WO2023060826A1 - 一种高水头水泵水轮机叶盘加工方法 - Google Patents

一种高水头水泵水轮机叶盘加工方法 Download PDF

Info

Publication number
WO2023060826A1
WO2023060826A1 PCT/CN2022/079858 CN2022079858W WO2023060826A1 WO 2023060826 A1 WO2023060826 A1 WO 2023060826A1 CN 2022079858 W CN2022079858 W CN 2022079858W WO 2023060826 A1 WO2023060826 A1 WO 2023060826A1
Authority
WO
WIPO (PCT)
Prior art keywords
blisk
processing
water pump
pump turbine
blade
Prior art date
Application number
PCT/CN2022/079858
Other languages
English (en)
French (fr)
Inventor
刘军
陈道全
吴家奎
乔杰
王大伦
冯涛
胡章洪
谢贤斌
Original Assignee
东方电气集团东方电机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东方电气集团东方电机有限公司 filed Critical 东方电气集团东方电机有限公司
Publication of WO2023060826A1 publication Critical patent/WO2023060826A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/12Blades; Blade-carrying rotors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the technical field of blisk processing, and in particular relates to a method for processing blisks of high-head water pump turbines.
  • Pumped storage is a clean and efficient energy utilization method. Its main function is to stabilize the load of the power grid and play the role of energy storage, peak regulation, frequency regulation, and phase regulation. There is huge room for future development.
  • the construction of pumped storage power stations in my country started relatively late, but due to the latecomer effect, the starting point is relatively high.
  • the technology of several large pumped storage power stations built in recent years has reached the advanced level in the world.
  • the runner of a large-scale high-head pump turbine is the core power device of a pumped storage unit, and its manufacturing quality determines the vibration frequency, hydraulic efficiency, cavitation performance, and operation safety and reliability of the unit.
  • its production and manufacturing are still high-end customized core manufacturing technologies in the field of hydropower manufacturing at home and abroad.
  • the runner of a large high head pump turbine is the core power device of a pumped storage unit with a water head ranging from 200 to 500 meters.
  • the runner has a diameter of more than 4 meters and generally consists of an upper crown, a lower ring and 9 to 10 blades. From the perspective of the overall structure, this type of runner not only has the structural characteristics of the Kaplan runner, but also has the characteristics of closed, narrow and long flow channel space, and the geometric complexity of the large blade wrap angle.
  • the upper crown, the lower ring, and the blades of the runner are generally cast separately, and then single-piece CNC machining, assembly welding, and relief grinding of the weld seam, such as the processing and manufacturing of common mixed-flow (Kaplan) runners.
  • Kaplan common mixed-flow
  • the purpose of the present invention is to provide a method for processing the blisk of a high-head water pump turbine that facilitates processing and improves product quality.
  • a method for processing a blade disk of a water pump turbine with a high water head comprising the following steps:
  • the upper part of the blisk and the lower part of the blisk are cast separately; the upper part of the blisk includes the upper crown and the upper sections of several blades, and the lower part of the blisk includes the lower ring and the lower sections of several blades;
  • the blisk is designed as the upper section of the blade with the upper shroud and the lower section of the blade with the lower ring, and the upper part of the blisk and the lower part of the blisk are respectively cast.
  • the processing position is located in the middle of the flow channel, compared with processing at the root of the flow channel in the prior art, the working space and accessibility are better.
  • the present invention only needs to weld the upper section of the blade and the lower section of the blade together, which saves about half of the manual workload compared with the prior art where the blade is respectively welded and ground with the upper crown and the lower ring.
  • the present invention overcomes the challenge that the closed, narrow and twisted space of the high-head pump turbine runner structure in the prior art cannot be operated and poorly accessible to manual operations such as welding and scraping in the manufacturing process.
  • the invention overcomes the disadvantages in the prior art that the blisk is easily deformed during processing, the stroke is easily limited under the existing processing resource conditions, the cutter is easy to interfere, and the processing efficiency is not high. Since the welding seam of the product is reduced and the accessibility is good during processing, the quality of the product can be guaranteed.
  • step S1 3D printing casting sand molds are used for casting.
  • step S1 the balance distribution of the cast blank is controlled within 5-15 mm.
  • the numerical control machining includes three processes of standard turning, profile milling and finishing turning.
  • the milling process includes processing preparation, three-axis rough machining, fixed-axis semi-finishing and finishing, and polishing of the flow surface.
  • the knife-feeding method of undercutting and scraping is adopted.
  • a measurement reference is set in the flat areas of the upper part of the blisk and the lower part of the blisk.
  • three-dimensional detection means are used to survey and map the profile line of the blisk and the reference, and the margin of the blisk is calibrated; the reference is processed by vertical lathe.
  • the blisk is designed as the upper section of the blade with the upper shroud and the lower section of the blade with the lower ring, and the upper part of the blisk and the lower part of the blisk are respectively cast.
  • the processing position is located in the middle of the flow channel, compared with processing at the root of the flow channel in the prior art, the working space and accessibility are better.
  • the present invention only needs to weld the upper section of the blade and the lower section of the blade together, which saves about half of the manual workload compared to the prior art where the blade is respectively welded and ground with the upper crown and the lower ring.
  • the present invention overcomes the challenge that the closed, narrow and twisted space of the high-head pump turbine runner structure in the prior art cannot be operated and poorly accessible to manual operations such as welding and scraping in the manufacturing process.
  • the invention overcomes the disadvantages in the prior art that the blisk is easily deformed during processing, the stroke is easily limited under the existing processing resource conditions, the cutter is easy to interfere, and the processing efficiency is not high. Since the welding seam of the product is reduced and the accessibility is good during processing, the quality of the product can be guaranteed.
  • Fig. 1 is a structural representation of the present invention
  • Fig. 2 is a structural schematic diagram of the upper part of the blisk
  • Fig. 3 is a structural schematic diagram of the lower part of the blisk.
  • the method for processing the blisk of a high-head water pump turbine in this embodiment includes the following steps:
  • the upper part 1 of the blisk and the lower part 2 of the blisk are respectively cast; the upper part 1 of the blisk includes the upper crown 3 and the upper sections of several blades 4 , and the lower part 2 of the blisk includes the lower ring 5 and the lower sections of several blades 4 .
  • the present invention adopts the mode of 3D printing casting sand mold, and requires the balance distribution of the casting blank to be controlled within 5-15mm.
  • CNC machining includes three processes of turning benchmark, milling surface, and finish turning.
  • the milling surface process includes machining preparation, three-axis rough machining, fixed axis semi-finishing and finishing, and flow surface polishing.
  • the measurement reference is set in the flat area of the upper part 1 of the blisk and the lower part 2 of the blisk, and the three-dimensional detection method is used to map the profile line and reference of the blisk, and the margin of the blisk is calibrated.
  • the datum is processed by vertical lathe, which is used for alignment and machining datum of milling sequence.
  • the welding seam is generally located in a position that is easier to weld. For example, compared with the root position of the runner runner, the weld space in the middle of the runner runner is more open, the welding angle and accessibility are better, and the welding consumables are also Will save almost 50%.
  • Relief grinding the weld seam is similar to assembly welding of runners, both of which are mainly manual operations. Compared with the welding seam at the root of the runner, the welding seam located in the middle of the runner has better working space and accessibility, and will save about half of the manual work.
  • the blisk is designed as an upper crown with 3 blades and 4 upper sections and a lower ring with 5 blades and 4 lower sections, and the upper part 1 of the blisk and the lower part 2 of the blisk are respectively cast.
  • the processing position is located in the middle of the flow channel, compared with processing at the root of the flow channel in the prior art, the working space and accessibility are better.
  • the present invention only needs to weld the upper section of the blade 4 and the lower section of the blade 4 together, compared with the prior art where the blade 4 is respectively welded and relieved with the upper crown 3 and the lower ring 5, it will save about half of the cost. Manual workload.
  • the present invention overcomes the challenge that the closed, long and narrow, twisted space of the high-head pump-turbine runner structure in the prior art cannot be operated and poorly accessible to manual operations such as welding and scraping in the manufacturing process.
  • the invention overcomes the disadvantages in the prior art that the blisk is easily deformed during processing, the stroke is easily limited under the existing processing resource conditions, the cutter is easy to interfere, and the processing efficiency is not high. Since the welding seam of the product is reduced and the accessibility is good during processing, the quality of the product can be guaranteed.

Abstract

一种高水头水泵水轮机叶盘加工方法,包括以下步骤:S1:分别铸造叶盘上部(1)和叶盘下部(2);其中叶盘上部(1)包括上冠(3)和若干叶片(4)的上截,叶盘下部(2)包括下环(5)和若干叶片(4)的下截;S2:分别对叶盘上部(1)和叶盘下部(2)进行数控加工;S3:将叶盘上部(1)的叶片(4)上截和叶盘下部(2)的叶片(4)下截进行焊接;S4:对焊缝进行铲磨。焊接和铲磨工序时,加工位置位于流道中间部位,且仅需将叶片上截和叶片下截焊接在一起,加工方便且提高了产品质量。

Description

一种高水头水泵水轮机叶盘加工方法 技术领域
本发明属于叶盘加工技术领域,具体涉及一种高水头水泵水轮机叶盘加工方法。
背景技术
抽水蓄能是一种清洁、高效的能源利用方式,其主要作用为稳定电网的负载,起到储能、调峰、调频、调相的作用,未来发展空间巨大。我国抽水蓄能电站的建设起步较晚,但由于后发效应,起点却较高,近几年建设的几座大型抽水蓄能电站技术已处于世界先进水平。
大型高水头水泵水轮机的转轮是抽水蓄能机组的核心动力装置,其制造质量的好坏决定了机组运行的振动频率、水力效率、空化性能及运行的安全和可靠性。目前其生产制造在国内外水电制造领域仍属于高端定制化的核心制造技术。以仙游、绩溪到长龙山等抽水蓄能机组为例,这些机组的水头、容量和运行效率大幅提高的同时,其转轮的尺寸、几何复杂程度以及加工制造要求也在逐步提高,某些要求已经接近甚至超出了现有的技术条件及资源条件的限制,必须寻求一种新的制造模式及组合,才能实现其高端定制化的设计及制造。
大型高水头水泵水轮机转轮是水头范围在200至500米的抽水蓄能机组的核心动力装置,其转轮直径达4米以上,一般由上冠、下环和9~10件叶片组成。从整体结构上看,该类转轮不仅具有卡普兰转轮的结构特征,还具有流道空间封闭、狭长,叶片包角大的几何复杂性的特点。
现有技术中一般是将转轮的上冠、下环、叶片分体铸造,然后单体数控加工、组焊、铲磨焊缝,比如常见的混流式(卡普兰)转轮的加工制造。由于封闭、狭长的流道空间对高水头水泵水轮机转轮的传统加工制造方式 形成挑战,特别是组焊和焊缝铲磨等手工作业场景中,空间可达性受到严重限制,甚至超出了可操作的极限范围,因此,传统的加工制造方式已无法满足此类大型高水头水泵水轮机转轮的制造要求。
发明内容
为了解决现有技术存在的上述问题,本发明的目的在于提供一种方便加工且提高产品质量的高水头水泵水轮机叶盘加工方法。
本发明所采用的技术方案为:
一种高水头水泵水轮机叶盘加工方法,包括以下步骤:
S1:分别铸造叶盘上部和叶盘下部;其中叶盘上部包括上冠和若干叶片的上截,叶盘下部包括下环和若干叶片的下截;
S2:分别对叶盘上部和叶盘下部进行数控加工;
S3:将叶盘上部的叶片上截和叶盘下部的叶片下截进行焊接;
S4:对焊缝进行铲磨。
本发明将叶盘设计为上冠带叶片上截和下环带叶片下截,并将叶盘上部和叶盘下部分别进行铸造。焊接和铲磨工序时,加工位置位于流道中间部位,相比处于现有技术中在流道根部进行加工而言,作业空间和可达性都更好。并且,本发明仅需将叶片上截和叶片下截焊接在一起,相比于现有技术中将叶片分别与上冠和下环进行焊接和铲磨,会节省约一半的人工工作量。本发明克服现有技术中的封闭、狭长、扭曲空间的高水头水泵水轮机转轮结构对制造过程中的焊接、铲磨等手工作业环节无法操作、可达性差的挑战。本发明克服了现有技术中叶盘在加工过程中易变形,现有加工资源条件下行程易受限、刀具易干涉,加工效率不高等缺点。由于产品的焊缝减少,且加工时可达性好,则产品的质量能得到保证。
作为本发明的优选方案,在步骤S1中,采用3D打印铸造砂型的方式进行铸造。
作为本发明的优选方案,在步骤S1中,铸造毛坯的余量分布控制在5~15mm内。
作为本发明的优选方案,所述在步骤S2中,数控加工包括车基准、铣型面、精车三道工序。
作为本发明的优选方案,铣型面工序包括加工准备、三轴粗加工、定轴半精加工及精加工、过流面抛磨。
作为本发明的优选方案,在三轴粗加工工序中,使用
Figure PCTCN2022079858-appb-000001
大刀盘面铣刀,突破了原有采用
Figure PCTCN2022079858-appb-000002
刀具进行叶片或叶盘数控加工的常见方式,提高刀具的整体切削效率约50%以上。
