WO2023060440A1 - 连接装置、启动电源设备和电瓶夹设备 - Google Patents

连接装置、启动电源设备和电瓶夹设备 Download PDF

Info

Publication number
WO2023060440A1
WO2023060440A1 PCT/CN2021/123318 CN2021123318W WO2023060440A1 WO 2023060440 A1 WO2023060440 A1 WO 2023060440A1 CN 2021123318 W CN2021123318 W CN 2021123318W WO 2023060440 A1 WO2023060440 A1 WO 2023060440A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
connection
signal
detection
terminal
Prior art date
Application number
PCT/CN2021/123318
Other languages
English (en)
French (fr)
Inventor
雷云
张智锋
林建平
Original Assignee
深圳市华思旭科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华思旭科技有限公司 filed Critical 深圳市华思旭科技有限公司
Priority to CN202180102119.8A priority Critical patent/CN117941194A/zh
Priority to PCT/CN2021/123318 priority patent/WO2023060440A1/zh
Publication of WO2023060440A1 publication Critical patent/WO2023060440A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H11/00Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present application relates to the field of electronic technology, in particular to a connection device, a starting power supply device and a battery clip device.
  • the car battery or car engine can be discharged through an external starting power supply to provide ignition current, so that the car can be started successfully.
  • the reverse polarity detection accuracy of the starting power products on the market is not high.
  • the voltage of the car battery is too low, if the user mistakenly connects the battery clip to the car battery in reverse, the existing starting power products may not be able to identify the battery. If the clip is reversed, it will mislead the user to think that the battery clip is connected correctly and turn on the starter power device, which will cause a short circuit fault, which may cause damage to the battery or load device of the starter power supply, and even cause a fire causing property damage and personal injury. and other security incidents.
  • the present application aims at the defect of low detection accuracy of the above-mentioned reverse connection detection circuit, and provides a connection device, a starting power supply device and a battery clamp device.
  • the connection device uses a comparator detection circuit to detect the connection state of the load device, and improves The accuracy and sensitivity of reverse connection detection are improved, thereby improving the safety and reliability of the power output control system.
  • connection device includes a load connection end and a load detection module, the load connection end is used to connect with load equipment.
  • the load detection module is connected to the load connection end, and the load detection module is used to detect the connection state of the load device, and output a corresponding detection signal according to the detected connection state.
  • the load detection module includes a comparator detection circuit.
  • a second aspect of the present application provides a starting power supply device, including: a power supply module and the connection device described in the first aspect above, one end of the connection device is connected to the power module, and the other end is used to connect to a load device.
  • the connection device is used for controlling the discharge output of the power module to the load device according to the connected state of the load device.
  • a third aspect of the present application provides a battery clamp device, comprising: a connecting piece and the connecting device described in the first aspect above, the connecting piece is used for connecting a load device.
  • One end of the connection device is used to connect the power module, and the other end is connected to the connector; the connection device is used to control the discharge output of the power module to the load device according to the connection state of the load device.
  • connection device uses a comparator detection circuit to detect the connection state of the load device, which can improve the accuracy and sensitivity of reverse connection detection, so that the load can be accurately identified even when the battery voltage of the load device is low. Whether there is a reverse connection of the device can significantly improve the safety and reliability of the power output control system.
  • FIG. 1 is a schematic diagram of functional modules of a connection device provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the circuit structure of the discharge output circuit of the connecting device in FIG. 1 .
  • FIG. 3A is a schematic circuit structure diagram of a load detection module of the connection device in FIG. 1 .
  • FIG. 3B is a schematic circuit structure diagram of another load detection module of the connection device in FIG. 1 .
  • FIG. 4 is a schematic diagram of the circuit structure of the detection power supply circuit of the connection device in FIG. 1 .
  • FIG. 5 is a schematic circuit diagram of a control module of the connecting device in FIG. 1 .
  • FIG. 6 is a schematic structural diagram of a starting power supply device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a battery clamp device provided in an embodiment of the present application.
  • the first detection terminal 611 The first detection terminal 611
  • FIG. 1 is a schematic diagram of the functional modules of the connection device provided by the embodiment of the present application.
  • the connection device 100 includes a power connection terminal 10 , a load connection terminal 20 and a switch module 40 .
  • the power connection terminal 10 is used for connecting the power module 200
  • the load connection terminal 20 is used for connecting the load device 300 .
  • the connecting device 100 can be applied to a starting power supply device, and can also be applied to a battery clamp device.
  • the power module 200 includes, but is not limited to, lead-acid batteries, lithium batteries, supercapacitors, and the like.
  • the load device 300 may include a vehicle battery or a vehicle engine, and the vehicle battery includes, but is not limited to, a lead-acid battery, a lithium battery, a supercapacitor, and the like.
  • connection in this application includes the form of physical line connection and/or wireless connection between components to realize the transmission of electric energy.
  • Connection in this application may include direct connection or indirect connection.
  • the power connection terminal can be directly connected to the switch module, and the power supply connection terminal can also be indirectly connected to the switch module through other circuit modules (such as diodes, protection circuits, and detection circuits).
  • the influence switch module realizes the transmission control between the power supply connection end and the load connection end, and the above-mentioned implementation manners are all within the scope of protection of the embodiments of the present application.
  • the power connection terminal 10, the load connection terminal 20, and the switch module 40 constitute the discharge output of the power supply module 200 to the load device 300.
  • the discharge output circuit 11, the switch module 40 is used for conducting or disconnecting the discharge output circuit 11. In this way, the power module 200 can discharge and output the load device 300 through the connecting device 100 .
  • the power supply connection terminal 10 includes a power supply positive connection terminal BAT+ and a power supply negative connection terminal BAT-, wherein the power supply positive connection terminal BAT+ and the power supply negative connection terminal BAT- are used to communicate with the power supply
  • the positive and negative poles of the module 200 are connected in one-to-one correspondence.
  • the power supply module 200 is connected to the connection device 100 through the power connection terminal 10 , so as to provide a working voltage for the connection device 100 , and discharge and output the load device 300 through the switch module 40 .
  • the power supply module 200 may be a built-in power supply module of the starting power supply device.
  • the power module 200 can be an external power device, such as an external starting power device or a power module of other energy storage power devices.
  • the load connection terminal 20 includes a load positive connection terminal CAR+ and a load negative connection terminal CAR-, wherein the load positive connection terminal CAR+ is used to connect with the positive pole of the load device 300, the The load negative connection end CAR-is used to connect with the negative pole of the load device 300 .
  • the load negative connection terminal CAR- is also connected to the ground terminal PGND.
  • the power supply module 200 is a power supply module contained in an external starting power supply device
  • the load device 300 is a vehicle battery or a vehicle engine
