement mixer M2 and the second circulating mixing pump P6 form a viscous oil-water mixing loop.
  • there are two viscous oil-water mixing loops there are two viscous oil-water mixing loops, and the two viscous oil-water mixing loops are respectively arranged on both sides of the viscous oil-water mixing tank t3.
  • the viscous oil-water mixing device further includes a third impact mixer M3, and the third impact mixer M3 includes a liquid inlet pipe with a liquid column nozzle outlet, a liquid outlet pipe with a liquid column nozzle outlet, and an impactor.
  • the outlet pipe of the nozzle outlet, the liquid inlet pipe of the third impact mixer M3 communicates with the upper part of the water dosage cylinder t1 by means of the third circulation mixing pump P7, the nozzle outlet of the third impact mixer M3 and the impact nozzle outlet respectively Set on the upper part of the viscous oil-water mixing tank t3.
  • the upper part of the water dosage cylinder t1 has a filter screen t1A, such as a stainless steel filter screen, and the nozzle outlet and the impact nozzle outlet of the third impingement mixer M3 are located in the filter screen t1A.
  • the filter screen t1A, the third impingement mixer M3 and the third circulation mixing pump D form the upper circulation system of the water dosage cylinder.
  • the upper circulation system can promote the breaking of surfactant micelles in the upper part of the water dosage cartridge. The surfactants enter the filter screen, where they are sucked out through the outlet pipe connected to the third circulation mixing pump D, circulated through the third impingement mixer M3, and then re-enter the filter screen t1A through the nozzle.
  • the third impingement mixer M3 promotes the splitting of the surfactant micelles, and the nozzle helps in the dispersion of the surfactant micelles. Only small enough micelles can pass through the filter mesh and no longer participate in the upper circulation, while the surfactant micelles larger than the filter mesh remain in the filter for further splitting and dispersion.
  • the viscous oil-water mixing device further includes a fourth impact mixer M4, a circulation transfer pump P8, and an impact cylinder t5.
  • the fourth impact mixer M4 includes a The liquid inlet pipe, the liquid outlet pipe with the outlet of the liquid column nozzle and the liquid outlet pipe of the impact nozzle outlet, the liquid inlet pipe of the fourth impact mixer M4 is connected to the bottom of the water dosage cylinder t1 by means of the circulation transfer pump P8.
  • the nozzle outlet and the impact nozzle outlet of the four-impact mixer M4 are respectively connected to the impact cylinder t5; the impact cylinder t5 is arranged on the upper part of the viscous oil-water mixing tank and connected to the upper end of the feed pipe assembly FPA.
  • the side wall of the surfactant dosage cylinder t2 is connected with a liquid column nozzle JN, and the liquid coming out of the surfactant dosage cylinder passes through the water dosage cylinder t1 and circulates in turn.
  • the pump P8 and the liquid column nozzle are sprayed from the liquid column nozzle to the other side wall of the surfactant dosage cylinder t2.
  • the second impingement mixer M2 further includes a liquid outlet pipe having a defoaming impingement nozzle, and the defoaming impingement nozzle AFN is arranged on the upper part of a side wall of the viscous oil-water mixing tank.
  • the defoaming impingement nozzle is used to keep enough air space in the upper part of the viscous oil-water mixing tank t3 for optimal mixing as foam will reduce the performance of the impingement nozzle.
  • the top of the viscous oil-water mixing tank t3 is also provided with an anti-foaming vent valve AFV.
  • the volume of the viscous oil mixing tank t3 is greater than the sum of the volumes of the surfactant dosage cylinder t2 and the water dosage cylinder t1.
  • the volume of the emulsion mixing tank T3 is greater than the sum of the capacities of the diesel oil dosage tank T1 and the viscous water metering tank T2, and there is an air space between the liquid level and the tank top of the emulsion mixing tank T3.
  • Each dosage cylinder is provided with a float cut-off valve.
  • Float shut-off valves facilitate automatic filling and draining of each dosing cartridge.
  • each impingement mixer includes a cavity 31 , a liquid inlet pipe 35 , a liquid outlet pipe 32 and an equalizing cylinder 34 .
  • the liquid inlet pipe has a liquid column nozzle outlet, and two liquid outlet pipes are provided, one of which has a liquid column nozzle outlet, and the other liquid outlet pipe is provided with an equalizing cylinder 34, and the equalizing cylinder 34 is connected with two impacting nozzle outlets.
  • the inlet of the outlet pipe is close to the bottom of the cavity 31, and when the liquid level 36 rises, air is trapped inside. Since the impact force is greater in the air than in the liquid, the air space is used to enhance the jet impact to break the mixed pellets to ensure the best impact breaking effect.
  • the structure of the water supply tank t6 is shown in FIG. 6 , including a cylindrical upper part 11 and a conical lower part 12 .
  • the side of the cylindrical upper part 11 is provided with a positive pressure filter water inlet 13, and a one-way valve 16 is provided in the water inlet to prevent backflow;
  • On/off exhaust valve 17 is provided on the top surface.
  • the water supply tank t6 facilitates automatic loading when connected to a positive pressure supply source, such as a water tap.
  • On/off vent valve 17 is manually opened to vent air during loading. Once the dosing cartridge is full, the vent valve 17 is closed. A check valve at the inlet prevents backflow.
  • the dosing cartridge automatically refills when the liquid inside is drawn out. Water is drawn into the dosing cartridge through the inlet, avoiding possible leakage problems with float valves.
  • Each feed pipe assembly FPA is shown in FIG. 7 , including a feed pipe 21 , a height regulator 22 located at the upper end of the feed pipe, and a tapered outlet 23 located at the lower end of the feed pipe.
  • the conical outlet 23 is located close to the funnel-shaped bottom of the mixing tank.
  • the gap W between the tapered outlet 23 and the funnel-shaped tank bottom of the mixing tank can be adjusted by adjusting the height of the feed pipe, and the height regulator 22 is used to adjust the height of the feed pipe.
  • the feed rate can be controlled by varying the gap between the tapered outlet 23 and the funnel-shaped bottom of the mixing tank.
  • the feed pipe 21 is arranged at the center of the top surface of the mixing tank.
  • the top surface of the emulsion mixing tank T3 is also provided with a liquid column nozzle JN of the impingement mixer, an impingement nozzle IN and an air vent 24 .
  • Above-mentioned diesel oil dosage cylinder T1, viscous oily water dosage cylinder T2, surfactant dosage cylinder t2 and water dosage cylinder t1 top are all provided with ventilation shut-off valve, when dosage cylinder is filled up, ventilation shut-off valve closes its dosage cylinder.
  • the above-mentioned diesel oil dosage cylinder T1, viscous oil water dosage cylinder T2, surfactant dosage cylinder t2 and water dosage cylinder t1 are all set on a vertical horizontal plane, which can be achieved by using an adjustable mounting bracket.
  • Fig. 9 is a schematic diagram of setting the viscous oil and water dosage cylinder T2 on a vertical horizontal plane.
  • the liquid level 42 has reached the position of the ventilation cut-off valve such as a float valve, and the ventilation shut-off valve has closed the ventilation port of the dosage cylinder, that is, the dosage cylinder has been considered as full.
  • the triangular area above the vent shut-off valve is actually an air space 43, that is to say, it is practically impossible to fill up the dosing cylinder when it is tilted, which will affect the metering accuracy.
  • the float valve is not fully closed, flooding will occur.
  • a kind of embodiment of the preparation method of diesel oil emulsified fuel, as shown in Figure 1, based on above-mentioned diesel oil emulsified fuel preparation system, comprises the following steps:
  • the emulsified fuel prepared in the emulsion mixing tank T3 is discharged through the outlet at the bottom of the emulsion mixing tank T3.
  • Step one first start, fills the supply tank.
  • the second step is to start the hybrid system.
  • the mixture in the emulsion mixing tank flows out from the bottom of the funnel-shaped tank of the emulsion mixing tank for circulation, and after being impacted and mixed by the internal mixing chamber of the first impact mixer M1, then It is sprayed into the emulsion mixing tank through the nozzle of the first impingement mixer M1 and the impingement nozzle, so that the diesel oil and viscous oily water are evenly mixed to become standard diesel emulsified fuel.
  • Both viscous oil, water and diesel oil enter the emulsion mixing tank T3 through gravity.
  • the gravity feeding method can be used to control the feeding speed reliably by changing the diameter of the outlet hole and other means of optimizing the process, and it is also helpful for cost-effectiveness.
  • the impact mixer M1 is designed to promote "fluid impact mixing” by spraying a mixture of viscous oil, water and diesel oil onto the hard surface of the upper wall of the mixing chamber. This impact promotes the breakdown of surfactant pellets.
  • the inlet to the discharge tube of the impingement mixer is near the bottom of the mixing chamber, which traps air in the mixing chamber.
  • the mixing chamber pressure is generated by the difference between the input fluid volume and the output fluid volume, and this difference is achieved by changing the diameter of the outlet pipe.
  • the tapered outlet at the lower end of the feed pipe ensures that the diesel oil is delivered to the bottom of the emulsion mixing tank, where it is mixed with the viscous oil and water at the bottom of the tank, and then pumped into the M1 impact mixer by the circulating mixing pump.
  • the float shut-off valve facilitates the automatic filling and discharge of the dosage cartridge. Using a quantitative dosing cartridge, the mixing ratio of diesel oil and viscous oil and water can be accurately and reliably controlled.
  • the dosing cartridge is designed to facilitate automatic loading of diesel fuel from the ship's fuel supply on demand, and is equally applicable when the mixer is connected to a viscous oil-water mixing device for on-line operation.
  • the viscous oily water preparation method of the present invention comprises the following steps:
  • surfactant supply pump that is, surfactant supply pump P4 and water supply pump P5; open valve 1 and valve 2, and close valve 3 and valve 4.
  • the surfactant supply pump P5 is automatically switched off by means of an electrical trip switch.
  • the surfactant calibration tank t2 is full, the surfactant supply pump P4 is automatically shut down by an electric trip switch.
  • the liquid passes through the water dosage cylinder t1, the circulation transfer pump P8 and the liquid column nozzle arranged on the side wall of the surfactant dosage cylinder t2, and is sprayed into the surfactant dosage cylinder t2
  • the other side wall is used for flushing the surfactant remaining on the inner wall of the surfactant dosage cartridge. Contribute to a more accurate ratio of surfactant and water.
  • the liquid in the filter screen t1A on the upper part of the water dosage cylinder t1 is sucked out by the third circulation mixing pump P7 through the inside of the third impact mixer M3, and then through the nozzle of the third impact mixer M3 and impacting nozzle spray into the filter t1A for mixing.
  • the circulation transmission pump P8 After the start of premixing, after a set time such as 10 minutes, the circulation transmission pump P8 remains open, and the third circulation mixing pump P7 is closed; valve 3, valve 4 and valve 5 are kept open, and then valve 6 is opened to flow to the viscous oil-water mixing tank t3 Deliver the premixed mixture.
  • the pre-mixed mixture through the circulation transfer pump P8 enters the funnel-shaped tank bottom of the viscous oil-water mixing tank t3 through the fourth impact mixer M4, the impact cylinder t5 and the feed pipe assembly FPA in sequence.
  • the premixed mixture Before the premixed mixture enters the feed pipe assembly, it is mixed through the fourth impact mixer M4 and the impact cylinder t5, and the liquid column nozzle JN of the fourth impact mixer M4 sprays to the side wall of the impact cylinder, which The impingement nozzle IN sprays downward from the top of the impingement barrel t5.
  • the defoaming impact nozzle AFN of the fourth impact mixer M4 sprays from the side wall of the viscous oil-water mixing tank to eliminate excessive foam in the mixed liquid.
  • the second circulating mixing pump P6 remains open, opens the valve 8, closes the valve 7, and transfers the prepared viscous oil water to the viscous oil water tank t4.
  • Calibration water dosing tank t1 has an upper circulation system to facilitate surfactant pellet breakup.
  • the surfactants enter the metal strainer t1A, where they are sucked out through the outlet pipe connected to the third circulation mixing pump P7, circulated through the third impingement mixer M3, and then re-enter t1A through the nozzle.
  • the third impingement mixer M3 promotes the splitting of the surfactant micelles, and the nozzle helps in the dispersion of the surfactant micelles. Only small micelles and water can pass through the metal filter.
  • the height-adjustable feed pipe assembly FPA conveys the mixture of emulsifier and water containing surfactant micelles directly to the bottom of t3, where they are immediately sucked out by the second circulation mixing pump P6 and transferred to the first Two impact mixers M2 where the mixture is sprayed onto a hard surface on top of the mixer to break up the micellar globules.
  • the mixture leaves the second impingement mixer M2 and enters t3 through impingement nozzles and jet nozzles for further reduction of micellar particles.
  • This method subjects all micelles to high impact forces. It is more efficient than conventional high-shear mixing agitators, where it is difficult to ensure that the full load of micelles is chopped. This process optimizes the use of surfactants.
  • Oil-water surfactants form micelles (small balls) when in contact with oil or water.
  • the present invention uses impact force to break the pellets.
  • the design capacity of the mixing tank is greater than the total capacity of the two dosage cylinders with different raw materials installed, so as to form an air space between the liquid surface and the tank top.
  • the air space above the liquid level in the mixing tank enhances the performance of the impingement nozzle located on top of the tank.
  • the defoaming nozzle located in the air space below the impingement nozzle is used to maintain enough air space for optimal mixing.
  • the impact mixer is designed to create an air space inside the tank to enhance the jet impact to break the pellets.
  • the inlet of the output tube is near the bottom of the impingement mixer. As the liquid level rises, air is trapped inside.
  • the calibration dose tank is accurate and reliable. They also help size the mixing tank to provide a space between the liquid level and the tank top.
  • Float drain/shut-off valve facilitates automatic filling/draining of calibrated feed tanks.
  • a modular diesel emulsion fuel preparation system eliminates water transportation costs. Locating diesel emulsion fuel preparation systems near gas stations can further reduce costs.
  • the modular system allows participating petroleum suppliers to size their diesel emulsion preparation system plants according to the needs of each region.
  • the invention can provide an engine manufacturer with a cost-effective diesel emulsified fuel preparation system, which can reduce carbon emissions, nitrogen oxides, hydrocarbons, carbon monoxide, particulate matter and other pollutants.
  • the second goal is to provide oil suppliers with the means to efficiently produce and distribute emulsified diesel. Solve the problem of downward sedimentation of the dispersed phase of diesel emulsified fuel to ensure the uniformity of the fuel.
  • the diesel emulsified fuel preparation system can be located near the gas station, which can use the existing local diesel and tap water supply, thereby reducing logistics costs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

