WO2023060631A1 - 一种激光点云数据实时处理系统和方法 - Google Patents

一种激光点云数据实时处理系统和方法 Download PDF

Info

Publication number
WO2023060631A1
WO2023060631A1 PCT/CN2021/124564 CN2021124564W WO2023060631A1 WO 2023060631 A1 WO2023060631 A1 WO 2023060631A1 CN 2021124564 W CN2021124564 W CN 2021124564W WO 2023060631 A1 WO2023060631 A1 WO 2023060631A1
Authority
WO
WIPO (PCT)
Prior art keywords
point cloud
data
laser point
cloud data
time
Prior art date
Application number
PCT/CN2021/124564
Other languages
English (en)
French (fr)
Inventor
向煜
张俊
黄志�
罗再谦
刘寓
华媛媛
周兵
韩�熙
王永刚
陈汉
黄令
唐时荞
颜春波
孟云豪
廖颖
Original Assignee
重庆数字城市科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆数字城市科技有限公司 filed Critical 重庆数字城市科技有限公司
Publication of WO2023060631A1 publication Critical patent/WO2023060631A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement

Definitions

  • the present application relates to the field of computer technology, in particular to a system and method for real-time processing of laser point cloud data.
  • Mobile measurement is a high-tech measurement technology developed in recent years. It relies on sensors such as lidar and inertial navigation to quickly collect high-precision point cloud data around the road.
  • the original collected data records the distance and orientation information from the reflection point to the radar center, but it cannot be directly used for browsing, analysis, application, etc. It needs to be processed to obtain absolute coordinates to form point cloud result data for corresponding business applications.
  • the existing point cloud data collection and processing are divided into field work and office work. After the field workers collect data on site, the office workers process the collected data. The two steps are carried out independently. It is impossible to find the problems in the process of obtaining absolute coordinates of the laser point cloud data in real time, which leads to re-acquisition in the later stage, which is laborious and laborious. .
  • the purpose of this application is to provide a real-time laser point cloud data processing system and method to solve the problem in the prior art that the laser point cloud data cannot obtain absolute coordinates during the acquisition process.
  • the application discloses a real-time processing system for laser point cloud data, including a laser radar, a GNSS receiver, an inertial navigator and a processing module, and the processing module is connected to the laser radar, the GNSS receiver, and the inertial navigator respectively;
  • the lidar is used to collect laser point cloud data, and simultaneously sends the laser point cloud data to the processing module;
  • Described GNSS receiver is used for collecting GNSS data, and sends GNSS data to processing module simultaneously;
  • the inertial navigator is used to collect INS data, and at the same time send the INS data to the processing module;
  • the processing module is used to synchronously process the received data, and the processing module processes the laser point cloud data, GNSS data and INS data received at the same time, so that the laser point cloud data at this time obtains absolute coordinates and The laser point cloud data obtained with absolute coordinates is simultaneously output and displayed.
  • the time synchronization module is respectively connected with the lidar, GNSS receiver and inertial navigator, and the time synchronization module is used to make the lidar, GNSS
  • the receiver, inertial navigator and processing modules are time synchronized.
  • the time synchronization module collects the time of the GNSS receiver as a reference time for time synchronization, and the time synchronization module transmits the reference time to the lidar, the inertial navigator and in the processing module.
  • a correction module is further included, the correction module is connected to the processing module, the correction module obtains correction parameters by correcting errors, and sends the correction parameters to the processing module.
  • the correction module collects a plurality of points on the same plane, and obtains correction parameters by using least square calculation.
  • a second aspect of the present application also discloses a real-time processing method for laser point cloud data, comprising the following steps:
  • the laser radar, GNSS receiver, and inertial navigator collect corresponding data at the same time, and transfer the collected data into the processing module at the same time, the laser radar is used to collect laser point cloud data, and the GNSS receiver is used to collect GNSS data, the inertial navigator is used to collect INS data;
  • the processing module is used to synchronously process the received data, the processing module processes the laser point cloud data, GNSS data and INS data received at the same time, so that the laser point cloud data at this time obtains absolute coordinates And simultaneously output and display the laser point cloud data obtained with absolute coordinates.
  • step S1 before performing step S2, step S1 needs to be performed, and the step S1 is a time synchronization step, and the time synchronization of the lidar, GNSS receiver, inertial navigator and processing module is made by the time synchronization module .
  • the time synchronization step specifically includes: collecting the time of the GNSS receiver as a reference time for time synchronization, and the time synchronization module transmits the reference time to the lidar, the inertial in the navigator and processing modules.
  • step S0 needs to be executed before step S1 is executed, and step S0 is a correction step.
  • the correction module obtains correction parameters by correcting errors, and sends the correction parameters to the processing module.
  • the specific steps of the correction module obtaining correction parameters by correcting errors are as follows: the correction module collects a plurality of points on the same plane, and obtains the correction parameters by least square calculation.
  • the application is respectively connected with the laser radar, GNSS receiver, and inertial navigator through the processing module, wherein the laser radar is used to collect laser point cloud data, and the laser point cloud data is sent to the processing module at the same time; the GNSS receiver is used for Collect GNSS data and send the GNSS data to the processing module at the same time; the inertial navigator is used to collect INS data and send the INS data to the processing module at the same time; the processing module processes the received data in real time to obtain laser point cloud data Absolute coordinates, realize real-time processing of data collection, and obtain result data.
  • the laser point cloud data real-time processing system proposed by the present invention processes and collects original data in real time, avoiding re-acquisition later , Improve the efficiency of surveying and mapping operations, and avoid the problems caused by the inability to observe the laser point cloud data in real time during the process of obtaining absolute coordinates, resulting in re-acquisition in the later stage, which is laborious and laborious.
  • Fig. 1 is the system diagram of the present application
  • Figure 2 is a flow chart of the present application.
  • the present embodiment provides a kind of implementation mode of real-time processing system of laser point cloud data, comprises laser radar, GNSS receiver, inertial navigator, correction module, time synchronization module and processing module, and described processing module is respectively connected with The lidar, GNSS receiver, inertial navigator, time synchronization module and correction module are connected, and the time synchronization module is connected with the lidar, GNSS receiver, processing module and inertial navigator respectively;
  • the lidar is used to collect laser point cloud data, and simultaneously sends the laser point cloud data to the processing module;
  • Described GNSS receiver is used for collecting GNSS data, and sends GNSS data to processing module simultaneously;
  • the inertial navigator is used to collect INS data, and at the same time send the INS data to the processing module;
  • the processing module is used to synchronously process the received data, and the processing module processes the laser point cloud data, GNSS data and INS data received at the same time, so that the laser point cloud data at this time obtains absolute coordinates and Obtain the laser point cloud data of absolute coordinates and simultaneously output and display, the processing module includes a laser point cloud data processing unit, a GNSS data processing unit and an INS data processing unit, and the laser point cloud data processing unit processes the laser point cloud Data processing, the GNSS data processing unit is used to process GNSS data, the INS data processing unit is used to process INS data, and the laser point cloud data obtains absolute coordinates through data fusion.
  • laser radar is used for collecting laser point cloud data, and laser point cloud data is sent to processing module simultaneously;
  • GNSS receiver is used for collecting GNSS data, and send the GNSS data to the processing module at the same time;
  • the inertial navigator is used to collect INS data, and send the INS data to the processing module at the same time;
  • the processing module processes the received data in real time, so that the laser point cloud data obtains absolute coordinates , realize real-time processing of data collection, and obtain result data.
  • the laser point cloud data real-time processing system proposed by the present invention processes and collects original data in real time, avoiding re-acquisition in the later stage, and improving Improve the efficiency of surveying and mapping operations, and avoid the problems caused by the inability to observe the laser point cloud data in real time during the process of obtaining absolute coordinates, resulting in re-acquisition in the later stage, which is laborious and laborious.
  • Described time synchronization module is used to make described laser radar, GNSS receiver, inertial navigator and processing module time synchronization, and described time synchronization module collects the time of GNSS receiver as the reference time of time synchronization, and described time synchronization module will The reference time is transmitted into the lidar, the inertial navigator and the processing module.
  • the data required by the time synchronization module is mainly UTC time.
  • the obtained GPRMC format data is converted to UTC time, which is recorded in the format of hours, minutes, seconds and milliseconds, and the lidar needs the Unix timestamp format, so it is necessary to convert the UTC time to the Unix time format, and then send it to the laser Radar, inertial navigator and processing module to achieve the purpose of time synchronization;
  • Described time synchronization module can also start collecting the signal of data by collecting any part in described laser radar, GNSS receiver, processing module and inertial navigator, and Transmit the signal that any component starts to collect data as a synchronous signal to other components to make other components work at the same time;
  • the correction module obtains correction parameters by correcting errors, and sends the correction parameters to the processing module, so that the processing module obtains accurate absolute coordinates for the laser point cloud data;
  • the correction module collects a plurality of points on the same plane, and obtains correction parameters through least square calculation, specifically to establish a plane.
  • the laser point cloud data of the reference surface is obtained by scanning the laser radar back and forth in the plane, and the correction model is established, and the least square solution is used to make the laser point cloud on all planes coincide with the reference surface, and the correction parameters are obtained, so as to realize Correction.
  • the plane is the facade of the building wall, scan the inside of the wall to obtain the absolute coordinate value of the laser point cloud data, and divide it into blocks according to the height and width of the scanned wall.
  • the elevation difference in the block is lower than the correction preset value
  • the collimation axis correction parameter includes:
  • ⁇ , ⁇ , ⁇ are collimation axis correction angles respectively;
  • ⁇ Z, ⁇ Y, ⁇ Z are the correction offsets of the collimation axis
  • the correction parameter equation is:
  • a P , B P , C P and D P are the coefficients of the equation of the fitting plane respectively;
  • X i , Y i , Z i are the absolute coordinates of any calibration point
  • V is the correction value of the observed value
  • X 0 is the initial value of the collimation axis correction parameter
  • the adjustment value of the collimation axis correction parameter is obtained by iteration:
  • a kind of laser point cloud data real-time processing method of the second aspect of the present embodiment comprising the steps:
  • the correction step the correction module obtains the correction parameter by correcting the error, and sends the correction parameter to the processing module, and the correction module obtains the correction parameter by correcting the error, specifically, the correction module collects a plurality of points on the same plane,
  • the correction parameters are obtained by using the least squares solution, the correction module collects multiple points on the same plane, and the correction parameters are obtained by using the least squares solution, specifically to establish a plane, which is obtained by scanning the plane back and forth through the laser radar Based on the laser point cloud data of the reference surface, a correction model is established, and the least square solution is used to make the laser point cloud on all planes coincide with the reference surface, and the correction parameters are obtained to achieve correction.
  • ⁇ , ⁇ , ⁇ are collimation axis correction angles respectively;
  • ⁇ Z, ⁇ Y, ⁇ Z are the correction offsets of the collimation axis
  • a P , B P , C P and D P are the coefficients of the equation of the fitting plane respectively;
  • X i , Y i , Z i are the absolute coordinates of any calibration point
  • V is the correction value of the observed value
  • X 0 is the initial value of the collimation axis correction parameter
  • the adjustment value of the correction parameter is obtained by iteration
  • time synchronization step make described laser radar, GNSS receiver, inertial navigator and processing module time synchronization by time synchronization module
  • described time synchronization module gathers the time of GNSS receiver as the reference time of time synchronization, described time
  • the synchronization module passes the reference time into the lidar, the inertial navigator and the processing module, and the time synchronization module collects the time of the GNSS receiver as the reference time of time synchronization, and the time synchronization module transfers the The reference time is passed into the lidar, the inertial navigator and the processing module.
  • the data required by the time synchronization module is mainly UTC time.
  • the obtained GPRMC format data is converted to UTC time, which is recorded in the format of hours, minutes, seconds and milliseconds, and the lidar needs the Unix timestamp format, so it is necessary to convert the UTC time to the Unix time format, and then send it to the laser Radar, inertial navigator and processing module to achieve the purpose of time synchronization;
  • Described time synchronization module can also start collecting the signal of data by collecting any part in described laser radar, GNSS receiver, processing module and inertial navigator, and The signal that any component starts to collect data is transmitted to other components as a synchronous signal to make other components work at the same time.
  • the laser radar, GNSS receiver, and inertial navigator collect corresponding data at the same time, and transfer the collected data into the processing module at the same time, the laser radar is used to collect laser point cloud data, and the GNSS receiver is used to collect GNSS data, the inertial navigator is used to collect INS data;
  • the processing module synchronously processes the laser point cloud data, GNSS data and INS data, so that the laser point cloud data obtains absolute coordinates
  • the processing module includes a laser point cloud data processing unit, a GNSS data processing unit and an INS data processing unit
  • the laser point cloud data processing unit processes the laser point cloud data
  • the GNSS data processing unit processes GNSS data
  • the INS data processing unit processes INS data.