作为本发明的优选方案,在三轴粗加工工序中,采用倒扣反刮的走刀方式。
作为本发明的优选方案,在车基准工序中,在叶盘上部和叶盘下部平坦区域设置测量基准。
作为本发明的优选方案,在车基准工序中,采用三维检测手段对叶盘型线和基准进行测绘,并对叶盘余量进行标定;采用立车加工出基准。
作为本发明的优选方案,在铣型面工序中,采用立式的装夹方式和工装。
本发明的有益效果为:
本发明将叶盘设计为上冠带叶片上截和下环带叶片下截,并将叶盘上部和叶盘下部分别进行铸造。焊接和铲磨工序时,加工位置位于流道中间部位,相比处于现有技术中在流道根部进行加工而言,作业空间和可达性都更好。并且,本发明仅需将叶片上截和叶片下截焊接在一起,相比于现 有技术中将叶片分别与上冠和下环进行焊接和铲磨,会节省约一半的人工工作量。本发明克服现有技术中的封闭、狭长、扭曲空间的高水头水泵水轮机转轮结构对制造过程中的焊接、铲磨等手工作业环节无法操作、可达性差的挑战。本发明克服了现有技术中叶盘在加工过程中易变形,现有加工资源条件下行程易受限、刀具易干涉,加工效率不高等缺点。由于产品的焊缝减少,且加工时可达性好,则产品的质量能得到保证。
附图说明
图1是本发明的结构示意图;
图2是叶盘上部的结构示意图;
图3是叶盘下部的结构示意图。
图中,1-叶盘上部;2-叶盘下部;3-上冠;4-叶片;5-下环。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
如图1~图3所示,本实施例的高水头水泵水轮机叶盘加工方法,包括以下步骤:
S1:分别铸造叶盘上部1和叶盘下部2;其中叶盘上部1包括上冠3和若干叶片4的上截,叶盘下部2包括下环5和若干叶片4的下截。本发明采用3D打印铸造砂型的方式,要求铸造毛坯的余量分布控制在5~15mm内。
S2:分别对叶盘上部1和叶盘下部2进行数控加工。
其中,数控加工包括车基准、铣型面、精车三道工序,铣型面工序包括加工准备、三轴粗加工、定轴半精加工及精加工、过流面抛磨。
在三轴粗加工工序中,使用
Figure PCTCN2022079858-appb-000003
大刀盘面铣刀,同时结合采用倒扣反刮的走刀方式,突破了原有采用
Figure PCTCN2022079858-appb-000004
刀具进行叶片4或叶盘数控加工的常见方式,提高刀具的整体切削效率约50%以上。
在车基准工序中,在叶盘上部1和叶盘下部2平坦区域设置测量基准,采用三维检测手段对叶盘型线和基准进行测绘,并对叶盘余量进行标定。型线测绘及标定的余量及基准后,采用立车加工出基准,用于铣序的找正及加工基准。
在铣型面工序中,采用立式的装夹方式和工装,保证直径超过4米的叶盘的型面数控加工精度。立式的装夹方式和工装消除了叶盘自身重力变形影响,对于提高加工精度起到了关键作用。
S3:将叶盘上部1的叶片4上截和叶盘下部2的叶片4下截进行焊接。焊缝一般处于比较容易施焊的部位,比如与转轮流道的根部位置相比,处于转轮流道的中间部位的焊缝空间更开阔,施焊角度和可达性更好,同时焊材也将节省近50%。
S4:对焊缝进行铲磨。铲磨与转轮的组焊类似,都以手工作业为主。位于流道中间部位的焊缝相比处于流道根部的焊缝而言,作业空间和可达性都更好,同时会节省约一半的人工工作量。
本发明将叶盘设计为上冠3带叶片4上截和下环5带叶片4下截,并将叶盘上部1和叶盘下部2分别进行铸造。焊接和铲磨工序时,加工位置位于流道中间部位,相比处于现有技术中在流道根部进行加工而言,作业空间和可达性都更好。并且,本发明仅需将叶片4上截和叶片4下截焊接在一起,相比于现有技术中将叶片4分别与上冠3和下环5进行焊接和铲磨,会节省约一半的人工工作量。本发明克服现有技术中的封闭、狭长、 扭曲空间的高水头水泵水轮机转轮结构对制造过程中的焊接、铲磨等手工作业环节无法操作、可达性差的挑战。本发明克服了现有技术中叶盘在加工过程中易变形,现有加工资源条件下行程易受限、刀具易干涉,加工效率不高等缺点。由于产品的焊缝减少,且加工时可达性好,则产品的质量能得到保证。
本发明不局限于上述可选实施方式,任何人在本发明的启示下都可得出其他各种形式的产品,但不论在其形状或结构上作任何变化,凡是落入本发明权利要求界定范围内的技术方案,均落在本发明的保护范围之内。

