WO2023059032A1 - 수류 영향 저감형 바지선 - Google Patents

수류 영향 저감형 바지선 Download PDF

Info

Publication number
WO2023059032A1
WO2023059032A1 PCT/KR2022/014916 KR2022014916W WO2023059032A1 WO 2023059032 A1 WO2023059032 A1 WO 2023059032A1 KR 2022014916 W KR2022014916 W KR 2022014916W WO 2023059032 A1 WO2023059032 A1 WO 2023059032A1
Authority
WO
WIPO (PCT)
Prior art keywords
buoyancy
steering
hull
barge
blades
Prior art date
Application number
PCT/KR2022/014916
Other languages
English (en)
French (fr)
Inventor
최임철
Original Assignee
최임철
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 최임철 filed Critical 최임철
Publication of WO2023059032A1 publication Critical patent/WO2023059032A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/10Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/28Barges or lighters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B79/00Monitoring properties or operating parameters of vessels in operation
    • B63B79/10Monitoring properties or operating parameters of vessels in operation using sensors, e.g. pressure sensors, strain gauges or accelerometers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Definitions

  • the present invention relates to a barge capable of minimizing the effects of water currents.
  • a barge is a vessel for loading or transporting cargo used in canals, rivers, and the sea.
  • a barge loaded with cargo or equipment is connected to a tugboat and moved to the work site. When it arrives at the work site, the anchor is lowered to fix the position, and then the cargo required for the work is unloaded or the worker uses the equipment necessary for the work. do.
  • the hull of the barge has a shape that is particularly affected by the water flow, for example, there is a disadvantage in that the thrust loss is large during navigation due to the water flow resistance and it is not easy to maintain the initial anchoring position during anchoring.
  • An object of the present invention is to provide a barge having a structure that effectively reduces the influence of water flow, enables efficient operation with minimized thrust loss during operation, and easily and stably maintains the anchoring position during anchoring.
  • watercraft and a plurality of buoyancy steering blades submerged in water to support the floating hull so as to float on the surface of the water, and provided to be rotatable around a direction perpendicular to the water surface, wherein at least one pair of the plurality of buoyancy steering blades, It can be achieved by barges provided at positions symmetrical to each other in at least one direction of the length or width of the watercraft.
  • the floating hull is completely floating on the water surface and is not affected by the water flow at all, efficient operation with minimized thrust loss is possible during operation, and the anchoring position can be easily and stably maintained during anchoring.
  • the plurality of buoyancy steering blades are arranged along the outer edge of the watercraft hull. According to this, the watercraft can be stably floated on the surface of the water.
  • a water flow sensor for detecting the direction of the water flow; a buoyancy steering blade driving unit for rotating the plurality of buoyancy steering blades; and a control unit controlling the buoyancy steering blade driver to rotate the plurality of buoyancy steering blades at an angle corresponding to the sensed direction of the water flow.
  • the buoyancy steering blades can be rotated according to the direction of the water flow to minimize water flow resistance, the position of the floating hull can be more easily maintained and efficient navigation is possible.
  • each of a first upstream buoyancy steering rotor and a second upstream buoyancy steering rotor provided at a position symmetrical to each other with respect to the central axis of the advancing direction of the aquatic hull at the upstream side with respect to the advancing direction of the aquatic hull.
  • a control unit for controlling the buoyancy steering blade driving unit so that each of the first and second downstream buoyancy steering blades provided at positions symmetrical to each other with respect to the central axis on the downstream side rotates at different angles.
  • It supports the watercraft hull upward in a plate shape, and includes a base portion on a bottom surface of which rotational axes of the plurality of buoyancy steering blades are provided.
  • the floating hull is completely floated on the surface of the water and is not affected by the water flow at all, efficient operation with minimized thrust loss is possible during operation, and the barge has a structure that easily and stably maintains the anchorage position during anchorage. can provide.
  • FIG. 1 is a perspective view of a barge according to an embodiment of the present invention.
  • Figure 2 is an exploded view of the barge of Figure 1;
  • FIG 3 shows an example of passive rotation and active rotation during navigation.
  • FIG. 5 is a state diagram of a buoyancy steering wing when changing an operating route or anchoring.
  • FIG. 6 is a state diagram of a buoyancy steering blade during rotation.
  • FIG. 1 is a perspective view of a barge 100 according to an embodiment of the present invention
  • FIG. 2 is an exploded view of the barge 100 of FIG. 1 .
  • the configuration of the water flow effect reducing barge 100 will be described in detail with reference to FIGS. 1 and 2.
  • the longitudinal direction and the width direction of the watercraft 101 correspond to the X-axis direction and the Z-axis direction
  • the direction perpendicular to the water surface S corresponds to the Y-axis direction.
  • the water flow effect reducing barge 100 includes a watercraft hull 101.
  • the floating hull 101 is located on the water surface S, and may have a space in which a user can board or load cargo.
  • the water hull 101 has a length from the bow 11 to the stern 12 along the X-axis direction, and the space of the water hull 101 may vary according to the length of the water hull 101.
  • the floating hull 101 has a lower part 102 and a side part 103.
  • the lower part 102 has a plate-like shape parallel to the water surface S, and is provided to extend in the X-axis direction. Due to the flat shape of the lower portion 102, air resistance applied to the watercraft hull 101 during navigation can be minimized.
  • the side portion 103 has a structure extending in the Y-axis direction from the outer edge of the lower portion 102 .
  • the shape of the water hull 101 is not limited to those shown in FIGS. 1 and 2, it may be provided in various shapes depending on the purpose and use of the water hull 101.
  • a control unit 104 may be provided in the floating hull 101.
  • the controller 104 may be implemented as a CPU, processor, or the like.
  • the control unit 104 may control the operation of various components of the barge 100. The control of the control unit 104 will be described in detail in the description of each component of the barge 100.
  • the barge 100 has buoyancy steering blades 402.
  • the buoyancy steering blades 402 support the floating hull 101 to float above the surface of the water (S).
  • the buoyancy steering blade 402 has buoyancy for the floating of the watercraft hull 101.
  • the inside of the buoyancy steering blade 402 may be designed to have a plurality of closed spaces by a lattice structure.
  • the buoyancy steering blade 402 may have buoyancy by the buoyancy body filled in the closed space.
  • the buoyancy body may be implemented not only with gas such as air and helium gas, but also with solid material such as high-density styrofoam. Of course, they can also be combined to fill an enclosed space.
  • the size of the buoyancy can be adjusted by changing the size of the buoyancy steering blade 402, the size of the closed space of the buoyancy steering blade 402, and the density of the buoyancy body filled in the closed space.
  • the buoyancy steering blade 402 has a cross section composed of a width W in the Z-axis direction and a height H1 in the Y-axis direction, and has a length M extending in the X-axis direction. That is, the size of the buoyancy steering blade 402 can be adjusted by changing the size of the cross section or the length M of the steering wheel buoyancy 402 in the X-axis direction to adjust the size of the steering wheel buoyancy 402.
  • the size of buoyancy may be adjusted by increasing or decreasing the number of buoyancy steering blades 402, and the size of buoyancy may be adjusted by changing the type of buoyancy bodies filled in the buoyancy steering blades 402 or by combining them in various ways. .
  • the water surface S When the barge 100 is floated on water, the water surface S is buoyant so that it is lower than the height H2 of the lower part 102 of the floating hull 101 and higher than the height H1 of the buoyancy steering blade 402. this can be adjusted. Assuming a full-load state in which the floating hull 101 is loaded with allowable users or cargoes and an empty ship state in which no users or cargo are loaded in the floating hull 101, the water surface (S) is on the water in both the full-load state and the empty ship state The buoyancy may be adjusted to be lower than the height H2 of the lower part 102 of the hull 101 and higher than the height H1 of the buoyancy steering blade 402 .
  • the buoyancy steering blade 402 has a hydrodynamic shape. Due to the hydrodynamic shape, frictional resistance due to water flow passing through the buoyancy steering blades 402 during navigation or anchoring is minimized, and lift is not generated by the water flow or is not affected by the buoyancy of the buoyancy steering blades 402.
  • a plurality of buoyancy steering blades 402 are provided. At least one pair of the plurality of buoyancy steering blades 402 are provided at positions symmetrical to each other in at least one axial direction of the X-axis direction or the Z-axis direction of the floating hull 101. For example, as shown in FIGS. 1 and 2, five pairs of buoyancy steering blades 402 may be provided at positions symmetrical to each other in the Z-axis direction with respect to the central axis of the X-axis direction of the floating hull 101. By this symmetrical arrangement, it is possible to balance the buoyancy in the Z-axis direction, and the floating hull 101 can stably float on the water surface (S). However, depending on the design method, the number of buoyancy steering blades 402 different from those shown in FIGS. 1 and 2 or a different number of pairs may be symmetrically arranged in various axial directions.
  • the buoyancy steering blade 402 is provided to be able to rotate around the Y axis.
  • a pivoting shaft 403 extending in the Y-axis direction is provided at one end of both ends of the buoyancy steering blade 402, and the buoyancy steering blade 402 is provided to be rotatable about the pivoting shaft 403.
  • the rotation angle of the buoyancy steering blade 402 is 0 degrees, and the rear end 405 It is assumed that the rotation angle gradually increases as ) rotates counterclockwise around the rotation axis 403.
  • the buoyancy steering blade 402 can be passively or actively rotated. Passive rotation refers to a case where the buoyancy steering blade 402 naturally rotates according to the direction of the water flow. As described above, since the buoyancy steering blade 402 has a hydrodynamic shape, it can naturally rotate in a direction in which frictional resistance due to water flow is minimized. For example, when the direction of the water flow is in the -X axis direction, the rotation angle of the buoyancy steering blade 402 is 0 degrees so that the frictional resistance caused by the water flow is minimized.
  • Active rotation refers to a case in which the buoyancy steering blades 402 are rotated by a driving force.
  • a buoyancy steering blade driver 201 may be provided for active rotation.
  • the control unit 104 controls the buoyancy steering blade driving unit 201 so that the rotation angle of the steering buoyancy blade 402 is adjusted by rotating the steering wheel buoyancy 402 around the pivot shaft 403.
  • the barge 100 may further include a water flow sensor 501 for detecting the direction of the water flow.
  • the water flow sensor 501 is connected to the water flow sensor 502.
  • the water flow detection wing 502 may be provided on the water hull 101 or the base part 204 described below.
  • the water flow sensing blade 502 is located underwater like the buoyancy steering blade 402 and naturally rotates according to the direction of the water flow.
  • the water flow sensor 501 is based on the rotation angle of the water flow sensing blade 502 to detect
  • the controller 104 receives information on the direction of the sensed water flow from the water flow sensor 501, and controls the buoyancy steering blade driving unit 201 so that the buoyancy steering blade 402 is at an angle corresponding to the direction of the sensed water flow. make it turn For example, when the water flow sensor 501 detects that the direction of the water flow is in the -X-axis direction, the control unit 104 controls the buoyancy steering blade driver 201 so that the rotation angle of the buoyancy steering blade 402 is 0 degrees. .
  • the floating hull 101 is completely floated on the surface of the water (S) by the buoyancy steering blades 402 and is not affected by the current at all, and only the buoyancy steering blades 402 can rotate in the water. It is arranged to Therefore, efficient operation with minimized thrust loss is possible during operation, and since the floating hull 101 is not washed away by water current during anchoring, the initial anchoring position can be easily and stably maintained.
  • barge 100 includes base portion 204 .
  • the base portion 204 extends in the X-axis direction and has a plate-like shape parallel to the water surface S. Due to the flat shape of the base portion 204, air resistance applied to the base portion 204 during navigation can be minimized.
  • the base part 204 supports the floating hull 101 upward.
  • a support member 203 for upwardly supporting the watercraft hull 101 is arranged on the upper surface of the base part 204 .
  • a rotation shaft 403 of the buoyancy steering blade 402 is provided on the bottom surface of the base portion 204, and a buoyancy steering blade driving unit 201 for rotating the rotation shaft 403 is provided on the upper surface of the base portion 204.
  • the buoyancy steering wheel drive unit 201 is connected to the pivot shaft 403 through a rotation shaft 401 penetrating the through hole 207 provided on the base unit 204 in the Y-axis direction.
  • the buoyancy steering blade driving unit 201 rotates the rotation shaft 403 through the rotation shaft 401 under the control of the control unit 104 to adjust the rotation angle of the buoyancy steering blade 402.
  • the base part 204 is provided as a separate configuration from the floating hull 101, since this may vary depending on the design method, the base portion 204 is a configuration of the floating hull 101 and is integrated with the floating hull 101. may be provided.
  • the floating hull 101 and the buoyancy steering blade 402 can be more firmly supported, and the buoyancy steering blade 402 can rotate stably.
  • the buoyancy steering blade 402 when the floating hull 101 floats above the water surface S, the water surface S is lower than the height H3 of the lower part 204 of the base part 204, and the buoyancy steering blade 402 The buoyancy may be adjusted so as to be located higher than the height H1. The buoyancy can be adjusted so that the water surface S is lower than the height H3 of the lower part 204 of the base part 204 and higher than the height H1 of the buoyancy steering blade 402 in both the full load condition and the empty ship condition. there is.
  • the base part 204 is also a structure that can be greatly affected by the water flow, by floating on the surface of the water (S) together with the floating hull 101, when the barge 100 is operated, efficient operation with minimized thrust loss is possible, , it makes it possible to easily and stably maintain the anchoring position when anchoring.
  • a plurality of buoyancy steering blades 402 are arranged along the outer periphery of the floating hull 101 .
  • the outer edge of the floating hull 101 may mean the outer edge of the lower part 102 of the floating hull 101.
  • the floating hull 101 can be stably floated on the water surface S through the symmetrical arrangement of the plurality of buoyancy steering blades 402, but the plurality of buoyancy steering blades 402 Arranged along the outer edge, the floating hull 101 can be more stably floated on the surface of the water (S). For example, as shown in FIGS.
  • the base portion 204 is provided with an engine room 202 in which a power engine can be placed.
  • the power engine may include an internal combustion engine, an electric motor, and the like.
  • a battery room capable of accommodating a large-capacity battery may be additionally provided in the watercraft hull 101 or the base part 204.
  • the barge 100 may include a propulsion unit 303 generating propulsive force by transmitting or discharging power from a power engine into the water.
  • the propulsion unit 303 may be implemented as a propeller, an air jet, or the like.
  • the watercraft hull 101 includes an adjustment unit for adjusting the navigation route during self-powered navigation.
  • the adjustment unit may be implemented as a cockpit in which a handle for adjusting a flight path and a lever for adjusting thrust are disposed.
  • the barge 100 provides its own power engine to obtain propulsion, self-powered navigation is possible without relying on a tugboat, so the operational convenience of the barge 100 can be improved.
  • At least one of the plurality of buoyancy steering blades 402 may be utilized as a thrust generation blade 302 including a propulsion unit 303 . 1 and 2, among the plurality of buoyancy steering blades 402, the buoyancy steering blades 402 located at a position corresponding to the bow 11 or stern 12 of the floating hull 101 are utilized as thrust generation blades 302. However, since it is not limited thereto, the buoyancy steering blades 402 disposed at a position different from the position corresponding to the bow 11 or stern 12 may also be utilized as the thrust generation blades 302.
  • the thrust generation blades 302 in which the buoyancy steering blades 402 and the propulsion unit 303 are integrated can simultaneously lift the floating hull 101 and discharge thrust, propulsion separately from the buoyancy steering blades 402 In contrast to the case where the unit 303 is provided, it is easy to change the flight route and design efficiency can be improved.
  • 3 and 4 show an example of passive turning and active turning during navigation.
  • the tugboat 601 may connect the connecting portion 602 to the barge 100 and tow the barge 100 .
  • the direction of the water flow along the navigation route of the floating hull 101 is in the -X-axis direction, so the rotation angle of the buoyancy steering blade 402 is 0 degrees.
  • the tugboat 601 may tow the barge 100 in the -Z-axis direction while pushing the side 103 of the watercraft hull 101.
  • the rotation angle of the buoyancy steering blade 402 may be 0 degrees to -90 degrees.
  • the control unit 104 may receive information about a navigation route during navigation and determine a rotation angle of the buoyancy steering blade 402 based on the navigation route. Information on the navigation route may be received from the tugboat 601 during towing or from the control unit of the floating hull 101 during self-powered navigation.
  • the control unit 104 controls the buoyancy steering blade driving unit 201 to rotate the rotation shaft 403 based on the determined rotation angle. That is, the buoyancy steering blade driving unit 201 rotates the rotation shaft 403 under the control of the control unit 104 so that the rotation angle of the buoyancy steering blade 402 becomes 0 degrees in the case of FIG. 3 or in the case of FIG. 4
  • the rotation angle of the buoyancy steering blade 402 is set to -90 degrees.
  • FIG. 5 is a state diagram of the buoyancy steering blades 402 when the navigation route is changed or anchored.
  • the rotation angle of the buoyancy steering blade 402 may be a rotation angle corresponding to the -P direction from 0 degrees, for example, 45 degrees.
  • the buoyancy steering blades 402 can also gradually rotate.
  • the control unit 104 receives information on the navigation route changed in the P direction, and the buoyancy so that the rotation angle of the buoyancy steering blade 402 becomes 45 degrees corresponding to the -P direction from 0 degrees.
  • the steering wheel driving unit 201 is controlled.
  • the control unit 104 can control the buoyancy steering blade driver 201 so that the buoyancy steering blade 402 gradually rotates.
  • the navigation route can be quickly changed to avoid a collision with an oncoming ship in a narrow channel, for example.
  • the rotation angle of the buoyancy steering blade 402 may be a rotation angle corresponding to the -P direction from 0 degree, for example, 45 degrees.
  • the control unit 104 receives information about the direction of the water flow changed to the -P direction from the water flow sensor 501, and the rotation angle of the buoyancy steering blade 402 changes from 0 degrees to the -P direction.
  • the buoyancy steering blade driving unit 201 is controlled so that the corresponding angle is 45 degrees.
  • FIG. 6 is a state diagram of the buoyancy steering blade 402 during rotation.
  • the tugboat 601 turns counterclockwise about the Y-axis while towing the barge 100 in the X-axis direction, and heads in the -X-axis direction.
  • the control unit 104 controls the buoyancy steering blade driving unit 201 so that the plurality of buoyancy steering blades 402 rotate at different angles so that the floating hull 101 can be rotated according to the turning of the tugboat 601.
  • the plurality of buoyancy steering blades 402 include an upstream buoyancy steering blade 610 disposed on the upstream side along the X-axis direction, which is the traveling direction of the floating hull 101, and a downstream buoyancy steering blade 610 disposed on the downstream side ( 620).
  • the upstream buoyancy steering blade 610 and the downstream buoyancy steering blade 620 may be classified in various ways according to the number of total buoyancy steering blades 402 and the like. For example, when five pairs of buoyancy steering blades 402 are provided as shown in FIG. 6, it can be divided into three pairs of buoyancy steering blades 610 on the upstream side and two pairs of buoyancy steering blades 620 on the downstream side. .
  • the upstream buoyancy steering wing 610 includes a first upstream buoyancy steering wing 611 and a second upstream buoyancy steering wing provided at symmetrical positions with respect to the central axis in the X-axis direction, which is the traveling direction of the floating hull 101. (612), and the downstream buoyancy steering blades 620 are also provided at positions symmetrical to each other with respect to the central axis in the X-axis direction. can be distinguished.
  • the control unit 104 rotates the first upstream buoyancy steering wing 611 and the second upstream buoyancy steering wing 612 at different angles, and the first downstream buoyancy steering wing 621 and the second downstream buoyancy steering wing 622 ) also controls the buoyancy steering blade driving unit 201 to rotate at different angles.
  • the rotation angle of the first upstream buoyancy steering blade 611 is 45 degrees and the rotation angle of the second upstream buoyancy steering blade 612 is 135 degrees so that the watercraft hull 101 rotates clockwise around the Y axis. It can be.
  • the rotation angle of the first downstream buoyancy steering blade 621 may be -45 degrees
  • the rotation angle of the second downstream buoyancy steering blade 622 may be -135 degrees.
  • the tugboat 601 turns on the water surface according to the turning
  • the radius of rotation of the hull 101 can be minimized.
  • the floating hull 101 can rotate in place.
  • the control unit 104 controls the buoyancy steering blade driver 201 so that the rotation angle of the upstream buoyancy steering blades 610 is equal to 45 degrees and the rotation angle of the downstream buoyancy steering blades 620 is equal to -45 degrees. can do. According to this, the watercraft hull 101 can rotate while having a predetermined radius of rotation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Toys (AREA)

Abstract

본 발명은 수류 영향 저감형 바지선에 관한 것으로서, 수상선체; 및 수중에 침수되어 상기 수상선체가 수면 위로 부상하도록 지지하며, 상기 수면에 수직한 방향을 중심으로 회동 가능하게 마련되는 복수의 부력조타익을 포함하며, 상기 복수의 부력조타익 중 적어도 한 쌍은, 상기 수상선체의 길이 또는 폭 중 적어도 한 방향으로 서로 대칭되는 위치에 마련되는 바지선을 포함한다. 이에 의하면, 수상선체가 수면 위로 완전히 부상되어 수류의 영향을 전혀 받지 않으므로, 운항 시에는 추력 손실이 최소화된 효율적인 운항이 가능하고, 정박 시에는 정박 위치를 용이하고 안정적으로 유지할 수 있다.

Description

수류 영향 저감형 바지선
본 발명은 수류에 의한 영향을 최소화할 수 있는 바지선에 관한 것이다.
바지선은 운하, 하천, 해상 등에서 사용되는 화물 적재용 또는 화물 운반용 선박이다. 일 예로, 화물 또는 장비를 적재한 바지선은 예인선에 연결되어 작업 현장으로 이동하고, 작업 현장에 도착하면 위치 고정을 위해 앵커를 내린 후 작업에 필요한 화물을 내리거나 작업자가 작업에 필요한 장비를 사용하게 한다.
다만, 바지선의 선체는 수류의 영향을 특히 많이 받는 형상이어서, 예컨대, 수류 저항으로 인해 운항 시에는 추력 손실이 크고, 정박 시에는 최초 정박 위치를 유지하기 쉽지 않은 단점이 있다.
따라서, 수류 영향을 효과적으로 저감시켜서, 운항 시에는 추력 손실이 최소화된 효율적인 운항이 가능하고, 정박 시에는 정박 위치를 용이하고 안정적으로 유지하는 구조를 가진 바지선에 대한 요청이 증가하고 있다.
본 발명의 목적은, 수류 영향을 효과적으로 저감시켜서, 운항 시에는 추력 손실이 최소화된 효율적인 운항이 가능하고, 정박 시에는 정박 위치를 용이하고 안정적으로 유지하는 구조를 가진 바지선을 제공하는 것이다.
상기한 본 발명의 목적은, 수상선체; 및 수중에 침수되어 상기 수상선체가 수면 위로 부상하도록 지지하며, 상기 수면에 수직한 방향을 중심으로 회동 가능하게 마련되는 복수의 부력조타익을 포함하며, 상기 복수의 부력조타익 중 적어도 한 쌍은, 상기 수상선체의 길이 또는 폭 중 적어도 한 방향으로 서로 대칭되는 위치에 마련되는 바지선에 의해 달성될 수 있다.
이에 의하면, 수상선체가 수면 위로 완전히 부상되어 수류의 영향을 전혀 받지 않으므로, 운항 시에는 추력 손실이 최소화된 효율적인 운항이 가능하고, 정박 시에는 정박 위치를 용이하고 안정적으로 유지할 수 있다.
상기 복수의 부력조타익은, 상기 수상선체의 외연을 따라 배열된다. 이에 의하면, 수상선체가 수면 위에서 안정적으로 부상될 수 있다.
상기 수류의 방향을 감지하는 수류센서; 상기 복수의 부력조타익을 회동하는 부력조타익 구동부; 및 상기 복수의 부력조타익이 상기 감지된 수류의 방향에 대응하는 각도로 회동하도록 상기 부력조타익 구동부를 제어하는 제어부를 포함한다.
이에 의하면, 부력조타익이 수류의 방향에 따라 회동하여 수류 저항을 최소화할 수 있으므로, 보다 용이하게 수상선체의 위치를 유지하고, 효율적인 운항이 가능하다.
상기 복수의 부력조타익 중 상기 수상선체의 진행방향에 대하여 상류측에서 상기 수상선체의 진행방향의 중심축을 기준으로 서로 대칭되는 위치에 마련되는 제1상류부력조타익 및 제2상류부력조타익 각각과, 하류측에서 상기 중심축을 기준으로 서로 대칭되는 위치에 마련되는 제1하류부력조타익 및 제2하류부력조타익 각각이 서로 다른 각도로 회동하도록 상기 부력조타익 구동부를 제어하는 제어부를 포함한다.
이에 의하면, 수상선체의 회전 반경을 최소화할 수 있다.
상기 복수의 부력조타익 중 상기 수상선체의 진행방향에 대하여 하류측의 부력조타익에 설치되는 추진부를 더 포함한다.
이에 의하면, 부력조타익과 별도로 추진부를 마련하는 경우 대비 수상선체의 운항경로 변경이 용이하고, 설계 효율성이 향상될 수 있다.
판상으로 상기 수상선체를 상방 지지하며, 저면에 상기 복수의 부력조타익의 회동축이 마련되는 베이스부를 포함한다.
이에 의하면, 수상선체 및 복수의 부력조타익을 좀더 견고하게 지지할 수 있고, 부력조타익이 안정적으로 회동할 수 있다.
본 발명에 따르면, 수상선체가 수면 위로 완전히 부상되어 수류의 영향을 전혀 받지 않으므로, 운항 시에는 추력 손실이 최소화된 효율적인 운항이 가능하고, 정박 시에는 정박 위치를 용이하고 안정적으로 유지하는 구조의 바지선을 제공할 수 있다.
도 1은 본 발명의 일 실시예에 따른 바지선에 대한 사시도이다.
도 2는 도 1의 바지선에 대한 분해도이다.
도 3은 운항 시 수동적 회동 및 능동적 회동의 일 예를 도시한다.
도 4는 운항 시 수동적 회동 및 능동적 회동의 일 예를 도시한다.
도 5는 운항경로 변경 시 또는 정박 시 부력조타익의 상태도이다.
도 6은 회전 시 부력조타익의 상태도이다.
이하, 도면을 참조하여 본 발명의 바람직한 실시예에 대해 상세하게 설명한다. 이는, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 발명을 용이하게 실시할 수 있을 정도로 상세하게 설명하기 위한 것이며, 이로 인해, 본 발명의 기술적인 사상 및 범주가 한정되는 것은 아님을 밝혀둔다.
도 1은 본 발명의 일 실시예에 따른 바지선(100)에 대한 사시도이고, 도 2는 도 1의 바지선(100)에 대한 분해도이다.
이하에서는, 도 1 및 2를 참조하여 본 발명의 일 실시예에 따른 수류 영향 저감형 바지선(100)의 구성을 상세하게 설명한다. 설명의 편의를 위해 수상선체(101)의 길이방향 및 폭방향은 X축방향 및 Z축방향에 대응되고, 수면(S)에 수직한 방향은 Y축방향에 대응되는 것으로 가정한다.
본 실시예에 따른 수류 영향 저감형 바지선(100)은 수상선체(101)를 포함한다. 수상선체(101)는 수면(S) 위에 위치하며, 사용자가 탑승하거나, 화물을 실을 수 있는 공간을 가질 수 있다. 수상선체(101)는 X축방향을 따라 선수(11)에서 선미(12)에 이르는 길이를 가지며, 수상선체(101)의 길이에 따라 수상선체(101)의 공간이 달라질 수 있다.
수상선체(101)는 하부(102) 및 측부(103)를 갖는다. 하부(102)는 수면(S)에 평행한 판상의 형상을 가지며, X축방향으로 연장되도록 마련된다. 하부(102)의 평평한 형상에 의해 운항 시 수상선체(101)에 가해지는 공기 저항이 최소화될 수 있다. 측부(103)는 하부(102)의 외연으로부터 Y축방향으로 연장된 구조를 갖는다. 다만, 수상선체(101)의 형상은 도 1 및 2에 도시된 바에 한정되지 않으므로, 수상선체(101)의 목적 및 용도에 따라 다양한 형상으로 마련될 수 있다.
수상선체(101)에는 제어부(104)가 마련될 수 있다. 제어부(104)는 CPU, 프로세서 등으로 구현될 수 있다. 제어부(104)는 바지선(100)의 각종 구성의 동작을 제어할 수 있다. 제어부(104)의 제어에 대해서는 바지선(100)의 각 구성에 관한 설명에서 자세히 설명하기로 한다.
바지선(100)은 부력조타익(402)을 갖는다. 부력조타익(402)은 수상선체(101)가 수면(S) 위로 부상하도록 지지한다. 부력조타익(402)은 수상선체(101)의 부상을 위한 부력을 갖는다. 일 예로, 부력조타익(402)의 내부가 격자 구조에 의해 복수의 밀폐 공간을 갖도록 설계될 수 있다. 이러한 밀폐 공간에 채워진 부력체에 의해 부력조타익(402)은 부력을 가질 수 있다. 부력체는 공기, 헬륨 가스 등과 같은 기체뿐만 아니라, 고밀도 스티로폼 등과 같은 고체로 구현될 수 있다. 물론 이들을 조합하여 밀폐 공간에 채울 수도 있다.
부력의 크기는 부력조타익(402)의 크기, 부력조타익(402)의 밀폐 공간의 크기, 밀폐 공간에 채워진 부력체의 밀도 등을 변경하여 조절할 수 있다. 부력조타익(402)은 Z축방향 폭(W) 및 Y축방향 높이(H1)으로 이루어진 단면을 가지며, X축방향으로 연장되는 길이(M)를 갖는다. 즉, 부력조타익(402)의 단면의 크기 또는 X축방향 길이(M)을 변경하여 부력조타익(402)의 크기를 조절함으로써, 부력의 크기를 조절할 수 있다. 또는, 부력조타익(402)의 개수를 늘리거나 줄여서 부력의 크기를 조절할 수도 있고, 부력조타익(402)에 충진되는 부력체의 종류를 달리하거나, 다양하게 조합함으로써 부력의 크기를 조절할 수도 있다.
바지선(100)을 물에 띄웠을 때, 수면(S)은 수상선체(101)의 하부(102)의 높이(H2)보다 낮고, 부력조타익(402)의 높이(H1)보다 높게 위치하도록 부력이 조절될 수 있다. 수상선체(101)에 허용 가능한 사용자 또는 화물이 탑재된 만재상태 및 수상선체(101)에 사용자 또는 화물이 탑재되지 않은 공선상태를 가정한 경우, 만재상태 및 공선상태 모두에서 수면(S)이 수상선체(101)의 하부(102)의 높이(H2)보다 낮고, 부력조타익(402)의 높이(H1)보다 높게 위치하도록 부력이 조절될 수 있다.
부력조타익(402)은 유체역학적 형상을 갖는다. 유체역학적 형상에 의해 운항 시 또는 정박 시 부력조타익(402)을 지나는 수류에 의한 마찰 저항이 최소화되며, 수류에 의해 양력이 생기거나 부력조타익(402)의 부력에 영향을 받지 않는다.
부력조타익(402)은 복수 개로 마련된다. 복수의 부력조타익(402) 중 적어도 한 쌍은, 수상선체(101)의 X축방향 또는 Z축방향 중 적어도 하나의 축방향으로 서로 대칭되는 위치에 마련된다. 일 예로, 도 1 및 2에서와 같이 다섯 쌍의 부력조타익(402)이 수상선체(101)의 X축방향 중심축을 기준으로 Z축방향으로 서로 대칭되는 위치에 마련될 수 있다. 이러한 대칭 배치에 의해 Z축방향으로 부력의 균형을 이룰 수 있고, 수상선체(101)가 안정적으로 수면(S) 위에 부상할 수 있다. 다만, 설계 방법에 따라 도 1 및 2에 도시된 바와 다른 개수 또는 다른 쌍의 개수의 부력조타익(402)이 다양한 축방향에 대해 대칭 배치될 수도 있다.
부력조타익(402)은 Y축을 중심으로 회동 가능하게 마련된다. 일 예로, 부력조타익(402)의 양단 중 일단에는 Y축방향으로 연장된 회동축(403)이 마련되며, 부력조타익(402)은 회동축(403)을 중심으로 회동 가능하게 마련된다.
이하에서는 설명의 편의를 위해 부력조타익(402)의 양단 중 회동축(403)이 마련된 일단을 선단(404)이라고 타단을 후단(405)이라 가정한다. 또한, 부력조타익(402)이 수상선체(101)의 길이방향에 평행하며, 후단(405)이 -X축방향을 향할 때 부력조타익(402)의 회동 각도는 0도라고 하고, 후단(405)이 회동축(403)을 중심으로 반시계방향으로 회동할수록 회동 각도가 점점 증가하는 것으로 가정한다.
부력조타익(402)은 수동적 또는 능동적으로 회동 가능하다. 수동적 회동은 수류의 방향에 따라 부력조타익(402)이 자연적으로 회동하는 경우를 의미한다. 앞서 설명한 바와 같이 부력조타익(402)은 유체역학적 형상을 가지므로, 수류에 의한 마찰 저항이 최소화되는 방향으로 자연 회동할 수 있다. 일 예로, 수류의 방향이 -X축방향이면, 수류에 의한 마찰 저항이 최소화되도록 부력조타익(402)의 회동 각도는 0도가 된다.
능동적 회동은 구동력에 의해 부력조타익(402)을 회동시키는 경우를 의미한다. 능동적 회동을 위해 부력조타익 구동부(201)가 마련될 수 있다. 제어부(104)는 부력조타익(402)이 회동축(403)을 중심으로 회동하여 부력조타익(402)의 회동 각도가 조절되도록 부력조타익 구동부(201)를 제어한다.
능동적 회동을 위해 바지선(100)은 수류의 방향을 감지하는 수류센서(501)를 더 포함할 수 있다. 수류센서(501)는 수류감지익(502)에 연결된다. 수류감지익(502)은 수상선체(101) 또는 이하에서 설명하는 베이스부(204)에 마련될 수 있다. 수류감지익(502)은 부력조타익(402)과 같이 수중에 위치하며, 수류의 방향에 따라 자연 회동하는데, 수류센서(501)는 수류감지익(502)의 회동 각도에 기초하여 수류의 방향을 감지한다.
제어부(104)는 감지된 수류의 방향에 관한 정보를 수류센서(501)로부터 수신하고, 부력조타익 구동부(201)를 제어하여 부력조타익(402)이 감지된 수류의 방향에 대응하는 각도로 회동하게 한다. 일 예로, 수류센서(501)에 의해 수류의 방향이 -X축방향이라고 감지되면, 제어부(104)는 부력조타익(402)의 회동 각도가 0도가 되도록 부력조타익 구동부(201)를 제어한다.
수동적 회동 및 능동적 회동의 구체적인 일 예에 대해서는 도 3 및 4를 참조하여 자세히 설명하기로 한다.
이와 같이, 본 실시예에 따르면, 부력조타익(402)에 의해 수상선체(101)가 수면(S) 위로 완전히 부상되어 수류의 영향을 전혀 받지 않고, 수중에는 부력조타익(402)만이 회동 가능하게 마련된다. 따라서, 운항 시에는 추력 손실이 최소화된 효율적인 운항이 가능하고, 정박 시에는 수류에 의해 수상선체(101)가 떠내려 가지 않으므로, 최초 정박 위치를 용이하고 안정적으로 유지할 수 있다.
다양한 실시예에 따르면, 바지선(100)은 베이스부(204)를 포함한다. 베이스부(204)는 X축방향으로 연장되며, 수면(S)에 평행한 판상의 형상을 갖는다. 베이스부(204)의 평평한 형상에 의해 운항 시 베이스부(204)에 가해지는 공기 저항이 최소화될 수 있다.
베이스부(204)는 수상선체(101)를 상방 지지한다. 베이스부(204)의 상면에는 수상선체(101)를 상방 지지하기 위한 지지부재(203)가 배열된다. 지지부재(203)가 복수 개로 마련되는 경우 선수로부터 X축방향을 따라 등간격으로 배열될 수 있다.
베이스부(204)의 저면에는 부력조타익(402)의 회동축(403)이 마련되고, 베이스부(204)의 상면에는 회동축(403)을 회동하는 부력조타익 구동부(201)가 마련된다. 부력조타익 구동부(201)는 베이스부(204) 상에 마련된 관통홀(207)을 Y축방향으로 관통하는 회전샤프트(401)를 통해 회동축(403)과 연결된다. 부력조타익 구동부(201)는 제어부(104)의 제어에 따라 회전샤프트(401)를 통해 회동축(403)을 회동하여 부력조타익(402)의 회동 각도를 조절한다.
베이스부(204)가 수상선체(101)와 별도의 구성으로 마련되지만, 이는 설계 방법에 따라 달라질 수 있으므로, 베이스부(204)는 수상선체(101)의 구성으로서, 수상선체(101)와 일체형으로 마련될 수도 있다.
이와 같이, 베이스부(204)를 마련하면 수상선체(101) 및 부력조타익(402)을 좀더 견고하게 지지할 수 있고, 부력조타익(402)이 안정적으로 회동할 수 있다.
다양한 실시예에 따르면, 수상선체(101)가 수면(S) 위로 부상 시, 수면(S)은 베이스부(204)의 하부(204)의 높이(H3)보다 낮고, 부력조타익(402)의 높이(H1)보다 높게 위치하도록 부력이 조절될 수 있다. 만재상태 및 공선상태 모두에서 수면(S)이 베이스부(204)의 하부(204)의 높이(H3)보다 낮고, 부력조타익(402)의 높이(H1)보다 높게 위치하도록 부력이 조절될 수 있다.
베이스부(204)도 수류에 영향을 많이 받을 수 있는 구조이므로, 수상선체(101)와 함께 수면(S) 위로 부상시켜서, 바지선(100)의 운항 시에는 추력 손실이 최소화된 효율적인 운항이 가능하고, 정박 시에는 정박 위치를 용이하고 안정적으로 유지할 수 있게 한다.
다양한 실시예에 따르면, 복수의 부력조타익(402)은 수상선체(101)의 외연을 따라 배열된다. 수상선체(101)의 외연은 수상선체(101)의 하부(102)의 외연을 의미할 수 있다. 앞서 설명한 바와 같이 복수의 부력조타익(402)의 대칭 배치를 통해 수상선체(101)가 수면(S)에서 안정적으로 부상될 수 있지만, 복수의 부력조타익(402)을 수상선체(101)의 외연을 따라 배열하면, 수상선체(101)가 수면(S) 위에서 보다 안정적으로 부상될 수 있다. 일 예로, 도 1 및 2에서와 같이 다섯 쌍의 부력조타익(402)을 수상선체(101)의 Z축방향으로 서로 대칭되는 위치에 마련할 때, 수상선체(101의 외연을 따라 배열하면, 수상선체(101의 X축방향 중심선을 따라 배열하거나, 수상선체(101의 X축방향 중심선에 근접하게 배열하는 경우 대비 수상선체(101)가 보다 안정적으로 부상될 수 있다.
다양한 실시예에 따르면, 베이스부(204)에는 동력기관을 배치할 수 있는 엔진룸(202)이 마련된다. 동력기관은 내연기관, 전기모터 등을 포함할 수 있다. 전기모터를 동력기관으로 사용하는 경우, 수상선체(101) 또는 베이스부(204)에는 대용량 배터리를 수납할 수 있는 배터리룸이 추가로 마련될 수 있다.
바지선(100)은 동력기관의 동력을 수중으로 전달하거나 배출하여 추진력을 발생시키는 추진부(303)를 포함할 수 있다. 추진부(303)는 프로펠러, 에어젯(air jet) 등으로 구현될 수 있다.
수상선체(101)는 자력 운항 시 운항경로를 조정하기 위한 조정부를 포함한다. 조정부는 운항경로를 조정하기 위한 핸들, 추력 조절을 위한 레버 등이 배치된 콕픽(cockpit)으로 구현될 수 있다.
이와 같이, 바지선(100)이 동력기관을 자체적으로 마련하여 추진력을 얻으면 예인선에 의존하지 않고 자력 운항이 가능하므로, 바지선(100)의 운용 편리성이 향상될 수 있다.
다양한 실시예에 따르면, 복수의 부력조타익(402) 중 적어도 하나는 추진부(303)를 포함하는 추력발생익(302)으로 활용될 수 있다. 도 1 및 2에서는 복수의 부력조타익(402) 중 수상선체(101)의 선수(11) 또는 선미(12)에 대응하는 위치에 있는 부력조타익(402)이 추력발생익(302)으로 활용된 것으로 도시하였으나, 이에 한정되는 것은 아니므로, 선수(11) 또는 선미(12)에 대응하는 위치와 다른 위치에 배치된 부력조타익(402)도 추력발생익(302)으로 활용될 수 있다.
이와 같이, 부력조타익(402) 및 추진부(303)가 일체화된 추력발생익(302)은 수상선체(101)의 부상 및 추력 배출을 동시에 할 수 있으므로, 부력조타익(402)과 별도로 추진부(303)을 마련하는 경우 대비 운항경로 변경이 용이하고, 설계 효율성이 향상될 수 있다.
도 3 및 4는 운항 시 수동적 회동 및 능동적 회동의 일 예를 도시한다.
이하에서는 도 3 및 4를 참조하여 운항 시 수동적 회동에 대해 먼저 설명한다. 도 3에서와 같이, 예인선(601)은 연결부(602)를 바지선(100)에 연결하고, 바지선(100)을 예인할 수 있다. 예인선(601)이 X축방향으로 예인하는 경우, 수상선체(101)의 운항경로에 따른 수류의 방향은 -X축방향이 되므로, 부력조타익(402)의 회동 각도가 0도가 된다.
도 4에서와 같이, 예인선(601)이 수상선체(101)의 측부(103)를 밀면서 바지선(100)을 -Z축방향으로 예인할 수도 있다. 이 경우 수상선체(101)의 운항경로에 따른 수류의 방향이 Z축방향이 되므로, 부력조타익(402)의 회동 각도가 0도에서 -90도가 될 수 있다.
도 3 및 4는 운항 시 능동적 회동에도 적용될 수 있다. 일 예로, 제어부(104)는 운항 시 운항경로에 관한 정보를 수신하고, 운항경로에 기초하여 부력조타익(402)의 회동 각도를 결정할 수 있다. 운항경로에 관한 정보는 예인 시 예인선(601)으로부터 수신되거나, 자력 운항 시 수상선체(101)의 조종부로부터 수신될 수 있다. 제어부(104)는 결정된 회동 각도에 기초하여 회동축(403)을 회동하도록 부력조타익 구동부(201)를 제어한다. 즉, 부력조타익 구동부(201)는 제어부(104)의 제어에 따라 회동축(403)을 회동하여, 도 3의 경우 부력조타익(402)의 회동 각도가 0도가 되게 하거나, 도 4의 경우 부력조타익(402)의 회동 각도가 -90도가 되게 한다.
한편, 상기한 부력조타익(402)의 회동 각도인 0도, -90도 등은 설명의 편의를 위한 것이므로, 수류의 방향 또는 운항경로의 변경에 따라 다양한 회동 각도가 될 수 있다.
이와 같이, 운항 시 부력조타익(402)에 대한 수동적 회동 및 능동적 회동을 통해 추력 손실이 최소화된 효율적인 운항이 가능하다.
도 5는 운항경로 변경 시 또는 정박 시 부력조타익(402)의 상태도이다.
이하에서는 도 5를 참조하여 바지선(100)의 운항 중에 운항경로 변경 시 수동적 회동에 대해 먼저 설명한다. 설명의 편의를 위해 예인선(601)이 X축방향을 따라 바지선(100)을 예인하다가 P방향으로 운항경로를 변경하는 경우를 가정한다.
P방향으로 변경된 운항경로에 의해 수류의 방향은 P방향에 반대되는 -P방향이 된다. 따라서, 부력조타익(402)의 회동 각도가 0도에서 -P방향에 대응하는 회동 각도, 예컨대, 45도가 될 수 있다. 물론 운항경로는 갑자기 변경되기보다는 점진적으로 변경될 수 있으므로, 부력조타익(402)도 점진적으로 회동할 수 있다.
운항경로 변경 시 능동적 회동의 경우, 제어부(104)는 P방향으로 변경된 운항경로에 관한 정보를 수신하고, 부력조타익(402)의 회동 각도가 0도에서 -P방향에 대응하는 45도가 되도록 부력조타익 구동부(201)를 제어한다. 물론 운항경로가 점진적으로 변경될 수 있으므로, 제어부(104)는 부력조타익(402)이 점진적으로 회동하도록 부력조타익 구동부(201)를 제어할 수 있다.
이와 같이, 운항경로 변경 시 수동적 회동 및 능동적 회동이 적용되면, 예컨대, 협수로에서 마주오는 선박과의 충돌을 피하기 위해 운항경로를 신속하게 변경할 수 있다.
이하에서는 도 5를 참조하여 정박 시 수동적 회동 및 능동적 회동에 대해 설명한다. 설명의 편의를 위해 수류의 방향이 -X축방향에서 -P방향으로 변경된 것으로 가정한다.
정박 시 수동적 회동의 경우, 부력조타익(402)의 회동 각도가 0도에서 -P방향에 대응하는 회동 각도, 예컨대, 45도가 될 수 있다. 물론 수류의 방향이 점진적으로 변경된 경우, 부력조타익(402)도 점진적으로 회동할 수 있다. 정박 시 능동적 회동의 경우, 제어부(104)는 수류센서(501)로부터 -P방향으로 변경된 수류의 방향에 관한 정보를 수신하고, 부력조타익(402)의 회동 각도가 0도에서 -P방향에 대응하는 45도가 되도록 부력조타익 구동부(201)를 제어한다.
이와 같이, 정박 시 수동적 회동 및 능동적 회동이 적용되면, 수류에 의해 수상선체(101)가 떠내려 가지 않으므로, 최초 정박 위치를 용이하고 안정적으로 유지할 수 있다.
도 6은 회전 시 부력조타익(402)의 상태도이다.
설명의 편의를 위해 예인선(601)이 바지선(100)을 X축방향으로 예인하던 중 Y축을 중심으로 반시계방향으로 선회하여, -X축방향으로 향하는 경우를 가정한다.
이 경우 제어부(104)는 예인선(601)의 선회에 따라 수상선체(101)의 회전이 가능하도록 복수의 부력조타익(402)이 서로 다른 각도로 회동하도록 부력조타익 구동부(201)를 제어할 수 있다. 좀더 구체적으로, 복수의 부력조타익(402)은 수상선체(101)의 진행방향인 X축방향을 따라 상류측에 배치되는 상류부력조타익(610) 및 하류측에 배치되는 하류부력조타익(620)로 구분될 수 있다. 상류측의 부력조타익(610) 및 하류측의 부력조타익(620)은 전체 부력조타익(402)의 개수 등에 따라 다양하게 구분될 수 있다. 일 예로, 도 6에서와 같이 다섯 쌍의 부력조타익(402)이 마련된 경우, 상류측의 셋 쌍의 부력조타익(610) 및 하류측의 두 쌍의 부력조타익(620)으로 구분할 수 있다.
또한, 상류부력조타익(610)은 수상선체(101)의 진행방향인 X축방향의 중심축을 기준으로 서로 대칭되는 위치에 마련되는 제1상류부력조타익(611) 및 제2상류부력조타익(612)로 구분되고, 하류부력조타익(620)도 X축방향의 중심축을 기준으로 서로 대칭되는 위치에 마련되는 제1하류부력조타익(621) 및 제2하류부력조타익(622)로 구분될 수 있다.
제어부(104)는 제1상류부력조타익(611) 및 제2상류부력조타익(612)이 서로 다른 각도로 회동하고, 제1하류부력조타익(621) 및 제2하류부력조타익(622)도 서로 다른 각도로 회동하도록 부력조타익 구동부(201)를 제어한다. 일 예로, 수상선체(101)가 Y축을 중심으로 시계방향으로 회전하도록 제1상류부력조타익(611)의 회동 각도는 45도가 되고, 제2상류부력조타익(612)의 회동 각도는 135도가 될 수 있다. 또한, 제1하류부력조타익(621)의 회동 각도는 -45도가 되고, 제2하류부력조타익(622)의 회동 각도는 -135도가 될 수 있다.
이와 같이, 수상선체(101)의 진행방향에 대하여 상류측의 부력조타익(610) 및 하류측의 부력조타익(620)이 서로 다른 각도로 각각 회동하면, 예인선(601)의 선회에 따라 수상선체(101)의 회전 반경을 최소화할 수 있다. 예컨대, 수상선체(101)는 제자리에서 회전이 가능하다.
다양한 실시예에 따르면, 상기한 제자리 회전보다 좀더 회전 반경이 크도록 회전할 수도 있다. 일 예로, 제어부(104)는 상류부력조타익(610)의 회동 각도가 45도로 동일하게 하고, 하류부력조타익(620)의 회동 각도가 -45도로 동일하도록 부력조타익 구동부(201)를 제어할 수 있다. 이에 의하면, 수상선체(101)가 소정의 회전 반경을 가지면서 회전할 수 있다.
이상, 바람직한 실시예를 통하여 본 발명에 관하여 상세히 설명하였으나, 본 발명은 이에 한정되는 것은 아니며 특허청구범위 내에서 다양하게 실시될 수 있다.

Claims (6)

  1. 수류 영향 저감형 바지선에 있어서,
    수상선체; 및
    수중에 침수되어 상기 수상선체가 수면 위로 부상하도록 지지하며, 상기 수면에 수직한 방향을 중심으로 회동 가능하게 마련되는 복수의 부력조타익을 포함하며,
    상기 복수의 부력조타익 중 적어도 한 쌍은, 상기 수상선체의 길이 또는 폭 중 적어도 한 방향으로 서로 대칭되는 위치에 마련되는 바지선.
  2. 제1항에 있어서,
    상기 복수의 부력조타익은, 상기 수상선체의 외연을 따라 배열되는 바지선.
  3. 제1항에 있어서,
    상기 수류의 방향을 감지하는 수류센서;
    상기 복수의 부력조타익을 회동하는 부력조타익 구동부; 및
    상기 복수의 부력조타익이 상기 감지된 수류의 방향에 대응하는 각도로 회동하도록 상기 부력조타익 구동부를 제어하는 제어부를 포함하는 바지선.
  4. 제1항에 있어서,
    상기 복수의 부력조타익을 회동하는 부력조타익 구동부; 및
    상기 복수의 부력조타익 중 상기 수상선체의 진행방향에 대하여 상류측에서 상기 수상선체의 진행방향의 중심축을 기준으로 서로 대칭되는 위치에 마련되는 제1상류부력조타익 및 제2상류부력조타익 각각과, 하류측에서 상기 중심축을 기준으로 서로 대칭되는 위치에 마련되는 제1하류부력조타익 및 제2하류부력조타익 각각이 서로 다른 각도로 회동하도록 상기 부력조타익 구동부를 제어하는 제어부를 포함하는 바지선.
  5. 제1항에 있어서,
    상기 복수의 부력조타익 중 상기 수상선체의 진행방향에 대하여 하류측의 부력조타익에 설치되는 추진부를 더 포함하는 바지선.
  6. 제1항에 있어서,
    판상으로 상기 수상선체를 상방 지지하며, 저면에 상기 복수의 부력조타익의 회동축이 마련되는 베이스부를 포함하는 바지선.
PCT/KR2022/014916 2021-10-05 2022-10-04 수류 영향 저감형 바지선 WO2023059032A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0131600 2021-10-05
KR20210131600 2021-10-05

Publications (1)

Publication Number Publication Date
WO2023059032A1 true WO2023059032A1 (ko) 2023-04-13

Family

ID=85803585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/014916 WO2023059032A1 (ko) 2021-10-05 2022-10-04 수류 영향 저감형 바지선

Country Status (1)

Country Link
WO (1) WO2023059032A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117227914A (zh) * 2023-11-16 2023-12-15 四川省天晟源环保股份有限公司 一种污染水域微生物菌剂投放船及污染水域治理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004080792A1 (de) * 2003-03-10 2004-09-23 Klaus Kabella Bugsteuervorrichtung für einen schubverband
KR20110124994A (ko) * 2010-05-12 2011-11-18 삼성중공업 주식회사 선박의 흘수 조절 시스템
KR20130017524A (ko) * 2011-08-11 2013-02-20 에스티엑스조선해양 주식회사 워터제트를 이용한 엘엔지 벙커링 바지선 시스템
KR20170089716A (ko) * 2016-01-27 2017-08-04 김석문 부유식 구조물의 동적위치제어 시스템 및 방법
WO2019212066A1 (ko) * 2018-04-30 2019-11-07 Choi Dong Kuoo 변각형 양력 조절방식의 날개를 장착한 제 3세대 항공기와 선박 및 열차 그리고 자동차

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004080792A1 (de) * 2003-03-10 2004-09-23 Klaus Kabella Bugsteuervorrichtung für einen schubverband
KR20110124994A (ko) * 2010-05-12 2011-11-18 삼성중공업 주식회사 선박의 흘수 조절 시스템
KR20130017524A (ko) * 2011-08-11 2013-02-20 에스티엑스조선해양 주식회사 워터제트를 이용한 엘엔지 벙커링 바지선 시스템
KR20170089716A (ko) * 2016-01-27 2017-08-04 김석문 부유식 구조물의 동적위치제어 시스템 및 방법
WO2019212066A1 (ko) * 2018-04-30 2019-11-07 Choi Dong Kuoo 변각형 양력 조절방식의 날개를 장착한 제 3세대 항공기와 선박 및 열차 그리고 자동차

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117227914A (zh) * 2023-11-16 2023-12-15 四川省天晟源环保股份有限公司 一种污染水域微生物菌剂投放船及污染水域治理方法
CN117227914B (zh) * 2023-11-16 2024-01-19 四川省天晟源环保股份有限公司 一种污染水域微生物菌剂投放船及污染水域治理方法

Similar Documents

Publication Publication Date Title
WO2023059032A1 (ko) 수류 영향 저감형 바지선
SI9210051A (en) Multiple-hull displacement water craft with limited righting moment and reduced advance resistance
KR100415770B1 (ko) 수면 항행기
EP3109149B1 (en) Stabilising apparatus
KR100216452B1 (ko) 다중 선체 선박
KR20140025803A (ko) 부유식 해양 구조물의 동적 위치 유지 시스템 및 방법
US7040244B1 (en) Watercraft having plural narrow hulls and having submerged passive flotation devices
US3425383A (en) Hydrofoil method and apparatus
WO2022158676A1 (ko) 보트 추진장치
US5809923A (en) Apparatus for controlling the buoyancy and draft of a vessel
US20120132124A1 (en) SPAR Based Maritime Access Vehicle
US20050011427A1 (en) Two degree of freedom rudder/stabilizer for waterborne vessels
US5325804A (en) Fuel-efficient watercraft with improved speed, stability, and safety characteristics
WO2023055117A1 (ko) 조파 저항 저감형 선박
US5111766A (en) Sea wing
JP2022540094A (ja) 洋上発電システム
KR20120064929A (ko) 요트 조정장치
WO2020050714A1 (en) Vessel with a rotor installation
GB2219973A (en) Stabilising a water borne craft
GB2454877A (en) A watercraft with buoyant hydrofoil vanes
WO2018139731A1 (ko) 조립식 윈드 요트
WO2014129915A1 (en) A small-sized speedboat with hydrofoils
WO2021261958A1 (ko) 간격 조절이 가능한 쌍동선
JP2024000001A (ja) 面状推進システム、航走体、航走体の航走方法、及び、航走体の操船方法
JP2024051332A (ja) 船舶

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878853

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE