WO2023060793A1 - 降噪方法、芯片、芯片模组及设备 - Google Patents

降噪方法、芯片、芯片模组及设备 Download PDF

Info

Publication number
WO2023060793A1
WO2023060793A1 PCT/CN2022/070818 CN2022070818W WO2023060793A1 WO 2023060793 A1 WO2023060793 A1 WO 2023060793A1 CN 2022070818 W CN2022070818 W CN 2022070818W WO 2023060793 A1 WO2023060793 A1 WO 2023060793A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
filter
noise
narrowband
noise reduction
Prior art date
Application number
PCT/CN2022/070818
Other languages
English (en)
French (fr)
Inventor
魏孜宸
方思敏
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Publication of WO2023060793A1 publication Critical patent/WO2023060793A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17821Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the input signals only
    • G10K11/17823Reference signals, e.g. ambient acoustic environment
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17821Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the input signals only
    • G10K11/17825Error signals
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17853Methods, e.g. algorithms; Devices of the filter
    • G10K11/17854Methods, e.g. algorithms; Devices of the filter the filter being an adaptive filter
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17879General system configurations using both a reference signal and an error signal
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/108Communication systems, e.g. where useful sound is kept and noise is cancelled
    • G10K2210/1081Earphones, e.g. for telephones, ear protectors or headsets
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/128Vehicles
    • G10K2210/1282Automobiles
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3028Filtering, e.g. Kalman filters or special analogue or digital filters

Definitions

  • the embodiments of the present application relate to the technical field of noise reduction, and in particular, to a noise reduction method, chip, chip module, and device.
  • the method for noise reduction processing of environmental noise includes: usually adopting vibration sensor to collect environmental noise, obtain the frequency and amplitude of narrowband noise, construct narrowband noise according to frequency and amplitude, and use notch filter method to filter the narrowband noise. Noise reduction processing is performed on the noise, and then the noise reduction processing is performed on the environmental noise according to the narrow-band noise after the noise reduction processing.
  • the constructed narrow-band noise tends to generate relatively large delay and phase shift, resulting in a poor effect of noise reduction processing on environmental noise.
  • Embodiments of the present application provide a noise reduction method, a chip, a chip module, and equipment, which are used to improve the effect of noise reduction processing on environmental noise.
  • the embodiment of the present application provides a noise reduction method, the method includes:
  • Narrowband filtering is performed on the first noise signal by using a narrowband filter to obtain a first narrowband signal, and the first noise signal is obtained after collecting environmental noise at the current moment;
  • a first filter is used to filter the first noise signal to obtain a first broadband filtered signal, including:
  • the operating parameters of the first filter at the last moment and the first noise signal determine the operating parameters of the first filter at the current moment
  • filter processing is performed on the first noise signal to obtain a first broadband filtered signal.
  • the operating parameters of the first filter at the previous moment and the first noise signal includes:
  • the first transmission channel is a transmission channel between the reference microphone and the first filter that acquires the first noise signal
  • the difference between the working parameter of the first filter at the previous moment and the product of the preset value, the parameter adjustment step size, the second signal and the third noise signal is determined as the working parameter of the first filter at the current moment.
  • obtaining the third noise signal after the first noise signal is transmitted through the first transmission channel includes:
  • the product of the transfer function of the first channel corresponding to the first transmission channel and the first noise signal is determined as the third noise signal.
  • the second filter is used to filter the first narrowband signal to obtain the first narrowband filtered signal, including:
  • the working parameters of the second filter at the previous moment and the first narrowband signal determine the working parameters of the second filter at the current moment
  • Filtering is performed on the first narrowband signal according to the working parameters of the second filter at the current moment to obtain the first narrowband filtered signal.
  • the working parameters of the second filter at the previous moment and the first narrowband signal, the working parameters of the second filter at the current moment are determined, including:
  • the second transmission channel is a transmission channel between the narrowband filter and the second filter
  • the difference between the working parameter of the second filter at the previous moment and the preset value, the parameter adjustment step size, the product of the second signal and the second narrowband signal is determined as the working parameter of the second filter at the current moment.
  • performing noise reduction processing on the first noise signal according to the first wideband filtered signal and the first narrowband filtered signal includes:
  • the third transmission channel is the transmission channel between the reference microphone and the loudspeaker
  • the fourth noise signal is superimposed with the first broadband filtered signal and the first narrowband filtered signal.
  • the present application provides a noise reduction chip, including: a reference microphone, a first filter, a narrowband filter, a second filter, and a first adder, wherein the reference microphone and the first filter, narrowband filter The device is connected with the first adder, the narrowband filter is also connected with the second filter, and the first filter and the second filter are also respectively connected with the first adder;
  • a reference microphone is used to collect environmental noise to obtain a first noise signal
  • a narrowband filter configured to perform narrowband filtering on the first noise signal to obtain a first narrowband signal
  • a first filter configured to filter the first noise signal to obtain a first broadband filtered signal
  • the second filter is used to filter the first narrowband signal to obtain the first narrowband filtered signal
  • the first adder is configured to perform noise reduction processing on the first noise signal according to the first wideband filtered signal and the first narrowband filtered signal.
  • the chip further includes: a speaker and an error microphone, wherein the speaker is connected to the first adder, and the error microphone is respectively connected to the first filter and the second filter;
  • the first adder is also used to perform noise reduction processing on the second noise signal to obtain the second signal;
  • an error microphone for acquiring the second signal.
  • an embodiment of the present application provides a noise reduction device, including: a first filtering module, a second filtering module, a third filtering module, and a noise reduction module; wherein,
  • the first filtering module is configured to perform narrowband filtering processing on the first noise signal to obtain the first narrowband signal, and the first noise signal is obtained after collecting the environmental noise at the current moment;
  • the second filtering module is configured to filter the first noise signal to obtain a first broadband filtered signal
  • the third filtering module is configured to filter the first narrowband signal to obtain the first narrowband filtered signal
  • the noise reduction module is configured to perform noise reduction processing on the first noise signal according to the first wideband filtered signal and the first narrowband filtered signal.
  • the second filtering module is specifically used for:
  • filter processing is performed on the first noise signal to obtain a first broadband filtered signal.
  • the second filtering module is specifically used for:
  • the first transmission channel is a transmission channel between the reference microphone and the first filter that acquires the first noise signal
  • the difference between the working parameter of the first filter at the previous moment and the product of the preset value, the parameter adjustment step size, the second signal and the third noise signal is determined as the working parameter of the first filter at the current moment.
  • the second filtering module is specifically used for:
  • the product of the transfer function of the first channel corresponding to the first transmission channel and the first noise signal is determined as the third noise signal.
  • the third filtering module is specifically used for:
  • the working parameters of the second filter at the previous moment and the first narrowband signal determine the working parameters of the second filter at the current moment
  • Filtering is performed on the first narrowband signal according to the working parameters of the second filter at the current moment to obtain the first narrowband filtered signal.
  • the third filtering module is specifically used for:
  • the second transmission channel is a transmission channel between the narrowband filter and the second filter
  • the difference between the working parameter of the second filter at the previous moment and the preset value, the parameter adjustment step size, the product of the second signal and the second narrowband signal is determined as the working parameter of the second filter at the current moment.
  • the noise reduction module is specifically used for:
  • the fourth noise signal is superimposed with the first broadband filtered signal and the first narrowband filtered signal.
  • an embodiment of the present application provides a noise reduction device, including: a processor and a memory;
  • the memory stores computer-executable instructions
  • the processor executes the computer-implemented instructions stored in the memory, so that the processor executes the noise reduction method according to any one of the first aspect.
  • the embodiment of the present application provides a computer-readable storage medium, in which computer-executable instructions are stored, and when the processor executes the computer-executable instructions, the noise reduction method according to any one of the first aspect is implemented .
  • an embodiment of the present application provides a computer program product, including a computer program.
  • the computer program is executed by a processor, the noise reduction method according to any one of the first aspect is implemented.
  • Embodiments of the present application provide a noise reduction method, a chip, a chip module, and equipment, wherein the noise reduction method includes: using a narrowband filter to perform narrowband filtering on the first noise signal to obtain the first narrowband signal, the first noise signal It is obtained after collecting the environmental noise at the current moment; the first noise signal is filtered by the first filter to obtain the first wideband filtered signal; the first narrowband signal is filtered by the second filter to obtain the first narrowband signal A narrowband filtered signal; performing noise reduction processing on the first noise signal according to the first wideband filtered signal and the first narrowband filtered signal.
  • Embodiments of the present application provide a noise reduction method, chip, chip module, and device that can be used to improve the effect of noise reduction processing on environmental noise.
  • Fig. 1 is a flow chart 1 of the noise reduction method provided by the example of the present application.
  • FIG. 2 is the second flow chart of the noise reduction method provided by the embodiment of the present application.
  • FIG. 3 is a structural schematic diagram 1 of the noise reduction chip provided by the embodiment of the present application.
  • Fig. 4 is a structural schematic diagram II of the noise reduction chip provided by the embodiment of the present application.
  • FIG. 5 is a structural schematic diagram III of the noise reduction chip provided by the embodiment of the present application.
  • FIG. 6 is a schematic diagram of a noise reduction method provided in an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a noise reduction device provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a hardware structure of a noise reduction device provided by an embodiment of the present application.
  • the narrow-band noise after noise reduction processing to filter the environmental noise it is necessary to construct the narrow-band noise according to the frequency and amplitude. Since the method of constructing the narrow-band noise according to the frequency and amplitude is complicated, the processing time required for constructing the narrow-band noise is relatively long. Therefore, the constructed narrow-band noise tends to have a large delay and a phase shift, resulting in a poor effect of noise reduction on environmental noise.
  • the inventor thought of: using a narrow-band filter to perform narrow-band filtering on the first noise signal to obtain the first narrow-band signal, which can simplify the method of obtaining the narrow-band signal and shorten The processing time of the narrowband signal is obtained, and the relatively large delay and phase shift of the narrowband signal are avoided, so the effect of noise reduction processing on environmental noise can be improved.
  • FIG. 1 is the first flow chart of the noise reduction method provided by the example of this application. As shown in Figure 1, the method includes:
  • the executor of the embodiment of the present application may be a noise reduction device, or a noise reduction chip in the noise reduction device, or a noise reduction chip module in the noise reduction device.
  • the noise reduction device, the noise reduction chip, and the noise reduction chip module can be realized through a combination of software and/or hardware.
  • the noise reduction device may be any device that needs to perform noise reduction processing on environmental noise, such as earphones, speakers, wearable devices, and noise reduction devices in cars.
  • the first noise signal is obtained after collecting the environmental noise at the current moment.
  • the environmental noise refers to the environmental noise in the environment where the noise reduction device, the noise reduction chip, or the noise reduction chip module is located.
  • the first filter and the second filter are active noise control (Active noise control, ANC) filters.
  • the method for determining the working parameters of the first filter at the current moment may include: obtaining the second signal after performing noise reduction processing on the second noise signal collected at the previous moment; according to the second signal, the first filter The operating parameters at the last moment and the first noise signal are used to determine the operating parameters of the first filter at the current moment.
  • S202-S206 in FIG. 2 refer to S202-S206 in FIG. 2 .
  • the second filter is used to filter the first narrowband signal. Before obtaining the first narrowband filtered signal, it is necessary to determine the operating parameters of the second filter at the current moment, and according to the operating parameters of the second filter at the current moment Filtering is performed on the first narrowband signal to obtain a first narrowband filtered signal.
  • the method for determining the working parameters of the second filter at the current moment includes: obtaining the second signal after performing noise reduction processing on the second noise signal collected at the previous moment;
  • the operating parameters at a moment and the first narrowband signal determine the operating parameters of the second filter at the current moment. Specifically, refer to S207-S212 in FIG. 2 .
  • a fourth noise signal after the first noise signal is transmitted through the third transmission channel is obtained; and the fourth noise signal is superimposed on the first broadband filter signal and the first narrowband filter signal.
  • the third transmission channel is the transmission channel between the reference microphone and the loudspeaker, which is also equivalent to the transmission channel between the reference microphone and the first adder, as shown in FIGS. 3-5 .
  • Obtaining the fourth noise signal after the first noise signal is transmitted through the third transmission channel includes: multiplying the product of the third channel transfer function corresponding to the third transmission channel (S3(z) in Figure 6 below) and the first noise signal , determined as the fourth noise signal.
  • the magnitude of the first wideband filtered signal and the magnitude of the first narrowband filtered signal are opposite to those of the fourth noise signal, superimposing the fourth noise signal with the first wideband filtered signal and the first narrowband filtered signal can cancel out the fourth The broadband filter signal and the narrowband filter signal in the noise signal, so as to realize the noise reduction processing of the first noise signal, and further realize the noise reduction processing of the environmental noise.
  • Narrowband filtering is performed on the first noise signal by using a narrowband filter to obtain the first narrowband signal, which can avoid large delay and phase shift of the first narrowband signal, and improve the effect of noise reduction processing on environmental noise.
  • a microphone is usually used to collect the environmental noise to obtain broadband noise, and an adaptive filter is used to reduce the noise of the broadband noise; usually a vibration sensor is used to collect the environmental noise to obtain Frequency and amplitude of narrow-band noise, and construct narrow-band noise according to frequency and amplitude, use notch filter method to reduce noise of narrow-band noise, and then filter broadband noise according to broadband noise and narrow-band noise after noise reduction processing, thus Realize noise reduction processing of environmental noise.
  • the method of constructing narrow-band noise according to frequency and amplitude is complicated, and the constructed narrow-band noise tends to generate large delay and phase shift, resulting in poor noise reduction effect on environmental noise.
  • a narrowband filter is used to perform narrowband filtering on the first noise signal to obtain the first narrowband signal, and the narrowband signal can be obtained relatively easily. noise, so that the first narrowband signal can avoid a large delay and phase shift, thereby improving the effect of noise reduction processing on the first noise signal, and further improving the effect of noise reduction processing on environmental noise.
  • the noise reduction device is a device in a car.
  • the feedback ANC system in the device uses a hybrid filtering method of a feedforward filter and a feedback filter to filter broadband noise and narrowband noise, where the feedback filter causes noise in the middle and high frequency bands
  • the second filter i.e., the feed-forward ANC filter
  • the feed-forward ANC filter is used to filter the first narrowband signal, avoiding the use of a feedback filter, thereby suppressing the "water bed effect", and further improving the reduction of environmental noise. effect of noise processing.
  • FIG. 2 is the second flowchart of the noise reduction method provided by the embodiment of the present application. As shown in Figure 2, the method includes:
  • the first noise signal is obtained after collecting the environmental noise at the current moment.
  • the execution method of S201 is the same as that of S101, and the execution process of S202 will not be repeated here.
  • the second noise signal is obtained by collecting environmental noise at a previous moment.
  • the method of performing noise reduction processing on the second noise signal collected at the previous moment is similar to the method of performing noise reduction processing on the first noise signal collected at the current moment, and will not be repeated here.
  • the preset estimation model may be a Least Mean Squre model.
  • the first transmission channel is a transmission channel between the reference microphone that acquires the first noise signal and the first filter.
  • the product of the first channel transfer function corresponding to the first transmission channel (as shown in S1(z) in FIG. 6 ) and the first noise signal is determined as the third noise signal.
  • S205 Determine the difference between the working parameter of the first filter at the previous moment and the product of the preset value, the parameter adjustment step size, the second signal, and the third noise signal as the work of the first filter at the current moment parameter.
  • the working parameters of the first filter at the current moment may be determined by the following formula 1.
  • w 1 (n) w 1 (n-1)-K ⁇ e(n-1) ⁇ x'(n) Formula 1;
  • w 1 (n) is the working parameter of the first filter at the current time n
  • w 1 (n-1) is the working parameter of the first filter at the previous time n-1
  • K is the preset value
  • is the parameter adjustment step size
  • e(n-1) is the second signal
  • x'(n) is the third noise signal.
  • w 1 (n-1) [w 0 1 (n-1), w 1 1 (n-1), ..., w N-1 1 (n-1)] T , where N is total moment.
  • the execution method of S207-S208 is the same as the execution method of S202-S203.
  • the second transmission channel is a transmission channel between the narrowband filter and the second filter.
  • the product of the second channel transfer function corresponding to the transfer of the second transmission channel (as shown in S2(z) in FIG. 6 ) and the first narrowband signal is determined as the second narrowband signal.
  • S210 Determine the difference between the working parameter of the second filter at the previous moment and the preset value, the parameter adjustment step size, the product of the second signal and the second narrowband signal as the work of the second filter at the current moment parameter.
  • the working parameters of the second filter at the current moment may be determined by the following formula 2.
  • w 2 (n) w 2 (n-1)-K ⁇ e(n-1) ⁇ x′′(n) Formula 2;
  • w 2 (n) is the working parameter of the second filter at the current time n
  • w 2 (n-1) is the working parameter of the second filter at the previous time n-1
  • K is the preset value
  • is the parameter adjustment step size
  • e(n-1) is the second signal
  • x′′(n) is the second narrowband signal.
  • w 2 (n-1) [w 0 2 (n-1), w 1 2 (n-1), . . . , w N-1 2 (n-1)] T .
  • x"(n) [x"(n), x"(n)...x"(n-N+1)] T .
  • the execution method of S212 is the same as the execution method of S103, and the execution process of S212 will not be repeated here.
  • the working parameters of the first filter at the current moment are determined through the method of S202-S205, and the first noise signal is processed according to the working parameters of the first filter at the current moment Filtering processing to obtain the first wideband filtered signal can improve the accuracy of the obtained first wideband filtered signal; secondly, determine the working parameters of the second filter at the current moment by the method of S207 ⁇ S210, according to the current moment of the second filter
  • the working parameters of the first narrowband signal are filtered to obtain the first narrowband filtered signal, which can improve the accuracy of the obtained first narrowband filtered signal; in addition, the narrowband filter is used to narrowband filter the first noise signal to obtain the first narrowband filtered signal.
  • a narrowband signal can avoid a large delay and a phase shift of the first narrowband signal, and improve the effect of noise reduction processing on environmental noise.
  • the transmission channel usually causes signal attenuation when transmitting a signal
  • the first channel transfer function corresponding to the first transmission channel The product of the first noise signal is determined as the third noise signal to improve the accuracy of obtaining the third noise signal
  • the product of the second channel transfer function corresponding to the second transmission channel and the first narrowband signal is determined as the second
  • the narrowband signal improves the accuracy of obtaining the second narrowband signal
  • the present application also provides a noise reduction chip for implementing the above-mentioned noise reduction method in FIG. 1 or FIG. 2 .
  • the noise reduction chip provided by the present application will be further described in detail below in conjunction with FIG. 3 .
  • FIG. 3 is a first structural schematic diagram of a noise reduction chip provided by an embodiment of the present application.
  • the noise reduction chip 30 includes: a reference microphone 31 , a first filter 32 , a narrowband filter 33 , a second filter 34 and a first adder 35 .
  • the reference microphone 31 is connected with the first filter 32, the narrowband filter 33 and the first adder 35 respectively
  • the narrowband filter 33 is also connected with the second filter 34
  • the first filter 32 and the second filter 34 are also connected are connected to the first adder 35 respectively.
  • the noise reduction chip shown in FIG. 3 can implement the noise reduction methods shown in FIGS. 1 and 2 .
  • the reference microphone 31 is used to collect environmental noise to obtain the first noise signal
  • the narrowband filter 33 is used to filter the first noise signal.
  • the noise signal is subjected to narrowband filtering to obtain a first narrowband signal
  • the first filter 32 is used to filter the first noise signal to obtain a first wideband filtered signal
  • the second filter 34 is used to filter the first narrowband signal Perform filtering processing to obtain a first narrowband filtered signal
  • the first adder 35 is configured to perform noise reduction processing on the first noise signal according to the first wideband filtered signal and the first narrowband filtered signal.
  • the noise reduction chip 30 may further include a second adder 40 connected to the first filter 32 , the second filter 34 and the first adder 35 respectively.
  • the second adder 40 is used for superimposing the first wideband filtered signal and the first narrowband filtered signal.
  • the first adder 35 is used to superimpose the first noise signal with the first broadband filter signal and the first narrowband filter signal, so as to cancel the broadband filter in the first noise signal according to the first broadband filter signal and the first narrowband filter signal signal and the narrowband filtered signal, so as to implement noise reduction processing on the first noise signal.
  • FIG. 4 is a second structural schematic diagram of the noise reduction chip provided by the embodiment of the present application.
  • the noise reduction chip 30 further includes: a speaker 36 and an error microphone 37 .
  • the speaker 36 is connected to the first adder 35, and the error microphone 37 is connected to the first filter 32 and the second filter 34, respectively.
  • the first adder 35 is further configured to perform noise reduction processing on the second noise signal to obtain a second signal.
  • the speaker 36 is used to play the second signal.
  • the error microphone 37 is used to obtain the second signal.
  • the noise reduction chip shown in Figure 4 can implement the noise reduction methods shown in Figure 1 and Figure 2. Specifically, when the noise reduction chip shown in FIG. 4 executes the noise reduction method shown in FIG. 2, the narrowband filter 33 is used to execute S201, and the first adder 35, speaker 36 and error microphone 37 are used to execute S202 and S207, The first filter 32 is used to execute S203-S206, the second filter 34 is used to execute S208-S211, and the first adder 35 is used to execute S212.
  • FIG. 5 is a schematic structural diagram III of the noise reduction chip provided by the embodiment of the present application.
  • the noise reduction chip 30 further includes: a first switch 38 and/or a second switch 39 .
  • the first switch 38 is connected between the first filter 32 and the first adder 35 .
  • the second switch 39 is connected between the second filter 34 and the first adder 35 .
  • the first switch 38 and the second switch 39 may be hardware switches operable by the user, or software switches controllable by software.
  • the first switch 38 When the first switch 38 is closed and the second switch 39 is open, it can only be realized: the first noise signal is filtered by the first filter to obtain the first wideband filtered signal; according to the first wideband filtered signal, the first Noise reduction processing for noisy signals.
  • the first switch 38 When the first switch 38 is disconnected and the second switch 39 is closed, it can only be realized: adopting a narrowband filter to carry out narrowband filtering processing on the first noise signal to obtain the first narrowband signal; adopting the second filter to perform narrowband filtering on the first narrowband signal filtering to obtain a first narrowband filtered signal; and performing noise reduction processing on the first noise signal according to the first wideband filtered signal and the first narrowband filtered signal.
  • the noise reduction chip shown in FIG. 5 further includes: a first switch 38 and/or a second switch 39 .
  • a first switch 38 and/or a second switch 39 Through the first switch 38 and/or the second switch 39, the user can flexibly select a method for performing noise reduction processing on the first noise signal, thereby improving the flexibility of performing noise reduction processing on the first noise signal.
  • An embodiment of the present application further provides a noise reduction chip module, including: the above noise reduction chip.
  • the embodiment of the present application also provides a noise reduction device, including: the above-mentioned noise reduction chip, or a noise reduction chip module.
  • the noise reduction chip may be various types of noise reduction chips such as earphone chips, wearable noise reduction chips, and car noise reduction chips.
  • the narrowband filtering part (including the narrowband filter and the second filter) can reuse the broadband filtering part (including: ), so the area of the noise reduction chip can be saved.
  • the noise reduction chip includes the reference microphone 31, the first filter 32, the narrowband filter 33, the second filter 34 and the first adder 35, the noise reduction method can be realized, so the implementation process of the noise reduction chip is relatively simple .
  • the noise reduction chip is an automotive noise reduction chip, it can avoid the frequency and amplitude of narrowband noise collected by non-acoustic sensors (such as vibration sensors), avoid the construction process of narrowband noise, and simplify the design structure of the automotive noise reduction chip.
  • non-acoustic sensors such as vibration sensors
  • FIG. 6 is a schematic diagram of a noise reduction method provided by an embodiment of the present application.
  • a noise reduction method provided by an embodiment of the present application.
  • Figure 6 including: x(n), P(z), W1(z), k1, S1(z), LMS, narrowband filter, W2(z), k2 , S2(z), LMS.
  • x(n) represents the first noise signal, that is, the broadband noise signal obtained after the reference microphone collects the environmental noise.
  • P(z) represents the acoustic response of the first noise signal from the reference microphone to the human ear, which is equivalent to the transfer function of the third channel.
  • W1(z) represents the first filter.
  • k1 represents a first switch.
  • S1(z) represents the first channel transfer function.
  • LMS represents an LMS algorithm model, and is used to adjust the working parameters of the first filter and the second filter.
  • W2(z) represents the second filter.
  • k2 represents a second switch.
  • S2(z) represents the second channel transfer function.
  • S3(z) is a fourth channel transfer function of the fourth transmission channel between the first adder and the error microphone.
  • S1(z) and S2(z) are obtained by estimating S3(z) respectively.
  • e(n) is the first signal after noise reduction processing is performed on the first noise signal.
  • the first signal is a signal collected by the error microphone when the speaker plays the first signal.
  • the product of the signal played by the loudspeaker and the transfer function of the fourth channel is equal to e(n).
  • FIG. 7 is a schematic structural diagram of a noise reduction device provided by an embodiment of the present application.
  • the noise reduction device 70 includes: a first filtering module 701, a second filtering module 702, a third filtering module 703 and a noise reduction module 704; wherein,
  • the first filtering module 701 is configured to perform narrow-band filtering processing on the first noise signal to obtain a first narrow-band signal, and the first noise signal is obtained after collecting environmental noise at the current moment;
  • the second filtering module 702 is configured to filter the first noise signal to obtain a first broadband filtered signal
  • the third filtering module 703 is configured to filter the first narrowband signal to obtain a first narrowband filtered signal
  • the noise reduction module 704 is configured to perform noise reduction processing on the first noise signal according to the first wideband filtered signal and the first narrowband filtered signal.
  • the noise reduction device 70 provided in the embodiment of the present application can implement the technical solutions shown in the above method embodiments, and its implementation principles and beneficial effects are similar, and will not be repeated here.
  • the second filtering module 702 is specifically used for:
  • filter processing is performed on the first noise signal to obtain a first broadband filtered signal.
  • the second filtering module 702 is specifically used for:
  • the first transmission channel is a transmission channel between the reference microphone and the first filter that acquires the first noise signal
  • the difference between the working parameter of the first filter at the previous moment and the product of the preset value, the parameter adjustment step size, the second signal and the third noise signal is determined as the working parameter of the first filter at the current moment.
  • the second filtering module 702 is specifically used for:
  • the product of the transfer function of the first channel corresponding to the first transmission channel and the first noise signal is determined as the third noise signal.
  • the third filtering module 703 is specifically used for:
  • the working parameters of the second filter at the previous moment and the first narrowband signal determine the working parameters of the second filter at the current moment
  • Filtering is performed on the first narrowband signal according to the working parameters of the second filter at the current moment to obtain the first narrowband filtered signal.
  • the third filtering module 703 is specifically used for:
  • the second transmission channel is a transmission channel between the narrowband filter and the second filter
  • the difference between the working parameter of the second filter at the previous moment and the preset value, the parameter adjustment step size, the product of the second signal and the second narrowband signal is determined as the working parameter of the second filter at the current moment.
  • the noise reduction module 704 is specifically used for:
  • the fourth noise signal is superimposed with the first broadband filtered signal and the first narrowband filtered signal.
  • the noise reduction device 70 provided in the embodiment of the present application can implement the technical solutions shown in the above method embodiments, and its implementation principles and beneficial effects are similar, and will not be repeated here.
  • FIG. 8 is a schematic diagram of a hardware structure of a noise reduction device provided by an embodiment of the present application.
  • the noise reduction device 80 includes: a processor 801 and a memory 802,
  • processor 801 and the memory 802 are connected through a bus 803 .
  • the processor 801 executes the computer-executed instructions stored in the memory 802, so that the processor 801 executes the above noise reduction method.
  • the processor can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), dedicated Integrated Circuit (Application Specific Integrated Circuit, ASIC), etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like. The steps of the method disclosed in conjunction with the application can be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • Memory may include high-speed RAM memory, and may also include non-volatile storage NVM, such as disk memory.
  • NVM non-volatile storage
  • the bus can be an Industry Standard Architecture (Industry Standard Architecture, ISA) bus, a Peripheral Component Interconnect (PCI) bus, or an Extended Industry Standard Architecture (Extended Industry Standard Architecture, EISA) bus, etc.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into address bus, data bus, control bus and so on.
  • the bus in the drawings of the present application is not limited to only one bus or one type of bus.
  • the present application also provides a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when the processor executes the computer-executable instructions, the noise reduction method in the above method embodiments is realized.
  • the present application also provides a computer program product, including a computer program.
  • a computer program product including a computer program.
  • the noise reduction method in the above method embodiment is implemented.
  • the above-mentioned computer-readable storage medium can be realized by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable Programmable Read Only Memory (EEPROM), Erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable Programmable Read Only Memory
  • EPROM Erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Readable storage media can be any available media that can be accessed by a general purpose or special purpose computer.
  • An exemplary readable storage medium is coupled to the processor such the processor can read information from, and write information to, the readable storage medium.
  • the readable storage medium can also be a component of the processor.
  • the processor and the readable storage medium may be located in Application Specific Integrated Circuits (ASIC for short).
  • ASIC Application Specific Integrated Circuits
  • the processor and the readable storage medium can also exist in the device as discrete components.
  • the division of units is only a division of logical functions. In actual implementation, there may be other division methods. For example, multiple units or components can be combined or integrated into another system, or some features can be ignored or not implemented. In another point, the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • a unit described as a separate component may or may not be physically separated, and a component displayed as a unit may or may not be a physical unit, that is, it may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are realized in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .
  • the aforementioned program can be stored in a computer-readable storage medium.
  • the program executes the steps of the above-mentioned method embodiments; and the aforementioned storage medium includes: ROM, RAM, magnetic disk or optical disk and other various media that can store program codes.

Abstract

一种降噪方法、芯片、芯片模组及设备,其中,降噪方法包括:采用窄带滤波器(33)对第一噪声信号进行窄带滤波处理,得到第一窄带信号(S101),第一噪声信号为对当前时刻的环境噪声进行采集后得到的;采用第一滤波器(32)对第一噪声信号进行滤波处理,得到第一宽带滤波信号;采用第二滤波器(34)对第一窄带信号进行滤波处理,得到第一窄带滤波信号(S102);根据第一宽带滤波信号和第一窄带滤波信号,对第一噪声信号进行降噪处理(S103)。本方法能够提高对环境噪声进行降噪处理的效果。

Description

降噪方法、芯片、芯片模组及设备
本申请要求于2021年10月13日提交中国专利局、申请号为202111189551.3、申请名称为“降噪方法、芯片、芯片模组及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及降噪技术领域,尤其涉及一种降噪方法、芯片、芯片模组及设备。
背景技术
目前,为了提高播放设备(例如耳机或者音箱等)的音频播放质量,通常需要对播放设备采集得到的环境噪声进行降噪处理。
在相关技术中,对环境噪声进行降噪处理的方法包括:通常采用振动传感器对环境噪声进行采集,得到窄带噪声的频率和幅度,并根据频率和幅度构造窄带噪声,采用陷波滤波方法对窄带噪声进行降噪处理,进而根据降噪处理后的窄带噪声,对环境噪声进行降噪处理。
在上述过程中,构造出的窄带噪声容易产生较大的延时、以及相位的偏移,导致对环境噪声进行降噪处理的效果较差。
发明内容
本申请实施例提供一种降噪方法、芯片、芯片模组及设备,用于提高对环境噪声进行降噪处理的效果。
第一方面,本申请实施例提供一种降噪方法,方法包括:
采用窄带滤波器对第一噪声信号进行窄带滤波处理,得到第一窄带信号,第一噪声信号为对当前时刻的环境噪声进行采集后得到的;
采用第一滤波器对第一噪声信号进行滤波处理,得到第一宽带滤波信号;采用第二滤波器对第一窄带信号进行滤波处理,得到第一窄带滤波信号;
根据第一宽带滤波信号和第一窄带滤波信号,对第一噪声信号进行降噪处理。
在一种可能的设计中,采用第一滤波器对第一噪声信号进行滤波处理,得到第一宽带滤波信号,包括:
获取对上一时刻采集到的第二噪声信号进行降噪处理后的第二信号;
根据第二信号、第一滤波器在上一时刻的工作参数和第一噪声信号,确定第一滤波器 在当前时刻的工作参数;
根据第一滤波器在当前时刻的工作参数,对第一噪声信号进行滤波处理,得到第一宽带滤波信号。
在一种可能的设计中,根据第二信号、第一滤波器在上一时刻的工作参数和第一噪声信号,确定第一滤波器在当前时刻的工作参数,包括:
采用预设估计模型,对第二信号进行估计,确定参数调节步长;
获取经过第一传输通道传递第一噪声信号之后的第三噪声信号;第一传输通道为采集得到第一噪声信号的参考麦克风和第一滤波器之间的传输通道;
将第一滤波器在上一时刻的工作参数,与预设值、参数调节步长、第二信号、第三噪声信号的乘积的差值,确定为第一滤波器在当前时刻的工作参数。
在一种可能的设计中,获取经过第一传输通道传递第一噪声信号之后的第三噪声信号,包括:
将第一传输通道对应的第一通道传递函数,与第一噪声信号的乘积,确定为第三噪声信号。
在一种可能的设计中,采用第二滤波器对第一窄带信号进行滤波处理,得到第一窄带滤波信号,包括:
获取对上一时刻采集到的第二噪声信号进行降噪处理后的第二信号;
根据第二信号、第二滤波器在上一时刻的工作参数和第一窄带信号,确定第二滤波器在当前时刻的工作参数;
根据第二滤波器在当前时刻的工作参数,对第一窄带信号进行滤波处理,得到第一窄带滤波信号。
在一种可能的设计中,根据第二信号、第二滤波器在上一时刻的工作参数和第一窄带信号,确定第二滤波器在当前时刻的工作参数,包括:
采用预设估计模型,对第二信号进行估计,确定参数调节步长;
获取经过第二传输通道传递第一窄带信号之后的第二窄带信号;第二传输通道为窄带滤波器和第二滤波器之间的传输通道;
将第二滤波器在上一时刻的工作参数,与预设值、参数调节步长、第二信号和第二窄带信号的乘积的差值,确定为第二滤波器在当前时刻的工作参数。
在一种可能的设计中,根据第一宽带滤波信号和第一窄带滤波信号,对第一噪声信号进行降噪处理,包括:
获取通过第三传输通道传输第一噪声信号之后的第四噪声信号,第三传输通道为参考 麦克风与扬声器之间的传输通道;
将第四噪声信号与第一宽带滤波信号以及第一窄带滤波信号进行叠加。
第二方面,本申请提供一种降噪芯片,包括:参考麦克风、第一滤波器、窄带滤波器、第二滤波器和第一加法器,其中,参考麦克风分别与第一滤波器、窄带滤波器和第一加法器连接,窄带滤波器还与第二滤波器连接,第一滤波器和第二滤波器还分别与第一加法器连接;
参考麦克风,用于对环境噪声进行采集,得到第一噪声信号;
窄带滤波器,用于对第一噪声信号进行窄带滤波处理,得到第一窄带信号;
第一滤波器,用于对第一噪声信号进行滤波处理,得到第一宽带滤波信号;
第二滤波器,用于对第一窄带信号进行滤波处理,得到第一窄带滤波信号;
第一加法器,用于根据第一宽带滤波信号和第一窄带滤波信号,对第一噪声信号进行降噪处理。
在一种可能的设计中,芯片还包括:扬声器和误差麦克风,其中,扬声器和第一加法器连接,误差麦克风分别与第一滤波器和第二滤波器连接;
第一加法器,还用于对第二噪声信号进行降噪处理得到第二信号;
扬声器,用于播放第二信号;
误差麦克风,用于获取第二信号。
第三方面,本申请实施例提供一种降噪装置,包括:第一滤波模块、第二滤波模块、第三滤波模块和降噪模块;其中,
第一滤波模块,用于对第一噪声信号进行窄带滤波处理,得到第一窄带信号,第一噪声信号为对当前时刻的环境噪声进行采集后得到的;
第二滤波模块,用于对第一噪声信号进行滤波处理,得到第一宽带滤波信号;
第三滤波模块,用于对第一窄带信号进行滤波处理,得到第一窄带滤波信号;
降噪模块,用于根据第一宽带滤波信号和第一窄带滤波信号,对第一噪声信号进行降噪处理。
在一种可能的设计中,第二滤波模块具体用于:
获取对上一时刻采集到的第二噪声信号进行降噪处理后的第二信号;
根据第二信号、第一滤波器在上一时刻的工作参数和第一噪声信号,确定第一滤波器在当前时刻的工作参数;
根据第一滤波器在当前时刻的工作参数,对第一噪声信号进行滤波处理,得到第一宽带滤波信号。
在一种可能的设计中,第二滤波模块具体用于:
采用预设估计模型,对第二信号进行估计,确定参数调节步长;
获取经过第一传输通道传递第一噪声信号之后的第三噪声信号;第一传输通道为采集得到第一噪声信号的参考麦克风和第一滤波器之间的传输通道;
将第一滤波器在上一时刻的工作参数,与预设值、参数调节步长、第二信号、第三噪声信号的乘积的差值,确定为第一滤波器在当前时刻的工作参数。
在一种可能的设计中,第二滤波模块具体用于:
将第一传输通道对应的第一通道传递函数,与第一噪声信号的乘积,确定为第三噪声信号。
在一种可能的设计中,第三滤波模块具体用于:
获取对上一时刻采集到的第二噪声信号进行降噪处理后的第二信号;
根据第二信号、第二滤波器在上一时刻的工作参数和第一窄带信号,确定第二滤波器在当前时刻的工作参数;
根据第二滤波器在当前时刻的工作参数,对第一窄带信号进行滤波处理,得到第一窄带滤波信号。
在一种可能的设计中,第三滤波模块具体用于:
采用预设估计模型,对第二信号进行估计,确定参数调节步长;
获取经过第二传输通道传递第一窄带信号之后的第二窄带信号;第二传输通道为窄带滤波器和第二滤波器之间的传输通道;
将第二滤波器在上一时刻的工作参数,与预设值、参数调节步长、第二信号和第二窄带信号的乘积的差值,确定为第二滤波器在当前时刻的工作参数。
在一种可能的设计中,降噪模块具体用于:
获取通过第三传输通道传输第一噪声信号之后的第四噪声信号,第三传输通道为参考麦克风与扬声器之间的传输通道;
将第四噪声信号与第一宽带滤波信号以及第一窄带滤波信号进行叠加。
第四方面,本申请实施例提供一种降噪设备,包括:处理器和存储器;
存储器存储计算机执行指令;
处理器执行存储器存储的计算机执行指令,使得处理器执行如第一方面任一项的降噪方法。
第五方面,本申请实施例提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机执行指令,当处理器执行计算机执行指令时,实现如第一方面任一项的降噪方法。
第六方面,本申请实施例提供一种计算机程序产品,包括计算机程序,计算机程序被处理器执行时实现如第一方面任一项的降噪方法。
本申请实施例提供一种降噪方法、芯片、芯片模组及设备,其中,降噪方法包括:采用窄带滤波器对第一噪声信号进行窄带滤波处理,得到第一窄带信号,第一噪声信号为对当前时刻的环境噪声进行采集后得到的;采用第一滤波器对第一噪声信号进行滤波处理,得到第一宽带滤波信号;采用第二滤波器对第一窄带信号进行滤波处理,得到第一窄带滤波信号;根据第一宽带滤波信号和第一窄带滤波信号,对第一噪声信号进行降噪处理。本申请实施例提供一种降噪方法、芯片、芯片模组及设备能够用于提高对环境噪声进行降噪处理的效果。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请实施例的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请示例提供的降噪方法的流程图一;
图2为本申请实施例提供的降噪方法的流程图二;
图3为本申请实施例提供的降噪芯片的结构示意图一;
图4为本申请实施例提供的降噪芯片的结构示意图二;
图5为本申请实施例提供的降噪芯片的结构示意图三;
图6为本申请实施例提供的降噪方法的一种原理图;
图7为本申请实施例提供的降噪装置的结构示意图;
图8为本申请实施例提供的降噪设备的硬件结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除 了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在实际应用中,当用户采用佩戴的播放设备(例如耳机或者音箱等)播放音频时,播放的音频会受到播放设备所在环境中的环境噪声的干扰,导致播放设备的音频播放质量较差。因此,为了提高播放设备的音频播放质量,通常需要对环境噪声进行降噪处理。
在相关技术中,根据降噪处理后的窄带噪声对环境噪声进行滤波处理,需要根据频率和幅度构造窄带噪声,由于根据频率和幅度构造窄带噪声的方法复杂,构造窄带噪声所需要的处理时长较大,因此使得构造出的窄带噪声容易产生较大的延时、以及相位的偏移,导致对环境噪声进行降噪处理的效果较差。