Claims (10)

  1. 一种高水头水泵水轮机叶盘加工方法,其特征在于,包括以下步骤:
    S1:分别铸造叶盘上部(1)和叶盘下部(2);其中叶盘上部(1)包括上冠(3)和若干叶片(4)的上截,叶盘下部(2)包括下环(5)和若干叶片(4)的下截;
    S2:分别对叶盘上部(1)和叶盘下部(2)进行数控加工;
    S3:将叶盘上部(1)的叶片(4)上截和叶盘下部(2)的叶片(4)下截进行焊接;
    S4:对焊缝进行铲磨。
  2. 根据权利要求1所述的一种高水头水泵水轮机叶盘加工方法,其特征在于,在步骤S1中,采用3D打印铸造砂型的方式进行铸造。
  3. 根据权利要求1所述的一种高水头水泵水轮机叶盘加工方法,其特征在于,在步骤S1中,铸造毛坯的余量分布控制在5~15mm内。
  4. 根据权利要求1所述的一种高水头水泵水轮机叶盘加工方法,其特征在于,所述在步骤S2中,数控加工包括车基准、铣型面、精车三道工序。
  5. 根据权利要求4所述的一种高水头水泵水轮机叶盘加工方法,其特征在于,铣型面工序包括加工准备、三轴粗加工、定轴半精加工及精加工、过流面抛磨。
  6. 根据权利要求5所述的一种高水头水泵水轮机叶盘加工方法,其特征在于,在三轴粗加工工序中,使用
    Figure PCTCN2022079858-appb-100001
    大刀盘面铣刀。
  7. 根据权利要求6所述的一种高水头水泵水轮机叶盘加工方法,其特征在于,在三轴粗加工工序中,采用倒扣反刮的走刀方式。
  8. 根据权利要求4所述的一种高水头水泵水轮机叶盘加工方法,其特 征在于,在车基准工序中,在叶盘上部(1)和叶盘下部(2)平坦区域设置测量基准。
  9. 根据权利要求8所述的一种高水头水泵水轮机叶盘加工方法,其特征在于,在车基准工序中,采用三维检测手段对叶盘型线和基准进行测绘,并对叶盘余量进行标定;采用立车加工出基准。
  10. 根据权利要求4所述的一种高水头水泵水轮机叶盘加工方法,其特征在于,在铣型面工序中,采用立式的装夹方式和工装。
PCT/CN2022/079858 2021-10-12 2022-03-09 一种高水头水泵水轮机叶盘加工方法 WO2023060826A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111184735.0A CN113909814A (zh) 2021-10-12 2021-10-12 一种高水头水泵水轮机叶盘加工方法
CN202111184735.0 2021-10-12

Publications (1)

Publication Number Publication Date
WO2023060826A1 true WO2023060826A1 (zh) 2023-04-20

Family

ID=79239241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079858 WO2023060826A1 (zh) 2021-10-12 2022-03-09 一种高水头水泵水轮机叶盘加工方法

Country Status (2)

Country Link
CN (1) CN113909814A (zh)
WO (1) WO2023060826A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113909814A (zh) * 2021-10-12 2022-01-11 东方电气集团东方电机有限公司 一种高水头水泵水轮机叶盘加工方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107138A (ja) * 1999-10-08 2001-04-17 Hitachi Ltd 高疲労強度の溶接羽根車
CN1912380A (zh) * 2005-07-14 2007-02-14 通用电器(加拿大)公司 分离的弗朗西斯水轮机转子
CN101865068A (zh) * 2009-04-20 2010-10-20 株式会社东芝 上冠或下环的组装方法及转轮的组装方法
CN103939259A (zh) * 2013-01-22 2014-07-23 株式会社东芝 水轮机转轮或水泵水轮机转轮及其制造方法
CN104279186A (zh) * 2014-09-17 2015-01-14 杭州杭氧透平机械有限公司 一种大流量超大直径半铣半焊闭式三元叶轮及制造方法
CN107150208A (zh) * 2017-05-24 2017-09-12 哈尔滨电机厂有限责任公司 一种机械加工与增材制造相结合的水轮机模型转轮制造方法
CN207437259U (zh) * 2017-11-06 2018-06-01 杭州睿博水电科技有限公司 中分式焊接转轮
CN111515624A (zh) * 2020-04-30 2020-08-11 德阳天蜀机械设备制造有限公司 一种转轮叶片修复工艺
CN113909814A (zh) * 2021-10-12 2022-01-11 东方电气集团东方电机有限公司 一种高水头水泵水轮机叶盘加工方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102990302B (zh) * 2012-11-30 2016-04-13 杭州杭氧透平机械有限公司 一种小流量闭式三元叶轮的加工方法
CN103009007B (zh) * 2012-12-26 2015-09-16 哈尔滨电气动力装备有限公司 核电站核主泵叶轮的加工工艺
WO2015181080A1 (en) * 2014-05-26 2015-12-03 Nuovo Pignone Srl Method for manufacturing a turbomachine component
CN107253025A (zh) * 2017-06-14 2017-10-17 南京辉锐光电科技有限公司 一种叶轮制造方法
CN109396764A (zh) * 2018-11-17 2019-03-01 共享智能装备有限公司 一种混流式整铸转轮的加工方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107138A (ja) * 1999-10-08 2001-04-17 Hitachi Ltd 高疲労強度の溶接羽根車
CN1912380A (zh) * 2005-07-14 2007-02-14 通用电器(加拿大)公司 分离的弗朗西斯水轮机转子
CN101865068A (zh) * 2009-04-20 2010-10-20 株式会社东芝 上冠或下环的组装方法及转轮的组装方法
CN103939259A (zh) * 2013-01-22 2014-07-23 株式会社东芝 水轮机转轮或水泵水轮机转轮及其制造方法
CN104279186A (zh) * 2014-09-17 2015-01-14 杭州杭氧透平机械有限公司 一种大流量超大直径半铣半焊闭式三元叶轮及制造方法
CN107150208A (zh) * 2017-05-24 2017-09-12 哈尔滨电机厂有限责任公司 一种机械加工与增材制造相结合的水轮机模型转轮制造方法
CN207437259U (zh) * 2017-11-06 2018-06-01 杭州睿博水电科技有限公司 中分式焊接转轮
CN111515624A (zh) * 2020-04-30 2020-08-11 德阳天蜀机械设备制造有限公司 一种转轮叶片修复工艺
CN113909814A (zh) * 2021-10-12 2022-01-11 东方电气集团东方电机有限公司 一种高水头水泵水轮机叶盘加工方法

Also Published As

Publication number Publication date
CN113909814A (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
CN103521861B (zh) 基于三维复合流场的整体叶盘型面电解加工装置及方法
CN104028983B (zh) 一种枞树型叶根类汽轮机叶片制造工艺
CN103009007B (zh) 核电站核主泵叶轮的加工工艺
CN113478031B (zh) 柔性电极动态变形电解加工方法及应用
CN101941136B (zh) 汽车水冷发电机箱体的加工制造工艺
CN105269277A (zh) 一种航空发动机压气机圆弧齿榫头叶片加工方法
CN103252687B (zh) 一种轮槽精拉刀齿形数控磨削工艺
CN103624350A (zh) 一种整体叶盘叶片电解精加工成形装置及其整体叶盘叶片加工成形方法
CN103706817B (zh) 一种新型整体多级盘毂转子单元体深腔加工刀具及其方法
CN102145465B (zh) 叶片加工万能装夹工装
CN104786078B (zh) 钛合金整体叶轮的数控加工方法及其配套工装夹具
WO2023060826A1 (zh) 一种高水头水泵水轮机叶盘加工方法
CN103586518A (zh) 一种开式整体叶盘盘铣开槽加工方法
CN105750599B (zh) 一种整体式加工台阶孔孔壁及孔底的复合刀具
CN104097037B (zh) 核电站核主泵导叶的加工工艺
CN108942107A (zh) 一种冲击式水轮机转轮的制造方法
CN104475842B (zh) 一种整体叶盘结构型面铣削加工工艺方法
CN111570878B (zh) 一种叶轮的高速铣粗加工方法
CN104439468B (zh) 适用于整体叶盘结构型面分层铣削成型工艺的铣刀
CN108875843B (zh) 一种混流式水轮机叶片刀轨生成方法
CN111545993B (zh) 一种冲击式水轮机转轮中斗叶的制造方法
CN205254205U (zh) 组合式端面密封槽铣刀
CN108237374B (zh) 多叶片转轮曲面的三轴联动加工方法
CN107097044B (zh) 大型核主泵屏蔽电机平衡环加工工艺及其工装装置
CN111441894A (zh) 一种小尺寸叶轮及其五轴铣削加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22879777

Country of ref document: EP

Kind code of ref document: A1