Abstract

一种激光点云数据实时处理系统,包括激光雷达、GNSS接收机、惯性导航仪和处理模块,所述处理模块分别与所述激光雷达、GNSS接收机、惯性导航仪连接;所述激光雷达用于采集激光点云数据,并同时将激光点云数据发送到处理模块;所述处理模块用于对接收到的数据进行同步处理,所述处理模块对同一时刻接收到激光点云数据、GNSS数据和INS数据进行处理,使该时刻的激光点云数据获得绝对坐标并将获得绝对坐标的所述激光点云数据同时输出显示。对接收到的数据进行实时处理,使激光点云数据获得绝对坐标,实现数据采集实时处理,得到成果数据避免由于不能实时观察激光点云数据在获得绝对坐标的过程中产生的问题,导致后期重新采集,费事费力。

Description

一种激光点云数据实时处理系统和方法 技术领域
本申请涉及计算机技术领域,尤其涉及一种激光点云数据实时处理系统和方法。
背景技术
移动测量是近年来发展起来的一项高新测量技术,其依靠激光雷达、惯导等传感器快速采集道路周边的高精度点云数据。原始采集数据记录了反射点到雷达中心的距离和方位信息,但不能直接用于浏览、分析、应用等,需数据处理后得到绝对坐标,形成点云成果数据,供相应业务应用使用。
现有的点云数据采集和处理,分为外业和内业工作。外业工作人员在现场采集数据后,内业工作人员对采集的数据进行处理,两环节独立进行,不能实时发现激光点云数据在获得绝对坐标过程中产生的问题,导致后期重新采集,费事费力。
申请内容
(一)申请目的
有鉴于此,本申请的目的在于提供一种激光点云数据实时处理系统和方法,以解决现有技术中激光点云数据在采集过中不能同时使激光点云数据获得绝对坐标的问题。
(二)技术方案
本申请公开了一种激光点云数据实时处理系统,包括激光雷达、GNSS接收机、惯性导航仪和处理模块,所述处理模块分别与所述激光雷达、GNSS接收机、 惯性导航仪连接;
所述激光雷达用于采集激光点云数据,并同时将激光点云数据发送到处理模块;
所述GNSS接收机用于采集GNSS数据,并同时将GNSS数据发送到处理模块;
所述惯性导航仪用于采集INS数据,并同时将INS数据发送到处理模块;
所述处理模块用于对接收到的数据进行同步处理,所述处理模块对同一时刻接收到激光点云数据、GNSS数据和INS数据进行处理,使该时刻的激光点云数据获得绝对坐标并将获得绝对坐标的所述激光点云数据同时输出显示。
在一种可能的实施方式中,还包括时间同步模块,所述时间同步模块分别与所述激光雷达、GNSS接收机和惯性导航仪连接,所述时间同步模块用于使所述激光雷达、GNSS接收机、惯性导航仪和处理模块时间同步。
在一种可能的实施方式中,所述时间同步模块采集GNSS接收机的时间作为时间同步的基准时间,所述时间同步模块将所述基准时间传入所述激光雷达、所述惯性导航仪和所述处理模块中。
在一种可能的实施方式中,还包括校正模块,所述校正模块与所述处理模块连接,所述校正模块通过校正误差得到校正参数,并将所述校正参数发送到所述处理模块中。
在一种可能的实施方式中,所述校正模块采集多个同一平面的点,通过利用最小二乘解算得到校正参数。
作为本申请的第二方面还公开了一种激光点云数据实时处理方法,包括如下步骤:
S2、激光雷达、GNSS接收机、惯性导航仪同时采集对应数据,并将采集到 的数据同时传入处理模块中,所述激光雷达用于采集激光点云数据,所述GNSS接收机用于采集GNSS数据,所述惯性导航仪用于采集INS数据;
S3、所述处理模块用于对接收到的数据进行同步处理,所述处理模块对同一时刻接收到激光点云数据、GNSS数据和INS数据进行处理,使该时刻的激光点云数据获得绝对坐标并将获得绝对坐标的所述激光点云数据同时输出显示。
在一种可能的实施方式中,执行步骤S2前还需执行步骤S1,所述步骤S1为时间同步步骤,通过时间同步模块使所述激光雷达、GNSS接收机、惯性导航仪和处理模块时间同步。
在一种可能的实施方式中,所述时间同步步骤具体为:采集GNSS接收机的时间作为时间同步的基准时间,所述时间同步模块将所述基准时间传入所述激光雷达、所述惯性导航仪和处理模块中。
在一种可能的实施方式中,执行步骤S1前还需执行步骤S0,所述步骤S0为校正步骤,校正模块通过校正误差得到校正参数,并将所述校正参数发送到所述处理模块中。
在一种可能的实施方式中,所述校正模块通过校正误差得到校正参数具体步骤为:校正模块采集多个同一平面的点,通过利用最小二乘解算得到校正参数。
(三)有益效果
本申请通过处理模块分别与所述激光雷达、GNSS接收机、惯性导航仪连接,其中,激光雷达用于采集激光点云数据,并同时将激光点云数据发送到处理模块;GNSS接收机用于采集GNSS数据,并同时将GNSS数据发送到处理模块;惯性导航仪用于采集INS数据,并同时将INS数据发送到处理模块;处理模块对接 收到的数据进行实时处理,使激光点云数据获得绝对坐标,实现数据采集实时处理,得到成果数据,相比于传统的“外业采集,内业处理”方式,本发明提出的激光点云数据实时处理系统实时处理采集原数据,避免后期重新采集,提升了测绘作业效率,避免由于不能实时观察激光点云数据在获得绝对坐标的过程中产生的问题,导致后期重新采集,费事费力。
本申请的其他优点、目标和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本申请的实践中得到教导。本申请的目标和其他优点可以通过下面的说明书来实现和获得。
附图说明
以下参考附图描述的实施例是示例性的,旨在用于解释和说明本申请,而不能理解为对本申请的保护范围的限制。
图1是本申请的系统图;
图2是本申请的流程图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他 实施例,都属于本申请保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
如图1,本实施例提供了一种激光点云数据实时处理系统的实施方式,包括激光雷达、GNSS接收机、惯性导航仪、校正模块、时间同步模块和处理模块,所述处理模块分别与所述激光雷达、GNSS接收机、惯性导航仪、时间同步模块和校正模块连接,所述时间同步模块分别与所述激光雷达、GNSS接收机、处理模块和惯性导航仪连接;
所述激光雷达用于采集激光点云数据,并同时将激光点云数据发送到处理模块;
所述GNSS接收机用于采集GNSS数据,并同时将GNSS数据发送到处理模块;
所述惯性导航仪用于采集INS数据,并同时将INS数据发送到处理模块;
所述处理模块用于对接收到的数据进行同步处理,所述处理模块对同一时刻接收到激光点云数据、GNSS数据和INS数据进行处理,使该时刻的激光点云数据获得绝对坐标并将获得绝对坐标的所述激光点云数据同时输出显示,所述处理模块包括激光点云数据处理单元、GNSS数据处理单元和INS数据处理单元,所述激光点云数据处理单元对所述激光点云数据进行处理、所述GNSS数据处理单元用于对GNSS数据进行处理,所述INS数据处理单元用于对INS数据进行处理,通过数据融合使所述激光点云数据获得绝对坐标。
通过处理模块分别与所述激光雷达、GNSS接收机、惯性导航仪连接,其中,激光雷达用于采集激光点云数据,并同时将激光点云数据发送到处理模块; GNSS接收机用于采集GNSS数据,并同时将GNSS数据发送到处理模块;惯性导航仪用于采集INS数据,并同时将INS数据发送到处理模块;处理模块对接收到的数据进行实时处理,使激光点云数据获得绝对坐标,实现数据采集实时处理,得到成果数据,相比于传统的“外业采集,内业处理”方式,本发明提出的激光点云数据实时处理系统实时处理采集原数据,避免后期重新采集,提升了测绘作业效率,避免由于不能实时观察激光点云数据在获得绝对坐标的过程中产生的问题,导致后期重新采集,费事费力。
所述时间同步模块用于使所述激光雷达、GNSS接收机、惯性导航仪和处理模块时间同步,所述时间同步模块采集GNSS接收机的时间作为时间同步的基准时间,所述时间同步模块将所述基准时间传入所述激光雷达、所述惯性导航仪和所述处理模块中。在本系统中,时间同步模块需要的数据主要是UTC时间。将得到的GPRMC格式数据,经过转换得到其中的UTC时间,该时间是以时分秒毫秒格式记录的,而激光雷达需要Unix时间戳格式,故需要将UTC时间转换为Unix时间格式,然后发送到激光雷达、惯性导航仪和处理模块以达到时间同步的目的;所述时间同步模块还可通过采集所述激光雷达、GNSS接收机、处理模块和惯性导航仪中任一部件开始采集数据的信号,并将任一部件开始采集数据的信号作为同步信号传递给其他部件使其他部件同时工作;
所述校正模块通过校正误差得到校正参数,并将所述校正参数发送到所述处理模块中,使所述处理模块在使激光点云数据获得准确的绝对坐标;
所述校正模块采集多个同一平面的点,通过利用最小二乘解算得到校正参数,具体为建立平面。利用通过激光雷达对平面内进行往返扫描获取到参考面的激光点云数据,建立校正模型,利用最小二乘解算,使得所有平面上的激光点云与参考面重合,得到校正参数,从而实现校正。当平面为建筑物墙体立面 时,对墙体里面进行扫描得到激光点云数据的绝对坐标值,按照扫描墙体的高和宽进行分块,当分块内高程差低于校正预设值时,选取分块中心点作为校正点,当分块内高程差大于校正预设值时,舍弃分块内所有点,对选取的所有校正点进行最小乘解算得到拟合平面,建立视准轴校正参数的方程,所述视准轴校正参数包括:
X=[α β γ ΔX ΔY ΔZ]
α、β、γ分别是视准轴校正角度;
△Z、△Y、△Z分别是视准轴的校正偏移量;
所述校正参数方程为:
Figure PCTCN2021124564-appb-000001
其中,A P、B P、C P和D P分别为拟合平面的方程的系数;
X i、Y i、Z i分别为任一校正点的绝对坐标;
L为观测值;
V为观测值改正值;
X 0为视准轴校正参数初始值;
Figure PCTCN2021124564-appb-000002
为视准轴校正参数初始值的改正数;
通过迭代得到视准轴校正参数的平差值:
Figure PCTCN2021124564-appb-000003
如图2,提供了本实施例的第二方面一种激光点云数据实时处理方法,包括 如下步骤:
S0、校正步骤,校正模块通过校正误差得到校正参数,并将所述校正参数发送到所述处理模块中,所述校正模块通过校正误差得到校正参数具体为校正模块采集多个同一平面的点,通过利用最小二乘解算得到校正参数,所述校正模块采集多个同一平面的点,通过利用最小二乘解算得到校正参数,具体为建立平面,利用通过激光雷达对平面内进行往返扫描获取到参考面的激光点云数据,建立校正模型,利用最小二乘解算,使得所有平面上的激光点云与参考面重合,得到校正参数,从而实现校正。当平面为建筑物墙体立面时,对墙体里面进行扫描得到点云数据,按照扫描墙体的高和宽进行分块,当分块内高程差低于校正预设值时,选取分块中心点作为校正点,当分块内高程差大于校正预设值时,舍弃分块内所有点,对选取的校正点进行最小乘解算得到拟合平面,建立所述校正参数的方程,所述视准轴校正参数包括:
X=[α β γ ΔX ΔY ΔZ]
α、β、γ分别是视准轴校正角度;
△Z、△Y、△Z分别是视准轴的校正偏移量;
所述校正参数方程为
Figure PCTCN2021124564-appb-000004
其中,A P、B P、C P和D P分别为拟合平面的方程的系数;
X i、Y i、Z i分别为任一校正点的绝对坐标;
L为观测值;
V为观测值改正值;
X 0为视准轴校正参数初始值;
Figure PCTCN2021124564-appb-000005
为视准轴校正参数初始值的改正数;
通过迭代得到校正参数的平差值
Figure PCTCN2021124564-appb-000006
S1、时间同步步骤,通过时间同步模块使所述激光雷达、GNSS接收机、惯性导航仪和处理模块时间同步,所述时间同步模块采集GNSS接收机的时间作为时间同步的基准时间,所述时间同步模块将所述基准时间传入所述激光雷达、所述惯性导航仪和处理模块中,所述时间同步模块采集GNSS接收机的时间作为时间同步的基准时间,所述时间同步模块将所述基准时间传入所述激光雷达、所述惯性导航仪和所述处理模块中。在本系统中,时间同步模块需要的数据主要是UTC时间。将得到的GPRMC格式数据,经过转换得到其中的UTC时间,该时间是以时分秒毫秒格式记录的,而激光雷达需要Unix时间戳格式,故需要将UTC时间转换为Unix时间格式,然后发送到激光雷达、惯性导航仪和处理模块以达到时间同步的目的;所述时间同步模块还可通过采集所述激光雷达、GNSS接收机、处理模块和惯性导航仪中任一部件开始采集数据的信号,并将任一部件开始采集数据的信号作为同步信号传递给其他部件使其他部件同时工作。
S2、激光雷达、GNSS接收机、惯性导航仪同时采集对应数据,并将采集到的数据同时传入处理模块中,所述激光雷达用于采集激光点云数据,所述GNSS接收机用于采集GNSS数据,所述惯性导航仪用于采集INS数据;
S3、所述处理模块对激光点云数据、GNSS数据和INS数据进行同步处理, 使激光点云数据获得绝对坐标,所述处理模块包括激光点云数据处理单元、GNSS数据处理单元和INS数据处理单元,所述激光点云数据处理单元对所述激光点云数据进行处理、所述GNSS数据处理单元用于对GNSS数据进行处理,所述INS数据处理单元用于对INS数据进行处理。
最后说明的是,以上实施例仅用以说明本申请的技术方案而非限制,尽管参照较佳实施例对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或者同替换,而不脱离本申请技术方案的宗旨和范围,其均应涵盖在本申请的权利要求范围当中。

Claims (10)

  1. 一种激光点云数据实时处理系统,其特征在于,包括激光雷达、GNSS接收机、惯性导航仪和处理模块,所述处理模块分别与所述激光雷达、GNSS接收机、惯性导航仪连接;
    所述激光雷达用于采集激光点云数据,并同时将激光点云数据发送到处理模块;
    所述GNSS接收机用于采集GNSS数据,并同时将GNSS数据发送到处理模块;
    所述惯性导航仪用于采集INS数据,并同时将INS数据发送到处理模块;
    所述处理模块用于对接收到的数据进行同步处理,所述处理模块对同一时刻接收到激光点云数据、GNSS数据和INS数据进行处理,使该时刻的激光点云数据获得绝对坐标并将获得绝对坐标的所述激光点云数据同时输出显示。
  2. 根据权利要求1所述的一种激光点云数据处理系统,其特征在于,还包括时间同步模块,所述时间同步模块分别与所述激光雷达、GNSS接收机和惯性导航仪连接,所述时间同步模块用于使所述激光雷达、GNSS接收机、惯性导航仪和处理模块时间同步。
  3. 根据权利要求2所述的一种激光点云数据处理系统,其特征在于,所述时间同步模块采集GNSS接收机的时间作为时间同步的基准时间,所述时间同步模块将所述基准时间传入所述激光雷达、所述惯性导航仪和所述处理模块中。
  4. 根据权利要求1所述的一种激光点云数据处理系统,其特征在于,还包括校正模块,所述校正模块与所述处理模块连接,所述校正模块通过校正误差得到校正参数,并将所述校正参数发送到所述处理模块中。
  5. 根据权利要求4所述的一种激光点云数据处理系统,其特征在于,所述校正模块采集多个同一平面的点,通过利用最小二乘解算得到校正参数。
  6. 一种激光点云数据并行处理方法,其特征在于,包括如下步骤:
    S2、激光雷达、GNSS接收机、惯性导航仪同时采集对应数据,并将采集到的数据同时传入处理模块中,所述激光雷达用于采集激光点云数据,所述GNSS接收机用于采集GNSS数据,所述惯性导航仪用于采集INS数据;
    S3、所述处理模块用于对接收到的数据进行同步处理,所述处理模块对同一时刻接收到激光点云数据、GNSS数据和INS数据进行处理,使该时刻的激光点云数据获得绝对坐标并将获得绝对坐标的所述激光点云数据同时输出显示。
  7. 根据权利要求6所述的一种激光点云数据并行处理方法,其特征在于,执行步骤S2前还需执行步骤S1,所述步骤S1为时间同步步骤,通过时间同步模块使所述激光雷达、GNSS接收机、惯性导航仪和处理模块时间同步。
  8. 根据权利要求6所述的一种激光点云数据并行处理方法,其特征在于,所述时间同步步骤具体为:采集GNSS接收机的时间作为时间同步的基准时间,所述时间同步模块将所述基准时间传入所述激光雷达、所述惯性导航仪和处理模块中。
  9. 根据权利要求8所述的一种激光点云数据并行处理方法,其特征在于,执行步骤S1前还需执行步骤S0,所述步骤S0为校正步骤,校正模块通过校正误差得到校正参数,并将所述校正参数发送到所述处理模块中。
  10. 根据权利要求9所述的一种激光点云数据并行处理方法,其特征在于,所述校正模块通过校正误差得到校正参数具体步骤为:校正模块采集多个同一平面的点,通过利用最小二乘解算得到校正参数。
PCT/CN2021/124564 2021-10-14 2021-10-19 一种激光点云数据实时处理系统和方法 WO2023060631A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111200108.1A CN113959436A (zh) 2021-10-14 2021-10-14 一种激光点云数据实时处理系统和方法
CN202111200108.1 2021-10-14

Publications (1)

Publication Number Publication Date
WO2023060631A1 true WO2023060631A1 (zh) 2023-04-20

Family

ID=79464038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124564 WO2023060631A1 (zh) 2021-10-14 2021-10-19 一种激光点云数据实时处理系统和方法

Country Status (2)

Country Link
CN (1) CN113959436A (zh)
WO (1) WO2023060631A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110133999A (zh) * 2019-04-23 2019-08-16 武汉星源云意科技有限公司 一种基于星云激光点云数采平台的时间同步方法及时间同步系统
CN110517209A (zh) * 2018-05-21 2019-11-29 北京京东尚科信息技术有限公司 数据处理方法、装置、系统以及计算机可读存储介质
US20200025578A1 (en) * 2017-12-12 2020-01-23 Maser Consulting, P.A. Tunnel mapping system and methods
CN111708038A (zh) * 2020-06-23 2020-09-25 上海埃威航空电子有限公司 基于姿态传感器和gnss的无人船激光雷达点云数据校正方法
CN113029137A (zh) * 2021-04-01 2021-06-25 清华大学 一种多源信息自适应融合定位方法及系统
CN113311411A (zh) * 2021-04-19 2021-08-27 杭州视熵科技有限公司 一种用于移动机器人的激光雷达点云运动畸变校正方法
CN113375646A (zh) * 2021-05-06 2021-09-10 武汉海达数云技术有限公司 用于移动测量的定位定姿、点云数据实时解算和融合方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107797129B (zh) * 2017-10-13 2020-06-05 重庆市勘测院 无gnss信号下的点云数据采集方法及装置
CN109143257A (zh) * 2018-07-11 2019-01-04 中国地质调查局西安地质调查中心 无人机机载雷达矿山开采土地变化监测系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200025578A1 (en) * 2017-12-12 2020-01-23 Maser Consulting, P.A. Tunnel mapping system and methods
CN110517209A (zh) * 2018-05-21 2019-11-29 北京京东尚科信息技术有限公司 数据处理方法、装置、系统以及计算机可读存储介质
CN110133999A (zh) * 2019-04-23 2019-08-16 武汉星源云意科技有限公司 一种基于星云激光点云数采平台的时间同步方法及时间同步系统
CN111708038A (zh) * 2020-06-23 2020-09-25 上海埃威航空电子有限公司 基于姿态传感器和gnss的无人船激光雷达点云数据校正方法
CN113029137A (zh) * 2021-04-01 2021-06-25 清华大学 一种多源信息自适应融合定位方法及系统
CN113311411A (zh) * 2021-04-19 2021-08-27 杭州视熵科技有限公司 一种用于移动机器人的激光雷达点云运动畸变校正方法
CN113375646A (zh) * 2021-05-06 2021-09-10 武汉海达数云技术有限公司 用于移动测量的定位定姿、点云数据实时解算和融合方法

Also Published As

Publication number Publication date
CN113959436A (zh) 2022-01-21

Similar Documents

Publication Publication Date Title
KR102015388B1 (ko) 무인항공기와 지상용 3d라이다스캐너를 활용한 정사영상 3차원 포인트클라우드 db 구축기반 가상현실 공간 맵 제공시스템 및 제공방법
CN109632103A (zh) 高空建筑物温度分布与表面裂缝远程监测系统及监测方法
CN106569242B (zh) 固定参考星的gnss单差处理方法
CN106441108A (zh) 一种视觉位移测量系统及其测量方法
CN110966932B (zh) 一种基于已知标记点的结构光三维扫描方法
CN111474532A (zh) 车载移动激光雷达测量系统时间同步方法及装置
CN103175485A (zh) 一种飞机涡轮发动机叶片修复机器人的视觉标定方法
WO2017049940A1 (zh) 室内空间测量定位网络动态坐标测量多站数据同步方法
CN107702662A (zh) 基于激光扫描仪和bim的逆向监控方法及其系统
CN111006601A (zh) 三维激光扫描在变形监测中的关键技术
CN111337037B (zh) 移动激光雷达slam制图装置及数据处理方法
CN206056513U (zh) 一种视觉位移测量系统
CN108845663A (zh) 设计施工系统
CN107621628A (zh) 一种安置角误差检校方法
WO2023060631A1 (zh) 一种激光点云数据实时处理系统和方法
CN112017248A (zh) 一种基于点线特征的2d激光雷达相机多帧单步标定方法
CN110146062B (zh) 一种基于图根点测量点云数据的坐标系转化方法
CN109035343A (zh) 一种基于监控相机的楼层相对位移测量方法
CN113359154A (zh) 一种室内外通用的高精度实时测量方法
CN114966793B (zh) 三维测量系统、方法及gnss系统
CN106872486A (zh) 一种大体积清水混凝土墙表面缺陷检测方法
CN108398318B (zh) 基于数字图像相关技术确定岩石表面裂缝类型与分布的方法及装置
CN116226965A (zh) 一种基于bim的建筑废弃物估算算法
CN115847491A (zh) 一种空间在轨维修机器人目标自主测量方法
WO2022126339A1 (zh) 土木结构变形监测方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960360

Country of ref document: EP

Kind code of ref document: A1