本发明涉及一种粘油水制备装置和方法、以及柴油乳化燃料制备系统和方法,制备原料的计量采用剂量筒,实现用最简单的结构和方法实现原料的精确配比;并且通过撞击混合器、循环混合泵和混合罐形成的混合结构,原料通过进料管一直输送至乳化液混合罐的底部,在原料分层之前由循环混合泵抽出送至撞击混合器混合之后再喷射进入混合罐的空气空间内进一步破碎混合颗粒,极大提高了乳化燃料的均匀性,使用本发明所制备的乳化燃料在发动机内燃烧彻底,发动机排放极低,动力足。

Description

粘油水制备装置和方法、以及柴油乳化燃料制备系统和方法 技术领域
本发明涉及柴油发动机技术领域,能够使柴油发动机既可以燃烧柴油又可以燃烧乳化油,可应用于各类柴油发动机、锅炉领域。
背景技术
柴油乳化燃料是指柴油为连续相、水为分散相的一种乳液。柴油乳化燃料用于发动机的工作原理为:乳化燃料进入发动机气缸发生二次雾化,使油粒变得更细,并与氧气充分混合燃烧。现有的乳化燃料一般存在以下问题:其一,均匀性差。DEF燃料性能取决于DEF燃料的均匀性,均匀性差会对发动机性能产生不利影响,如发动机转速不稳定、燃油消耗量高以及DEF含水量可能降低,也可能导致NOX、PM、HC和CO排放量较高。其二,柴油与粘油水(由表面活性剂和水混合而成)配比很难控制,常常导致表面活性剂超过必要量。表面活性剂与碳氢化合物不同,在燃烧过程中不会产生水。因为内燃机主要是由蒸汽膨胀而不是由热量驱动的,如果表面活性剂过量,会导致含水量相对低,燃烧可获得的氧相对少,导致燃烧不彻底。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提出一种使用简单的结构和方法实现原料的精确配比的粘油水制备装置和方法、以及柴油乳化燃料制备系统和方法。
本发明解决其技术问题所采用的技术方案为:
提供一种粘油水制备装置,包括表面活性剂供应箱、水供应箱、表面活性剂剂量筒、水剂量筒、粘油水混合罐和第二撞击混合器;所述表面活性剂剂量筒的进口借助表面活性剂供应泵与所述表面活性剂供应箱连通,该表面活性剂剂量筒的出口通过阀门与水剂量筒连通;该水剂量筒的底部借助水供应泵与所述水供应箱的底部相连,该水剂量筒的出口至少通过阀门和与位于所述粘油水混合罐内部的能将进料直接送入该粘油水混合罐下部的进料管组件连通;所述第二撞击混合器包括具有液柱喷嘴出口的进液管、具有液柱喷嘴出口的出液管和撞击喷嘴出口的出液管,该第二撞击混合器的进液管借助第二循环混合泵与所述粘油水混合罐的罐底连通,该第二撞击混合器的喷嘴出口和撞击喷嘴出口分别设置于所 述粘油水混合罐的空气空间内;所述表面活性剂剂量筒和水剂量筒的容量比例与所设定待制备粘油水中所含表面活性剂和水的配比相等,所述表面活性剂剂量筒和水剂量筒的容量之和小于所述粘油水混合罐的容量。
提供一种粘油水制备方法,基于上述的粘油水制备装置,将表面活性剂和水混合形成粘油水包括以下步骤:
A.所述表面活性剂供应泵打开,从表面活性剂供应箱向表面活性剂剂量筒加注表面活性剂,当表面活性剂剂量筒加满时,表面活性剂供应泵关闭;
B.所述水供应泵打开,从水供应箱向水剂量筒加注水,当水剂量筒加满时,水供应泵关闭;
C.将表面活性剂剂量筒内的表面活性剂和水剂量筒内的水进行预混合;
D.通过循环传输泵将预混合后的混合物至少通过进料管组件进入粘油水混合罐的下部;
E.在第二循环混合泵的作用下开启粘油水混合罐的混合循环,粘油水混合罐内的混合物从粘油水混合罐的漏斗形罐底流出、并通过第二撞击混合器内部冲击混合后,再通过第二撞击混合器的喷嘴和撞击喷嘴喷入所述粘油水混合罐;
F.步骤(E)的混合循环经过设定时间,粘油水混合罐内的制备好的粘油水通过位于粘油水混合罐底部的出口排出。
提供一种柴油乳化燃料制备系统,包括柴油供应箱、粘油水供应箱、乳化液混合罐,还包括:与粘油水供应箱相连的用于将水与表面活性剂混合的如上所述的粘油水混合装置;以及
柴油剂量筒,该柴油剂量筒的进口借助柴油供应泵与所述柴油供应箱连通,该柴油剂量筒的出口通过阀门与位于乳化液混合罐内部的进料管组件连通;
粘油水剂量筒,该粘油水剂量筒的进口借助粘油水供应泵与所述粘油水供应箱连通,该粘油水剂量筒的出口通过阀门与位于所述乳化液混合罐内的能将进料直接送入该乳化液混合罐下部的进料管组件连通;
第一撞击混合器,所述第一撞击混合器包括具有液柱喷嘴出口的进液管、具有液柱喷嘴出口的出液管和撞击喷嘴出口的出液管,该第一撞击混合器的进液管借助第一循环混合泵与所述乳化液混合罐的漏斗形罐底连通,该第一撞击混合器的液柱喷嘴出口和撞击喷嘴出口分别设置于所述乳化液混合罐的空气空间内;
所述柴油剂量筒和粘油水剂量筒的容量比例与所设定柴油和粘油水的配比相等,所述柴油剂量筒和粘油水剂量筒的容量之和小于所述乳化液混合罐的容量。
提供一种柴油乳化燃料制备方法,基于上述柴油乳化燃料制备系统,先将表面活性剂和水混合形成粘油水,再将粘油水与柴油混合形成乳化燃料,其中,将表面活性剂和水混合形成粘油水包括以下步骤:
A.所述表面活性剂供应泵打开,从表面活性剂供应箱向表面活性剂剂量筒加注表面活性剂,当表面活性剂剂量筒加满时,表面活性剂供应泵关闭;
B.所述水供应泵打开,从水供应箱向水剂量筒加注水,当水剂量筒加满时,水供应泵关闭;
C.将表面活性剂剂量筒内的表面活性剂和水剂量筒内的水进行预混合;
D.通过循环传输泵将预混合后的混合物至少通过进料管组件进入粘油水混合罐的下部;
E.在第二循环混合泵的作用下开启粘油水混合罐的混合循环,粘油水混合罐内的混合物从粘油水混合罐的漏斗形罐底流出、并通过第二撞击混合器内部冲击混合后,再通过第二撞击混合器的喷嘴和撞击喷嘴喷入所述粘油水混合罐;
F.步骤(E)的混合循环经过设定时间,粘油水混合罐内的制备好的粘油水通过位于粘油水混合罐底部的出口排出;
将粘油水与柴油混合形成乳化燃料包括以下步骤:
(1)打开所述粘油水供应泵,从粘油水供应箱向粘油水剂量筒加注粘油水,当该粘油水剂量筒加满时,所述粘油水供应泵关闭;
(2)打开所述柴油供应泵,从柴油供应箱向柴油剂量筒加注柴油,当柴油剂量筒加满时,柴油供应泵关闭;
(3)打开所述粘油水剂量筒的出口阀,该粘油水剂量筒的粘油水通过重力经进料管组件进入乳化液混合罐底部;
(4)步骤(3)中的粘油水剂量筒内的粘油水全部进料之后,打开柴油剂量筒的出口阀,来自柴油剂量筒的柴油通过重力经进料管组件全部进入乳化液混合罐底部;
(5)在第一循环混合泵的作用下,乳化液混合罐内的混合物从乳化液混合罐的漏斗形罐底流出进行循环,并通过第一撞击混合器内部撞击混合后,再通过第一撞击混合器的液柱喷嘴和撞击喷嘴喷入所述乳化液混合罐;
(6)步骤(5)的循环混合经过设定时间,乳化液混合罐内的制备好的燃料通过位于乳化液混合罐底部的出口排出。
与现有技术相比,本发明具有以下有益效果:采用剂量筒,实现用简单的结构和方法实现原料的精确配比;并且通过撞击混合器、循环混合泵和混合罐形成的混合结构,原料通 过进料管一直输送至混合罐的底部,在原料分层之前由循环混合泵抽出送至撞击混合器混合之后再喷射进入混合罐的空气空间内进一步破碎混合颗粒,如此循环混合设定时间,极大提高了乳化燃料的均匀性,使用本发明所制备的乳化燃料在发动机内燃烧彻底,发动机排放极低,动力足。
附图说明
图1是本发明柴油乳化燃料制备系统的结构原理示意图;
图2是本发明粘油水混合装置的结构原理示意图;
图3是本发明柴油乳化燃料制备系统实施例的结构示意图;
图4是本发明实施例混合罐的形状结构示意图;
图5是本发明实施例混合罐的俯视示意图;
图6是本发明实施例的水供应箱的立体示意图;
图7是本发明实施例的进料管组件的结构示意图;
图8是本发明实施例的撞击混合器的结构示意图;
图9是本发明实施例的剂量筒的结构示意图;
图10是本发明的剂量筒假设倾斜设置时导致计量不准确的原理示意图;
图11是本发明实施例的液柱喷嘴的喷射效果示意图;
图12是本发明实施例的撞击喷嘴的喷射效果示意图;
图13是本发明实施例的消泡喷嘴的喷射效果示意图。
附图标记
部件/位置名称 附图标记 部件/位置名称 附图标记
柴油剂量筒 T1 水剂量筒 t1
粘油水剂量筒 T2 表面活性剂剂量筒 t2
乳化液混合罐 T3 粘油水混合罐 t3
柴油供应箱 T4 过滤网 t1A
粘油水供应箱 T5 粘油水箱 t4
第一撞击混合器 M1 撞击筒 t5
第二撞击混合器 M2 水供应箱 t6
第三撞击混合器 M3 表面活性剂供应箱 t7
第四撞击混合器 M4 水过滤单元 t8
柴油供应泵 P1 表面活性剂存储箱 t9
粘油水供应泵 P2 进料管组件 FPA
第一循环混合泵 P3 圆柱形上部 11
表面活性剂供应泵 P4 圆锥形下部 12
水供应泵 P5 正压过滤进口 13
第二循环混合泵 P6 出口 14
第三循环混合泵 P7 球阀 15
循环传输泵 P8 单向阀 16
柴油泵 P9 排气阀 17
粘油水泵 P10 进料管 21
腔体 31 高度调节器 22
出液管 32 锥形出口 23
均衡筒 34 通气口 24
进液管 35 消泡撞击喷嘴 AFN
液位 36 消泡通气阀 AFV
空气空间 37 撞击喷嘴 IN
液柱喷嘴 JN 通气切断阀 41
液面 42 空气空间 43
具体实施方式
现结合附图,对本发明的较佳实施例作详细说明。
如图1所示,一种柴油乳化燃料制备系统,包括乳化燃料混合模块和粘油水混合装置。其中,乳化燃料混合模块又包括柴油剂量筒T1、粘油水剂量筒T2、乳化液混合罐T3、柴油供应箱T4、粘油水供应箱T5、第一撞击混合器M1、柴油供应泵P1、粘油水供应泵P2和第一循环混合泵P3。所述粘油水混合装置与粘油水供应箱T5相连,用于将水与表面活性剂混合。
所述柴油剂量筒T1的进口借助柴油供应泵P1与所述柴油供应箱T4连通,该柴油剂量筒T1的出口通过阀门与位于乳化液混合罐T3内部的进料管组件FPA连通。所述粘油水剂量筒T2的进口借助粘油水供应泵P2与所述粘油水供应箱T5连通,该粘油水剂量筒T2的 出口通过阀门与所述进料管组件FPA连通。所述第一撞击混合器M1包括具有液柱喷嘴出口的进液管、具有液柱喷嘴出口的出液管和撞击喷嘴出口的出液管,该第一撞击混合器M1的进液管借助第一循环混合泵P3与所述乳化液混合罐T3的漏斗形罐底连通,该第一撞击混合器M1的液柱喷嘴出口和撞击喷嘴出口分别设置于所述乳化液混合罐T3的上部。所述第一撞击混合器M1和第一循环混合泵P3组成燃料混合环路。本实施例中,燃料混合环路设有两个,两个燃料混合环路分别设置在所述乳化液混合罐T3的两侧。
一些实施例中,如图1所示,所述粘油水混合装置作为一个模块与柴油乳化燃料制备系统的粘油水供应箱T5相连。另一些实施例中,所述粘油水混合装置也可以单独作为一个装置生产粘油水,不与柴油乳化燃料制备系统相连。
所述粘油水混合装置如图2所示,包括表面活性剂供应箱t7、水供应箱t6、表面活性剂剂量筒t2、水剂量筒t1、粘油水混合罐t3、第二撞击混合器M2、表面活性剂供应泵P4、水供应泵P5和第二循环混合泵P6。
所述表面活性剂剂量筒t2的进口借助表面活性剂供应泵P4与所述表面活性剂供应箱t7连通,该表面活性剂剂量筒t2的出口通过阀门与水剂量筒t1连通;该水剂量筒t1的底部借助水供应泵P5与所述水供应箱t6的底部连通,该水剂量筒t1的出口至少通过阀门和与位于所述粘油水混合罐t3内部的进料管组件FPA连通。
所述第二撞击混合器M2包括具有液柱喷嘴出口的进液管、具有液柱喷嘴出口的出液管和撞击喷嘴出口的出液管,该第二撞击混合器M2的进液管借助第二循环混合泵P6与所述粘油水混合罐t3的漏斗形罐底连通,该第二撞击混合器M2的喷嘴出口和撞击喷嘴出口分别设置于所述粘油水混合罐t3的上部。所述第二撞击混合器M2和第二循环混合泵P6组成粘油水混合环路。本实施例中,粘油水混合环路设有两个,两个粘油水混合环路分别设置在所述粘油水混合罐t3的两侧。
一些实施例中,所述粘油水混合装置还包括第三撞击混合器M3,所述第三撞击混合器M3包括具有液柱喷嘴出口的进液管、具有液柱喷嘴出口的出液管和撞击喷嘴出口的出液管,该第三撞击混合器M3的进液管借助第三循环混合泵P7与所述水剂量筒t1上部连通,该第三撞击混合器M3的喷嘴出口和撞击喷嘴出口分别设置于所述粘油水混合罐t3的上部。
一些实施例中,所述水剂量筒t1上部具有过滤网t1A,比如不锈钢过滤网,所述第三撞击混合器M3的喷嘴出口和撞击喷嘴出口位于该过滤网t1A内。所述过滤网t1A、第三撞击混合器M3和第三循环混合泵D组成水剂量筒上部循环系统。该上部循环系统可以促进水剂量筒上部的表面活性剂胶束破碎。表面活性剂进入过滤网内,在那里它们通过连接到第 三循环混合泵D的出口管被吸出,并通过第三撞击混合器M3循环,然后通过喷嘴重新进入过滤网t1A内。第三撞击混合器M3促进表面活性剂胶束分裂,喷嘴有助于表面活性剂胶束的分散。只有足够小的胶束可以通过过滤网网孔不再参与上部循环,而大于过滤网网孔的表面活性剂胶束留在过滤网内进一步分裂和分散。
一些实施例中,所述粘油水混合装置还包括第四撞击混合器M4、循环传输泵P8和撞击筒t5,所述第四撞击混合器M4和其它撞击混合器一样包括具有液柱喷嘴出口的进液管、具有液柱喷嘴出口的出液管和撞击喷嘴出口的出液管,该第四撞击混合器M4的进液管借助循环传输泵P8与所述水剂量筒t1底部连接,该第四撞击混合器M4的喷嘴出口和撞击喷嘴出口分别与撞击筒t5连接;所述撞击筒t5设置于所述粘油水混合罐的上部,与所述进料管组件FPA的上端连接。
一些实施例中,如图2所示,所述表面活性剂剂量筒t2的一侧壁连接有液柱喷嘴JN,从所述表面活性剂剂量筒出来的液体依次经过水剂量筒t1、循环传输泵P8和所述液柱喷嘴,由该液柱喷嘴喷射至所述表面活性剂剂量筒t2的另一侧壁。
一些实施例中,第二撞击混合器M2还包括具有消泡撞击喷嘴的出液管,该消泡撞击喷嘴AFN设置在所述粘油水混合罐一侧壁上部。由于泡沫会降低撞击喷嘴的性能,消泡撞击喷嘴用于让粘油水混合罐t3上部保持足够的空气空间以实现最佳混合。一些实施例中,粘油水混合罐t3顶部还设有消泡通气阀AFV。
为了使粘油水混合罐t3的液面和罐顶之间保持有空气空间,所述粘油混合罐t3的容积大于表面活性剂剂量筒t2和水剂量筒t1的容积之和。同理,所述乳化液混合罐T3的容积大于柴油剂量筒T1和粘油水计量积箱T2的容量之和,乳化液混合罐T3的液面和罐顶之间保持有空气空间。
各剂量筒内设有浮球切断阀。浮球切断阀便于各剂量筒的自动填充和排放。
如图8所示,各撞击混合器包括腔体31、进液管35、出液管32和均衡筒34。所述进液管具有液柱喷嘴出口,出液管设有两条,其中一条具有液柱喷嘴出口,另外一条出液管上设有均衡筒34,该均衡筒34连接有两个撞击喷嘴出口。撞击混合器的腔体31内部保持有空气空间37,其进液管的出口位于空气空间内。其出液管的入口靠近腔体31的底部,当液位36上升时,空气被截留在里面。由于撞击力在空气中比在液体中更大,因此利用空气空间增强射流冲击来破碎混合小球,以确保冲击破碎的最佳效果。
所述水供应箱t6的结构如图6所示,包括圆柱形上部11和圆锥形下部12。圆柱形上部11的侧面设有正压过滤进水口13,进水口内设有单向阀16防止回流;圆锥形下部12 的下端设有出口14,出口内设有球阀15,圆柱形上部11的顶面设有开/关排气阀17。当连接到正压供料源,如水龙头时,该水供应箱t6便于自动装载。开/关排气阀17是手动打开的,以在装载过程中排出空气。一旦剂量筒加满,排气阀17关闭。进口处的单向阀防止回流。当内部的液体被抽出时,剂量筒会自动注满。水通过进口被吸入剂量筒,避免了利用浮球阀可能产生的泄漏问题。
各进料管组件FPA如图7所示,包括进料管21、位于该进料管上端的高度调节器22和位于该进料管下端的锥形出口23。如图4所示,该锥形出口23靠近混合罐的漏斗形罐底。锥形出口23与混合罐的漏斗形罐底之间的间隙W可以通过调整进料管的高度来调节,而高度调节器22用于调节进料管的高度。锥形出口23与混合罐的漏斗形罐底之间的间隙变化可以控制进料速度。一些实施例中,如图5所示,进料管21设置在混合罐顶面的中心。所述乳化液混合罐T3的顶面还设置有撞击混合器的液柱喷嘴JN、撞击喷嘴IN以及通气口24。
上述柴油剂量筒T1、粘油水剂量筒T2、表面活性剂剂量筒t2和水剂量筒t1顶部都设有通气切断阀,当剂量筒被加满时,通气切断阀将其剂量筒关闭。为了保证计量精度,上述柴油剂量筒T1、粘油水剂量筒T2、表面活性剂剂量筒t2和水剂量筒t1均为垂直水平面设置,利用可调安装支架可以实现该目的。图9是粘油水剂量筒T2为垂直水平面设置的示意图。假设剂量筒歪斜,如图10所示,液面42已经达到通气切断阀比如浮球阀的位置,该通气切断阀已经关闭剂量筒的通气口,即剂量筒已经视为加满。但是,高于通气切断阀的三角形区域实际上是空气空间43,也就是说,剂量筒倾斜时实际上不可能被加满,这样将影响计量精度。而如果浮球阀没有完全关闭,则会发生溢流。
所述液柱喷嘴、撞击喷嘴和消泡喷嘴均属于现有技术,其喷射效果图分别如图11、图12和图13所示,具体结构此处不再赘述。
一种柴油乳化燃料制备方法的实施例,如图1所示,基于上述柴油乳化燃料制备系统,包括以下步骤:
(1)打开粘油水供应泵P2,开始向粘油水剂量筒T2加注粘油水。当粘油水剂量筒T2加满时,粘油水供应泵P2内的浮球切断阀将其自动关闭。
(2)打开粘油水剂量筒T2的出口阀,粘油水剂量筒T2内的粘油水通过重力进入乳化液混合罐T3。
(3)打开柴油供应泵P1,开始加注柴油剂量筒T1,柴油剂量筒T1内的浮球切断阀将其自动关闭。
(4)打开柴油剂量筒T1的出口阀,来自柴油剂量筒T1的柴油通过重力进入乳化液混合罐T3。
(5)系统启动时,打开第一循环混合泵P3。乳化液混合罐内的混合物从乳化液混合罐的漏斗形罐底流出进行循环,并通过第一撞击混合器M1内部冲击混合后,再通过第一撞击混合器M1的喷嘴和撞击喷嘴喷入所述乳化液混合罐。
(6)经过设定时间的循环混合,乳化液混合罐T3内制备好的乳化燃料通过位于乳化液混合罐T3底部的出口排出。
一实施例中,柴油乳化燃料制备方法具体操作步骤如图3所示:
第一步,首次启动,加注供应箱。
1.打开系统电源;
2.打开阀门V6,关闭阀门V7,柴油泵P9启动给柴油供应箱T4加油;
3.打开阀门V9,关闭阀门V8,粘油水泵P10启动给粘油水供应箱T5加注;
4.当柴油供应箱T4和粘油水供应箱T5加满时,泵P9和P10将自动停止。
第二步,启动混合系统。
1.打开阀门V7和V8,关闭阀门V1和V2。
2.在柴油供应泵P1的作用下加注柴油剂量筒T1,在粘油水供应泵P2的作用下加注粘油水剂量筒T2。
3.当柴油剂量筒T1和粘油水剂量筒T2加满时,柴油供应泵P1和粘油水供应泵P2将自动停止。
4.关闭阀门V5,打开阀门V3和V4。
5.打开阀门V2,粘油水通过重力加入乳化液混合罐T3。
6.在第一循环混合泵P3的作用下,开始混合过程。
7.设定装载和混合时间之后,关闭阀门V2,打开阀门V1,柴油通过重力加入乳化液混合罐T3。
8.在第一循环混合泵P3的作用下,乳化液混合罐内的混合物从乳化液混合罐的漏斗形罐底流出进行循环,并通过第一撞击混合器M1内部混合室冲击混合后,再通过第一撞击混合器M1的喷嘴和撞击喷嘴喷入所述乳化液混合罐,从而将柴油和粘油水混合均匀成为符合标准的柴油乳化燃料。
柴油乳化燃料制备方法的工作原理如下:
1.粘油水和柴油都通过重力进入乳化液混合罐T3,采用重力进料方式可以通过改变出 口孔直径等优化工艺的手段,进行可靠的进料速度控制,并且有助于成本效益。
2.撞击混合器M1旨在通过向混合室上壁的坚硬表面喷射粘油水和柴油的混合物来促进“流体冲击混合”,这种撞击促进了表面活性剂小球的破碎。撞击混合器出液管的入口靠近混合室底部,这样可以将空气截留在混合室中。混合室压力是由输入流体量与输出流体量之间的差异产生的,而这差异是通过改变出口管道直径来实现的。
3.进料管下端的锥形出口确保柴油被输送到乳化液混合罐的底部,在那里与罐底的粘油水混合,然后被循环混合泵抽到M1撞击混合器内。通过调节乳化液混合罐T3的漏斗形底部和进料管锥形出口边缘之间的间隙,可以控制粘油水的进料速度。
4.浮球切断阀便于剂量筒的自动填充和排放。使用定量的剂量筒,可以准确可靠地控制柴油和粘油水的混合比例。
5.剂量筒的设计便于根据需求从船舶燃料供应中自动装载柴油,也同样适用于搅拌机连接到粘油水混合装置进行在线操作的情况。
本发明粘油水制备方法,如图2所示,包括以下步骤:
1.加注水剂量筒t1和表面活性剂剂量筒t2。
开启表面活性剂供应泵即表面活性剂供应泵P4和水供应泵P5;打开阀门1和阀门2,关闭阀门3和阀门4。当水剂量筒t1满时,水供应泵P5通过电气跳闸开关自动关闭。当表面活性剂校准箱t2满时,表面活性剂供应泵P4通过电动跳闸开关自动关闭。
2.开始表面活性剂和水的预混合过程。
打开循环传输泵P8和第三循环混合泵P7,打开阀门3、阀门4和阀门5,关闭阀门6,表面活性剂和水进行预混合。
一些实施例中,在预混合过程中,液体依次经过水剂量筒t1、循环传输泵P8和设置在表面活性剂剂量筒t2一侧壁的液柱喷嘴,喷射至所述表面活性剂剂量筒t2的另一侧壁,用于冲洗残留在所述表面活性剂剂量筒内壁上的表面活性剂。有助于表面活性剂和水的配比更加准确。
同时,在预混合期间,所述水剂量筒t1上部过滤网t1A内的液体,由所述第三循环混合泵P7吸出经过第三撞击混合器M3内部,再经过第三撞击混合器M3的喷嘴和撞击喷嘴喷入所述过滤网t1A内进行混合。
3.将预混合后的混合物输送至粘油水混合罐t3。
预混合开始后经设定时间如10分钟,循环传输泵P8保持打开状态,关闭第三循环混合泵P7;阀门3、阀门4和阀门5保持打开,再打开阀门6,向粘油水混合罐t3输送预混 合后的混合物。经过循环传输泵P8的预混合后的混合物依次通过第四撞击混合器M4、撞击筒t5和进料管组件FPA进到粘油水混合罐t3的漏斗形罐底。预混合后的混合物进入进料管组件之前还经过第四撞击混合器M4和撞击筒t5进行混合,所述第四撞击混合器M4的液柱喷嘴JN向所述撞击筒的侧壁喷射,其撞击喷嘴IN从所述撞击筒t5的顶部向下喷射。
同时,所述第四撞击混合器M4的消泡撞击喷嘴AFN从所述粘油水混合罐一侧壁喷射,用于消除混合液中过多的泡沫。
传输过程开始后一定时间如10分钟(时间可调节),或者根据粘油水混合罐t3内的压力传感器的感应信息,关闭循环传输泵P8,关闭阀门3、阀门4和阀门6,停止向粘油水混合罐t3输送预混合的混合物。
4.开启粘油水混合罐t3的混合循环
打开第二循环混合泵P6,打开阀门7,关闭阀门8,在第二循环混合泵P6的作用下开启粘油水混合罐t3的混合循环,粘油水混合罐t3内的混合物从粘油水混合罐t3的漏斗形罐底流出、并通过第二撞击混合器M2内部冲击混合后,再通过第二撞击混合器M2的喷嘴和撞击喷嘴喷入所述粘油水混合罐t3。循环过程将继续运行预定时间如15分钟。
5.将制备好的粘油水转移到粘油水箱t4
第二循环混合泵P6保持打开状态,打开阀门8,关闭阀门7,将制备好的粘油水转移到粘油水箱t4。
如图2所示,本发明的粘油水混合装置中:
1.表面活性剂和水的预混合通过位于表面活性剂剂量罐t2的罐壁上的喷嘴来循环混合物,有助于去除粘附在表面活性剂剂量罐t2罐壁上的残留表面活性剂,能保证配比的准确性。粘附在t2壁上的残留表面活性剂表示表面活性剂未使用,这将对表面活性剂和水的混合比产生负面影响。
2.校准水剂量罐t1具有上部循环系统,以促进表面活性剂小球破碎。表面活性剂进入的金属过滤网t1A内,在那里它们通过连接到第三循环混合泵P7的出口管被吸出,并通过第三撞击混合器M3循环,然后通过喷嘴重新进入t1A。第三撞击混合器M3促进表面活性剂胶束分裂,喷嘴有助于表面活性剂胶束的分散。只有小的胶束和水可以通过金属过滤网。
3.因为亲水性油水表面活性剂的性质,粘油水单独制备有利于生产油包水乳液。而只有油包裹的水滴在进入热燃烧室时才能产生所需的二次雾化。
4.可调节高度控制的进料管组件FPA将乳化剂和含表面活性剂胶束的水的混合物直接输送到t3的底部,在那里它们立即被第二循环混合泵P6吸出,并转移到第二撞击混合 器M2,在那里混合物被喷射到混合器顶部的硬表面上,以破碎胶束小球。混合物离开第二撞击混合器M2,通过撞击喷嘴和喷射喷嘴进入t3,以进一步减少胶束颗粒。这种方法使所有胶束受到高冲击力。它比传统的高剪切混合搅拌器更有效,在传统搅拌器中,很难确保胶束的满负荷被切碎。这一过程优化了表面活性剂的使用。
本发明运行原则和机制如下:
1.油水表面活性剂在与油或水接触时形成胶束(小球)。
2.本发明使用撞击力来破碎这些小球。
3.由于撞击力在空气中比在液体中更大,因此形成空气空间以确保最佳效果。
4.混合罐的设计容量大于装设不同原料的两个剂量筒的总容量,以便在液面和罐顶之间形成空气空间。混合罐液位上方的空气空间增强了位于罐顶部的撞击喷嘴的性能。
5.由于泡沫会降低撞击喷嘴的性能,位于撞击喷嘴下方空气空间的消泡喷嘴用于保持足够的空气空间以实现最佳混合。
6.撞击混合器被设计成在罐内产生空气空间,以增强射流冲击来破碎小球。输出管的入口靠近撞击混合器的底部。当液位上升时,空气被截留在里面。
7.校准剂量罐准确可靠。它们还有助于确定混合罐的尺寸,从而在液面和罐顶之间提供一个空间。
8.浮球排放/关闭阀便于校准进料罐的自动填充/排放。
由于自来水广泛可用,模块化的柴油乳化燃料制备系统的生产消除了水的运输成本。将柴油乳化燃料制备系统设在加油站附近可以进一步降低成本。模块化系统允许参与的石油供应商根据每个地区的需求来确定其柴油乳化燃料制备系统工厂的规模。
本发明可以为发动机制造方提供一种成本效益高的柴油乳化燃料制备系统,可以减少碳排放、氮氧化物、碳氢化合物、一氧化碳、颗粒物和其他污染物。第二个目标是为石油供应方提供有效生产和分配乳化柴油的方法。解决柴油乳化燃料的分散相向下沉降问题,以确保燃料的均匀性。柴油乳化燃料制备系统可设在加油站附近,可以利用当地现有的柴油和自来水供应,从而降低物流成本。
应当理解的是,以上实施例仅用以说明本发明的技术方案,而非对其限制,对本领域技术人员来说,可以对上述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改和替换,都应属于本发明所附权利要求的保护范围。

Claims (26)

  1. 一种粘油水制备装置,其特征在于:包括表面活性剂供应箱、水供应箱、表面活性剂剂量筒、水剂量筒、粘油水混合罐和第二撞击混合器;
    所述表面活性剂剂量筒的进口借助表面活性剂供应泵与所述表面活性剂供应箱连通,该表面活性剂剂量筒的出口通过阀门与水剂量筒连通;该水剂量筒的底部借助水供应泵与所述水供应箱的底部相连,该水剂量筒的出口至少通过阀门和与位于所述粘油水混合罐内部的能将进料直接送入该粘油水混合罐下部的进料管组件连通;
    所述第二撞击混合器包括具有液柱喷嘴出口的进液管、具有液柱喷嘴出口的出液管和撞击喷嘴出口的出液管,该第二撞击混合器的进液管借助第二循环混合泵与所述粘油水混合罐的罐底连通,该第二撞击混合器的喷嘴出口和撞击喷嘴出口分别设置于所述粘油水混合罐的空气空间内;
    所述表面活性剂剂量筒和水剂量筒的容量比例与所设定待制备粘油水中所含表面活性剂和水的配比相等,所述表面活性剂剂量筒和水剂量筒的容量之和小于所述粘油水混合罐的容量。
  2. 根据权利要求1所述的粘油水制备装置,其特征在于:还包括第三撞击混合器,所述第三撞击混合器包括具有液柱喷嘴出口的进液管、具有液柱喷嘴出口的出液管和撞击喷嘴出口的出液管,该第三撞击混合器的进液管借助第三循环混合泵与所述水剂量筒上部连通,该第三撞击混合器的喷嘴出口和撞击喷嘴出口分别设置于所述水剂量筒上部的空气空间内。
  3. 根据权利要求2所述的粘油水制备装置,其特征在于:所述水剂量筒上部具有过滤网,所述第三撞击混合器的喷嘴出口和撞击喷嘴出口位于该过滤网的上方。
  4. 根据权利要求1所述的粘油水混合装置,其特征在于:所述表面活性剂剂量筒的一侧壁连接有液柱喷嘴,从所述表面活性剂剂量筒出来的液体依次经过水剂量筒、循环传输泵和所述液柱喷嘴,由该液柱喷嘴喷射至所述表面活性剂剂量筒的另一侧壁。
  5. 根据权利要求1所述的粘油水制备装置,其特征在于:还包括第四撞击混合器、循环传输泵和撞击筒,所述第四撞击混合器包括具有液柱喷嘴出口的进液管、具有液柱喷嘴出口的出液管和撞击喷嘴出口的出液管,该第四撞击混合器的进液管借助循环传输泵与所述水剂量筒底部连接,该第四撞击混合器的液柱喷嘴出口与撞击筒的一侧壁连接,该第四撞击混合器的撞击喷嘴出口与撞击筒的顶部连接;所述撞击筒设置于所述粘油水混合罐的上部,与所述进料管组件的上端连接。
  6. 根据权利要求1所述的粘油水制备装置,其特征在于:第二撞击混合器还包括消泡的撞击喷嘴,该消泡的撞击喷嘴设置在所述粘油水混合罐一侧壁上部。
  7. 根据权利要求1所述的粘油水制备装置,其特征在于:所述撞击混合器内部保持有空气 空间,其进液管的出口位于其空气空间内,其出液管的入口靠近撞击混合器的底部。
  8. 根据权利要求1所述的粘油水制备装置,其特征在于:所述进料管组件包括进料管、位于该进料管上端的高度调节器和位于该进料管下端的锥形出口。
  9. 根据权利要求1所述的粘油水制备装置,其特征在于:所述表面活性剂剂量筒和水剂量筒均垂直水平面设置。
  10. 一种粘油水制备方法,基于权利要求1至9任一项所述的粘油水制备装置,其特征在于:将表面活性剂和水混合形成粘油水包括以下步骤:
    A.所述表面活性剂供应泵打开,从表面活性剂供应箱向表面活性剂剂量筒加注表面活性剂,当表面活性剂剂量筒加满时,表面活性剂供应泵关闭;
    B.所述水供应泵打开,从水供应箱向水剂量筒加注水,当水剂量筒加满时,水供应泵关闭;C.将表面活性剂剂量筒内的表面活性剂和水剂量筒内的水进行预混合;
    D.通过循环传输泵将预混合后的混合物至少通过进料管组件进入粘油水混合罐的下部;
    E.在第二循环混合泵的作用下开启粘油水混合罐的混合循环,粘油水混合罐内的混合物从粘油水混合罐的漏斗形罐底流出、并通过第二撞击混合器内部冲击混合后,再通过第二撞击混合器的喷嘴和撞击喷嘴喷入所述粘油水混合罐;
    F.步骤(E)的混合循环经过设定时间,粘油水混合罐内的制备好的粘油水通过位于粘油水混合罐底部的出口排出。
  11. 根据权利要求10所述的粘油水制备方法,其特征在于:从所述水剂量筒出来的液体依次经过循环传输泵和所述液柱喷嘴,由该液柱喷嘴喷射至所述表面活性剂剂量筒的另一侧壁,用于冲洗残留在所述表面活性剂剂量筒内壁上的表面活性剂。
  12. 根据权利要求11所述的粘油水制备方法,其特征在于,所述步骤C中的表面活性剂和水的预混合是指:所述水剂量筒上部的过滤网内的液体,由所述第三循环混合泵吸出经过第三撞击混合器内部,再经过第三撞击混合器的喷嘴和撞击喷嘴喷入所述过滤网内。
  13. 根据权利要求11所述的粘油水制备方法,其特征在于:所述步骤D中,预混合后的混合物进入进料管组件之前还经过第四撞击混合器和撞击筒进行混合,所述第四撞击混合器的液柱喷嘴出口向所述撞击筒的侧壁喷射,所述第四撞击混合器的撞击喷嘴从所述撞击筒的顶部向下喷射。
  14. 根据权利要求13所述的粘油水制备方法,其特征在于:所述第四撞击混合器的消泡的撞击喷嘴从所述粘油水混合罐一侧壁喷射,用于消除混合液中过多的泡沫。
  15. 一种柴油乳化燃料制备系统,包括柴油供应箱、粘油水供应箱、乳化液混合罐,其特征 在于,还包括:与粘油水供应箱相连的用于将水与表面活性剂混合的如权利要求1至9任一项所述的粘油水混合装置;以及
    柴油剂量筒,该柴油剂量筒的进口借助柴油供应泵与所述柴油供应箱连通,该柴油剂量筒的出口通过阀门与位于乳化液混合罐内部的进料管组件连通;
    粘油水剂量筒,该粘油水剂量筒的进口借助粘油水供应泵与所述粘油水供应箱连通,该粘油水剂量筒的出口通过阀门与位于所述乳化液混合罐内的能将进料直接送入该乳化液混合罐下部的进料管组件连通;
    第一撞击混合器,所述第一撞击混合器包括具有液柱喷嘴出口的进液管、具有液柱喷嘴出口的出液管和撞击喷嘴出口的出液管,该第一撞击混合器的进液管借助第一循环混合泵与所述乳化液混合罐的漏斗形罐底连通,该第一撞击混合器的液柱喷嘴出口和撞击喷嘴出口分别设置于所述乳化液混合罐的空气空间内;
    所述柴油剂量筒和粘油水剂量筒的容量比例与所设定柴油和粘油水的配比相等,所述柴油剂量筒和粘油水剂量筒的容量之和小于所述乳化液混合罐的容量。
  16. 根据权利要求15所述的柴油乳化燃料制备系统,其特征在于:所述乳化液混合罐的进料管组件包括进料管、位于该进料管上端的高度调节器和位于该进料管下端的锥形出口,该锥形出口靠近所述乳化液混合罐的漏斗形罐底,所述粘油水剂量筒内的粘油水和柴油剂量筒内的柴油通过所述进料管组件一直输送至乳化液混合罐的底部。
  17. 根据权利要求15所述的柴油乳化燃料制备系统,其特征在于:所述柴油剂量筒和粘油水剂量筒内设有浮球切断阀。
  18. 根据权利要求15所述的柴油乳化燃料制备系统,其特征在于:第一撞击混合器内部保持有空气空间,其进液管的出口位于其空气空间内,其出液管的入口靠近撞击混合器的底部。
  19. 根据权利要求15所述的柴油乳化燃料制备系统,其特征在于:所述柴油剂量筒和粘油水剂量筒均垂直水平面设置。
  20. 一种柴油乳化燃料制备方法,基于权利要求13所述的柴油乳化燃料制备系统,先将表面活性剂和水混合形成粘油水,再将粘油水与柴油混合形成乳化燃料,其特征在于,
    将表面活性剂和水混合形成粘油水包括以下步骤:
    A.所述表面活性剂供应泵打开,从表面活性剂供应箱向表面活性剂剂量筒加注表面活性剂,当表面活性剂剂量筒加满时,表面活性剂供应泵关闭;
    B.所述水供应泵打开,从水供应箱向水剂量筒加注水,当水剂量筒加满时,水供应泵关闭;
    C.将表面活性剂剂量筒内的表面活性剂和水剂量筒内的水进行预混合;
    D.通过循环传输泵将预混合后的混合物至少通过进料管组件进入粘油水混合罐的下部;
    E.在第二循环混合泵的作用下开启粘油水混合罐的混合循环,粘油水混合罐内的混合物从粘油水混合罐的漏斗形罐底流出、并通过第二撞击混合器内部冲击混合后,再通过第二撞击混合器的喷嘴和撞击喷嘴喷入所述粘油水混合罐;
    F.步骤(E)的混合循环经过设定时间,粘油水混合罐内的制备好的粘油水通过位于粘油水混合罐底部的出口排出;
    将粘油水与柴油混合形成乳化燃料包括以下步骤:
    (1)打开所述粘油水供应泵,从粘油水供应箱向粘油水剂量筒加注粘油水,当该粘油水剂量筒加满时,所述粘油水供应泵关闭;
    (2)打开所述柴油供应泵,从柴油供应箱向柴油剂量筒加注柴油,当柴油剂量筒加满时,柴油供应泵关闭;
    (3)打开所述粘油水剂量筒的出口阀,该粘油水剂量筒的粘油水通过重力经进料管组件进入乳化液混合罐底部;
    (4)步骤(3)中的粘油水剂量筒内的粘油水全部进料之后,打开柴油剂量筒的出口阀,来自柴油剂量筒的柴油通过重力经进料管组件全部进入乳化液混合罐底部;
    (5)在第一循环混合泵的作用下,乳化液混合罐内的混合物从乳化液混合罐的漏斗形罐底流出进行循环,并通过第一撞击混合器内部撞击混合后,再通过第一撞击混合器的液柱喷嘴和撞击喷嘴喷入所述乳化液混合罐;
    (6)步骤(5)的循环混合经过设定时间,乳化液混合罐内的制备好的燃料通过位于乳化液混合罐底部的出口排出。
  21. 根据权利要求20所述的柴油乳化燃料制备方法,其特征在于:所述乳化液混合罐的漏斗形罐底与进料管组件的锥形出口边缘之间的间隙通过所述调整进料管的高度来调整,从而控制所述粘油水的进料速度。
  22. 根据权利要求20所述的柴油乳化燃料制备方法,其特征在于:步骤(4)中的柴油剂量筒的柴油进料速度通过柴油剂量筒下部的出口管径控制。
  23. 根据权利要求20所述的柴油乳化燃料制备方法,其特征在于:将表面活性剂和水混合形成粘油水时,从所述水剂量筒出来的液体依次经过循环传输泵和所述液柱喷嘴,由该液柱喷嘴喷射至所述表面活性剂剂量筒的另一侧壁,用于冲洗残留在所述表面活性剂剂量筒内壁上的表面活性剂。
  24. 根据权利要求20所述的柴油乳化燃料制备方法,其特征在于,所述步骤C中的表面活性剂和水的预混合是指:所述水剂量筒上部的过滤网内的液体,由所述第三循环混合泵吸出经过第三撞击混合器内部,再经过第三撞击混合器的喷嘴和撞击喷嘴喷入所述过滤网内。
  25. 根据权利要求20所述的柴油乳化燃料制备方法,其特征在于:所述步骤D中,预混合后的混合物进入进料管组件之前还经过第四撞击混合器和撞击筒进行混合,所述第四撞击混合器的液柱喷嘴出口向所述撞击筒的侧壁喷射,所述第四撞击混合器的撞击喷嘴从所述撞击筒的顶部向下喷射。
  26. 根据权利要求20所述的柴油乳化燃料制备方法,其特征在于:将表面活性剂和水混合形成粘油水时,所述第四撞击混合器的消泡的撞击喷嘴从所述粘油水混合罐一侧壁喷射,用于消除混合液中过多的泡沫。
PCT/CN2022/108083 2021-10-12 2022-07-27 粘油水制备装置和方法、以及柴油乳化燃料制备系统和方法 WO2023060983A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111187399.5 2021-10-12
CN202111187399.5A CN115957648A (zh) 2021-10-12 2021-10-12 粘油水制备装置和方法、以及柴油乳化燃料制备系统和方法

Publications (1)

Publication Number Publication Date
WO2023060983A1 true WO2023060983A1 (zh) 2023-04-20

Family

ID=85903542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108083 WO2023060983A1 (zh) 2021-10-12 2022-07-27 粘油水制备装置和方法、以及柴油乳化燃料制备系统和方法

Country Status (2)

Country Link
CN (1) CN115957648A (zh)
WO (1) WO2023060983A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001329275A (ja) * 2000-05-24 2001-11-27 Mn Engineering Kk 液状化燃料とその製造方法
CN200957338Y (zh) * 2006-07-20 2007-10-10 九江学院 撞击流—平推流串联吸收器
CN101665727A (zh) * 2009-08-07 2010-03-10 中北大学 连续制备甲醇乳化柴油的方法和装置
CN111957219A (zh) * 2019-09-02 2020-11-20 陈捷 乳化水和乳化柴油的制备装置及方法
CN216678018U (zh) * 2021-10-12 2022-06-07 深圳洛喀奔化工科技有限公司 粘油水制备装置和柴油乳化燃料制备系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001329275A (ja) * 2000-05-24 2001-11-27 Mn Engineering Kk 液状化燃料とその製造方法
CN200957338Y (zh) * 2006-07-20 2007-10-10 九江学院 撞击流—平推流串联吸收器
CN101665727A (zh) * 2009-08-07 2010-03-10 中北大学 连续制备甲醇乳化柴油的方法和装置
CN111957219A (zh) * 2019-09-02 2020-11-20 陈捷 乳化水和乳化柴油的制备装置及方法
CN216678018U (zh) * 2021-10-12 2022-06-07 深圳洛喀奔化工科技有限公司 粘油水制备装置和柴油乳化燃料制备系统

Also Published As

Publication number Publication date
CN115957648A (zh) 2023-04-14

Similar Documents

Publication Publication Date Title
US4117550A (en) Emulsifying system
EP0263443B1 (de) Verfahren und Gerät zur Erzeugung einer Wasser-in-Oel-Emulsion
US20090078226A1 (en) Method and system for liquid fuel conditioning
JP6023697B2 (ja) 実時間インライン水−燃料エマルションの装置、プロセスおよびシステム
US20100126059A1 (en) Water emulsion production apparatus
CA2704925C (en) Method and system for liquid fuel conditioning
CN101773796A (zh) 一种柴油、甲醇和水三组元乳化液乳化方法
CN216678018U (zh) 粘油水制备装置和柴油乳化燃料制备系统
WO2023060983A1 (zh) 粘油水制备装置和方法、以及柴油乳化燃料制备系统和方法
RU2669628C1 (ru) Способ приготовления эмульсии, устройство для приготовления указанной эмульсии и транспортное средство
CA1134148A (en) Fuel producing system for solid/liquid mixtures
EP0009520B1 (en) Emulsifying system and method for mixing accurate quantities of two or more liquids
CN210584535U (zh) 乳化水和乳化柴油的制备装置
KR100443429B1 (ko) 중유믹싱 및 공급장치
KR20140062245A (ko) 고압분사를 이용한 유화연료 제조장치
CN111957219A (zh) 乳化水和乳化柴油的制备装置及方法
GB2233572A (en) Producing water-in-oil emulsions
CN2585686Y (zh) 一种可调式塔板循环乳化器及采用该乳化器的乳化装置
CN102527284B (zh) 一种油水乳化装置
US5829417A (en) Process for improving fuel spraying in internal combustion engines
US20110174265A1 (en) Mixer for fuel feeding device
CA1041995A (en) Emulsifying system for constant, mixer-input-independent, delivery applications
RU2465952C2 (ru) Система приготовления водотопливной эмульсии для двигателя внутреннего сгорания
RU2309286C1 (ru) Способ приготовления водотопливной эмульсии и устройство для его осуществления
CN211619990U (zh) 微气泡产生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22879930

Country of ref document: EP

Kind code of ref document: A1