WO2023060892A1 - 一种 3d 激光雷达及足式机器人 - Google Patents

一种 3d 激光雷达及足式机器人 Download PDF

Info

Publication number
WO2023060892A1
WO2023060892A1 PCT/CN2022/093199 CN2022093199W WO2023060892A1 WO 2023060892 A1 WO2023060892 A1 WO 2023060892A1 CN 2022093199 W CN2022093199 W CN 2022093199W WO 2023060892 A1 WO2023060892 A1 WO 2023060892A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
reflector
laser radar
bottom casing
convex lens
Prior art date
Application number
PCT/CN2022/093199
Other languages
English (en)
French (fr)
Inventor
王兴兴
白晓阳
Original Assignee
杭州宇树科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州宇树科技有限公司 filed Critical 杭州宇树科技有限公司
Priority to EP22879842.7A priority Critical patent/EP4235213A1/en
Priority to JP2023530672A priority patent/JP7510730B2/ja
Priority to US18/263,292 priority patent/US20240094393A1/en
Publication of WO2023060892A1 publication Critical patent/WO2023060892A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/032Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legs; with alternately or sequentially lifted feet or skid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • B25J19/021Optical sensing devices
    • B25J19/022Optical sensing devices using lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/51Display arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0052Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the invention relates to the technical field of laser radar equipment, in particular to a 3D laser radar and a legged robot.
  • lidar is widely used in industrial surveying and mapping, 3D modeling, autonomous driving and other fields.
  • the mobile device emits a laser beam to the detected object around it, and then receives the light signal reflected by the detected object, and after processing, obtains the position information of the detected object around the mobile device.
  • Chinese patent (CN110488249A) discloses a laser radar device and a mobile robot, which includes a laser radar sensor, a rotating platform, and a base.
  • the laser radar sensor is arranged above the rotating platform, and the base is used to carry the rotating platform.
  • An adjusting device is provided between the lidar sensor and the rotating platform, and the adjusting device is configured to drive the lidar sensor to rotate around a first axis, and the first axis is parallel to the rotating platform.
  • the laser radar sensor can be adjusted in the vertical direction to realize scanning in three-dimensional space.
  • the adjusting device is arranged on a rotating platform, the adjusting device includes a gear assembly and a first drive motor for driving the gear assembly to rotate, the first drive motor includes a rotating shaft, and the first shaft
  • the laser radar device includes a mounting frame on which the laser radar sensor is arranged, and the mounting frame is provided with a gear matching portion meshed with the gear assembly.
  • the drive motor directly drives the lidar sensor to scan in the vertical direction through the gear, but the structure of the lidar sensor is relatively precise and complex.
  • the vertical scanning frequency needs to be very high, and its rotation life must be considered , Connection strength, dynamic balance, moment of inertia and many other factors, the structure is relatively complex, and the requirements for the existing lidar sensor are very high, resulting in high manufacturing costs.
  • the above solution drives the lidar sensor to rotate through the gear, but the scanning frequency is very low through the gear to drive the sensor to rotate, and high-frequency scanning cannot be realized, and the scope of application is narrow, which is not conducive to popularization and use.
  • the first object of the present invention is to provide a laser emitter and a reflector, the reflector can reflect the laser pulse signal emitted by the laser emitter, and can rotate reciprocally relative to the laser emitter, and then can Through the rotation of the reflector, the multi-angle reflection of the laser pulse signal is realized; at the same time, it can be applied to high-frequency scanning scenes, has a wide range of applications, and can perform three-dimensional scanning of the environment, which is conducive to popularization and use.
  • the structure is simple, practical, and the scheme is feasible.
  • a 3D laser radar with low requirements for existing components such as laser emitters and low manufacturing costs.
  • the second object of the present invention is to provide a legged robot equipped with a 3D laser radar capable of performing three-dimensional scanning of the environment.
  • the first technical solution of the present invention is:
  • a 3D laser radar comprising a vertical scanning unit and a horizontal rotation device that rotates the vertical scanning unit in a horizontal direction;
  • the vertical scanning unit includes a mounting base, and laser receivers sequentially arranged on the mounting base Pole, convex lens, laser emitter, light reflector, described laser receiving pole is arranged on the focus position of described convex lens, and described laser emitter is arranged on the main optical axis of described convex lens, and the device of described light reflector rotatable
  • the center of rotation of the reflector coincides with the main optical axis of the convex lens;
  • the laser emitter emits a laser pulse signal, and scans the surrounding environment in the vertical plane through the rotation of the reflector , and can scan the three-dimensional environment through a horizontal rotating device provided with a rotating motor.
  • the present invention assembles the laser emitter and the reflector, the reflector can reflect the laser pulse signal emitted by the laser emitter, and can reciprocate relative to the laser emitter, and then through the rotation of the reflector, the laser pulse can be realized.
  • the multi-angle reflection of the signal completes the scanning of the surrounding environment; the structure is simple, practical, the scheme is feasible, the requirements for the existing laser emitter and other components are low, and it can be applied to high-frequency scanning scenes, and the application range is wide, which is beneficial to It is popularized and used, and the manufacturing cost is low.
  • the 3D laser radar provided by the present invention realizes two-dimensional scanning in a vertical plane in the environment through the vertical scanning unit, and then rotates the vertical scanning unit in the horizontal direction through the horizontal rotation device, thereby realizing the detection of the surrounding environment.
  • the vertical scanning unit further includes a first motor and a first code wheel, the first motor drives the reflector to rotate, the first code wheel is concentrically and fixedly connected to the reflector, The rotation information of the reflector is acquired through the first code wheel.
  • the present invention directly drives the reflector to rotate at high speed through the first motor, so that the present invention can realize high-frequency scanning without affecting high-precision components such as laser emitters.
  • the scheme is simple and feasible.
  • a protective cover is fixed on the outside of the mounting seat, the protective cover is fixedly connected to the lower bottom shell, a visible light emitter is arranged on the mounting seat, and the visible light emitted by the visible light emitter passes through the convex lens Refraction and reflection by the reflector can form a specific pattern on the protective cover, or penetrate through the protective cover, and display or draw patterns on the surrounding external environment with the cooperation of the horizontal rotating device.
  • This structure enables the 3D lidar to project visible light patterns to the outside, so as to facilitate the external display of various information related to the radar itself and the robot, with low cost and simple structure.
  • the horizontal rotation device includes an upper bottom casing rotor, a lower bottom casing and a motor stator fixed in the lower bottom casing, and the mounting seat is fixed on the upper bottom casing rotor and rotates with it .
  • the vertical scanning unit is rotated in the horizontal direction by the external rotor motor.
  • the upper bottom casing rotor is evenly opened with through holes along the same circle in the circumferential direction, and the photoelectric code disc is formed through the through holes to obtain the rotation information of the upper bottom casing rotor, and then obtain the vertical Horizontal rotation information for straight scan units.
  • a hollow wireless signal transmission module is concentrically arranged between the upper bottom casing rotor and the lower bottom casing, and the laser receiving electrode and the laser emitting electrode are powered by the wireless power transmission module. Due to the relative rotation between the upper bottom shell rotor and the lower bottom shell, when power supply and signal transmission are required, the wireless power transmission module is used instead of the traditional cable, which avoids the fatigue damage of the cable during the reciprocating rotation.
  • a base circuit board is fixed on the lower bottom case, and a wireless signal transmission component is concentrically arranged between the rotor of the upper bottom case and the lower bottom case, which uses optical communication to realize wireless communication ;
  • the laser emitter and the laser receiver achieve wireless communication with the base circuit board through the wireless signal transmission component.
  • a cooling fan is fixed coaxially with the first code wheel on the output shaft of the first motor.
  • This structure is used for the airflow circulation inside the lidar, which is beneficial to the heat dissipation of heat-generating components such as motors.
  • the structure is simple and the cost is low.
  • a magnetic steel sheet is fixed inside the upper bottom shell rotor, the axial width of the magnetic steel sheet is larger than the axial width of the motor stator, and the upper edge of the magnetic steel sheet is higher than The upper edge of the motor stator or the lower edge of the magnetic steel sheet is lower than the lower edge of the motor stator.
  • the design of this structure makes the magnetic steel sheets stagger a certain distance from the motor stator in the vertical direction, which can generate a large axial magnetic pull between the upper bottom shell rotor and the motor stator, so that the rotation of the horizontal rotation device is more stable and reliable. Further, it is ensured that the rotor of the upper bottom case will not shake obviously with the lower bottom case during the rotation process.
  • the second technical solution of the present invention is:
  • a 3D laser radar includes a laser emitter capable of emitting laser pulse signals, a reflector capable of reflecting light, and a driving source capable of driving the reflector to rotate.
  • the driving source is provided with a connecting shaft connected to the reflector,
  • the connecting shaft drives the reflector to rotate back and forth to realize multi-angle reflection of the laser pulse signal and complete the scanning of the surrounding environment.
  • the present invention assembles the laser emitter and the reflector, the reflector can reflect the laser pulse signal emitted by the laser emitter, and can reciprocate relative to the laser emitter, and then through the rotation of the reflector, the laser pulse can be realized.
  • the multi-angle reflection of the signal completes the scanning of the surrounding environment; the structure is simple, practical, the scheme is feasible, the requirements for the existing laser emitter and other components are low, and it can be applied to high-frequency scanning scenes, and the application range is wide, which is beneficial to It is popularized and used, and the manufacturing cost is low.
  • the reflector is arranged obliquely and adjacent to the laser emitter, and the two are installed at a distance to avoid interference between the laser emitter and the moving reflector;
  • the inclined surface of the reflector intersects the laser pulse signal of the laser emitter
  • the reflector is a surface-polished metal device with reflective properties or a glass with a metal-coated reflective film or a metal product provided with a metal-coated reflective film;
  • the driving source may be a driving motor.
  • the third technical solution of the present invention is:
  • a legged robot uses the above-mentioned 3D laser radar to realize real-time scanning of the robot's surrounding environment information.
  • the present invention assembles the laser emitter and the reflector, the reflector can reflect the laser pulse signal emitted by the laser emitter, and can reciprocate relative to the laser emitter, and then through the rotation of the reflector, the laser pulse can be realized.
  • the multi-angle reflection of the signal completes the scanning of the surrounding environment; the structure is simple, practical, the scheme is feasible, the requirements for the existing laser emitter and other components are low, and it can be applied to high-frequency scanning scenes, and the application range is wide, which is beneficial to It is popularized and used, and the manufacturing cost is low.
  • the 3D laser radar provided by the present invention realizes two-dimensional scanning in a vertical plane in the environment through the vertical scanning unit, and then rotates the vertical scanning unit in the horizontal direction through the horizontal rotation device, thereby realizing the detection of the surrounding environment.
  • the legged robot provided by the present invention is equipped with 3D laser radar, realizes two-dimensional scanning in a vertical plane in the environment through the vertical scanning unit, and then rotates the vertical scanning unit in the horizontal direction through the horizontal rotation device. , and then realize the three-dimensional scanning of the surrounding environment; the scanning field of view can exceed 360° ⁇ 90°, and only one set of laser transceiver components can be used, the structure is simple and the cost is low.
  • Fig. 1 is a kind of overall structure schematic diagram of the present invention
  • Fig. 2 is a kind of full sectional view of the present invention
  • Fig. 3 is an exploded view of a vertical scanning unit of the present invention.
  • Fig. 4 is an exploded view of a horizontal rotation unit of the present invention.
  • a kind of 3D laser radar comprises a vertical scanning unit and a horizontal rotation device that makes the vertical scanning unit rotate in the horizontal direction;
  • the vertical scanning unit includes Mounting base 1, and the laser receiving pole 2, convex lens 3, laser emitting pole 4, light reflector 5 that are arranged on the mounting base 1 in turn, the laser receiving pole 2 is arranged on the focus position of the convex lens 3, so
  • the laser emitter 4 is arranged on the main optical axis of the convex lens 3, and the reflector 5 is rotatably arranged on the mounting seat 1.
  • the present invention assembles the laser emitter 4 and the reflector 5, the reflector 5 can reflect the laser pulse signal emitted by the laser emitter 4, and can rotate back and forth relative to the laser emitter 4, and then can pass through the light reflector 5. Rotate to realize the multi-angle reflection of the laser pulse signal and complete the scanning of the surrounding environment; the structure is simple, practical, the scheme is feasible, the requirements for the existing laser emitter 4 and other components are low, and it can be applied to high-frequency scanning Scenarios, a wide range of applications, conducive to popularization and use, and low manufacturing costs.
  • the 3D laser radar provided by the present invention realizes two-dimensional scanning in a vertical plane in the environment through the vertical scanning unit, and then rotates the vertical scanning unit in the horizontal direction through the horizontal rotation device, thereby realizing the detection of the surrounding environment.
  • the reflector 5 is a reflector, which is low in manufacturing cost and easy to implement.
  • a protective cover 16 is fixed on the outer side of the mounting base 1 , and the protective cover 16 is in an arc-shaped structure, and is fixedly connected with the lower bottom case 9 .
  • the vertical scanning unit also includes a first motor 6 and a first code wheel 7, the first motor 6 drives the reflector 5 to rotate, the first code wheel 7 is fixedly connected concentrically with the reflector 5, The rotation information of the reflector 5 is obtained through the first code wheel 7 .
  • a cooling fan is fixed coaxially with the first code wheel 7 on the output shaft of the first motor 6 .
  • This structure is used for the airflow circulation inside the lidar, which is beneficial to the heat dissipation of heat-generating components such as motors.
  • the structure is simple and the cost is low.
  • the present invention directly drives the reflector 5 to rotate at high speed through the first motor 6, so that the present invention can realize high-frequency scanning without affecting high-precision components such as the laser emitter 4.
  • the scheme is simple and feasible.
  • the mounting base 1 is provided with a visible light emitter 14, the visible light emitted by the visible light emitter 14 is refracted by the convex lens 3, and further reflected by the reflector 5, can be formed on the protective cover 16. Specific patterns, or through the protective cover 16 , are displayed or drawn on the surrounding external environment with the cooperation of the horizontal rotating device. This structure enables the 3D lidar to project visible light patterns to the outside, so as to facilitate the external display of various information related to the radar itself and the robot, with low cost and simple structure.
  • the horizontal rotation device includes an upper bottom casing rotor 8 , a lower bottom casing 9 , a motor stator 10 fixed in the lower bottom casing 9 , and a horizontal rotation bearing 19 .
  • the mounting seat 1 is fixed on the upper bottom casing rotor 8 and rotates with it.
  • the vertical scanning unit is rotated in the horizontal direction by the external rotor motor.
  • a laser drive circuit board 18 is provided at the upper end of the rotor 8 of the upper bottom case.
  • Through-holes 11 are evenly opened along the same circle in the circumferential direction of the upper bottom casing rotor 8, through which a photoelectric code disc is formed to obtain the rotation information of the upper bottom casing rotor 8, and then obtain the vertical scanning The unit's horizontal rotation information.
  • the upper bottom casing rotor 8 is fixed with a magnetic steel sheet 15, the axial width of the magnetic steel sheet 15 is larger than the axial width of the motor stator 10, and the upper edge of the magnetic steel sheet 15 is higher than the The upper edge of the motor stator 10.
  • the structure is designed so that in the vertical direction, the magnetic steel sheet 15 is higher than the motor stator 10 by a section, which can generate a large axial magnetic pull between the upper bottom shell rotor 8 and the motor stator 10, so that the horizontal rotation device rotates It is more stable and reliable, thereby ensuring that the upper bottom casing rotor 8 will not be separated from the lower bottom casing 9 during rotation.
  • a hollow wireless signal transmission module is concentrically arranged between the upper bottom casing rotor 8 and the lower bottom casing 9 , and the laser receiving electrode 2 and the laser emitting electrode 4 are powered by the wireless power transmission module 12 . Due to the relative rotation between the upper bottom casing rotor 8 and the lower bottom casing 9, when power supply and signal transmission are required, the wireless power transmission module 12 is used instead of the traditional cable, which avoids fatigue damage of the cable during reciprocating rotation.
  • a base circuit board 13 is fixed on the lower bottom case 9, and a wireless signal transmission component 17 is concentrically arranged between the upper bottom case rotor 8 and the lower bottom case 9, which uses optical communication to realize wireless communication;
  • the laser emitter 4 and the laser receiver 2 realize wireless communication with the base circuit board 13 through the wireless signal transmission component 17 .
  • a legged robot uses the above-mentioned 3D laser radar to realize real-time scanning of the robot's surrounding environment information.
  • the legged robot provided by the present invention is equipped with 3D laser radar, realizes two-dimensional scanning in a vertical plane in the environment through a vertical scanning unit, and then rotates the vertical scanning unit in the horizontal direction through a horizontal rotation device, thereby realizing Three-dimensional scanning of the surrounding environment; the scanning field of view can exceed 360° ⁇ 90°, and only one set of laser transceiver components can be used, with a simple structure and low cost.
  • a 3D laser radar includes a laser emitter 4 capable of emitting laser pulse signals, a light reflector 5 capable of reflecting light, and a driving source capable of driving the light reflector 5 to rotate.
  • the driving source is provided with a connecting shaft connected to the reflector 5,
  • the connecting shaft drives the reflector 5 to rotate back and forth, so as to realize the multi-angle reflection of the laser pulse signal and complete the scanning of the surrounding environment.
  • the reflector 5 is arranged obliquely and adjacent to the laser emitter 4, and the two are assembled at intervals to avoid interference between the laser emitter 4 and the moving reflector 5; the inclined surface of the reflector 5 and the laser emitter 4 The laser pulse signal intersects.
  • the reflector 5 is a surface-polished metal device with reflective properties or a glass with a metal-coated reflective film or a metal product provided with a metal-plated reflective film;
  • the driving source may be a driving motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