在本申请中,为了提高对环境噪声进行降噪处理的效果,发明人想到:采用窄带滤波器对第一噪声信号进行窄带滤波处理,得到第一窄带信号,可以简化得到窄带信号的方法,缩短得到窄带信号的处理时长,避免窄带信号存在较大的延时、以及相位的偏移,因此能够提高对环境噪声进行降噪处理的效果。
下面以具体地实施例对本申请的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图1为本申请示例提供的降噪方法的流程图一。如图1所示,该方法包括:
S101、采用窄带滤波器对第一噪声信号进行窄带滤波处理,得到第一窄带信号。
可选地,本申请实施例的执行主体可以降噪设备,或者降噪设备中的降噪芯片,或者降噪设备中的降噪芯片模组。其中,降噪设备、降噪芯片、降噪芯片模组可以通过软件和/或硬件的结合来实现。
可选地,降噪设备可以为耳机、音箱、可穿戴设备、汽车中的降噪设备等任意需要对环境噪声进行降噪处理的设备。
第一噪声信号为对当前时刻的环境噪声进行采集后得到的。
环境噪声为降噪设备、降噪芯片、或者降噪芯片模组所处环境中的环境噪声。
S102、采用第一滤波器对第一噪声信号进行滤波处理,得到第一宽带滤波信号;采用第二滤波器对第一窄带信号进行滤波处理,得到第一窄带滤波信号。
第一滤波器和第二滤波器为有源噪声控制(Active noise control,ANC)滤波器。
具体的,在得到第一宽带滤波信号之前,先确定第一滤波器在当前时刻的工作参数,再根据第一滤波器在当前时刻的工作参数,对第一噪声信号进行滤波处理,得到第一宽带 滤波信号。
其中,确定第一滤波器在当前时刻的工作参数的方法,可以包括:获取对上一时刻采集到的第二噪声信号进行降噪处理后的第二信号;根据第二信号、第一滤波器在上一时刻的工作参数和第一噪声信号,确定第一滤波器在当前时刻的工作参数。具体的,请参见图2中的S202~S206。
具体的,采用第二滤波器对第一窄带信号进行滤波处理,得到第一窄带滤波信号之前,需要确定第二滤波器在当前时刻的工作参数,并根据第二滤波器在当前时刻的工作参数对第一窄带信号进行滤波处理,得到第一窄带滤波信号。
其中,确定第二滤波器在当前时刻的工作参数的方法包括:获取对上一时刻采集到的第二噪声信号进行降噪处理后的第二信号;根据第二信号、第二滤波器在上一时刻的工作参数和第一窄带信号,确定第二滤波器在当前时刻的工作参数。具体的,请参见图2中的S207~S212。
S103、根据第一宽带滤波信号和第一窄带滤波信号,对第一噪声信号进行降噪处理。
具体的,获取通过第三传输通道传输第一噪声信号之后的第四噪声信号;将第四噪声信号与第一宽带滤波信号以及第一窄带滤波信号进行叠加。
第三传输通道为参考麦克风与扬声器之间的传输通道,也相当于参考麦克风与第一加法器之间的传输通道,如图3-图5所示。
获取通过第三传输通道传输第一噪声信号之后的第四噪声信号,包括:将第三传输通道对应的第三通道传递函数(如下图6中的S3(z))与第一噪声信号的乘积,确定为第四噪声信号。
由于第一宽带滤波信号的幅度和第一窄带滤波信号的幅度与第四噪声信号的幅度相反,因此将第四噪声信号与第一宽带滤波信号以及第一窄带滤波信号进行叠加,能够抵消第四噪声信号中的宽带滤波信号和窄带滤波信号,从而实现对第一噪声信号进行降噪处理,进而实现对环境噪声进行降噪处理。
采用窄带滤波器对第一噪声信号进行窄带滤波处理,得到第一窄带信号,可以避免第一窄带信号的延时较大、产生相位的偏移,提高对环境噪声进行降噪处理的效果。
与现有技术不同,在现有技术中,通常采用麦克风对环境噪声进行采集,得到宽带噪声,并通过自适应滤波器对宽带噪声进行降噪处理;通常采用振动传感器对环境噪声进行采集,得到窄带噪声的频率和幅度,并根据频率和幅度构造窄带噪声,采用陷波滤波方法对窄带噪声进行降噪处理,进而根据降噪处理后的宽带噪声和窄带噪声,对宽带噪声进行滤波处理,从而实现对环境噪声的降噪处理。在上述相关技术中,根据频率和幅度构造窄 带噪声的方法复杂,构造出的窄带噪声容易产生较大的延时、以及相位的偏移,导致对环境噪声进行降噪处理的效果较差。而在图1实施例提供的降噪方法中,采用窄带滤波器对第一噪声信号进行窄带滤波处理,得到第一窄带信号,可以较为容易的得到窄带信号,而且由于无需根据频率和幅度构造窄带噪声,因此可以避免第一窄带信号产生较大的延时、以及相位的偏移,从而提高对第一噪声信号的进行降噪处理的效果,进而提高对环境噪声进行降噪处理的效果。
当降噪设备为汽车中的设备时。与现有技术不同,在现有技术中,设备中的反馈ANC系统使用前馈滤波器与反馈滤波器的混合滤波方法对宽带噪声和窄带噪声进行滤波,其中,反馈滤波器导致中高频段噪声容易出现不降反增的“水床效应”,因此导致整体滤波效果变差。而在本申请中,采用第二滤波器(即前馈ANC滤波器)对第一窄带信号进行滤波处理,避免使用反馈滤波器,从而抑制了“水床效应”,进而提高对环境噪声进行降噪处理的效果。
在上述实施例的基础上,下面结合图2对本申请提供的降噪方法做进一步地详细说明。具体的,请参见图2。
图2为本申请实施例提供的降噪方法的流程图二。如图2所示,该方法包括:
S201、采用窄带滤波器对第一噪声信号进行窄带滤波处理,得到第一窄带信号。
第一噪声信号为对当前时刻的环境噪声进行采集后得到的。
具体的,S201的执行方法与S101的执行方法相同,此处不再赘述S202的执行过程。
S202、获取对上一时刻采集到的第二噪声信号进行降噪处理后的第二信号。
第二噪声信号为上一时刻对环境噪声进行采集得到的。
对上一时刻采集到的第二噪声信号进行降噪处理的方法,与对当前时刻采集得到的第一噪声信号进行降噪处理的方法相似,此处不再赘述。
S203、采用预设估计模型,对第二信号进行估计,确定参数调节步长。
预设估计模型可以为最小均方算法(Least Mean Squre)模型。
S204、获取经过第一传输通道传递第一噪声信号之后的第三噪声信号。
第一传输通道为采集得到第一噪声信号的参考麦克风和第一滤波器之间的传输通道。
具体的,将第一传输通道对应的第一通道传递函数(如下图6中的S1(z))与第一噪声信号的乘积,确定为第三噪声信号。
S205、将第一滤波器在上一时刻的工作参数,与预设值、参数调节步长、第二信号、第三噪声信号的乘积的差值,确定为第一滤波器在当前时刻的工作参数。
具体的,可以通过如下公式1确定第一滤波器在当前时刻的工作参数。
w 1(n)=w 1(n-1)-K·μ·e(n-1)·x′(n)    公式1;
其中,w 1(n)为第一滤波器在当前时刻n的工作参数,w 1(n-1)为第一滤波器在上一时刻n-1的工作参数,K为预设值,μ为参数调节步长,e(n-1)为第二信号,x′(n)为第三噪声信号。
其中,w 1(n-1)=[w 0 1(n-1),w 1 1(n-1),...,w N-1 1(n-1)] T,其中,N为总的时刻。
其中,x′(n)=[x′(n),x′(n)...x′(n-N+1)] T
S206、根据第一滤波器在当前时刻的工作参数,对第一噪声信号进行滤波处理,得到第一宽带滤波信号。
S207、获取对上一时刻采集到的第二噪声信号进行降噪处理后的第二信号。
S208、采用预设估计模型,对第二信号进行估计,确定参数调节步长。
具体的,S207~S208的执行方法与S202~S203的执行方法相同。
可选地,在实际应用中可以不执行S207~S208所示的方法。
S209、获取经过第二传输通道传递第一窄带信号之后的第二窄带信号。
第二传输通道为窄带滤波器和第二滤波器之间的传输通道。
具体将,第二传输通道传递对应的第二通道传递函数(如下图6中的S2(z))与第一窄带信号的乘积,确定为第二窄带信号。
S210、将第二滤波器在上一时刻的工作参数,与预设值、参数调节步长、第二信号和第二窄带信号的乘积的差值,确定为第二滤波器在当前时刻的工作参数。
具体的,可以通过如下公式2确定第二滤波器在当前时刻的工作参数。
w 2(n)=w 2(n-1)-K·μ·e(n-1)·x″(n)    公式2;
其中,w 2(n)为第二滤波器在当前时刻n的工作参数,w 2(n-1)为第二滤波器在上一时刻n-1的工作参数,K为预设值,μ为参数调节步长,e(n-1)为第二信号,x″(n)为第二窄带信号。
其中,w 2(n-1)=[w 0 2(n-1),w 1 2(n-1),...,w N-1 2(n-1)] T
其中,x″(n)=[x″(n),x″(n)...x″(n-N+1)] T
S211、根据第二滤波器在当前时刻的工作参数,对第一窄带信号进行滤波处理,得到第一窄带滤波信号。
S212、根据第一宽带滤波信号和第一窄带滤波信号,对第一噪声信号进行降噪处理。
具体的,S212的执行方法与S103的执行方法相同,此处不再赘述S212的执行过程。
在图2实施例提供的降噪方法中,首先通过S202~S205的方法确定第一滤波器在当前时刻的工作参数,并根据第一滤波器在当前时刻的工作参数,对第一噪声信号进行滤波处理,得到第一宽带滤波信号,可以提高得到的第一宽带滤波信号的准确性;其次通过S207~S210的方法确定第二滤波器在当前时刻的工作参数,根据第二滤波器在当前时刻的工作参数,对第一窄带信号进行滤波处理,得到第一窄带滤波信号,可以提高得到的第一窄带滤波信号的准确性;此外采用窄带滤波器对第一噪声信号进行窄带滤波处理,得到第一窄带信号,可以避免第一窄带信号的延时较大、产生相位的偏移,提高对环境噪声进行降噪处理的效果。
进一步地,在本申请中,由于传输通道在传输信号时,通常会导致信号衰减,进而在本申请为了提高滤波器接收到的信号的准确性,将第一传输通道对应的第一通道传递函数与第一噪声信号的乘积,确定为第三噪声信号,提高得到第三噪声信号的准确性,将第二传输通道传递对应的第二通道传递函数与第一窄带信号的乘积,确定为第二窄带信号,提高得到第二窄带信号的准确性,将第三传输通道对应的第三通道传递函数与第一噪声信号的乘积,确定为第四噪声信号,提高得到第四噪声信号的准确性。
在上述实施例的基础上,本申请还提供一种降噪芯片,用于执行上述图1或图2中降噪方法,下面结合图3对本申请提供的降噪芯片作进一步地详细说明。
图3为本申请实施例提供的降噪芯片的结构示意图一。如图3所示,降噪芯片30包括:参考麦克风31、第一滤波器32、窄带滤波器33、第二滤波器34和第一加法器35。其中,参考麦克风31分别与第一滤波器32、窄带滤波器33和第一加法器35连接,窄带滤波器33还与第二滤波器34连接,第一滤波器32和第二滤波器34还分别与第一加法器35连接。
图3所示的降噪芯片可以执行图1和图2所示的降噪方法。具体的,图3所示的降噪芯片执行图1所示的降噪方法时,参考麦克风31,用于对环境噪声进行采集,得到第一噪声信号;窄带滤波器33,用于对第一噪声信号进行窄带滤波处理,得到第一窄带信号;第一滤波器32,用于对第一噪声信号进行滤波处理,得到第一宽带滤波信号;第二滤波器34,用于对第一窄带信号进行滤波处理,得到第一窄带滤波信号;第一加法器35,用于根据第一宽带滤波信号和第一窄带滤波信号,对第一噪声信号进行降噪处理。
可选地,降噪芯片30中还可以包括第二加法器40,第二加法器40分别与第一滤波器32、第二滤波器34和第一加法器35连接。
当降噪芯片30中包括第二加法器40时,第二加法器40用于对第一宽带滤波信号和第一窄带滤波信号进行叠加。第一加法器35用于将第一噪声信号与第一宽带滤波信号以及第一窄带滤波信号进行叠加,实现根据第一宽带滤波信号和第一窄带滤波信号,抵消第一噪声信号中的宽带滤波信号和窄带滤波信号,从而实现对第一噪声信号进行降噪处理。
本申请中图3实施例提供的降噪芯片与上述方法实施例所示的技术方案的实现原理以及有益效果类似,此处不再进行赘述。
图4为本申请实施例提供的降噪芯片的结构示意图二。在图3的基础上,如图4所示,降噪芯片30还包括:扬声器36和误差麦克风37。
扬声器36和第一加法器35连接,误差麦克风37分别与第一滤波器32和第二滤波器34连接。
第一加法器35,还用于对第二噪声信号进行降噪处理得到第二信号。
扬声器36,用于播放第二信号。
误差麦克风37,用于获取第二信号。
图4所示的降噪芯片可以执行1和图2所示的降噪方法。具体的,图4所示的降噪芯片执行图2所示的降噪方法时,窄带滤波器33用于执行S201,第一加法器35、扬声器36和误差麦克风37用于执行S202和S207,第一滤波器32用于执行S203~S206,第二滤波器34用于执行S208~S211,第一加法器35用于执行S212。
本申请中图4实施例提供的降噪芯片与上述方法实施例所示的技术方案的实现原理以及有益效果类似,此处不再进行赘述。
图5为本申请实施例提供的降噪芯片的结构示意图三。在图4的基础上,如图5所示,降噪芯片30还包括:第一开关38和/或第二开关39。
第一开关38连接至第一滤波器32和第一加法器35之间。
第二开关39连接至第二滤波器34和第一加法器35之间。
第一开关38和第二开关39可以为用户可以操作的硬件开关,可以为软件可以控制的软件开关。
当第一开关38和第二开关39闭合时,可以执行上述图1和图2的方法。
当第一开关38闭合,第二开关39断开时,仅可以实现:采用第一滤波器对第一噪声信号进行滤波处理,得到第一宽带滤波信号;根据第一宽带滤波信号,对第一噪声信号进行降噪处理。
当第一开关38断开,第二开关39闭合时,仅可以实现:采用窄带滤波器对第一噪声信号进行窄带滤波处理,得到第一窄带信号;采用第二滤波器对第一窄带信号进行滤波处理,得到第一窄带滤波信号;根据第一宽带滤波信号和第一窄带滤波信号,对第一噪声信号进行降噪处理。
在图5所示的降噪芯片中还包括:第一开关38和/或第二开关39。可以通过第一开关38和/或第二开关39,使得用户能够灵活的选择对第一噪声信号进行降噪处理的方法,提高对第一噪声信号进行降噪处理的灵活性。
本申请实施例还提供一种降噪芯片模组,包括:上述降噪芯片。
本申请实施例还提供一种降噪设备,包括:上述降噪芯片,或者降噪芯片模组。
可选地,在本申请中,降噪芯片可以为耳机芯片、可穿戴降噪芯片、汽车降噪芯片等各类降噪芯片。
在图申请提供的降噪芯片中,窄带滤波部分(包括窄带滤波器和第二滤波器)可以复用宽带滤波部分(包括:),因此可以节约降噪芯片的面积。而且由于降噪芯片中包括参考麦克风31、第一滤波器32、窄带滤波器33、第二滤波器34和第一加法器35就可以实现降噪方法,因此使得降噪芯片的实现过程较为简单。
当降噪芯片为汽车降噪芯片时,可以避免非声学传感器(例如振动传感器)采集得到窄带噪声的频率和幅度,避免窄带噪声的构造过程,进而简化汽车降噪芯片的设计结构。
图6为本申请实施例提供的降噪方法的一种原理图。例如在图5的基础上,如图6所示,包括:x(n)、P(z)、W1(z)、k1、S1(z)、LMS、窄带滤波器、W2(z)、k2、S2(z)、LMS。
x(n)表示第一噪声信号,即参考麦克风对环境噪声进行采集之后得到宽带噪声信号。
P(z)表示第一噪声信号从参考麦克风到人耳的声学响应,即相当于第三通道传递函数。
W1(z)表示第一滤波器。
k1表示第一开关。
S1(z)表示第一通道传递函数。
LMS表示LMS算法模型,用于对第一滤波器和第二滤波器的工作参数进行调整。
W2(z)表示第二滤波器。
k2表示第二开关。
S2(z)表示第二通道传递函数。
S3(z)为第一加法器和误差麦克风之间的第四传输通道的第四通道传递函数。S1(z)和S2(z)分别对S3(z)进行估计得到的。
e(n)为对第一噪声信号进行降噪处理后的第一信号。其中,该第一信号为扬声器播放 第一信号时误差麦克风采集得到的信号。
在实际应用中,扬声器播放的信号与第四通道传递函数的乘积等于e(n)。
图7为本申请实施例提供的降噪装置的结构示意图。如图7所示,降噪装置70包括:第一滤波模块701、第二滤波模块702、第三滤波模块703和降噪模块704;其中,
第一滤波模块701,用于对第一噪声信号进行窄带滤波处理,得到第一窄带信号,第一噪声信号为对当前时刻的环境噪声进行采集后得到的;
第二滤波模块702,用于对第一噪声信号进行滤波处理,得到第一宽带滤波信号;
第三滤波模块703,用于对第一窄带信号进行滤波处理,得到第一窄带滤波信号;
降噪模块704,用于根据第一宽带滤波信号和第一窄带滤波信号,对第一噪声信号进行降噪处理。
本申请实施例提供的降噪装置70可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
在一种可能的设计中,第二滤波模块702具体用于:
获取对上一时刻采集到的第二噪声信号进行降噪处理后的第二信号;
根据第二信号、第一滤波器在上一时刻的工作参数和第一噪声信号,确定第一滤波器在当前时刻的工作参数;
根据第一滤波器在当前时刻的工作参数,对第一噪声信号进行滤波处理,得到第一宽带滤波信号。
在一种可能的设计中,第二滤波模块702具体用于:
采用预设估计模型,对第二信号进行估计,确定参数调节步长;
获取经过第一传输通道传递第一噪声信号之后的第三噪声信号;第一传输通道为采集得到第一噪声信号的参考麦克风和第一滤波器之间的传输通道;
将第一滤波器在上一时刻的工作参数,与预设值、参数调节步长、第二信号、第三噪声信号的乘积的差值,确定为第一滤波器在当前时刻的工作参数。
在一种可能的设计中,第二滤波模块702具体用于:
将第一传输通道对应的第一通道传递函数,与第一噪声信号的乘积,确定为第三噪声信号。
在一种可能的设计中,第三滤波模块703具体用于:
获取对上一时刻采集到的第二噪声信号进行降噪处理后的第二信号;
根据第二信号、第二滤波器在上一时刻的工作参数和第一窄带信号,确定第二滤波器在当前时刻的工作参数;
根据第二滤波器在当前时刻的工作参数,对第一窄带信号进行滤波处理,得到第一窄带滤波信号。
在一种可能的设计中,第三滤波模块703具体用于:
采用预设估计模型,对第二信号进行估计,确定参数调节步长;
获取经过第二传输通道传递第一窄带信号之后的第二窄带信号;第二传输通道为窄带滤波器和第二滤波器之间的传输通道;
将第二滤波器在上一时刻的工作参数,与预设值、参数调节步长、第二信号和第二窄带信号的乘积的差值,确定为第二滤波器在当前时刻的工作参数。
在一种可能的设计中,降噪模块704具体用于:
获取通过第三传输通道传输第一噪声信号之后的第四噪声信号,第三传输通道为参考麦克风与扬声器之间的传输通道;
将第四噪声信号与第一宽带滤波信号以及第一窄带滤波信号进行叠加。
本申请实施例提供的降噪装置70可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
图8为本申请实施例提供的降噪设备的硬件结构示意图。如图8所示,该降噪设备80包括:处理器801和存储器802,
其中,处理器801、存储器802通过总线803连接。
在具体实现过程中,处理器801执行存储器802存储的计算机执行指令,使得处理器801执行如上的降噪方法。
处理器801的具体实现过程可参见上述方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
在上述图8所示的实施例中,应理解,处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合申请所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
存储器可能包含高速RAM存储器,也可能还包括非易失性存储NVM,例如磁盘存储器。
总线可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表 示,本申请附图中的总线并不限定仅有一根总线或一种类型的总线。
本申请还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机执行指令,当处理器执行计算机执行指令时,实现如上方法实施例中的降噪方法。
本申请还提供一种计算机程序产品,包括计算机程序,计算机程序被处理器执行时实现如上方法实施例中的降噪方法。
上述的计算机可读存储介质,上述可读存储介质可以是由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。可读存储介质可以是通用或专用计算机能够存取的任何可用介质。
一种示例性的可读存储介质耦合至处理器,从而使处理器能够从该可读存储介质读取信息,且可向该可读存储介质写入信息。当然,可读存储介质也可以是处理器的组成部分。处理器和可读存储介质可以位于专用集成电路(Application Specific Integrated Circuits,简称:ASIC)中。当然,处理器和可读存储介质也可以作为分立组件存在于设备中。
单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程 序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (14)

  1. 一种降噪方法,其特征在于,所述方法包括:
    采用窄带滤波器对第一噪声信号进行窄带滤波处理,得到第一窄带信号,所述第一噪声信号为对当前时刻的环境噪声进行采集后得到的;
    采用第一滤波器对所述第一噪声信号进行滤波处理,得到第一宽带滤波信号;采用第二滤波器对所述第一窄带信号进行滤波处理,得到第一窄带滤波信号;
    根据所述第一宽带滤波信号和所述第一窄带滤波信号,对所述第一噪声信号进行降噪处理。
  2. 根据权利要求1所述的方法,其特征在于,所述采用第一滤波器对所述第一噪声信号进行滤波处理,得到第一宽带滤波信号,包括:
    获取对上一时刻采集到的第二噪声信号进行降噪处理后的第二信号;
    根据所述第二信号、所述第一滤波器在上一时刻的工作参数和所述第一噪声信号,确定所述第一滤波器在当前时刻的工作参数;
    根据所述第一滤波器在当前时刻的工作参数,对所述第一噪声信号进行滤波处理,得到所述第一宽带滤波信号。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述第二信号、所述第一滤波器在上一时刻的工作参数和所述第一噪声信号,确定所述第一滤波器在当前时刻的工作参数,包括:
    采用预设估计模型,对所述第二信号进行估计,确定参数调节步长;
    获取经过第一传输通道传递所述第一噪声信号之后的第三噪声信号;所述第一传输通道为采集得到所述第一噪声信号的参考麦克风和所述第一滤波器之间的传输通道;
    将所述第一滤波器在上一时刻的工作参数,与预设值、所述参数调节步长、所述第二信号、所述第三噪声信号的乘积的差值,确定为所述第一滤波器在当前时刻的工作参数。
  4. 根据权利要求3所述的方法,其特征在于,所述获取经过第一传输通道传递所述第一噪声信号之后的第三噪声信号,包括:
    将所述第一传输通道对应的第一通道传递函数,与所述第一噪声信号的乘积,确定为所述第三噪声信号。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述采用第二滤波器对所述第一窄带信号进行滤波处理,得到第一窄带滤波信号,包括:
    获取对上一时刻采集到的第二噪声信号进行降噪处理后的第二信号;
    根据所述第二信号、所述第二滤波器在上一时刻的工作参数和第一窄带信号,确定所述第二滤波器在当前时刻的工作参数;
    根据所述第二滤波器在当前时刻的工作参数,对所述第一窄带信号进行滤波处理,得到第一窄带滤波信号。
  6. 根据权利要求5所述的方法,其特征在于,根据所述第二信号、所述第二滤波器在上一时刻的工作参数和第一窄带信号,确定所述第二滤波器在当前时刻的工作参数,包括:
    采用预设估计模型,对所述第二信号进行估计,确定参数调节步长;
    获取经过第二传输通道传递所述第一窄带信号之后的第二窄带信号;所述第二传输通道为所述窄带滤波器和所述第二滤波器之间的传输通道;
    将所述第二滤波器在上一时刻的工作参数,与预设值、所述参数调节步长、所述第二信号和所述第二窄带信号的乘积的差值,确定为所述第二滤波器在当前时刻的工作参数。
  7. 根据权利要求1所述方法,其特征在于,所述根据所述第一宽带滤波信号和所述第一窄带滤波信号,对所述第一噪声信号进行降噪处理,包括:
    获取通过第三传输通道传输所述第一噪声信号之后的第四噪声信号,所述第三传输通道为参考麦克风与扬声器之间的传输通道;
    将所述第四噪声信号与所述第一宽带滤波信号以及所述第一窄带滤波信号进行叠加。
  8. 一种降噪芯片,其特征在于,包括:参考麦克风、第一滤波器、窄带滤波器、第二滤波器和第一加法器,其中,所述参考麦克风分别与所述第一滤波器、所述窄带滤波器和所述第一加法器连接,所述窄带滤波器还与所述第二滤波器连接,所述第一滤波器和所述第二滤波器还分别与所述第一加法器连接;
    所述参考麦克风,用于对环境噪声进行采集,得到第一噪声信号;
    所述窄带滤波器,用于对所述第一噪声信号进行窄带滤波处理,得到第一窄带信号;
    所述第一滤波器,用于对所述第一噪声信号进行滤波处理,得到第一宽带滤波信号;
    所述第二滤波器,用于对所述第一窄带信号进行滤波处理,得到第一窄带滤波信号;
    所述第一加法器,用于根据所述第一宽带滤波信号和所述第一窄带滤波信号,对所述第一噪声信号进行降噪处理。
  9. 根据权利要求8所述的芯片,其特征在于,所述芯片还包括:扬声器和误差麦克风,其中,所述扬声器和所述第一加法器连接,所述误差麦克风分别与所述第一滤波器和所述第二滤波器连接;
    所述第一加法器,还用于对第二噪声信号进行降噪处理得到第二信号;
    所述扬声器,用于播放所述第二信号;
    所述误差麦克风,用于获取所述第二信号。
  10. 一种降噪芯片模组,其特征在于,包括:权利要求8或9中任一项所述的降噪芯片。
  11. 一种降噪设备,其特征在于,包括:权利要求8或9中任一项所述的降噪芯片,或者包括权利要求10中所述的降噪芯片模组。
  12. 一种降噪设备,其特征在于,包括:处理器和存储器;其中,
    所述存储器,用于存储计算机执行指令;
    所述处理器,用于执行所述存储器中存储的所述计算机执行指令,实现权利要求1至7任一项所述的降噪方法。
  13. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,当处理器执行所述计算机执行指令时,实现权利要求1至7任一项所述的降噪方法。
  14. 一种计算机程序产品,包括计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至7中任一项所述的降噪方法。
PCT/CN2022/070818 2021-10-13 2022-01-07 降噪方法、芯片、芯片模组及设备 WO2023060793A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111189551.3A CN113643682B (zh) 2021-10-13 2021-10-13 降噪方法、芯片、芯片模组及设备
CN202111189551.3 2021-10-13

Publications (1)

Publication Number Publication Date
WO2023060793A1 true WO2023060793A1 (zh) 2023-04-20

Family

ID=78426463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070818 WO2023060793A1 (zh) 2021-10-13 2022-01-07 降噪方法、芯片、芯片模组及设备

Country Status (2)

Country Link
CN (1) CN113643682B (zh)
WO (1) WO2023060793A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113643682B (zh) * 2021-10-13 2022-07-15 展讯通信(上海)有限公司 降噪方法、芯片、芯片模组及设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105049979A (zh) * 2015-08-11 2015-11-11 青岛歌尔声学科技有限公司 提高反馈型有源降噪耳机降噪量的方法及有源降噪耳机
US20180151171A1 (en) * 2016-11-25 2018-05-31 Signal Processing, Inc. Method and System for Active Noise Reduction
CN108900943A (zh) * 2018-07-24 2018-11-27 四川长虹电器股份有限公司 一种场景自适应主动降噪方法及耳机
CN111402853A (zh) * 2020-03-02 2020-07-10 吉林大学 一种适用于车内的宽窄带混合主动降噪算法
CN113242491A (zh) * 2021-06-29 2021-08-10 展讯通信(上海)有限公司 降噪处理方法、装置、设备、存储介质及程序
CN113643682A (zh) * 2021-10-13 2021-11-12 展讯通信(上海)有限公司 降噪方法、芯片、芯片模组及设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI279775B (en) * 2004-07-14 2007-04-21 Fortemedia Inc Audio apparatus with active noise cancellation
US8135584B2 (en) * 2006-01-31 2012-03-13 Siemens Enterprise Communications Gmbh & Co. Kg Method and arrangements for coding audio signals
CN103024629B (zh) * 2011-09-30 2017-04-12 斯凯普公司 处理信号
CN111968615A (zh) * 2020-08-31 2020-11-20 Oppo广东移动通信有限公司 降噪处理方法及装置、终端设备和可读存储介质
CN111935589B (zh) * 2020-09-28 2021-02-12 深圳市汇顶科技股份有限公司 主动降噪的方法、装置、电子设备和芯片

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105049979A (zh) * 2015-08-11 2015-11-11 青岛歌尔声学科技有限公司 提高反馈型有源降噪耳机降噪量的方法及有源降噪耳机
US20180151171A1 (en) * 2016-11-25 2018-05-31 Signal Processing, Inc. Method and System for Active Noise Reduction
CN108900943A (zh) * 2018-07-24 2018-11-27 四川长虹电器股份有限公司 一种场景自适应主动降噪方法及耳机
CN111402853A (zh) * 2020-03-02 2020-07-10 吉林大学 一种适用于车内的宽窄带混合主动降噪算法
CN113242491A (zh) * 2021-06-29 2021-08-10 展讯通信(上海)有限公司 降噪处理方法、装置、设备、存储介质及程序
CN113643682A (zh) * 2021-10-13 2021-11-12 展讯通信(上海)有限公司 降噪方法、芯片、芯片模组及设备

Also Published As

Publication number Publication date
CN113643682B (zh) 2022-07-15
CN113643682A (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
JP4469898B2 (ja) 外耳道共鳴補正装置
CN101616351B (zh) 降噪音频再现设备和降噪音频再现方法
JP4780119B2 (ja) 頭部伝達関数測定方法、頭部伝達関数畳み込み方法および頭部伝達関数畳み込み装置
JP4286637B2 (ja) マイクロホン装置および再生装置
US20140363008A1 (en) Use of vibration sensor in acoustic echo cancellation
JP2012212161A (ja) 音声信号補償を用いるアクティブノイズコントロールのためのシステム
JP2011061422A (ja) 情報処理装置、情報処理方法およびプログラム
US8280062B2 (en) Sound corrector, sound measurement device, sound reproducer, sound correction method, and sound measurement method
JP4886881B2 (ja) 音響補正装置、音響出力装置、及び音響補正方法
WO2023060793A1 (zh) 降噪方法、芯片、芯片模组及设备
CN113507662B (zh) 降噪处理方法、装置、设备、存储介质及程序
CN110010117B (zh) 一种语音主动降噪的方法及装置
JP5970125B2 (ja) 制御装置、制御方法及びプログラム
CN113488016B (zh) 系数确定方法及装置
CN113242491B (zh) 降噪处理方法、装置、设备、存储介质及程序
CN115209302A (zh) 音频降噪处理方法、装置、设备、介质及程序产品
WO2021258913A1 (zh) 回声消除装置及方法、拾音装置及方法、终端
CN115250397A (zh) Tws耳机和tws耳机的播放方法及装置
JP2002368658A (ja) 多チャネルエコー消去装置、方法、記録媒体及び音声通信システム
CN112151051A (zh) 音频数据的处理方法和装置及存储介质
WO2022017424A1 (zh) 主动降噪方法和装置以及音频播放设备
WO2021131346A1 (ja) 収音装置、収音方法及び収音プログラム
US11081097B2 (en) Passive balancing of electroacoustic transducers for detection of external sound
TWI837867B (zh) 聲音補償方法及頭戴式裝置
US20240078994A1 (en) Active damping of resonant canal modes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22879747

Country of ref document: EP

Kind code of ref document: A1