  • the external starting power supply device can pass through the power connection terminal 10, the switch module 40, and the load connection terminal 20
  • the discharge output circuit 11 constituted starts the discharge output, that is, provides the starting power supply for the vehicle battery or the vehicle engine.
  • the external starting power supply device provides the starting current for the vehicle engine. It can also be started when the vehicle battery is low.
  • the switch module 40 is electrically connected between the power connection end 10 and the load connection end 20 .
  • the switch module 40 is electrically connected between the power positive connection terminal BAT+ and the load positive connection terminal CAR+.
  • the switch module 40 may also be electrically connected between the power supply negative connection terminal BAT- and the load negative connection terminal CAR-.
  • the switch module 40 may use an electromagnetic relay or a semiconductor power device, such as a MOSFET. In this embodiment, the switch module 40 adopts an electromagnetic relay K1.
  • the connecting device 100 further includes a switch driving module 42 and a driving power module 80 electrically connected to the driving power circuit of the switching module 40 .
  • the driving power supply module 80 is used for providing electric energy to the switch module 40 through the driving power supply circuit.
  • the switch module 40 can receive the electric energy when the driving power circuit is turned on, and conduct the connection between the power connection terminal 10 and the load connection terminal 20 based on the electric energy, thereby The power module 200 is enabled to discharge and output the load device 300 .
  • connection device 100 further includes a control module 50 and a forced output trigger module 70 connected to the control module 50, the forced output trigger module 70 is configured to receive and respond to the user's forced output operation A forced power output signal is generated, and the control module 50 is configured to output a turn-on signal RELAY_EN2 in response to the forced power output signal.
  • the conduction signal RELAY_EN2 is used to conduct the switch module 40 , so as to conduct the connection between the power connection terminal 10 and the load connection terminal 20 .
  • the switch driving module 42 conducts the driving power circuit based on the conducting signal RELAY_EN2 output by the control module 50, so that the switching module 40 can receive the electric energy provided by the driving power module 80 and is in the turn on state, and then turn on the discharge output circuit 11 , that is, turn on the connection between the power connection end 10 and the load connection end 20 .
  • connection device 100 further includes a detection power supply circuit 30 connected to the load positive connection terminal CAR+, and the detection power supply circuit 30 is used to provide a power signal to the load positive connection terminal CAR+ .
  • connection device 100 further includes a load detection module 60, the load detection module 60 is used to detect the access state of the load device 300, and output a corresponding detected state according to the detected access state. Signal.
  • the control module 50 is configured to identify the access state of the load device 300 according to the detection signal, and to control the switch module 40 according to the identified access state, so as to control the power connection The connection status between terminal 10 and the load connection terminal 20.
  • the circuit structure of the load detection module 60 may adopt the circuit structure shown in FIG. 3A .
  • the circuit structure and working principle of the load detection module 60 will be introduced below with reference to FIG. 3A .
  • the load detection module 60 includes a comparator detection circuit 61 .
  • the comparator detection circuit 61 includes a first detection terminal 611 , a second detection terminal 612 and a comparison signal output terminal 613 .
  • the first detection terminal 611 is connected to the load negative connection terminal CAR-.
  • the second detection terminal 612 is connected to the load positive connection terminal CAR+.
  • the comparison signal output terminal 613 is used as a detection signal output terminal of the load detection module 60 , connected to the control module 50 , and used to output the detection signal to the control module 50 .
  • the comparator detection circuit 61 outputs a first comparison signal through the comparison signal output terminal 613 when the load device 300 is reversely connected to the load connection terminal 20; and the load connection terminal 20 is empty Or when the load device 300 is being connected to the load connection terminal 20 , the second comparison signal is output through the comparison signal output terminal 613 .
  • the detection signal includes the first comparison signal and the second comparison signal.
  • the control module 50 suspends the output of the conduction signal RELAY_EN2 based on the first comparison signal, so that the switch module 40 is in an off state, so as to disconnect the power connection terminal 10 and the load connection terminal 20 the connection between.
  • the control module 50 also outputs a turn-on signal RELAY_EN2 to turn on the switch module 40 in response to the power supply forced output signal based on the second comparison signal, thereby turning on the power connection terminal 10 and the load connection connection between terminals 20.
  • the comparator detection circuit 61 further includes a comparator U3A.
  • the non-inverting input terminal 3 of the comparator U3A is connected to the first detection terminal 611
  • the inverting input terminal 2 of the comparator U3A is connected to the second detection terminal 612
  • the output terminal 1 of the comparator U3A It is connected with the comparison signal output terminal 613.
  • the comparator detection circuit 61 also includes a voltage dividing circuit 601 and a voltage dividing circuit 602 .
  • the voltage divider circuit 601 is electrically connected between the first detection terminal 611 and the ground terminal, and the voltage divider circuit 601 is used to divide the voltage of the first detection terminal 611 and provide The non-inverting input terminal 3 of the comparator U3A outputs the first divided voltage signal.
  • the voltage divider circuit 602 is electrically connected between the second detection terminal 612 and the ground terminal, and the voltage divider circuit 602 is used to divide the voltage of the second detection terminal 612 and send the voltage to the comparator
  • the inverting input terminal 2 of U3A outputs the second divided voltage signal.
  • the output terminal 1 of the comparator U3A is connected to the voltage source VCC through a resistor R7, and the output terminal 1 of the comparator U3A is also connected to the comparison signal output terminal 613 through a resistor R18.
  • the voltage dividing circuit 601 includes a resistor R6 and a resistor R14 connected in series, and the voltage dividing circuit 601 outputs the first voltage dividing signal through a connection node between the resistor R6 and the resistor R14.
  • the voltage dividing circuit 602 includes a resistor R23 and a resistor R26 connected in series, and the voltage dividing circuit 602 outputs the second voltage dividing signal through a connection node between the resistor R23 and the resistor R26.
  • the voltage dividing ratio of the voltage dividing circuit 601 and the voltage dividing ratio of the voltage dividing circuit 602 may be equal or similar.
  • the load negative connection terminal CAR- will receive the positive voltage of the load device 300, and the load positive connection terminal CAR+ will receive the negative voltage of the load device 300, therefore, the The voltage of the load negative connection terminal CAR- is higher than the voltage of the load positive connection terminal CAR+, so that the voltage value of the first divided voltage signal is also greater than the voltage value of the second divided voltage signal.
  • the comparator U3A when the voltage of the non-inverting input terminal 3 of the comparator U3A is higher than the voltage of the inverting input terminal 2 of the comparator U3A, the comparator U3A outputs the first comparison signal through its output terminal to The comparison signal output terminal 613, wherein the first comparison signal is a high level signal.
  • the control module 50 is configured to receive and respond to the first comparison signal, recognize that the load device 300 is reversely connected to the load connection terminal 20, and suspend responding to the forced output signal of the power supply. Therefore, the control module 50 suspends outputting the conduction signal RELAY_EN2 to the switch drive module 42 , so as to prevent the switch module 40 from conducting the connection between the power connection terminal 10 and the load connection terminal 20 . In this way, it can be ensured that when the load device 300 is reversely connected to the load connection terminal 20 , the user is prevented from forcibly turning on the discharge output circuit 11 and causing a circuit failure.
