WO2023060514A1 - 配置更改方法、装置、通信设备以及存储介质 - Google Patents

配置更改方法、装置、通信设备以及存储介质 Download PDF

Info

Publication number
WO2023060514A1
WO2023060514A1 PCT/CN2021/123872 CN2021123872W WO2023060514A1 WO 2023060514 A1 WO2023060514 A1 WO 2023060514A1 CN 2021123872 W CN2021123872 W CN 2021123872W WO 2023060514 A1 WO2023060514 A1 WO 2023060514A1
Authority
WO
WIPO (PCT)
Prior art keywords
configuration
prs
configuration change
side device
network side
Prior art date
Application number
PCT/CN2021/123872
Other languages
English (en)
French (fr)
Inventor
刘洋
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/123872 priority Critical patent/WO2023060514A1/zh
Publication of WO2023060514A1 publication Critical patent/WO2023060514A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • This application relates to the field of wireless communication technology, in particular to a configuration change method, device, communication device and storage medium
  • positioning technology refers to the technology of determining the geographic location of a node in a communication network, especially a user equipment (English: User Equipment, referred to as: UE) by a certain method.
  • UE User Equipment
  • the communication system introduces a positioning reference signal (English: Positioning Reference Signal, PRS for short), and the communication system can determine the position of the UE based on the measurement result of the UE on the PRS.
  • PRS Positioning Reference Signal
  • the positioning of the UE is often inaccurate when the signal transmission environment is relatively bad.
  • the present application provides a configuration modification method, device, communication device and storage medium, which can improve the accuracy of UE positioning.
  • an embodiment of the present application provides a configuration change method, the method comprising:
  • the configuration change trigger condition sent by the network side device; if the measurement result obtained by measuring the received PRS satisfies the configuration change trigger condition, then sending a configuration change request to the network side device; the configuration change request is used for Instructing the network side device to change at least one of the configuration of the PRS and the configuration of the access network device that sends the PRS to the UE.
  • an embodiment of the present application provides a configuration change method, the method comprising:
  • an embodiment of the present application provides a device for changing configuration, which includes:
  • the receiving module is configured to receive the configuration change trigger condition sent by the network side device
  • a sending module configured to send a configuration change request to the network side device if the measurement result obtained by measuring the received PRS satisfies the configuration change trigger condition
  • the configuration change request is used to instruct the network side device to change at least one of the configuration of the PRS and the configuration of the access network device that sends the PRS to the UE.
  • an embodiment of the present application provides a device for changing configuration, which includes:
  • a sending module configured to send a configuration change trigger condition to the UE
  • a receiving module configured to receive a configuration change request sent by the UE, where the configuration change request is sent by the UE after the measurement result obtained by measuring the received PRS satisfies the configuration change trigger condition;
  • a configuration module configured to change at least one of the configuration of the PRS for the UE and the configuration of an access network device that sends the PRS to the UE based on the configuration change request.
  • a communication device including: a processor, a memory, and a transceiver, the processor, the memory, and the transceiver communicate with each other through an internal connection path, the memory is used to store program codes; the processor , for calling the program code stored in the memory, to cooperate with the transceiver to realize the steps of the method described in the first aspect above, or to cooperate with the transceiver to realize the steps of the method described in the second aspect above.
  • a sixth aspect provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the steps of the method described in the first aspect above are implemented, or, the computer program is executed by the processor When implementing the steps of the method described in the second aspect above.
  • the UE receives the configuration change trigger condition sent by the network side device, and the measurement result obtained by measuring the received PRS satisfies the configuration change trigger condition
  • a configuration replacement request is sent to the network side device to instruct the network side device to change at least one of the configuration of the PRS and the configuration of the access network device that sends the PRS to the UE.
  • FIG. 1 is a schematic diagram of a positioning process provided by an embodiment
  • FIG. 2 is a schematic diagram of calculating RTT provided by an embodiment
  • Fig. 3 is a schematic diagram of triangulation provided by an embodiment
  • Fig. 4 is a schematic diagram of an implementation environment provided by an embodiment
  • FIG. 5 is a flow chart of a configuration change method provided by an embodiment
  • FIG. 6 is a flow chart of a configuration change method provided by an embodiment
  • Figure 7 is a flow chart of a configuration change method provided by an embodiment
  • Fig. 8 is a block diagram of a configuration changing device provided by an embodiment
  • Fig. 9 is a block diagram of a configuration changing device provided by an embodiment
  • Fig. 10 is a block diagram of a communication device provided by an embodiment
  • Fig. 11 is a schematic structural diagram of a chip provided by an embodiment
  • Fig. 12 is a schematic block diagram of a communication system provided by an embodiment.
  • positioning technology refers to the technology of determining the geographic location of a node in a communication network, especially a user equipment (English: User Equipment, referred to as: UE) by a certain method.
  • UE User Equipment
  • the communication system introduces a positioning reference signal (English: Positioning Reference Signal, PRS for short), and the communication system can determine the position of the UE based on the measurement result of the UE on the PRS.
  • PRS Positioning Reference Signal
  • the positioning process of the UE includes the following steps:
  • Step 1 the access network equipment in the cell where the UE resides, the access network equipment in the neighboring cell of the UE, and the location management function entity (English: Location Management Function; abbreviation: LMF) exchange PRS configuration information (English: NRPPa DL PRS Configuration).
  • LMF Location Management Function
  • PRS configuration information English: NRPPa DL PRS Configuration
  • the access network device in the embodiment of the present application may be a transmission receiving node (English: transmission reception point, TRP for short), base station, relay station or access point, etc., and the access network device may be a 5G communication system
  • the PRS configuration information may include, for example, the time-frequency position of the communication resource carrying the PRS, the sending cycle of the PRS, etc.
  • the specific content of the PRS configuration information is not limited in this embodiment of the present application.
  • Step 1 The UE, the access network device in the cell where the UE resides, the access network device in the neighboring cell of the UE, and the LMF exchange LTE positioning protocol (abbreviation: LPP) capabilities with each other.
  • LPP LMF exchange LTE positioning protocol
  • Step 2 The LMF sends a positioning information request (English: NRPPa Positioning Information Request) to the access network device in the cell where the UE resides.
  • a positioning information request (English: NRPPa Positioning Information Request)
  • Step 3 The access network device in the cell where the UE resides determines the time-frequency position of the communication resource carrying the uplink channel Sounding Reference Signal (English: Sounding Reference Signal; SRS for short).
  • Sounding Reference Signal English: Sounding Reference Signal; SRS for short.
  • Step 3a the access network device of the cell where the UE resides sends SRS configuration information to the UE.
  • the SRS configuration information may include, for example, the time-frequency position of the communication resource carrying the SRS, the sending period of the SRS, etc.
  • the specific content of the SRS configuration information is not limited in this embodiment of the present application.
  • Step 4 The access network device of the cell where the UE resides sends a positioning information response (English: NRPPa Positioning Information Response) to the LMF.
  • a positioning information response English: NRPPa Positioning Information Response
  • the positioning information response carries SRS configuration information.
  • Step 5a the LMF sends a positioning activation request (English: NRPPa Positioning Activation Request) to the access network device in the cell where the UE resides.
  • a positioning activation request English: NRPPa Positioning Activation Request
  • Step 5b the access network device of the cell where the UE resides activates the UE to transmit the SRS.
  • Step 5c the access network device of the cell where the UE resides sends a positioning activation response (English: NRPPa Positioning Activation Response) to the LMF.
  • a positioning activation response English: NRPPa Positioning Activation Response
  • Step 6 The LMF sends a measurement request (English: NRPPa Measurement Request) to the access network equipment in the cell where the UE resides and to the access network equipment in the neighboring cell of the UE.
  • a measurement request (English: NRPPa Measurement Request)
  • the measurement request carries SRS configuration information.
  • Step 7 The LMF sends LPP assistance data (English: LPP Provide Assistance Data) to the UE.
  • LPP assistance data English: LPP Provide Assistance Data
  • the LPP assistance data includes the PRS configuration information of the access network equipment in the cell where the UE resides and the PRS configuration information of the access network equipment in the neighboring cell of the UE.
  • Step 8 The LMF sends LPP Request Location Information (English: LPP Request Location Information) to the UE.
  • LPP Request Location Information (English: LPP Request Location Information)
  • step 9a the UE measures the PRS sent by the access network equipment in the cell where the UE resides and the access network equipment in a neighboring cell of the UE.
  • step 9b the access network equipment in the cell where the UE resides and the access network equipment in a neighboring cell of the UE measure the SRS sent by the UE.
  • Step 10 UE sends LPP Provide Location Information (English: LPP Provide Location Information) to LMF.
  • LPP Provide Location Information English: LPP Provide Location Information
  • Step 11 the access network equipment of the cell where the UE resides and the access network equipment of the neighboring cell of the UE send a measurement response (English: NRPPa Measurement Response) to the LMF.
  • a measurement response English: NRPPa Measurement Response
  • Step 12 The LMF sends positioning deactivation information (English: NRPPa Positioning Deactivation) to the access network device in the cell where the UE resides.
  • positioning deactivation information English: NRPPa Positioning Deactivation
  • the positioning process shown in Figure 1 is the positioning process involved in the multi-round-trip time delay (English: multi Round-Trip Time; abbreviation: multi RTT) positioning technology.
  • the LMF needs to send the PRS configuration information of the access network equipment in the cell where the UE resides and the PRS configuration information of the access network equipment in the neighboring cell of the UE to the UE in step 7.
  • the received PRS configuration information measures the PRS sent by the access network device in the cell where the UE resides and the access network device in the neighboring cell of the UE (step 9a), so as to obtain the PRS sent by the access network device that detects the cell where the UE resides.
  • the first time stamp of the PRS and the second time stamp of the PRS sent by the access network equipment that detects the UE ’s neighbor cell.
  • the UE can also obtain the third time stamp of the SRS sent by itself, and the UE can use the first time stamp The difference between the timestamp and the third timestamp and the difference between the second timestamp and the third timestamp are reported to the LMF (step 10).
  • the LMF needs to send the SRS configuration information to the access network equipment in the cell where the UE resides and the access network equipment in the neighboring cell of the UE in step 6, and the access network equipment in the cell where the UE resides and the access network equipment in the neighboring cell of the UE.
  • the device needs to measure the SRS sent by the UE according to the SRS configuration information (step 9b). Through the measurement, the access network device in the cell where the UE resides can obtain the fourth timestamp when the SRS is detected, and the access network device in the neighboring cell of the UE can Obtain the fifth time stamp when the SRS is detected.
  • the access network device in the cell where the UE resides can also obtain the sixth time stamp when it sends the PRS, and the access network device in the neighboring cell of the UE can also obtain the seventh time stamp when it sends the PRS.
  • Timestamp the access network equipment in the cell where the UE resides can report the difference between the fourth timestamp and the sixth timestamp to the LMF (step 11), and the access network equipment in the neighboring cell of the UE can report the difference between the fifth timestamp and the sixth timestamp The difference with the seventh timestamp is reported to the LMF (step 11).
  • the LMF can use the sum of the difference between the first timestamp and the third timestamp and the difference between the fourth timestamp and the sixth timestamp as the UE and the access network of the cell where the UE resides RTT between devices, and estimate the distance between the UE and the access network device in the cell where the UE resides based on the calculated RTT.
  • the LMF may also use the sum of the difference between the second timestamp and the third timestamp and the difference between the fifth timestamp and the seventh timestamp as the difference between the UE and the access network device in the neighboring cell of the UE. RTT, and estimate the distance between the UE and the access network equipment in the neighbor cell of the UE based on the calculated RTT.
  • the LMF can use the distance between the UE and the access network devices in the neighboring cells of the UE and the distance between the UE and the UE The distance between the access network devices that reside in the cell, and the location of the UE is estimated based on the triangulation method.
  • FIG. 3 is a schematic diagram of the principle of the triangulation method.
  • the UE's measurement of PRS greatly affects the accuracy of UE positioning.
  • the transmission of PRS will be affected by the signal transmission environment of the communication network, when the signal transmission environment is relatively bad, the UE The positioning is often inaccurate.
  • an embodiment of the present application provides a configuration change method, device, communication device, and storage medium.
  • the UE can receive the configuration change trigger condition sent by the network side device, and perform the received
  • a configuration change request is sent to the network side device to instruct the network side device to change at least one of the configuration of the PRS and the configuration of the access network device that sends the PRS to the UE
  • the transmission quality of the PRS can be improved, thereby improving the accuracy of UE positioning.
  • FIG. 4 shows a schematic diagram of the implementation environment involved in the configuration change method provided by the embodiment of the present application.
  • the implementation environment includes UE401, an access network device 402, An access network device 403 and a network side device 404 in a neighboring cell of the UE401, where the network side device 404 may be an LMF.
  • both the access network device 402 and the access network device 403 can send a PRS to the UE 401 according to their current PRS configuration, and the UE 401 can measure the PRS sent by the access network device 402 and the access network device 403 .
  • the number of access network devices 402 and access network devices 403 is at least three.
  • UE401 can include PDA (Chinese: personal digital processing, English: personal digital assistant), handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, 5G network user equipment or user equipment in the future evolved PLMN (Chinese: public land mobile network, English: public land mobile network) network.
  • PDA personal digital processing
  • English personal digital assistant
  • handheld devices with wireless communication functions computing devices or other processing devices connected to wireless modems
  • vehicle-mounted devices wearable devices
  • 5G network user equipment or user equipment in the future evolved PLMN Choinese: public land mobile network, English: public land mobile network
  • the access network device 402 and the access network device 403 can be TRP, base station, relay station or access point, etc., and the access network device can be the access network device in the 5G communication system or the access network device in the future evolution network, It can also be a wearable device or a vehicle-mounted device, etc. In addition, it can also be: BTS (Chinese: base transceiver station, English: base transceiver station) in GSM or CDMA network, or NB (NodeB) in WCDMA, or It can be eNB or eNodeB (English full name: evolutional NodeB) in LTE, and the access network device can also be a wireless controller in the CRAN scenario.
  • BTS Base transceiver station
  • English base transceiver station
  • NB NodeB
  • eNodeB Evolution full name: evolutional NodeB
  • FIG. 5 shows a flow chart of a configuration change method provided by an embodiment of the present application.
  • the configuration change method is applied to the UE401 shown in FIG. 4.
  • the configuration change method includes the following step:
  • step 501 the UE receives a configuration change trigger condition sent by a network side device.
  • the network side device may be an LMF.
  • the network side device may send configuration change trigger conditions for the final positioning result of the UE, or may send configuration change trigger conditions for each PRS transmission link respectively.
  • the configuration change trigger conditions corresponding to each PRS transmission link may be completely consistent, partially consistent, or completely inconsistent. Not specifically limited.
  • Step 502 If the measurement result obtained by measuring the received PRS satisfies the configuration change trigger condition, the UE sends a configuration change request to the network side device.
  • the UE may measure the PRS according to the current PRS configuration of the access network device, where the measurement result obtained by the UE from measuring the PRS may include multiple items, for example, nr-UE-RxTxTimeDiff-r16, nr-DL-PRS-RSRP-Result-r16, nr-DL-PRS-RSRP-ResultDiff-r16, angle, etc., the embodiment of the present application does not limit the specific content of the measurement results.
  • the UE can send a configuration change request to the network side device to instruct the network
  • the side device changes at least one of the configuration of the PRS and the configuration of the access network device that sends the PRS to the UE.
  • changing the configuration of the PRS includes: changing the time-frequency position of the communication resource bearing the PRS, changing the sending period of the PRS, and so on.
  • Changing the configuration of the access network equipment that sends PRS to the UE includes: replacing all the access network equipment currently sending PRS to the UE with new access network equipment, or replacing some of the access network equipment currently sending PRS to the UE It is a new access network device, or replace all the adjacent cell access network devices currently sending PRS to the UE with new access network devices, or replace some of the neighboring cell access network devices currently sending PRS to the UE For new access network equipment.
  • the UE may determine that the final positioning result based on the PRS measurement result satisfies the configuration change trigger condition sent by the network side device In the case of , send a configuration replacement request to the network side device.
  • the configuration replacement request may indicate one of the following items on the network side device:
  • the UE can confirm that the measurement result of a certain PRS transmission link satisfies the configuration change corresponding to the PRS transmission link When a condition is triggered, a configuration replacement request is sent to the network side device.
  • the configuration replacement request may indicate one of the following items on the network side device:
  • the access network device in the PRS transmission link whose measurement result satisfies the corresponding configuration change trigger condition is replaced with a new access network device, and the PRS configuration is added to the new access network device.
  • the configuration change trigger condition includes at least one of the following:
  • the positioning integrity does not meet the conditions of the positioning integrity indicator
  • the positioning integrity does not meet the conditions of the positioning integrity index.
  • Positioning integrity refers to the degree of trust in the accuracy of the location-related data provided by the positioning system (that is, the communication system in the embodiment of this application) and to the customer when the positioning system does not meet the expected operating expectations. A measure of the ability of an endpoint to provide timely and effective warnings.
  • location integrity can be measured based on location integrity indicators (English: key performance indicator), which generally include warning level (English: alert level; abbreviation: AL), alarm duration (English: time-to -alert; abbreviation: TTA) and target integrity rate (English: target integrity rate; abbreviation: TIR).
  • warning level English: alert level; abbreviation: AL
  • alarm duration English: time-to -alert; abbreviation: TTA
  • target integrity rate English: target integrity rate; abbreviation: TIR
  • the UE can calculate the protection level (English: protection level; abbreviation: PL) based on a series of feared events (English: feared events) that the positioning system may face, where PL is the statistics of positioning errors Upper limit, generally speaking, the lower the TIR is set, the more feared events need to be considered when calculating PL.
  • PL protection level
  • feared events can be divided into two categories: fault feared events (feared events caused by faults) and fault-free feared events (feared events not caused by faults).
  • a feared event due to a fault is an event inherent to the positioning system and is usually caused by a failure of an element of the positioning system (such as a failure of a satellite network or a terrestrial network).
  • a fault-free feared event occurs when the positioning system input is wrong, but the event is not caused by a fault in the positioning system.
  • a fault-free feared event includes routine times experienced every day, such as bad Geographic distribution of satellites, strong atmospheric gradients and signal outages.
  • the positioning system when an event occurs in which PL is greater than AL, and the duration of the event is longer than TTA, the positioning system declares that it is unavailable, that is, the positioning system loses positioning integrity.
  • the configuration change trigger condition may include the condition that the location integrity does not meet the location integrity index, wherein, according to the above description, the location integrity index may include AL, TTA, and TIR, and the location integrity index may be the network
  • the side device independently stipulates and configures it for the UE.
  • the network side device may send a configuration replacement request to the network side device.
  • the UE may calculate the PL corresponding to the PRS transmission link according to the measurement result, or according to the measurement result and the TIR value corresponding to the PRS transmission link. If there is an event that the PL is greater than the AL corresponding to the PRS transmission link, Moreover, if the duration of the event is longer than the TTA corresponding to the PRS transmission link, it can be determined that the positioning integrity obtained by the UE on the PRS transmission link does not meet the positioning integrity index corresponding to the PRS transmission link. In this case, the UE may send a configuration replacement request to the network side device.
  • the UE may send a configuration replacement request to the network side device.
  • the UE may calculate the PL corresponding to the final positioning result of the UE according to the measurement result, or according to the TIR corresponding to the measurement result and the final positioning result of the UE, if there is an event that the PL is greater than the AL corresponding to the final positioning result of the UE, and the event If the duration is longer than the TTA corresponding to the UE's final positioning result, it can be determined that the positioning integrity of the UE's final positioning result does not meet the positioning integrity index corresponding to the UE's final positioning result. In this case, the UE can send a Configure replacement requests.
  • a condition for triggering an event for configuration replacement occurs.
  • Configuration replacement triggering events may include at least one of the above-mentioned concern events and events in which the K factor in the Rice distribution satisfied by the received signal envelope is less than the target threshold.
  • concern events have been described above. This embodiment of the present application will not be described in detail.
  • Multipath effect refers to the phenomenon that after the electromagnetic wave propagates through different paths, each component field arrives at the receiving end at different times, and superimposes on each other according to their respective phases to cause interference.
  • the different propagation paths of electromagnetic waves can include non-line-of-sight path and line-of-sight path.
  • Non-line-of-sight (English: non line of sight; NLOS for short) refers to the indirect point-to-point communication between the receiving end and the transmitting end. , the most direct explanation of non-line-of-sight is that the line of sight of two points of communication is blocked, and they cannot see each other. Spread in a straight line.
  • the Rice distribution can generally be used to reflect the distribution of the received signal envelope, where the K factor in the Rice distribution can reflect the energy content of the component field of the LOS path in the received signal in the signal received by the receiving end.
  • the higher the value of the K factor the higher the proportion of the energy content of the component field of the LOS path in the signal received by the receiving end.
  • k d is the K factor
  • ⁇ i is the attenuation factor (English: attenuationfactor)
  • ⁇ c is the carrier*2 ⁇
  • ⁇ i is the relative phase between the ith multipath reflected wave and the line-of-sight signal
  • N is the number of multipath reflected waves
  • t is the time.
  • the UE can calculate the K factor according to the measurement result of the PRS.
  • the configuration change triggering event may include an event that the K factor in the Rice distribution satisfied by the envelope of the received signal is smaller than the target threshold, where the target threshold may be independently specified by the network side device and configured for the UE.
  • the UE may send a configuration change request to the network side device.
  • the configuration replacement request sent by the UE to the network side device may carry at least one of the following identifiers: the identifier of the current PRS configuration, the identifier of the configuration of the access network device currently sending the PRS to the UE , the identification of the configuration replacement trigger event that occurred and the identification that does not meet the positioning integrity index.
  • the configuration identifier of the current PRS and the configuration identifier of the access network device currently sending the PRS to the UE may be but not limited to the following identifiers:
  • dl-PRS-ID-r16 INTEGER(0..255), nr-PhysCellID-r16, NR-PhysCellID-r16, nr-CellGlobalID-r16, NCGI-r15.
  • the UE may receive configuration replacement information sent by the network side device based on the configuration replacement request, where the configuration replacement information is used to indicate the modified PRS At least one of the configuration of the configuration and the modified configuration of the access network device that sends the PRS to the UE.
  • the UE may release at least one of the original PRS configuration and the configuration of the access network device that sends the PRS to the UE, and receive the PRS based on the indication of the configuration replacement information.
  • the configuration replacement information may provide assistance data (English: LPP provide assistance data) signaling for the LPP.
  • FIG. 6 shows a flow chart of a configuration change method provided by an embodiment of the present application.
  • the configuration change method is applied to the network side device 404 shown in FIG. 4.
  • the configuration change The method includes the following steps:
  • Step 601 the network side device sends a configuration change trigger condition to the UE.
  • Step 602 the network side device receives the configuration replacement request sent by the UE.
  • the configuration change request is sent by the UE after the measurement result obtained by measuring the received PRS satisfies the configuration change trigger condition.
  • Step 603 the network side device changes at least one of the following configurations for the UE based on the configuration replacement request:
  • the configuration of the access network device that sends the PRS to the UE is the configuration of the access network device that sends the PRS to the UE.
  • the network side device changes the configuration including one of the following:
  • the network side device sends configuration change trigger conditions for each PRS transmission link to the UE, the network side device changes the configuration including one of the following:
  • the access network device in the PRS transmission link whose measurement result satisfies the corresponding configuration change trigger condition is replaced with a new access network device, and the corresponding PRS configuration is added to the new access network device.
  • the network side device changes at least one of the PRS configuration for the UE and the configuration of the access network device that sends the PRS to the UE based on the configuration change request, including the following content: Sending configuration replacement information, where the configuration replacement information is used to indicate at least one of a modified configuration of the PRS and a modified configuration of an access network device that sends the PRS to the UE.
  • FIG. 7 shows a flow chart of a configuration change method provided by an embodiment of the present application.
  • the configuration change method is applied to the implementation environment shown in FIG. 4.
  • the configuration change method includes The following steps:
  • step 701 the LMF sends a configuration change trigger condition to the UE.
  • Step 702 the UE receives the configuration change trigger condition sent by the LMF.
  • Step 703 the UE measures the PRS sent by the access network equipment in the cell and the access network equipment in the neighboring cell.
  • Step 704 If the measurement result obtained by measuring the PRS satisfies the configuration change trigger condition, the UE sends a configuration change request to the LMF.
  • Step 705 the LMF sends configuration replacement information to the UE based on the configuration replacement request.
  • the configuration replacement information is used to indicate at least one of the modified configuration of the PRS and the modified configuration of the access network device that sends the PRS to the UE.
  • Step 706 the UE receives the configuration replacement information sent by the LMF.
  • Step 707 the UE releases at least one of the original PRS configuration and the configuration of the access network device that sends the PRS to the UE, and receives the PRS based on the indication of the configuration replacement information.
  • step 708 the UE sends a positioning measurement report to the LMF based on the received PRS.
  • the positioning measurement report may be the difference between the time stamp of receiving the PRS and the time stamp of sending the SRS.
  • FIGS. 5-7 are shown sequentially as indicated by the arrows, these steps are not necessarily executed sequentially in the order indicated by the arrows. Unless otherwise specified herein, there is no strict order restriction on the execution of these steps, and these steps can be executed in other orders. Moreover, at least some of the steps in Figures 5-7 may include a plurality of sub-steps or stages, these sub-steps or stages are not necessarily executed at the same time, but may be executed at different times, these sub-steps or stages The order of execution is not necessarily performed sequentially, but may be performed alternately or alternately with at least a part of other steps or sub-steps or stages of other steps.
  • FIG. 8 shows a schematic diagram of a configuration changing device 800 provided by an embodiment of the present application.
  • the configuration changing device 800 includes a receiving module 801 and a sending module 802 .
  • the receiving module 801 is configured to receive the configuration change trigger condition sent by the network side device.
  • the sending module 802 is configured to send a configuration change request to the network side device if the measurement result obtained by measuring the received PRS satisfies the configuration change trigger condition.
  • the configuration change request is used to instruct the network side device to change at least one of the configuration of the PRS and the configuration of the access network device that sends the PRS to the UE.
  • the receiving module 801 is specifically configured to: receive the configuration change trigger conditions respectively corresponding to the respective PRS transmission links sent by the network side device; or,
  • the configuration change trigger condition includes at least one of the following:
  • the positioning integrity does not meet the conditions of the positioning integrity indicator
  • the positioning integrity index includes:
  • the configuration replacement trigger event includes:
  • the sending module 802 is specifically configured to: for any PRS transmission link, if it is determined based on the measurement result that the positioning integrity obtained by the UE on the PRS transmission link does not comply with The location integrity indicator corresponding to the PRS transmission link sends the configuration replacement request to the network side device.
  • the sending module 802 is specifically configured to: calculate the protection level corresponding to the PRS transmission link according to the measurement result, or according to the measurement result and the TIR value corresponding to the PRS transmission link PL value; if there is an event where the PL value is greater than the AL value corresponding to the PRS transmission link, and the duration of the event is longer than the TTA value corresponding to the PRS transmission link, then send the configuration replacement request to the network side device.
  • the sending module 802 is specifically configured to: if it is determined based on the measurement result that the positioning integrity of the final positioning result does not meet the positioning integrity index corresponding to the final positioning result, send The side device sends the configuration replacement request.
  • the sending module 802 is specifically configured to: calculate the PL value corresponding to the final positioning result according to the measurement result, or, according to the measurement result and the TIR value corresponding to the final positioning result, if If there is an event where the PL value is greater than the AL value corresponding to the final positioning result, and the duration of the event is longer than the TTA value corresponding to the final positioning result, then the configuration replacement request is sent to the network side device.
  • the sending module 802 is specifically configured to: if it is determined according to the measurement result that any PRS transmission link has a corresponding configuration replacement trigger event, then send the configuration replacement request to the network side device .
  • the configuration replacement request carries at least one of the following identifiers: the identifier of the current PRS configuration, the identifier of the configuration of the access network device currently sending the PRS to the UE, and the occurred configuration replacement Identification of triggering events and identification of non-compliance with positioning integrity metrics.
  • the receiving module 801 is also configured to: receive configuration replacement information sent by the network side device based on the configuration replacement request, where the configuration replacement information is used to indicate the configuration of the modified PRS and the modification At least one of the configurations of the subsequent access network devices that send the PRS to the UE; receive the PRS based on the indication of the configuration replacement information.
  • the network side device is an LMF network element.
  • Each module in the above-mentioned configuration changing device can be fully or partially realized by software, hardware and a combination thereof.
  • the above-mentioned modules can be embedded in or independent of the processor in the computer device in the form of hardware, and can also be stored in the memory of the computer device in the form of software, so that the processor can invoke and execute the corresponding operations of the above-mentioned modules.
  • FIG. 9 shows a schematic diagram of a configuration changing device 900 provided by an embodiment of the present application.
  • the configuration changing device 900 includes a sending module 901 , a receiving module 902 and a configuration module 903 .
  • the sending module 901 is configured to send the configuration change trigger condition to the UE.
  • the receiving module 902 is configured to receive a configuration change request sent by the UE, where the configuration change request is sent by the UE after the measurement result obtained by measuring the received PRS satisfies the configuration change trigger condition.
  • the configuration module 903 is configured to change at least one of the configuration of the PRS for the UE and the configuration of the access network device that sends the PRS to the UE based on the configuration change request.
  • the configuration module 903 is specifically configured to: send configuration replacement information to the UE; where the configuration replacement information is used to indicate the modified PRS configuration and the modified PRS configuration sent to the UE. At least one of the configurations of the access network equipment of the PRS.
  • the network side device is an LMF network element.
  • Each module in the above-mentioned configuration changing device can be fully or partially realized by software, hardware and a combination thereof.
  • the above-mentioned modules can be embedded in or independent of the processor in the computer device in the form of hardware, and can also be stored in the memory of the computer device in the form of software, so that the processor can invoke and execute the corresponding operations of the above-mentioned modules.
  • a communication device is provided.
  • the communication device may be a network side device or a terminal, and its internal structure diagram may be shown in FIG. 10 .
  • FIG. 10 is an internal structure diagram of the communication device in an embodiment.
  • the communications device includes a processor, memory, and transceivers connected by an internal link pathway, such as a system bus. Wherein, the processor of the communication device is used to provide calculation and control capabilities.
  • the memory of the communication device includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium stores an operating system and computer programs.
  • the internal memory provides an environment for the operation of the operating system and computer programs in the non-volatile storage medium.
  • the transceiver of the communication device is used to communicate with external devices in a wired or wireless manner, and the wireless manner can be realized by an operator's network or other technologies.
  • the computer program implements a configuration change method when executed by a processor.
  • FIG. 10 is only a block diagram of a partial structure related to the solution of this application, and does not constitute a limitation on the communication equipment to which the solution of this application is applied.
  • the specific communication equipment can be More or fewer components than shown in the figures may be included, or some components may be combined, or have a different arrangement of components.
  • a communication device including a memory and a processor, a computer program is stored in the memory, and the processor implements the following steps when executing the computer program:
  • Receive the configuration change trigger condition sent by the network side device if the measurement result obtained by measuring the received PRS satisfies the configuration change trigger condition, send a configuration change request to the network side device; the configuration change request is used to indicate the network
  • the side device changes at least one of the configuration of the PRS and the configuration of the access network device that sends the PRS to the UE.
  • the processor executes the computer program, the following steps are also implemented: receiving the configuration change trigger conditions respectively corresponding to the PRS transmission links sent by the network side device; or receiving the trigger conditions for each PRS transmission link sent by the network side device; The configuration change trigger condition of the final positioning result of the UE.
  • the configuration change trigger condition includes at least one of the following:
  • the positioning integrity does not meet the conditions of the positioning integrity indicator
  • the positioning integrity index includes:
  • the configuration replacement trigger event includes:
  • the processor executes the computer program, the following steps are further implemented: for any PRS transmission link, if it is determined based on the measurement result that the positioning integrity obtained by the UE on the PRS transmission link does not comply with The location integrity indicator corresponding to the PRS transmission link sends the configuration replacement request to the network side device.
  • the processor when the processor executes the computer program, the following steps are also implemented: according to the measurement result, or, according to the measurement result and the corresponding TIR value of the PRS transmission link, calculating the protection level corresponding to the PRS transmission link PL value; if there is an event where the PL value is greater than the AL value corresponding to the PRS transmission link, and the duration of the event is longer than the TTA value corresponding to the PRS transmission link, then send the configuration replacement request to the network side device.
  • the processor executes the computer program, the following steps are further implemented: if it is determined based on the measurement result that the positioning integrity of the final positioning result does not meet the positioning integrity index corresponding to the final positioning result, then send a report to the network The side device sends the configuration replacement request.
  • the processor when the processor executes the computer program, the following steps are further implemented: calculating the PL value corresponding to the final positioning result according to the measurement result, or according to the measurement result and the TIR value corresponding to the final positioning result, if If there is an event where the PL value is greater than the AL value corresponding to the final positioning result, and the duration of the event is longer than the TTA value corresponding to the final positioning result, then the configuration replacement request is sent to the network side device.
  • the processor further implements the following steps when executing the computer program: if it is determined according to the measurement result that any PRS transmission link has a corresponding configuration replacement trigger event, then send the configuration replacement request to the network side device .
  • the configuration replacement request carries at least one of the following identifiers: the identifier of the current PRS configuration, the identifier of the configuration of the access network device that currently sends the PRS to the UE, and the identifier of the configuration replacement trigger event that occurs. Identification and identification of non-compliance positioning integrity indicators.
  • the processor when the processor executes the computer program, it also implements the following steps: receiving the configuration replacement information sent by the network side device based on the configuration replacement request, the configuration replacement information is used to indicate the configuration of the modified PRS and the modification At least one of the configurations of the subsequent access network devices that send the PRS to the UE; receive the PRS based on the indication of the configuration replacement information.
  • the network side device is an LMF network element.
  • a communication device including a memory and a processor, a computer program is stored in the memory, and the processor implements the following steps when executing the computer program:
  • Send a configuration change trigger condition to the UE receive a configuration change request sent by the UE, the configuration change request is sent by the UE after the measurement result obtained by measuring the received PRS meets the configuration change trigger condition; based on the configuration change Requesting to change at least one of the PRS configuration and the configuration of the access network device that sends the PRS to the UE for the UE.
  • the processor when the processor executes the computer program, the following steps are also implemented: sending configuration replacement information to the UE; wherein the configuration replacement information is used to indicate the configuration of the modified PRS and send the modified configuration to the UE. At least one of the configurations of the access network equipment of the PRS.
  • the network side device is an LMF network element.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the following steps are implemented:
  • Receive the configuration change trigger condition sent by the network side device if the measurement result obtained by measuring the received PRS satisfies the configuration change trigger condition, send a configuration change request to the network side device; the configuration change request is used to indicate the network
  • the side device changes at least one of the configuration of the PRS and the configuration of the access network device that sends the PRS to the UE.
  • the following steps are also implemented: receiving the configuration change trigger conditions respectively corresponding to the PRS transmission links sent by the network side device; or receiving the trigger conditions for each PRS transmission link sent by the network side device; The configuration change trigger condition of the final positioning result of the UE.
  • the configuration change trigger condition includes at least one of the following:
  • the positioning integrity does not meet the conditions of the positioning integrity indicator
  • the positioning integrity index includes:
  • the configuration replacement trigger event includes:
  • the following steps are further implemented: for any PRS transmission link, if it is determined based on the measurement result that the positioning integrity obtained by the UE on the PRS transmission link does not comply with The location integrity indicator corresponding to the PRS transmission link sends the configuration replacement request to the network side device.
  • the following steps are further implemented: calculating the protection level corresponding to the PRS transmission link according to the measurement result, or according to the measurement result and the corresponding TIR value of the PRS transmission link PL value; if there is an event where the PL value is greater than the AL value corresponding to the PRS transmission link, and the duration of the event is longer than the TTA value corresponding to the PRS transmission link, then send the configuration replacement request to the network side device.
  • the following steps are further implemented: if it is determined based on the measurement result that the positioning integrity of the final positioning result does not meet the positioning integrity index corresponding to the final positioning result, send the network
  • the side device sends the configuration replacement request.
  • the following steps are further implemented: calculating the PL value corresponding to the final positioning result according to the measurement result, or according to the measurement result and the TIR value corresponding to the final positioning result, if If there is an event where the PL value is greater than the AL value corresponding to the final positioning result, and the duration of the event is longer than the TTA value corresponding to the final positioning result, then the configuration replacement request is sent to the network side device.
  • the following steps are further implemented: if it is determined according to the measurement result that any PRS transmission link has a corresponding configuration replacement trigger event, then send the configuration replacement request to the network side device .
  • the configuration replacement request carries at least one of the following identifiers: the identifier of the current PRS configuration, the identifier of the configuration of the access network device that currently sends the PRS to the UE, and the identifier of the configuration replacement trigger event that occurs. Identification and identification of non-compliance positioning integrity indicators.
  • the following steps are further implemented: receiving configuration replacement information sent by the network side device based on the configuration replacement request, the configuration replacement information is used to indicate the configuration of the modified PRS and the modification At least one of the configurations of the subsequent access network devices that send the PRS to the UE; receive the PRS based on the indication of the configuration replacement information.
  • the network side device is an LMF network element.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the following steps are implemented:
  • Send a configuration change trigger condition to the UE receive a configuration change request sent by the UE, the configuration change request is sent by the UE after the measurement result obtained by measuring the received PRS meets the configuration change trigger condition; based on the configuration change Requesting to change at least one of the PRS configuration and the configuration of the access network device that sends the PRS to the UE for the UE.
  • the following steps are implemented: sending configuration replacement information to the UE; wherein the configuration replacement information is used to indicate the configuration of the modified PRS and to send the modified PRS to the UE At least one of the configurations of the access network device.
  • the network side device is an LMF network element.
  • FIG. 11 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 1100 shown in FIG. 11 includes a processor 1110, and the processor 1110 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the chip 1100 may further include a memory 1120 .
  • the processor 1110 can invoke and run a computer program from the memory 1120, so as to implement the method in the embodiment of the present application.
  • the memory 1120 may be an independent device independent of the processor 1110 , or may be integrated in the processor 1110 .
  • the chip 1100 may also include an input interface 1130 .
  • the processor 1110 can control the input interface 1130 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the chip 1100 may also include an output interface 1140 .
  • the processor 1110 can control the output interface 1140 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network-side device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network-side device in each method of the embodiment of the present application.
  • the chip can implement the corresponding processes implemented by the network-side device in each method of the embodiment of the present application.
  • details are not repeated here.
  • the chip can be applied to the UE in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the UE in the various methods of the embodiments of the present application. For the sake of brevity, details are not repeated here.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • Fig. 12 is a schematic block diagram of a communication system 1200 provided by an embodiment of the present application. As shown in FIG. 12 , the communication system 1200 includes a UE 1210 and a network side device 1220 .
  • the UE 1210 can be used to realize the corresponding functions realized by the UE in the above method
  • the network side device 1220 can be used to realize the corresponding functions realized by the network side device in the above method.
  • details are not repeated here.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product may be applied to the network-side device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the network-side device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding processes implemented by the network-side device in each method of the embodiment of the present application.
  • the computer program product may be applied to the UE in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the UE in the various methods of the embodiments of the present application.
  • the computer program instructions cause the computer to execute the corresponding processes implemented by the UE in the various methods of the embodiments of the present application.
  • details are not repeated here. .
  • the embodiment of the present application also provides a computer program.
  • the computer program may be applied to the network-side device in the embodiment of the present application, and when the computer program is run on the computer, the computer executes the corresponding process implemented by the network-side device in each method of the embodiment of the present application, For the sake of brevity, details are not repeated here.
  • the computer program can be applied to the UE in the embodiment of the present application.
  • the computer program runs on the computer, the computer executes the corresponding process implemented by the UE in each method of the embodiment of the present application. For brevity, the This will not be repeated here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种配置更改方法、装置、通信设备以及存储介质,属于无线通信技术领域,在该配置更改方法中,UE接收网络侧设备发送的配置更改触发条件;若对接收到的PRS进行测量得到的测量结果满足所述配置更改触发条件,则向所述网络侧设备发送配置更换请求;所述配置更换请求用于指示所述网络侧设备更改PRS的配置以及向所述UE发送PRS的接入网设备的配置中的至少一种,本申请实施例提供的配置更改方法,可以提高对UE定位的准确性。

Description

配置更改方法、装置、通信设备以及存储介质 技术领域
本申请涉及无线通信技术领域,特别是涉及一种配置更改方法、装置、通信设备以及存储介质
背景技术
在通信领域中,定位技术是指通过某种方法确定位于通信网络中的某节点,特别是用户设备(英文:User Equipment,简称:UE)所处地理位置的技术。为了实现对UE的定位,通信系统引入了定位参考信号(英文:Positioning Reference Signal,简称:PRS),通信系统可以基于UE对PRS的测量结果确定UE的位置。
然而,由于PRS的传输会受到通信网络的信号传输环境的影响,因此,在信号传输环境较为恶劣时,对UE的定位往往并不准确。
发明内容
基于此,本申请提供了一种配置更改方法、装置、通信设备以及存储介质,可以提高对UE定位的准确性。
第一方面,本申请的实施例提供了一种配置更改方法,该方法包括:
接收网络侧设备发送的配置更改触发条件;若对接收到的PRS进行测量得到的测量结果满足所述配置更改触发条件,则向所述网络侧设备发送配置更换请求;所述配置更换请求用于指示所述网络侧设备更改PRS的配置以及向所述UE发送PRS的接入网设备的配置中的至少一种。
第二方面,本申请的实施例提供了一种配置更改方法,该方法包括:
向UE发送配置更改触发条件;
接收所述UE发送的配置更换请求,所述配置更换请求是所述UE在对接收到的PRS进行测量得到的测量结果满足所述配置更改触发条件后发送的;
基于所述配置更换请求为所述UE更改PRS的配置以及向所述UE发送PRS的接入网设备的配置中的至少一种。
第三方面,本申请的实施例提供了一种配置更改装置,该装置包括:
接收模块,用于接收网络侧设备发送的配置更改触发条件;
发送模块,用于若对接收到的PRS进行测量得到的测量结果满足所述配置更改触发条件,则向所述网络侧设备发送配置更换请求;
所述配置更换请求用于指示所述网络侧设备更改PRS的配置以及向所述UE发送PRS的接入网设备的配置中的至少一种。
第四方面,本申请的实施例提供了一种配置更改装置,该装置包括:
发送模块,用于向UE发送配置更改触发条件;
接收模块,用于接收所述UE发送的配置更换请求,所述配置更换请求是所述UE在对接收到的PRS进行测量得到的测量结果满足所述配置更改触发条件后发送的;
配置模块,用于基于所述配置更换请求为所述UE更改PRS的配置以及向所述UE发送PRS的接入网设备的配置中的至少一种。
第五方面,提供了一种通信设备,包括:处理器、存储器和收发器,该处理器、该存储器和该收发器通过内部连接通路互相通信,该存储器,用于存储程序代码;该处理器,用于调用该存储器中存储的程序代码,以配合该收发器实现上述第一方面所述方法的步骤,或者,以配合该收发器实现上述第二方面所述方法的步骤。
第六方面,提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序 被处理器执行时实现上述第一方面所述的方法的步骤,或者,该计算机程序被处理器执行时实现上述第二方面所述的方法的步骤。
本申请实施例提供的配置更改方法、装置、通信设备以及存储介质,UE接收网络侧设备发送的配置更改触发条件,并且在对接收到的PRS进行测量得到的测量结果满足该配置更改触发条件的情况下,向网络侧设备发送配置更换请求,以指示网络侧设备更改PRS的配置以及向UE发送PRS的接入网设备的配置中的至少一种,通过对配置的更改,可以在信号传输环境较为恶劣时,改善PRS的传输质量,从而提升UE定位的准确性。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为一个实施例提供的定位流程的示意图;
图2为一个实施例提供的计算RTT的示意图;
图3为一个实施例提供的三角定位的示意图;
图4为一个实施例提供的实施环境的示意图;
图5为一个实施例提供的配置更改方法的流程图;
图6为一个实施例提供的配置更改方法的流程图;
图7为一个实施例提供的配置更改方法的流程图
图8为一个实施例提供的配置更改装置的框图;
图9为一个实施例提供的配置更改装置的框图;
图10为一个实施例提供的通信设备的框图;
图11为一个实施例提供的芯片的示意性结构图;
图12为一个实施例提供的一种通信系统的示意性框图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在通信领域中,定位技术是指通过某种方法确定位于通信网络中的某节点,特别是用户设备(英文:User Equipment,简称:UE)所处地理位置的技术。为了实现对UE的定位,通信系统引入了定位参考信号(英文:Positioning Reference Signal,简称:PRS),通信系统可以基于UE对PRS的测量结果确定UE的位置。
为了使读者便于理解本申请实施例提供的技术方案,下面,本申请实施例将对UE的定位流程进行简要说明,请参考图1,UE的定位流程包括以下步骤:
步骤0、UE驻留小区的接入网设备、UE邻区的接入网设备以及定位管理功能实体(英文:Location Management Function;简称:LMF)交换PRS配置信息(英文:NRPPa DL PRS Configuration)。
需要指出的是,本申请实施例中的接入网设备可以是传输接收节点(英文:transmission reception point,简称:TRP)、基站、中继站或接入点等,接入网设备可以是5G通信系统中的接入网设备,例如,gNB。
PRS配置信息例如可以包括承载PRS的通信资源的时频位置、PRS的发送周期等等,本申请实施例对PRS配置信息的具体内容不进行限定。
步骤1、UE、UE驻留小区的接入网设备、UE邻区的接入网设备以及LMF之间互相交换LTE定位协议(简称:LPP)能力。
步骤2、LMF向UE驻留小区的接入网设备发送定位信息请求(英文:NRPPa Positioning Information Request)。
步骤3、UE驻留小区的接入网设备决定承载上行信道探测参考信号(英文:Sounding Reference Signal;简称:SRS)的通信资源的时频位置。
步骤3a、UE驻留小区的接入网设备向UE发送SRS配置信息。
其中,该SRS配置信息例如可以包括承载SRS的通信资源的时频位置、SRS的发送周期等,本申请实施例对SRS配置信息的具体内容不进行限定。
步骤4、UE驻留小区的接入网设备向LMF发送定位信息响应(英文:NRPPa Positioning Information Response)。
其中,该定位信息响应携带SRS配置信息。
步骤5a、LMF向UE驻留小区的接入网设备发送定位激活请求(英文:NRPPa Positioning Activation Request)。
步骤5b、UE驻留小区的接入网设备激活UE传输SRS。
步骤5c、UE驻留小区的接入网设备向LMF发送定位激活响应(英文:NRPPa Positioning Activation Response)。
步骤6、LMF向UE驻留小区的接入网设备以及UE邻区的接入网设备发送测量请求(英文:NRPPa Measurement Request)。
其中,该测量请求携带SRS配置信息。
步骤7、LMF向UE发送LPP辅助数据(英文:LPP Provide Assistance Data)。
该LPP辅助数据包括UE驻留小区的接入网设备的PRS配置信息以及UE邻区的接入网设备的PRS配置信息。
步骤8、LMF向UE发送LPP请求位置信息(英文:LPP Request Location Information)。
步骤9a、UE对UE驻留小区的接入网设备以及UE邻区的接入网设备发送的PRS进行测量。
步骤9b、UE驻留小区的接入网设备以及UE邻区的接入网设备对UE发送的SRS进行测量。
步骤10、UE向LMF发送LPP提供位置信息(英文:LPP Provide Location Information)。
步骤11、UE驻留小区的接入网设备以及UE邻区的接入网设备向LMF发送测量响应(英文:NRPPa Measurement Response)。
步骤12、LMF向UE驻留小区的接入网设备发送定位去激活信息(英文:NRPPa Positioning Deactivation)。
需要说明的是,图1所示的定位流程为多往返时延(英文:multi Round-Trip Time;简称:multi RTT)定位技术所涉及到的定位流程。
在图1所示的定位流程中,LMF需要在步骤7中将UE驻留小区的接入网设备的PRS配置信息以及UE邻区的接入网设备的PRS配置信息发送至UE,UE需要根据接收到的PRS配置信息对UE驻留小区的接入网设备以及UE邻区的接入网设备发送的PRS分别进行测量(步骤9a),从而得到探测到UE驻留小区的接入网设备发送的PRS的第一时间戳以及探测到UE邻区的接入网设备发送的PRS的第二时间戳,除此以外,UE还可以获取自身发送SRS的第三时间戳,UE可以将第一时间戳与第三时间戳之间的差值以及第二时间戳与第三时间戳之间的差值上报至LMF(步骤10)。
同时,LMF需要在步骤6中将SRS配置信息发送至UE驻留小区的接入网设备以及UE邻区的接入网设备,UE驻留小区的接入网设备以及UE邻区的接入网设备需要根据SRS配置信息对UE发送的SRS进行测量(步骤9b),通过测量,UE驻留小区的接入网设备可以获取探测到SRS的第四时间戳,UE邻区的接入网设备可以获取探测到SRS的第五时间戳,此外,UE驻留小区的接入网设备还可以获取自身发送PRS的第六时间戳,UE邻区的接入网设备还可以获取自身发送PRS的第七时间戳,UE驻留小区的接入网设备可以将第四时间戳与第六时间戳之间的差值上报至LMF(步骤11),UE邻区的接入网设备可以 将第五时间戳与第七时间戳之间的差值上报至LMF(步骤11)。
请参考图2,LMF可以将第一时间戳与第三时间戳之间的差值以及第四时间戳与第六时间戳之间的差值的和作为UE与UE驻留小区的接入网设备之间的RTT,并基于计算得到的RTT估算UE与UE驻留小区的接入网设备之间的距离。
此外,LMF还可以将第二时间戳与第三时间戳之间的差值以及第五时间戳与第七时间戳之间的差值的和作为UE与UE邻区的接入网设备之间的RTT,并基于计算得到的RTT估算UE与UE邻区的接入网设备之间的距离。
在UE驻留小区的接入网设备以及UE邻区的接入网设备的数量为至少3个的情况下,LMF可以利用UE与UE邻区的接入网设备之间的距离以及UE与UE驻留小区的接入网设备之间的距离,基于三角定位法对UE的位置进行估计。其中,图3为三角定位法原理的示意图。
根据上文叙述可知,UE对PRS的测量极大地影响着UE定位的准确性,然而,由于PRS的传输会受到通信网络的信号传输环境的影响,因此,在信号传输环境较为恶劣时,对UE的定位往往并不准确。
有鉴于此,本申请实施例提供了一种配置更改方法、装置、通信设备以及存储介质,在该配置更改方法中,UE可以接收网络侧设备发送的配置更改触发条件,并且在对接收到的PRS进行测量得到的测量结果满足该配置更改触发条件的情况下,向网络侧设备发送配置更换请求,以指示网络侧设备更改PRS的配置以及向UE发送PRS的接入网设备的配置中的至少一种,通过对配置的更改,可以在信号传输环境较为恶劣时,改善PRS的传输质量,从而提升UE定位的准确性。
请参考图4,其示出了本申请实施例提供的配置更改方法所涉及到的实施环境的示意图,如图4所示,该实施环境包括UE401、UE401驻留小区的接入网设备402、UE401邻区的接入网设备403以及网络侧设备404,其中,该网络侧设备404可以为LMF。
如上文所述,接入网设备402以及接入网设备403均可以按照各自当前的PRS配置向UE401发送PRS,UE401可以对接入网设备402以及接入网设备403发送的PRS进行测量。
为了实现三角定位,在本申请实施例中,接入网设备402以及接入网设备403的数量至少为3个。
其中,UE401可以包括PDA(中文:个人数字处理,英文:personal digital assistant)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的用户设备或未来演进的PLMN(中文:公共陆地移动网络,英文:public land mobile network)网络中的用户设备等。
接入网设备402以及接入网设备403可以是TRP、基站、中继站或接入点等,接入网设备可以是5G通信系统中的接入网设备或未来演进网络中的接入网设备,还可以是可穿戴设备或车载设备等,另外还可以是:GSM或CDMA网络中的BTS(中文:基站收发信台,英文:base transceiver station),也可以是WCDMA中的NB(NodeB),还可以是LTE中的eNB或eNodeB(英文全称:evolutional NodeB),接入网设备还可以是CRAN场景下的无线控制器。
请参考图5,其示出了本申请实施例提供的一种配置更改方法的流程图,该配置更改方法应用于图4所示的UE401中,如图5所示,该配置更改方法包括以下步骤:
步骤501、UE接收网络侧设备发送的配置更改触发条件。
在本申请的可选实施例中,网络侧设备可以为LMF。
在本申请的可选实施例中,网络侧设备可以针对UE的最终定位结果发送配置更改触发条件,也可以针对各个PRS传输链路分别发送配置更改触发条件。
其中,在针对各个PRS传输链路分别发送配置更改触发条件的情况下,各PRS传输 链路对应的配置更改触发条件可以完全一致,也可以部分一致,还可以完全不一致,本申请实施例对此不作具体限定。
步骤502、若对接收到的PRS进行测量得到的测量结果满足配置更改触发条件,则UE向网络侧设备发送配置更换请求。
在本申请实施例中,UE可以根据接入网设备当前的PRS配置对PRS进行测量,其中,UE对PRS进行测量得到的测量结果可以包括多项内容,例如,nr-UE-RxTxTimeDiff-r16、nr-DL-PRS-RSRP-Result-r16、nr-DL-PRS-RSRP-ResultDiff-r16、angle等,本申请实施例不对测量结果的具体内容进行限定。
通常情况下,若对PRS进行测量得到的测量结果满足配置更改触发条件,则说明通信网络的信号传输环境较为恶劣,在这种情况下,UE可以向网络侧设备发送配置更换请求,以指示网络侧设备更改PRS的配置以及向UE发送PRS的接入网设备的配置中的至少一种。
其中,更改PRS的配置包括:更改承载PRS的通信资源的时频位置、更改PRS的发送周期等等。
更改向UE发送PRS的接入网设备的配置包括:将当前向UE发送PRS的接入网设备全部更换为新的接入网设备,或者,将当前向UE发送PRS的部分接入网设备更换为新的接入网设备,或者,将当前向UE发送PRS的邻区接入网设备全部更换为新的接入网设备,或者,将当前向UE发送PRS的部分邻区接入网设备更换为新的接入网设备。
需要指出的是,在网络侧设备发送的配置更改触发条件为针对UE的最终定位结果的条件的情况下,UE可以在基于PRS的测量结果确定最终定位结果满足网络侧设备发送的配置更改触发条件的情况下,向网络侧设备发送配置更换请求。
在这种情况下,该配置更换请求可以指示网络侧设备以下内容中的一项:
将当前向UE发送PRS的接入网设备全部更换为新的接入网设备;
将当前向UE发送PRS的部分接入网设备更换为新的接入网设备;
将当前向UE发送PRS的邻区接入网设备全部更换为新的接入网设备;
将当前向UE发送PRS的部分邻区接入网设备更换为新的接入网设备;
更改当前向UE发送PRS的各接入网设备对应的PRS配置;
更改当前向UE发送PRS的部分接入网设备对应的PRS配置;
将当前向UE发送PRS的接入网设备全部更换为新的接入网设备,并为各个新的接入网设备添加对应的PRS配置;
将当前向UE发送PRS的接入网设备部分更换为新的接入网设备,并为各个新的接入网设备添加对应的PRS配置;
将当前向UE发送PRS的邻区接入网设备全部更换为新的接入网设备,并为各个新的接入网设备添加对应的PRS配置;
将当前向UE发送PRS的部分邻区接入网设备更换为新的接入网设备,并为各个新的接入网设备添加对应的PRS配置;
还需要指出的是,在网络侧设备向UE发送针对各个PRS传输链路的配置更改触发条件的情况下,UE可以在确定某PRS传输链路的测量结果满足该PRS传输链路对应的配置更改触发条件的情况下,向网络侧设备发送配置更换请求。
在这种情况下,该配置更换请求可以指示网络侧设备以下内容中的一项:
将测量结果满足对应的配置更改触发条件的PRS传输链路中的接入网设备更换为新的接入网设备;
更改测量结果满足对应的配置更改触发条件的PRS传输链路的PRS配置;
将测量结果满足对应的配置更改触发条件的PRS传输链路中的接入网设备更换为新的接入网设备,并且为新的接入网设备添加PRS配置。
在本申请的可选实施例中,配置更改触发条件包括以下内容中的至少一种:
定位完整性不符合定位完整性指标的条件;
发生配置更换触发事件的条件。
下面,本申请实施例将对以上两种条件分别进行说明:
1、定位完整性不符合定位完整性指标的条件。
为了使读者易于理解上述条件,下面,本申请实施例将对定位完整性的概念进行简要说明:
定位完整性(英文:integrity)是对定位系统(在本申请实施例中也即是通信系统)提供的与位置相关的数据的准确性的信任度以及在定位系统未满足预期操作预期时向客户端提供及时有效警告的能力的一种度量。
一般来说,定位完整性可以基于定位完整性指标(英文:key performance indicator)来衡量,定位完整性指标一般包括警告水平(英文:alert level;简称:AL)、警报时长(英文:time-to-alert;简称:TTA)以及目标完整率(英文:target integrity rate;简称:TIR)。
通常来说,UE可以在考虑定位系统可能面临的一系列顾虑事件(英文:feared event)的基础上计算得出保护水平(英文:protection level;简称:PL),其中,PL是定位误差的统计上限,一般而言,TIR设置的越低,计算PL时需要考虑到的feared event也就越多。
在实际应用中,feared event可以分为两类:fault feared event(由于故障所造成的顾虑事件)和fault-free feared event(不是由于故障所造成的顾虑事件)。由于故障所造成的feared event是定位系统固有的事件,通常是由定位系统的某个元件的故障(例如卫星网络或地面网络故障)引起的。而当定位系统输入错误时,会发生fault-free feared event,但是该事件不是由定位系统的故障引起的,例如,在GNSS环境中,fault-free feared event包括每天经历的常规时间,例如不良的卫星地理分布,较强的大气梯度和信号中断。
通常来说,当发生PL大于AL的事件,且,该事件持续的时长大于TTA,则定位系统宣告不可用,也即是,定位系统丧失定位完整性。
如上文所述,配置更改触发条件可以包括定位完整性不符合定位完整性指标的条件,其中,根据上文说明可知,定位完整性指标可以包括AL、TTA以及TIR,定位完整性指标可以为网络侧设备自主规定并配置给UE的。
在本申请的可选实施例中,若网络侧设备对于各PRS传输链路分别发送与之对应的配置更改触发条件,则在这种情况下,对于任一PRS传输链路,若基于测量结果确定UE在该PRS传输链路上所获得的定位完整性不符合该PRS传输链路对应的定位完整性指标,则UE可以向网络侧设备发送配置更换请求。
可选的,UE可以根据测量结果,或者,根据测量结果和该PRS传输链路对应的TIR值计算该PRS传输链路对应的PL,若存在PL大于该PRS传输链路对应的AL的事件,且,该事件的持续时长大于该PRS传输链路对应的TTA,则可以确定UE在该PRS传输链路上所获得的定位完整性不符合该PRS传输链路对应的定位完整性指标,在这种情况下,UE可以向网络侧设备发送配置更换请求。
在本申请的可选实施例中,若网络侧设备发送的配置更改触发条件是针对UE的最终定位结果的,则在这种情况下,若基于测量结果确定UE的最终定位结果的定位完整性不符合UE最终定位结果对应的定位完整性指标,则UE可以向网络侧设备发送配置更换请求。
可选的,UE可以根据测量结果,或者,根据测量结果和UE最终定位结果对应的TIR计算UE最终定位结果对应的PL,若存在PL大于UE最终定位结果对应的AL的事件,且,该事件的持续时长大于UE最终定位结果对应的TTA,则可以确定UE的最终定位结果的定位完整性不符合UE最终定位结果对应的定位完整性指标,在这种情况下,UE可以向网络侧设备发送配置更换请求。
2、发生配置更换触发事件的条件。
配置更换触发事件可以包括上文所述的顾虑事件以及接收信号包络所满足的莱斯分布中的K因子小于目标阈值的事件中的至少一种,顾虑事件已经在上文中进行了说明,在此本申请实施例不再赘述。
为了使读者易于理解“接收信号包络所满足的莱斯分布中的K因子小于目标阈值的事件”,下面,本申请实施例将从多径效应出发进行简要说明:
多径效应(英文:multipath effect)是指电磁波经不同路径传播后,各分量场到达接收端时间不同,按各自相位相互叠加而造成干扰的现象。其中,电磁波的不同传播路径可以包括非视距路径和视距路径两种,非视距(英文:non line of sight;简称:NLOS)是指接收端和发射端之间非直接的点对点的通信,非视距最直接的解释是通信的两点视线受阻,彼此看不到对方,视距(英文:line of sight;简称:LOS)是指信号无遮挡地在发信端与接收端之间直线传播。
在通信领域中,一般可以利用莱斯分布来反映接收信号包络的分布,其中,莱斯分布中的K因子可以反映接收信号中LOS路径的分量场在接收端接收到的信号中能量的含量占比,通常来说,K因子的值越高,说明LOS路径的分量场在接收端接收到的信号中能量的含量占比越高。
其中,莱斯分布的数学表达式为:
Figure PCTCN2021123872-appb-000001
在上述数学表达式中,k d为K因子,α i是衰减因子(英文:attenuationfactor),ω c为载波*2π,φ i是第i个多径反射波与视距信号的相对相位,N为多径反射波的数量,t为时刻。
一般来说,UE可以根据对PRS的测量结果计算得到K因子。
如上文所述,配置更换触发事件可以包括接收信号包络所满足的莱斯分布中的K因子小于目标阈值的事件,其中,目标阈值可以为网络侧设备自主规定并配置给UE的。
在本申请的可选实施例中,若根据PRS的测量结果确定任一PRS传输链路发生对应的配置更换触发事件,则UE可以向网络侧设备发送配置更换请求。
需要指出的是,可选的,UE向网络侧设备发送的配置更换请求可以携带以下标识中的至少一项:当前PRS的配置的标识、当前向UE发送PRS的接入网设备的配置的标识、发生的配置更换触发事件的标识和不符合定位完整性指标的标识。
其中,当前PRS的配置的标识以及当前向UE发送PRS的接入网设备的配置的标识可以为但不限于以下标识:
dl-PRS-ID-r16、INTEGER(0..255)、nr-PhysCellID-r16、NR-PhysCellID-r16、nr-CellGlobalID-r16、NCGI-r15。
在本申请的可选实施例中,在向网络侧设备发送配置更换请求之后,UE可以接收网络侧设备基于配置更换请求发送的配置更换信息,其中,该配置更换信息用于指示更改后的PRS的配置以及更改后的向UE发送PRS的接入网设备的配置中的至少一种。
UE在接收到该配置更换信息之后,可以释放原有的PRS的配置以及向UE发送PRS的接入网设备的配置中的至少一种,并且基于该配置更换信息的指示接收PRS。
在本申请的可选实施例中,该配置更换信息可以为LPP提供协助数据(英文:LPP provide assistance data)信令。
请参考图6,其示出了本申请实施例提供的一种配置更改方法的流程图,该配置更改方法应用于图4所示的网络侧设备404中,如图6所示,该配置更改方法包括以下步骤:
步骤601、网络侧设备向UE发送配置更改触发条件。
其中,配置更改触发条件已在上文中进行了说明,本申请实施例在此不再赘述。
步骤602、网络侧设备接收UE发送的配置更换请求。
其中,该配置更换请求是UE在对接收到的PRS进行测量得到的测量结果满足该配置更改触发条件后发送的。
其中,配置更换请求已在上文中进行了说明,本申请实施例在此不再赘述。
步骤603、网络侧设备基于配置更换请求为UE更改以下配置中的至少一种:
PRS的配置;
向UE发送PRS的接入网设备的配置。
其中,需要指出的是,在网络侧设备发送的配置更改触发条件为针对UE的最终定位结果的条件的情况下,网络侧设备更改配置包括以下内容中的一项:
将当前向UE发送PRS的接入网设备全部更换为新的接入网设备;
将当前向UE发送PRS的部分接入网设备更换为新的接入网设备;
将当前向UE发送PRS的邻区接入网设备全部更换为新的接入网设备;
将当前向UE发送PRS的部分邻区接入网设备更换为新的接入网设备;
更改当前向UE发送PRS的各接入网设备对应的PRS配置;
更改当前向UE发送PRS的部分接入网设备对应的PRS配置;
将当前向UE发送PRS的接入网设备全部更换为新的接入网设备,并为各个新的接入网设备添加对应的PRS配置;
将当前向UE发送PRS的接入网设备部分更换为新的接入网设备,并为各个新的接入网设备添加对应的PRS配置;
将当前向UE发送PRS的邻区接入网设备全部更换为新的接入网设备,并为各个新的接入网设备添加对应的PRS配置;
将当前向UE发送PRS的部分邻区接入网设备更换为新的接入网设备,并为各个新的接入网设备添加对应的PRS配置。
还需要指出的是,在网络侧设备向UE发送针对各个PRS传输链路的配置更改触发条件的情况下,网络侧设备更改配置包括以下内容中的一项:
将测量结果满足对应的配置更改触发条件的PRS传输链路中的接入网设备更换为新的接入网设备;
更改测量结果满足对应的配置更改触发条件的PRS传输链路的PRS配置;
将测量结果满足对应的配置更改触发条件的PRS传输链路中的接入网设备更换为新的接入网设备,并且为新的接入网设备添加对应的PRS配置。
在本申请的可选实施例中,网络侧设备基于配置更换请求为UE更改PRS的配置以及向UE发送PRS的接入网设备的配置中的至少一种,包括以下内容:网络侧设备向UE发送配置更换信息,其中,该配置更换信息用于指示更改后的PRS的配置以及更改后的向UE发送PRS的接入网设备的配置中的至少一种。
请参考图7,其示出了本申请实施例提供的一种配置更改方法的流程图,该配置更改方法应用于图4所示的实施环境中,如图7所示,该配置更改方法包括以下步骤:
步骤701、LMF向UE发送配置更改触发条件。
步骤702、UE接收LMF发送的配置更改触发条件。
步骤703、UE对驻留小区的接入网设备以及邻区的接入网设备发送的PRS进行测量。
步骤704、若对PRS进行测量得到的测量结果满足配置更改触发条件,则UE向LMF发送配置更换请求。
步骤705、LMF基于配置更换请求向UE发送配置更换信息。
其中,该配置更换信息用于指示更改后的PRS的配置以及更改后的向UE发送PRS 的接入网设备的配置中的至少一种。
步骤706、UE接收LMF发送的配置更换信息。
步骤707、UE释放原有的PRS的配置以及向UE发送PRS的接入网设备的配置中的至少一种,并且基于该配置更换信息的指示接收PRS。
步骤708、UE基于接收到的PRS向LMF发送定位测量报告。
例如,该定位测量报告可以为接收PRS的时间戳和发送SRS的时间戳的差值。
应该理解的是,虽然图5-7的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图5-7中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
请参考图8,其示出了本申请实施例提供的一种配置更改装置800的示意图,如图8所示,该配置更改装置800包括接收模块801以及发送模块802。
其中,该接收模块801,用于接收网络侧设备发送的配置更改触发条件。
该发送模块802,用于若对接收到的PRS进行测量得到的测量结果满足该配置更改触发条件,则向该网络侧设备发送配置更换请求。
该配置更换请求用于指示该网络侧设备更改PRS的配置以及向该UE发送PRS的接入网设备的配置中的至少一种。
在本申请的可选实施例中,该接收模块801,具体用于:接收该网络侧设备发送的各PRS传输链路分别对应的该配置更改触发条件;或者,
接收该网络侧设备发送的针对该UE的最终定位结果的该配置更改触发条件。
在本申请的可选实施例中,该配置更改触发条件包括以下内容中的至少一种:
定位完整性不符合定位完整性指标的条件;
发生配置更换触发事件的条件。
在本申请的可选实施例中,该定位完整性指标包括:
警告水平AL值;
目标完整率TIR值;
警报时长TTA值。
在本申请的可选实施例中,该配置更换触发事件包括:
顾虑事件以及接收信号包络所满足的莱斯分布中的K因子小于目标阈值的事件中的至少一种。
在本申请的可选实施例中,该发送模块802,具体用于:对于任一PRS传输链路,若基于该测量结果确定该UE在该PRS传输链路上所获得的定位完整性不符合该PRS传输链路对应的定位完整性指标,则向该网络侧设备发送该配置更换请求。
在本申请的可选实施例中,该发送模块802,具体用于:根据该测量结果,或者,根据该测量结果以及该PRS传输链路对应的TIR值计算该PRS传输链路对应的保护水平PL值;若存在PL值大于该PRS传输链路对应的AL值的事件,且,该事件的持续时长大于该PRS传输链路对应的TTA值,则向该网络侧设备发送该配置更换请求。
在本申请的可选实施例中,该发送模块802,具体用于:若基于该测量结果确定该最终定位结果的定位完整性不符合该最终定位结果对应的定位完整性指标,则向该网络侧设备发送该配置更换请求。
在本申请的可选实施例中,该发送模块802,具体用于:根据该测量结果,或者,根据该测量结果和该最终定位结果对应的TIR值计算该最终定位结果对应的PL值,若存在 PL值大于该最终定位结果对应的AL值的事件,且,该事件的持续时长大于该最终定位结果对应的TTA值,则向该网络侧设备发送该配置更换请求。
在本申请的可选实施例中,该发送模块802,具体用于:若根据该测量结果确定任一PRS传输链路发生对应的配置更换触发事件,则向该网络侧设备发送该配置更换请求。
在本申请的可选实施例中,该配置更换请求携带以下标识中的至少一项:当前PRS的配置的标识、当前向该UE发送PRS的接入网设备的配置的标识、发生的配置更换触发事件的标识和不符合定位完整性指标的标识。
在本申请的可选实施例中,该接收模块801,还用于:接收该网络侧设备基于该配置更换请求发送的配置更换信息,该配置更换信息用于指示更改后的PRS的配置以及更改后的向该UE发送PRS的接入网设备的配置中的至少一种;基于该配置更换信息的指示接收PRS。
在本申请的可选实施例中,该网络侧设备为LMF网元。
上述实施例提供的一种配置更改装置,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
关于配置更改装置的具体限定可以参见上文中对于配置更改方法的限定,在此不再赘述。上述配置更改装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
请参考图9,其示出了本申请实施例提供的一种配置更改装置900的示意图,如图9所示,该配置更改装置900包括发送模块901、接收模块902以及配置模块903。
其中,该发送模块901,用于向UE发送配置更改触发条件。
该接收模块902,用于接收该UE发送的配置更换请求,该配置更换请求是该UE在对接收到的PRS进行测量得到的测量结果满足该配置更改触发条件后发送的。
该配置模块903,用于基于该配置更换请求为该UE更改PRS的配置以及向该UE发送PRS的接入网设备的配置中的至少一种。
在本申请的可选实施例中,该配置模块903,具体用于:向该UE发送配置更换信息;其中,该配置更换信息用于指示更改后的PRS的配置以及更改后的向该UE发送PRS的接入网设备的配置中的至少一种。
在本申请的可选实施例中,该网络侧设备为LMF网元。
上述实施例提供的一种配置更改装置,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
关于配置更改装置的具体限定可以参见上文中对于配置更改方法的限定,在此不再赘述。上述配置更改装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供了一种通信设备,该通信设备可以是网络侧设备或者终端,其内部结构图可以如图10所示,图10为一个实施例中通信设备的内部结构图。该通信设备包括通过内部链接通路(例如系统总线)连接的处理器、存储器和收发器。其中,该通信设备的处理器用于提供计算和控制能力。该通信设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该通信设备的收发器用于与外部设备进行有线或无线方式的通信,无线方式可运营商网络或其他技术实现。该计算机程序被处理器执行时以实现一种配置更改方法。
本领域技术人员可以理解,图10中示出的结构,仅仅是与本申请方案相关的部分结 构的框图,并不构成对本申请方案所应用于其上的通信设备的限定,具体的通信设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,提供了一种通信设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现以下步骤:
接收网络侧设备发送的配置更改触发条件;若对接收到的PRS进行测量得到的测量结果满足该配置更改触发条件,则向该网络侧设备发送配置更换请求;该配置更换请求用于指示该网络侧设备更改PRS的配置以及向该UE发送PRS的接入网设备的配置中的至少一种。
在其中一个实施例中,该处理器执行计算机程序时还实现以下步骤:接收该网络侧设备发送的各PRS传输链路分别对应的该配置更改触发条件;或者,接收该网络侧设备发送的针对该UE的最终定位结果的该配置更改触发条件。
在其中一个实施例中,该配置更改触发条件包括以下内容中的至少一种:
定位完整性不符合定位完整性指标的条件;
发生配置更换触发事件的条件。
在其中一个实施例中,该定位完整性指标包括:
警告水平AL值;
目标完整率TIR值;
警报时长TTA值。
在其中一个实施例中,该配置更换触发事件包括:
顾虑事件以及接收信号包络所满足的莱斯分布中的K因子小于目标阈值的事件中的至少一种。
在其中一个实施例中,该处理器执行计算机程序时还实现以下步骤:对于任一PRS传输链路,若基于该测量结果确定该UE在该PRS传输链路上所获得的定位完整性不符合该PRS传输链路对应的定位完整性指标,则向该网络侧设备发送该配置更换请求。
在其中一个实施例中,该处理器执行计算机程序时还实现以下步骤:根据该测量结果,或者,根据该测量结果以及该PRS传输链路对应的TIR值计算该PRS传输链路对应的保护水平PL值;若存在PL值大于该PRS传输链路对应的AL值的事件,且,该事件的持续时长大于该PRS传输链路对应的TTA值,则向该网络侧设备发送该配置更换请求。
在其中一个实施例中,该处理器执行计算机程序时还实现以下步骤:若基于该测量结果确定该最终定位结果的定位完整性不符合该最终定位结果对应的定位完整性指标,则向该网络侧设备发送该配置更换请求。
在其中一个实施例中,该处理器执行计算机程序时还实现以下步骤:根据该测量结果,或者,根据该测量结果和该最终定位结果对应的TIR值计算该最终定位结果对应的PL值,若存在PL值大于该最终定位结果对应的AL值的事件,且,该事件的持续时长大于该最终定位结果对应的TTA值,则向该网络侧设备发送该配置更换请求。
在其中一个实施例中,该处理器执行计算机程序时还实现以下步骤:若根据该测量结果确定任一PRS传输链路发生对应的配置更换触发事件,则向该网络侧设备发送该配置更换请求。
在其中一个实施例中,该配置更换请求携带以下标识中的至少一项:当前PRS的配置的标识、当前向该UE发送PRS的接入网设备的配置的标识、发生的配置更换触发事件的标识和不符合定位完整性指标的标识。
在其中一个实施例中,该处理器执行计算机程序时还实现以下步骤:接收该网络侧设备基于该配置更换请求发送的配置更换信息,该配置更换信息用于指示更改后的PRS的配置以及更改后的向该UE发送PRS的接入网设备的配置中的至少一种;基于该配置更换信息的指示接收PRS。
在其中一个实施例中,该网络侧设备为LMF网元。
上述实施例提供的一种通信设备,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
在一个实施例中,提供了一种通信设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现以下步骤:
向UE发送配置更改触发条件;接收该UE发送的配置更换请求,该配置更换请求是该UE在对接收到的PRS进行测量得到的测量结果满足该配置更改触发条件后发送的;基于该配置更换请求为该UE更改PRS的配置以及向该UE发送PRS的接入网设备的配置中的至少一种。
在其中一个实施例中,该处理器执行计算机程序时还实现以下步骤:向该UE发送配置更换信息;其中,该配置更换信息用于指示更改后的PRS的配置以及更改后的向该UE发送PRS的接入网设备的配置中的至少一种。
在其中一个实施例中,该网络侧设备为LMF网元。
上述实施例提供的一种通信设备,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下步骤:
接收网络侧设备发送的配置更改触发条件;若对接收到的PRS进行测量得到的测量结果满足该配置更改触发条件,则向该网络侧设备发送配置更换请求;该配置更换请求用于指示该网络侧设备更改PRS的配置以及向该UE发送PRS的接入网设备的配置中的至少一种。
在其中一个实施例中,计算机程序被处理器执行时还实现以下步骤:接收该网络侧设备发送的各PRS传输链路分别对应的该配置更改触发条件;或者,接收该网络侧设备发送的针对该UE的最终定位结果的该配置更改触发条件。
在其中一个实施例中,该配置更改触发条件包括以下内容中的至少一种:
定位完整性不符合定位完整性指标的条件;
发生配置更换触发事件的条件。
在其中一个实施例中,该定位完整性指标包括:
警告水平AL值;
目标完整率TIR值;
警报时长TTA值。
在其中一个实施例中,该配置更换触发事件包括:
顾虑事件以及接收信号包络所满足的莱斯分布中的K因子小于目标阈值的事件中的至少一种。
在其中一个实施例中,计算机程序被处理器执行时还实现以下步骤:对于任一PRS传输链路,若基于该测量结果确定该UE在该PRS传输链路上所获得的定位完整性不符合该PRS传输链路对应的定位完整性指标,则向该网络侧设备发送该配置更换请求。
在其中一个实施例中,计算机程序被处理器执行时还实现以下步骤:根据该测量结果,或者,根据该测量结果以及该PRS传输链路对应的TIR值计算该PRS传输链路对应的保护水平PL值;若存在PL值大于该PRS传输链路对应的AL值的事件,且,该事件的持续时长大于该PRS传输链路对应的TTA值,则向该网络侧设备发送该配置更换请求。
在其中一个实施例中,计算机程序被处理器执行时还实现以下步骤:若基于该测量结果确定该最终定位结果的定位完整性不符合该最终定位结果对应的定位完整性指标,则向该网络侧设备发送该配置更换请求。
在其中一个实施例中,计算机程序被处理器执行时还实现以下步骤:根据该测量结果,或者,根据该测量结果和该最终定位结果对应的TIR值计算该最终定位结果对应的PL值,若存在PL值大于该最终定位结果对应的AL值的事件,且,该事件的持续时长大于该最终定位结果对应的TTA值,则向该网络侧设备发送该配置更换请求。
在其中一个实施例中,计算机程序被处理器执行时还实现以下步骤:若根据该测量结果确定任一PRS传输链路发生对应的配置更换触发事件,则向该网络侧设备发送该配置更换请求。
在其中一个实施例中,该配置更换请求携带以下标识中的至少一项:当前PRS的配置的标识、当前向该UE发送PRS的接入网设备的配置的标识、发生的配置更换触发事件的标识和不符合定位完整性指标的标识。
在其中一个实施例中,计算机程序被处理器执行时还实现以下步骤:接收该网络侧设备基于该配置更换请求发送的配置更换信息,该配置更换信息用于指示更改后的PRS的配置以及更改后的向该UE发送PRS的接入网设备的配置中的至少一种;基于该配置更换信息的指示接收PRS。
在其中一个实施例中,该网络侧设备为LMF网元。
上述实施例提供的一种计算机可读存储介质,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下步骤:
向UE发送配置更改触发条件;接收该UE发送的配置更换请求,该配置更换请求是该UE在对接收到的PRS进行测量得到的测量结果满足该配置更改触发条件后发送的;基于该配置更换请求为该UE更改PRS的配置以及向该UE发送PRS的接入网设备的配置中的至少一种。
在其中一个实施例中,计算机程序被处理器执行时实现以下步骤:向该UE发送配置更换信息;其中,该配置更换信息用于指示更改后的PRS的配置以及更改后的向该UE发送PRS的接入网设备的配置中的至少一种。
在其中一个实施例中,该网络侧设备为LMF网元。
上述实施例提供的一种计算机可读存储介质,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
图11是本申请实施例的芯片的示意性结构图。图11所示的芯片1100包括处理器1110,处理器1110可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图11所示,芯片1100还可以包括存储器1120。其中,处理器1110可以从存储器1120中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1120可以是独立于处理器1110的一个单独的器件,也可以集成在处理器1110中。
可选地,该芯片1100还可以包括输入接口1130。其中,处理器1110可以控制该输入接口1130与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1100还可以包括输出接口1140。其中,处理器1110可以控制该输出接口1140与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络侧设备,并且该芯片可以实现本申请实施例的各个方法中由网络侧设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的UE,并且该芯片可以实现本申请实施例的各个方法中由UE实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图12是本申请实施例提供的一种通信系统1200的示意性框图。如图12所示,该通信系统1200包括UE1210和网络侧设备1220。
其中,该UE1210可以用于实现上述方法中由UE实现的相应的功能,以及该网络侧设备1220可以用于实现上述方法中由网络侧设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络侧设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络侧设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的UE,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由UE实现的相应流程,为了简洁,在此不再 赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络侧设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络侧设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的UE,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由UE实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (23)

  1. 一种配置更改方法,其特征在于,用于UE中,所述方法包括:
    接收网络侧设备发送的配置更改触发条件;
    若对接收到的PRS进行测量得到的测量结果满足所述配置更改触发条件,则向所述网络侧设备发送配置更换请求;
    所述配置更换请求用于指示所述网络侧设备更改PRS的配置以及向所述UE发送PRS的接入网设备的配置中的至少一种。
  2. 根据权利要求1所述的方法,其特征在于,所述接收网络侧设备发送的配置更改触发条件,包括:
    接收所述网络侧设备发送的各PRS传输链路分别对应的所述配置更改触发条件;或者,
    接收所述网络侧设备发送的针对所述UE的最终定位结果的所述配置更改触发条件。
  3. 根据权利要求2所述的方法,其特征在于,所述配置更改触发条件包括以下内容中的至少一种:
    定位完整性不符合定位完整性指标的条件;
    发生配置更换触发事件的条件。
  4. 根据权利要求3所述的方法,其特征在于,所述定位完整性指标包括:
    警告水平AL值;
    目标完整率TIR值;
    警报时长TTA值。
  5. 根据权利要求3所述的方法,其特征在于,所述配置更换触发事件包括:
    顾虑事件以及接收信号包络所满足的莱斯分布中的K因子小于目标阈值的事件中的至少一种。
  6. 根据权利要求4所述的方法,其特征在于,所述若对当前接收到的PRS进行测量得到的测量结果满足所述配置更改触发条件,则向所述网络侧设备发送配置更换请求,包括:
    对于任一PRS传输链路,若基于所述测量结果确定所述UE在所述PRS传输链路上所获得的定位完整性不符合所述PRS传输链路对应的定位完整性指标,则向所述网络侧设备发送所述配置更换请求。
  7. 根据权利要求6所述的方法,其特征在于,所述若基于所述测量结果确定所述UE在所述PRS传输链路上所获得的定位完整性不符合所述PRS传输链路对应的定位完整性指标,则向所述网络侧设备发送所述配置更换请求,包括:
    根据所述测量结果,或者,根据所述测量结果以及所述PRS传输链路对应的TIR值计算所述PRS传输链路对应的保护水平PL值;
    若存在PL值大于所述PRS传输链路对应的AL值的事件,且,所述事件的持续时长大于所述PRS传输链路对应的TTA值,则向所述网络侧设备发送所述配置更换请求。
  8. 根据权利要求4所述的方法,其特征在于,所述若对当前接收到的PRS进行测量得到的测量结果满足所述配置更改触发条件,则向所述网络侧设备发送配置更换请求,包括:
    若基于所述测量结果确定所述最终定位结果的定位完整性不符合所述最终定位结果对应的定位完整性指标,则向所述网络侧设备发送所述配置更换请求。
  9. 根据权利要求8所述的方法,其特征在于,所述若基于所述测量结果确定所述最终定位结果的定位完整性不符合所述最终定位结果对应的定位完整性指标,则向所述网络侧设备发送所述配置更换请求,包括:
    根据所述测量结果,或者,根据所述测量结果和所述最终定位结果对应的TIR值计算所述最终定位结果对应的PL值,若存在PL值大于所述最终定位结果对应的AL值的事件,且,所述事件的持续时长大于所述最终定位结果对应的TTA值,则向所述网络侧设备发送所述配置更换请求。
  10. 根据权利要求3或5所述的方法,其特征在于,所述若对当前接收到的PRS进行测量得到的测量结果满足所述配置更改触发条件,则向所述网络侧设备发送配置更换请求,包括:
    若根据所述测量结果确定任一PRS传输链路发生对应的配置更换触发事件,则向所述网络侧设备发送所述配置更换请求。
  11. 根据权利要求3所述的方法,其特征在于,所述配置更换请求携带以下标识中的至少一项:当前PRS的配置的标识、当前向所述UE发送PRS的接入网设备的配置的标识、发生的配置更换触发事件的标识和不符合定位完整性指标的标识。
  12. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    接收所述网络侧设备基于所述配置更换请求发送的配置更换信息,所述配置更换信息用于指示更改后的PRS的配置以及更改后的向所述UE发送PRS的接入网设备的配置中的至少一种;
    基于所述配置更换信息的指示接收PRS。
  13. 根据权利要求1所述的方法,其特征在于,所述网络侧设备为LMF网元。
  14. 一种配置更改方法,其特征在于,用于网络侧设备,所述方法包括:
    向UE发送配置更改触发条件;
    接收所述UE发送的配置更换请求,所述配置更换请求是所述UE在对接收到的PRS进行测量得到的测量结果满足所述配置更改触发条件后发送的;
    基于所述配置更换请求为所述UE更改PRS的配置以及向所述UE发送PRS的接入网设备的配置中的至少一种。
  15. 根据权利要求14所述的方法,其特征在于,所述基于所述配置更换请求为所述UE更改PRS的配置以及向所述UE发送PRS的接入网设备的配置中的至少一种,包括:
    向所述UE发送配置更换信息;
    其中,所述配置更换信息用于指示更改后的PRS的配置以及更改后的向所述UE发送PRS的接入网设备的配置中的至少一种。
  16. 根据权利要求14或15所述的方法,其特征在于,所述网络侧设备为LMF网元。
  17. 一种配置更改装置,其特征在于,所述装置包括:
    接收模块,用于接收网络侧设备发送的配置更改触发条件;
    发送模块,用于若对接收到的PRS进行测量得到的测量结果满足所述配置更改触发条件,则向所述网络侧设备发送配置更换请求;
    所述配置更换请求用于指示所述网络侧设备更改PRS的配置以及向所述UE发送PRS的接入网设备的配置中的至少一种。
  18. 一种配置更改装置,其特征在于,所述装置包括:
    发送模块,用于向UE发送配置更改触发条件;
    接收模块,用于接收所述UE发送的配置更换请求,所述配置更换请求是所述UE在对接收到的PRS进行测量得到的测量结果满足所述配置更改触发条件后发送的;
    配置模块,用于基于所述配置更换请求为所述UE更改PRS的配置以及向所述UE发送PRS的接入网设备的配置中的至少一种。
  19. 一种通信设备,其特征在于,所述通信设备包括处理器、存储器和收发器,所述处理器、所述存储器和所述收发器通过内部连接通路互相通信,其特征在于,
    所述存储器,用于存储程序代码;
    所述处理器,用于调用所述存储器中存储的程序代码,以配合所述收发器实现权利要求1至13中任一项所述方法的步骤,或者,以配合所述收发器实现权利要求14至16中任一项所述方法的步骤。
  20. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至13中任一项所述的方法的步骤,或者,所述计算机程序被处理器执行时实现权利要求14至16中任一项所述的方法的步骤。
  21. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至13中任一项所述方法的步骤,或者,所述计算机程序使得计算机执行如权利要求14至16中任一项所述方法的步骤。
  22. 一种计算机程序产品,包括计算机程序指令,其特征在于,该计算机程序指令使得计算机执行如权利要求1至13中任一项所述方法的步骤,或者,该计算机程序指令使得计算机执行如权利要求14至16中任一项所述方法的步骤。
  23. 一种芯片,包括:处理器,其特征在于,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至13中任一项所述方法的步骤,或者,使得安装有所述芯片的设备执行如权利要求14至16中任一项所述方法的步骤。
PCT/CN2021/123872 2021-10-14 2021-10-14 配置更改方法、装置、通信设备以及存储介质 WO2023060514A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/123872 WO2023060514A1 (zh) 2021-10-14 2021-10-14 配置更改方法、装置、通信设备以及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/123872 WO2023060514A1 (zh) 2021-10-14 2021-10-14 配置更改方法、装置、通信设备以及存储介质

Publications (1)

Publication Number Publication Date
WO2023060514A1 true WO2023060514A1 (zh) 2023-04-20

Family

ID=85987231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123872 WO2023060514A1 (zh) 2021-10-14 2021-10-14 配置更改方法、装置、通信设备以及存储介质

Country Status (1)

Country Link
WO (1) WO2023060514A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111342943A (zh) * 2019-04-29 2020-06-26 维沃移动通信有限公司 Prs资源配置方法、测量间隔配置方法和相关设备
CN111937435A (zh) * 2018-04-05 2020-11-13 瑞典爱立信有限公司 测量间隙通信
WO2020257023A1 (en) * 2019-06-17 2020-12-24 Qualcomm Incorporated Low power periodic and triggered location of a mobile device using control plane optimization
WO2021020952A1 (en) * 2019-08-01 2021-02-04 Samsung Electronics Co.,Ltd. Method and system for performing radio resource management (rrm) measurements by a wtru in a 3gpp networks
CN113316164A (zh) * 2020-02-26 2021-08-27 大唐移动通信设备有限公司 信息传输方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111937435A (zh) * 2018-04-05 2020-11-13 瑞典爱立信有限公司 测量间隙通信
CN111342943A (zh) * 2019-04-29 2020-06-26 维沃移动通信有限公司 Prs资源配置方法、测量间隔配置方法和相关设备
WO2020257023A1 (en) * 2019-06-17 2020-12-24 Qualcomm Incorporated Low power periodic and triggered location of a mobile device using control plane optimization
WO2021020952A1 (en) * 2019-08-01 2021-02-04 Samsung Electronics Co.,Ltd. Method and system for performing radio resource management (rrm) measurements by a wtru in a 3gpp networks
CN113316164A (zh) * 2020-02-26 2021-08-27 大唐移动通信设备有限公司 信息传输方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO: "Discussion on potential positioning enhancements", 3GPP DRAFT; R1-2005381, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 8 August 2020 (2020-08-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051917406 *

Similar Documents

Publication Publication Date Title
KR102524269B1 (ko) 업링크 도달 시간차에 대한 로케이팅 방법 및 그의 장치
US20210219104A1 (en) Positioning method and apparatus
JP7413527B2 (ja) クロックオフセットの決定方法および装置
US20220166531A1 (en) Clock offset determination method, clock offset processing method, device, and system
CN113316164B (zh) 信息传输方法及装置
US11782121B2 (en) Method and device for positioning utilizing beam information
US9848428B2 (en) Positioning of wireless devices
TWI797682B (zh) 用於定位之完整性相關資訊之報告
EP4114074A1 (en) Information transmission method and device
US20230247451A1 (en) Information indication method and apparatus, and communication device
US20220386267A1 (en) Positioning method and apparatus
WO2016152030A1 (ja) 測位方法、測位システム、補正情報生成方法、補正情報生成装置、および測位システムにおける中継局、端末
US11019457B2 (en) Method for reducing wireless positioning error in multi-node system and terminal therefor
US20190285723A1 (en) Terminal positioning method and apparatus
WO2023060514A1 (zh) 配置更改方法、装置、通信设备以及存储介质
EP2168391B1 (en) Method and arrangement for positioning in a mobile telecommunication network
EP3952494B1 (en) Method and device for determining positioning measurement value
CN117957886A (zh) 配置更改方法、装置、通信设备以及存储介质
WO2022141592A1 (zh) 一种定位方法和装置
WO2023241476A1 (zh) 定位完好性确定方法、装置及存储介质
US20230288523A1 (en) Positioning a Device
WO2019191951A1 (zh) 一种网络规划方法及设备
CN117062004A (zh) 一种5g室分基站定位方法及装置
CN115707096A (zh) 一种时间误差信息的更新方法以及相关装置
CN117177353A (zh) 一种信息处理方法、装置及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960251

Country of ref document: EP

Kind code of ref document: A1