一种3D激光雷达及足式机器人。3D激光雷达包括竖直扫描单元和水平旋转装置;竖直扫描单元包括安装座(1),以及依次设于安装座上的激光接收极(2)、凸透镜(3)、激光发射极(4)、反光体(5),激光接收极(2)设于凸透镜(3)的焦点位置上,激光发射极(4)设于凸透镜(3)的主光轴上,反光体(5)可转动的设于安装座(1)上,反光体(5)的回转中心与凸透镜(3)的主光轴重合;激光脉冲信号通过反光体(5)的旋转实现对竖直平面内的环境扫描,通过水平旋转装置进而实现对三维环境的扫描。

Description

一种3D激光雷达及足式机器人 技术领域
本发明涉及激光雷达设备技术领域,尤其涉及了一种3D激光雷达及足式机器人。
背景技术
目前,在工业测绘、三维建模、自动驾驶等领域,激光雷达应用广泛。例如在自动跟随的应用场景下,移动设备通过向其周围的被探测物体发射激光束,然后接收被探测物体反射回的光信号,经过处理,得出移动设备周围的被探测物体的位置信息。
但是,现有的激光雷达多为二维激光雷达,或者虽然能进行三维环境的扫描,但扫描盲区大,单个雷达扫描视角小,获取的周围环境信息少,机器人需要安装多个雷达才能实现较大的扫描视角,且使用多组激光收发组件,成本高。
进一步,中国专利(CN110488249A)公开了一种激光雷达装置及移动机器人,其包括激光雷达传感器、旋转平台、底座,激光雷达传感器设置于所述旋转平台上方,底座用于承载所述旋转平台,所述激光雷达传感器与所述旋转平台之间设置有调节装置,所述调节装置被配置为带动所述激光雷达传感器绕第一轴向转动,所述第一轴向平行于所述旋转平台。通过在激光雷达传感器与所述旋转平台之间设置调节装置,使得激光雷达传感器能够在竖直方向进行调节,实现三维空间内的扫描。
所述调节装置设置于旋转平台上,所述调节装置包括齿轮组件和用于驱动所述齿轮组件转动的第一驱动电机,所述第一驱动电机包括转轴,所述第一轴
向平行所述转轴。所述激光雷达装置包括安装架,所述激光雷达传感器设置于所述安装架上,所述安装架设置有与所述齿轮组件啮合的齿轮配合部。
技术问题
上述方案中,驱动电机通过齿轮直接带动激光雷达传感器进行竖直方向的扫描,但激光雷达传感器结构较为精密以及复杂,对一些高频场合,竖直扫描频率需要很高,必须要考虑其转动寿命、连接强度、动平衡、转动惯量等诸多因素,结构较为复杂,并且对现有的激光雷达传感器要求很高,导致制造成本高。
更进一步,上述方案通过齿轮带动激光雷达传感器进行转动,但通过齿轮驱动传感器转动,扫描频率很低,无法实现高频扫描,适用范围窄,不利于推广使用。
技术解决方案
为了克服现有技术的不足,本发明的目的一在于提供一种设有激光发射极以及反光体,反光体能够反射激光发射极发射的激光脉冲信号,并能相对激光发射极往复转动,进而可通过反光体的旋转,实现对激光脉冲信号的多角度反射;同时能够适用于高频扫描场景,适用范围广,并且能够对环境进行三维扫描,利于推广使用,结构简单,实用,方案切实可行,对现有的激光发射极等元器件要求低,制造成本低的3D激光雷达。
本发明的目的二在于提供一种足式机器人,其搭载3D激光雷达,能够进行环境的三维扫描。
为实现上述目的之一,本发明的第一种技术方案为:
一种3D激光雷达,包括竖直扫描单元和使所述竖直扫描单元在水平方向旋转的水平旋转装置;所述竖直扫描单元包括安装座,以及依次设于所述安装座上的激光接收极、凸透镜、激光发射极、反光体,所述激光接收极设于所述凸透镜的焦点位置上,所述激光发射极设于所述凸透镜的主光轴上,所述反光体可转动的设于所述安装座上,所述反光体的回转中心与所述凸透镜的主光轴重合;所述激光发射极发射激光脉冲信号,通过反光体的旋转实现对竖直平面内的周圈环境扫描,并能通过设有旋转电机的水平旋转装置实现对三维环境的扫描。
本发明经过不断探索以及试验,装配激光发射极以及反光体,反光体能够反射激光发射极发射的激光脉冲信号,并能相对激光发射极往复转动,进而可通过反光体的旋转,实现对激光脉冲信号的多角度反射,完成对周圈环境的扫描;结构简单,实用,方案切实可行,对现有的激光发射极等元器件要求低,并且能够适用于高频扫描场景,适用范围广,利于推广使用,制造成本低。
进一步,本发明提供的3D激光雷达,通过竖直扫描单元实现环境中一个竖直平面内的二维扫描,然后通过水平旋转装置对竖直扫描单元进行水平方向的旋转,进而实现对周围环境的三维扫描;扫描视场角可超过360°×90°,且可只使用一组激光收发组件,结构简单成本低。
作为优选的技术措施:所述竖直扫描单元还包括第一电机和第一码盘,所述第一电机驱动所述反光体旋转,所述第一码盘与所述反光体同心固定连接,通过所述第一码盘获取所述反光体的转动信息。
本发明直接通过第一电机带动反光体高速旋转,使得本发明能够实现高频扫描,同时对激光发射极等高精元器件没有影响,方案简单,切实可行。
作为优选的技术措施:所述安装座外侧固定有防护罩,所述防护罩与下底壳固定连接,所述安装座上设有可见光发射极,所述可见光发射极发射的可见光通过所述凸透镜折射,并能通过所述反光体的反射,可在所述防护罩上形成特定图案,或者穿透过所述防护罩,在水平旋转装置的配合下,在周边外部环境上显示或绘制图案。该结构可使3D激光雷达对外投射可见光图案,从而方便对外显示雷达本身及机器人相关的各种信息,成本低,结构简单。
作为优选的技术措施:所述水平旋转装置包括上底壳转子、下底壳和固定在所述下底壳内的电机定子,所述安装座固定于所述上底壳转子上并随其转动。通过外转子电机使竖直扫描单元作水平方向的转动。
作为优选的技术措施:所述上底壳转子的周向上沿同一圈均匀开设有通孔,通过所述通孔构成光电码盘来获取所述上底壳转子的转动信息,进而获取所述竖直扫描单元的水平转动信息。
作为优选的技术措施:所述上底壳转子与所述下底壳之间同心设有中空的无线信号传输模块,通过所述无线电能传输模块对所述激光接收极和激光发射极进行供电。由于上底壳转子和下底壳之间存在相对转动,当需要进行供电和信号传输时,采用无线电能传输模块代替传统线缆,避免了线缆在往复转动过程中的疲劳损坏。
作为优选的技术措施:所述下底壳上固定设有基座电路板,所述上底壳转子与所述下底壳之间同心设有无线信号传输组件,其使用光通讯来实现无线通讯;所述激光发射极和所述激光接收极通过所述无线信号传输组件实现与所述基座电路板的无线通讯。
作为优选的技术措施:所述第一电机的输出转轴上,与第一码盘同轴固定有散热风扇。该结构用于激光雷达内部的气流循环流动,有利于电机等发热组件的散热。结构简洁,成本低。
作为优选的技术措施:所述上底壳转子内固设有磁钢片,所述磁钢片的轴向宽度大于所述电机定子的轴向宽度,且所述磁钢片的上边缘高于所述电机定子的上边缘或所述磁钢片的下边缘低于所述电机定子的下边缘。该结构的设计,使得在竖直方向上,磁钢片错开电机定子一段距离,能使上底壳转子与电机定子之间产生较大的轴向磁拉力,从而水平旋转装置旋转更加稳定可靠,进而保证上底壳转子在转动过程中不会与下底壳发生明显的晃动。
为实现上述目的之一,本发明的第二种技术方案为:
一种3D激光雷达,包括能够发射激光脉冲信号的激光发射极、能够反射光线的反光体、能够带动反光体旋转的驱动源。
所述驱动源设有与反光体相连接的连接轴,
所述连接轴带动反光体往复旋转,以实现对激光脉冲信号的多角度反射,完成对周圈环境的扫描。
本发明经过不断探索以及试验,装配激光发射极以及反光体,反光体能够反射激光发射极发射的激光脉冲信号,并能相对激光发射极往复转动,进而可通过反光体的旋转,实现对激光脉冲信号的多角度反射,完成对周圈环境的扫描;结构简单,实用,方案切实可行,对现有的激光发射极等元器件要求低,并且能够适用于高频扫描场景,适用范围广,利于推广使用,制造成本低。
作为优选的技术措施:所述反光体倾斜布置,并与激光发射极相邻,两者相隔装配,以避免激光发射极对运动的反光体产生干涉;
所述反光体的倾斜面与激光发射极的激光脉冲信号相交;
所述反光体为具有反射性能的表面抛光金属器件或为设有镀金属反射膜的玻璃或为设有镀金属反射膜的金属制品;
所述驱动源可以为驱动电机。
为实现上述目的之一,本发明的第三种技术方案为:
一种足式机器人,使用上述的3D激光雷达,实现机器人实时的对其周边环境信息的扫描。
有益效果
本发明经过不断探索以及试验,装配激光发射极以及反光体,反光体能够反射激光发射极发射的激光脉冲信号,并能相对激光发射极往复转动,进而可通过反光体的旋转,实现对激光脉冲信号的多角度反射,完成对周圈环境的扫描;结构简单,实用,方案切实可行,对现有的激光发射极等元器件要求低,并且能够适用于高频扫描场景,适用范围广,利于推广使用,制造成本低。
进一步,本发明提供的3D激光雷达,通过竖直扫描单元实现环境中一个竖直平面内的二维扫描,然后通过水平旋转装置对竖直扫描单元进行水平方向的旋转,进而实现对周围环境的三维扫描;扫描视场角可超过360°×90°,且可只使用一组激光收发组件,结构简单成本低。
更进一步,本发明提供的足式机器人,其搭载3D激光雷达,通过竖直扫描单元实现环境中一个竖直平面内的二维扫描,然后通过水平旋转装置对竖直扫描单元进行水平方向的旋转,进而实现对周围环境的三维扫描;扫描视场角可超过360°×90°,且可只使用一组激光收发组件,结构简单成本低。
附图说明
图1是本发明的一种整体结构示意图;
图2是本发明的一种全剖图;
图3是本发明的一种竖直扫描单元的爆炸图;
图4是本发明的一种水平旋转单元的爆炸图。
图中:1、安装座;2、激光接收极;3、凸透镜;4、激光发射极;5、反光体;6、第一电机;7、第一码盘;8、上底壳转子;9、下底壳;10、电机定子;11、通孔;12、无线电能传输模块;13、基座电路板;14、可见光发射极;15、磁钢片;16、防护罩;17、无线信号传输组件;18、激光驱动电路板;19、水平旋转轴承。
本发明的实施方式
下面,结合附图以及具体实施方式,对本发明做进一步描述,需要说明的是,在不相冲突的前提下,以下描述的各实施例之间或各技术特征之间可以任意组合形成新的实施例。
需要说明的是,本文所使用的术语 “水平”、“竖直”、“上”、“下”以及类似的表述只是为了说明的目的。除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本发明。
如图1、图2、图3、图4所示,一种3D激光雷达,包括竖直扫描单元和使所述竖直扫描单元在水平方向旋转的水平旋转装置;所述竖直扫描单元包括安装座1,以及依次设于所述安装座1上的激光接收极2、凸透镜3、激光发射极4、反光体5,所述激光接收极2设于所述凸透镜3的焦点位置上,所述激光发射极4设于所述凸透镜3的主光轴上,所述反光体5可转动的设于所述安装座1上,所述反光体5的回转中心与所述凸透镜3的主光轴重合;所述激光发射极4发射激光脉冲信号,通过反光体5的旋转实现对竖直平面内的周圈环境扫描,并进一步地通过设有旋转电机的水平旋转装置实现对三维环境的扫描。
本发明经过不断探索以及试验,装配激光发射极4以及反光体5,反光体5能够反射激光发射极4发射的激光脉冲信号,并能相对激光发射极4往复转动,进而可通过反光体5的旋转,实现对激光脉冲信号的多角度反射,完成对周圈环境的扫描;结构简单,实用,方案切实可行,对现有的激光发射极4等元器件要求低,并且能够适用于高频扫描场景,适用范围广,利于推广使用,制造成本低。
进一步,本发明提供的3D激光雷达,通过竖直扫描单元实现环境中一个竖直平面内的二维扫描,然后通过水平旋转装置对竖直扫描单元进行水平方向的旋转,进而实现对周围环境的三维扫描;扫描视场角可超过360°×90°,且可只使用一组激光收发组件,结构简单成本低。
所述反光体5为反光镜,制造成本低,易于实现。
所述安装座1外侧固定有防护罩16,所述防护罩16为弧形结构,其与下底壳9固定连接。
本发明竖直扫描单元的一种具体实施例:
所述竖直扫描单元还包括第一电机6和第一码盘7,所述第一电机6驱动所述反光体5旋转,所述第一码盘7与所述反光体5同心固定连接,通过所述第一码盘7获取所述反光体5的转动信息。
所述第一电机6的输出转轴上,与第一码盘7同轴固定有散热风扇。该结构用于激光雷达内部的气流循环流动,有利于电机等发热组件的散热。结构简洁,成本低。
本发明直接通过第一电机6带动反光体5高速旋转,使得本发明能够实现高频扫描,同时对激光发射极4等高精元器件没有影响,方案简单,切实可行。
本发明设置可见光发射极14的一种具体实施例:
所述安装座1上设有可见光发射极14,所述可见光发射极14发射的可见光通过所述凸透镜3折射,并进一步地通过所述反光体5的反射,可在所述防护罩16上形成特定图案,或者穿透过所述防护罩16,在水平旋转装置的配合下,在周边外部环境上显示或绘制图案。该结构可使3D激光雷达对外投射可见光图案,从而方便对外显示雷达本身及机器人相关的各种信息,成本低,结构简单。
本发明水平旋转装置的一种具体实施例:
所述水平旋转装置包括上底壳转子8、下底壳9、固定在所述下底壳9内的电机定子10、水平旋转轴承19。所述安装座1固定于所述上底壳转子8上并随其转动。通过外转子电机使竖直扫描单元作水平方向的转动。
上底壳转子8上端设有激光驱动电路板18。
本发明上底壳转子8的一种具体实施例:
所述上底壳转子8的周向上沿同一圈均匀开设有通孔11,通过所述通孔11构成光电码盘来获取所述上底壳转子8的转动信息,进而获取所述竖直扫描单元的水平转动信息。
所述上底壳转子8内固设有磁钢片15,所述磁钢片15的轴向宽度大于所述电机定子10的轴向宽度,且所述磁钢片15的上边缘高于所述电机定子10的上边缘。
该结构的设计,使得在竖直方向上,磁钢片15高出电机定子10一段,能使上底壳转子8与电机定子10之间产生较大的轴向磁拉力,从而水平旋转装置旋转更加稳定可靠,进而保证上底壳转子8在转动过程中不会与下底壳9分离。
本发明设置无线信号传输模块的一种具体实施例:
所述上底壳转子8与所述下底壳9之间同心设有中空的无线信号传输模块,通过所述无线电能传输模块12对所述激光接收极2和激光发射极4进行供电。由于上底壳转子8和下底壳9之间存在相对转动,当需要进行供电和信号传输时,采用无线电能传输模块12代替传统线缆,避免了线缆在往复转动过程中的疲劳损坏。
本发明无线信号传输结构的一种具体实施例:
所述下底壳9上固定设有基座电路板13,所述上底壳转子8与所述下底壳9之间同心设有无线信号传输组件17,其使用光通讯来实现无线通讯;所述激光发射极4和所述激光接收极2通过所述无线信号传输组件17实现与所述基座电路板13的无线通讯。
应用本发明3D激光雷达的一种实施例:
一种足式机器人,使用上述的3D激光雷达,实现机器人实时的对其周边环境信息的扫描。
本发明提供的足式机器人,其搭载3D激光雷达,通过竖直扫描单元实现环境中一个竖直平面内的二维扫描,然后通过水平旋转装置对竖直扫描单元进行水平方向的旋转,进而实现对周围环境的三维扫描;扫描视场角可超过360°×90°,且可只使用一组激光收发组件,结构简单成本低。
本发明一种较佳实施例:
一种3D激光雷达,包括能够发射激光脉冲信号的激光发射极4、能够反射光线的反光体5、能够带动反光体5旋转的驱动源。
所述驱动源设有与反光体5相连接的连接轴,
所述连接轴带动反光体5往复旋转,以实现对激光脉冲信号的多角度反射,完成对周圈环境的扫描。
所述反光体5倾斜布置,并与激光发射极4相邻,两者相隔装配,以避免激光发射极4对运动的反光体5产生干涉;所述反光体5的倾斜面与激光发射极4的激光脉冲信号相交。
所述反光体5为具有反射性能的表面抛光金属器件或为设有镀金属反射膜的玻璃或为设有镀金属反射膜的金属制品;
所述驱动源可以为驱动电机。
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。

Claims (10)

  1. 一种3D激光雷达,其特征在于,包括竖直扫描单元和使所述竖直扫描单元在水平方向旋转的水平旋转装置;
    所述竖直扫描单元包括安装座(1),以及依次设于所述安装座(1)上的激光接收极(2)、凸透镜(3)、激光发射极(4)、反光体(5),所述激光接收极(2)设于所述凸透镜(3)的焦点位置上,所述激光发射极(4)设于所述凸透镜(3)的主光轴上,所述反光体(5)可转动的设于所述安装座(1)上,所述反光体(5)的回转中心与所述凸透镜(3)的主光轴重合;
    所述激光发射极(4)发射激光脉冲信号,通过所述反光体(5)的旋转实现对竖直平面内的周圈环境扫描,并能通过设有旋转电机的水平旋转装置实现对三维环境的扫描。
  2. 如权利要求1所述的3D激光雷达,其特征在于,所述竖直扫描单元还包括第一电机(6)和第一码盘(7),所述第一电机(6)驱动所述反光体(5)旋转,所述第一码盘(7)与所述反光体(5)同心固定连接,通过所述第一码盘(7)获取所述反光体(5)的转动信息。
  3. 如权利要求2所述的3D激光雷达,其特征在于,所述安装座(1)外侧固定有防护罩(16),所述防护罩(16)与下底壳(9)固定连接,所述安装座(1)上设有可见光发射极(14),所述可见光发射极(14)发射的可见光通过所述凸透镜(3)折射,并能通过所述反光体(5)的反射,在所述防护罩(16)上形成特定图案,或者穿透过所述防护罩(16),在水平旋转装置的配合下,在周边外部环境上显示或绘制图案。
  4. 如权利要求1-3任一所述的3D激光雷达,其特征在于,所述水平旋转装置包括上底壳转子(8)、下底壳(9)和固定在所述下底壳(9)内的电机定子(10),所述安装座(1)固定于所述上底壳转子(8)上并随其转动。
  5. 如权利要求4所述的3D激光雷达,其特征在于,所述上底壳转子(8)的周向上沿同一圈均匀开设有通孔(11),通过所述通孔(11)构成光电码盘来获取所述上底壳转子(8)的转动信息,进而获取所述竖直扫描单元的水平转动信息。
  6. 如权利要求5所述的3D激光雷达,其特征在于,所述上底壳转子(8)与所述下底壳(9)之间同心设有中空的无线电能传输模块(12),通过所述无线电能传输模块(12)对所述激光接收极(2)和激光发射极(4)进行供电。
  7. 如权利要求5所述的3D激光雷达,其特征在于,所述下底壳(9)上固定设有基座电路板(13),所述上底壳转子(8)与所述下底壳(9)之间同心设有无线信号传输组件(17),其使用光通讯来实现无线通讯;所述激光发射极(4)和所述激光接收极(2)通过所述无线信号传输组件(17)实现与所述基座电路板(13)的无线通讯;
    所述上底壳转子(8)内固设有磁钢片(15),所述磁钢片(15)的轴向宽度大于所述电机定子(10)的轴向宽度,且所述磁钢片(15)的上边缘高于所述电机定子(10)的上边缘或所述磁钢片(15)的下边缘低于所述电机定子(10)的下边缘;
    所述第一电机(6)的输出转轴上,与第一码盘(7)同轴固定有散热风扇。
  8. 一种3D激光雷达,其特征在于,
    包括能够发射激光脉冲信号的激光发射极(4)、能够反射光线的反光体(5)、能够带动反光体(5)旋转的驱动源;
    所述驱动源设有与反光体(5)相连接的连接轴,
    所述连接轴带动反光体(5)往复旋转,以实现对激光脉冲信号的多角度反射,完成对周圈环境的扫描。
  9. 如权利要求8所述的3D激光雷达,其特征在于,
    所述反光体(5)倾斜布置,并与激光发射极(4)相邻,两者相隔装配;
    所述反光体(5)的倾斜面与激光发射极(4)的激光脉冲信号相交;
    所述反光体(5)为具有反射性能的表面抛光金属器件或为设有镀金属反射膜的玻璃或为设有镀金属反射膜的金属制品;
    所述驱动源可以为驱动电机。
  10. 一种足式机器人,其特征在于,使用如权利要求1-9任一所述的3D激光雷达,实现机器人实时的对其周边环境信息的扫描。
PCT/CN2022/093199 2021-10-15 2022-05-17 一种 3d 激光雷达及足式机器人 WO2023060892A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22879842.7A EP4235213A1 (en) 2021-10-15 2022-05-17 3d laser radar and legged robot
JP2023530672A JP7510730B2 (ja) 2021-10-15 2022-05-17 3dレーザーレーダーおよび脚式ロボット
US18/263,292 US20240094393A1 (en) 2021-10-15 2022-05-17 3d laser radar and legged robot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111204725.9 2021-10-15
CN202111204725.9A CN113960566A (zh) 2021-10-15 2021-10-15 一种3d激光雷达及足式机器人

Publications (1)

Publication Number Publication Date
WO2023060892A1 true WO2023060892A1 (zh) 2023-04-20

Family

ID=79464092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093199 WO2023060892A1 (zh) 2021-10-15 2022-05-17 一种 3d 激光雷达及足式机器人

Country Status (4)

Country Link
US (1) US20240094393A1 (zh)
EP (1) EP4235213A1 (zh)
CN (1) CN113960566A (zh)
WO (1) WO2023060892A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117148319A (zh) * 2023-10-31 2023-12-01 山东富锐光学科技有限公司 一种360°旋转扫描激光雷达

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113960566A (zh) * 2021-10-15 2022-01-21 杭州宇树科技有限公司 一种3d激光雷达及足式机器人
CN115144839A (zh) * 2022-07-04 2022-10-04 杭州宇树科技有限公司 一种3d激光雷达及应用其的足式机器人和清洁机器人
WO2024031905A1 (zh) * 2022-08-10 2024-02-15 杭州宇树科技有限公司 一种激光雷达以及机器人
CN115751046B (zh) * 2022-11-11 2023-05-12 山东大地房地产资产评估测绘有限公司 一种激光雷达发射装置
CN115494480A (zh) * 2022-11-22 2022-12-20 保定市天河电子技术有限公司 微型化收发同轴脉冲激光测距扫描装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106066475A (zh) * 2016-08-16 2016-11-02 深圳市佶达德科技有限公司 一种三维激光雷达测距系统
CN106501812A (zh) * 2016-12-01 2017-03-15 上海思岚科技有限公司 一种激光扫描测距设备
US20190324145A1 (en) * 2016-12-02 2019-10-24 Red Sensors Limited Lidar Apparatus and Method
CN110488249A (zh) 2019-09-06 2019-11-22 深圳市银星智能科技股份有限公司 一种激光雷达装置及移动机器人
CN113126118A (zh) * 2019-12-31 2021-07-16 武汉万集信息技术有限公司 3d激光雷达
CN113960566A (zh) * 2021-10-15 2022-01-21 杭州宇树科技有限公司 一种3d激光雷达及足式机器人
CN216209863U (zh) * 2021-10-15 2022-04-05 杭州宇树科技有限公司 一种3d激光雷达及足式机器人

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106066475A (zh) * 2016-08-16 2016-11-02 深圳市佶达德科技有限公司 一种三维激光雷达测距系统
CN106501812A (zh) * 2016-12-01 2017-03-15 上海思岚科技有限公司 一种激光扫描测距设备
US20190324145A1 (en) * 2016-12-02 2019-10-24 Red Sensors Limited Lidar Apparatus and Method
CN110488249A (zh) 2019-09-06 2019-11-22 深圳市银星智能科技股份有限公司 一种激光雷达装置及移动机器人
CN113126118A (zh) * 2019-12-31 2021-07-16 武汉万集信息技术有限公司 3d激光雷达
CN113960566A (zh) * 2021-10-15 2022-01-21 杭州宇树科技有限公司 一种3d激光雷达及足式机器人
CN216209863U (zh) * 2021-10-15 2022-04-05 杭州宇树科技有限公司 一种3d激光雷达及足式机器人

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117148319A (zh) * 2023-10-31 2023-12-01 山东富锐光学科技有限公司 一种360°旋转扫描激光雷达
CN117148319B (zh) * 2023-10-31 2024-02-23 山东富锐光学科技有限公司 一种360°旋转扫描激光雷达

Also Published As

Publication number Publication date
EP4235213A1 (en) 2023-08-30
US20240094393A1 (en) 2024-03-21
JP2023549942A (ja) 2023-11-29
CN113960566A (zh) 2022-01-21

Similar Documents

Publication Publication Date Title
WO2023060892A1 (zh) 一种 3d 激光雷达及足式机器人
CN216209863U (zh) 一种3d激光雷达及足式机器人
CN205899006U (zh) 光学扫描传感器
CN105785383B (zh) 一种激光扫描测距装置
CN105527619B (zh) 一种激光测距设备
JP7309743B2 (ja) レーザレーダシステム及びその制御方法、走査角度の取得方法、車両
CN106886030B (zh) 应用于服务机器人的同步式地图构建与定位系统及方法
CN206863211U (zh) 一种小型化激光雷达
CN107490792A (zh) 光学扫描传感器
CN211205207U (zh) 光学组件驱动机构
CN108983197A (zh) 基于mems微镜的三维扫描激光雷达
CN208223391U (zh) 无滑环式旋转彩色三维建模装置
WO2024007540A1 (zh) 一种3d激光雷达及应用其的足式机器人和清洁机器人
CN115469293A (zh) 一种3d激光雷达及足式机器人和清洁机器人
CN209878987U (zh) 具有锥形扫描区域的激光雷达
JP7510730B2 (ja) 3dレーザーレーダーおよび脚式ロボット
CN218122240U (zh) 一种扫描效果好的激光雷达
CN113341398A (zh) 一种倾斜柱体棱镜扫描装置
CN217981825U (zh) 一种3d激光雷达及应用其的足式机器人和清洁机器人
CN215599353U (zh) 一种超广角激光扫描系统
CN209514069U (zh) 激光雷达扫描探测装置
CN215415857U (zh) 一种倾斜柱体棱镜扫描装置
WO2024031905A1 (zh) 一种激光雷达以及机器人
CN102654448A (zh) 基于三轴扫描振镜的便携式三维光声激励源
EP2476014A1 (en) Device and method for object detection and location

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023530672

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2022879842

Country of ref document: EP

Effective date: 20230523

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22879842

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18263292

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE