WO2023058983A1 - Method and device for preparing perovskite thin film by using additives - Google Patents

Method and device for preparing perovskite thin film by using additives Download PDF

Info

Publication number
WO2023058983A1
WO2023058983A1 PCT/KR2022/014459 KR2022014459W WO2023058983A1 WO 2023058983 A1 WO2023058983 A1 WO 2023058983A1 KR 2022014459 W KR2022014459 W KR 2022014459W WO 2023058983 A1 WO2023058983 A1 WO 2023058983A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
perovskite
additive
perovskite thin
substrate
Prior art date
Application number
PCT/KR2022/014459
Other languages
French (fr)
Korean (ko)
Inventor
전남중
장경순
김영웅
김영윤
김범수
김승우
김근진
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2023058983A1 publication Critical patent/WO2023058983A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/151Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to a method and apparatus for manufacturing a perovskite thin film using additives, and more particularly, to a method for manufacturing a perovskite thin film with reduced wrinkles and voids using additives and devices.
  • a perovskite solar cell refers to a solar cell based on a light absorber of a perovskite (ABX 3 ) structure.
  • the perovskite material has a high absorption rate for visible light, a wide light absorption range, can generate a high short-circuit current only by using a small amount of material, and at the same time has a high open-circuit voltage as a battery device.
  • the solar cell has a high light absorption coefficient, so it can effectively absorb sunlight even with a sub-micrometer thickness, and thus has excellent photoelectric conversion efficiency, such as a power conversion efficiency (PCE) exceeding 20%. Since the perovskite thin film used in the thin solar cell is thin, it has the advantage of low material cost.
  • a conventional method for producing a large-area perovskite thin film is coated by dissolving a perovskite precursor in a solvent.
  • a perovskite precursor in a solvent.
  • the supersaturated precursors crystallize into a perovskite material due to evaporation of the solvent and form a solid perovskite thin film, wrinkles are generated on the surface of the perovskite thin film, and the thin film There are also many voids or pinholes inside, making it difficult to manufacture a high-quality perovskite thin film.
  • An object of the present disclosure is to provide a perovskite thin film having high surface crystallization using an additive.
  • An object of the present disclosure is to provide a uniform large-area perovskite thin film using an additive.
  • An object of the present disclosure is to provide a large-area perovskite thin film with high reproducibility using additives.
  • An object of the present disclosure is to provide a perovskite thin film that can be manufactured in a large area in an atmospheric environment using additives.
  • An object of the present disclosure is to simultaneously improve wrinkles formed on the surface of a perovskite thin film and voids formed inside a perovskite thin film by using additives.
  • a method for manufacturing a perovskite thin film according to an embodiment of the present disclosure includes supplying a perovskite precursor solution onto a substrate, supplying a first additive onto a substrate, and a second additive different from the first additive. and supplying the substrate onto the substrate and annealing the substrate.
  • Supplying the perovskite precursor solution on the substrate according to an embodiment of the present disclosure includes supplying an anti-solvent on the substrate.
  • the first additive according to an embodiment of the present disclosure corresponds to an additive that suppresses generation of wrinkles on the surface of the perovskite thin film.
  • the second additive according to an embodiment of the present disclosure corresponds to an additive that suppresses generation of voids inside the perovskite thin film.
  • the first additive according to an embodiment of the present disclosure corresponds to formamide.
  • the second additive according to an embodiment of the present disclosure corresponds to MACl.
  • a method for manufacturing a perovskite thin film according to an embodiment of the present disclosure includes being made in an atmospheric environment.
  • the perovskite precursor according to an embodiment of the present disclosure includes Formamidinium (FA).
  • Perovskite thin film manufacturing apparatus is different from the solution supply unit for supplying the perovskite precursor solution to the substrate, the first additive supply unit for supplying the first additive to the substrate, the first additive It includes a second additive supplying unit supplying a second additive onto the substrate and an annealing unit annealing the substrate.
  • a solution containing a perovskite precursor according to an embodiment of the present disclosure includes a perovskite precursor, a solvent dissolving the perovskite precursor, a first additive, and a second additive different from the first additive.
  • the first additive corresponds to formamide
  • the second additive corresponds to MACl
  • a perovskite thin film may be formed in a large area in an ambient air.
  • wrinkles formed on the surface of the perovskite thin film and voids formed inside the perovskite thin film can be simultaneously improved.
  • 1 and 2 are views showing differences in the quality of perovskite thin films manufactured according to the process environment.
  • FIG. 3 is a view showing a process of forming wrinkles and voids of a perovskite thin film according to the prior art.
  • FIG. 4 is a view showing a method for improving wrinkles of a perovskite thin film according to the prior art.
  • 6 is a photographic image of the surface and bottom of a perovskite thin film according to the type of additive.
  • FIG. 7 is a diagram illustrating a manufacturing process of a perovskite thin film using an additive according to an embodiment of the present disclosure.
  • 8 to 12 are diagrams showing crystallinity, photoluminescence (PL) intensity, and the like of perovskite thin films.
  • 13 to 16 show device J-V characteristics and photostability test results of perovskite thin films fabricated in an atmospheric environment.
  • the term "at least one" included in the expression of the Markush form means including one or more selected from the group consisting of elements described in the expression of the Markush form.
  • perovskite or “PE” means a material having a perovskite crystal structure, and may have various perovskite crystal structures in addition to the crystal structure of ABX 3 .
  • the efficiency means power conversion efficiency (PCE).
  • precursor may mean a precursor or reactant used to prepare perovskite, and is not limited to a specific material.
  • solvent is a substance for dissolving the perovskite precursor.
  • MF methylammonium chloride
  • Formamide methylammonium chloride
  • the perovskite composition used in the images used herein corresponds to Cs 0.17 FA 0.83 Pb(I 0.8 Br 0.2 ) 3 unless otherwise indicated.
  • FIG. 1 and 2 are views showing differences in the quality of perovskite thin films manufactured according to the process environment.
  • the solvent used in the process of manufacturing the perovskite thin film reduces the solubility of the perovskite precursor solution because it easily combines with moisture contained in a general atmospheric environment.
  • wrinkles are formed on the surface of the perovskite thin film and voids are formed inside, resulting in an unbalanced thin film with low crystallinity.
  • the perovskite thin film is prepared in an inert gas (eg, N 2 ) environment from which moisture is removed.
  • an inert gas eg, N 2
  • FIG. 3 is a view showing a process of forming wrinkles and voids in a perovskite thin film according to the prior art.
  • the surface portion during anti-solvent treatment due to materials with low solubility (eg, CsI and PbBr 2 ) added to the perovskite precursor solution A difference in crystallization occurs, resulting in wrinkles on the surface.
  • the surface changes to the perovskite phase in a short time, but there is a residual solvent that has not evaporated inside, and voids are generated inside as this residual solvent evaporates during annealing.
  • FIG. 4 is a view showing a method for improving wrinkles of a perovskite thin film according to the prior art.
  • wrinkles are formed on the surface of the perovskite thin film due to the low solubility of the perovskite precursor solution. Therefore, the composition of the solvent can be changed to suppress wrinkles by increasing the solubility of the perovskite precursor solution.
  • the ratio of DMSO in a mixed solvent of DMF (dimethylformamide) and DMSO (dimethyl sulfoxide) increases, the effect of improving wrinkles becomes more pronounced.
  • more voids are formed inside the perovskite thin film, and the side effect of reducing the grain size of the thin film occurs.
  • 5 is a surface and side photographed image of a perovskite thin film according to the type of additive.
  • 6 is a photographic image of the surface and bottom of a perovskite thin film according to the type of additive.
  • the first additive corresponds to formamide.
  • Formamide serves to prevent perovskite surface wrinkles.
  • the second additive corresponds to methylammonium chloride (MACl).
  • MACl improves voids formed inside the perovskite thin film.
  • Primer corresponds to an image taken of a perovskite thin film manufactured according to a general manufacturing process without additives.
  • Formamide corresponds to an image taken of a perovskite thin film prepared according to a manufacturing process in which formamide is added to a perovskite precursor solution. When only formamide was added, surface wrinkles were improved, but internal voids were still present.
  • MACl corresponds to an image taken of a perovskite thin film prepared according to a manufacturing process in which MACl is added to a perovskite precursor solution. When only MACl was added, surface wrinkles still existed, but internal voids were reduced.
  • Mated corresponds to an image taken of a perovskite thin film prepared according to a manufacturing process in which formamide and MACl are added to a perovskite precursor solution. It can be seen that both surface wrinkles and internal voids are reduced.
  • a method for manufacturing a perovskite thin film according to an embodiment of the present disclosure includes supplying a perovskite precursor solution onto a substrate, supplying a first additive onto a substrate, and a second additive different from the first additive. and supplying the substrate onto the substrate and annealing the substrate.
  • the perovskite precursor solution may include a precursor of the perovskite compound and a solvent dissolving the perovskite compound.
  • the perovskite compound may contain monovalent organic cations, divalent metal cations and halide anions.
  • the perovskite compound of the present invention may satisfy the following formula.
  • A is a monovalent cation and may correspond to an organic ammonium ion, an amidinium group ion, or a combination of an organic ammonium ion and an amidinium group ion.
  • an organic cation as A may have the formula (R1R2R3R4N)+.
  • R1 to R4 may correspond to hydrogen, unsubstituted or substituted C1-C20 alkyl, or unsubstituted or substituted aryl.
  • an organic cation as A may have the formula (R5NH3)+, where R5 may correspond to hydrogen or substituted or unsubstituted C1-C20 alkyl.
  • M may be a divalent metal ion.
  • M is Cu 2+ , Ni 2+ , Co 2+ , Fe 2+ , Mn 2+ , Cr 2+ , Pd 2+ , Cd 2+ , Ge 2+ , Sn 2+ , Pb 2+ and Yb 2 metal cations selected from the group consisting of + and combinations thereof, but are not limited thereto.
  • X may correspond to a halogen ion.
  • the halogen ion includes, but is not limited to, a halogen ion selected from the group consisting of I-, Br-, F-, Cl-, and combinations thereof.
  • the perovskite compound is any one or a mixture of two or more selected from CH 3 NH 3 PbI 3 (methylammonium lead iodide, MAPbI 3 ) and CH(NH 2 ) 2 PbI 3 (formamidinium lead iodide, FAPbI 3 ). it could be
  • the perovskite compound may be doped, for example Cs may be doped.
  • the perovskite compound may correspond to Cs 0.17 FA 0.83 Pb(I 0.8 Br 0.2 ) 3 .
  • the perovskite precursor is a precursor of the above-described perovskite compound, and may correspond to an organic cation, a metal cation, or a halogen anion (X).
  • Organic cations, metal ions, and halide anions contained in the precursor may be the same as the monovalent organic cation (A), divalent metal ion (M), and halide anion (X) described above in the perovskite compound. , a detailed description thereof is omitted.
  • the solvent may refer to a polar organic solvent, and may refer to an organic solvent having a solubility of 0.5 M or more, specifically 0.8 M or more, of a perovskite compound under 20° C. and 1 atm pressure. there is.
  • a solvent that dissolves a perovskite compound N, N-dimethylacetamide, 1,4-dioxane, diethylamine, ethylacetate, tetrahydrofuran (tetrahydrofuran), pyridine, methanol, ethanol, dichlorobenzene, glycerin and dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF dimethylformamide), gamma-butyrolactone (GBL), 1-methyl-2-pyrrolidone (1-Methyl-2-pyrolidinone), or a mixture thereof.
  • DMSO N,N-dimethylformamide
  • GBL gamma-butyrolactone
  • 1-methyl-2-pyrrolidone 1-Methyl-2-pyrolidinone
  • non-solvent examples include non-polar organic solvents, which include pentane, hexene, cyclohexene, 1,4-dioxene, benzene, toluene, triethyl amine, chlorobenzene, ethylamine, and ethyl ether. , chloroform, ethyl acetate, acetic acid, 1,2-dichlorobenzene, tert-butyl alcohol, 2-butanol, isopropanol, and one or more organic solvents selected from methyl ethyl ketone.
  • the invention is not limited by the non-solvent.
  • a perovskite precursor solution is supplied on a substrate.
  • the perovskite precursor solution may be supplied onto the substrate in a 1-step method or sequentially supplied in a 2-step method in which BX 2 is first supplied onto the substrate and then AX is supplied onto the substrate.
  • the step of supplying the perovskite precursor solution onto the substrate includes supplying a non-solvent to the perovskite precursor solution.
  • the first additive is an additive other than the solvent and corresponds to an additive that suppresses wrinkles of the perovskite thin film. Due to the material with low solubility added to the perovskite precursor solution, a difference in crystallization occurs in the surface portion during non-solvent treatment, resulting in wrinkles on the surface.
  • a first additive other than a solvent is supplied onto the substrate.
  • the first additive according to an embodiment of the present disclosure corresponds to formamide.
  • the first additive containing formamide does not have the side effect of generating voids in the perovskite thin film due to the conventional wrinkle improvement method using a solvent, and improves surface wrinkles of the perovskite thin film.
  • the second additive is supplied onto the substrate.
  • This step may be performed simultaneously with the step of supplying the first additive onto the substrate, or may be performed after that.
  • the first additive in the process of supplying a perovskite precursor solution onto a substrate and performing a reaction, the first additive may be supplied onto the substrate, and then the second additive may be supplied onto the substrate.
  • supply of the second additive may proceed after spin coating. In this way, when different additives are sequentially supplied to the perovskite precursor solution, the effect of suppressing wrinkles and voids of the perovskite thin film may be remarkable compared to the case where the additives are added simultaneously.
  • the second additive according to an embodiment of the present disclosure corresponds to an additive that suppresses voids in the perovskite thin film.
  • the perovskite thin film When the perovskite thin film is formed, when the spin coating is completed, the surface quickly changes to the perovskite thin film, but the solvent remaining in the solution-state perovskite thin film inside exists, and in the annealing process of heat treatment A problem occurs in that voids are formed inside the perovskite thin film due to evaporation of the remaining solvent.
  • a second additive different from the first additive is supplied to the substrate as an additive other than the solvent.
  • the second additive according to an embodiment of the present disclosure corresponds to MACl. MACl suppresses voids formed inside the perovskite thin film.
  • the step of supplying the perovskite precursor solution onto the substrate, the step of supplying the first additive onto the substrate, and the step of supplying the second additive onto the substrate may be performed simultaneously or sequentially. can proceed with
  • the remaining solvent is evaporated by annealing the substrate according to an embodiment of the present disclosure.
  • FIGS. 8 to 12 are diagrams showing crystallinity, photoluminescence (PL) intensity, and the like of perovskite thin films.
  • perovskite thin film Principal
  • perovskite thin film manufactured using formamide perovskite thin film manufactured using MACl
  • MF MACl + Formamide
  • FIGS. 17 to 21 show large-area perovskite thin films and devices fabricated in an air environment.
  • the experimental results are shown.
  • the atmospheric environment contains moisture (H 2 O). Since the solvent used in the perovskite thin film manufacturing process easily combines with moisture contained in the general atmospheric environment, it reduces the solubility of the perovskite precursor solution, resulting in a rough surface with wrinkles and voids, and an unbalanced surface with low crystallinity. to form a thin film.
  • the perovskite thin film manufacturing process environment for forming a uniform thin film with improved wrinkles and voids of the perovskite thin film is mainly performed in an inert gas (eg, N 2 ) environment from which moisture is removed.
  • an inert gas eg, N 2
  • the cost is high, there is a limit to the fabrication and commercialization of large-area perovskite.
  • a perovskite thin film manufacturing method includes being made in an atmospheric environment containing moisture (H 2 O).
  • formamide is added to the perovskite precursor solution to improve the wrinkles of the perovskite thin film
  • MACl is added to Voids formed inside the thin film are improved.
  • MACl improves voids by increasing crystallinity due to strong binding force with a dense mesophase formed as a non-solvent and volatility of MA (Methylammonium) component. Since wrinkles and voids generated in the atmospheric environment are improved, it is possible to manufacture economical large-area perovskite.
  • a large-area perovskite thin film using MF (MACl + Formamide) is manufactured in a general ambient air.
  • Large-area perovskite thin films manufactured by conventional techniques in an atmospheric environment have problems of low reproducibility and reduced efficiency because of their large area.
  • large-area perovskite thin films using MF (MACl + Formamide) show high efficiency due to high light stability of charge and increased reproducibility.
  • the large-area perovskite thin film manufacturing process may be performed as a shearing-coating process in an atmospheric environment. As shown in FIGS. 17 to 21, shear coating injects the perovskite precursor solution between the blade and the substrate, and then uniformly supplies the perovskite precursor solution containing MACl and Formamide onto the substrate. . After the supply of the perovskite precursor solution is complete, it is placed in an anti-solvent bath to form an intermediate phase, and then the perovskite thin film is formed through large-area coating through annealing and cutting processes. will form
  • a large-area perovskite thin film prepared in an atmospheric environment using MF is a current (J)-voltage (V) graph, fill factor (FF) and energy It was found to have improved performance over the prior art in terms of conversion efficiency (PCE).
  • the performance of the optical device was evaluated through the following method.
  • PCE photoelectric conversion efficiency
  • FIG. 22 is a surface image of a perovskite thin film according to additives
  • FIG. 23 is a side image of a perovskite thin film according to additives.
  • surface and side images of the perovskite thin film were taken while changing the additive. As confirmed in the image, it can be seen that surface wrinkles and internal voids of the perovskite thin film are suppressed when both MACl and formamide are supplied to the perovskite precursor solution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

A method for preparing a perovskite thin film by using additives, according to one embodiment of the present disclosure, comprise the steps of: supplying a perovskite precursor solution to a substrate; supplying a first additive to the substrate; supplying, to the substrate, a second additive that differs from the first additive; and annealing the substrate.

Description

첨가제를 이용한 페로브스카이트 박막 제조 방법 및 장치Method and device for manufacturing perovskite thin film using additives
본 개시는 첨가제를 이용한 페로브스카이트 박막 제조 방법 및 장치에 관한 것으로서, 보다 상세하게는 첨가제를 이용해서 주름(Wrinkle) 및 보이드(Void)를 함께 저감시킨 페로브스카이트 박막을 제조하기 위한 방법 및 장치에 관한 것이다.The present disclosure relates to a method and apparatus for manufacturing a perovskite thin film using additives, and more particularly, to a method for manufacturing a perovskite thin film with reduced wrinkles and voids using additives and devices.
페로브스카이트 태양전지는 페로브스카이트(ABX3) 구조의 광 흡수체를 기반으로 한 태양전지를 말한다. 페로브스카이트 재료는 가시광에 대한 흡수율이 높고 광 흡수 범위가 넓고 소량의 재료를 사용하는 것만으로 높은 단락 전류를 생성할 수 있는 것과 동시에, 전지 소자로서 높은 개방 전압을 가지므로, 페로브스카이트 태양전지는 흡광계수가 높아 서브마이크로미터 두께에서도 효과적으로 태양광을 흡수할 수 있고, 이에 따라 광전 변환 효율(power conversion efficiency, PCE)이 20%를 초과하는 등 우수한 광전 변환 효율을 가지며, 페로브스카이트 태양전지에 이용되는 페로브스카이트 박막은 얇기 때문에 재료 비용도 저렴하다는 장점이 있다.A perovskite solar cell refers to a solar cell based on a light absorber of a perovskite (ABX 3 ) structure. The perovskite material has a high absorption rate for visible light, a wide light absorption range, can generate a high short-circuit current only by using a small amount of material, and at the same time has a high open-circuit voltage as a battery device. The solar cell has a high light absorption coefficient, so it can effectively absorb sunlight even with a sub-micrometer thickness, and thus has excellent photoelectric conversion efficiency, such as a power conversion efficiency (PCE) exceeding 20%. Since the perovskite thin film used in the thin solar cell is thin, it has the advantage of low material cost.
종래의 대면적 페로브스카이트 박막의 제조 방법은 페로브스카이트 전구체를 용매에 녹여 코팅한다. 이러한 방법을 이용할 경우, 용매의 증발로 인해 과포화된 전구체들이 페로브스카이트 물질로 결정화되며 고체상의 페로브스카이트 박막을 형성하기 때문에 페로브스카이트 박막 표면에 주름(Wrinkle)이 생성되고, 박막 내부에는 보이드(Void) 내지 핀홀도 다수 존재하게 되어 고품질의 페로브스카이트 박막을 제조하기 어려웠다.A conventional method for producing a large-area perovskite thin film is coated by dissolving a perovskite precursor in a solvent. When using this method, since the supersaturated precursors crystallize into a perovskite material due to evaporation of the solvent and form a solid perovskite thin film, wrinkles are generated on the surface of the perovskite thin film, and the thin film There are also many voids or pinholes inside, making it difficult to manufacture a high-quality perovskite thin film.
페로브스카이트 전구체 간의 빠른 반응 및 자기 조립 성질로 인해 불균일한 형태를 가지는 페로브스카이트 박막의 표면을 제어하기 위한 방법으로 DMSO(Dimethylsulfoxide)를 이용하거나, 수분(H2O)을 제거하기 위해 일반적인 대기환경(ambient air)이 아닌 비활성 기체(N2)를 이용하였다. 하지만, 대면적 페로브스카이트 박막을 제조하기 위해서는 생산 비용을 낮추고, 페로브스카이트 박막의 균일도를 증가시켜 재현성을 높이며, 안정적인 광전 변환 효율을 확보하는 것이 필요하다. 이에 따라 보다 효과적으로 고품질 및 대면적 페로브스카이트 광흡수층 박막을 형성할 수 있는 기술 개발이 요구된다.As a method for controlling the surface of a perovskite thin film having a non-uniform shape due to rapid reaction and self-assembly between perovskite precursors, DMSO (Dimethylsulfoxide) is used or to remove moisture (H 2 O) An inert gas (N 2 ), rather than a general ambient air, was used. However, in order to manufacture a large-area perovskite thin film, it is necessary to lower the production cost, increase the uniformity of the perovskite thin film to increase reproducibility, and secure stable photoelectric conversion efficiency. Accordingly, it is required to develop a technology capable of forming a high-quality and large-area perovskite light absorption layer thin film more effectively.
본 개시는 첨가제를 이용해 높은 표면 결정화를 가지는 페로브스카이트 박막을 제공하는 것을 목적으로 한다.An object of the present disclosure is to provide a perovskite thin film having high surface crystallization using an additive.
본 개시는 첨가제를 이용해서 균일한 대면적 페로브스카이트 박막을 제공하는 것을 목적으로 한다.An object of the present disclosure is to provide a uniform large-area perovskite thin film using an additive.
본 개시는 첨가제를 이용해서 재현성이 높은 대면적 페로브스카이트 박막을 제공하는 것을 목적으로 한다.An object of the present disclosure is to provide a large-area perovskite thin film with high reproducibility using additives.
본 개시는 첨가제를 이용해 대기환경에서 대면적으로 제조가능한 페로브스카이트 박막을 제공하는 것을 목적으로 한다.An object of the present disclosure is to provide a perovskite thin film that can be manufactured in a large area in an atmospheric environment using additives.
본 개시는 첨가제를 이용해서 페로브스카이트 박막 표면에 형성되는 주름 및 페로브스카이트 박막 내부에 형성되는 보이드를 동시에 개선하는 것을 목적으로 한다.An object of the present disclosure is to simultaneously improve wrinkles formed on the surface of a perovskite thin film and voids formed inside a perovskite thin film by using additives.
본 개시의 일 실시예에 따른 페로브스카이트 박막 제조방법은, 페로브스카이트 전구체 용액을 기판 상에 공급하는 단계, 제1 첨가제를 기판 상에 공급하는 단계, 제1 첨가제와 상이한 제2 첨가제를 기판 상에 공급하는 단계 및 기판을 어닐링(annealing)하는 단계를 포함한다.A method for manufacturing a perovskite thin film according to an embodiment of the present disclosure includes supplying a perovskite precursor solution onto a substrate, supplying a first additive onto a substrate, and a second additive different from the first additive. and supplying the substrate onto the substrate and annealing the substrate.
본 개시의 일 실시예에 따른 페로브스카이트 전구체 용액을 기판 상에 공급하는 단계는, 기판 상에 비용매(Anti-solvent)를 공급하는 단계를 포함한다.Supplying the perovskite precursor solution on the substrate according to an embodiment of the present disclosure includes supplying an anti-solvent on the substrate.
본 개시의 일 실시예에 따른 제1 첨가제는 페로브스카이트 박막 표면의 주름(Wrinkle) 생성을 억제하는 첨가제에 해당한다.The first additive according to an embodiment of the present disclosure corresponds to an additive that suppresses generation of wrinkles on the surface of the perovskite thin film.
본 개시의 일 실시예에 따른 제2 첨가제는 페로브스카이트 박막 내부의 보이드(Void) 생성을 억제하는 첨가제에 해당한다.The second additive according to an embodiment of the present disclosure corresponds to an additive that suppresses generation of voids inside the perovskite thin film.
본 개시의 일 실시예에 따른 제1 첨가제는 포름아미드에 해당한다.The first additive according to an embodiment of the present disclosure corresponds to formamide.
본 개시의 일 실시예에 따른 제2 첨가제는 MACl에 해당한다.The second additive according to an embodiment of the present disclosure corresponds to MACl.
본 개시의 일 실시예에 따른 페로브스카이트 박막 제조방법은 대기환경에서 이루어지는 것을 포함한다.A method for manufacturing a perovskite thin film according to an embodiment of the present disclosure includes being made in an atmospheric environment.
본 개시의 일 실시예에 따른 페로브스카이트 전구체는 FA(Formamidinium)를 포함한다.The perovskite precursor according to an embodiment of the present disclosure includes Formamidinium (FA).
본 개시의 일 실시예에 따른 페로브스카이트 박막 제조장치는 페로브스카이트 전구체 용액을 기판 상에 공급하는 용액공급부, 제1 첨가제를 기판 상에 공급하는 제1 첨가제 공급부, 제1 첨가제와 상이한 제2 첨가제를 기판 상에 공급하는 제2 첨가제 공급부 및 기판을 어닐링(annealing)하는 어닐링부를 포함한다.Perovskite thin film manufacturing apparatus according to an embodiment of the present disclosure is different from the solution supply unit for supplying the perovskite precursor solution to the substrate, the first additive supply unit for supplying the first additive to the substrate, the first additive It includes a second additive supplying unit supplying a second additive onto the substrate and an annealing unit annealing the substrate.
본 개시의 일 실시예에 따른 페로브스카이트 전구체를 포함하는 용액은 페로브스카이트 전구체, 페로브스카이트 전구체를 용해하는 용매, 제1 첨가제 및 제1 첨가제와 상이한 제2 첨가제를 포함한다.A solution containing a perovskite precursor according to an embodiment of the present disclosure includes a perovskite precursor, a solvent dissolving the perovskite precursor, a first additive, and a second additive different from the first additive.
본 개시의 일 실시예에 따른 제1 첨가제는 포름아미드에 해당하고, 제2 첨가제는 MACl에 해당한다.According to an embodiment of the present disclosure, the first additive corresponds to formamide, and the second additive corresponds to MACl.
본 개시의 다양한 실시예를 이용하여, 높은 표면 결정화를 가지는 페로브스카이트 박막을 제공할 수 있다.Using various embodiments of the present disclosure, it is possible to provide a perovskite thin film having high surface crystallization.
본 개시의 다양한 실시예를 이용하여, 밀도가 높고 균일한 대면적 페로브스카이트 박막을 제공할 수 있다.Using various embodiments of the present disclosure, it is possible to provide a high-density and uniform large-area perovskite thin film.
본 개시의 다양한 실시예를 이용하여, 재현성이 높은 대면적 페로브스카이트 박막을 제공할 수 있다.Using various embodiments of the present disclosure, it is possible to provide a large-area perovskite thin film with high reproducibility.
본 개시의 다양한 실시예를 이용하여, 대기환경(ambient air)에서 페로브스카이트 박막을 대면적으로 형성할 수 있다.Using various embodiments of the present disclosure, a perovskite thin film may be formed in a large area in an ambient air.
본 개시의 다양한 실시예를 이용하여, 페로브스카이트 박막 표면에 형성되는 주름(Wrinkle) 및 페로브스카이트 박막 내부에 형성되는 보이드(Void)를 동시에 개선할 수 있다.Using various embodiments of the present disclosure, wrinkles formed on the surface of the perovskite thin film and voids formed inside the perovskite thin film can be simultaneously improved.
본 발명의 기술적 효과들은 이상에서 언급한 것들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 효과들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The technical effects of the present invention are not limited to those mentioned above, and other technical effects not mentioned will be clearly understood by those skilled in the art from the description below.
본 개시의 실시예들은, 이하 설명하는 첨부 도면들을 참조하여 설명될 것이다.Embodiments of the present disclosure will be described with reference to the accompanying drawings described below.
도 1 및 도 2는 공정환경에 따라 제조된 페로브스카이트 박막 품질 차이를 도시한 도면이다.1 and 2 are views showing differences in the quality of perovskite thin films manufactured according to the process environment.
도 3은 종래 기술에 따른 페로브스카이트 박막의 주름(Wrinkle) 및 보이드(Void)의 형성 과정을 도시한 도면이다.3 is a view showing a process of forming wrinkles and voids of a perovskite thin film according to the prior art.
도 4는 종래 기술에 따른 페로브스카이트 박막의 주름(Wrinkle) 개선 방안을 도시한 도면이다.4 is a view showing a method for improving wrinkles of a perovskite thin film according to the prior art.
도 5는 첨가제 종류에 따른 페로브스카이트 박막의 표면 및 측면 촬영 이미지이다. 5 is a surface and side photographed image of a perovskite thin film according to the type of additive.
도 6은 첨가제 종류에 따른 페로브스카이트 박막의 표면 및 저면 촬영 이미지이다.6 is a photographic image of the surface and bottom of a perovskite thin film according to the type of additive.
도 7은 본 개시의 일 실시예에 따른 첨가제를 이용한 페로브스카이트 박막의 제조 과정을 도시한 도면이다.7 is a diagram illustrating a manufacturing process of a perovskite thin film using an additive according to an embodiment of the present disclosure.
도 8 내지 도 12는 페로브스카이트 박막의 결정성, 광발광(Photoluminescence, PL) 세기 등을 도시한 도면이다.8 to 12 are diagrams showing crystallinity, photoluminescence (PL) intensity, and the like of perovskite thin films.
도 13 내지 도 16은 대기환경에서 제작된 페로브스카이트 박막의 소자 J-V 특성 및 광안정성 실험 결과를 도시한다.13 to 16 show device J-V characteristics and photostability test results of perovskite thin films fabricated in an atmospheric environment.
도 17 내지 도 21은 대기환경에서 제작된 대면적 페로브스카이트 박막 및 소자 실험 결과를 도시한다.17 to 21 show test results of large-area perovskite thin films and devices fabricated in an atmospheric environment.
도 22는 첨가제에 따른 페로브스카이트 박막의 표면 이미지이다.22 is a surface image of a perovskite thin film according to additives.
도 23은 첨가제에 따른 페로브스카이트 박막의 측면 이미지이다.23 is a side image of a perovskite thin film according to additives.
이하, 본 개시의 실시를 위한 구체적인 내용을 첨부된 도면을 참조하여 상세히 설명한다. 다만, 이하의 설명에서는 본 개시의 요지를 불필요하게 흐릴 우려가 있는 경우, 널리 알려진 기능이나 구성에 관한 구체적 설명은 생략하기로 한다.Hereinafter, specific details for the implementation of the present disclosure will be described in detail with reference to the accompanying drawings. However, in the following description, if there is a risk of unnecessarily obscuring the gist of the present disclosure, detailed descriptions of well-known functions or configurations will be omitted.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.Throughout the present specification, when a certain component is said to "include", it means that it may further include other components without excluding other components unless otherwise stated.
본원 명세서 전체에서 사용되는 정도의 용어 "약" 등은 허용오차가 존재할 때 허용오차를 포괄하는 의미로 사용된 것이다.The terms "about" and the like used throughout this specification are intended to encompass tolerances when tolerances exist.
본원 명세서 전체에서, 마쿠쉬 형식의 표현에 포함된 "적어도 어느 하나"의 용어는 마쿠쉬 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.Throughout the present specification, the term "at least one" included in the expression of the Markush form means including one or more selected from the group consisting of elements described in the expression of the Markush form.
본원 명세서 전체에서, "A 및/또는 B"의 기재는 "A, 또는 B, 또는 A 및 B"를 의미한다.Throughout this specification, reference to "A and/or B" means "A, or B, or A and B".
본원 명세서 전체에서, "페로브스카이트" 또는 "PE"는 페로브스카이트 결정구조를 가지는 물질을 의미하며, ABX3의 결정구조 외에도 다양한 페로브스카이트 결정구조를 가질 수 있다.Throughout the present specification, “perovskite” or “PE” means a material having a perovskite crystal structure, and may have various perovskite crystal structures in addition to the crystal structure of ABX 3 .
본원 명세서 전체에서, 별다른 추가 설명 없이 단순히 효율로만 기재되어 있는 경우, 해당 효율은 전력 변환 효율(Power Conversion Efficiency, PCE)을 의미한다.Throughout the present specification, when only efficiency is described without any additional explanation, the efficiency means power conversion efficiency (PCE).
본원 명세서 전체에서, "전구체"는, 페로브스카이트를 제조하는데 사용되는 프리커서(precursor) 또는 반응체를 의미할 수 있으며, 특정 물질로 제한되지 않는다.Throughout the present specification, "precursor" may mean a precursor or reactant used to prepare perovskite, and is not limited to a specific material.
본원 명세서 전체에서, "용매"는 페로브스카이트 전구체를 용해하기 위한 물질이다.Throughout this specification, "solvent" is a substance for dissolving the perovskite precursor.
본원 명세서 전체에서, "MF" 또는 "Mixed"는 MACl(Methylammonium chloride) 및 포름아미드(Formamide)를 첨가한 것을 의미한다.Throughout the present specification, "MF" or "Mixed" means that MACl (methylammonium chloride) and formamide are added.
본원 도면에 사용된 이미지에 사용된 페로브스카이트 조성은 다른 표시가 없는 경우 Cs0.17FA0.83Pb(I0.8Br0.2)3에 해당한다.The perovskite composition used in the images used herein corresponds to Cs 0.17 FA 0.83 Pb(I 0.8 Br 0.2 ) 3 unless otherwise indicated.
도 1 및 도 2는 공정환경에 따라 제조된 페로브스카이트 박막 품질 차이를 도시한 도면이다. 페로브스카이트 박막을 제조하는 공정에서 사용되는 용매는 일반적인 대기환경(ambient air)에 포함된 수분과 쉽게 결합하기 때문에 페로브스카이트 전구체 용액의 용해도를 감소시킨다. 그로 인해 페로브스카이트 박막 표면에 주름이 형성되고 내부에는 보이드가 형성되어, 결정화도가 낮은 불균형한 박막이 형성된다. 이에, 페로브스카이트 박막의 주름 및 보이드가 개선된 균일한 박막을 형성하기 위해 페로브스카이트 박막을 수분이 제거된 비활성 기체(예컨대, N2) 환경에서 제조한다. 하지만, 질소 기체를 사용하는 공정의 경우 비용이 비싸기 때문에 대면적 페로브스카이트의 제작 및 상용화에 한계를 가진다.1 and 2 are views showing differences in the quality of perovskite thin films manufactured according to the process environment. The solvent used in the process of manufacturing the perovskite thin film reduces the solubility of the perovskite precursor solution because it easily combines with moisture contained in a general atmospheric environment. As a result, wrinkles are formed on the surface of the perovskite thin film and voids are formed inside, resulting in an unbalanced thin film with low crystallinity. Thus, in order to form a uniform thin film with improved wrinkles and voids of the perovskite thin film, the perovskite thin film is prepared in an inert gas (eg, N 2 ) environment from which moisture is removed. However, in the case of a process using nitrogen gas, since the cost is high, there is a limit to the fabrication and commercialization of large-area perovskite.
도 3은 종래 기술에 따른 페로브스카이트 박막의 주름 및 보이드의 형성 과정을 도시한 도면이다. 종래 페로브스카이트 박막의 제조 공정에 따르면, 페로브스카이트 전구체 용액에 첨가되는 낮은 용해도(solubility)를 가진 물질(예컨대, CsI와 PbBr2)로 인해 비용매(anti-solvent) 처리 시 표면 부분에서 결정화 차이가 발생하게 되고, 그로 인해 표면에 주름(wrinkle)이 발생하게 된다.3 is a view showing a process of forming wrinkles and voids in a perovskite thin film according to the prior art. According to the conventional manufacturing process of the perovskite thin film, the surface portion during anti-solvent treatment due to materials with low solubility (eg, CsI and PbBr 2 ) added to the perovskite precursor solution A difference in crystallization occurs, resulting in wrinkles on the surface.
나아가, 표면은 짧은 시간 안에 페로브스카이트 상으로 변화하지만 내부에는 증발하지 못한 잔여 용매(residual solvent)가 존재하게 되는데, 어닐링 처리시 이러한 잔여 용매가 증발하면서 보이드(void)가 내부에 생성된다.Furthermore, the surface changes to the perovskite phase in a short time, but there is a residual solvent that has not evaporated inside, and voids are generated inside as this residual solvent evaporates during annealing.
도 4는 종래 기술에 따른 페로브스카이트 박막의 주름 개선 방안을 도시한 도면이다. 종래의 페로브스카이트 박막 제조 공정에서 페로브스카이트 전구체 용액의 낮은 용해도로 인해 페로브스카이트 박막의 표면 부분에 주름이 형성된다. 따라서, 페로브스카이트 전구체 용액의 용해도를 높여 주름을 억제하기 위해 용매의 조성을 변경할 수 있다. 예컨대, DMF(dimethylformamide) 및 DMSO(dimethyl sulfoxide)를 혼합한 용매에서 DMSO의 비율이 높아질수록 주름이 개선되는 효과가 두드러진다. 그러나 도 3에 도시된 바와 같이, 페로브스카이트 박막의 내부에 보이드가 더 많이 형성되고, 박막의 결정입자크기(grain size)가 작아지는 부작용이 발생하였다.4 is a view showing a method for improving wrinkles of a perovskite thin film according to the prior art. In the conventional perovskite thin film manufacturing process, wrinkles are formed on the surface of the perovskite thin film due to the low solubility of the perovskite precursor solution. Therefore, the composition of the solvent can be changed to suppress wrinkles by increasing the solubility of the perovskite precursor solution. For example, as the ratio of DMSO in a mixed solvent of DMF (dimethylformamide) and DMSO (dimethyl sulfoxide) increases, the effect of improving wrinkles becomes more pronounced. However, as shown in FIG. 3, more voids are formed inside the perovskite thin film, and the side effect of reducing the grain size of the thin film occurs.
도 5는 첨가제 종류에 따른 페로브스카이트 박막의 표면 및 측면 촬영 이미지이다. 도 6은 첨가제 종류에 따른 페로브스카이트 박막의 표면 및 저면 촬영 이미지이다.5 is a surface and side photographed image of a perovskite thin film according to the type of additive. 6 is a photographic image of the surface and bottom of a perovskite thin film according to the type of additive.
본 개시의 일 실시예에 따르면 페로브스카이트 전구체 용액에 서로 다른 첨가제를 추가한다. 예컨대, 제1 첨가제는 포름아미드(Formamide)에 해당한다. 포름아미드는 페로브스카이트 표면 주름을 방지하는 역할을 한다. 예컨대, 제2 첨가제는 MACl(Methylammonium chloride)에 해당한다. MACl은 페로브스카이트 박막 내부에 형성되는 보이드를 개선한다.According to an embodiment of the present disclosure, different additives are added to the perovskite precursor solution. For example, the first additive corresponds to formamide. Formamide serves to prevent perovskite surface wrinkles. For example, the second additive corresponds to methylammonium chloride (MACl). MACl improves voids formed inside the perovskite thin film.
해당 도면에서 "Pristine"은 첨가제 없이 일반적인 제조 공정에 따라 제조된 페로브스카이트 박막을 촬영한 이미지에 해당한다.In the figure, "Pristine" corresponds to an image taken of a perovskite thin film manufactured according to a general manufacturing process without additives.
"Formamide"는 페로브스카이트 전구체 용액에 포름아미드를 첨가하는 제조 공정에 따라 제조된 페로브스카이트 박막을 촬영한 이미지에 해당한다. 포름아미드만을 첨가한 경우, 표면 주름은 개선되었지만 내부 보이드는 여전히 존재하는 것을 확인할 수 있다."Formamide" corresponds to an image taken of a perovskite thin film prepared according to a manufacturing process in which formamide is added to a perovskite precursor solution. When only formamide was added, surface wrinkles were improved, but internal voids were still present.
"MACl"은 페로브스카이트 전구체 용액에 MACl을 첨가하는 제조 공정에 따라 제조된 페로브스카이트 박막을 촬영한 이미지에 해당한다. MACl만을 첨가한 경우, 표면 주름은 여전히 존재하지만 내부 보이드는 줄어든 것을 확인할 수 있다."MACl" corresponds to an image taken of a perovskite thin film prepared according to a manufacturing process in which MACl is added to a perovskite precursor solution. When only MACl was added, surface wrinkles still existed, but internal voids were reduced.
"Mixed"는 페로브스카이트 전구체 용액에 포름아미드 및 MACl을 첨가하는 제조 공정에 따라 제조된 페로브스카이트 박막을 촬영한 이미지에 해당한다. 표면 주름 및 내부 보이드가 모두 줄어든 것을 확인할 수 있다."Mixed" corresponds to an image taken of a perovskite thin film prepared according to a manufacturing process in which formamide and MACl are added to a perovskite precursor solution. It can be seen that both surface wrinkles and internal voids are reduced.
도 7은 본 개시의 일 실시예에 따른 첨가제를 이용한 페로브스카이트 박막의 제조 과정을 도시한 도면이다. 본 개시의 일 실시예에 따른 페로브스카이트 박막 제조방법은, 페로브스카이트 전구체 용액을 기판 상에 공급하는 단계, 제1 첨가제를 기판 상에 공급하는 단계, 제1 첨가제와 상이한 제2 첨가제를 기판 상에 공급하는 단계 및 기판을 어닐링(annealing)하는 단계를 포함한다.7 is a diagram illustrating a manufacturing process of a perovskite thin film using an additive according to an embodiment of the present disclosure. A method for manufacturing a perovskite thin film according to an embodiment of the present disclosure includes supplying a perovskite precursor solution onto a substrate, supplying a first additive onto a substrate, and a second additive different from the first additive. and supplying the substrate onto the substrate and annealing the substrate.
본 개시의 일 실시예에 따르면, 페로브스카이트 전구체 용액은 페로브스카이트 화합물의 전구체와, 페로브스카이트 화합물을 용해하는 용매를 포함할 수 있다.According to one embodiment of the present disclosure, the perovskite precursor solution may include a precursor of the perovskite compound and a solvent dissolving the perovskite compound.
페로브스카이트 화합물은 1가의 유기 양이온, 2가의 금속 양이온 및 할로겐 음이온을 함유할 수 있다. 일 실시예에서, 본 발명의 페로브스카이트 화합물은 하기 화학식을 만족할 수 있다.The perovskite compound may contain monovalent organic cations, divalent metal cations and halide anions. In one embodiment, the perovskite compound of the present invention may satisfy the following formula.
[화학식 1][Formula 1]
AMX3 AMX 3
화학식 1에서, A는 1가의 양이온으로, 유기 암모늄 이온, 아미디니움계(amidinium group) 이온, 또는 유기 암모늄 이온 및 아미디니움계 이온의 조합에 해당할 수 있다.In Formula 1, A is a monovalent cation and may correspond to an organic ammonium ion, an amidinium group ion, or a combination of an organic ammonium ion and an amidinium group ion.
예컨대, A로서 유기 양이온은 화학식 (R1R2R3R4N)+을 가질 수 있다. 이 경우, R1~R4는 수소, 치환되지 않거나 치환된 C1-C20 알킬(alkyl), 또는 치환되지 않거나 치환된 아릴(aryl)에 해당할 수 있다.For example, an organic cation as A may have the formula (R1R2R3R4N)+. In this case, R1 to R4 may correspond to hydrogen, unsubstituted or substituted C1-C20 alkyl, or unsubstituted or substituted aryl.
예컨대, A로서 유기 양이온은 화학식 (R5NH3)+을 가질 수 있으며, 이 때 R5는 수소, 또는 치환된 또는 치환되지 않은 C1-C20 알킬에 해당할 수 있다.For example, an organic cation as A may have the formula (R5NH3)+, where R5 may correspond to hydrogen or substituted or unsubstituted C1-C20 alkyl.
예컨대, A로서 유기 양이온은 화학식 (R6R7N=CH-NR8R9)+을 가지며, 이 경우에 R6~R9는 수소, 메틸, 또는 에틸에 해당할 수 있다.For example, an organic cation as A has the formula (R6R7N=CH-NR8R9)+, in which case R6 to R9 may correspond to hydrogen, methyl, or ethyl.
M은 2가의 금속 이온일 수 있다. 예컨대, M은 Cu2+, Ni2+, Co2+, Fe2+, Mn2+, Cr2+, Pd2+, Cd2+, Ge2+, Sn2+, Pb2+ 및 Yb2+에서 및 이들의 조합들로 이루어진 군으로부터 선택되는 금속 양이온을 포함하는 것이나, 이에 제한되는 것은 아니다.M may be a divalent metal ion. For example, M is Cu 2+ , Ni 2+ , Co 2+ , Fe 2+ , Mn 2+ , Cr 2+ , Pd 2+ , Cd 2+ , Ge 2+ , Sn 2+ , Pb 2+ and Yb 2 metal cations selected from the group consisting of + and combinations thereof, but are not limited thereto.
X는 할로겐 이온에 해당할 수 있다. 예컨대, 할로겐 이온은 I-, Br-, F-, Cl- 및 이들의 조합들로 이루어진 군으로부터 선택되는 할로겐 이온을 포함하는 것이나, 이에 제한되는 것은 아니다.X may correspond to a halogen ion. For example, the halogen ion includes, but is not limited to, a halogen ion selected from the group consisting of I-, Br-, F-, Cl-, and combinations thereof.
예컨대, 페로브스카이트 화합물은 CH3NH3PbI3(methylammonium lead iodide, MAPbI3) 및 CH(NH2)2PbI3(formamidinium lead iodide, FAPbI3)에서 선택되는 어느 하나 또는 둘 이상이 혼합된 것일 수 있다.For example, the perovskite compound is any one or a mixture of two or more selected from CH 3 NH 3 PbI 3 (methylammonium lead iodide, MAPbI 3 ) and CH(NH 2 ) 2 PbI 3 (formamidinium lead iodide, FAPbI 3 ). it could be
예컨대, 페로브스카이트 화합물은 도핑될 수 있으며, 예컨대 Cs가 도핑될 수 있다. 예시로서, 페로브스카이트 화합물은 Cs0.17FA0.83Pb(I0.8Br0.2)3에 해당할 수 있다.For example, the perovskite compound may be doped, for example Cs may be doped. As an example, the perovskite compound may correspond to Cs 0.17 FA 0.83 Pb(I 0.8 Br 0.2 ) 3 .
본 개시에 따른 일 실시예에 따르면, 페로브스카이트 전구체는 상술한 페로브스카이트 화합물의 전구체며, 유기 양이온, 금속 양이온, 또는 할로겐 음이온(X)에 해당할 수 있다. 전구체에 함유되는 유기 양이온, 금속 이온 및 할로겐 음이온은 앞서 페로브스카이트 화합물에서 상술한 1가의 유기 양이온(A), 2가의 금속 이온(M) 및 할로겐 음이온(X)과 동일할 수 있음에 따라, 이에 대한 상세한 설명은 생략한다.According to one embodiment according to the present disclosure, the perovskite precursor is a precursor of the above-described perovskite compound, and may correspond to an organic cation, a metal cation, or a halogen anion (X). Organic cations, metal ions, and halide anions contained in the precursor may be the same as the monovalent organic cation (A), divalent metal ion (M), and halide anion (X) described above in the perovskite compound. , a detailed description thereof is omitted.
본 개시에 따른 일 실시예에 따르면, 용매는 극성 유기 용매를 의미할 수 있으며, 20℃ 1기압 하, 페로브스카이트 화합물의 용해도가 0.5M 이상, 구체적으로 0.8 M 이상인 유기용매를 의미할 수 있다. 페로브스카이트 화합물을 용해하는 용매의 일 예로, N,N-다이메틸아세트아미드(Dimethylacetamid), 1,4-다이옥산(dioxane), 다이에틸아민(diethylamine), 에틸 아세테이트(ethylacetate), 테트라하이드로퓨란(tetrahydrofuran), 피리딘(pyridine), 메탄올(methanol), 에탄올(ethanol), 디클로로벤젠(dichlorobenzene), 글리세린(glycerin) 및 디메틸술폭시드(DMSO;dimethyl sulfoxide), N,N-다이메틸포름아미드(DMF; dimethylformamide), 감마-부티로락톤(Gamma-butyrolactone, GBL), 1-메틸-2-피롤리돈(1-Methyl-2-pyrolidinone) 또는 이들이 혼합물을 들 수 있다. According to one embodiment according to the present disclosure, the solvent may refer to a polar organic solvent, and may refer to an organic solvent having a solubility of 0.5 M or more, specifically 0.8 M or more, of a perovskite compound under 20° C. and 1 atm pressure. there is. As an example of a solvent that dissolves a perovskite compound, N, N-dimethylacetamide, 1,4-dioxane, diethylamine, ethylacetate, tetrahydrofuran (tetrahydrofuran), pyridine, methanol, ethanol, dichlorobenzene, glycerin and dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF dimethylformamide), gamma-butyrolactone (GBL), 1-methyl-2-pyrrolidone (1-Methyl-2-pyrolidinone), or a mixture thereof.
비용매의 일 예로, 비극성 유기 용매를 들 수 있으며, 비극성 유기 용매는 펜타인, 헥센, 사이크로헥센, 1,4-다이옥센, 벤젠, 톨루엔, 트리에틸 아민, 클로로벤젠, 에틸아민, 에틸에테르, 클로로폼, 에틸아세테이트, 아세틱엑시드, 1,2-다이클로로벤젠, tert-부틸알콜, 2-부탄올, 이소프로파놀 및 메틸에틸케톤에서 하나 또는 둘 이상 선택되는 유기 용매를 들 수 있으나, 본 발명이 비용매에 의해 한정되는 것은 아니다.Examples of the non-solvent include non-polar organic solvents, which include pentane, hexene, cyclohexene, 1,4-dioxene, benzene, toluene, triethyl amine, chlorobenzene, ethylamine, and ethyl ether. , chloroform, ethyl acetate, acetic acid, 1,2-dichlorobenzene, tert-butyl alcohol, 2-butanol, isopropanol, and one or more organic solvents selected from methyl ethyl ketone. The invention is not limited by the non-solvent.
본 개시의 일 실시예에 따르면, 우선 페로브스카이트 전구체 용액을 기판 상에 공급한다. 페로브스카이트 전구체 용액을 1-Step 방법으로 기판 상에 공급하거나, 순차적으로 BX2를 먼저 기판 상에 공급하고, AX를 기판 상에 공급하는 2-Step 방법으로 공급할 수 있다. 또한, 페로브스카이트 전구체 용액을 기판 상에 공급하는 단계는 페로브스카이트 전구체 용액에 비용매를 공급하는 단계를 포함한다.According to one embodiment of the present disclosure, first, a perovskite precursor solution is supplied on a substrate. The perovskite precursor solution may be supplied onto the substrate in a 1-step method or sequentially supplied in a 2-step method in which BX 2 is first supplied onto the substrate and then AX is supplied onto the substrate. In addition, the step of supplying the perovskite precursor solution onto the substrate includes supplying a non-solvent to the perovskite precursor solution.
이후, 제1 첨가제를 기판 상에 공급하는 단계가 수행된다. 제1 첨가제는 용매 이외의 첨가제로서 페로브카이트 박막의 주름을 억제하는 첨가제에 해당한다. 페로브스카이트 전구체 용액에 첨가되는 낮은 용해도를 가진 물질로 인해 비용매 처리시 표면 부분에서 결정화 차이가 발생하게 되고, 그로 인해 표면에 주름이 발생하게 된다. 이를 해결하기 위해, 본 개시의 일 실시예에 따르면 용매 이외의 제1 첨가제를 기판 상에 공급한다. 본 개시의 일 실시예에 따른 제1 첨가제는 포름아미드에 해당한다. 포름아미드를 포함하는 제1 첨가제는 기존의 용매를 이용한 주름 개선 방법으로 인해 페로브스카이트 박막에 보이드가 발생하는 부작용이 없고, 페로브스카이트 박막의 표면 주름을 개선한다.Then, a step of supplying the first additive onto the substrate is performed. The first additive is an additive other than the solvent and corresponds to an additive that suppresses wrinkles of the perovskite thin film. Due to the material with low solubility added to the perovskite precursor solution, a difference in crystallization occurs in the surface portion during non-solvent treatment, resulting in wrinkles on the surface. In order to solve this problem, according to an embodiment of the present disclosure, a first additive other than a solvent is supplied onto the substrate. The first additive according to an embodiment of the present disclosure corresponds to formamide. The first additive containing formamide does not have the side effect of generating voids in the perovskite thin film due to the conventional wrinkle improvement method using a solvent, and improves surface wrinkles of the perovskite thin film.
이후, 제2 첨가제를 기판 상에 공급한다. 해당 단계는 제1 첨가제를 기판 상에 공급하는 단계와 동시에 이루어지거나, 그 이후에 이루어질 수 있다. 본 개시의 일 실시예에 따르면, 페로브스카이트 전구체 용액이 기판 상에 공급되어 반응이 진행되는 과정에서 제1 첨가제를 기판 상에 공급한 뒤, 제2 첨가제를 기판 상에 공급할 수 있다. 본 개시의 일 실시예에 따르면, 제2 첨가제의 공급은 스핀코팅 이후에 진행될 수 있다. 이와 같이 서로 다른 첨가제를 순차적으로 페로브스카이트 전구체 용액에 공급한 경우, 첨가제들을 동시에 첨가한 경우에 비해 페로브스카이트 박막의 주름 및 보이드를 억제하는 효과가 현저할 수 있다. Then, the second additive is supplied onto the substrate. This step may be performed simultaneously with the step of supplying the first additive onto the substrate, or may be performed after that. According to one embodiment of the present disclosure, in the process of supplying a perovskite precursor solution onto a substrate and performing a reaction, the first additive may be supplied onto the substrate, and then the second additive may be supplied onto the substrate. According to one embodiment of the present disclosure, supply of the second additive may proceed after spin coating. In this way, when different additives are sequentially supplied to the perovskite precursor solution, the effect of suppressing wrinkles and voids of the perovskite thin film may be remarkable compared to the case where the additives are added simultaneously.
본 개시의 일 실시예에 따른 제2 첨가제는 페로브카이트 박막의 보이드를 억제하는 첨가제에 해당한다. 페로브스카이트 박막이 형성될 때, 스핀코팅이 완료되면, 표면은 빠르게 페로브스카이 박막으로 변화하지만 내부의 용액 상태의 페로브스카이트 박막에 잔존하는 용매가 존재하게 되고, 열처리하는 어닐링 과정에서 잔존하는 용매의 증발로 인해 페로브스카이트 박막 내부에 보이드가 형성되는 문제가 발생한다. 이를 해결하기 위해, 본 개시의 일 실시예에 따르면, 용매 이외의 첨가제로서 제1 첨가제와 상이한 제2 첨가제를 기판 상에 공급한다. 본 개시의 일 실시예에 따른 제2 첨가제는 MACl에 해당한다. MACl은 페로브스카이트 박막 내부에 형성되는 보이드를 억제한다.The second additive according to an embodiment of the present disclosure corresponds to an additive that suppresses voids in the perovskite thin film. When the perovskite thin film is formed, when the spin coating is completed, the surface quickly changes to the perovskite thin film, but the solvent remaining in the solution-state perovskite thin film inside exists, and in the annealing process of heat treatment A problem occurs in that voids are formed inside the perovskite thin film due to evaporation of the remaining solvent. In order to solve this problem, according to an embodiment of the present disclosure, a second additive different from the first additive is supplied to the substrate as an additive other than the solvent. The second additive according to an embodiment of the present disclosure corresponds to MACl. MACl suppresses voids formed inside the perovskite thin film.
본 개시의 일 실시예에 따르면, 페로브스카이트 전구체 용액을 기판 상에 공급하는 단계, 제1 첨가제를 기판 상에 공급하는 단계 및 제2 첨가제를 기판 상에 공급하는 단계는 동시에 진행되거나, 순차적으로 진행될 수 있다.According to one embodiment of the present disclosure, the step of supplying the perovskite precursor solution onto the substrate, the step of supplying the first additive onto the substrate, and the step of supplying the second additive onto the substrate may be performed simultaneously or sequentially. can proceed with
이후, 본 개시의 일 실시예에 따른 기판을 어닐링하여 남은 용매를 증발시킨다.Then, the remaining solvent is evaporated by annealing the substrate according to an embodiment of the present disclosure.
도 8 내지 도 12는 페로브스카이트 박막의 결정성, 광발광(Photoluminescence, PL) 세기 등을 도시한 도면이다. 첨가제 없이 제조된 페로브스카이트 박막(Pristine), 포름아마이드(Formamide)를 이용하여 제조한 페로브스카이트 박막, MACl을 이용하여 제조한 페로브스카이트 박막, 및 MF(MACl+Formamide)을 이용하여 제조한 페로브스카이트 박막 각각에 대한 표면 이미지, 결정성, 광발광(Photoluminescence, PL) 세기 등을 확인할 수 있다. 본 개시의 일 실시예에 따른 MF(MACl+Formamide)를 이용한 페로브스카이트 박막의 물성이 가장 뛰어난 것을 확인할 수 있다. 8 to 12 are diagrams showing crystallinity, photoluminescence (PL) intensity, and the like of perovskite thin films. Using perovskite thin film (Pristine) manufactured without additives, perovskite thin film manufactured using formamide, perovskite thin film manufactured using MACl, and MF (MACl + Formamide) It is possible to check the surface image, crystallinity, photoluminescence (Photoluminescence, PL) intensity, etc. for each of the perovskite thin films prepared by It can be seen that the physical properties of the perovskite thin film using MF (MACl + Formamide) according to an embodiment of the present disclosure are the most excellent.
도 13 내지 도 16은 대기환경에서 제작된 페로브스카이트 박막의 소자 J-V 특성곡선 및 광안정성 실험 결과를 도시하고, 도 17 내지 도 21은 대기환경에서 제작된 대면적 페로브스카이트 박막 및 소자 실험 결과를 도시한다. 대기환경은 수분(H2O)을 포함한다. 페로브스카이트 박막 제조 공정에서 사용되는 용매는 일반적인 대기환경에 포함된 수분과 쉽게 결합하기 때문에 페로브스카이트 전구체 용액의 용해도를 감소시켜, 주름 및 보이드가 형성된 표면이 거칠고, 결정화도가 낮은 불균형한 박막을 형성하게 된다. 이에, 페로브스카이트 박막의 주름 및 보이드가 개선된 균일한 박막을 형성하기 위한 페로브스카이트 박막 제조 공정환경은 수분이 제거된 비활성 기체(예컨대, N2) 환경에서 주로 수행된다. 하지만, 질소 기체를 사용하는 공정의 경우 비용이 비싸기 때문에 대면적 페로브스카이트의 제작 및 상용화에 한계를 가진다.13 to 16 show device JV characteristic curves and photostability test results of perovskite thin films fabricated in an atmospheric environment, and FIGS. 17 to 21 show large-area perovskite thin films and devices fabricated in an air environment. The experimental results are shown. The atmospheric environment contains moisture (H 2 O). Since the solvent used in the perovskite thin film manufacturing process easily combines with moisture contained in the general atmospheric environment, it reduces the solubility of the perovskite precursor solution, resulting in a rough surface with wrinkles and voids, and an unbalanced surface with low crystallinity. to form a thin film. Accordingly, the perovskite thin film manufacturing process environment for forming a uniform thin film with improved wrinkles and voids of the perovskite thin film is mainly performed in an inert gas (eg, N 2 ) environment from which moisture is removed. However, in the case of a process using nitrogen gas, since the cost is high, there is a limit to the fabrication and commercialization of large-area perovskite.
본 개시의 일 실시예에 따른 페로브스카이트 박막 제조방법은 수분(H2O)이 포함된 대기환경에서 이루어지는 것을 포함한다. 대기환경에서 페로브스카이트 박막을 제조할 경우 발생하는 문제를 해결하기 위해, 페로브스카이트 전구체 용액에 포름아미드를 첨가해서 페로브스카이트 박막의 주름을 개선하고, MACl를 첨가하여 페로브스카이트 박막 내부에 형성되는 보이드를 개선한다. MACl은 비용매로 형성된 치밀한 중간상과의 강한 결합력 및 MA(Methylammonium)성분이 가지는 휘발성으로 인해 결정화도를 높여서 보이드를 개선한다. 대기환경에서 발생하는 주름 및 보이드를 개선하기 때문에, 경제적인 대면적 페로브스카이트 제작이 가능하다.A perovskite thin film manufacturing method according to an embodiment of the present disclosure includes being made in an atmospheric environment containing moisture (H 2 O). In order to solve the problems that occur when manufacturing perovskite thin films in an atmospheric environment, formamide is added to the perovskite precursor solution to improve the wrinkles of the perovskite thin film, and MACl is added to Voids formed inside the thin film are improved. MACl improves voids by increasing crystallinity due to strong binding force with a dense mesophase formed as a non-solvent and volatility of MA (Methylammonium) component. Since wrinkles and voids generated in the atmospheric environment are improved, it is possible to manufacture economical large-area perovskite.
도 13 내지 도 16에 도시된 바와 같이, 본 개시의 일 실시예에 따라 MF(MACl+Formamide)를 이용한 대면적 페로브스카이트 박막은 일반적인 대기환경(ambient air)에서 제조된다. 대기환경에서 종래의 기술로 제작된 대면적 페로브스카이트 박막은 면적이 넓기 때문에 낮은 재현성과 효율감소의 문제를 가진다. 하지만, MF(MACl+Formamide)를 이용한 대면적 페로브스카이트 박막은 전하의 광안정성이 높고, 재현성이 증가하여 높은 효율을 나타낸다.As shown in FIGS. 13 to 16, a large-area perovskite thin film using MF (MACl + Formamide) according to an embodiment of the present disclosure is manufactured in a general ambient air. Large-area perovskite thin films manufactured by conventional techniques in an atmospheric environment have problems of low reproducibility and reduced efficiency because of their large area. However, large-area perovskite thin films using MF (MACl + Formamide) show high efficiency due to high light stability of charge and increased reproducibility.
본 개시의 일 실시예에 따른 대면적 페로브스카이트 박막 제조 공정은 대기환경에서 전단코팅(shearing-coating) 공정으로 이루어질 수 있다. 도 17 내지 도 21에 도시된 바와 같이, 전단코팅은 블레이드와 기판 사이에 페로브스카이트 전구체 용액을 주입한 후, 균일하게 기판 상에 MACl 및 Formamide가 포함된 페로브스카이트 전구체 용액을 공급한다. 페로브스카이트 전구체 용액 공급이 완료된 후, 비용매(Anti-solvent) 수조에 넣어 중간상을 형성한 후, 어닐링(Annealing) 및 절단(cutting) 과정을 통해 대면적 코팅을 통한 페로브스카이트 박막을 형성하게 된다.The large-area perovskite thin film manufacturing process according to an embodiment of the present disclosure may be performed as a shearing-coating process in an atmospheric environment. As shown in FIGS. 17 to 21, shear coating injects the perovskite precursor solution between the blade and the substrate, and then uniformly supplies the perovskite precursor solution containing MACl and Formamide onto the substrate. . After the supply of the perovskite precursor solution is complete, it is placed in an anti-solvent bath to form an intermediate phase, and then the perovskite thin film is formed through large-area coating through annealing and cutting processes. will form
본 개시의 일 실시예에 따라 MF(MACl+Formamide)를 이용해서 대기환경에서 제작된 대면적 페로브스카이트 박막은 전류(J)-전압(V) 그래프, 충진율(FF, fill factor) 및 에너지변환효율(PCE)에 있어서 종래의 기술보다 향상된 성능을 가지는 것으로 판명되었다.According to an embodiment of the present disclosure, a large-area perovskite thin film prepared in an atmospheric environment using MF (MACl + Formamide) is a current (J)-voltage (V) graph, fill factor (FF) and energy It was found to have improved performance over the prior art in terms of conversion efficiency (PCE).
하기 방법을 통해 광소자의 성능을 평가하였다.The performance of the optical device was evaluated through the following method.
1) 전류-전압 특성: 인공태양장치(ORIEL class A solar simulator, Newport, model 91195A)와 소스-미터(source-meter, Kethley, model 2420)를 사용하여, 개방전압(VOC), 단락전류 밀도(JSC) 및 필 팩터(fill factor, FF)를 측정하였다.1) Current-voltage characteristics: using an artificial solar device (ORIEL class A solar simulator, Newport, model 91195A) and a source-meter (source-meter, Kethley, model 2420), JSC) and fill factor (FF) were measured.
2) 광전변환효율(power conversion efficiency, PCE): 1,000 W/㎡의 일조 강도와 온도 85℃ 및 습도 85%의 항온 항습 조건에서 실시예 및 비교예를 통해 제조된 페로브스카이트 광소자를 280 내지 2500 ㎚ 파장의 광원에 노출시켜 PCE 값을 측정하였다.2) Photoelectric conversion efficiency (power conversion efficiency, PCE): Perovskite optical devices manufactured through Examples and Comparative Examples under constant temperature and humidity conditions of 1,000 W / ㎡ of sunlight intensity and temperature of 85 ° C. and humidity of 85% were 280 to PCE values were measured by exposure to a light source with a wavelength of 2500 nm.
도 22는 첨가제에 따른 페로브스카이트 박막의 표면 이미지이고, 도 23은 첨가제에 따른 페로브스카이트 박막의 측면 이미지이다. 본 개시의 일 실시예에 따라 Cs0.17FA0.83Pb(I0.8Br0.2)3 박막을 형성하는데 있어서, 첨가제를 변경시키면서 페로브스카이트 박막의 표면 및 측면 이미지를 촬영하였다. 이미지에서 확인되는 바와 같이, MACl 및 포름아미드를 모두 페로브스카이트 전구체 용액에 공급한 경우에 페로브스카이트 박막의 표면 주름 및 내부 보이드가 억제된 것을 확인할 수 있다.22 is a surface image of a perovskite thin film according to additives, and FIG. 23 is a side image of a perovskite thin film according to additives. In forming a Cs 0.17 FA 0.83 Pb (I 0.8 Br 0.2 ) 3 thin film according to an embodiment of the present disclosure, surface and side images of the perovskite thin film were taken while changing the additive. As confirmed in the image, it can be seen that surface wrinkles and internal voids of the perovskite thin film are suppressed when both MACl and formamide are supplied to the perovskite precursor solution.
본 개시의 앞선 설명은 당업자들이 본 개시를 행하거나 이용하는 것을 가능하게 하기 위해 제공된다. 본 개시의 다양한 수정예들이 당업자들에게 쉽게 자명할 것이고, 본원에 정의된 일반적인 원리들은 본 개시의 취지 또는 범위를 벗어나지 않으면서 다양한 변형예들에 적용될 수도 있다. 따라서, 본 개시는 본원에 설명된 예들에 제한되도록 의도된 것이 아니고, 본원에 개시된 원리들 및 신규한 특징들과 일관되는 최광의의 범위가 부여되도록 의도된다.The previous description of the present disclosure is provided to enable any person skilled in the art to make or use the present disclosure. Various modifications of the present disclosure will be readily apparent to those skilled in the art, and the general principles defined herein may be applied in various modifications without departing from the spirit or scope of the present disclosure. Thus, the present disclosure is not intended to be limited to the examples set forth herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
본 명세서에서는 본 개시가 일부 실시예들과 관련하여 설명되었지만, 본 개시가 속하는 기술분야의 통상의 기술자가 이해할 수 있는 본 개시의 범위를 벗어나지 않는 범위에서 다양한 변형 및 변경이 이루어질 수 있다는 점을 알아야 할 것이다. 또한, 그러한 변형 및 변경은 본 명세서에 첨부된 특허청구의 범위 내에 속하는 것으로 생각되어야 한다.Although the present disclosure has been described in relation to some embodiments in this specification, it should be noted that various modifications and changes may be made without departing from the scope of the present disclosure that can be understood by those skilled in the art to which the present disclosure pertains. something to do. Moreover, such modifications and variations are intended to fall within the scope of the claims appended hereto.

Claims (11)

  1. 페로브스카이트 박막 제조방법으로서,As a method for producing a perovskite thin film,
    페로브스카이트 전구체 용액을 기판 상에 공급하는 단계;supplying a perovskite precursor solution onto a substrate;
    제1 첨가제를 상기 기판 상에 공급하는 단계;supplying a first additive onto the substrate;
    상기 제1 첨가제와 상이한 제2 첨가제를 상기 기판 상에 공급하는 단계; 및supplying a second additive different from the first additive onto the substrate; and
    상기 기판을 어닐링(annealing)하는 단계Annealing the substrate
    를 포함하는,including,
    페로브스카이트 박막 제조방법.Method for producing perovskite thin film.
  2. 제1항에 있어서,According to claim 1,
    페로브스카이트 전구체 용액을 기판 상에 공급하는 단계는, 상기 기판 상에 비용매(Anti-solvent)를 공급하는 단계를 포함하는, 페로브스카이트 박막 제조방법.The step of supplying a perovskite precursor solution on a substrate includes the step of supplying an anti-solvent on the substrate.
  3. 제1항에 있어서,According to claim 1,
    상기 제1 첨가제는 페로브스카이트 박막 표면의 주름(Wrinkle) 생성을 억제하는 첨가제에 해당하는, 페로브스카이트 박막 제조방법.The first additive corresponds to an additive that suppresses the generation of wrinkles on the surface of the perovskite thin film, perovskite thin film manufacturing method.
  4. 제3항에 있어서,According to claim 3,
    상기 제2 첨가제는 페로브스카이트 박막 내부의 보이드(Void) 생성을 억제하는 첨가제에 해당하는, 페로브스카이트 박막 제조방법.The second additive corresponds to an additive that suppresses the generation of voids inside the perovskite thin film, perovskite thin film manufacturing method.
  5. 제3항에 있어서,According to claim 3,
    상기 제1 첨가제는 포름아미드에 해당하는, 페로브스카이트 박막 제조방법.The first additive corresponds to formamide, perovskite thin film manufacturing method.
  6. 제4항에 있어서,According to claim 4,
    상기 제2 첨가제는 MACl에 해당하는, 페로브스카이트 박막 제조방법.The second additive corresponds to MACl, perovskite thin film manufacturing method.
  7. 제1항에 있어서,According to claim 1,
    상기 페로브스카이트 박막 제조방법은 대기환경(ambient air)에서 이루어지는, 페로브스카이트 박막 제조방법.The perovskite thin film manufacturing method is made in an atmospheric environment (ambient air), perovskite thin film manufacturing method.
  8. 제1항에 있어서,According to claim 1,
    상기 페로브스카이트 전구체는 FA(Formamidinium)를 포함하는, 페로브스카이트 박막 제조방법.The perovskite precursor is a method for producing a perovskite thin film containing FA (Formamidinium).
  9. 페로브스카이트 박막 제조장치로서,As a perovskite thin film manufacturing device,
    페로브스카이트 전구체 용액을 기판 상에 공급하는 용액공급부;A solution supply unit for supplying a perovskite precursor solution onto the substrate;
    제1 첨가제를 상기 기판 상에 공급하는 제1 첨가제 공급부;a first additive supply unit supplying a first additive onto the substrate;
    상기 제1 첨가제와 상이한 제2 첨가제를 상기 기판 상에 공급하는 제2 첨가제 공급부; 및a second additive supply unit supplying a second additive different from the first additive onto the substrate; and
    상기 기판을 어닐링(annealing)하는 어닐링부An annealing unit for annealing the substrate
    를 포함하는,including,
    페로브스카이트 박막 제조장치.Perovskite thin film manufacturing device.
  10. 페로브스카이트 전구체를 포함하는 용액으로서,As a solution containing a perovskite precursor,
    페로브스카이트 전구체;perovskite precursors;
    상기 페로브스카이트 전구체를 용해하는 용매;A solvent dissolving the perovskite precursor;
    제1 첨가제 및 상기 제1 첨가제와 상이한 제2 첨가제A first additive and a second additive different from the first additive
    를 포함하는, 용액.A solution containing
  11. 제10항에 있어서,According to claim 10,
    상기 제1 첨가제는 포름아미드에 해당하고, 상기 제2 첨가제는 MACl에 해당하는, 용액.wherein the first additive corresponds to formamide and the second additive corresponds to MACl.
PCT/KR2022/014459 2021-10-06 2022-09-27 Method and device for preparing perovskite thin film by using additives WO2023058983A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210132760A KR20230049506A (en) 2021-10-06 2021-10-06 Method and apparatus for forming perovskite layer using additive
KR10-2021-0132760 2021-10-06

Publications (1)

Publication Number Publication Date
WO2023058983A1 true WO2023058983A1 (en) 2023-04-13

Family

ID=85804474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/014459 WO2023058983A1 (en) 2021-10-06 2022-09-27 Method and device for preparing perovskite thin film by using additives

Country Status (2)

Country Link
KR (1) KR20230049506A (en)
WO (1) WO2023058983A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117729822B (en) * 2024-02-07 2024-05-14 西安电子科技大学 Large-area perovskite solar cell based on gas phase ion doping and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106967417A (en) * 2017-03-28 2017-07-21 华东师范大学 A kind of luminescence generated by light composite and its preparation method and application

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106967417A (en) * 2017-03-28 2017-07-21 华东师范大学 A kind of luminescence generated by light composite and its preparation method and application

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEN BO, ZHENGSHAN YU, KONG LIU, XIAOPENG ZHENG, YE LIU, JIANWEI SHI, DERREK SPRONK, PETER N. RUDD, ZACHARY HOLMAN, JINSONG HUAN: "Grain Engineering for Perovskite/Silicon Monolithic Tandem Solar Cells with Efficiency of 25.4%", JOULE, vol. 3, no. 1, 16 January 2019 (2019-01-16), pages 177 - 190, XP055900337, DOI: 10.1016/j.joule.2018.10.003 *
FANG, T.H. ; CHANG, W.J. ; LIN, C.M. ; JI, L.W. ; CHANG, Y.S. ; HSIAO, Y.J.: "Effect of annealing on the structural and mechanical properties of Ba"0"."7Sr"0"."3TiO"3 thin films", MATERIALS SCIENCE, ELSEVIER, AMSTERDAM, NL, vol. 426, no. 1-2, 25 June 2006 (2006-06-25), AMSTERDAM, NL, pages 157 - 161, XP027952675, ISSN: 0921-5093 *
JUNGHWAN KIM; MAKHSUD I. SAIDAMINOV; HAIREN TAN; YICHENG ZHAO; YOUNGHOON KIM; JONGMIN CHOI; JEA WOONG JO; JAMES FAN; RAFAEL QUINTE: "Amide‐Catalyzed Phase‐Selective Crystallization Reduces Defect Density in Wide‐Bandgap Perovskites", ADVANCED MATERIALS, VCH PUBLISHERS, DE, vol. 30, no. 13, 14 February 2018 (2018-02-14), DE , pages 1 - 6, XP071870967, ISSN: 0935-9648, DOI: 10.1002/adma.201706275 *
KIM MINJIN, KIM GI-HWAN, LEE TAE KYUNG, CHOI IN WOO, CHOI HYE WON, JO YIMHYUN, YOON YUNG JIN, KIM JAE WON, LEE JIYUN, HUH DAIHONG,: "Methylammonium Chloride Induces Intermediate Phase Stabilization for Efficient Perovskite Solar Cells", JOULE, CELL PRESS, vol. 3, no. 9, 1 September 2019 (2019-09-01), pages 2179 - 2192, XP055885360, ISSN: 2542-4351, DOI: 10.1016/j.joule.2019.06.014 *

Also Published As

Publication number Publication date
KR20230049506A (en) 2023-04-13

Similar Documents

Publication Publication Date Title
EP3111484B1 (en) Process of forming a photoactive layer of a perovskite photoactive device
CN110854274B (en) Preparation method of perovskite thin film and application of perovskite thin film in solar cell
WO2023058983A1 (en) Method and device for preparing perovskite thin film by using additives
WO2016032166A1 (en) Separator membrane having high heat resistance and flame retardancy, and electrochemical battery
WO2017090861A1 (en) Perovskite, method for producing same, and solar battery comprising same
Li et al. A facilely synthesized ‘spiro’hole-transporting material based on spiro [3.3] heptane-2, 6-dispirofluorene for efficient planar perovskite solar cells
WO2022035020A1 (en) Method for manufacturing perovskite thin film having wide bandgap, perovskite thin film manufactured thereby, and solar cell comprising same
CN104716263A (en) Method for preparing mixed halide compound perovskite CH3NH3PbI3-xClx gradient optical film
WO2019054647A1 (en) Solar cell and method for manufacturing solar cell
WO2017026766A1 (en) Perovskite having improved moisture stability and photostability, and solar cell using same
US20240114760A1 (en) Close space annealing method and method for preparing perovskite film or solar cell
WO2017176038A1 (en) Basno3 thin film and low-temperature preparation method therefor
Tripathi et al. Improved performance of planar perovskite devices via inclusion of ammonium acid iodide (AAI) derivatives using a two step inter-diffusion process
EP3319129B1 (en) Method for manufacturing light absorber of solar cell
WO2020260891A1 (en) Semi-transparent perovskite films
WO2022050704A1 (en) Method for fabrication of halide perovskite single crystal comprising low-temperature solvation process
WO2021206262A1 (en) Precursor for perovskite compound and method for producing perovskite compound by using same
WO2021167214A1 (en) Hole transporting material for solar cell, and solar cell comprising same
KR20200020346A (en) The method for forming perovskite photoactive layer by in-line continuously coating and the apparatus for roll in-line continuously coating
WO2018012877A1 (en) Polymer, and electrolyte and lithium battery each comprising same
TWI727401B (en) Conjugated polymer and application thereof
WO2022270878A1 (en) Perovskite composite
CN115784629B (en) Tin-containing double perovskite material film and in-situ solution preparation method and application thereof
WO2022010327A1 (en) Perovskite composite
WO2022239913A1 (en) Method for preparing perovskite through semi-solvent evaporation control and perovskite prepared using same