WO2020199927A1 - 天线结构及通信终端 - Google Patents

天线结构及通信终端 Download PDF

Info

Publication number
WO2020199927A1
WO2020199927A1 PCT/CN2020/080005 CN2020080005W WO2020199927A1 WO 2020199927 A1 WO2020199927 A1 WO 2020199927A1 CN 2020080005 W CN2020080005 W CN 2020080005W WO 2020199927 A1 WO2020199927 A1 WO 2020199927A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
substrate
unit
structure according
antenna structure
Prior art date
Application number
PCT/CN2020/080005
Other languages
English (en)
French (fr)
Inventor
黄奂衢
简宪静
王义金
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2020199927A1 publication Critical patent/WO2020199927A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/28Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements
    • H01Q19/30Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements the primary active element being centre-fed and substantially straight, e.g. Yagi antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic

Definitions

  • the first antenna unit is arranged on the first surface of the substrate, and the first feeding point is arranged on the first antenna unit;
  • the second antenna unit is arranged on the substrate, there is no overlapping area between the second antenna unit and the first antenna unit and the metal mesh layer, and the second feeding point is arranged on the The second antenna unit.
  • FIG. 3 is the third structural diagram of the antenna structure provided by an embodiment of the present disclosure.
  • FIG. 5 is a fifth structural diagram of an antenna structure provided by an embodiment of the present disclosure.
  • FIG. 13 is a thirteenth structural diagram of an antenna structure provided by an embodiment of the present disclosure.
  • FIG. 14 is a fourteenth structural diagram of an antenna structure provided by an embodiment of the present disclosure.
  • the above-mentioned antenna structure may be a transparent antenna structure, which can achieve the design of a transparent antenna.
  • This antenna structure is mainly used in the millimeter wave band.
  • the substrate 2 may be made of a transparent substrate (such as a PET material), the thickness of the substrate 2 is H, the relative dielectric constant is ⁇ r, and the PET material has good light transmission performance.
  • the pitch of the metal mesh layer 3 is about ten to one hundred microns. The larger the pitch, the better the light transmittance but the worse the conductivity.
  • the line width of the metal mesh layer 3 can be selected to be several microns, and the metal mesh layer 3 serves as the ground of the antenna system.
  • the above antenna structure also has a bottom clearance area 7, that is, an area without the metal mesh layer 3.
  • the range of ten microns to one hundred microns includes 10 microns to 999 microns.
  • the types of the first antenna unit 1 and the second antenna unit 4 may be the same or different.
  • the first antenna unit 1 may be an antenna patch unit, and the second antenna unit may be a Yagi antenna or a dipole antenna.
  • the above-mentioned first antenna unit 1 can be connected to a radio frequency transceiver circuit of a phased array, which radio frequency transceiver circuit can include a feed path, a power amplifier, a low noise amplifier, a phase shifter and/or a power distribution network, so as to have beam scanning Features.
  • the first feeding point of the above-mentioned first antenna unit 1 may also be connected to the first feeding source 5 through the feeding microstrip line 8.
  • the second feed point of the second antenna unit 4 can be connected to the second feed source 6.
  • the first feed source 5 and the second feed source 6 may be the same feed source, or may be different feed sources, which is not limited in this embodiment.
  • the antenna structure is equipped with a windable optically transparent substrate, which can be used in a foldable or windable communication terminal.
  • the transparent antenna can be built on the screen, which is equivalent to opening up another antenna space, thus saving space.
  • the antenna structure not only has light permeability, but also has good antenna radiation performance, so it can be applied to smart wearable devices such as smart glasses, VR devices, AR devices, and mobile terminal devices such as the Internet of Things, smart homes, automobiles, and mobile phones. Above the glass or display screen. Not only has the characteristics of conformal and concealment, but also greatly expands the design space of the antenna, thereby enhancing the user experience of the product and enhancing the competitiveness of the product.
  • the first antenna unit 1, the metal mesh layer 3, and the second antenna unit 4 are made of conductive and light-transmitting materials.
  • the first antenna unit 1, the metal mesh layer 3, and the second antenna unit 4 can be made of conductive light-transmitting materials or conductive materials with a size that is not easily detectable by the naked eye, or other non-transparent materials.
  • Light conductive material is not easily detectable by the naked eye, or other non-transparent materials.
  • the first antenna unit 1, the metal mesh layer 3, and the second antenna unit 4 are all conductive and light-transmissive materials or conductive materials with a size that is not easily detectable by the naked eye, so they can be applied to smart glasses, Smart wearable devices such as VR devices and AR devices can also be used on the glass or display screens of mobile terminal devices such as the Internet of Things, smart homes, automobiles, and mobile phones. Not only has the characteristics of conformal and concealment, but also greatly expands the design space of the antenna, thereby enhancing the user experience of the product and enhancing the competitiveness of the product.
  • the substrate 2 is a transparent plate.
  • the substrate 2 is a flexible substrate.
  • the aforementioned substrate 2 is a flexible substrate, so that it has better flexibility and increased durability.
  • the number of the first antenna units 1 is multiple and distributed in an array.
  • the number of the first antenna units 1 is 4, and they are distributed in an array.
  • the number of first antenna units 1 can also be an array composed of some other number of first antenna elements 1, and the number of first antenna elements 1 can be set according to actual needs. The method is not limited.
  • the number of the first antenna units 1 is multiple and distributed in an array, which can improve the radiation performance of the antenna structure.
  • each first antenna unit 1 both sides of each first antenna unit 1 are provided with the first feeding point, and each first antenna unit is used for dual polarization radiation.
  • each first antenna unit 1 may be two adjacent sides of the first antenna unit 1 to form a dual-polarized feed.
  • Figure 1 As shown in FIG. 1, taking the first antenna unit 1 at the lower right as an example, the first antenna unit 1 is located on the first surface of the substrate 2, and can also be understood as being located on the top layer of the substrate 2.
  • the feeding microstrip line 8 is a feeding line at the edge of the first antenna unit 1, and there is another feeding microstrip line on the right side of the antenna patch unit 1 (not marked in Fig. 1). These two feeding lines
  • the structure constitutes dual polarization.
  • the first antenna unit 1 has a square shape and is a transparent conductive metal grid, and its width W can be selected to be half of the wavelength corresponding to the operating frequency.
  • the four first antenna units 1 are connected to the radio frequency transceiving circuit of the phased array.
  • the radio frequency transceiving circuit may include a feed power distribution network and a phase shifter, thereby having a beam scanning function.
  • the number of the second antenna units 4 is multiple, and the multiple second antenna units 4 are arranged in the target area;
  • the target area includes the side wall of the substrate 2, the area between the first surface and the side wall less than the target distance, and the second surface and the side wall less than the target distance At least one of the areas.
  • the number of second antenna units 4 is four.
  • the second antenna unit 4 on the right is close to the side wall on the right side of the substrate 2
  • the second antenna unit 4 on the left is close to the side wall on the left side of the substrate 2
  • the upper second antenna unit 4 is close to the side wall above the substrate 2.
  • the second antenna unit 4 is close to the side wall below the substrate 2.
  • the number of second antenna units 4 may be other than four, and the specific number may be determined according to actual requirements, which is not limited in this embodiment.
  • the number of the second antenna units 4 is multiple, and multiple second antenna units 4 are disposed in the target area, so that the antenna can radiate in multiple directions, thereby increasing the radiation range of the antenna , Thereby improving the radiation performance of the antenna.
  • the second antenna unit 4 is a Yagi antenna, and each Yagi antenna includes an excitation unit 41 and at least one director 42;
  • the second feeding point is provided in the excitation unit 41.
  • each Yagi antenna includes an excitation unit 41 and at least one director 42.
  • the excitation unit 41 and the at least one director 42 of the Yagi antenna can be both arranged on the first surface of the substrate 2 or both can be arranged on the second surface of the substrate 2.
  • the director 42 of the Yagi antenna is arranged on the side wall of the substrate 2, and the excitation unit 41 is arranged on the first surface or the second surface of the substrate 2, and so on.
  • the setting modes of the excitation unit 41 and the director 42 of different Yagi antennas can be the same or different, which is not limited in this embodiment.
  • the excitation unit 41 and the at least one director 42 are parallel, which means that the excitation unit 41 and each of the at least one director 42 are parallel.
  • the length of the excitation unit 41 is greater than the length of the at least one guide 42, which means that the length of the excitation unit 41 is greater than the length of each guide 42 of the at least one guide 42. Since the length of the excitation unit 41 is greater than the length of the at least one director 42, it is convenient for the director 42 to control the direction of the beam.
  • the second feeding point is set at the excitation unit 41 and may be set at the midpoint of the excitation unit 41.
  • the second antenna unit 4 is a Yagi antenna, which has relatively good directivity and relatively high gain, and has relatively good effects in long-distance communication.
  • the signal radiated by the excitation unit 41 can be affected, and the radiation performance of the antenna can be improved.
  • the number of directors 42 can be set according to actual conditions, which is not limited in this embodiment.
  • each Yagi antenna is arranged on the first surface or the second surface, and the director 42 of each Yagi antenna is arranged on the side wall of the substrate 2.
  • the excitation unit 41 of each Yagi antenna is arranged on the second surface, and is located in the clearance area (the area without the metal grid) of the second surface.
  • the director 42 of each Yagi antenna is arranged on the side wall of the substrate 2. Due to the influence of the director 42, the beam of the Yagi antenna is directed in the direction indicated by the arrow in FIG. 12. In this way, the excitation unit 41 and the director 42 can be set according to different requirements. And by controlling the position of the director 42, the beam direction of the Yagi antenna can be controlled to the direction required by the user.
  • each Yagi antenna is arranged on the side wall of the substrate 2, and the distance between the excitation unit 41 and the director 42 in the Yagi antenna and the first surface is sequentially reduced;
  • the metal mesh layer 3 is disposed on the second surface of the substrate 2 and extends to wrap part of the sidewall of the substrate 2.
  • FIG. 4 and FIG. 5 are both structural schematic diagrams of the antenna structure provided by the embodiment of the present disclosure. As shown in Figs. 4 and 5, each Yagi antenna is arranged on the side wall of the substrate 2, and the distance between the excitation unit 41 and the director 42 in the Yagi antenna and the first surface decreases in order;
  • the metal mesh layer 3 is disposed on the second surface of the substrate 2 and extends to wrap part of the sidewall of the substrate 2.
  • the metal mesh layer 3 can completely cover the second surface of the substrate 2 and extend to wrap part of the sidewall of the substrate 2.
  • the metal mesh layer 3 serves as the ground of the entire antenna structure and serves as the reflector of the sidewall Yagi antenna.
  • the excitation unit 41 of the Yagi antenna is located on the side wall of the substrate 2, and the director 42 is directly above the excitation unit 41. Due to the joint action of the metal mesh layer 3 and the director 42, the beam of the Yagi antenna on the side wall points in the direction indicated by the arrow in FIG. 5.
  • the metal mesh layer 3 extends to wrap a part of the side wall of the substrate 2, so that the metal mesh layer 3 that wraps the side wall can be used as a reflector of the Yagi antenna, so there is no need to add additional components for the Yagi antenna. Setting the reflector separately can save the cost of the antenna structure. In addition, since the metal mesh layer 3 extends to wrap part of the sidewall of the substrate 2 as a reflector, the radiation capability of the antenna structure can be improved.
  • each Yagi antenna further includes a reflector 43;
  • the reflector 43, the excitation unit 41 and the at least one director 42 are parallel to each other in pairs, and the length of the reflector 43 is greater than the length of the excitation unit 41;
  • the second feeding point is provided in the excitation unit 41.
  • the length of the reflector 43 is greater than the length of the excitation unit 41, so that the beam radiated by the excitation unit 41 can be better reflected.
  • the second feeding point is provided at the excitation unit 41 and may be provided at the midpoint of the excitation unit 41.
  • each Yagi antenna is arranged on the side wall of the substrate 2, and the distance between the reflector 43, the excitation unit 41 and the at least one director 42 in the Yagi antenna and the second surface decreases in order Or increase sequentially.
  • FIGS. 6 to 9 are structural schematic diagrams of antenna structures provided by embodiments of the present disclosure.
  • each Yagi antenna is arranged on the side wall of the substrate 2, and the reflector 43, excitation unit 41, and at least one director 42 in the Yagi antenna are connected to the second surface The distance between them decreases successively. In this way, the main radiation pattern of the antenna faces the direction indicated by the arrow in FIG. 7.
  • each Yagi antenna is arranged on the side wall of the substrate 2, and the reflector 43, excitation unit 41 and at least one director 42 in the Yagi antenna are located between the second surface The distance increases sequentially. In this way, the main radiation pattern of the antenna faces the direction indicated by the arrow in FIG. 9.
  • each Yagi antenna is arranged on the side wall of the substrate 2 so that it can have better radiation performance in the direction parallel to the side wall of the substrate 2.
  • each Yagi antenna is arranged on the first surface, and the distance between the reflector 43, the excitation unit 41 and the at least one director 42 in the Yagi antenna and the side wall of the substrate 2 is in order Decrease.
  • FIG. 10 and FIG. 11 are schematic structural diagrams of the antenna structure provided by the embodiment of the disclosure.
  • a Yagi antenna is provided on the upper, lower, left and right sides, and the reflector 43, the excitation unit 41 and the at least one director 42 are parallel to each other.
  • the distance between the reflector 43, the excitation unit 41 and the at least one director 42 in the Yagi antenna and the side wall of the substrate 2 decreases in order.
  • FIG. 11 is a schematic structural diagram of an antenna structure provided by an embodiment of the present disclosure.
  • the thickness of the substrate 2 is H, and the relative permittivity is ⁇ r.
  • the Yagi antenna includes a reflector 43, an excitation unit 41 and at least one director 42.
  • the reflector 43, the excitation unit 41 and the at least one director 42 may all be light transparent metal meshes.
  • the length of the reflector 43 is longer than the length of the excitation unit 41, so that the signal radiated by the excitation unit 41 can be better reflected.
  • the length of the at least one director 42 is shorter than the length of the excitation unit 41, so that the signal radiated by the excitation unit 41 can be better directed.
  • the length of the at least one guide 42 may be shorter than the length of the excitation unit 41 by 20%-30%. In this way, due to the joint action of the reflector 43, the excitation unit 41 and the at least one director 42, the main beam can be directed in a desired direction, as indicated by the arrow in FIG. 10.
  • the antenna structure not only has light permeability, but also has good antenna radiation performance, so it can be applied to smart wearable devices such as smart glasses, VR devices, AR devices, and mobile terminals such as the Internet of Things, smart homes, automobiles, and mobile phones.
  • smart wearable devices such as smart glasses, VR devices, AR devices, and mobile terminals such as the Internet of Things, smart homes, automobiles, and mobile phones.
  • the glass or display screen of the device Not only has the characteristics of conformal and concealment, but also greatly expands the design space of the antenna, thereby enhancing the user experience of the product and enhancing the competitiveness of the product.
  • connection between the excitation unit 41 in the at least one Yagi antenna and the midpoint of the length of the at least one director 42 does not pass through the center point of the first surface.
  • FIG. 12 is a schematic structural diagram of an antenna structure provided by an embodiment of the present disclosure.
  • the excitation unit 41 and the at least one director 42 in the upper Yagi antenna move to the right.
  • the line between the excitation unit 41 and the at least one director 42 in the Yagi antenna is not Pass through the center point of the first surface.
  • the connection between the excitation unit 41 and the at least one director 42 in the Yagi antenna does not pass through the first The center point of the face.
  • the main radiation pattern of the antenna faces the direction indicated by the arrow in FIG. 12.
  • connection between the excitation unit 41 in the at least one Yagi antenna and the midpoint of the length of the at least one director 42 does not pass through the center point of the first surface, which can be understood as combining the excitation unit 41 in the at least one Yagi antenna and at least One director 42 is offset in the same direction, so that more radiation directions of the antenna can be satisfied, so that the antenna can adapt to more different radiation environments.
  • the second antenna unit 4 is a dipole antenna, each dipole antenna is arranged on the side wall of the substrate 2, and each dipole antenna is provided with the second feeding point .
  • FIG. 13 and FIG. 14 are structural schematic diagrams of the antenna structure provided by the embodiment of the present disclosure.
  • the second antenna unit 4 is a dipole antenna, each dipole antenna is arranged on the side wall of the substrate 2, and each dipole antenna is provided with a The second feeding point, the second feeding point may be set at the midpoint of the dipole antenna.
  • the width of the first antenna unit 1 is an equivalent half wavelength of the working frequency of the first antenna unit 1 on the substrate 2.
  • the width of the first antenna unit 1 is the equivalent half-wavelength of the operating frequency of the first antenna unit 1 on the substrate 2.
  • the distance between two adjacent grids in the metal grid layer 3 is on the order of ten to one hundred microns.
  • the distance between two adjacent grids in the metal grid layer 3 may be on the order of ten to one hundred microns.
  • the range of ten microns to one hundred microns includes 10 microns to 999 microns.
  • An antenna structure of this embodiment includes a first antenna element 1, a substrate 2, a metal mesh layer 3, and a second antenna element 4; the first antenna element 1 is disposed on the first surface of the substrate 2, and A feeding point is provided on the first antenna unit 1; the metal mesh layer 3 is provided on the second surface of the substrate 2, and the second surface and the first surface are opposite sides; The substrate 2 includes side walls connecting the first surface and the second surface at both ends; the second antenna unit 4 is disposed on the substrate 2, and the second antenna unit 4 is connected to the first surface. There is no overlapping area between the antenna unit 1 and the metal mesh layer 3, and the second feeding point is set at the second antenna unit 4.
  • the above-mentioned antenna structure is equivalent to a multi-antenna system, which can be used to process a phased antenna array for millimeter wave communications.
  • the antenna structure is equipped with a windable light transparent substrate, and can be used in a foldable or windable communication terminal.
  • the transparent antenna can be built on the screen, which is equivalent to opening up another antenna space, thus saving space.
  • the antenna structure not only has light permeability, but also has good antenna radiation performance, so it can be applied to smart wearable devices such as smart glasses, VR devices, AR devices, and mobile terminal devices such as the Internet of Things, smart homes, automobiles, and mobile phones.
  • smart wearable devices such as smart glasses, VR devices, AR devices, and mobile terminal devices such as the Internet of Things, smart homes, automobiles, and mobile phones.
  • mobile terminal devices such as the Internet of Things, smart homes, automobiles, and mobile phones.
  • Above the glass or display screen Not only has the characteristics of conformal and concealment, but also greatly expands the design space of the antenna, thereby enhancing the user experience of the product and enhancing the competitiveness of the product.
  • the embodiment of the present disclosure also provides a screen including the above-mentioned antenna structure.
  • the embodiment of the present disclosure also provides a communication terminal including the above-mentioned antenna structure.
  • the above-mentioned communication terminal may be a mobile phone, a tablet (Personal Computer), a laptop (Laptop Computer), a personal digital assistant (personal digital assistant, PDA), a mobile Internet device (Mobile Internet Device, MID) Or wearable devices (Wearable Device) and so on.
  • the antenna structure is provided on a screen of the communication terminal.
  • the above-mentioned antenna structure is provided on the screen of the communication terminal, and the transparent antenna can be built on the screen, which is equivalent to opening up another antenna space, thereby saving space.

Landscapes

  • Details Of Aerials (AREA)

Abstract

本公开提供一种天线结构及通信终端,该天线结构包括:第一天线单元、基板、金属网格层和第二天线单元;所述第一天线单元设置于所述基板的第一面,第一馈电点设于所述第一天线单元;所述金属网格层设置于所述基板的第二面,所述第二面与所述第一面为相背的两面;所述基板包括两端分别连接所述第一面和所述第二面的侧壁;所述第二天线单元设置于所述基板上,所述第二天线单元与所述第一天线单元和所述金属网格层之间均不存在重叠区域,第二馈电点设于所述第二天线单元。

Description

天线结构及通信终端
相关申请的交叉引用
本申请主张在2019年4月2日在中国提交的中国专利申请号No.201910261492.2的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种天线结构及通信终端。
背景技术
随着终端技术的迅速发展,通信终端已经成为人们生活中必不可少的一种工具,并且为用户生活的各个方面带来了极大的便捷。并且随着通信技术的日新月异的发展,通信终端的应用场景越来越丰富,从而对通信终端上的天线的数量的要求越来越多,性能要求也越来越高。但是,相关技术中,通信终端的天线的辐射性能较差。
发明内容
本公开实施例提供一种天线结构及通信终端,以解决相关技术中通信终端的天线辐射性能较差的问题。
为了解决上述技术问题,本公开是这样实现的:
第一方面,本公开实施例提供了一种天线结构,包括:第一天线单元、基板、金属网格层和第二天线单元;
所述第一天线单元设置于所述基板的第一面,第一馈电点设于所述第一天线单元;
所述金属网格层设置于所述基板的第二面,所述第二面与所述第一面为相背的两面;
所述基板包括两端分别连接所述第一面和所述第二面的侧壁;
所述第二天线单元设置于所述基板上,所述第二天线单元与所述第一天线单元和所述金属网格层之间均不存在重叠区域,第二馈电点设于所述第二 天线单元。
第二方面,本公开实施例还提供一种屏幕,包括上述天线结构。
第三方面,本公开实施例还提供一种通信终端,包括上述天线结构。
本公开实施例的一种天线结构,包括:第一天线单元、基板、金属网格层和第二天线单元;所述第一天线单元设置于所述基板的第一面,第一馈电点设于所述第一天线单元;所述金属网格层设置于所述基板的第二面,所述第二面与所述第一面为相背的两面;所述基板包括两端分别连接所述第一面和所述第二面的侧壁;所述第二天线单元设置于所述基板上,所述第二天线单元与所述第一天线单元和所述金属网格层之间均不存在重叠区域,第二馈电点设于所述第二天线单元。这样,由于存在第一天线单元和第二天线单元,从而可以拓展天线的覆盖范围,进而提升无线的通信体验。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的天线结构的结构示意图之一;
图2是本公开实施例提供的天线结构的结构示意图之二;
图3是本公开实施例提供的天线结构的结构示意图之三;
图4是本公开实施例提供的天线结构的结构示意图之四;
图5是本公开实施例提供的天线结构的结构示意图之五;
图6是本公开实施例提供的天线结构的结构示意图之六;
图7是本公开实施例提供的天线结构的结构示意图之七;
图8是本公开实施例提供的天线结构的结构示意图之八;
图9是本公开实施例提供的天线结构的结构示意图之九;
图10是本公开实施例提供的天线结构的结构示意图之十;
图11是本公开实施例提供的天线结构的结构示意图之十一;
图12是本公开实施例提供的天线结构的结构示意图之十二;
图13是本公开实施例提供的天线结构的结构示意图之十三;
图14是本公开实施例提供的天线结构的结构示意图之十四。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
参见图1,图1是本公开实施例提供的天线结构的结构示意图,如图1所示,包括第一天线单元1、基板2、金属网格层3和第二天线单元4;所述第一天线单元1设置于所述基板2的第一面,第一馈电点设于所述第一天线单元1;所述金属网格层3设置于所述基板2的第二面,所述第二面与所述第一面为相背的两面;所述基板2包括两端分别连接所述第一面和所述第二面的侧壁;所述第二天线单元4设置于所述基板2上,所述第二天线单元4与所述第一天线单元1和所述金属网格层3之间均不存在重叠区域,第二馈电点设于所述第二天线单元4。
本实施例中,上述天线结构可以是透明天线结构,可以达到透明天线的设计。该天线结构主要用于毫米波段。基板2可以由透明的基材(如PET材料)制成,基板2的厚度为H,相对介电常数为εr,PET材料具有良好的光透性能。金属网格层3的间距约为十微米到百微米等级,间距越大,光透性越好,但导电性能越差。金属网格层3的线宽可选为数个微米等级,金属网格层3作为该天线系统的地。上述天线结构还存在底层净空区域7,即没有金属网格层3的区域。而十微米到百微米的范围包括10微米~999微米。
本实施例中,上述第一天线单元1与第二天线单元4的类型可以相同,也可以不同。第一天线单元1可以是天线贴片单元,第二天线单元可以是八木天线或者偶极子天线。上述第一天线单元1可以与相控阵的射频收发电路连接,该射频收发电路可包括馈电路径、功率放大器、低噪声放大器、移相器和/或功率分配网路,从而具备波束扫描的功能。上述第一天线单元1的第一馈电点还可以通过馈电微带线8与第一馈源5连接。上述第二天线单元4的第 二馈电点可以与第二馈源6连接。第一馈源5和第二馈源6可以是相同的馈源,或者也可以是不同的馈源,对此本实施例不作限定。
如此,由于存在第一天线单元1和第二天线单元4,从而可以拓展天线的辐射覆盖范围,及一定空间范围内的双极化辐射,故可进而提升无线的通信体验。并且,该天线结构搭载可绕的光透明基材,可以用在折叠或者可绕的通信终端上。透明天线可以做在屏上面,相当于开辟了另外的天线空间,从而节省了空间。该天线结构不仅具备光透性,还具有良好的天线辐射性能,因而可以应用在智能眼镜、VR设备、AR设备等智能穿戴设备,也可用于物联网、智能家居、汽车、手机等移动终端设备的玻璃或者显示屏幕上面。不仅具有共形,隐蔽的特性,还可以大大拓展天线的设计空间,从而提升产品的用户体验以及提升产品的竞争力。
可选的,所述第一天线单元1、所述金属网格层3和所述第二天线单元4均为导电透光材质。
该实施方式中,所述第一天线单元1、所述金属网格层3和所述第二天线单元4可选为导电透光材质或肉眼不易察觉尺寸的导电物质,也可以是其它不透光的导电材质。
该实施方式中,所述第一天线单元1、所述金属网格层3和所述第二天线单元4均为导电透光材质或肉眼不易察觉尺寸的导电物质,因而可以应用在智能眼镜、VR设备、AR设备等智能穿戴设备,也可用于物联网、智能家居、汽车、手机等移动终端设备的玻璃或者显示屏幕上面。不仅具有共形,隐蔽的特性,还可以大大拓展天线的设计空间,从而提升产品的用户体验以及提升产品的竞争力。
可选的,所述基板2为透光板。
该实施方式中,上述基板2为透光板,透光板可以由透明的基材(如PET材料)制成,透光板的厚度为H,相对介电常数为εr,PET材料具有良好的光透性能,从而可以形成透明天线结构的设计。
可选的,所述基板2为柔性基板。
该实施方式中,上述基板2为柔性基板,从而有更好的柔韧性,耐用程度得以提高。
可选的,所述第一天线单元1的数量为多个,且呈阵列分布。
该实施方式中,为了更好的理解上述设置,可以参阅图1。如图1所示,所述第一天线单元1的数量为4个,且呈阵列分布。当然,除了4个第一天线单元1组成的阵列,还可以是一些其他数量的第一天线单元1组成的阵列,并且可以根据实际的需要来设置第一天线单元1的数量,对此本实施方式不作限定。
这样,所述第一天线单元1的数量为多个,且呈阵列分布,可以提高天线结构的辐射性能。
可选的,每个第一天线单元1的两个侧边均设有一所述第一馈电点,每个第一天线单元用于双极化辐射。
该实施方式中,每个第一天线单元1的两个侧边可以是第一天线单元1相邻的两个侧边,从而构成双极化馈电。为了更好的理解上述设置,亦可以参阅图1。如图1所示,以右下方的第一天线单元1为例,该第一天线单元1位于基板2的第一面,也可以理解为位于基板2的顶层。馈电微带线8为该第一天线单元1边缘的一根馈线,在该天线贴片单元1右侧还有另一个馈电微带线(图1中未标注),这两个馈电结构构成双极化。第一天线单元1为正方形,并且为透明的导电金属网格,其宽度W可选为工作频率对应波长的一半。
该实施方式中,四个第一天线单元1连接到相控阵的射频收发电路,该射频收发电路可包括馈电功率分配网络和移相器,从而具备波束扫描的功能。
可选的,所述第二天线单元4的数量为多个,且多个所述第二天线单元4设置于目标区域;
其中,所述目标区域包括所述基板2的侧壁、所述第一面上与所述侧壁之间小于目标距离的区域和所述第二面上与所述侧壁之间小于目标距离的区域中的至少之一。
为了更好的理解上述设置方式,依旧可以参阅图1。如图1所示,第二天线单元4的数量为4个。右侧的第二天线单元4靠近基板2右侧的侧壁,左侧的第二天线单元4靠近基板2左侧的侧壁,上方的第二天线单元4靠近基板2上方的侧壁,下方的第二天线单元4靠近基板2下方的侧壁。当然, 第二天线单元4的数量为4个之外,还可以是其他的数量,并且具体的数量可以根据实际的需求来确定,对此本实施方式不作限定。
该实施方式中,所述第二天线单元4的数量为多个,且多个所述第二天线单元4设置于目标区域,从而可以使天线朝多个方向进行辐射,从而提高天线的辐射范围,进而提高天线的辐射性能。
可选的,所述第二天线单元4为八木天线,每个八木天线包括激励单元41和至少一个引向器42;
所述激励单元41和所述至少一个引向器42平行,所述激励单元41的长度大于所述至少一个引向器42的长度;
所述第二馈电点设于所述激励单元41。
该实施方式中,每个八木天线包括激励单元41和至少一个引向器42。对于同一个八木天线,该八木天线的激励单元41和至少一个引向器42可以均设置于基板2的第一面,或者均设置于基板2的第二面。当然,还可以是该八木天线的引向器42设置于基板2的侧壁,激励单元41设置于基板2的第一面或者第二面等等。需要说明的是,不同的八木天线的激励单元41和引向器42的设置方式可以相同,也可以不同,对此本实施方式不作限定。
该实施方式中,所述激励单元41和所述至少一个引向器42平行,是指所述激励单元41与至少一个引向器42中每一个引向器42均平行。所述激励单元41的长度大于所述至少一个引向器42的长度,是指所述激励单元41的长度大于所述至少一个引向器42中每一个引向器42的长度。由于所述激励单元41的长度大于所述至少一个引向器42的长度,从而便于引向器42控制波束的方向。所述第二馈电点设于所述激励单元41,可以设置于所述激励单元41的中点。
这样,所述第二天线单元4为八木天线,八木天线有比较好的方向性,并且有相对较高的增益,在远距离通信上具有比较好的效果。并且由于至少一个引向器42的存在,可以对激励单元41辐射的信号进行影响,提高天线的辐射性能。当然,引向器42的数量可以根据实际的情况进行设置,对此本实施方式不作限定。
可选的,每个八木天线的激励单元41设置于所述第一面或者所述第二面, 每个八木天线的引向器42设置于所述基板2的侧壁。
为了更好的理解上述设置,请参阅图2和图3,图2和图3均为本公开实施例提供的天线结构的结构示意图。如图2和图3所示,每个八木天线的激励单元41设置于所述第二面,每个八木天线的引向器42设置于所述基板2的侧壁。
该实施方式中,每个八木天线的激励单元41设置于所述第二面,且位于第二面的净空区(没有金属网格的区域)。每个八木天线的引向器42设置于所述基板2的侧壁。由于受引向器42的影响,八木天线的波束指向为图12中的箭头所指的方向。这样,可以根据不同的需求来设置激励单元41和引向器42。并通过控制引向器42的位置,可以控制八木天线的波束指向为用户所需要的指向。
可选的,每个八木天线均设置于所述基板2的侧壁,且该八木天线中的激励单元41和引向器42与第一面之间的距离依次减小;
所述金属网格层3设置于所述基板2的第二面,且延伸包裹部分所述基板2的侧壁。
为了更好的理解上述设置,请参阅图4和图5,图4和图5均为本公开实施例提供的天线结构的结构示意图。如图4和图5所示,每个八木天线均设置于所述基板2的侧壁,且该八木天线中的激励单元41和引向器42与第一面之间的距离依次减小;所述金属网格层3设置于所述基板2的第二面,且延伸包裹部分所述基板2的侧壁。
该实施方式中,所述金属网格层3可以完全覆盖所述基板2的第二面,且延伸包裹部分所述基板2的侧壁。金属网格层3作为整个天线结构的地,并作为侧壁八木天线的反射器。八木天线的激励单元41位于基板2的侧壁,引向器42在正对激励单元41的上方。由于受到金属网格层3和引向器42的共同作用,侧壁的八木天线的波束指向如图5中箭头所指的方向。
该实施方式中,所述金属网格层3延伸包裹部分所述基板2的侧壁,这样,包裹该侧壁的金属网格层3就可以作为八木天线的反射器,从而无需为八木天线额外单独设置反射器,可以节省天线结构的成本。并且由于所述金属网格层3延伸包裹部分所述基板2的侧壁,作为反射器的存在,可以提高 天线结构的辐射能力。
可选的,每个八木天线还包括反射器43;
所述反射器43、所述激励单元41和所述至少一个引向器42之间两两平行,所述反射器43的长度大于所述激励单元41的长度;
所述第二馈电点设于所述激励单元41。
该实施方式中,所述反射器43的长度大于所述激励单元41的长度,从而可以较好的反射激励单元41辐射的波束。所述第二馈电点设于所述激励单元41,可以是设于所述激励单元41的中点。
可选的,每个八木天线均设置于所述基板2的侧壁,且该八木天线中的反射器43、激励单元41和至少一个引向器42与第二面之间的距离依次减小或者依次增大。
为了更好的理解上述设置,请参阅图6至图9,图6至图9均为本公开实施例提供的天线结构的结构示意图。
首先,如图6和图7所示,每个八木天线均设置于所述基板2的侧壁,且该八木天线中的反射器43、激励单元41和至少一个引向器42与第二面之间的距离依次减小。这样,该天线的主辐射方向图朝向图7中箭头所指的方向。
请参阅图8和图9,每个八木天线均设置于所述基板2的侧壁,且该八木天线中的反射器43、激励单元41和至少一个引向器42与第二面之间的距离依次增大。这样,该天线的主辐射方向图朝向图9中箭头所指的方向。
该实施方式中,每个八木天线均设置于所述基板2的侧壁,从而在平行于基板2的侧壁的方向上,可以有较好的辐射性能。
可选的,每个八木天线均设置于所述第一面,且该八木天线中的反射器43、激励单元41和至少一个引向器42与所述基板2的侧壁之间的距离依次减小。
为了更好的理解上述设置方式,请参阅图10和图11,图10和图11为本公开实施例提供的天线结构的结构示意图。如图10所示,上方、下方、左侧和右侧均设置有一个八木天线,反射器43、激励单元41和至少一个引向器42之间两两平行。该八木天线中的反射器43、激励单元41和至少一个引 向器42与所述基板2的侧壁之间的距离依次减小。
请再参阅图11,图11是本公开实施例提供的天线结构的结构示意图。如图11所示,基板2的厚度为H,相对介电常数为εr。八木天线包括反射器43、激励单元41和至少一个引向器42。
该实施方式中,反射器43、激励单元41和至少一个引向器42可以均为光透明金属网格。所述反射器43的长度比所述激励单元41的长度要长,从而可以较好的反射激励单元41辐射的信号。所述至少一个引向器42的长度比激励单元41的长度要短,从而可以对激励单元41辐射的信号进行较好的引向。并且,所述至少一个引向器42的长度可以比激励单元41的长度短20%~30%之间。这样,由于反射器43、激励单元41和至少一个引向器42的共同作用,可以使主波束朝向需要的方向,如图10中箭头所指的方向。
这样,天线结构不仅具备光透性,还具有良好的天线辐射性能,因而可以应用在智能眼镜、VR设备、AR设备等智能穿戴设备,也可用于物联网、智能家居、汽车、手机等移动终端设备的玻璃或者显示屏幕上面。不仅具有共形,隐蔽的特性,还可以大大拓展天线的设计空间,从而提升产品的用户体验以及提升产品的竞争力。
可选的,至少一个八木天线中的激励单元41和至少一个引向器42长度中点的连线不经过所述第一面的中心点。
为了更好的理解上述设置方式,请参阅图12,图12是本公开实施例提供的天线结构的结构示意图。如图12所示,上方的八木天线中的激励单元41和至少一个引向器42均向右侧移动,该八木天线中的激励单元41和至少一个引向器42长度中点的连线不经过所述第一面的中心点。而左侧的八木天线中的激励单元41和至少一个引向器42均向下方移动,该八木天线中的激励单元41和至少一个引向器42长度中点的连线不经过所述第一面的中心点。并且,该天线的主辐射方向图朝向图12中箭头所指的方向。
这样,至少一个八木天线中的激励单元41和至少一个引向器42长度中点的连线不经过所述第一面的中心点,可以理解为将至少一个八木天线中的激励单元41和至少一个引向器42向同一个方向偏移,从而可以满足天线更多的辐射方向,使天线可以适应更多不同的辐射环境。
可选的,所述金属网格层3的边沿与其边沿之间设有预设距离。
该实施方式中,所述金属网格层3的边沿与其边沿之间设有预设距离,而所述金属网格层3的边沿与其边沿之间区域可以称为净空区域。
可选的,所述第二天线单元4为偶极子天线,每个偶极子天线均设置于所述基板2的侧壁,每个偶极子天线均设有一所述第二馈电点。
为了更好的理解上述设置,请参阅图13和图14,图13和图14均为本公开实施例提供的天线结构的结构示意图。如图13和图14所示,所述第二天线单元4为偶极子天线,每个偶极子天线均设置于所述基板2的侧壁,每个偶极子天线均设有一所述第二馈电点,所述第二馈电点可以设置于偶极子天线的中点。
可选的,所述第一天线单元1的宽度为所述第一天线单元1在所述基板2上的工作频率的等效半波长。
该实施方式中,所述第一天线单元1的宽度为所述第一天线单元1在所述基板2上的工作频率的等效半波长。
可选的,所述金属网格层3中相邻两网格的间距为十微米到百微米等级。
该实施方式中,所述金属网格层3中相邻两网格的间距可以为十微米到百微米等级。十微米到百微米的范围包括10微米~999微米。
本实施例的一种天线结构,包括第一天线单元1、基板2、金属网格层3和第二天线单元4;所述第一天线单元1设置于所述基板2的第一面,第一馈电点设于所述第一天线单元1;所述金属网格层3设置于所述基板2的第二面,所述第二面与所述第一面为相背的两面;所述基板2包括两端分别连接所述第一面和所述第二面的侧壁;所述第二天线单元4设置于所述基板2上,所述第二天线单元4与所述第一天线单元1和所述金属网格层3之间均不存在重叠区域,第二馈电点设于所述第二天线单元4。
如此,可达到透明天线的设计,且由于存在第一天线单元1和第二天线单元4,从而可以拓展天线的辐射覆盖范围,及一定空间范围内的双极化辐射,故可进而提升无线的通信体验。上述天线结构相当于一种多天线系统,可用于处理毫米波通信的相控天线阵列。该天线结构搭载可绕的光透明基材,可以用在折叠或者可绕的通信终端上。透明天线可以做在屏上面,相当于开 辟了另外的天线空间,从而节省了空间。该天线结构不仅具备光透性,还具有良好的天线辐射性能,因而可以应用在智能眼镜、VR设备、AR设备等智能穿戴设备,也可用于物联网、智能家居、汽车、手机等移动终端设备的玻璃或者显示屏幕上面。不仅具有共形,隐蔽的特性,还可以大大拓展天线的设计空间,从而提升产品的用户体验以及提升产品的竞争力。
本公开实施例还提供一种屏幕,包括上述天线结构。
本公开实施例还提供一种通信终端,包括上述天线结构。
本实施例中,上述通信终端可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等等。
可选的,所述天线结构设于所述通信终端的屏幕。
该实施方式中,上述天线结构设于所述通信终端的屏幕,透明天线可以做在屏上面,相当于开辟了另外的天线空间,从而节省了空间。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (20)

  1. 一种天线结构,包括:第一天线单元、基板、金属网格层和第二天线单元;
    所述第一天线单元设置于所述基板的第一面,第一馈电点设于所述第一天线单元;
    所述金属网格层设置于所述基板的第二面,所述第二面与所述第一面为相背的两面;
    所述基板包括两端分别连接所述第一面和所述第二面的侧壁;
    所述第二天线单元设置于所述基板上,所述第二天线单元与所述第一天线单元和所述金属网格层之间均不存在重叠区域,第二馈电点设于所述第二天线单元。
  2. 根据权利要求1所述的天线结构,其中,所述第一天线单元、所述金属网格层和所述第二天线单元均为导电透光材质。
  3. 根据权利要求1所述的天线结构,其中,所述基板为透光板。
  4. 根据权利要求1所述的天线结构,其中,所述基板为柔性基板。
  5. 根据权利要求1所述的天线结构,其中,所述第一天线单元的数量为多个,且呈阵列分布。
  6. 根据权利要求5所述的天线结构,其中,每个第一天线单元的两个侧边均设有一所述第一馈电点,每个第一天线单元用于双极化辐射。
  7. 根据权利要求5所述的天线结构,其中,所述第二天线单元的数量为多个,且多个所述第二天线单元设置于目标区域;
    其中,所述目标区域包括所述基板的侧壁、所述第一面上与所述侧壁之间小于目标距离的区域和所述第二面上与所述侧壁之间小于目标距离的区域中的至少之一。
  8. 根据权利要求7所述的天线结构,其中,所述第二天线单元为八木天线,每个八木天线包括激励单元和至少一个引向器;
    所述激励单元和所述至少一个引向器平行,所述激励单元的长度大于所述至少一个引向器的长度;
    所述第二馈电点设于所述激励单元。
  9. 根据权利要求8所述的天线结构,其中,每个八木天线的激励单元设置于所述第一面或者所述第二面,每个八木天线的引向器设置于所述基板的侧壁。
  10. 根据权利要求8所述的天线结构,其中,每个八木天线均设置于所述基板的侧壁,且该八木天线中的激励单元和引向器与第一面之间的距离依次减小;
    所述金属网格层设置于所述基板的第二面,且延伸包裹部分所述基板的侧壁。
  11. 根据权利要求8所述的天线结构,其中,每个八木天线还包括反射器;
    所述反射器、所述激励单元和所述至少一个引向器之间两两平行,所述反射器的长度大于所述激励单元的长度;
    所述第二馈电点设于所述激励单元。
  12. 根据权利要求11所述的天线结构,其中,每个八木天线均设置于所述第一面,且该八木天线中的反射器、激励单元和至少一个引向器与所述基板的侧壁之间的距离依次减小。
  13. 根据权利要求12所述的天线结构,其中,至少一个八木天线中的激励单元和至少一个引向器长度中点的连线不经过所述第一面的中心点。
  14. 根据权利要求1所述的天线结构,其中,所述金属网格层的边沿与其边沿之间设有预设距离。
  15. 根据权利要求7所述的天线结构,其中,所述第二天线单元为偶极子天线,每个偶极子天线均设置于所述基板的侧壁,每个偶极子天线均设有一所述第二馈电点。
  16. 根据权利要求1所述的天线结构,其中,所述第一天线单元的宽度为所述第一天线单元在所述基板上的工作频率的等效半波长。
  17. 根据权利要求1所述的天线结构,其中,所述金属网格层中相邻两网格的间距为十微米到百微米等级。
  18. 一种屏幕,包括权利要求1至17中任一项所述的天线结构。
  19. 一种通信终端,包括权利要求1至17中任一项所述的天线结构。
  20. 根据权利要求19所述的通信终端,其中,所述天线结构设于所述通信终端的屏幕。
PCT/CN2020/080005 2019-04-02 2020-03-18 天线结构及通信终端 WO2020199927A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910261492.2 2019-04-02
CN201910261492.2A CN109904592B (zh) 2019-04-02 2019-04-02 一种天线结构及通信终端

Publications (1)

Publication Number Publication Date
WO2020199927A1 true WO2020199927A1 (zh) 2020-10-08

Family

ID=66954341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080005 WO2020199927A1 (zh) 2019-04-02 2020-03-18 天线结构及通信终端

Country Status (2)

Country Link
CN (1) CN109904592B (zh)
WO (1) WO2020199927A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109904592B (zh) * 2019-04-02 2021-07-20 维沃移动通信有限公司 一种天线结构及通信终端
CN112186354A (zh) * 2019-07-03 2021-01-05 华为技术有限公司 一种天线及终端设备
CN112018511A (zh) * 2020-08-13 2020-12-01 安徽精卓光显技术有限责任公司 车联网天线及无线通信装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102403566A (zh) * 2010-09-15 2012-04-04 雷凌科技股份有限公司 定向性天线及智能型天线系统
CN104112906A (zh) * 2014-07-23 2014-10-22 深圳市视晶无线技术有限公司 一种mimo 天线系统及天线装置
CN104134861A (zh) * 2014-07-23 2014-11-05 深圳市视晶无线技术有限公司 Mimo天线系统、近似全向的天线装置及其高增益微型天线
US20150255856A1 (en) * 2014-03-05 2015-09-10 Samsung Electronics Co., Ltd. Antenna device and electronic device having the antenna device
CN106935952A (zh) * 2015-12-30 2017-07-07 华为技术有限公司 双极化天线和通信设备
CN108417996A (zh) * 2018-01-25 2018-08-17 瑞声科技(南京)有限公司 天线组件及移动终端
CN108539386A (zh) * 2017-03-01 2018-09-14 华为技术有限公司 一种天线结构及无线终端
CN109904592A (zh) * 2019-04-02 2019-06-18 维沃移动通信有限公司 一种天线结构及通信终端

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8872711B2 (en) * 2011-05-11 2014-10-28 Harris Corporation Electronic device including a patch antenna and photovoltaic layer and related methods
US8760352B2 (en) * 2012-03-30 2014-06-24 Htc Corporation Mobile device and antenna array thereof
WO2016158085A1 (ja) * 2015-03-27 2016-10-06 富士フイルム株式会社 タッチセンサーおよびタッチパネル
CN107171075A (zh) * 2016-03-07 2017-09-15 华为技术有限公司 多频阵列天线和通信系统
KR102334098B1 (ko) * 2016-04-20 2021-12-03 삼성전자주식회사 디스플레이가 포함된 전자 장치
CN205790338U (zh) * 2016-05-20 2016-12-07 黄桂贤 天线模块装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102403566A (zh) * 2010-09-15 2012-04-04 雷凌科技股份有限公司 定向性天线及智能型天线系统
US20150255856A1 (en) * 2014-03-05 2015-09-10 Samsung Electronics Co., Ltd. Antenna device and electronic device having the antenna device
CN104112906A (zh) * 2014-07-23 2014-10-22 深圳市视晶无线技术有限公司 一种mimo 天线系统及天线装置
CN104134861A (zh) * 2014-07-23 2014-11-05 深圳市视晶无线技术有限公司 Mimo天线系统、近似全向的天线装置及其高增益微型天线
CN106935952A (zh) * 2015-12-30 2017-07-07 华为技术有限公司 双极化天线和通信设备
CN108539386A (zh) * 2017-03-01 2018-09-14 华为技术有限公司 一种天线结构及无线终端
CN108417996A (zh) * 2018-01-25 2018-08-17 瑞声科技(南京)有限公司 天线组件及移动终端
CN109904592A (zh) * 2019-04-02 2019-06-18 维沃移动通信有限公司 一种天线结构及通信终端

Also Published As

Publication number Publication date
CN109904592B (zh) 2021-07-20
CN109904592A (zh) 2019-06-18

Similar Documents

Publication Publication Date Title
WO2020199927A1 (zh) 天线结构及通信终端
TWI509888B (zh) 指向性天線及智慧型天線系統
JP5364848B2 (ja) アンテナ装置
EP3149540B1 (en) Lens with spatial mixed-order bandpass filter
Ojaroudiparchin et al. 8× 8 planar phased array antenna with high efficiency and insensitivity properties for 5G mobile base stations
KR102448978B1 (ko) 안테나가 집적된 디스플레이 스크린, 디스플레이 장치 및 전자기기
JP2017533675A (ja) ワイヤレス電子デバイスのための周期スロットを有するストリップライン結合アンテナ
CN107196047B (zh) 宽波束高增益天线
US9837724B2 (en) Antenna system
TWI487191B (zh) 天線系統
CN110444857A (zh) 一种终端设备
Nhlengethwa et al. Fractal microstrip patch antennas for dual-band and triple-band wireless applications
Yang et al. Dual-band shared-aperture multiple antenna system with beam steering for 5G applications
CN114256614B (zh) 一种应用于毫米波通信系统的超宽带平面天线阵列
Algaba-Brazález et al. Flexible 6G antenna systems based on innovative lenses combined with array antennas
US20210050656A1 (en) Antenna unit, antenna system and electronic device
CN104409841A (zh) 一种宽带缝隙天线
US20220320709A1 (en) Display substrate and method for manufacturing display substrate
US20230420828A1 (en) Display assembly, client device comprising the display assembly, and method of manufacturing the display assembly
WO2022134785A1 (zh) 一种天线和通信设备
WO2021000780A1 (zh) 天线组件及电子设备
Mologni et al. Investigation on the deployment of FSS as electromagnetic shielding for 5G devices
US20220077589A1 (en) Leaky Wave Antenna
JP2020036297A (ja) アンテナ装置
US20090207089A1 (en) Antenna element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20782088

Country of ref document: EP

Kind code of ref document: A1