  • the load negative connection terminal CAR- When the load device 300 is connected to the load connection terminal 20, that is, the positive pole of the load device 300 is connected to the load positive connection terminal CAR+, and the negative pole of the load device 300 is connected to the load negative connection terminal CAR- , then, the load negative connection terminal CAR- will receive the negative voltage of the load device 300, and the load positive connection terminal CAR+ will receive the positive voltage of the load device 300, therefore, the load negative connection terminal
  • the voltage of CAR- is lower than the voltage of the load positive connection terminal CAR+, so that the voltage value of the first divided voltage signal is also smaller than the voltage value of the second divided voltage signal.
  • the comparator U3A when the voltage of the non-inverting input terminal 3 of the comparator U3A is lower than the voltage of the inverting input terminal 2 of the comparator U3A, the comparator U3A outputs the second comparison signal through its output terminal to The comparison signal output terminal 613, wherein the second comparison signal is a low level signal.
  • the control module 50 receives the second comparison signal, it can output the conduction signal RELAY_EN2 to the switch drive module 42 in response to the power supply forced output signal, thereby conducting the power connection terminal 10 and The connection between the load connection terminals 20 .
  • the load negative connection terminal CAR- does not receive the voltage input by the load device 300, and the non-inverting input terminal 3 of the comparator U3A is connected to the ground terminal through a resistor R6 , the load positive connection terminal CAR+ will receive the power signal provided by the detection power supply circuit 30, therefore, the voltage of the load negative connection terminal CAR- will be lower than the voltage of the load positive connection terminal CAR+, so that all The voltage value of the first divided voltage signal is also smaller than the voltage value of the second divided voltage signal. Then, as mentioned above, the comparator U3A also outputs the second comparison signal to the comparison signal output terminal 613 through its output terminal.
  • the inverting input terminal 2 of the comparator U3A is connected to the first detection terminal 611
  • the non-inverting input terminal 3 of the comparator U3A is connected to the second detection terminal 612 .
  • the first comparison signal is a low level signal
  • the second comparison signal is a high level signal.
  • circuit structure of the load detection module 60' can adopt the circuit structure shown in Fig. 3B.
  • the circuit structure and working principle of the load detection module 60' will be introduced below in conjunction with FIG. 3B.
  • the load detection module 60' includes a first switch element Q16, a reverse connection signal output terminal 614, and the above-mentioned comparator detection circuit 61, wherein the first switch element Q16 Using a transistor, the first switch element Q16 is connected between the reverse connection signal output end 614 and the ground end, and the control end of the first switch element Q16 is also connected to the comparison signal output end 613 .
  • the reverse connection signal output terminal 614 is used as a detection signal output terminal of the load detection module 60 and is connected to the control module 50 .
  • the first switch element Q16 is a high-level conduction transistor.
  • the comparator detection circuit 61 outputs the first comparison signal through the comparison signal output terminal 613, wherein, The first comparison signal is a high level signal.
  • the first switch element Q16 is turned on based on the first comparison signal, so that the reverse connection signal output terminal 614 is connected to the ground terminal through the turned-on first switch element Q16 , so as to output the reverse connection signal ERR_IN.
  • the control module 50 is configured to receive and respond to the reverse connection signal ERR_IN, recognize that the load device 300 is reversely connected to the load connection terminal 20, and suspend responding to the forced power output signal.
  • the control module 50 suspends outputting the conduction signal RELAY_EN2 to the switch drive module 42 , so as to prevent the switch module 40 from conducting the connection between the power connection terminal 10 and the load connection terminal 20 .
  • the detection signal includes the reverse connection signal ERR_IN, and the reverse connection signal ERR_IN is a low-level signal. In this way, it can be ensured that when the load device 300 is reversely connected to the load connection terminal 20 , the user is prevented from forcibly turning on the discharge output circuit 11 and causing a circuit failure.
  • the comparator detection circuit 61 When the load connection terminal 20 is empty or the load device 300 is connected to the load connection terminal 20, as described above, the comparator detection circuit 61 outputs the second comparison signal through the comparison signal output terminal 613 , wherein the second comparison signal is a low level signal.
  • the first switching element Q16 is turned off based on the second comparison signal, so that the reverse connection signal output terminal 614 is suspended, so that the reverse connection signal ERR_IN is not output, and the control module 50 does not receive the reverse connection signal
  • the turn-on signal RELAY_EN2 can be output to the switch driving module 42 in response to the power supply forced output signal, so as to turn on the connection between the power supply connection end 10 and the load connection end 20 .
  • the inverting input terminal 2 of the comparator U3A is connected to the first detection terminal 611
  • the non-inverting input terminal 3 of the comparator U3A is connected to the second detection terminal 612 .
  • the reverse connection signal output terminal 614 does not output a detection signal.
  • the control module 50 does not receive the detection signal, it recognizes that the load device 300 is reversely connected to the load connection terminal 20, and suspends responding to the forced output signal of the power supply.
  • the control module 50 suspends The conduction signal RELAY_EN2 is output to the switch drive module 42 , so that the switch module 40 can be prevented from conducting the connection between the power connection terminal 10 and the load connection terminal 20 . In this way, it can be ensured that when the load device 300 is reversely connected to the load connection terminal 20 , the user is prevented from forcibly turning on the discharge output circuit 11 and causing a circuit failure.
  • the reverse connection signal output terminal 614 outputs a detection signal.
  • the control module 50 receives the detection signal, it recognizes that the load device 300 is connected to the load connection terminal 20, and can output the guide signal to the switch drive module 42 in response to the forced output signal of the power supply.
  • the signal RELAY_EN2 is turned on, so as to conduct the connection between the power connection terminal 10 and the load connection terminal 20 .
  • connection device 100 Due to the high sensitivity of the comparator, even if the user's reverse connection error occurs when the voltage of the load device 300 is very low (for example, less than 0.6V), the connection device 100 provided by the application can also accurately detect the load. The reverse connection state of the device 300 can significantly improve the safety and reliability of the connecting device 100 .
  • the connecting device 100 further includes a voltage stabilizing module (not shown in the figure) connected to the positive connection terminal BAT+ of the power supply, and the voltage stabilizing module is used to receive the The input voltage of the power module 200 is converted to obtain a voltage source VCC with stable voltage, for example, the voltage value is 5V, so as to provide a stable power supply voltage for each functional module of the connection device 100 .
  • the voltage stabilization module can obtain the input voltage and work normally, and output the voltage source VCC to give
  • Each functional module inside the connection device 100 supplies power to enable each functional module to work normally, for example, to supply power to the detection power supply circuit 30 and the control module 50 .
  • the voltage stabilizing module may adopt a DC-DC converter or a linear voltage regulator, such as a low dropout linear voltage regulator (low dropout regulator, LDO).
  • the detection power supply circuit 30 is also connected to the control module 50 .
  • the detection power supply circuit 30 is configured to receive and respond to the enable signal short_EN output by the control module 50 , and output the power signal to the load positive connection terminal CAR+.
  • the circuit structure of the detection power supply circuit 30 can adopt the circuit structure shown in FIG. 4 .
  • the circuit structure and working principle of the detection power supply circuit 30 will be introduced below with reference to FIG. 4 .
  • the detection power supply circuit 30 includes a detection power input terminal 31 , a detection power output terminal 32 , a second switch element Q4 and a third switch element Q5 .
  • the detection power input terminal 31 is connected to the voltage source VCC
  • the detection power output terminal 32 is connected to the load positive connection terminal CAR+.
  • Both the second switch element Q4 and the third switch element Q5 are transistors, and the second switch element Q4 is connected between the detection power input end 31 and the detection power output end 32 .
  • the first connection end 2 of the second switch element Q4 is connected to the detection power input end 31, and the second connection end 3 of the second switch element Q4 is connected to the detection power supply through a diode D10 and a resistor R19.
  • the output terminal 32 and the control terminal 1 of the second switching element Q4 are also connected to the voltage source VCC through a resistor R20.
  • the anode of the diode D10 is connected to the second connection terminal 3 of the second switch element Q4, and the cathode is connected to the resistor R19.
  • the third switch element Q5 is connected between the control terminal 1 and the ground terminal of the second switch element Q4, and the control terminal of the third switch element Q5 is connected to the control module 50 to receive the control module 50
  • the output enable signal short_EN In the embodiment of the present application, the second switch element Q4 adopts a low-level conduction MOS transistor, the third switch element Q5 adopts a high-level conduction transistor, and the enable signal short_EN is a high-level signal.
  • control module 50 is further configured to output the enable signal short_EN to the control terminal of the third switch element Q5 in response to the user's power-on operation, so that the third switch element Q5 turns on is turned on, so that the control end of the second switch element Q4 is connected to the ground end through the turned-on third switch element Q5, so that the second switch element Q4 is turned on.
  • the load positive connection terminal CAR+ is connected to the voltage source VCC through the resistor R19, the diode D10 and the turned-on second switching element Q4, thereby receiving the the power signal described above.
  • the second detection terminal 612 of the load detection module 60 receives the power signal through the load positive connection terminal CAR+, and the first detection terminal 611 The ground terminal is connected to a low level, so that the comparison signal output terminal 613 outputs the second comparison signal.
  • the detection power supply circuit 30 may not include the third switch element Q5, the control terminal 1 of the second switch element Q4 is connected to the control module 50, and the second switch The control terminal 1 of the element Q4 receives the enable signal short_EN and is turned on, so that the load positive connection terminal CAR+ receives the power signal.
  • the enable signal short_EN is a low level signal.
  • control module 50 is further configured to output the enable signal short_EN to the detection power supply circuit 30 in response to the power supply forced output signal, so that the detection power supply circuit 30 supplies The load positive connection terminal CAR+ outputs a power signal.
  • connection device 100 applied to the starting power supply equipment and the load equipment 300 as the starting motor of the car As an example, when the car battery is removed, when the user directly connects the starting motor to the load connection terminal 20 Forced output operation, the second detection terminal 612 receives the power supply signal, the first detection terminal 611 is connected to the ground terminal, then the voltage value of the second divided voltage signal is greater than the first divided voltage signal The voltage value of the pressure signal. Therefore, the comparator detection circuit 61 outputs the second comparison signal through the comparison signal output terminal 613, so that the control module 50 outputs the conduction signal RELAY_EN2, and then the switch module 40 conducts all The connection between the power connection terminal 10 and the load connection terminal 20. In this way, when the battery of the car is removed, the power supply module 200 can also discharge and output the load device 300 (ie, the starter motor), so that the car can be started.
  • the load device 300 ie, the starter motor
  • FIG. 5 is a schematic diagram of the circuit structure of the control module 50 in the embodiment of the present application.
  • the control module 50 includes a micro-control module U2, wherein the micro-control module U2 may include a plurality of input and output ports, and the control module 50 may communicate with other functional modules or external devices through the plurality of input and output ports and information interaction, so that functions such as connection, driving and control of the connecting device 100 can be realized.
  • the power port VDD&AVDD of the micro-control module U2 is connected to the voltage source VCC
  • the output port PA6/AN5 is used to output the conduction signal RELAY_EN2 to the switch driving module 42
  • the output port PC0/OSC1 is used to receive the detection signal output by the load detection module 60 (for example, the reverse connection signal ERR_IN), and the output port PC0/OSC1 is used to output the enable signal short_EN to the detection power supply circuit 30 .
  • connection device 100 also includes a reverse connection state indication module (not shown in the figure) connected to the load detection module 60, when the load device 300 is reversely connected to the load connection end 20, the Based on the first comparison signal output by the comparator detection circuit 61 , the reverse connection state indication module sends out an alarm signal to provide a reverse connection alarm prompt.
  • a reverse connection state indication module (not shown in the figure) connected to the load detection module 60, when the load device 300 is reversely connected to the load connection end 20, the Based on the first comparison signal output by the comparator detection circuit 61 , the reverse connection state indication module sends out an alarm signal to provide a reverse connection alarm prompt.
  • connection device 100 uses the comparator detection circuit 61 to detect the connection state of the load device 300, which can improve the accuracy and sensitivity of reverse connection detection, so that it can also be used when the battery voltage of the load device 300 is low. Accurately identifying whether the load device 300 has a reverse connection can significantly improve the safety and reliability of the power output control system.
  • the present application also provides a starting power supply device 1 , which includes a power supply module 200 and the above-mentioned connection device 100 .
  • One end of the connection device 100 is connected to the power module 200 , and the other end is used to connect to the load device 300 .
  • the connection device 100 is used for controlling the discharge output of the power module 200 to the load device 300 according to the connection state of the load device 300 .
  • connection device 100 is configured to prohibit the discharge output of the power module 200 to the load device 300 when it is determined that the load device 300 is reversely connected to the load connection terminal 20 .
  • the present application also provides a battery clamp device 2 , which includes a connecting piece 400 and the above-mentioned connecting device 100 .
  • One end of the connecting device 100 is used to connect to the power module 200 , and the other end is connected to the connecting member 400 .
  • the connection device 100 is used for controlling the discharge output of the power module 200 to the load device 300 according to the connection state of the load device 300 .
  • the connector 400 includes a battery clip.
  • the connecting member 400 can be fixedly connected or pluggably connected with the connecting device 100 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请提供一种连接装置、启动电源设备和电瓶夹设备。所述连接装置包括负载连接端和负载检测模块,所述负载连接端用于与负载设备连接。所述负载检测模块与所述负载连接端连接,所述负载检测模块用于检测所述负载设备的接入状态,并根据检测到的接入状态输出相应的检测信号。其中,所述负载检测模块包括比较器检测电路。所述连接装置采用比较器检测电路对负载设备的接入状态进行检测,能够提高反接检测精度和灵敏度,从而在负载设备的电瓶电压较低的情况下也能精准地识别负载设备是否出现反接情况,进而能够显著提升电源输出控制系统的安全性与可靠性。

Description

连接装置、启动电源设备和电瓶夹设备 技术领域
本申请涉及电子技术领域,尤其涉及一种连接装置、启动电源设备和电瓶夹设备。
背景技术
当汽车电瓶电量不足导致汽车无法启动时,可以通过外部的启动电源设备为汽车电瓶或汽车引擎进行放电以提供打火电流,从而使得汽车可以成功启动。目前市面上的启动电源产品的极性反接检测精度不高,在汽车电瓶电压过低的情况下,如果用户误将电瓶夹反接至汽车电瓶,现有的启动电源产品可能无法识别出电瓶夹处于反接状态,反而会误导用户以为电瓶夹连接正确而开启启动电源设备,从而引发短路故障,可能导致启动电源的电池或负载设备损坏,严重者甚至会引发火灾造成财产受损、人员受伤等安全事件。
发明内容
本申请针对上述反接检测电路的检测精度较低的缺陷,提供一种连接装置、启动电源设备和电瓶夹设备,所述连接装置采用比较器检测电路对负载设备的接入状态进行检测,提高了反接检测的精度和灵敏度,从而提升了电源输出控制系统的安全性和可靠性。
本申请的第一方面提供一种连接装置,所述连接装置包括负载连接端和负载检测模块,所述负载连接端用于与负载设备连接。所述负载检测模块与所述负载连接端连接,所述负载检测模块用于检测所述负载设备的接入状态,并根据检测到的接入状态输出相应的检测信号。其中,所述负载检测模块包括比较器检测电路。
本申请的第二方面提供一种启动电源设备,包括:电源模块以及上述第一方面所述的连接装置,所述连接装置的一端与所述电源模块连接,另一端用于连接负载设备。所述连接装置用于根据所述负载设备的接入状态,控制所述电源模块对所述负载设备的放电输出。
本申请的第三方面提供一种电瓶夹设备,包括:连接件以及上述第一方面所述的连接装置,所述连接件用于连接负载设备。所述连接装置的一端用于连接电源模块,另一端连接所述连接件;所述连接装置用于根据所述负载设备的接入状态,控制所述电源模块对所述负载设备的放电输出。
本申请提供的所述连接装置采用比较器检测电路对负载设备的接入状态进行检测,能够提高反接检测精度和灵敏度,从而在负载设备的电瓶电压较低的情况下也能精准地识别负载设备是否出现反接情况,进而能够显著提升电源输出控制系统的安全性与可靠性。
附图说明
为了更清楚地说明本申请实施方式的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的连接装置的功能模块示意图。
图2是图1中的连接装置的放电输出回路的电路结构示意图。
图3A是图1中的连接装置的一种负载检测模块的电路结构示意图。
图3B是图1中的连接装置的另一种负载检测模块的电路结构示意图。
图4是图1中的连接装置的检测电源提供电路的电路结构示意图。
图5是图1中的连接装置的控制模块的电路结构示意图。
图6为本申请实施例提供的启动电源设备的结构示意图。
图7为本申请实施例提供的电瓶夹设备的结构示意图。
主要元件符号说明
连接装置                      100
电源模块                      200
负载设备                      300
放电输出回路                  11
电源连接端                    10
电源正连接端                  BAT+
电源负连接端                  BAT-
负载连接端                    20
负载正连接端                  CAR+
负载负连接端                  CAR-
接地端                        PGND
开关模块                      40
开关驱动模块                  42
控制模块                      50
微控制模块                    U2
负载检测模块                  60、60’
比较器检测电路                61
强制输出触发模块              70
分压电路                      601、602
第一检测端                    611
第二检测端                    612
比较信号输出端                613
反接信号输出端                614
电压源                        VCC
比较器                        U3A
检测电源提供电路              30
检测电源输入端                 31
检测电源输出端                 32
开关元件                       Q4、Q5、Q16
二极管                         D10
电阻                           R6、R7、R14、R18、R19、R20、R23、R26
驱动电源模块                   80
启动电源设备                   1
连接件                         400
电瓶夹设备                     2
如下具体实施方式将结合上述附图进一步说明本申请。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述。其中,附图仅用于示例性说明,表示的仅是示意图,不能理解为对本申请的限制。显然,所描述的实施方式仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与本领域技术人员通常理解的含义相同。本申请在说明书中所使用的术语只是为了描述具体实施方式的目的,不是旨在限制本申请。在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本申请的说明,其本身没有特定的意义。因此,“模块”、“部件”或“单元”可以混合地使用。
请参阅图1,图1是本申请实施例提供的连接装置的功能模块示意图,如图1所示,所述连接装置100包括电源连接端10、负载连接端20和开关模块40。其中,所述电源连接端10用于连接电源模块200,所述负载连接端20用于连接负载设备300。示例性地,所述连接装置100可应用于一启动电源设备中,也可以应用于一电瓶夹设备中。所述电源模块200包括但不限于铅酸电池、锂电池、超级电容等。所述负载设备300可以包括车辆电瓶或车辆引擎等,所述车辆电瓶包括但不限于铅酸电池、锂电池、超级电容等。
需要说明的是,本申请中的“连接”包括元器件之间实现传输电能的实体线路连接形式和/或无线连接形式。本申请中的“连接”可以包括直接连接或间接连接。以本申请实施例中的电源连接端连接开关模块为例,电源连接端可以直接连接开关模块,电源连接端也可以通过其它电路模块(例如二极管、保护电路、检测电路)间接连接开关模块,不影响开关模块实现电源连接端和负载连接端之间的传输控制,上述实施方式均在本申请实施例的保护范围内。
在本实施例中,请一并参阅图1和图2,所述电源连接端10、所述负载连接端20、以及所述开关模块40构成所述电源模块200对所述负载设备300放电输出的放电输出回路11,所述开关模块40用于导通或断开所述放电输出回路11。如此,所述电源模块200能够通过所述连接装置100对所述负载设备300放电输出。
在本实施例中,所述电源连接端10包括电源正连接端BAT+和电源负连接端BAT-,其中, 所述电源正连接端BAT+和所述电源负连接端BAT-用于与所述电源模块200的正极和负极一一对应连接。所述电源模块200通过所述电源连接端10接入所述连接装置100中,从而为所述连接装置100提供工作电压,以及通过所述开关模块40对所述负载设备300放电输出。可以理解的是,当所述连接装置100应用于启动电源设备中时,所述电源模块200可为所述启动电源设备的内置电源模块。当所述连接装置100应用于电瓶夹设备中时,所述电源模块200可为外部电源设备,例如外部启动电源设备或其他储能电源设备的电源模块。
在本申请实施例中,所述负载连接端20包括负载正连接端CAR+和负载负连接端CAR-,其中,所述负载正连接端CAR+用于与所述负载设备300的正极连接,所述负载负连接端CAR-用于与所述负载设备300的负极连接。所述负载负连接端CAR-还与接地端PGND连接。示例性地,假设所述电源模块200为外部启动电源设备包含的电源模块,而所述负载设备300为车辆电瓶或车辆引擎,则当外部启动电源设备通过所述电源连接端10接入所述连接装置100中,且所述负载设备300正接至所述负载连接端20时,所述外部启动电源设备即可通过所述电源连接端10、所述开关模块40、以及所述负载连接端20构成的所述放电输出回路11启动放电输出,即为所述车辆电瓶或车辆引擎提供启动电源,这里也可以理解为所述外部启动电源设备给所述车辆引擎提供启动电流,如此,车辆在所述车辆电瓶电量不足时也能被启动。
所述开关模块40电连接于所述电源连接端10和所述负载连接端20之间。在本实施例中,所述开关模块40电连接于所述电源正连接端BAT+和所述负载正连接端CAR+之间。在其他实施例中,所述开关模块40也可以电连接于所述电源负连接端BAT-和所述负载负连接端CAR-之间。所述开关模块40可采用电磁式继电器或者半导体功率器件,例如MOSFET。在本实施例中,所述开关模块40采用电磁式继电器K1。
在本实施例中,所述连接装置100还包括电连接于所述开关模块40的驱动电源回路中的开关驱动模块42和驱动电源模块80。其中,所述驱动电源模块80用于通过所述驱动电源回路给所述开关模块40提供电能。相应地,所述开关模块40在所述驱动电源回路导通时能够接收到所述电能,并基于所述电能导通所述电源连接端10和所述负载连接端20之间的连接,从而使所述电源模块200能够对所述负载设备300进行放电输出。
在本申请实施例中,所述连接装置100还包括控制模块50以及与所述控制模块50连接的强制输出触发模块70,所述强制输出触发模块70用于接收并响应用户的强制输出操作而生成电源强制输出信号,所述控制模块50用于响应所述电源强制输出信号而输出导通信号RELAY_EN2。所述导通信号RELAY_EN2用于导通所述开关模块40,从而导通所述电源连接端10和所述负载连接端20之间的连接。
具体地,所述开关驱动模块42基于所述控制模块50输出的导通信号RELAY_EN2导通所述驱动电源回路,从而使所述开关模块40能够接收到所述驱动电源模块80提供的电能而处于导通状态,进而导通所述放电输出回路11,即导通所述电源连接端10和所述负载连接端20之间的连接。
在本申请实施例中,所述连接装置100还包括与所述负载正连接端CAR+连接的检测电源提供电路30,所述检测电源提供电路30用于向所述负载正连接端CAR+提供电源信号。
在本申请实施例中,所述连接装置100还包括负载检测模块60,所述负载检测模块60用于检测所述负载设备300的接入状态,并根据检测到的接入状态输出相应的检测信号。所述控制模块50用于根据所述检测信号,识别出所述负载设备300的接入状态,以及根据识别出的接入状态对所述开关模块40进行相应的控制,从而控制所述电源连接端10和所述负载 连接端20之间的连接状态。
在一种实施方式中,所述负载检测模块60的电路结构可采用图3A所示的电路结构。下面将结合图3A下面对所述负载检测模块60的电路结构以及工作原理进行介绍。
请参阅图3A,在本实施例中,所述负载检测模块60包括比较器检测电路61。所述比较器检测电路61包括第一检测端611、第二检测端612以及比较信号输出端613。所述第一检测端611与所述负载负连接端CAR-连接。所述第二检测端612与所述负载正连接端CAR+连接。在本实施例中,所述比较信号输出端613用作所述负载检测模块60的检测信号输出端,与所述控制模块50连接,用于输出所述检测信号至所述控制模块50。
其中,所述比较器检测电路61在所述负载设备300反接到所述负载连接端20时,通过所述比较信号输出端613输出第一比较信号;以及在所述负载连接端20空载或所述负载设备300正接到所述负载连接端20时,通过所述比较信号输出端613输出第二比较信号。其中,在本实施例中,所述检测信号包括所述第一比较信号和所述第二比较信号。
所述控制模块50基于所述第一比较信号,暂停输出所述导通信号RELAY_EN2,从而使所述开关模块40处于断开状态,以断开所述电源连接端10和所述负载连接端20之间的连接。所述控制模块50还基于所述第二比较信号,响应所述电源强制输出信号而输出导通信号RELAY_EN2来导通所述开关模块40,从而导通所述电源连接端10和所述负载连接端20之间的连接。
具体地,所述比较器检测电路61还包括比较器U3A。所述比较器U3A的同相输入端3与所述第一检测端611连接,所述比较器U3A的反相输入端2与所述第二检测端612连接,所述比较器U3A的输出端1与所述比较信号输出端613连接。
进一步地,所述比较器检测电路61还包括分压电路601以及分压电路602。具体地,所述分压电路601电连接于所述第一检测端611与接地端之间,所述分压电路601用于对所述第一检测端611的电压进行分压,并向所述比较器U3A的同相输入端3输出第一分压信号。所述分压电路602电连接于所述第二检测端612与接地端之间,所述分压电路602用于对所述第二检测端612的电压进行分压,并向所述比较器U3A的反相输入端2输出第二分压信号。所述比较器U3A的输出端1通过电阻R7与电压源VCC连接,所述比较器U3A的输出端1还通过电阻R18与所述比较信号输出端613连接。
进一步地,所述分压电路601包括串联的电阻R6和电阻R14,所述分压电路601通过所述电阻R6和所述电阻R14之间的连接节点输出所述第一分压信号。所述分压电路602包括串联的电阻R23和电阻R26,所述分压电路602通过所述电阻R23和所述电阻R26之间的连接节点输出所述第二分压信号。在一种实施例中,所述分压电路601的分压比例与所述分压电路602的分压比例可以相等或相近。
工作时,在所述负载设备300反接到所述负载连接端20时,即所述负载设备300的正极连接所述负载负连接端CAR-,且所述负载设备300的负极连接所述负载正连接端CAR+,那么,所述负载负连接端CAR-会接收到所述负载设备300的正极电压,所述负载正连接端CAR+会接收到所述负载设备300的负极电压,因此,所述负载负连接端CAR-的电压会高于所述负载正连接端CAR+的电压,使得所述第一分压信号的电压值也大于所述第二分压信号的电压值。根据比较器的工作原理可知,所述比较器U3A在其同相输入端3的电压高于其反相输入端2的电压时,所述比较器U3A通过其输出端输出所述第一比较信号至所述比较信号输出端613,其中,所述第一比较信号为高电平信号。所述控制模块50用于接收并响应所述第一比较信号,识别出所述负载设备300反接至所述负载连接端20,并暂停响应所述电源强制输出 信号,因此,所述控制模块50暂停向所述开关驱动模块42输出所述导通信号RELAY_EN2,从而能够防止所述开关模块40导通所述电源连接端10和所述负载连接端20之间的连接。如此,可以确保在所述负载设备300反接至所述负载连接端20时,防止用户强制导通所述放电输出回路11而造成电路故障。
在所述负载设备300正接到所述负载连接端20时,即所述负载设备300的正极连接所述负载正连接端CAR+,且所述负载设备300的负极连接所述负载负连接端CAR-,那么,所述负载负连接端CAR-会接收到所述负载设备300的负极电压,所述负载正连接端CAR+会接收到所述负载设备300的正极电压,因此,所述负载负连接端CAR-的电压会低于所述负载正连接端CAR+的电压,使得所述第一分压信号的电压值也小于所述第二分压信号的电压值。根据比较器的工作原理可知,所述比较器U3A在其同相输入端3的电压低于其反相输入端2的电压时,所述比较器U3A通过其输出端输出所述第二比较信号至所述比较信号输出端613,其中,所述第二比较信号为低电平信号。所述控制模块50在接收到所述第二比较信号时,能够响应所述电源强制输出信号而向所述开关驱动模块42输出所述导通信号RELAY_EN2,从而导通所述电源连接端10和所述负载连接端20之间的连接。
在所述负载连接端20空载时,所述负载负连接端CAR-未接收到所述负载设备300输入的电压,所述比较器U3A的同相输入端3通过电阻R6连接到所述接地端,所述负载正连接端CAR+会接收到所述检测电源提供电路30提供的电源信号,因此,所述负载负连接端CAR-的电压会低于所述负载正连接端CAR+的电压,使得所述第一分压信号的电压值也小于所述第二分压信号的电压值。那么,如上文所述,所述比较器U3A也会通过其输出端输出所述第二比较信号至所述比较信号输出端613。
在其他实施例中,所述比较器U3A的反相输入端2与所述第一检测端611连接,所述比较器U3A的同相输入端3与所述第二检测端612连接。相应地,所述第一比较信号为低电平信号,所述第二比较信号为高电平信号。
在另一种实施方式中,负载检测模块60’的电路结构可采用图3B所示的电路结构。下面将结合图3B对所述负载检测模块60’的电路结构以及工作原理进行介绍。
请参阅图3B,在本申请实施例中,所述负载检测模块60’包括第一开关元件Q16、反接信号输出端614以及上述的比较器检测电路61,其中,所述第一开关元件Q16采用晶体管,所述第一开关元件Q16连接于所述反接信号输出端614与所述接地端之间,所述第一开关元件Q16的控制端还与所述比较信号输出端613连接。在本实施例中,所述反接信号输出端614用作所述负载检测模块60的检测信号输出端,与所述控制模块50连接。
在本申请实施例中,所述第一开关元件Q16采用高电平导通的晶体管。
工作时,在所述负载设备300反接到所述负载连接端20时,如上文所述,所述比较器检测电路61通过所述比较信号输出端613输出所述第一比较信号,其中,所述第一比较信号为高电平信号。所述第一开关元件Q16基于所述第一比较信号导通,使反接信号输出端614通过导通的第一开关元件Q16连接到所述接地端,从而输出反接信号ERR_IN。所述控制模块50用于接收并响应所述反接信号ERR_IN,识别出所述负载设备300反接至所述负载连接端20,并暂停响应所述电源强制输出信号,因此,所述控制模块50暂停向所述开关驱动模块42输出所述导通信号RELAY_EN2,从而能够防止所述开关模块40导通所述电源连接端10和所述负载连接端20之间的连接。其中,在本实施例中,所述检测信号包括所述反接信号ERR_IN,所述反接信号ERR_IN为低电平信号。如此,可以确保在所述负载设备300反接至所述负载连接端20时,防止用户强制导通所述放电输出回路11而造成电路故障。
在所述负载连接端20空载或所述负载设备300正接到所述负载连接端20时,如上文所述,所述比较器检测电路61通过比较信号输出端613输出所述第二比较信号,其中,所述第二比较信号为低电平信号。所述第一开关元件Q16基于所述第二比较信号断开,使反接信号输出端614悬空,从而不输出所述反接信号ERR_IN,所述控制模块50在未接收到所述反接信号ERR_IN时,能够响应所述电源强制输出信号而向所述开关驱动模块42输出所述导通信号RELAY_EN2,从而导通所述电源连接端10和所述负载连接端20之间的连接。
在其他实施例中,所述比较器U3A的反相输入端2与所述第一检测端611连接,所述比较器U3A的同相输入端3与所述第二检测端612连接。相应地,在所述负载设备300反接到所述负载连接端20时,所述反接信号输出端614不输出检测信号。所述控制模块50在未接收到所述检测信号时,识别出所述负载设备300反接至所述负载连接端20,并暂停响应所述电源强制输出信号,因此,所述控制模块50暂停向所述开关驱动模块42输出所述导通信号RELAY_EN2,从而能够防止所述开关模块40导通所述电源连接端10和所述负载连接端20之间的连接。如此,可以确保在所述负载设备300反接至所述负载连接端20时,防止用户强制导通所述放电输出回路11而造成电路故障。在所述负载设备300正接到所述负载连接端20时,所述反接信号输出端614输出检测信号。所述控制模块50在接收到所述检测信号时,识别出所述负载设备300正接至所述负载连接端20,能够响应所述电源强制输出信号而向所述开关驱动模块42输出所述导通信号RELAY_EN2,从而导通所述电源连接端10和所述负载连接端20之间的连接。
由于比较器的灵敏度高,因此,即使在负载设备300的电压很低(例如,小于0.6V)的情况下出现用户反接的误操作,本申请提供的连接装置100也能够精准地检测出负载设备300的反接状态,从而能够显著地提升所述连接装置100的安全性与可靠性。
在本实施例中,所述连接装置100还包括与所述电源正连接端BAT+连接的稳压模块(图中未示),所述稳压模块用于通过所述电源连接端10接收所述电源模块200的输入电压,并对所述输入电压进行电压转换以得到一电压稳定的电压源VCC,例如电压值为5V,以给所述连接装置100的各个功能模块提供稳定的供电电压。例如,当电源模块200通过所述电源连接端10正确接入所述连接装置100中时,所述稳压模块即可获得所述输入电压而正常工作,并输出所述电压源VCC,以给所述连接装置100内部的各个功能模块供电,使各个功能模块通电而正常工作,例如,给所述检测电源提供电路30和所述控制模块50供电。其中,所述稳压模块可采用DC-DC转换器或线性稳压器,例如低压差线性稳压器(low dropout regulator,LDO)。
在本申请实施例中,所述检测电源提供电路30还与所述控制模块50连接。所述检测电源提供电路30用于接收并响应所述控制模块50输出的使能信号short_EN,向所述负载正连接端CAR+输出所述电源信号。
所述检测电源提供电路30的电路结构可采用图4所示的电路结构。下面将结合图4下面对所述检测电源提供电路30的电路结构以及工作原理进行介绍。
请参阅图4,所述检测电源提供电路30包括检测电源输入端31、检测电源输出端32、第二开关元件Q4以及第三开关元件Q5。其中,所述检测电源输入端31与所述电压源VCC连接,所述检测电源输出端32与所述负载正连接端CAR+连接。
所述第二开关元件Q4与所述第三开关元件Q5均采用晶体管,所述第二开关元件Q4连接于所述检测电源输入端31与所述检测电源输出端32之间。具体地,所述第二开关元件Q4的第一连接端2与所述检测电源输入端31连接,所述第二开关元件Q4的第二连接端3通过 二极管D10以及电阻R19连接所述检测电源输出端32,所述第二开关元件Q4的控制端1还通过电阻R20连接所述电压源VCC。其中,所述二极管D10的正极与所述第二开关元件Q4的第二连接端3连接,负极与所述电阻R19连接。所述第三开关元件Q5连接于所述第二开关元件Q4的控制端1与接地端之间,所述第三开关元件Q5的控制端连接所述控制模块50,以接收所述控制模块50输出的使能信号short_EN。在本申请实施例中,所述第二开关元件Q4采用低电平导通MOS管,所述第三开关元件Q5采用高电平导通晶体管,所述使能信号short_EN为高电平信号。
在一种实施例中,所述控制模块50还用于响应于用户的开机操作,向所述第三开关元件Q5的控制端输出所述使能信号short_EN,使所述第三开关元件Q5导通,从而使得所述第二开关元件Q4的控制端通过导通的所述第三开关元件Q5与所述接地端连接,使所述第二开关元件Q4导通。所述第二开关元件Q4导通后,所述负载正连接端CAR+通过所述电阻R19、所述二极管D10以及导通的所述第二开关元件Q4连接所述电压源VCC,从而接收到所述电源信号。可以理解的是,在所述负载连接端20空载的情况下,所述负载检测模块60的第二检测端612通过所述负载正连接端CAR+接收到所述电源信号,第一检测端611连接所述接地端而处于低电平,从而使得所述比较信号输出端613输出所述第二比较信号。
示例性地,在其他实施例中,所述检测电源提供电路30可以不包括第三开关元件Q5,所述第二开关元件Q4的控制端1与所述控制模块50连接,所述第二开关元件Q4的控制端1接收到所述使能信号short_EN而导通,进而使得所述负载正连接端CAR+接收到所述电源信号。在所述另一种实施例中,所述使能信号short_EN为低电平信号。
在另一种实施例中,所述控制模块50还用于响应所述电源强制输出信号,向所述检测电源提供电路30输出所述使能信号short_EN,使所述检测电源提供电路30向所述负载正连接端CAR+输出电源信号。
以所述连接装置100应用于启动电源设备,所述负载设备300为汽车的启动电机为例,在汽车电瓶被拆除的情况下,当用户将启动电机直接连接至所述负载连接端20后进行强制输出操作,所述第二检测端612接收到所述电源信号,所述第一检测端611与所述接地端连接,那么,所述第二分压信号的电压值大于所述第一分压信号的电压值。因此,所述比较器检测电路61通过所述比较信号输出端613输出所述第二比较信号,从而使得所述控制模块50输出所述导通信号RELAY_EN2,进而使得所述开关模块40导通所述电源连接端10和所述负载连接端20之间的连接。如此,在汽车电瓶被拆除的情况下,也可以实现所述电源模块200对所述负载设备300(即启动电机)进行放电输出,从而能够启动汽车。
请参阅图5,图5是本申请实施例中所述控制模块50的电路结构示意图。所述控制模块50包括微控制模块U2,其中,所述微控制模块U2可包括多个输入输出端口,所述控制模块50可通过所述多个输入输出端口与其他功能模块或外部设备进行通信以及信息交互,从而可实现所述连接装置100的连接、驱动和控制等功能。
示例性地,所述微控制模块U2的电源端口VDD&AVDD连接所述电压源VCC、输出端口PA6/AN5用于向所述开关驱动模块42输出所述导通信号RELAY_EN2、输入端口PB1/INT1/AN1用于接收所述负载检测模块60输出的检测信号(例如,所述反接信号ERR_IN)、输出端口PC0/OSC1用于向所述检测电源提供电路30输出所述使能信号short_EN。
可选地,所述连接装置100还包括与所述负载检测模块60连接的反接状态指示模块(图中未示),在所述负载设备300反接到所述负载连接端20时,所述反接状态指示模块基于所述比较器检测电路61输出的第一比较信号,发出报警信号来进行反接报警提示。
本申请提供的所述连接装置100采用比较器检测电路61对负载设备300的接入状态进行检测,能够提高反接检测精度和灵敏度,从而在负载设备300的电瓶电压较低的情况下也能精准地识别负载设备300是否出现反接情况,进而能够显著提升电源输出控制系统的安全性与可靠性。
请参阅图6,本申请还提供一种启动电源设备1,所述启动电源设备1包括电源模块200以及上述的连接装置100。所述连接装置100的一端与所述电源模块200连接,另一端用于连接负载设备300。所述连接装置100用于根据所述负载设备300的接入状态,控制所述电源模块200对所述负载设备300的放电输出。
示例性地,所述连接装置100用于在确定所述负载设备300反接至所述负载连接端20时,禁止所述电源模块200对所述负载设备300的放电输出。
请参阅图7,本申请还提供一种电瓶夹设备2,所述电瓶夹设备2包括连接件400以及上述的连接装置100。所述连接装置100的一端用于连接电源模块200,另一端连接所述连接件400。所述连接装置100用于根据所述负载设备300的接入状态,控制所述电源模块200对所述负载设备300的放电输出。示例性地,所述连接件400包括电瓶夹。所述连接件400可以与所述连接装置100固定连接或可插拔连接。
最后应说明的是,以上实施方式仅用以说明本申请的技术方案而非限制,尽管参照以上较佳实施方式对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换都不应脱离本申请技术方案的精神和范围。

Claims (14)

  1. 一种连接装置,其特征在于,包括:
    负载连接端,用于与负载设备连接;
    负载检测模块,与所述负载连接端连接,所述负载检测模块用于检测所述负载设备的接入状态,并根据检测到的接入状态输出相应的检测信号;其中,所述负载检测模块包括比较器检测电路。
  2. 如权利要求1所述的连接装置,其特征在于,所述负载连接端包括:
    负载正连接端,用于与所述负载设备的正极连接;以及
    负载负连接端,用于与所述负载设备的负极连接;
    所述比较器检测电路包括:
    第一检测端,与所述负载负连接端连接;
    第二检测端,与所述负载正连接端连接;以及
    比较信号输出端。
  3. 如权利要求2所述的连接装置,其特征在于,所述连接装置还包括与所述负载正连接端连接的检测电源提供电路,所述检测电源提供电路用于给所述负载正连接端提供电源信号;
    所述比较器检测电路在所述负载设备反接到所述负载连接端时,通过所述比较信号输出端输出第一比较信号;以及在所述负载连接端空载或所述负载设备正接到所述负载连接端时,通过所述比较信号输出端输出第二比较信号。
  4. 如权利要求3所述的连接装置,其特征在于,还包括:
    电源连接端;
    开关模块,连接于所述电源连接端和所述负载连接端之间;
    控制模块,分别与所述开关模块和所述负载检测模块连接,所述控制模块用于接收所述负载检测模块输出的检测信号,并根据所述检测信号识别出所述负载设备的接入状态,以及根据识别出的接入状态对所述开关模块进行相应的控制,从而控制所述电源连接端和所述负载连接端之间的连接状态。
  5. 如权利要求4所述的连接装置,其特征在于,所述控制模块基于所述第一比较信号,控制所述开关模块断开所述电源连接端和所述负载连接端之间的连接。
  6. 如权利要求5所述的连接装置,其特征在于,还包括与所述控制模块连接的强制输出触发模块,所述强制输出触发模块用于接收并响应用户的强制输出操作而生成电源强制输出信号;
    所述控制模块基于所述第二比较信号,响应所述电源强制输出信号而输出导通信号,所述导通信号用于导通所述开关模块,从而导通所述电源连接端和所述负载连接端之间的连接;
    所述控制模块基于所述第一比较信号,暂停输出所述导通信号,从而使所述开关模块处于断开状态,以断开所述电源连接端和所述负载连接端之间的连接。
  7. 如权利要求6所述的连接装置,其特征在于,所述比较器检测电路还包括比较器,所述比较器包括:
    同相输入端,与所述第一检测端连接;
    反相输入端,与所述第二检测端连接;以及
    输出端,与所述比较信号输出端连接。
  8. 如权利要求6或7所述的连接装置,其特征在于,所述控制模块与所述比较信号输出端 连接,所述控制模块用于接收所述检测信号,所述检测信号包括所述第一比较信号和所述第二比较信号。
  9. 如权利要求7所述的连接装置,其特征在于,所述负载检测模块还包括第一开关元件和反接信号输出端,所述第一开关元件连接于所述反接信号输出端与接地端之间,所述第一开关元件的控制端还与所述比较信号输出端连接;
    所述反接信号输出端与所述控制模块连接;
    所述第一开关元件基于所述第一比较信号导通,使所述反接信号输出端通过导通的所述第一开关元件连接到所述接地端而输出反接信号至所述控制模块,所述控制模块在接收到所述反接信号时暂停输出所述导通信号,其中,所述检测信号包括所述反接信号;
    所述第一开关元件基于所述第二比较信号断开,使所述反接信号输出端暂停输出所述反接信号,所述控制模块在未接收到所述反接信号时,能够响应所述电源强制输出信号而输出所述导通信号。
  10. 如权利要求3所述的连接装置,其特征在于,还包括:
    控制模块,与所述检测电源提供电路连接,用于输出使能信号至所述检测电源提供电路,使所述检测电源提供电路输出所述电源信号。
  11. 如权利要求10所述的连接装置,其特征在于,所述检测电源提供电路包括:
    检测电源输入端,连接电压源;
    检测电源输出端,连接所述负载正连接端;以及
    第二开关元件,连接于所述检测电源输入端和所述检测电源输出端之间,所述第二开关元件基于所述控制模块输出的使能信号导通。
  12. 如权利要求11所述的连接装置,其特征在于,还包括与所述控制模块连接的强制输出触发模块,所述强制输出触发模块用于接收并响应用户的强制输出操作而生成电源强制输出信号;
    所述控制模块在接收到所述强制输出触发模块时输出所述使能信号。
  13. 一种启动电源设备,其特征在于,包括:
    电源模块;以及
    如权利要求1至12任一项所述的连接装置,所述连接装置的一端与所述电源模块连接,另一端用于连接负载设备;所述连接装置用于根据所述负载设备的接入状态,控制所述电源模块对所述负载设备的放电输出。
  14. 一种电瓶夹设备,其特征在于,包括:
    连接件,用于连接负载设备;以及
    如权利要求1至12任一项所述的连接装置,所述连接装置的一端用于连接电源模块,另一端连接所述连接件;所述连接装置用于根据所述负载设备的接入状态,控制所述电源模块对所述负载设备的放电输出。
PCT/CN2021/123318 2021-10-12 2021-10-12 连接装置、启动电源设备和电瓶夹设备 WO2023060440A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180102119.8A CN117941194A (zh) 2021-10-12 2021-10-12 连接装置、启动电源设备和电瓶夹设备
PCT/CN2021/123318 WO2023060440A1 (zh) 2021-10-12 2021-10-12 连接装置、启动电源设备和电瓶夹设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/123318 WO2023060440A1 (zh) 2021-10-12 2021-10-12 连接装置、启动电源设备和电瓶夹设备

Publications (1)

Publication Number Publication Date
WO2023060440A1 true WO2023060440A1 (zh) 2023-04-20

Family

ID=85988139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123318 WO2023060440A1 (zh) 2021-10-12 2021-10-12 连接装置、启动电源设备和电瓶夹设备

Country Status (2)

Country Link
CN (1) CN117941194A (zh)
WO (1) WO2023060440A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030218844A1 (en) * 2002-04-22 2003-11-27 Ludek Broulim Protection circuit protecting against voltage irregularities
CN203895963U (zh) * 2014-05-16 2014-10-22 杭州乾通工具制造有限公司 汽车电瓶保护器
CN106655145A (zh) * 2016-11-17 2017-05-10 深圳市科陆电子科技股份有限公司 一种电池母线电压反接保护电路
CN112366791A (zh) * 2020-11-19 2021-02-12 深圳市华思旭科技有限公司 智能连接装置、启动电源以及电瓶夹
CN112366790A (zh) * 2020-11-19 2021-02-12 深圳市华思旭科技有限公司 智能连接装置、启动电源以及电瓶夹
CN213846257U (zh) * 2020-09-14 2021-07-30 深圳市华思旭科技有限公司 智能控制系统、应急启动电源和智能电瓶夹

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030218844A1 (en) * 2002-04-22 2003-11-27 Ludek Broulim Protection circuit protecting against voltage irregularities
CN203895963U (zh) * 2014-05-16 2014-10-22 杭州乾通工具制造有限公司 汽车电瓶保护器
CN106655145A (zh) * 2016-11-17 2017-05-10 深圳市科陆电子科技股份有限公司 一种电池母线电压反接保护电路
CN213846257U (zh) * 2020-09-14 2021-07-30 深圳市华思旭科技有限公司 智能控制系统、应急启动电源和智能电瓶夹
CN112366791A (zh) * 2020-11-19 2021-02-12 深圳市华思旭科技有限公司 智能连接装置、启动电源以及电瓶夹
CN112366790A (zh) * 2020-11-19 2021-02-12 深圳市华思旭科技有限公司 智能连接装置、启动电源以及电瓶夹

Also Published As

Publication number Publication date
CN117941194A (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
WO2022063275A1 (zh) 控制系统、应急启动电源和智能电瓶夹
CN112366791A (zh) 智能连接装置、启动电源以及电瓶夹
JP7244952B2 (ja) インテリジェント制御システム、緊急始動電源及びインテリジェントバッテリークリップ
CN112366790A (zh) 智能连接装置、启动电源以及电瓶夹
KR102458525B1 (ko) 체결 인식 기능을 갖춘 배터리 팩
CN112366787A (zh) 智能连接装置、启动电源以及电瓶夹
KR20220068947A (ko) 스마트 연결 장치, 시동 전원 및 배터리 클램프
US20180069411A1 (en) Battery pack
US20230131479A1 (en) Circuit and method for detecting charger and electrochemical device
KR20220068920A (ko) 스마트 연결 장치, 시동 전원 및 배터리 클램프
JP2017184562A (ja) 充電装置
US20200381929A1 (en) Battery protective circuit and battery pack comprising same
CN113474965A (zh) 智能连接装置、启动电源以及电瓶夹
WO2022105159A1 (zh) 智能连接装置、启动电源以及电瓶夹
WO2023060440A1 (zh) 连接装置、启动电源设备和电瓶夹设备
US10404087B2 (en) Electrical connection device comprising voltage detecting unit and polarity detecting unit
US11255915B2 (en) Switch control apparatus and method
CN114336924A (zh) 控制系统、应急启动电源和智能电瓶夹
CN216362247U (zh) 连接装置、启动电源设备和电瓶夹设备
CN215528626U (zh) 智能连接装置、启动电源以及电瓶夹
WO2023010530A1 (zh) 保护电路、启动电源设备及电瓶夹设备
KR101213479B1 (ko) 배터리 팩, 및 배터리 팩을 포함한 충전 시스템 및 이의 제어 방법
CN216056797U (zh) 输出电路、启动电源设备和电瓶夹设备
WO2023010551A1 (zh) 连接检测装置、启动电源设备以及电瓶夹设备
US20230187932A1 (en) Vehicle emergency start device and wire clip device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960189

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180102119.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE