WO2023060557A1 - 一种阵列天线及通信设备 - Google Patents

一种阵列天线及通信设备 Download PDF

Info

Publication number
WO2023060557A1
WO2023060557A1 PCT/CN2021/124106 CN2021124106W WO2023060557A1 WO 2023060557 A1 WO2023060557 A1 WO 2023060557A1 CN 2021124106 W CN2021124106 W CN 2021124106W WO 2023060557 A1 WO2023060557 A1 WO 2023060557A1
Authority
WO
WIPO (PCT)
Prior art keywords
digital
array antenna
antenna according
ito
liquid crystal
Prior art date
Application number
PCT/CN2021/124106
Other languages
English (en)
French (fr)
Inventor
陈栋
池连刚
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2021/124106 priority Critical patent/WO2023060557A1/zh
Priority to CN202180102972.XA priority patent/CN118044066A/zh
Publication of WO2023060557A1 publication Critical patent/WO2023060557A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures

Definitions

  • the present application relates to the technical field of communication, and in particular to an array antenna and a communication device.
  • a reconfigurable metasurface can be realized by adding adjustable elements and materials such as diodes to the unit of the metasurface antenna, and matching the bias voltage.
  • diodes are only suitable for use in lower microwave frequency bands, and the use of diode regulation can only achieve the conversion of several states.
  • diodes are only suitable for use in lower microwave frequency bands, and the use of diode regulation can only achieve the conversion of several states.
  • the embodiment of the present application provides an array antenna, which can be applied to radio systems such as communication, broadcasting, television, radar and navigation, and relates to the field of smart antenna technology.
  • the working frequency band of the metasurface antenna can reach mm wave or even terahertz frequency band, which expands the working frequency band of the metasurface antenna, and enables the metasurface to have continuously adjustable characteristics. application scenarios.
  • an embodiment of the present application provides an array antenna, including: an upper dielectric plate, a middle dielectric plate, and a lower dielectric plate distributed from top to bottom, wherein the middle dielectric plate includes a metasurface structure formed of a liquid crystal material .
  • the embodiment of the application provides an array antenna.
  • the working frequency band of the metasurface antenna can reach the millimeter wave or even the terahertz frequency band, which expands the working frequency band of the metasurface antenna and enables the metasurface to have continuous tune characteristics.
  • the metasurface structure includes: a liquid crystal material layer, digital radiation components printed on the liquid crystal material layer, and DC bias lines; wherein, the digital radiation components include M ⁇ M arrays An arranged digital radiation unit, the digital radiation unit includes N ⁇ N indium tin oxide ITO radiation patches arranged in an array, and the ITO radiation patches belonging to the same row are connected through the DC bias line.
  • the value of N is: the smallest integer value that satisfies the condition of ⁇ 0 ⁇ 2 ⁇ N ⁇ p, wherein the ⁇ 0 is the free space wavelength, and p is the period length of the ITO radiation patch .
  • the value of N is negatively correlated with the angular size of the maximum beam steering angle and the number of beam steering angles scanned by the metasurface structure.
  • the ITO radiation patch is circular.
  • the array antenna constructs digital radiating units in two different states with a reflection phase difference of 180° based on the liquid crystal material changing with the voltage within the working frequency band.
  • the two different states of the digital radiating unit correspond to different representative numbers.
  • row control is performed on the digital radiation unit.
  • the lower dielectric board includes a ground plane made of ITO material and a glass dielectric board from top to bottom.
  • the upper dielectric board is a glass dielectric substrate.
  • an embodiment of the present application provides a communication device, including the array antenna described in the first aspect.
  • FIG. 1 is a schematic side view of a unit structure of an array antenna
  • Fig. 2 is a schematic structural diagram of a digital radiation component
  • Fig. 3 is a schematic top view of a digital radiation unit
  • FIG. 4 is a schematic side view of another unit structure of an array antenna
  • Fig. 5 is the simulation graph of the reflection amplitude and reflection phase of the digital radiation component changing with frequency
  • Figure 6 is a schematic diagram of the 3D far-field pattern simulation results obtained when the digital code sequence is "0000" at 29GHz;
  • Figure 7 is a schematic diagram of the 3D far-field pattern simulation results obtained when the digital code sequence is "0101" at 29GHz;
  • FIG. 8 is a block diagram of a communication device for implementing an array antenna of an embodiment of the present disclosure.
  • Metamaterial is an artificial structure composed of several sub-wavelength units periodically arranged. By changing the unit structure and arrangement, many physical phenomena that do not exist in nature can be realized, such as inverse Doppler, negative Refraction, inverse Cerenkov radiation, etc.
  • unit structures can be arranged on a plane in two dimensions to form a metasurface.
  • metasurfaces use the phase and amplitude mutations obtained when incident electromagnetic waves reach the surface of the unit to control electromagnetic waves, which has the advantages of low profile and easy integration.
  • the unit state of the metasurface is represented by a finite number of binary numbers. Taking the 1-bit digital metasurface as an example, the initial state is represented by "0", and the state with a phase difference of 180° from the initial state is represented by "1", and the discretization
  • the phase state of the phase corresponds to the digital information one by one, and the control of the scattering and deflection of the electromagnetic wave is realized by changing the coding state.
  • the more coding bits on the digital metasurface the more precise the regulation of electromagnetic waves.
  • ITO Indium Tin Oxide
  • Indium tin oxide is a mixture, transparent brown film or yellowish gray block, made of 90% In 2 O 3 and 10% SnO 2 , mainly used to make liquid crystal displays, flat panel displays, plasma displays, touch screens, electronic Paper, organic light-emitting diodes, solar cells, antistatic coatings, transparent conductive coatings for electromagnetic interference (EMI) shielding, various optical coatings, etc. It has the characteristics of electrical conductivity and optical transparency.
  • FIG. 1 is a schematic side view of a unit structure of an array antenna provided by an embodiment of the present application.
  • the array antenna 10 includes an upper dielectric plate 11 , a middle dielectric plate 12 and a lower dielectric plate 13 distributed from top to bottom, wherein the middle dielectric plate 12 includes a metasurface structure 120 formed of liquid crystal material.
  • liquid crystal as an adjustable material can make the working frequency band of the metasurface reach the millimeter wave or even terahertz frequency band, and expand the working frequency band of the array antenna.
  • the metasurface structure 120 includes: a liquid crystal material layer 121 , a digital radiation component 122 printed on the liquid crystal material layer, and a DC bias line 123 .
  • the digital radiating component 122 includes M ⁇ M digital radiating units arranged in an array, M is the number of rows and columns of the digital radiating unit, and the digital radiating unit includes N ⁇ N indium tin oxide arranged in an array ITO radiation patch, N is the number of columns and rows of the ITO radiation patch in the digital radiation unit.
  • FIG. 2 is a schematic structural diagram of a digital radiation component provided by an embodiment of the present application.
  • the digital radiation component 122 includes 4 ⁇ 4 digital radiation units 1221 arranged in an array, and the digital radiation unit 1221 includes 3 ⁇ 3 indium tin oxide ITO radiation patches 1222 arranged in an array. That is to say, in the digital radiation component shown in FIG. 2 , the value of M is 4, and the value of N is 3. This is only an example and cannot be used as a condition to limit the application.
  • the shape of the ITO radiation patch 1222 can be circular, square, oval, etc.
  • the spatial radiation can be made more uniform.
  • the number of columns and the number of rows N of the ITO radiation patch 1222 in the digital radiation unit 1221 are the smallest integer value satisfying the condition of ⁇ 0 ⁇ 2 ⁇ N ⁇ p, wherein the ⁇ 0 is The free space wavelength, p is the period length of the ITO radiation patch 1222.
  • N is negatively correlated with the angle of the maximum beam pointing angle and the number of beam pointing angles scanned by the metasurface structure, that is to say, the smaller N is, the larger the maximum beam pointing angle is, and The more beam pointing angles the metasurface can scan.
  • the smallest integer value N is the optimal value of N in the one-bit beam scanning metasurface digital radiation unit.
  • the digital radiating component when the reflection phase difference is 180°, the digital radiating component is in two different states, and the two different states of the digital radiating component may correspond to different representative numbers.
  • a finite number of binary numbers are used to represent, for example, the initial state may be represented by "0", and the state with a phase difference of 180° from the initial state may be represented by "1".
  • the digital radiation components of two different states with a reflection phase difference of 180° are constructed based on the liquid crystal material as the voltage changes.
  • the digital radiating component when the reflection phase difference is 180°, the digital radiating component is in two different states, and the two different states of the digital radiating component may correspond to different representative numbers.
  • a finite number of binary numbers are used to represent, for example, the initial state may be represented by "0", and the state with a phase difference of 180° from the initial state may be represented by "1".
  • the digital radiation unit shown in Figure 2 includes 4 ⁇ 4 digital radiation units arranged in an array. Since the digital radiation unit can be controlled for the entire row, the four digital radiation units in a row are in the same state. By controlling the status of the digital radiation units in each row, the arrangement of units can be in different states such as "0000" and "0101".
  • the digital radiation component By changing the relative permittivity of the liquid crystal, the digital radiation component can be in two different states of "1" and "0", and the digital radiation unit in two states can be obtained according to the above principle, so as to flexibly control the arrangement of the metasurface unit In this way, the digital radiation components are controlled to realize different beam control functions.
  • FIG. 3 is a schematic top view of a digital radiation unit 1221 provided by an embodiment of the present application.
  • the DC bias line 123 and the ITO radiation patch 1222 are on the same layer, and the ITO radiation patches 1222 belonging to the same row are connected through a DC bias line 123, and each row shares a DC bias line 123. Extending to the outermost layer, maximizing the simulation of the routing of the DC feeder in the actual situation, and realizing the entire row control of the digital radiation unit 1221 through the DC bias line 123, thereby reducing the complexity of the feeder network sex. That is to say, the relative permittivity of one row can be changed through the DC bias line 123 of each row, so that the digital radiation units 1221 can be in different states.
  • FIG. 4 is a schematic side view of another unit structure of an array antenna provided by an embodiment of the present application.
  • the array antenna 20 includes an upper dielectric board 21 , a middle dielectric board 22 and a lower dielectric board 23 distributed from top to bottom.
  • the upper dielectric board 21 is a glass dielectric substrate
  • the lower dielectric board 23 includes a ground plane 231 made of ITO material and a glass dielectric board 232 from top to bottom.
  • the middle dielectric plate 22 includes a metasurface structure 220 formed of liquid crystal material, wherein the metasurface structure 220 includes a liquid crystal material layer 221 , digital radiation components 222 and DC bias lines 223 printed on the liquid crystal material layer.
  • the lower dielectric board 23 includes a ground plane 231 made of ITO material and a glass dielectric board 232 from top to bottom.
  • the digital radiating component 222 includes M ⁇ M digital radiating units arranged in an array, M is the number of rows and columns of the digital radiating unit, and the digital radiating unit includes N ⁇ N indium tin oxide ITO radiating patches arranged in an array , N is the number of columns and rows of ITO radiation patches in the digital radiation unit.
  • the ITO radiation patch is circular.
  • the number of columns and the number of rows N of the ITO radiation patch in the digital radiation unit is the smallest integer value that satisfies the condition of ⁇ 0 ⁇ 2 ⁇ N ⁇ p, wherein the ⁇ 0 is a free space wavelength, p is the period length of the ITO radiation patch 1222 .
  • N is negatively correlated with the angle of the maximum beam pointing angle and the number of beam pointing angles scanned by the metasurface structure, that is to say, the smaller N is, the larger the maximum beam pointing angle is, and The more beam pointing angles the metasurface can scan.
  • the smallest integer value N is the optimal value of N in the 1-bit beam scanning metasurface digital radiation unit.
  • the digital radiating component when the reflection phase difference is 180°, the digital radiating component is in two different states, and the two different states of the digital radiating component may correspond to different representative numbers.
  • a finite number of binary numbers are used to represent, for example, the initial state may be represented by "0", and the state with a phase difference of 180° from the initial state may be represented by "1".
  • the digital radiation components of two different states with a reflection phase difference of 180° are constructed based on the liquid crystal material as the voltage changes.
  • the digital radiating component when the reflection phase difference is 180°, the digital radiating component is in two different states, and the two different states of the digital radiating component may correspond to different representation numbers. Specifically, a finite number of binary numbers are used to represent, for example, the initial state may be represented by "0", and the state with a phase difference of 180° from the initial state may be represented by "1".
  • the digital radiation component By changing the relative permittivity of the liquid crystal, the digital radiation component can be in two different states of "1" and "0", and the digital radiation unit in two states can be obtained according to the above principle, so as to flexibly control the arrangement of the metasurface unit In this way, the digital radiation components are controlled to realize different beam control functions.
  • the relative permittivity of a row can be changed through the DC bias line 223 of each row, thereby enabling the digital radiation units to be in different states. Through the direct current bias line 223, the entire row of digital radiation units can be controlled, thereby reducing the complexity of the feeding network.
  • the change of the relative permittivity of the actual liquid crystal material as the voltage changes can be simulated by setting liquid crystal materials with different permittivity.
  • the value of the relative permittivity of the liquid crystal material layer can be modified in the simulation software to simulate the change with the voltage at both ends in actual conditions. The liquid crystal material whose dielectric constant value changes continuously can be easily set through the simulation software, without the need to set a large number of control groups in actual operation, and more accurate numerical results can be obtained, avoiding errors.
  • the digital radiating components include 4 ⁇ 4 digital radiating units arranged in an array, and since the digital radiating units can be controlled by the entire row, the 4 digital radiating units in one row can be in different states, which can be controlled by controlling the digital radiating units of each row. State, so that the unit arrangement mode presents different states such as "0000" and "0101".
  • the simulation software is used to verify and explain the process of controlling the digital radiation components to realize different beam steering functions.
  • the liquid crystal dielectric constant is changed so that the unit arrangement is "0000”
  • the three-dimensional far-field pattern has only one main beam, as shown in Fig. 6 .
  • the three-dimensional far-field pattern is split into two symmetrical beams from the main beam in the original code "0000" state, as shown in Figure 7.
  • FIG. 8 shows a schematic block diagram of an example communication device 80 that can be used to implement an embodiment of the present disclosure.
  • the communication device includes the aforementioned array antenna, and the communication device may be a terminal device or a network device.
  • the terminal equipment may also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT) and so on.
  • the terminal device can be a car with communication function, smart car, mobile phone, wearable device, tablet device (Pad), computer with wireless transceiver function, virtual reality (virtual reality, VR) terminal device, augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control (industrial control), wireless terminal equipment in self-driving (self-driving), wireless terminal equipment in remote medical surgery (remote medical surgery), smart grid ( Wireless terminal devices in smart grid, wireless terminal devices in transportation safety, wireless terminal devices in smart city, wireless terminal devices in smart home, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal device.
  • the network equipment can be an evolved base station (evolved NodeB, eNB), a transmission reception point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in the NR system, a base station in other future mobile communication systems, or a wireless protection system.
  • WiFi wireless fidelity
  • the network device provided by the embodiment of the present application may be composed of a centralized unit (central unit, CU) and a distributed unit (distributed unit, DU), wherein the CU may also be called a control unit (control unit), using CU-DU
  • the structure of the network device such as the protocol layer of the base station, can be separated, and the functions of some protocol layers are placed in the centralized control of the CU, and the remaining part or all of the functions of the protocol layer are distributed in the DU, and the CU centrally controls the DU.
  • At least one in this application can also be described as one or more, and multiple can be two, three, four or more, and this application does not make a limitation.
  • the technical feature is distinguished by "first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in the “first”, “second”, “third”, “A”, “B”, “C” and “D” have no order or order of magnitude among the technical features described.
  • the corresponding relationships shown in the tables in this application can be configured or predefined.
  • the values of the information in each table are just examples, and may be configured as other values, which are not limited in this application.
  • the corresponding relationship shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, for example, splitting, merging, and so on.
  • the names of the parameters shown in the titles of the above tables may also adopt other names understandable by the communication device, and the values or representations of the parameters may also be other values or representations understandable by the communication device.
  • other data structures can also be used, for example, arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables can be used wait.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请实施例公开了一种阵列天线,可以应用于通信、广播、电视、雷达和导航等无线电系统,涉及智能天线技术领域,包括自上而下分布的上层介质板、中层介质板和下层介质板,其中,中层介质板包括由液晶材料形成的超表面结构。通过本申请实施例,可以使得超表面天线的工作频段达到毫米波甚至太赫兹频段,拓展超表面天线的工作频段,并可使超表面具有连续可调的特性。

Description

一种阵列天线及通信设备 技术领域
本申请涉及通信技术领域,尤其涉及一种阵列天线及通信设备。
背景技术
相关技术中,在超表面天线的单元里加入二极管等可调元件和材料,同时配合偏置电压高低,就能够实现可重构超表面。但是二极管只适合在较低的微波频段使用,且利用二极管调控只能实现若干个状态的转换。针对工作在高频(毫米波频段往上)的超表面天线,相关技术方案中没有现成的器件,且生产流片的成本较高,损耗大。
发明内容
本申请实施例提供一种阵列天线,可以应用于通信、广播、电视、雷达和导航等无线电系统,涉及智能天线技术领域,通过使用液晶作为可调材料,使得超表面天线的工作频段可以达到毫米波甚至太赫兹频段,拓展了超表面天线的工作频段,并可使超表面具有连续可调的特性,同时,利用ITO材料代替传统超表面的金属结构,带来的光学透明特性拓展了超表面的应用场景。
第一方面,本申请实施例提供一种阵列天线,包括:自上而下分布的上层介质板、中层介质板和下层介质板,其中,所述中层介质板包括由液晶材料形成的超表面结构。
申请实施例提供一种阵列天线,通过使用液晶作为可调材料,使得超表面天线的工作频段可以达到毫米波甚至太赫兹频段,拓展了超表面天线的工作频段,并可使超表面具有连续可调的特性。
在一种实现方式中,所述超表面结构包括:液晶材料层、被印刷在所述液晶材料层上的数字辐射组件和直流偏置线;其中,所述数字辐射组件包括M×M个阵列排布的数字辐射单元,所述数字辐射单元包括N×N个阵列排布的氧化铟锡ITO辐射贴片,属于同一行的所述ITO辐射贴片之间通过所述直流偏置线连接。
在一种实现方式中,所述N的取值为:满足λ 0<2×N×p条件的最小整数值,其中,所述λ 0为自由空间波长,p为ITO辐射贴片的周期长度。
在一种实现方式中,所述N的取值分别与最大波束指向角的角度大小、所述超表面结构扫描到的波束指向角的数量呈负相关。
在一种实现方式中,所述ITO辐射贴片为圆形。
在一种实现方式中,所述阵列天线在工作频段内,基于所述液晶材料随电压变化构造反射相位差为180°的两种不同状态的数字辐射单元。
在一种实现方式中,所述数字辐射单元的两种不同状态对应不同的表征数字。
在一种实现方式中,对所述数字辐射单元进行行控制。
在一种实现方式中,所述下层介质板由上而下包括由ITO材料形成的接地板和玻璃介质板。
在一种实现方式中,所述上层介质板为玻璃介质基板。
第二方面,本申请实施例提供一种通信设备,包括第一方面所述的阵列天线。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是一种阵列天线的单元结构侧视示意图;
图2是一种数字辐射组件的结构示意图;
图3是一种数字辐射单元的俯视示意图;
图4是另一种阵列天线的单元结构侧视示意图;
图5是数字辐射组件的反射幅度和反射相位随频率变化的仿真曲线图;
图6是29GHz时,数字编码序列为“0000”时得到的3维远场方向图仿真结果示意图;
图7是29GHz时,数字编码序列为“0101”时得到的3维远场方向图仿真结果示意图;
图8是用来实现本公开实施例的阵列天线的通信设备的框图。
具体实施方式
为了便于理解,首先介绍本申请涉及的术语。
1、超表面
超材料是一种由若干个亚波长单元周期排布组成的人工结构,通过对其单元结构和排布方式的变化,能够实现许多自然界中原本不存在的物理现象,如逆多普勒、负折射、逆切伦科夫辐射等。随着对高集成化和低剖面超材料的需求,可以将单元结构以二维形式排列在平面上,构成了超表面。不同于超材料利用空间相位积累实现对电磁波的相位控制,超表面利用入射电磁波到达单元表面时获得的相位和幅度突变来调控电磁波,具有剖面低、易于集成的优点。
2、数字超表面
将超表面的单元状态用有限个二进制数来表示,以1-比特数字超表面为例,初始状态用“0”表示,与初始状态相位相差180°的状态用“1”表示,将离散化的相位状态与数字信息一一对应,通过改变编码状态实现对电磁波的散射、偏折等调控。数字超表面的编码比特位越多,对电磁波的调控就越精准。
3、氧化铟锡(Indium Tin Oxide,ITO)
氧化铟锡是一种混合物,透明茶色薄膜或黄偏灰色块状,由90%In 2O 3和10%SnO 2混合而成,主要用于制作液晶显示器、平板显示器、等离子显示器、触摸屏、电子纸、有机发光二极管、太阳能电池、抗静电镀膜、电磁干扰(electromagnetic interference,EMI)屏蔽的透明传导镀、各种光学镀膜等。具有电学传导和光学透明的特性。
下面结合附图对本申请所提供的阵列天线进行详细地介绍。
图1是本申请实施例提供的一种阵列天线的单元结构侧视示意图。如图1所示,阵列天线10包括自上而下分布的上层介质板11、中层介质板12和下层介质板13,其中,中层介质板12包括由液晶材料形成的超表面结构120。使用液晶作为可调材料,可以使超表面的工作频段达到毫米波甚至太赫兹频段,拓展阵列天线的工作频段。
可选地,超表面结构120包括:包括液晶材料层121、被印刷在液晶材料层上的数字辐射组件122和直流偏置线123。
在一些实现方式中,数字辐射组件122包括M×M个阵列排布的数字辐射单元,M为数字辐射单元的行数和列数,数字辐射单元包括N×N个阵列排布的氧化铟锡ITO辐射贴片,N为数字辐射单元中ITO辐射贴片的列数和行数。利用ITO材料代替传统超表面的金属结构,带来的光学透明特性拓展了超表面的应用场景。
图2为本申请实施例提供的一种数字辐射组件的结构示意图。如图2所示,数字辐射组件122包括4×4个阵列排布的数字辐射单元1221,数字辐射单元1221包括3×3个阵列排布的氧化铟锡ITO辐射贴片1222。也就是说,在图2所示的数字辐射组件中,M的取值为4,N的取值为3。此处仅为示例,不能作为限制本申请的条件。
可选地,ITO辐射贴片1222的形状可以为圆形、方形、椭圆形等。当ITO辐射贴片1222为圆形时,可以使空间上的辐射更加均匀。
在一些实现方式中,数字辐射单元1221中的ITO辐射贴片1222的列数和行数N的取值为满足λ 0<2×N×p条件的最小整数值,其中,所述λ 0为自由空间波长,p为ITO辐射贴片1222的周期长度。这是因为N的取值分别与最大波束指向角的角度大小、超表面结构扫描到的波束指向角的数量呈负相关,也就说是,N越小,最大波束指向角就越大,且超表面可以扫描到的波束指向角就越多。本申请中在满足λ 0<2×N×p条件前提下最小的整数值N即为一比特波束扫描超表面数字辐射单元中N值的最优值。
可选地,当反射相位差为180°时,数字辐射组件处于两种不同的状态,可以将数字辐射组件的两种不同状态对应不同的表征数字。具体地,使用有限个二进制数来表示,比如可以将初始状态用“0”表示,与初始状态相位相差180°的状态用“1”表示。
在阵列天线的工作频段内,基于液晶材料随电压变化构造反射相位差为180°的两种不同状态的数字辐射组件。在一些实现方式中,当反射相位差为180°时,数字辐射组件处于两种不同的状态,可以将数字辐射组件的两种不同状态对应不同的表征数字。具体地,使用有限个二进制数来表示,比如可以将初始状态用“0”表示,与初始状态相位相差180°的状态用“1”表示。
以图2所示的数字辐射组件为例,其包括4×4个阵列排布的数字辐射单元,由于可以对数字辐射组件进行整行控制,所以一行中的4个数字辐射单元处于同一状态,可以通过控制每行的数字辐射单元的状态,使单元排列方式呈现“0000”、“0101”等不同的状态。
通过改变液晶的相对介电常数,可以使数字辐射组件处于“1”和“0”两种不同的状态,可以根据上述原理获得处于两种状态的数字辐射单元,从而灵活控制超表面单元的排列方式,对数字辐射组件进行行控制,实现不同的波束调控功能。
图3为本申请实施例提供的一种数字辐射单元1221的俯视示意图。如图3所示,直流偏置线123与ITO辐射贴片1222处于同一层,属于同一行的ITO辐射贴片1222之间通过直流偏置线123连接,每一行共用一个直流偏置线123,延伸至最外层,最大化模拟实际情况中的直流馈电的走线情况,并能够通过该直流偏置线123实现对数字辐射单元1221的整行控制,进而减小了馈电网络的复杂性。也就是说,可以通过每一行的直流偏置线123改变一行的相对介电常数,进而能使得数字辐射单元1221处于不同的状态。
图4为本申请实施例提供的另一种阵列天线的单元结构侧视示意图。如图4所示,阵列天线20包括自上而下分布的上层介质板21、中层介质板22和下层介质板23。
可选地,上层介质板21为玻璃介质基板,下层介质板23由上而下包括由ITO材料形成的接地板231和玻璃介质板232。
中层介质板22包括由液晶材料形成的超表面结构220,其中,超表面结构220包括液晶材料层221、被印刷在液晶材料层上的数字辐射组件222和直流偏置线223。
可选地,下层介质板23由上而下包括由ITO材料形成的接地板231和玻璃介质板232。
其中,数字辐射组件222包括M×M个阵列排布的数字辐射单元,M为数字辐射单元的行数和列数,数字辐射单元包括N×N个阵列排布的氧化铟锡ITO辐射贴片,N为数字辐射单元中ITO辐射贴片的列数和行数。
本申请实施例中关于数字辐射组件222的结构实现方式,可参见本申请上述实施例中的图2,此处不再赘述。
可选地,ITO辐射贴片为圆形。
在一些实现方式中,数字辐射单元中的ITO辐射贴片的列数和行数N的取值为满足λ 0<2×N×p条件的最小整数值,其中,所述λ 0为自由空间波长,p为ITO辐射贴片1222的周期长度。这是因为N的取值分别与最大波束指向角的角度大小、超表面结构扫描到的波束指向角的数量呈负相关,也就说是,N越小,最大波束指向角就越大,且超表面可以扫描到的波束指向角就越多。本申请中在满足λ 0<2×N×p条件前提下最小的整数值N即为1bit波束扫描超表面数字辐射单元中N值的最优值。
可选地,当反射相位差为180°时,数字辐射组件处于两种不同的状态,可以将数字辐射组件的两种不同状态对应不同的表征数字。具体地,使用有限个二进制数来表示,比如可以将初始状态用“0”表示,与初始状态相位相差180°的状态用“1”表示。
在阵列天线的工作频段内,基于液晶材料随电压变化构造反射相位差为180°的两种不同状态的数字辐射组件。在一些实现中,当反射相位差为180°时,数字辐射组件处于两种不同的状态,可以将数字辐射组件的两种不同状态对应不同的表征数字。具体地,使用有限个二进制数来表示,比如可以将初始状态用“0”表示,与初始状态相位相差180°的状态用“1”表示。
通过改变液晶的相对介电常数,可以使数字辐射组件处于“1”和“0”两种不同的状态,可以根据上述原理获得处于两种状态的数字辐射单元,从而灵活控制超表面单元的排列方式,对数字辐射组件进行行控制,实现不同的波束调控功能。
在一些实现方式中,可以通过每一行的直流偏置线223改变一行的相对介电常数,进而能使得数字辐射单元处于不同的状态。通过该直流偏置线223能够实现对数字辐射单元的整行控制,进而减小了馈电网络的复杂性。在一些实现方式中,可以通过设置不同介电常数的液晶材料模拟实际液晶材料随电压变化而带来的相对介电常数的变化。可选地,可以在仿真软件中修改液晶材料层的相对介电常数数值,模拟实际情况中随两端电压的改变。通过仿真软件可以轻松地设置介电常数值连续变化的液晶材料,无需在实际操作中设置大量对照组,并可获得更加精确的数值结果,避免了误差。
以图2所示的数字辐射组件的结构为例,改变液晶相对介电常数时,数字辐射组件的 反射幅度和反射相位随频率变化的仿真曲线如图5所示。可以看出,当频率在29GHz左右时,液晶材料的相对介电常数ε r=2.4和ε r=3.9时的反射相位差为180°。
当反射相位差为180°时,数字辐射组件处于两种不同的状态,可以将数字辐射组件的两种不同状态对应不同的表征数字。具体地,使用有限个二进制数来表示,比如可以将初始状态用“0”表示,与初始状态相位相差180°的状态用“1”表示。由此,当频率在29GHz左右时,液晶材料的相对介电常数ε r=2.4和ε r=3.9时的单元分别对应单元状态“0”和单元状态“1”。
由于数字辐射组件包括4×4个阵列排布的数字辐射单元,由于数字辐射单元可以整行控制,所以一行中的4个数字辐射单元可以处于不同状态,可以通过控制每行的数字辐射单元的状态,使单元排列方式呈现“0000”、“0101”等不同的状态。
下面通过仿真软件进行验证,对控制数字辐射组件实现不同的波束调控功能的过程进行解释说明。当改变液晶介电常数使得单元排列方式为“0000”时,三维远场方向图只有一个主波束,如图6所示。当继续改变液晶介电常数使得单元排列方式为“0101”时,三维远场方向图由原编码“0000”状态下的主波束分裂为两个对称的波束,如图7所示。
图8示出了可以用来实施本公开的实施例的示例通信设备80的示意性框图,通信设备中包括上述阵列天线,通信设备可以为终端设备,也可以为网络设备.。
终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板设备(Pad)、带无线收发功能的计算机、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
网络设备可以为演进型基站(evolved NodeB,eNB)、收发点(transmission reception point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本申请实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、 “A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (11)

  1. 一种阵列天线,其特征在于,包括:
    自上而下分布的上层介质板、中层介质板和下层介质板,其中,所述中层介质板包括由液晶材料形成的超表面结构。
  2. 根据权利要求1所述的阵列天线,其特征在于,所述超表面结构包括:液晶材料层、被印刷在所述液晶材料层上的数字辐射组件和直流偏置线;
    其中,所述数字辐射组件包括M×M个阵列排布的数字辐射单元,所述数字辐射单元包括N×N个阵列排布的氧化铟锡ITO辐射贴片,属于同一行的所述ITO辐射贴片之间通过所述直流偏置线连接。
  3. 根据权利要求2所述的天线组件,其特征在于,所述N的取值为:满足λ 0<2×N×p条件的最小整数值,其中,所述λ 0为自由空间波长,p为ITO辐射贴片的周期长度。
  4. 根据权利要求3所述的阵列天线,其特征在于,所述N的取值分别与最大波束指向角的角度大小、所述超表面结构扫描到的波束指向角的数量呈负相关。
  5. 根据权利要求2所述的阵列天线,其特征在于,所述ITO辐射贴片为圆形。
  6. 根据权利要求2所述的阵列天线,其特征在于,所述阵列天线在工作频段内,基于所述液晶材料随电压变化构造反射相位差为180°的两种不同状态的数字辐射单元。
  7. 根据权利要求6所述的阵列天线,其特征在于,所述数字辐射单元的两种不同状态对应不同的表征数字。
  8. 根据权利要求2所述的阵列天线,其特征在于,对所述数字辐射单元进行行控制。
  9. 根据权利要求1-7任一项所述的阵列天线,其特征在于,所述下层介质板由上而下包括由ITO材料形成的接地板和玻璃介质板。
  10. 根据权利要求1-7任一项所述的阵列天线,其特征在于,所述上层介质板为玻璃介质基板。
  11. 一种通信设备,其特征在于,包括如权利要求1-10任一项所述的阵列天线。
PCT/CN2021/124106 2021-10-15 2021-10-15 一种阵列天线及通信设备 WO2023060557A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/124106 WO2023060557A1 (zh) 2021-10-15 2021-10-15 一种阵列天线及通信设备
CN202180102972.XA CN118044066A (zh) 2021-10-15 2021-10-15 一种阵列天线及通信设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/124106 WO2023060557A1 (zh) 2021-10-15 2021-10-15 一种阵列天线及通信设备

Publications (1)

Publication Number Publication Date
WO2023060557A1 true WO2023060557A1 (zh) 2023-04-20

Family

ID=85987946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124106 WO2023060557A1 (zh) 2021-10-15 2021-10-15 一种阵列天线及通信设备

Country Status (2)

Country Link
CN (1) CN118044066A (zh)
WO (1) WO2023060557A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117096619A (zh) * 2023-10-19 2023-11-21 深圳大学 一种基于液晶超表面的微波毫米波二维波束动态扫描阵列

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160241217A1 (en) * 2015-02-13 2016-08-18 Mohsen Sazegar Counter electrode device, system and method for varying the permittivity of a liquid crystal device
CN110071371A (zh) * 2019-05-16 2019-07-30 东南大学 一种一比特基于液晶数字式超表面及其谐振控制方法
CN110767999A (zh) * 2019-09-23 2020-02-07 上海航天电子有限公司 一种一比特数字编码天线单元以及数字式相控阵天线系统
CN111541043A (zh) * 2020-01-18 2020-08-14 中国人民解放军空军工程大学 辐射散射调控的1比特可激励数字编码超表面
CN112038777A (zh) * 2020-09-15 2020-12-04 江苏易珩空间技术有限公司 一种透明超表面构成的电磁空间调控系统及其应用
CN113328266A (zh) * 2021-03-30 2021-08-31 西安理工大学 一种基片集成波导天线阵列

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160241217A1 (en) * 2015-02-13 2016-08-18 Mohsen Sazegar Counter electrode device, system and method for varying the permittivity of a liquid crystal device
CN110071371A (zh) * 2019-05-16 2019-07-30 东南大学 一种一比特基于液晶数字式超表面及其谐振控制方法
CN110767999A (zh) * 2019-09-23 2020-02-07 上海航天电子有限公司 一种一比特数字编码天线单元以及数字式相控阵天线系统
CN111541043A (zh) * 2020-01-18 2020-08-14 中国人民解放军空军工程大学 辐射散射调控的1比特可激励数字编码超表面
CN112038777A (zh) * 2020-09-15 2020-12-04 江苏易珩空间技术有限公司 一种透明超表面构成的电磁空间调控系统及其应用
CN113328266A (zh) * 2021-03-30 2021-08-31 西安理工大学 一种基片集成波导天线阵列

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117096619A (zh) * 2023-10-19 2023-11-21 深圳大学 一种基于液晶超表面的微波毫米波二维波束动态扫描阵列

Also Published As

Publication number Publication date
CN118044066A (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
Jouanlanne et al. Wideband linearly polarized transmitarray antenna for 60 GHz backhauling
US9455495B2 (en) Two-dimensionally electronically-steerable artificial impedance surface antenna
CN104335421B (zh) 圆极化贴片天线、天线阵列以及包括这种天线和阵列的设备
EP3149540B1 (en) Lens with spatial mixed-order bandpass filter
CA2892643C (en) Surface-wave waveguide with conductive sidewalls and application in antennas
US20140313090A1 (en) Lens with mixed-order cauer/elliptic frequency selective surface
US10777897B2 (en) Antenna system and communication terminal
CN106025561A (zh) 一种一比特数字编码微带反射阵天线
US20220109459A1 (en) Method and apparatus for a frequency-selective antenna
WO2023060557A1 (zh) 一种阵列天线及通信设备
CN113097736B (zh) 一种新型频率及波束可重构天线
WO2020199927A1 (zh) 天线结构及通信终端
WO2020259281A1 (zh) 天线模组、电子设备及电子设备的天线频段调节方法
Kaouach et al. Simple tri-layer linearly polarized discrete lens antenna with high-efficiency for mmWave applications
Ali et al. Dual-band millimeter-wave microstrip patch array antenna for 5G smartphones
Matos et al. 3-D-printed transmit-array antenna for broadband backhaul 5G links at V-band
Cho et al. Two-dimensional beam steering active lens with simple grid bias lines at 19 GHz
US11811138B2 (en) Antenna hardware and control
WO2022063280A1 (zh) 天线单元、阵列、装置及终端
CN114284753A (zh) 一种毫米波反射阵列天线及其设计方法
CN114142223A (zh) 一种基于石墨烯结构的可重构天线
US11355840B2 (en) Method and apparatus for a metastructure switched antenna in a wireless device
JP5993319B2 (ja) リフレクトアレー及び素子
WO2024065828A1 (zh) 天线装置、电子组件和电子设备
CN110739550B (zh) 透镜、透镜天线及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960288

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021960288

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021960288

Country of ref document: EP

Effective date: 20240515