WO2016032166A1 - Separator membrane having high heat resistance and flame retardancy, and electrochemical battery - Google Patents

Separator membrane having high heat resistance and flame retardancy, and electrochemical battery Download PDF

Info

Publication number
WO2016032166A1
WO2016032166A1 PCT/KR2015/008656 KR2015008656W WO2016032166A1 WO 2016032166 A1 WO2016032166 A1 WO 2016032166A1 KR 2015008656 W KR2015008656 W KR 2015008656W WO 2016032166 A1 WO2016032166 A1 WO 2016032166A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
separator
resistant layer
component
porous heat
Prior art date
Application number
PCT/KR2015/008656
Other languages
French (fr)
Korean (ko)
Inventor
서동완
고창홍
진목연
배임혁
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to JP2017508533A priority Critical patent/JP6657185B2/en
Priority to CN201580046070.3A priority patent/CN107004806B/en
Publication of WO2016032166A1 publication Critical patent/WO2016032166A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a high heat resistant and flame retardant separator and an electrochemical cell comprising the same.
  • a separator for an electrochemical cell refers to an interlayer membrane which maintains ion conductivity while allowing the cathode and the cathode to be separated from each other in the cell, thereby allowing the battery to be charged and discharged.
  • Lithium secondary battery is a strong candidate as a unit cell of a medium-large battery pack due to various advantages as described above, but the internal temperature of the battery increases during charging and discharging, and flammable gas due to the decomposition reaction of electrolyte, flammable gas due to reaction of electrolyte and electrode, There is a problem that an explosion or fire occurs due to generation of oxygen due to decomposition of the anode.
  • a polyolefin-based film is used as a separator of a secondary battery, there is a problem in that the film is melted down at a relatively low temperature (Korean Patent No. 10-0775310).
  • An object of the present invention is to provide a separator having flame retardancy and high heat resistance, excellent adhesion to a porous substrate and oxidation resistance, and improved dispersibility of inorganic particles in a porous heat resistant layer, and an electrochemical cell using the same.
  • a porous substrate and a porous heat-resistant layer formed on one or both sides of the porous substrate the porous heat-resistant layer comprises a polymer resin comprising a repeating unit containing a first component and a second component Wherein the first component contains phosphate or phosphonate and the second component contains nitrogen.
  • Another embodiment of the present invention provides an electrochemical cell formed from the separator according to the above aspect.
  • the separator according to an embodiment of the present invention and an electrochemical cell using the same have flame retardancy and high heat resistance, excellent adhesion between the porous substrate and the porous heat resistant layer, improved dispersibility of inorganic particles, and excellent oxidation resistance. Indicates.
  • the electrochemical cell 100 includes an electrode assembly 40 wound through a separator 30 between the positive electrode 10 and the negative electrode 20, and a case 50 in which the electrode assembly 40 is embedded. .
  • the anode 10, the cathode 20, and the separator 30 are impregnated with an electrolyte (not shown).
  • the polymer includes a porous substrate and a porous heat resistant layer formed on one or both surfaces of the porous substrate, wherein the porous heat resistant layer includes a repeating unit containing a first component and a second component.
  • the first component contains phosphate or phosphonate
  • the second component is provided with a separator containing nitrogen.
  • the porous substrate may use a porous substrate having a plurality of pores and can be used in an electrochemical device.
  • Porous substrates include, but are not limited to, polyethylene, polypropylene, polyethylene terephthalate, polybutylene terephthalate, polyester, polyacetal, polyamide, polyimide, polycarbonate, polyetheretherketone, polyaryletherketone, polyetherimide , Polyamideimide, polybenzimidazole, polyethersulfone, polyphenylene oxide, cyclic olefin copolymer, polyphenylene sulfide, and any one polymer selected from the group consisting of polyethylene naphthalene or a polymer membrane formed of a mixture of two or more thereof Can be.
  • the porous substrate may be a polyolefin-based substrate, the polyolefin-based substrate is excellent in the shutdown (shut down) function may contribute to the improvement of the safety of the battery.
  • the polyolefin-based substrate may be selected from the group consisting of, for example, polyethylene monolayer, polypropylene monolayer, polyethylene / polypropylene double membrane, polypropylene / polyethylene / polypropylene triple membrane, and polyethylene / polypropylene / polyethylene triple membrane.
  • the polyolefin resin may include a non-olefin resin in addition to the olefin resin, or may include a copolymer of an olefin and a non-olefin monomer.
  • the porous substrate may have a thickness of 1 ⁇ m to 40 ⁇ m, more specifically 5 ⁇ m to 15 ⁇ m, even more specifically 5 ⁇ m to 10 ⁇ m.
  • a separator having a suitable thickness, thick enough to prevent a short circuit between the positive and negative electrodes of the battery, but not thick enough to increase the internal resistance of the battery.
  • the porous heat resistant layer may include a polymer resin including a repeating unit containing a first component containing phosphate or phosphonate and a second component containing nitrogen.
  • a polymer resin including a repeating unit containing a first component containing phosphate or phosphonate and a second component containing nitrogen.
  • It may be in the form of a polymer comprising a.
  • the polymer resin may contain a phosphate or a phosphonate to prevent the battery from being exploded or fired due to the generation of oxygen due to decomposition of the positive electrode, or the like, and also to improve adhesion to the porous substrate by containing nitrogen.
  • the porous heat-resistant layer includes inorganic particles
  • phosphate or phosphonate structures comprising phosphate groups in the separator can produce polymethaic acid by pyrolysis.
  • the produced polymethacrylic acid may form a protective layer on the separation membrane, or the carbon film generated by dehydration in the process of producing polymethacrylic acid may block oxygen, thereby resulting in flame retardancy.
  • the adhesion to the porous substrate and the dispersibility of the inorganic particles are improved by providing a non-covalent electron pair of nitrogen when nitrogen is contained.
  • the separation membrane according to an embodiment of the present invention by using a polymer resin including a repeating unit containing a first component containing phosphate or phosphonate and a second component containing nitrogen in the porous heat-resistant layer as described above
  • a polymer resin including a repeating unit containing a first component containing phosphate or phosphonate and a second component containing nitrogen in the porous heat-resistant layer as described above
  • Examples of the first component containing phosphate or phosphonate in the polymer resin of one embodiment of the present invention are as follows.
  • R 1 and R 2 are each independently hydrogen; Substituted or unsubstituted C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-20 cycloalkyl, and C 6-30 aryl Can be.
  • R 1 and R 2 are each independently hydrogen; C 1-6 alkyl, C 6-30 aryl or C 3-10 unsubstituted or substituted one or more times with halogen, OH, C 1-6 alkyl, alkoxy, nitro, cyano, carbonyl, thiol It may be cycloalkyl.
  • R 1 and R 2 are each, independently, hydrogen; Phenyl, naphthyl, cyclopropyl, cyclobutyl, methyl, ethyl, propyl, butyl and the like, unsubstituted or substituted one or more times with halogen, OH, or C 1-6 alkyl.
  • the nitrogen-containing second component may be an imide or amide-containing structure.
  • the second component is an imide or amide-containing structure, since the bonding strength is strong by imide bonds or amide bonds between molecules, the porous substrate may have high heat resistance that may not melt down even at a relatively high temperature.
  • the second component is a phthalimide-containing structure, and may be an alkyl amide-containing residue, an alkenylamide-containing residue, or an arylamide-containing residue having 1 to 10 carbon atoms.
  • the second component may be a phthalimide-containing structure, and in the case of the phthalimide-containing structure, the number of hydrogens in the amine group is small, which may have a wider potential window, and thus may not be easily decomposed because it is stable at high voltage. have.
  • R 3 is hydrogen; Substituted or unsubstituted, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-10 cycloalkyl, and C 6-30 aryl .
  • R 3 is hydrogen; An unsubstituted, halogen, OH, C 1-6 alkyl, one or more times with C 2-6 alkenyl, alkoxy, nitro, cyano, carbonyl, thiol or substituted C 2-6 alkynyl, C 1-6 Alkyl, C 6-30 aryl or C 3-10 cycloalkyl.
  • R 3 is hydrogen; Phenyl, naphthyl, cyclopropyl, cyclobutyl, cyclopentyl, methyl, ethyl, propyl, butyl, to unsubstituted or substituted one or more times with halogen, OH, C 1-6 alkyl or C 2-6 alkenyl Tenyl, propenyl, heptenyl or butenyl.
  • nitrogen-containing heteroaromatic hydrocarbon ring refers to a heteroaromatic hydrocarbon ring in which one or more carbons of an aromatic hydrocarbon ring compound are replaced with nitrogen.
  • the aromatic hydrocarbon ring compound may have a monocyclic, bicyclic or tricyclic structure.
  • two or more, nitrogen-containing heteroaromatic hydrocarbon rings may be directly bonded;
  • the second component containing nitrogen can be selected from:
  • the polymer resin may include repeating units of Formula 4 or Formula 5 in one example.
  • R 1, R 2 and the definition of the R 3 substituents are the same as R 1, R 2 and the definition of the R 3 substituent in Formula 1-3.
  • the polymer resin may have a glass transition temperature of 180 ° C to 300 ° C, specifically 200 ° C to 280 ° C, more specifically 220 ° C to 250 ° C.
  • the separator including the polymer resin satisfying the above range in the porous heat resistant layer since the relatively high temperature does not melt down, it may have a high heat resistance.
  • the weight average molecular weight of the polymer resin may be in the range of 5,000 to 350,000, it may be advantageous in terms of adhesion and heat resistance.
  • the separator according to the present embodiment includes a porous substrate and a porous heat resistant layer formed on the porous substrate, and the porous heat resistant layer contains a first component containing phosphate or phosphonate and a second component containing nitrogen. It differs from the separator according to the embodiment of the present invention in that it includes an additional binder component in addition to the polymer resin including the repeating unit.
  • an additional binder component in addition to the polymer resin including the repeating unit.
  • the present embodiment further includes an additional binder component to further improve adhesion to the porous substrate, as well as to improve heat resistance and cycle characteristics.
  • the further binder component can be, for example, a polyvinylidene fluoride (PVdF) based polymer.
  • the polyvinylidene fluoride polymer may include a polyvinylidene fluoride (PVdF) homopolymer, a polyvinylidene fluoride copolymer, or a mixture thereof.
  • the polyvinylidene fluoride homopolymer refers to a polymer containing only repeating units derived from vinylidene fluoride (VDF) or containing 5 wt% or less of repeating units other than vinylidene fluoride derived repeating units. do.
  • the polyvinylidene fluoride homopolymer does not include hexafluoropropylene (HFP) -derived repeating units as the other types of repeating units.
  • the polyvinylidene fluoride copolymer means polymerized using other monomers in addition to vinylidene fluoride, and specifically, includes a hexafluoropropylene-derived repeating unit, or a vinylidene fluoride repeating unit and hexafluoropropylene. It means to include more than 5% by weight of other types of repeating units in addition to the derived repeating units.
  • the polyvinylidene fluoride copolymer is a polyvinylidene fluoride-hexaxapropylene containing a repeating unit derived from vinylidene fluoride and a repeating unit derived from hexafluoropropylene. HFP) based copolymers.
  • the polyvinylidene fluoride-hexapropylene copolymer is a polyvinylidene fluoride-hexaxa propylene (PVdF-HFP) binary copolymer, or vinylidene fluoride-derived repeating units and hexafluoro In addition to the propylene-derived repeating unit, all three or more copolymers further including other repeating units may be included.
  • the separator according to the present embodiment includes a porous substrate and a porous heat resistant layer, and the porous heat resistant layer is different from an embodiment of the present invention in that it further contains inorganic particles.
  • the separator according to the present embodiment is advantageous in ensuring adequate permeability to include not only inorganic particles but also heat resistance, and to improve conductivity of ions.
  • the kind of the inorganic particles contained in the porous heat resistant layer is not particularly limited, and inorganic particles commonly used in the art may be used.
  • Non-limiting examples of the inorganic particles include Al 2 O 3 , SiO 2 , B 2 O 3 , Ga 2 O 3 , TiO 2 or SnO 2 . These may be used alone or in combination of two or more thereof, for example, Al 2 O 3 (alumina) may be used.
  • the inorganic particles in the porous heat resistant layer serve as a kind of spacer capable of maintaining the physical form of the porous heat resistant layer.
  • the size of the inorganic particles is not particularly limited, but the average particle diameter may be 100 nm to 1000 nm, specifically 300 nm to 600 nm.
  • the inorganic particles in the size range it is possible to prevent the dispersibility and coating processability of the inorganic particles in the porous heat-resistant layer composition solution can be prevented and the thickness of the porous heat-resistant layer can be adjusted appropriately.
  • the inorganic particles may be contained in 70% by weight to 98% by weight in the porous heat-resistant layer, specifically, may be contained in 80% by weight to 95% by weight. It is possible to secure the shape stability of the separator within the above range, to impart sufficient adhesive force between the porous heat-resistant layer and the porous substrate can not only suppress the shrinkage of the porous substrate by heat, but also effectively prevent the short circuit of the electrode.
  • Method for manufacturing a separator according to an embodiment of the present invention is a porous heat-resistant layer containing a polymer resin and a solvent comprising a repeating unit containing a first component containing phosphate or phosphonate and a second component containing nitrogen Preparing a composition, and forming a porous heat resistant layer with the porous heat resistant layer composition on one or both surfaces of the porous substrate.
  • the separator may be formed by applying a porous heat-resistant layer composition on a porous substrate, and then drying it.
  • Fine pores of the porous substrate may be formed by a generally known manufacturing method.
  • a dry method and a wet method are known, and specifically, the porous substrate may be prepared by extruding and stretching the composition for the porous substrate to form fine pores in the porous substrate.
  • the porous heat resistant layer composition for forming the porous heat resistant layer of the separator may include the above-described polymer resin and a solvent, and in another example, may further include inorganic particles in the composition.
  • a polymer solution in which a polymer resin is dissolved in a solvent is used as the porous heat resistant layer composition, or the inorganic particles are dispersed in the polymer solution and used as the porous heat resistant layer composition
  • the porous heat-resistant layer composition may be prepared by preparing the polymer solution and the inorganic particle dispersion in which the inorganic particles are dispersed, and then mixing them with an appropriate solvent.
  • One method of preparing the porous heat-resistant layer composition may include further mixing the polymer resin and the solvent, or inorganic particles disclosed herein, and stirring at 10 ° C. to 40 ° C. for 30 minutes to 5 hours.
  • the solvent used for preparing the polymer solution and the inorganic particle dispersion is not particularly limited as long as it can dissolve the polymer resin and can disperse the inorganic particles sufficiently.
  • Non-limiting examples of the solvent that can be used in the present invention is dimethyl formamide, dimethyl sulfoxide, dimethyl acetamide, dimethyl carbonate or N-methylpyrrolidone (N-methylpyrrolydone) etc. are mentioned.
  • the content of the solvent may be 20 wt% to 99 wt%, specifically 50 wt% to 95 wt%, and more specifically 70 wt% to 95 wt%, based on the weight of the porous heat-resistant layer composition. .
  • the porous heat resistant layer composition may be easily manufactured, and the drying process of the porous heat resistant layer may be performed smoothly.
  • the polymer resin may be contained in 2% by weight to 100% by weight, for example, 2% by weight to 70% by weight based on the total weight of solids of the porous heat-resistant layer composition. In a more specific example, it may be contained in 5% to 30% by weight.
  • the porous heat-resistant layer in the form of a mixture is subjected to a sufficiently stirring process using a ball mill, a beads mill, a screw mixer, or the like.
  • the composition liquid can be prepared.
  • the method of forming the porous heat resistant layer on the porous substrate is not particularly limited, and a method commonly used in the art, for example, a coating method, lamination, coextrusion, and the like may be used.
  • Non-limiting examples of the coating method may include a dip coating method, a die coating method, a roll coating method, or a comma coating method. These may be applied alone or in combination of two or more methods.
  • the porous heat resistant layer of the separator of the present invention may be formed by, for example, a dip coating method.
  • the thickness of the porous heat resistant layer according to the embodiments of the present invention may be 0.01 ⁇ m to 20 ⁇ m, and specifically 1 ⁇ m to 15 ⁇ m. Within the thickness range, an excellent thermal stability and adhesion can be obtained by forming a porous heat resistant layer having an appropriate thickness, and the thickness of the entire separator can be prevented from becoming too thick to suppress an increase in the internal resistance of the battery.
  • Drying the porous heat-resistant layer in the embodiments of the present invention may be a method of irradiating dry or vacuum drying or far-infrared rays or electron beams by hot air, hot air, low humidity wind.
  • the drying temperature is different depending on the type of the solvent, but can be dried at a temperature of approximately 60 °C to 120 °C.
  • the drying time also varies depending on the type of solvent, but may generally be dried for 1 minute to 1 hour. In a specific example, it may be dried for 1 minute to 30 minutes, or 1 minute to 10 minutes at a temperature of 90 °C to 120 °C.
  • the heat shrinkage rate is 10 % Or less, specifically 5% or less, and more specifically 3% or less. Within this range, there is an advantage of effectively preventing a short circuit of the electrode to improve the safety of the battery.
  • the method for measuring the thermal contraction rate of the separator is not particularly limited, it can be used a method commonly used in the art.
  • a non-limiting example of a method of measuring the thermal contraction rate of the separator is as follows: The prepared separator is cut into a width of about 5 cm ⁇ length (TD) of about 5 cm, which is 200 ° C. chamber. After storing for 30 minutes, the shrinkage in the MD direction and the TD direction of the separator can be measured by calculating the heat shrinkage rate.
  • the flame retardant grade of V0 or more may be excellent. Within this range, the combustion of the separator can be effectively prevented so that the safety of the battery can be improved.
  • the method for measuring the flame retardancy of the separator is not particularly limited, and a method commonly used in the art may be used.
  • a non-limiting example of a method for measuring the flame retardancy of the separator is as follows: Fold the prepared 10cm ⁇ 50cm separator into 10cm ⁇ 2cm, and then prepare the specimen by fixing the upper and lower parts, based on UL94 VB Flame retardant ratings are measured based on specimen burn time.
  • the air permeability of the separator including the porous heat resistant layer described in the embodiments of the present invention may be 400 sec / 100 cc or less, specifically 310 sec / 100 cc or less, and more specifically 280 sec / 100 cc or less. Within this range, ion and electron flow inside the battery including the separator may be smooth, and battery performance may be improved.
  • the method for measuring the air permeability of the separator is not particularly limited, and may be used a method commonly used in the art.
  • a non-limiting example of a method for measuring the air permeability of the separator is as follows: The air permeability is obtained by measuring the time taken for 100 cc of air to pass through the separator for the prepared separator.
  • a porous separator including a porous heat-resistant layer comprising a polymer resin including a repeating unit containing a first component and a second component disclosed herein, and a positive electrode, a negative electrode and the electrolyte Provide a filled electrochemical cell.
  • the kind of the electrochemical cell is not particularly limited, and may be a battery of a kind known in the art.
  • the electrochemical battery according to an embodiment of the present invention may be specifically a lithium secondary battery such as a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery or a lithium ion polymer secondary battery.
  • a lithium secondary battery such as a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery or a lithium ion polymer secondary battery.
  • Method for manufacturing an electrochemical cell according to an embodiment of the present invention is not particularly limited, it can be used a method commonly used in the art.
  • FIG. 1 is an exploded perspective view of an electrochemical cell according to one embodiment.
  • an electrochemical cell according to an embodiment is described as an example of being rectangular, the present invention is not limited thereto and may be applied to various types of batteries such as a lithium polymer battery and a cylindrical battery.
  • an electrochemical cell 100 includes an electrode assembly 40 wound through a separator 30 between a positive electrode 10 and a negative electrode 20, and the electrode assembly 40. It includes a case 50 is built.
  • the anode 10, the cathode 20, and the separator 30 are impregnated with an electrolyte (not shown).
  • the separator 30 is as described above.
  • the positive electrode 10 may include a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector.
  • the positive electrode active material layer may include a positive electrode active material, a binder, and optionally a conductive material.
  • aluminum (Al), nickel (Ni), or the like may be used, but is not limited thereto.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used. Specifically, at least one of cobalt, manganese, nickel, aluminum, iron, or a combination of metal and lithium composite oxide or phosphoric acid may be used. More specifically, lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, lithium nickel cobalt manganese oxide, lithium nickel cobalt aluminum oxide, lithium iron phosphate or a combination thereof may be used.
  • the binder not only adheres the positive electrode active material particles to each other but also serves to adhere the positive electrode active material to the positive electrode current collector, and specific examples thereof include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, and polyvinyl chloride. , Carboxylated polyvinylchloride, polyvinylfluoride, ethylene oxide containing polymer, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride polymer, polyethylene, polypropylene, styrene-butadiene Rubber, styrene-butadiene rubber, epoxy resin, nylon, and the like, but is not limited thereto. These can be used individually or in mixture of 2 or more types.
  • the conductive material provides conductivity to the electrode, and examples thereof include natural graphite, artificial graphite, carbon black, carbon fiber, metal powder, and metal fiber, but are not limited thereto. These can be used individually or in mixture of 2 or more types.
  • metal powder and the metal fiber metals such as copper, nickel, aluminum, and silver may be used.
  • the negative electrode 20 may include a negative electrode current collector and a negative electrode active material layer formed on the negative electrode current collector.
  • the negative electrode current collector may include copper (Cu), gold (Au), nickel (Ni), a copper alloy, or the like, but is not limited thereto.
  • the negative electrode active material layer may include a negative electrode active material, a binder, and optionally a conductive material.
  • the negative electrode active material may be a material capable of reversibly intercalating and deintercalating lithium ions, a lithium metal, an alloy of lithium metal, a material capable of doping and undoping lithium, a transition metal oxide, or a combination thereof. Can be used.
  • Examples of a material capable of reversibly intercalating and deintercalating the lithium ions include carbon-based materials, and examples thereof include crystalline carbon, amorphous carbon, or a combination thereof.
  • Examples of the crystalline carbon may be amorphous, plate, flake, spherical or fibrous natural graphite or artificial graphite.
  • Examples of the amorphous carbon include soft carbon or hard carbon, mesophase pitch carbide, calcined coke, and the like.
  • Examples of the alloy of the lithium metal include lithium and Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, and Sn. Alloys of the metals selected may be used.
  • Examples of materials capable of doping and undoping lithium include Si, SiO x (0 ⁇ x ⁇ 2), Si-C composites, Si-Y alloys, Sn, SnO 2 , Sn-C composites, Sn-Y, and the like. And at least one of these and SiO 2 may be mixed and used.
  • transition metal oxide examples include vanadium oxide and lithium vanadium oxide.
  • Kinds of the binder and the conductive material used in the negative electrode are the same as the binder and the conductive material used in the above-described positive electrode.
  • the positive electrode and the negative electrode may be prepared by mixing each active material, a binder, and optionally a conductive material in a solvent to prepare each active material composition, and applying the active material composition to each current collector.
  • N-methylpyrrolidone may be used as the solvent, but is not limited thereto. Since such an electrode manufacturing method is well known in the art, detailed description thereof will be omitted.
  • the electrolyte solution contains an organic solvent and a lithium salt.
  • the organic solvent serves as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • Specific examples thereof may be selected from carbonate solvents, ester solvents, ether solvents, ketone solvents, alcohol solvents and aprotic solvents.
  • the carbonate solvent examples include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), ethylmethyl carbonate (EMC), ethylene Carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and the like.
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • DPC dipropyl carbonate
  • MPC methylpropyl carbonate
  • EPC ethylpropyl carbonate
  • EMC ethylmethyl carbonate
  • EMC ethylmethyl carbonate
  • EC ethylene Carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • ester solvents examples include methyl acetate, ethyl acetate, n-propyl acetate, dimethyl acetate, methyl propionate, ethyl propionate, ⁇ -butyrolactone, decanolide, valerolactone, and meronate. Melononolactone, caprolactone, and the like.
  • ether solvent examples include dibutyl ether, tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran, tetrahydrofuran and the like. Cyclohexanone etc. are mentioned as said ketone solvent, Ethyl alcohol, isopropyl alcohol, etc. are mentioned as said alcohol solvent.
  • the organic solvents may be used alone or in combination of two or more thereof, and the mixing ratio in the case of mixing two or more kinds may be appropriately adjusted according to the desired battery performance.
  • the lithium salt is a substance that dissolves in an organic solvent and acts as a source of lithium ions in the battery to enable operation of a basic electrochemical cell and to promote the movement of lithium ions between the positive electrode and the negative electrode.
  • lithium salt examples include LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN (SO 3 C 2 F 5 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC 4 F 9 SO 3 , LiClO 4 , LiAlO 2 , LiAlCl 4 , LiN (C x F 2x + 1 SO 2 ) (C y F 2y + 1 SO 2 ) (x and y are natural numbers), LiCl, LiI, LiB (C 2 O 4 ) 2 or a combination thereof Can be mentioned.
  • the concentration of the lithium salt can be used within the range of 0.1M to 2.0M.
  • concentration of the lithium salt is within the above range, since the electrolyte has an appropriate conductivity and viscosity, it can exhibit excellent electrolyte performance, and lithium ions can move effectively.
  • the synthesized compound of Formula 3-2 (46.4 g, 140 mmol) was reacted under the same conditions as in Preparation Example 1, where the weight average molecular weight was 138,000 g / mol and the glass transition temperature was 210 ° C. Polymer resin 2 having repeating units was obtained.
  • the synthesized compound of Chemical Formula 3-3 (55.1 g, 140 mmol) was reacted under the same conditions as in Preparation Example 1 to obtain a weight average molecular weight of 148,000 g / mol and a glass transition temperature of 202 ° C. Polymer resin 3 having repeating units was obtained.
  • Example 1 Preparation of Separator (Polymer Resin 1+ Inorganic Particle Separation Membrane)
  • the polymer resin 1 prepared in Preparation Example 1 was dissolved in tetrahydrofuran (THF) at 10% by weight to prepare a polymer solution.
  • Al 2 O 3 Japanese Light Metal Co., Ltd., LS235A
  • acetone Cater Co., Ltd.
  • the polymer resin solution and the inorganic dispersion prepared above were mixed with a mixed solvent of N, N-dimethylacetamide (DMAc) and THF in a weight ratio of 2.5: 5: 2.5, respectively, and stirred at a power mixer at 25 ° C. for 1 hour.
  • a porous heat resistant layer composition was prepared.
  • the prepared porous heat-resistant layer composition was coated on both sides of a polyethylene single membrane porous substrate having a thickness of 9 ⁇ m with a thickness of 1.5 ⁇ m in a dip coating manner, and then dried at 110 ° C. for 1 minute to prepare a separator.
  • a separator was manufactured in the same manner as in Example 1, except that poly (butylacrylate-co-methylmethacrylate-co-vinylacetate) was used instead of the polymer resin 1 prepared in Preparation Example 1.
  • Weight average molecular weight (Mw) It was shown by the polystyrene conversion value measured by the gel permeation chromatography (GPC).
  • Tg Glass transition temperature
  • the air permeability of the separator prepared in Examples 1 to 3 and Comparative Example 1 was measured by EG01-55-1MR (Asahi Seiko) to measure the time taken for 100 cc of air to pass through the separator. It was.
  • the flame retardancy is excellent as V0.
  • the heat shrinkage was less than 1% and the ventilation was confirmed to be less than 250 sec / 100cc.

Abstract

Provided is a separator membrane comprising a heat-resistant porous layer having a binder which is formed on one or both sides of a porous substrate, and the porous substrate, wherein the binder has a polymer comprising a repeating unit which contains a first component and a second component, wherein the first component comprises phosphate or phosphonate and the second component comprises nitrogen.

Description

고내열성 및 난연성 분리막 및 전기 화학 전지High heat and flame retardant membranes and electrochemical cells
본 발명은 고내열성 및 난연성의 분리막 및 이를 포함하는 전기 화학 전지에 관한 것이다.The present invention relates to a high heat resistant and flame retardant separator and an electrochemical cell comprising the same.
전기 화학 전지용 분리막(separator)은 전지 내에서 양극과 음극을 서로 격리시키면서 이온 전도도를 지속적으로 유지시켜 주어 전지의 충전과 방전을 가능하게 하는 중간막을 의미한다.A separator for an electrochemical cell refers to an interlayer membrane which maintains ion conductivity while allowing the cathode and the cathode to be separated from each other in the cell, thereby allowing the battery to be charged and discharged.
최근 전자 기기의 휴대성을 높이기 위한 전기 화학 전지의 경량화 및 소형화 추세와 더불어, 전기 자동차 등에의 사용을 위한 고출력 대용량 전지를 필요로 하는 경향이 있다. 상기 고출력 대용량 용도를 위한 중대형 전지 팩의 단위전지(배터리 셀)로 용량 대비 고출력을 제공하는 리튬 이차전지가 많이 연구되고 있다.In recent years, along with the trend of lightening and miniaturization of electrochemical cells for increasing the portability of electronic devices, there is a tendency to require high output large capacity batteries for use in electric vehicles. As a unit cell (battery cell) of a medium-large battery pack for the high-output large-capacity use, a lithium secondary battery providing high output to capacity has been studied.
리튬 이차전지는 상기와 같은 다양한 장점으로 인해 중대형 전지 팩의 단위전지로서 유력한 후보이지만, 충방전시 전지 내부 온도가 상승하고 전해액의 분해반응에 의한 가연성 가스, 전해액과 전극의 반응에 따른 가연성 가스, 양극의 분해에 의한 산소의 발생 등에 의해 폭발하거나 화재가 발생하는 문제점이 있다. 또한, 이차전지의 분리막으로 폴리올레핀계 필름을 사용할 경우, 비교적 낮은 온도에서 필름이 멜트 다운되는 문제가 있다(대한민국 등록특허 제10-0775310호).Lithium secondary battery is a strong candidate as a unit cell of a medium-large battery pack due to various advantages as described above, but the internal temperature of the battery increases during charging and discharging, and flammable gas due to the decomposition reaction of electrolyte, flammable gas due to reaction of electrolyte and electrode, There is a problem that an explosion or fire occurs due to generation of oxygen due to decomposition of the anode. In addition, when a polyolefin-based film is used as a separator of a secondary battery, there is a problem in that the film is melted down at a relatively low temperature (Korean Patent No. 10-0775310).
따라서, 전기 화학 전지, 특히 중대형 용량의 전지에서 발화를 예방하거나 억제하고 내열성이 개선되면서도, 전지 본연의 성능이 개선되거나 유지되는 새로운 분리막을 제공할 필요가 있다.Therefore, there is a need to provide a new separator that prevents or suppresses ignition and improves heat resistance in electrochemical cells, especially in medium and large capacity batteries, while improving or maintaining the intrinsic performance of the battery.
본 발명은 난연성 및 고내열성을 가지며, 다공성 기재와의 접착력과 내산화성이 우수하고, 다공성 내열층의 무기입자의 분산성이 개선된 분리막 및 이를 이용한 전기 화학 전지를 제공하는 것을 목적으로 한다.An object of the present invention is to provide a separator having flame retardancy and high heat resistance, excellent adhesion to a porous substrate and oxidation resistance, and improved dispersibility of inorganic particles in a porous heat resistant layer, and an electrochemical cell using the same.
본 발명의 일 실시예에서, 다공성 기재 및 상기 다공성 기재의 일면 혹은 양면에 형성된 다공성 내열층을 포함하고, 상기 다공성 내열층은 제1 성분과 제2 성분을 함유하는 반복 단위를 포함하는 고분자 수지를 포함하며, 상기 제1 성분은 포스페이트 혹은 포스포네이트를 함유하고, 상기 제2 성분은 질소를 함유하는 분리막이 제공된다.In one embodiment of the present invention, a porous substrate and a porous heat-resistant layer formed on one or both sides of the porous substrate, the porous heat-resistant layer comprises a polymer resin comprising a repeating unit containing a first component and a second component Wherein the first component contains phosphate or phosphonate and the second component contains nitrogen.
또한, 본 발명의 또 다른 실시예는 상기 일 양태에 따른 분리막으로부터 형성된 전기 화학 전지를 제공한다.Further, another embodiment of the present invention provides an electrochemical cell formed from the separator according to the above aspect.
본 발명의 일 실시예들에 따른 분리막 및 이를 이용한 전기 화학 전지는 난연성 및 고내열성을 가지며, 다공성 기재와 다공성 내열층의 접착력이 우수하고, 무기 입자의 분산성이 개선되고, 내산화성이 우수한 특성을 나타낸다.The separator according to an embodiment of the present invention and an electrochemical cell using the same have flame retardancy and high heat resistance, excellent adhesion between the porous substrate and the porous heat resistant layer, improved dispersibility of inorganic particles, and excellent oxidation resistance. Indicates.
도 1은 일 구현예에 따른 전기 화학 전지의 분해 사시도이다. 전기 화학 전지(100)는 양극(10)과 음극(20) 사이에 분리막(30)을 개재하여 귄취된 전극 조립체(40)와, 상기 전극 조립체(40)가 내장되는 케이스(50)를 포함한다. 상기 양극(10), 상기 음극(20) 및 상기 분리막(30)은 전해액(미도시)에 함침된다.1 is an exploded perspective view of an electrochemical cell according to one embodiment. The electrochemical cell 100 includes an electrode assembly 40 wound through a separator 30 between the positive electrode 10 and the negative electrode 20, and a case 50 in which the electrode assembly 40 is embedded. . The anode 10, the cathode 20, and the separator 30 are impregnated with an electrolyte (not shown).
본 발명의 일 실시예에 따르면, 다공성 기재 및 상기 다공성 기재의 일면 혹은 양면에 형성된 다공성 내열층을 포함하고, 상기 다공성 내열층은 제1 성분과 제2 성분을 함유하는 반복 단위를 포함하는 고분자 수지를 포함하며, 상기 제1 성분은 포스페이트 혹은 포스포네이트를 함유하고, 상기 제2 성분은 질소를 함유하는 분리막이 제공된다. According to an embodiment of the present invention, the polymer includes a porous substrate and a porous heat resistant layer formed on one or both surfaces of the porous substrate, wherein the porous heat resistant layer includes a repeating unit containing a first component and a second component. Wherein the first component contains phosphate or phosphonate, and the second component is provided with a separator containing nitrogen.
상기 다공성 기재는 다수의 기공을 가지며 통상 전기화학소자에 사용될 수 있는 다공성 기재를 사용할 수 있다. 다공성 기재로는 비제한적으로 폴리에틸렌, 폴리프로필렌, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리에스테르, 폴리아세탈, 폴리아미드, 폴리이미드, 폴리카보네이트, 폴리에테르에테르케톤, 폴리아릴에테르케톤, 폴리에테르이미드, 폴리아미드이미드, 폴리벤즈이미다졸, 폴리에테르설폰, 폴리페닐렌옥사이드, 사이클릭 올레핀 코폴리머, 폴리페닐렌설파이드 및 폴리에틸렌나프탈렌으로 이루어진 군으로부터 선택된 어느 하나의 고분자 또는 이들 중 이종 이상의 혼합물로 형성된 고분자막일 수 있다. 일 예에서, 상기 다공성 기재는 폴리올레핀계 기재일 수 있으며, 폴리올레핀계 기재는 셧 다운(shut down) 기능이 우수하여 전지의 안전성 향상에 기여할 수 있다. 폴리올레핀계 기재는 예를 들어 폴리에틸렌 단일막, 폴리프로필렌 단일막, 폴리에틸렌/폴리프로필렌 이중막, 폴리프로필렌/폴리에틸렌/폴리프로필렌 삼중막 및 폴리에틸렌/폴리프로필렌/폴리에틸렌 삼중막으로 이루어진 군에서 선택될 수 있다. 다른 예에서, 폴리올레핀계 수지는 올레핀 수지 외에 비올레핀 수지를 포함하거나, 올레핀과 비올레핀 모노머의 공중합체를 포함할 수 있다. 상기 다공성 기재의 두께는 1 ㎛ 내지 40 ㎛일 수 있고, 보다 구체적으로는 5 ㎛ 내지 15 ㎛, 보다 더 구체적으로 5 ㎛ 내지 10 ㎛일 수 있다. 상기 두께 범위 내의 다공성 기재를 사용하는 경우, 전지의 양극과 음극의 단락을 방지할 수 있을 만큼 충분히 두꺼우면서도 전지의 내부 저항을 증가시킬 만큼 두껍지는 않은, 적절한 두께를 갖는 분리막을 제조할 수 있다.The porous substrate may use a porous substrate having a plurality of pores and can be used in an electrochemical device. Porous substrates include, but are not limited to, polyethylene, polypropylene, polyethylene terephthalate, polybutylene terephthalate, polyester, polyacetal, polyamide, polyimide, polycarbonate, polyetheretherketone, polyaryletherketone, polyetherimide , Polyamideimide, polybenzimidazole, polyethersulfone, polyphenylene oxide, cyclic olefin copolymer, polyphenylene sulfide, and any one polymer selected from the group consisting of polyethylene naphthalene or a polymer membrane formed of a mixture of two or more thereof Can be. In one example, the porous substrate may be a polyolefin-based substrate, the polyolefin-based substrate is excellent in the shutdown (shut down) function may contribute to the improvement of the safety of the battery. The polyolefin-based substrate may be selected from the group consisting of, for example, polyethylene monolayer, polypropylene monolayer, polyethylene / polypropylene double membrane, polypropylene / polyethylene / polypropylene triple membrane, and polyethylene / polypropylene / polyethylene triple membrane. In another example, the polyolefin resin may include a non-olefin resin in addition to the olefin resin, or may include a copolymer of an olefin and a non-olefin monomer. The porous substrate may have a thickness of 1 μm to 40 μm, more specifically 5 μm to 15 μm, even more specifically 5 μm to 10 μm. When using a porous substrate within the thickness range, it is possible to produce a separator having a suitable thickness, thick enough to prevent a short circuit between the positive and negative electrodes of the battery, but not thick enough to increase the internal resistance of the battery.
상기 다공성 내열층은 포스페이트 또는 포스포네이트를 함유하는 제1 성분과 질소를 함유하는 제2 성분을 함유하는 반복 단위를 포함하는 고분자 수지를 포함할 수 있다. 이 때, 상기 제1 성분을 함유하는 제1 반복단위 및 상기 제2 성분을 함유하는 제2 반복단위를 포함하는 공중합체 형태이거나 또는 상기 제1 성분과 제2 성분을 동시에 함유하는 하나의 반복단위를 포함하는 중합체 형태일 수 있다. 상기 고분자 수지는 포스페이트 또는 포스포네이트를 함유함으로써 양극의 분해에 의한 산소의 발생 등에 의해 전지가 폭발하거나 화재가 발생하는 것을 방지할 수 있고, 또한, 질소를 함유함으로써 다공성 기재와의 접착력을 개선할 수 있으며, 또한, 다공성 내열층이 무기 입자를 포함하는 경우에 있어서, 상기 무기 입자의 분산성을 개선시킬 수 있다. 특정 이론에 얽매이는 것은 아니지만, 분리막 내의 인산기를 포함하는 포스페이트 또는 포스포네이트 구조는 열분해에 의해 폴리메타인산을 생성할 수 있다. 생성된 폴리메타인산은 분리막 상에 보호층을 형성하거나, 폴리메타인산의 생성 과정에서 탈수작용이 동반되어 발생하는 탄소 피막이 산소를 차단하게 되어 난연성이 나타나게 될 수 있다. 또한, 특정 이론에 얽매이는 것은 아니지만, 질소를 함유 시 질소의 비공유전자쌍 제공에 의해 다공성 기재와의 접착력 및 무기입자의 분산성이 개선되는 것으로 추측된다. 또한, 본 발명의 일 실시예에 따른 분리막은 위와 같이 다공성 내열층에 포스페이트 또는 포스포네이트를 함유한 제1 성분과 질소를 함유한 제2 성분을 함유하는 반복 단위를 포함하는 고분자 수지를 사용함으로써 별도의 바인더, 별도의 난연제 혹은 별도의 무기입자 없이도 분리막 기재와의 충분한 접착력, 발화 억제 및 내열성을 동시에 확보할 수 있다는 점에서 이점이 있다.The porous heat resistant layer may include a polymer resin including a repeating unit containing a first component containing phosphate or phosphonate and a second component containing nitrogen. In this case, one repeating unit containing the first repeating unit containing the first component and the second repeating unit containing the second component, or one repeating unit containing the first component and the second component at the same time It may be in the form of a polymer comprising a. The polymer resin may contain a phosphate or a phosphonate to prevent the battery from being exploded or fired due to the generation of oxygen due to decomposition of the positive electrode, or the like, and also to improve adhesion to the porous substrate by containing nitrogen. In addition, when the porous heat-resistant layer includes inorganic particles, it is possible to improve the dispersibility of the inorganic particles. Without being bound by a particular theory, phosphate or phosphonate structures comprising phosphate groups in the separator can produce polymethaic acid by pyrolysis. The produced polymethacrylic acid may form a protective layer on the separation membrane, or the carbon film generated by dehydration in the process of producing polymethacrylic acid may block oxygen, thereby resulting in flame retardancy. In addition, although not bound by a specific theory, it is speculated that the adhesion to the porous substrate and the dispersibility of the inorganic particles are improved by providing a non-covalent electron pair of nitrogen when nitrogen is contained. In addition, the separation membrane according to an embodiment of the present invention by using a polymer resin including a repeating unit containing a first component containing phosphate or phosphonate and a second component containing nitrogen in the porous heat-resistant layer as described above There is an advantage in that sufficient adhesion, fire suppression, and heat resistance with the separator substrate can be secured simultaneously without a separate binder, a separate flame retardant, or a separate inorganic particle.
본 발명의 일 실시예의 고분자 수지에서 포스페이트 또는 포스포네이트를 함유하는 상기 제1 성분의 예는 다음과 같다.Examples of the first component containing phosphate or phosphonate in the polymer resin of one embodiment of the present invention are as follows.
[화학식 1][Formula 1]
Figure PCTKR2015008656-appb-I000001
Figure PCTKR2015008656-appb-I000001
[화학식 2][Formula 2]
Figure PCTKR2015008656-appb-I000002
Figure PCTKR2015008656-appb-I000002
상기 화학식 1 및 화학식 2에서, R1 및 R2는 각각 독립적으로, 수소이거나; 치환되거나 비치환된, C1-6의 알킬, C2-6의 알케닐, C2-6의 알키닐, C3-20의 시클로알킬, 및 C6-30의 아릴로 이루어진 군에서 선택될 수 있다. 일 예에서, 상기 화학식 1 및 화학식 2에서, R1 및 R2는 각각 독립적으로, 수소이거나; 비치환되거나, 할로겐, OH, C1-6 알킬, 알콕시, 니트로, 시아노, 카보닐, 티올로 1회 이상 치환된, C1-6의 알킬, C6-30 아릴 또는 C3-10의 시클로알킬일 수 있다. 구체적인 예에서, R1 및 R2는 각각 독립적으로, 수소이거나; 비치환되거나, 할로겐, OH, 또는 C1-6 알킬로 1회 이상 치환된 페닐, 나프틸, 시클로프로필, 시클로부틸, 메틸, 에틸, 프로필, 부틸 등일 수 있다.In Formula 1 and Formula 2, R 1 and R 2 are each independently hydrogen; Substituted or unsubstituted C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-20 cycloalkyl, and C 6-30 aryl Can be. In one embodiment, in Formula 1 and Formula 2, R 1 and R 2 are each independently hydrogen; C 1-6 alkyl, C 6-30 aryl or C 3-10 unsubstituted or substituted one or more times with halogen, OH, C 1-6 alkyl, alkoxy, nitro, cyano, carbonyl, thiol It may be cycloalkyl. In specific examples, R 1 and R 2 are each, independently, hydrogen; Phenyl, naphthyl, cyclopropyl, cyclobutyl, methyl, ethyl, propyl, butyl and the like, unsubstituted or substituted one or more times with halogen, OH, or C 1-6 alkyl.
본 발명의 일 실시예의 고분자 수지에서 질소를 함유한 제2 성분은 이미드 혹은 아미드 함유 구조일 수 있다. 제2 성분이 이미드 또는 아미드 함유 구조인 경우, 분자 간의 이미드 결합 혹은 아미드 결합에 의해 결합력이 강하기 때문에 비교적 높은 온도에서도 다공성 기재가 멜트 다운되지 않을 수 있는 고내열성을 가질 수 있다.In the polymer resin of one embodiment of the present invention, the nitrogen-containing second component may be an imide or amide-containing structure. When the second component is an imide or amide-containing structure, since the bonding strength is strong by imide bonds or amide bonds between molecules, the porous substrate may have high heat resistance that may not melt down even at a relatively high temperature.
구체적인 예에서, 상기 제2 성분은 프탈이미드 함유 구조로, 탄소수 1 내지 10의 알킬 아미드 함유 잔기, 알케닐아미드 함유 잔기 또는 아릴아미드 함유 잔기일 수 있다. 특히, 상기 제2 성분은 프탈이미드 함유 구조일 수 있으며, 프탈이미드 함유 구조인 경우, 아민기의 수소수가 작아, 보다 넓은 전위창을 가질 수 있어서 고전압에서도 안정하기 때문에 쉽게 분해되지 않는 이점이 있다.In a specific example, the second component is a phthalimide-containing structure, and may be an alkyl amide-containing residue, an alkenylamide-containing residue, or an arylamide-containing residue having 1 to 10 carbon atoms. In particular, the second component may be a phthalimide-containing structure, and in the case of the phthalimide-containing structure, the number of hydrogens in the amine group is small, which may have a wider potential window, and thus may not be easily decomposed because it is stable at high voltage. have.
질소를 함유하는 제2 성분의 다른 구체적인 예는 다음과 같다.Other specific examples of the second component containing nitrogen are as follows.
[화학식 3][Formula 3]
Figure PCTKR2015008656-appb-I000003
Figure PCTKR2015008656-appb-I000003
상기 화학식 3에서, R3은 수소이거나; 치환 또는 비치환된, C1-6의 알킬, C2-6의 알케닐, C2-6의 알키닐, C3-10의 시클로알킬, 및 C6-30의 아릴로 이루어진 군에서 선택된다. 일 예에서, 상기 화학식 3에서, R3은 수소이거나; 비치환되거나, 할로겐, OH, C1-6 알킬, C2-6 알케닐, 알콕시, 니트로, 시아노, 카보닐, 티올 또는 C2-6 알키닐로 1회 이상 치환된, C1-6의 알킬, C6-30 아릴 또는 C3-10의 시클로알킬일 수 있다. 구체적인 예에서, R3은 수소이거나; 비치환되거나, 할로겐, OH, C1-6 알킬 또는 C2-6 알케닐로 1회 이상 치환된, 페닐, 나프틸, 시클로프로필, 시클로부틸, 시클로펜틸, 메틸, 에틸, 프로필, 부틸, 에테닐, 프로페닐, 헵테닐 혹은 부테닐일 수 있다.In Formula 3, R 3 is hydrogen; Substituted or unsubstituted, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-10 cycloalkyl, and C 6-30 aryl . In one embodiment, in Chemical Formula 3, R 3 is hydrogen; An unsubstituted, halogen, OH, C 1-6 alkyl, one or more times with C 2-6 alkenyl, alkoxy, nitro, cyano, carbonyl, thiol or substituted C 2-6 alkynyl, C 1-6 Alkyl, C 6-30 aryl or C 3-10 cycloalkyl. In specific examples, R 3 is hydrogen; Phenyl, naphthyl, cyclopropyl, cyclobutyl, cyclopentyl, methyl, ethyl, propyl, butyl, to unsubstituted or substituted one or more times with halogen, OH, C 1-6 alkyl or C 2-6 alkenyl Tenyl, propenyl, heptenyl or butenyl.
질소를 함유하는 제2 성분의 또 다른 예로서 질소 함유 헤테로방향족 탄화수소 고리 함유 구조를 들 수 있다. 본원에서 "질소 함유 헤테로방향족 탄화수소 고리"란 방향족 탄화수소 고리 화합물의 1개 이상의 탄소가 질소로 치환된 헤테로방향족 탄화수소 고리를 말한다. 상기 방향족 탄화수소 고리 화합물은 1환, 2환 또는 3환 구조일 수 있다. 그 예로, 2개 이상의, 질소 함유 헤테로방향족 탄화수소 고리들이 직접 결합되거나; 1개 이상의, 질소 함유 헤테로방향족 탄화수소 고리 및 1개 이상의, 방향족 탄화수소 고리 화합물이 메틸기의 수소 대신 치환된 구조를 들 수 있다. 구체적인 예에서, 다환방향족탄화수소(poly-aromatic hydrocarbons)에서 적어도 하나의 방향족 탄화수소 고리의 적어도 하나의 탄소가 질소로 치환된 구조를 들 수 있다.Another example of the nitrogen-containing second component is a nitrogen-containing heteroaromatic hydrocarbon ring-containing structure. As used herein, "nitrogen-containing heteroaromatic hydrocarbon ring" refers to a heteroaromatic hydrocarbon ring in which one or more carbons of an aromatic hydrocarbon ring compound are replaced with nitrogen. The aromatic hydrocarbon ring compound may have a monocyclic, bicyclic or tricyclic structure. For example, two or more, nitrogen-containing heteroaromatic hydrocarbon rings may be directly bonded; And structures in which at least one nitrogen-containing heteroaromatic hydrocarbon ring and at least one aromatic hydrocarbon ring compound are substituted for hydrogen of the methyl group. In a specific example, there may be mentioned a structure in which at least one carbon of at least one aromatic hydrocarbon ring is substituted with nitrogen in poly-aromatic hydrocarbons.
보다 구체적인 예에서, 질소를 함유하는 제2 성분은 다음 중에서 선택될 수 있다:In a more specific example, the second component containing nitrogen can be selected from:
Figure PCTKR2015008656-appb-I000004
Figure PCTKR2015008656-appb-I000005
Figure PCTKR2015008656-appb-I000006
Figure PCTKR2015008656-appb-I000007
Figure PCTKR2015008656-appb-I000008
Figure PCTKR2015008656-appb-I000009
Figure PCTKR2015008656-appb-I000010
Figure PCTKR2015008656-appb-I000011
Figure PCTKR2015008656-appb-I000012
Figure PCTKR2015008656-appb-I000013
Figure PCTKR2015008656-appb-I000014
Figure PCTKR2015008656-appb-I000015
Figure PCTKR2015008656-appb-I000016
Figure PCTKR2015008656-appb-I000017
Figure PCTKR2015008656-appb-I000018
Figure PCTKR2015008656-appb-I000019
Figure PCTKR2015008656-appb-I000020
Figure PCTKR2015008656-appb-I000021
Figure PCTKR2015008656-appb-I000022
Figure PCTKR2015008656-appb-I000023
Figure PCTKR2015008656-appb-I000024
Figure PCTKR2015008656-appb-I000025
Figure PCTKR2015008656-appb-I000026
Figure PCTKR2015008656-appb-I000027
Figure PCTKR2015008656-appb-I000028
Figure PCTKR2015008656-appb-I000029
Figure PCTKR2015008656-appb-I000030
Figure PCTKR2015008656-appb-I000031
Figure PCTKR2015008656-appb-I000032
Figure PCTKR2015008656-appb-I000033
Figure PCTKR2015008656-appb-I000034
Figure PCTKR2015008656-appb-I000035
Figure PCTKR2015008656-appb-I000036
Figure PCTKR2015008656-appb-I000004
Figure PCTKR2015008656-appb-I000005
Figure PCTKR2015008656-appb-I000006
Figure PCTKR2015008656-appb-I000007
Figure PCTKR2015008656-appb-I000008
Figure PCTKR2015008656-appb-I000009
Figure PCTKR2015008656-appb-I000010
Figure PCTKR2015008656-appb-I000011
Figure PCTKR2015008656-appb-I000012
Figure PCTKR2015008656-appb-I000013
Figure PCTKR2015008656-appb-I000014
Figure PCTKR2015008656-appb-I000015
Figure PCTKR2015008656-appb-I000016
Figure PCTKR2015008656-appb-I000017
Figure PCTKR2015008656-appb-I000018
Figure PCTKR2015008656-appb-I000019
Figure PCTKR2015008656-appb-I000020
Figure PCTKR2015008656-appb-I000021
Figure PCTKR2015008656-appb-I000022
Figure PCTKR2015008656-appb-I000023
Figure PCTKR2015008656-appb-I000024
Figure PCTKR2015008656-appb-I000025
Figure PCTKR2015008656-appb-I000026
Figure PCTKR2015008656-appb-I000027
Figure PCTKR2015008656-appb-I000028
Figure PCTKR2015008656-appb-I000029
Figure PCTKR2015008656-appb-I000030
Figure PCTKR2015008656-appb-I000031
Figure PCTKR2015008656-appb-I000032
Figure PCTKR2015008656-appb-I000033
Figure PCTKR2015008656-appb-I000034
Figure PCTKR2015008656-appb-I000035
Figure PCTKR2015008656-appb-I000036
상기 고분자 수지는 일 예에서, 화학식 4 또는 화학식 5의 반복 단위를 포함할 수 있다.The polymer resin may include repeating units of Formula 4 or Formula 5 in one example.
[화학식 4][Formula 4]
Figure PCTKR2015008656-appb-I000037
Figure PCTKR2015008656-appb-I000037
[화학식 5][Formula 5]
Figure PCTKR2015008656-appb-I000038
Figure PCTKR2015008656-appb-I000038
상기 화학식 4 및 5에서, R1, R2 및 R3 치환기의 정의는 상기 화학식 1 내지 3에서의 R1, R2 및 R3 치환기의 정의와 동일하다.In Formula 4 and 5, R 1, R 2 and the definition of the R 3 substituents are the same as R 1, R 2 and the definition of the R 3 substituent in Formula 1-3.
상기 고분자 수지는 유리전이온도가 180℃ 내지 300℃일 수 있으며, 구체적으로 200℃ 내지 280℃, 보다 구체적으로 220℃ 내지 250℃일 수 있다. 상기 범위를 만족하는 고분자 수지를 다공성 내열층에 포함하는 분리막의 경우, 상대적으로 높은 온도도 멜트 다운이 되지 않으므로, 고내열 특성을 가질 수 있다. The polymer resin may have a glass transition temperature of 180 ° C to 300 ° C, specifically 200 ° C to 280 ° C, more specifically 220 ° C to 250 ° C. In the case of the separator including the polymer resin satisfying the above range in the porous heat resistant layer, since the relatively high temperature does not melt down, it may have a high heat resistance.
상기 고분자 수지의 중량평균분자량은 5,000 내지 350,000의 범위일 수 있으며, 상기 범위이면 접착력 및 내열성의 측면에서 유리할 수 있다. The weight average molecular weight of the polymer resin may be in the range of 5,000 to 350,000, it may be advantageous in terms of adhesion and heat resistance.
이하, 본 발명의 다른 실시예에 따른 분리막에 대해 설명한다. 본 실시예에 따른 분리막은 다공성 기재 및 상기 다공서 기재 상에 형성된 다공성 내열층을 포함하고, 상기 다공성 내열층이 포스페이트 또는 포스포네이트를 함유하는 제1 성분과 질소를 함유하는 제2 성분을 함유하는 반복 단위를 포함하는 고분자 수지 외에 추가의 바인더 성분을 포함한다는 점에서 상기 본 발명의 일 실시예에 따른 분리막과 차이가 있다. 이하, 이를 중심으로 설명하며, 일 실시예와 실질적으로 동일한 구성요소는 자세한 설명은 생략한다. 본 실시예는 추가의 바인더 성분을 더 포함함으로써 다공성 기재와의 접착력을 더 향상시킬 수 있을 뿐만 아니라 내열성 및 사이클 특성이 향상된다. Hereinafter, a separator according to another embodiment of the present invention will be described. The separator according to the present embodiment includes a porous substrate and a porous heat resistant layer formed on the porous substrate, and the porous heat resistant layer contains a first component containing phosphate or phosphonate and a second component containing nitrogen. It differs from the separator according to the embodiment of the present invention in that it includes an additional binder component in addition to the polymer resin including the repeating unit. Hereinafter, this will be described with reference to the center, and detailed description of the same elements as those of the exemplary embodiment will be omitted. The present embodiment further includes an additional binder component to further improve adhesion to the porous substrate, as well as to improve heat resistance and cycle characteristics.
상기 추가의 바인더 성분은 예를 들어, 폴리비닐리덴 플루오라이드(Polyvinylidene fluoride, PVdF)계 폴리머일 수 있다. 폴리비닐리덴 플루오라이드계 폴리머는 폴리비닐리덴 플루오라이드(Polyvinylidene fluoride, PVdF) 호모폴리머, 폴리비닐리덴 플루오라이드 코폴리머 (Polyvinylidene fluoride copolymer), 또는 이들의 혼합물을 포함할 수 있다. 상기 폴리비닐리덴 플루오라이드 호모폴리머는 비닐리덴 플루오라이드(Vinylidene fluoride, VDF) 유래 반복단위만을 포함하거나, 비닐리덴 플루오라이드 유래 반복단위 외의 다른 종류의 반복단위를 5 중량% 이하로 포함하는 폴리머를 의미한다. 여기서, 상기 폴리비닐리덴 플루오라이드 호모폴리머는 상기 다른 종류의 반복단위로 헥사플루오로프로필렌(Hexafluoropropylene, HFP) 유래 반복단위는 포함하지 않는다. 폴리비닐리덴 플루오라이드 코폴리머는 비닐리덴 플루오라이드 외에 다른 모노머를 병용 사용하여 중합한 것을 의미하며, 구체적으로, 헥사플루오로프로필렌 유래 반복단위를 포함하거나, 비닐리덴 플루오라이드 반복단위 및 헥사플루오로프로필렌 유래 반복단위 외에 다른 종류의 반복단위를 5 중량% 초과로 포함하는 것을 의미한다. 상기 폴리비닐리덴 플루오라이드 코폴리머는 비닐리덴 플루로라이드로부터 유래된 반복단위와 헥사플루오로프로필렌으로부터 유래된 반복단위를 포함하는 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌(Polyvinylidene fluoride-Hexafluoropropylene, PVdF-HFP)계 코폴리머를 포함할 수 있다. 상기 폴리비닐리덴 플루오라이드-헥사프로필렌계 코폴리머는, 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌(Polyvinylidene fluoride-Hexafluoropropylene, PVdF-HFP) 이원 공중합체, 또는 비닐리덴 플루오라이드 유래 반복단위 및 헥사플루오로프로필렌 유래 반복단위 외에 다른 반복단위를 추가로 포함하는 3원 이상의 공중합체를 모두 포함할 수 있다. 상기 추가의 바인더 성분의 또 다른 예로, 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈(polyvinylpyrrolidone), 폴리비닐아세테이트(polyvinylacetate), 폴리에틸렌옥사이드(polyethylene oxide), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트(cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸풀루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 풀루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose), 및 아크릴로니트릴스티렌부타디엔 공중합체 (acrylonitrilestyrene-butadiene copolymer)로 이루어진 군으로부터 선택된 단독 또는 이들의 혼합물을 들 수 있다.The further binder component can be, for example, a polyvinylidene fluoride (PVdF) based polymer. The polyvinylidene fluoride polymer may include a polyvinylidene fluoride (PVdF) homopolymer, a polyvinylidene fluoride copolymer, or a mixture thereof. The polyvinylidene fluoride homopolymer refers to a polymer containing only repeating units derived from vinylidene fluoride (VDF) or containing 5 wt% or less of repeating units other than vinylidene fluoride derived repeating units. do. Here, the polyvinylidene fluoride homopolymer does not include hexafluoropropylene (HFP) -derived repeating units as the other types of repeating units. The polyvinylidene fluoride copolymer means polymerized using other monomers in addition to vinylidene fluoride, and specifically, includes a hexafluoropropylene-derived repeating unit, or a vinylidene fluoride repeating unit and hexafluoropropylene. It means to include more than 5% by weight of other types of repeating units in addition to the derived repeating units. The polyvinylidene fluoride copolymer is a polyvinylidene fluoride-hexaxapropylene containing a repeating unit derived from vinylidene fluoride and a repeating unit derived from hexafluoropropylene. HFP) based copolymers. The polyvinylidene fluoride-hexapropylene copolymer is a polyvinylidene fluoride-hexaxa propylene (PVdF-HFP) binary copolymer, or vinylidene fluoride-derived repeating units and hexafluoro In addition to the propylene-derived repeating unit, all three or more copolymers further including other repeating units may be included. As another example of the additional binder component, polymethylmethacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate, polyethylene oxide, Cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, cyanoethylpullulan, cyanoethylpolyvinylalcohol, cyanoethyl Alone or selected from the group consisting of cellulose (cyanoethylcellulose), cyanoethylsucrose, pullulan, carboxyl methyl cellulose, and acrylonitrilestyrene-butadiene copolymer Of these There may be mentioned compounds.
이하, 본 발명의 또 다른 실시예에 따른 분리막에 대해 설명한다. 본 실시예에 따른 분리막은 다공성 기재 및 다공성 내열층을 포함하고, 상기 다공성 내열층이 무기 입자를 추가로 함유한다는 점에서 본 발명의 일 실시예와 차이가 있다. 이하, 이를 중심으로 설명하며, 일 실시예와 실질적으로 동일한 구성요소는 자세한 설명은 생략한다. 본 실시예에 따른 분리막은 무기입자를 함유함으로써 내열성을 향상시킬 수 있을 뿐만 아니라 이온의 전도성을 향상시킬 수 있을 정도로 적절한 투과도를 확보하는데 유리하다.Hereinafter, a separator according to another embodiment of the present invention will be described. The separator according to the present embodiment includes a porous substrate and a porous heat resistant layer, and the porous heat resistant layer is different from an embodiment of the present invention in that it further contains inorganic particles. Hereinafter, this will be described with reference to the center, and detailed description of the same elements as those of the exemplary embodiment will be omitted. The separator according to the present embodiment is advantageous in ensuring adequate permeability to include not only inorganic particles but also heat resistance, and to improve conductivity of ions.
상기 다공성 내열층에 함유되는 무기입자의 종류는 특별히 제한되지 아니하며 당해 분야에서 통상적으로 사용하는 무기입자를 사용할 수 있다. 상기 무기 입자의 비제한적인 예로는 Al2O3, SiO2, B2O3, Ga2O3, TiO2 또는 SnO2 등을 들 수 있다. 이들은 단독으로 사용되거나 2종 이상을 혼합하여 사용될 수 있으며, 예를 들어, Al2O3(알루미나)를 사용할 수 있다. 상기 다공성 내열층 내의 무기입자들은 다공성 내열층의 물리적 형태를 유지할 수 있는 일종의 스페이서(spacer) 역할을 한다. 이에 따라 전지 등의 조립 과정에서 다공성 내열층 내의 무기입자가 탈리되는 문제를 방지하여 형태 안정성을 확보할 수 있으며, 다공성 내열층과 다공성 기재 사이에 충분한 접착력을 부여하여 열에 의한 다공성 기재의 수축을 억제할 수 있을 뿐만 아니라 전극의 단락을 방지할 수 있고 고온 안전성이 우수한 이점이 있다.The kind of the inorganic particles contained in the porous heat resistant layer is not particularly limited, and inorganic particles commonly used in the art may be used. Non-limiting examples of the inorganic particles include Al 2 O 3 , SiO 2 , B 2 O 3 , Ga 2 O 3 , TiO 2 or SnO 2 . These may be used alone or in combination of two or more thereof, for example, Al 2 O 3 (alumina) may be used. The inorganic particles in the porous heat resistant layer serve as a kind of spacer capable of maintaining the physical form of the porous heat resistant layer. Accordingly, it is possible to secure morphological stability by preventing the inorganic particles in the porous heat-resistant layer from being detached during the assembly process of the battery, and by providing sufficient adhesive force between the porous heat-resistant layer and the porous substrate to suppress shrinkage of the porous substrate by heat. Not only can it prevent the short circuit of the electrode and there is an advantage of excellent high temperature safety.
상기 무기 입자의 크기는 특별히 제한되지 아니하나, 평균 입경이 100 nm 내지 1000 nm일 수 있고, 구체적으로 300 nm 내지 600 nm일 수 있다. 상기 크기 범위의 무기입자를 사용하는 경우, 다공성 내열층 조성액 내에서의 무기 입자의 분산성 및 코팅 공정성이 저하되는 것을 방지할 수 있고 다공성 내열층의 두께를 적절히 조절할 수 있다.The size of the inorganic particles is not particularly limited, but the average particle diameter may be 100 nm to 1000 nm, specifically 300 nm to 600 nm. When using the inorganic particles in the size range, it is possible to prevent the dispersibility and coating processability of the inorganic particles in the porous heat-resistant layer composition solution can be prevented and the thickness of the porous heat-resistant layer can be adjusted appropriately.
상기 무기입자는 다공성 내열층 내에서 70 중량% 내지 98 중량%로 함유될 수 있으며, 구체적으로 80 중량% 내지 95 중량%로 함유될 수 있다. 상기 범위 내에서 분리막의 형태 안정성을 확보할 수 있으며, 다공성 내열층과 다공성 기재 사이에 충분한 접착력을 부여하여 열에 의한 다공성 기재의 수축을 억제할 수 있을 뿐만 아니라 전극의 단락을 효과적으로 방지할 수 있다.The inorganic particles may be contained in 70% by weight to 98% by weight in the porous heat-resistant layer, specifically, may be contained in 80% by weight to 95% by weight. It is possible to secure the shape stability of the separator within the above range, to impart sufficient adhesive force between the porous heat-resistant layer and the porous substrate can not only suppress the shrinkage of the porous substrate by heat, but also effectively prevent the short circuit of the electrode.
이하, 본 발명의 일 실시예에 따른 분리막의 제조방법에 대해 설명한다. 본 발명의 일 실시예에 따른 분리막의 제조방법은 포스페이트 혹은 포스포네이트를 함유하는 제1 성분과 질소를 함유하는 제2 성분을 함유하는 반복 단위를 포함하는 고분자 수지 및 용매를 함유하는 다공성 내열층 조성물을 제조하고, 다공성 기재의 일면 혹은 양면에 상기 다공성 내열층 조성물로 다공성 내열층을 형성하는 것을 포함한다.Hereinafter, a method of manufacturing a separator according to an embodiment of the present invention will be described. Method for manufacturing a separator according to an embodiment of the present invention is a porous heat-resistant layer containing a polymer resin and a solvent comprising a repeating unit containing a first component containing phosphate or phosphonate and a second component containing nitrogen Preparing a composition, and forming a porous heat resistant layer with the porous heat resistant layer composition on one or both surfaces of the porous substrate.
구체적으로, 상기 분리막은 다공성 기재 상에 다공성 내열층 조성물을 도포한 후, 이를 건조시켜 형성될 수 있다. 상기 다공성 기재의 미세 포어는 일반적으로 알려진 제조방법에 의해 형성될 수 있다. 비제한적인 예로, 건식법과 습식법이 알려져 있으며, 구체적으로, 상기 다공성 기재는 다공성 기재용 조성물을 압출하고 연신하여 다공성 기재에 미세 포어를 형성하여 제조될 수 있다.Specifically, the separator may be formed by applying a porous heat-resistant layer composition on a porous substrate, and then drying it. Fine pores of the porous substrate may be formed by a generally known manufacturing method. As a non-limiting example, a dry method and a wet method are known, and specifically, the porous substrate may be prepared by extruding and stretching the composition for the porous substrate to form fine pores in the porous substrate.
분리막의 다공성 내열층을 형성하기 위한 다공성 내열층 조성물은 선술한 고분자 수지 및 용매를 포함할 수 있으며, 다른 예에서 상기 조성에 무기입자를 추가로 포함할 수 있다. 다공성 내열층 조성물을 제조하는 방법에 특별한 제한은 없으나, 고분자 수지를 용매에 용해시킨 고분자 용액을 다공성 내열층 조성물로 사용하거나, 상기 고분자 용액에 무기 입자를 분산시키고 이를 다공성 내열층 조성물로 사용하거나, 상기 고분자 용액과, 무기 입자를 분산시킨 무기 입자 분산액을 각각 제조한 다음, 이들을 적절한 용매와 함께 혼합하는 방식으로 다공성 내열층 조성물을 제조할 수 있다. 다공성 내열층 조성물을 제조하는 일 방법은 본원에 개시된 고분자 수지 및 용매, 혹은 여기에 무기입자를 추가로 혼합하고 10℃ 내지 40℃에서 30분 내지 5시간 동안 교반하는 것을 포함할 수 있다. The porous heat resistant layer composition for forming the porous heat resistant layer of the separator may include the above-described polymer resin and a solvent, and in another example, may further include inorganic particles in the composition. Although there is no particular limitation on the method for preparing the porous heat resistant layer composition, a polymer solution in which a polymer resin is dissolved in a solvent is used as the porous heat resistant layer composition, or the inorganic particles are dispersed in the polymer solution and used as the porous heat resistant layer composition, The porous heat-resistant layer composition may be prepared by preparing the polymer solution and the inorganic particle dispersion in which the inorganic particles are dispersed, and then mixing them with an appropriate solvent. One method of preparing the porous heat-resistant layer composition may include further mixing the polymer resin and the solvent, or inorganic particles disclosed herein, and stirring at 10 ° C. to 40 ° C. for 30 minutes to 5 hours.
상기 고분자 용액 및 무기 입자 분산액 제조에 사용되는 용매는 고분자 수지를 용해시킬 수 있고, 무기 입자를 충분히 분산시킬 수 있는 용매라면 특별히 제한되지 아니한다. 본 발명에서 사용 가능한 상기 용매의 비제한적인 예로는 디메틸포름아미드(Dimethyl formamide), 디메틸설폭사이드(Dimethyl sulfoxide), 디메틸아세트아미드(Dimethyl acetamide), 디메틸카보네이트(Dimethyl carbonate) 또는 N-메틸피롤리돈(N-methylpyrrolydone) 등을 들 수 있다. 다공성 내열층 조성물의 중량을 기준으로 용매의 함량은 20 중량% 내지 99 중량%일 수 있고, 구체적으로 50 중량% 내지 95 중량%일 수 있으며, 보다 구체적으로 70 중량% 내지 95 중량%일 수 있다. 상기 범위의 용매를 함유하는 경우 다공성 내열층 조성물의 제조가 용이해지며 다공성 내열층의 건조 공정이 원활히 수행될 수 있다. 또한, 상기 고분자 수지는 다공성 내열층 조성물의 고형분 총 중량을 기준으로, 2 중량% 내지 100 중량%, 예를 들어, 2 중량% 내지 70 중량%로 함유될 수 있다. 보다 구체적인 예에서, 5 중량% 내지 30 중량%로 함유될 수 있다.The solvent used for preparing the polymer solution and the inorganic particle dispersion is not particularly limited as long as it can dissolve the polymer resin and can disperse the inorganic particles sufficiently. Non-limiting examples of the solvent that can be used in the present invention is dimethyl formamide, dimethyl sulfoxide, dimethyl acetamide, dimethyl carbonate or N-methylpyrrolidone (N-methylpyrrolydone) etc. are mentioned. The content of the solvent may be 20 wt% to 99 wt%, specifically 50 wt% to 95 wt%, and more specifically 70 wt% to 95 wt%, based on the weight of the porous heat-resistant layer composition. . When the solvent is contained in the above range, the porous heat resistant layer composition may be easily manufactured, and the drying process of the porous heat resistant layer may be performed smoothly. In addition, the polymer resin may be contained in 2% by weight to 100% by weight, for example, 2% by weight to 70% by weight based on the total weight of solids of the porous heat-resistant layer composition. In a more specific example, it may be contained in 5% to 30% by weight.
상기 고분자 용액 및 무기 입자 분산액에 추가적으로 용매를 혼합한 후 볼 밀(Ball mill), 비즈 밀(Beads mill) 또는 스크류 믹서(Screw mixer) 등을 이용하여 충분히 교반하는 공정을 거쳐 혼합물 형태의 다공성 내열층 조성액을 제조할 수 있다.After mixing the solvent with the polymer solution and the inorganic particle dispersion, the porous heat-resistant layer in the form of a mixture is subjected to a sufficiently stirring process using a ball mill, a beads mill, a screw mixer, or the like. The composition liquid can be prepared.
상기 다공성 기재에 다공성 내열층을 형성시키는 방법은 특별히 제한되지 아니하며, 본 발명의 기술 분야에서 통상적으로 사용하는 방법, 예를 들어 코팅법, 라미네이션(lamination), 공압출(coextrusion) 등을 사용할 수 있다. 상기 코팅 방법의 비제한적인 예로는, 딥(Dip) 코팅법, 다이(Die) 코팅법, 롤(Roll) 코팅법 또는 콤마(Comma) 코팅법 등을 들 수 있다. 이들은 단독 또는 2 가지 이상의 방법을 혼합하여 적용될 수 있다. 본 발명의 분리막의 다공성 내열층은 예를 들어 딥 코팅법에 의해 형성된 것일 수 있다.The method of forming the porous heat resistant layer on the porous substrate is not particularly limited, and a method commonly used in the art, for example, a coating method, lamination, coextrusion, and the like may be used. . Non-limiting examples of the coating method may include a dip coating method, a die coating method, a roll coating method, or a comma coating method. These may be applied alone or in combination of two or more methods. The porous heat resistant layer of the separator of the present invention may be formed by, for example, a dip coating method.
본 발명의 실시예들에 따른 다공성 내열층의 두께는 0.01 ㎛ 내지 20 ㎛일 수 있으며, 구체적으로 1 ㎛ 내지 15 ㎛일 수 있다. 상기 두께 범위 내에서, 적절한 두께의 다공성 내열층을 형성하여 우수한 열적 안정성 및 접착력을 얻을 수 있으며, 전체 분리막의 두께가 지나치게 두꺼워지는 것을 방지하여 전지의 내부 저항이 증가하는 것을 억제할 수 있다.The thickness of the porous heat resistant layer according to the embodiments of the present invention may be 0.01 μm to 20 μm, and specifically 1 μm to 15 μm. Within the thickness range, an excellent thermal stability and adhesion can be obtained by forming a porous heat resistant layer having an appropriate thickness, and the thickness of the entire separator can be prevented from becoming too thick to suppress an increase in the internal resistance of the battery.
본 발명의 실시예들에서 다공성 내열층을 건조하는 것은 온풍, 열풍, 저습풍에 의한 건조나 진공 건조 또는 원적외선이나 전자선 등을 조사하는 방법을 사용할 수 있다. 그리고 건조 온도는 용매의 종류에 따라 차이가 있으나 대체로 60℃ 내지 120℃의 온도에서 건조할 수 있다. 건조 시간 역시 용매의 종류에 따라 차이가 있으나 대체로 1분 내지 1시간 건조할 수 있다. 구체적인 예에서, 90℃ 내지 120 ℃의 온도에서 1분 내지 30분, 또는 1분 내지 10분 건조할 수 있다. Drying the porous heat-resistant layer in the embodiments of the present invention may be a method of irradiating dry or vacuum drying or far-infrared rays or electron beams by hot air, hot air, low humidity wind. And the drying temperature is different depending on the type of the solvent, but can be dried at a temperature of approximately 60 ℃ to 120 ℃. The drying time also varies depending on the type of solvent, but may generally be dried for 1 minute to 1 hour. In a specific example, it may be dried for 1 minute to 30 minutes, or 1 minute to 10 minutes at a temperature of 90 ℃ to 120 ℃.
본 발명의 실시예들에 기재된 다공성 내열층을 포함하는 분리막을 200℃에서 30분 동안 방치한 후의 기계 방향(Machine Direction, MD) 또는 직각 방향(Transverse Direction, TD)으로의 열수축률은, 각각 10% 이하, 구체적으로 5% 이하, 보다 구체적으로는 3% 이하일 수 있다. 상기 범위 내에서, 전극의 단락을 효과적으로 방지하여 전지의 안전성을 향상시키는 이점이 있다.After leaving the separator comprising the porous heat-resistant layer described in the embodiments of the present invention for 30 minutes at 200 ℃ in the machine direction (Machine Direction, MD) or the transverse direction (TD), respectively, the heat shrinkage rate is 10 % Or less, specifically 5% or less, and more specifically 3% or less. Within this range, there is an advantage of effectively preventing a short circuit of the electrode to improve the safety of the battery.
상기 분리막의 열수축률을 측정하는 방법은 특별히 제한되지 아니하며, 본 발명의 기술 분야에서 통상적으로 사용하는 방법을 사용할 수 있다.The method for measuring the thermal contraction rate of the separator is not particularly limited, it can be used a method commonly used in the art.
분리막의 열수축률을 측정하는 방법의 비제한적인 예는 다음과 같다: 제조된 분리막을 가로(MD) 약 5 cm × 세로(TD) 약 5 cm 크기로 제단하고, 이를 200℃의 챔버(chamber)에서 30분 동안 보관한 다음, 상기 분리막의 MD 방향 및 TD 방향의 수축 정도를 측정하여 열수축률을 계산하는 방식으로 수행될 수 있다.A non-limiting example of a method of measuring the thermal contraction rate of the separator is as follows: The prepared separator is cut into a width of about 5 cm × length (TD) of about 5 cm, which is 200 ° C. chamber. After storing for 30 minutes, the shrinkage in the MD direction and the TD direction of the separator can be measured by calculating the heat shrinkage rate.
본 발명의 실시예들에 기재된 다공성 내열층을 포함하는 분리막의 난연도가 UL94 VB 난연 규정에 따라 측정하였을 때, V0 이상의 뛰어난 난연 등급일 수 있다. 상기 범위 내에서, 상기 분리막의 연소가 효과적으로 방지되므로 전지의 안전성이 향상될 수 있다.When the flame retardancy of the separator including the porous heat-resistant layer described in the embodiments of the present invention is measured according to the UL94 VB flame retardant regulations, the flame retardant grade of V0 or more may be excellent. Within this range, the combustion of the separator can be effectively prevented so that the safety of the battery can be improved.
상기 분리막의 난연도를 측정하는 방법은 특별히 제한되지 아니하며, 본 발명의 기술 분야에서 통상적으로 사용하는 방법을 사용할 수 있다.The method for measuring the flame retardancy of the separator is not particularly limited, and a method commonly used in the art may be used.
상기 분리막의 난연도를 측정하는 방법의 비제한적인 예는 다음과 같다: 제조된 10cm × 50cm의 분리막을 접어서 10cm × 2cm로 만든 후, 상하부분을 고정하여 시편을 제조하고, UL94 VB에 의거하여 난연 등급은 시편 연소 시간 기준으로 측정한다.A non-limiting example of a method for measuring the flame retardancy of the separator is as follows: Fold the prepared 10cm × 50cm separator into 10cm × 2cm, and then prepare the specimen by fixing the upper and lower parts, based on UL94 VB Flame retardant ratings are measured based on specimen burn time.
본 발명의 실시예들에 기재된 다공성 내열층을 포함하는 분리막의 통기도는 400sec/100cc 이하 일 수 있으며, 구체적으로 310sec/100cc 이하일 수 있으며, 더욱 구체적으로 280sec/100cc 이하일 수 있다. 상기 범위 내에서, 상기 분리막을 포함하는 전지 내부의 이온 및 전자 흐름이 원활하여 전지 성능이 개선될 수 있다.The air permeability of the separator including the porous heat resistant layer described in the embodiments of the present invention may be 400 sec / 100 cc or less, specifically 310 sec / 100 cc or less, and more specifically 280 sec / 100 cc or less. Within this range, ion and electron flow inside the battery including the separator may be smooth, and battery performance may be improved.
상기 분리막의 통기도를 측정하는 방법은 특별히 제한되지 아니하며, 본 발명의 기술 분야에서 통상적으로 사용하는 방법을 사용할 수 있다.The method for measuring the air permeability of the separator is not particularly limited, and may be used a method commonly used in the art.
상기 분리막의 통기도를 측정하는 방법의 비제한적인 예는 다음과 같다: 제조된 분리막에 대해 100cc의 공기가 분리막을 통과하는데 걸리는 시간을 측정하는 방식으로 통기도를 구한다.A non-limiting example of a method for measuring the air permeability of the separator is as follows: The air permeability is obtained by measuring the time taken for 100 cc of air to pass through the separator for the prepared separator.
본 발명의 또 다른 실시예에 따르면, 본원에 개시된 제1 성분과 제2 성분을 함유하는 반복 단위를 포함하는 고분자 수지를 포함하는 다공성 내열층을 포함하는 다공성 분리막 및 양극, 음극을 포함하며 전해질로 채워진 전기 화학 전지를 제공한다.According to still another embodiment of the present invention, a porous separator including a porous heat-resistant layer comprising a polymer resin including a repeating unit containing a first component and a second component disclosed herein, and a positive electrode, a negative electrode and the electrolyte Provide a filled electrochemical cell.
상기 전기 화학 전지의 종류는 특별히 제한되지 아니하며, 본 발명의 기술 분야에서 알려진 종류의 전지일 수 있다.The kind of the electrochemical cell is not particularly limited, and may be a battery of a kind known in the art.
본 발명의 일 실시예에 따른 상기 전기 화학 전지는 구체적으로는 리튬 금속 이차 전지, 리튬 이온 이차 전지, 리튬 폴리머 이차 전지 또는 리튬 이온 폴리머 이차 전지 등과 같은 리튬 이차 전지일 수 있다. The electrochemical battery according to an embodiment of the present invention may be specifically a lithium secondary battery such as a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery or a lithium ion polymer secondary battery.
본 발명의 일 실시예에 따른 전기 화학 전지를 제조하는 방법은 특별히 제한되지 아니하며, 본 발명의 기술 분야에서 통상적으로 사용하는 방법을 사용할 수 있다.Method for manufacturing an electrochemical cell according to an embodiment of the present invention is not particularly limited, it can be used a method commonly used in the art.
도 1은 일 구현예에 따른 전기 화학 전지의 분해 사시도이다. 일 구현예에 따른 전기 화학 전지는 각형인 것을 예로 설명하지만, 본 발명이 이에 제한되는 것은 아니며, 리튬 폴리머 전지, 원통형 전지 등 다양한 형태의 전지에 적용될 수 있다.1 is an exploded perspective view of an electrochemical cell according to one embodiment. Although an electrochemical cell according to an embodiment is described as an example of being rectangular, the present invention is not limited thereto and may be applied to various types of batteries such as a lithium polymer battery and a cylindrical battery.
도 1을 참고하면, 일 구현예에 따른 전기 화학 전지(100)는 양극(10)과 음극(20) 사이에 분리막(30)을 개재하여 귄취된 전극 조립체(40)와, 상기 전극 조립체(40)가 내장되는 케이스(50)를 포함한다. 상기 양극(10), 상기 음극(20) 및 상기 분리막(30)은 전해액(미도시)에 함침된다.Referring to FIG. 1, an electrochemical cell 100 according to an embodiment includes an electrode assembly 40 wound through a separator 30 between a positive electrode 10 and a negative electrode 20, and the electrode assembly 40. It includes a case 50 is built. The anode 10, the cathode 20, and the separator 30 are impregnated with an electrolyte (not shown).
상기 분리막(30)은 전술한 바와 같다.The separator 30 is as described above.
상기 양극(10)은 양극 집전체 및 상기 양극 집전체 위에 형성되는 양극 활물질층을 포함할 수 있다. 상기 양극 활물질층은 양극 활물질, 바인더 및 선택적으로 도전재를 포함할 수 있다.The positive electrode 10 may include a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector. The positive electrode active material layer may include a positive electrode active material, a binder, and optionally a conductive material.
상기 양극 집전체로는 알루미늄(Al), 니켈(Ni) 등을 사용할 수 있으나, 이에 한정되지 않는다.As the cathode current collector, aluminum (Al), nickel (Ni), or the like may be used, but is not limited thereto.
상기 양극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 사용할 수 있다. 구체적으로 코발트, 망간, 니켈, 알루미늄, 철 또는 이들의 조합의 금속과 리튬과의 복합 산화물 또는 복합 인산화물 중에서 1종 이상을 사용할 수 있다. 더욱 구체적으로, 리튬 코발트 산화물, 리튬 니켈 산화물, 리튬 망간 산화물, 리튬 니켈 코발트 망간 산화물, 리튬 니켈 코발트 알루미늄 산화물, 리튬 철 인산화물 또는 이들의 조합을 사용할 수 있다. As the cathode active material, a compound capable of reversible intercalation and deintercalation of lithium may be used. Specifically, at least one of cobalt, manganese, nickel, aluminum, iron, or a combination of metal and lithium composite oxide or phosphoric acid may be used. More specifically, lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, lithium nickel cobalt manganese oxide, lithium nickel cobalt aluminum oxide, lithium iron phosphate or a combination thereof may be used.
상기 바인더는 양극 활물질 입자들을 서로 잘 부착시킬 뿐 아니라 양극 활물질을 양극 집전체에 잘 부착시키는 역할을 하며, 구체적인 예로는 폴리비닐알코올, 카르복시메틸셀룰로오스, 히드록시프로필셀룰로오스, 디아세틸셀룰로오스, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드 함유 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드계 폴리머, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론 등이 있으나, 이에 한정되지 않는다. 이들은 단독으로 또는 2종 이상 혼합하여 사용할 수 있다.The binder not only adheres the positive electrode active material particles to each other but also serves to adhere the positive electrode active material to the positive electrode current collector, and specific examples thereof include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, and polyvinyl chloride. , Carboxylated polyvinylchloride, polyvinylfluoride, ethylene oxide containing polymer, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride polymer, polyethylene, polypropylene, styrene-butadiene Rubber, styrene-butadiene rubber, epoxy resin, nylon, and the like, but is not limited thereto. These can be used individually or in mixture of 2 or more types.
상기 도전재는 전극에 도전성을 부여하는 것으로, 그 예로 천연흑연, 인조흑연, 카본블랙, 탄소섬유, 금속 분말, 금속 섬유 등이 있으나, 이에 한정되지 않는다. 이들은 단독으로 또는 2종 이상 혼합하여 사용할 수 있다. 상기 금속 분말과 상기 금속 섬유는 구리, 니켈, 알루미늄, 은 등의 금속을 사용할 수 있다.The conductive material provides conductivity to the electrode, and examples thereof include natural graphite, artificial graphite, carbon black, carbon fiber, metal powder, and metal fiber, but are not limited thereto. These can be used individually or in mixture of 2 or more types. As the metal powder and the metal fiber, metals such as copper, nickel, aluminum, and silver may be used.
상기 음극(20)은 음극 집전체 및 상기 음극 집전체 위에 형성되는 음극 활물질층을 포함할 수 있다.The negative electrode 20 may include a negative electrode current collector and a negative electrode active material layer formed on the negative electrode current collector.
상기 음극 집전체는 구리(Cu), 금(Au), 니켈(Ni), 구리 합금 등을 사용할 수 있으나, 이에 한정되지 않는다. The negative electrode current collector may include copper (Cu), gold (Au), nickel (Ni), a copper alloy, or the like, but is not limited thereto.
상기 음극 활물질층은 음극 활물질, 바인더 및 선택적으로 도전재를 포함할 수 있다.The negative electrode active material layer may include a negative electrode active material, a binder, and optionally a conductive material.
상기 음극 활물질로는 리튬 이온을 가역적으로 인터칼레이션 및 디인터칼레이션할 수 있는 물질, 리튬 금속, 리튬 금속의 합금, 리튬을 도프 및 탈도프할 수 있는 물질, 전이금속 산화물 또는 이들의 조합을 사용할 수 있다.The negative electrode active material may be a material capable of reversibly intercalating and deintercalating lithium ions, a lithium metal, an alloy of lithium metal, a material capable of doping and undoping lithium, a transition metal oxide, or a combination thereof. Can be used.
상기 리튬 이온을 가역적으로 인터칼레이션 및 디인터칼레이션할 수 있는 물질로는 탄소계 물질을 들 수 있으며, 그 예로는 결정질 탄소, 비정질 탄소 또는 이들의 조합을 들 수 있다. 상기 결정질 탄소의 예로는 무정형, 판상, 인편상(flake), 구형 또는 섬유형의 천연흑연 또는 인조흑연을 들 수 있다. 상기 비정질 탄소의 예로는 소프트 카본(soft carbon) 또는 하드 카본(hard carbon), 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다. 상기 리튬 금속의 합금으로는 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn으로 이루어진 군에서 선택되는 금속의 합금이 사용될 수 있다. 상기 리튬을 도프 및 탈도프할 수 있는 물질로는 Si, SiOx(0<x<2), Si-C 복합체, Si-Y 합금, Sn, SnO2, Sn-C 복합체, Sn-Y 등을 들 수 있고, 또한 이들 중 적어도 하나와 SiO2를 혼합하여 사용할 수도 있다. 상기 원소 Y로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Tl, Ge, P, As, Sb, Bi, S, Se, Te, Po 및 이들의 조합으로 이루어진 군에서 선택될 수 있다. 상기 전이금속 산화물로는 바나듐 산화물, 리튬 바나듐 산화물 등을 들 수 있다. Examples of a material capable of reversibly intercalating and deintercalating the lithium ions include carbon-based materials, and examples thereof include crystalline carbon, amorphous carbon, or a combination thereof. Examples of the crystalline carbon may be amorphous, plate, flake, spherical or fibrous natural graphite or artificial graphite. Examples of the amorphous carbon include soft carbon or hard carbon, mesophase pitch carbide, calcined coke, and the like. Examples of the alloy of the lithium metal include lithium and Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, and Sn. Alloys of the metals selected may be used. Examples of materials capable of doping and undoping lithium include Si, SiO x (0 <x <2), Si-C composites, Si-Y alloys, Sn, SnO 2 , Sn-C composites, Sn-Y, and the like. And at least one of these and SiO 2 may be mixed and used. As the element Y, Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Tl, Ge, P, As, Sb, Bi, S, Se, Te, Po and combinations thereof. Examples of the transition metal oxide include vanadium oxide and lithium vanadium oxide.
상기 음극에 사용되는 바인더와 도전재의 종류는 전술한 양극에서 사용되는 바인더와 도전재와 같다.Kinds of the binder and the conductive material used in the negative electrode are the same as the binder and the conductive material used in the above-described positive electrode.
상기 양극과 음극은 각각의 활물질 및 바인더와 선택적으로 도전재를 용매 중에 혼합하여 각 활물질 조성물을 제조하고, 상기 활물질 조성물을 각각의 집전체에 도포하여 제조할 수 있다. 이때 상기 용매는 N-메틸피롤리돈 등을 사용할 수 있으나, 이에 한정되지 않는다. 이와 같은 전극 제조 방법은 당해 분야에 널리 알려진 내용이므로 본 명세서에서 상세한 설명은 생략하기로 한다. The positive electrode and the negative electrode may be prepared by mixing each active material, a binder, and optionally a conductive material in a solvent to prepare each active material composition, and applying the active material composition to each current collector. In this case, N-methylpyrrolidone may be used as the solvent, but is not limited thereto. Since such an electrode manufacturing method is well known in the art, detailed description thereof will be omitted.
상기 전해액은 유기용매와 리튬염을 포함한다.The electrolyte solution contains an organic solvent and a lithium salt.
상기 유기용매는 전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 한다. 그 구체적인 예로는, 카보네이트계 용매, 에스테르계 용매, 에테르계 용매, 케톤계 용매, 알코올계 용매 및 비양성자성 용매에서 선택될 수 있다. The organic solvent serves as a medium through which ions involved in the electrochemical reaction of the battery can move. Specific examples thereof may be selected from carbonate solvents, ester solvents, ether solvents, ketone solvents, alcohol solvents and aprotic solvents.
상기 카보네이트계 용매의 예로는, 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 메틸프로필 카보네이트(MPC), 에틸프로필 카보네이트(EPC), 에틸메틸 카보네이트(EMC), 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 부틸렌 카보네이트(BC) 등을 들 수 있다. 구체적으로, 사슬형 카보네이트 화합물과 환형 카보네이트 화합물을 혼합하여 사용하는 경우 유전율을 높이는 동시에 점성이 작은 용매로 제조될 수 있다. 이때 환형 카보네이트 화합물 및 사슬형 카보네이트 화합물은 1:1 내지 1:9의 부피비로 혼합하여 사용할 수 있다. Examples of the carbonate solvent include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), ethylmethyl carbonate (EMC), ethylene Carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and the like. Specifically, when a mixture of the chain carbonate compound and the cyclic carbonate compound is used, the dielectric constant may be increased, and the solvent may have a low viscosity. In this case, the cyclic carbonate compound and the chain carbonate compound may be mixed and used in a volume ratio of 1: 1 to 1: 9.
상기 에스테르계 용매의 예로는, 메틸아세테이트, 에틸아세테이트, n-프로필아세테이트, 디메틸아세테이트, 메틸프로피오네이트, 에틸프로피오네이트, γ-부티로락톤, 데카놀라이드(decanolide), 발레로락톤, 메발로노락톤(mevalonolactone), 카프로락톤(caprolactone) 등을 들 수 있다. 상기 에테르계 용매의 예로는, 디부틸에테르, 테트라글라임, 디글라임, 디메톡시에탄, 2-메틸테트라히드로퓨란, 테트라히드로퓨란 등을 들 수 있다. 상기 케톤계 용매로는 시클로헥사논 등을 들 수 있고, 상기 알코올계 용매로는 에틸알코올, 이소프로필 알코올 등을 들 수 있다.Examples of the ester solvents include methyl acetate, ethyl acetate, n-propyl acetate, dimethyl acetate, methyl propionate, ethyl propionate, γ-butyrolactone, decanolide, valerolactone, and meronate. Melononolactone, caprolactone, and the like. Examples of the ether solvent include dibutyl ether, tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran, tetrahydrofuran and the like. Cyclohexanone etc. are mentioned as said ketone solvent, Ethyl alcohol, isopropyl alcohol, etc. are mentioned as said alcohol solvent.
상기 유기용매는 단독으로 또는 2종 이상 혼합하여 사용할 수 있으며, 2종 이상 혼합하여 사용하는 경우의 혼합 비율은 목적하는 전지 성능에 따라 적절하게 조절할 수 있다.The organic solvents may be used alone or in combination of two or more thereof, and the mixing ratio in the case of mixing two or more kinds may be appropriately adjusted according to the desired battery performance.
상기 리튬염은 유기용매에 용해되어, 전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 전기 화학 전지의 작동을 가능하게 하고, 양극과 음극 사이의 리튬 이온의 이동을 촉진시키는 물질이다.The lithium salt is a substance that dissolves in an organic solvent and acts as a source of lithium ions in the battery to enable operation of a basic electrochemical cell and to promote the movement of lithium ions between the positive electrode and the negative electrode.
상기 리튬염의 예로는, LiPF6, LiBF4, LiSbF6, LiAsF6, LiN(SO3C2F5)2, LiN(CF3SO2)2, LiC4F9SO3, LiClO4, LiAlO2, LiAlCl4, LiN(CxF2x + 1SO2)(CyF2y + 1SO2)(x 및 y는 자연수임), LiCl, LiI, LiB(C2O4)2 또는 이들의 조합을 들 수 있다.Examples of the lithium salt include LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN (SO 3 C 2 F 5 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC 4 F 9 SO 3 , LiClO 4 , LiAlO 2 , LiAlCl 4 , LiN (C x F 2x + 1 SO 2 ) (C y F 2y + 1 SO 2 ) (x and y are natural numbers), LiCl, LiI, LiB (C 2 O 4 ) 2 or a combination thereof Can be mentioned.
상기 리튬염의 농도는 0.1M 내지 2.0M 범위 내에서 사용할 수 있다. 리튬염의 농도가 상기 범위 내인 경우, 전해액이 적절한 전도도 및 점도를 가지므로 우수한 전해액 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.The concentration of the lithium salt can be used within the range of 0.1M to 2.0M. When the concentration of the lithium salt is within the above range, since the electrolyte has an appropriate conductivity and viscosity, it can exhibit excellent electrolyte performance, and lithium ions can move effectively.
이하, 제조예, 실시예, 비교예 및 실험예를 기술함으로써, 본 발명을 보다 상세히 설명한다. 다만, 하기의 제조예, 실시예, 비교예 및 실험예는 본 발명의 일 예시에 불과하며, 본 발명의 내용이 이에 한정되는 것으로 해석되어서는 아니된다.Hereinafter, the present invention will be described in more detail by describing Preparation Examples, Examples, Comparative Examples, and Experimental Examples. However, the following Preparation Examples, Examples, Comparative Examples and Experimental Examples are merely examples of the present invention, and the contents of the present invention should not be construed as being limited thereto.
제조예Production Example 1 : 고분자 수지 1의 제조 1: Preparation of Polymer Resin 1
페놀프탈레인 (100 g, 314 mmol)에 28% 암모니아 수용액을 첨가하여 제조된 용액을 실온에서 20일 동안 교반하였다. 상기 용액이 거의 투명해졌을 때, 진한 염산과 얼음에 상기 용액을 부어 반응을 종료하였다. 결과물을 중성이 되도록 증류수로 세척 후, 에탄올과 물을 이용하여 재결정하여 화학식 3-1의 화합물을 합성하였다. 상기 합성된 화학식 3-1의 화합물 (44.4 g, 140 mmol)과 트리에틸아민(triethylamine) (35.8 g, 350 mmol)을 메틸렌클로라이드 (methylenechloride)(210mL)에 첨가한 후, 0 ℃로 냉각시켰다. 28.1 g의 페닐포스포닉 디클로라이드(벤젠 포스포러스 디클로라이드) (phenylphosphonic dichloride(benzene phosphorus oxydichloride, BPOD))를 메틸렌클로라이드(15 mL)에 녹인 용액을 천천히 1시간 동안 첨가한 후, 실온에서 4시간 동안 반응하였다. 반응이 끝난 용액을 희석한 HCl용액과 증류수로 여러차례 세척하였다. 세척된 고분자를 80 ℃ 진공오븐에서 48시간 동안 건조하여, 중량평균분자량이 125,000 g/mol이고, 유리 전이온도가 248 ℃인 화학식 6의 반복 단위를 갖는 고분자 수지 1을 수득하였다.The solution prepared by adding 28% aqueous ammonia solution to phenolphthalein (100 g, 314 mmol) was stirred at room temperature for 20 days. When the solution became almost clear, the solution was poured into concentrated hydrochloric acid and ice to terminate the reaction. The resultant was washed with distilled water to be neutral, and then recrystallized with ethanol and water to synthesize a compound of formula 3-1. The synthesized compound of Formula 3-1 (44.4 g, 140 mmol) and triethylamine (35.8 g, 350 mmol) were added to methylene chloride (210 mL), and then cooled to 0 ° C. A solution of 28.1 g of phenylphosphonic dichloride (benzene phosphorus oxydichloride, BPOD) in methylene chloride (15 mL) was added slowly for 1 hour, followed by 4 hours at room temperature. Reacted. The reaction solution was washed several times with diluted HCl solution and distilled water. The washed polymer was dried in a vacuum oven at 80 ° C. for 48 hours to obtain polymer resin 1 having a repeating unit of formula 6 having a weight average molecular weight of 125,000 g / mol and a glass transition temperature of 248 ° C.
[화학식 3-1][Formula 3-1]
Figure PCTKR2015008656-appb-I000039
Figure PCTKR2015008656-appb-I000039
[화학식 6][Formula 6]
Figure PCTKR2015008656-appb-I000040
Figure PCTKR2015008656-appb-I000040
제조예Production Example 2 : 고분자 수지 2의 제조 2: Preparation of Polymer Resin 2
페놀프탈레인 (100 g, 314 mmol)에 40% 메틸아민(methylamine) 수용액을 첨가하여 제조된 용액을 30℃에서 24시간 동안 반응시켰다. 이 후, 상기 용액을 진한염산과 얼음에 부어 반응을 종료하였다. 결과물을 필터한 후, 증류수로 세척 후, 에탄올과 물을 이용하여 재결정하여 화학식 3-2의 화합물을 합성하였다. 상기 합성된 화학식 3-2의 화합물(46.4 g, 140 mmol)을 상기 제조예 1에서와 동일한 조건으로 반응을 진행하여 중량평균분자량이 138,000 g/mol이고, 유리 전이온도가 210 ℃인 화학식 7의 반복 단위를 갖는 고분자 수지 2를 수득하였다.A solution prepared by adding 40% aqueous methylamine solution to phenolphthalein (100 g, 314 mmol) was reacted at 30 ° C. for 24 hours. Thereafter, the solution was poured into concentrated hydrochloric acid and ice to terminate the reaction. The resultant was filtered, washed with distilled water, and recrystallized with ethanol and water to synthesize a compound of Chemical Formula 3-2. The synthesized compound of Formula 3-2 (46.4 g, 140 mmol) was reacted under the same conditions as in Preparation Example 1, where the weight average molecular weight was 138,000 g / mol and the glass transition temperature was 210 ° C. Polymer resin 2 having repeating units was obtained.
[화학식 3-2][Formula 3-2]
Figure PCTKR2015008656-appb-I000041
Figure PCTKR2015008656-appb-I000041
[화학식 7][Formula 7]
Figure PCTKR2015008656-appb-I000042
Figure PCTKR2015008656-appb-I000042
제조예Production Example 3 : 고분자 수지 3의 제조 3: Preparation of Polymer Resin 3
페놀프탈레인 (100 g, 314 mmol)에 아닐린(aniline)(300 mL, 3287 mmol)과 아닐린 하이드로클로라이드(aniline hydrochloride)(100 g, 965 mmol)를 첨가하여 제도된 용액을 185 ℃에서 5시간 동안 반응 시켰다. 이 후, 온도를 내리고, 상기 용액을 진한염산과 얼음에 부어 반응을 종료하였다. 결과물을 필터한 후. 증류수로 세척 후, 에탄올을 이용하여 재결정하여, 화학식 3-3의 화합물을 합성하였다. 상기 합성된 화학식 3-3의 화합물(55.1 g, 140 mmol)을 상기 제조예 1에서와 동일한 조건으로 반응을 진행하여 중량평균분자량이 148,000 g/mol이고, 유리 전이온도가 202 ℃인 화학식 8의 반복 단위를 갖는 고분자 수지 3을 수득하였다.Aniline (300 mL, 3287 mmol) and aniline hydrochloride (100 g, 965 mmol) were added to phenolphthalein (100 g, 314 mmol), and the drawn solution was reacted at 185 ° C. for 5 hours. . Thereafter, the temperature was lowered, and the solution was poured into concentrated hydrochloric acid and ice to terminate the reaction. After filtering the result. After washing with distilled water, and recrystallized with ethanol to synthesize a compound of formula 3-3. The synthesized compound of Chemical Formula 3-3 (55.1 g, 140 mmol) was reacted under the same conditions as in Preparation Example 1 to obtain a weight average molecular weight of 148,000 g / mol and a glass transition temperature of 202 ° C. Polymer resin 3 having repeating units was obtained.
[화학식 3-3][Formula 3-3]
Figure PCTKR2015008656-appb-I000043
Figure PCTKR2015008656-appb-I000043
[화학식 8][Formula 8]
Figure PCTKR2015008656-appb-I000044
Figure PCTKR2015008656-appb-I000044
실시예Example 1 : 분리막의 제조 (고분자 수지 1+ 무기입자 함유 분리막) 1: Preparation of Separator (Polymer Resin 1+ Inorganic Particle Separation Membrane)
상기 제조예 1에서 제조된 고분자 수지 1을 10 중량%로 테트라하이드로퓨란(THF)에 용해시켜 폴리머 용액을 제조하였다. 또한 Al2O3(일본경금속社, LS235A)를 아세톤(대정화금社)에 25중량%로 첨가하고, 비즈밀을 이용해 25℃에서 3시간 동안 밀링하여 분산시켜 무기 분산액을 제조하였다. 상기 제조된 고분자 수지 용액 및 무기 분산액과, N,N-디메틸아세트아미드(DMAc) 및 THF의 혼합 용매가 각각 2.5:5:2.5의 중량비가 되도록 혼합하고, 파워믹서로 25℃에서 1시간 교반하여 다공성 내열층 조성물을 제조하였다. The polymer resin 1 prepared in Preparation Example 1 was dissolved in tetrahydrofuran (THF) at 10% by weight to prepare a polymer solution. In addition, Al 2 O 3 (Japanese Light Metal Co., Ltd., LS235A) was added to acetone (Cater Co., Ltd.) at 25% by weight, and milled at 25 ° C. for 3 hours using a bead mill to prepare an inorganic dispersion. The polymer resin solution and the inorganic dispersion prepared above were mixed with a mixed solvent of N, N-dimethylacetamide (DMAc) and THF in a weight ratio of 2.5: 5: 2.5, respectively, and stirred at a power mixer at 25 ° C. for 1 hour. A porous heat resistant layer composition was prepared.
상기 제조된 다공성 내열층 조성물을 두께 9㎛의 폴리에틸렌 단일막 다공성 기재의 양면에 딥 코팅 방식으로 각각 1.5㎛의 두께로 코팅한 다음, 이를 110℃에서 1분 동안 건조하여 분리막을 제조하였다. The prepared porous heat-resistant layer composition was coated on both sides of a polyethylene single membrane porous substrate having a thickness of 9 μm with a thickness of 1.5 μm in a dip coating manner, and then dried at 110 ° C. for 1 minute to prepare a separator.
실시예Example 2 : 분리막의 제조 (고분자 수지 2+ 무기입자 함유 분리막) 2: Preparation of Separator (Polymer Resin 2+ Inorganic Particle-Containing Separator)
상기 실시예 1에서 제조예 1의 고분자 수지 1 대신 제조예 2의 고분자 수지 2를 사용한 것으로 제외하고는 동일하게 실시하여 총 두께 12㎛의 분리막을 제조하였다.Except for using the polymer resin 2 of Preparation Example 2 instead of the Polymer Resin 1 of Preparation Example 1 in Example 1 to prepare a separator having a total thickness of 12㎛.
실시예Example 3: 3: 분리막의 제조 (고분자 수지 3+ 무기입자 함유 분리막)Preparation of Separation Membrane
상기 실시예 1에서 제조예 1의 고분자 수지 1 대신 제조예 3의 고분자 수지 3를 사용한 것으로 제외하고는 동일하게 실시하여 총 두께 12㎛의 분리막을 제조하였다.Except for using the polymer resin 3 of Preparation Example 3 instead of the polymer resin 1 of Preparation Example 1 in Example 1 to prepare a separator having a total thickness of 12㎛.
비교예Comparative example 1 : 분리막의 제조 1: Preparation of Separator
상기 제조예 1에서 제조된 고분자 수지 1 대신 폴리(부틸아크릴레이트-co-메틸메타크릴레이트-co-비닐아세테이트)를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 분리막을 제조하였다.A separator was manufactured in the same manner as in Example 1, except that poly (butylacrylate-co-methylmethacrylate-co-vinylacetate) was used instead of the polymer resin 1 prepared in Preparation Example 1.
실험예Experimental Example
제조예 1 내지 3의 고분자 수지와 비교예 1의 폴리(부틸아크릴레이트-co-메틸메타크릴레이트-co-비닐아세테이트)에 대해 중량평균분자량(Mw) 및 유리전이온도(Tg)와 난연도를 각각 아래 방법으로 측정하여, 그 결과를 하기 표 1에 나타내었다. The weight average molecular weight (Mw), glass transition temperature (Tg) and flame retardance of the polymer resins of Preparation Examples 1 to 3 and poly (butyl acrylate-co-methylmethacrylate-co-vinylacetate) of Comparative Example 1 Each measured by the following method, and the results are shown in Table 1 below.
(1) 중량평균분자량(Mw): 겔 투과 크로마토그래피(GPC)로 측정한 폴리스티렌 환산 수치로 나타내었다.(1) Weight average molecular weight (Mw): It was shown by the polystyrene conversion value measured by the gel permeation chromatography (GPC).
(2) 유리전이온도(Tg): 시차주사열량측정법(DSC)으로 측정하였다.(2) Glass transition temperature (Tg): Measured by differential scanning calorimetry (DSC).
(3) 난연도(1/8"): UL94 VB 난연 규정에 따라 측정하였다.(3) Flame retardancy (1/8 "): Measured according to UL94 VB flame retardant regulations.
분리막바인더Membrane Binder Mw(g/mol)Mw (g / mol) Tg(℃)Tg (℃) 고분자 수지의 난연도Flame retardancy of polymer resin
제조예 1의 고분자 수지 1Polymer resin 1 of Preparation Example 1 125,000125,000 248248 V0V0
제조예 2의 고분자 수지 2Polymer resin 2 of Preparation Example 2 138,000138,000 210210 V0V0
제조예 3의 고분자 수지 3Polymer resin 3 of Preparation Example 3 148,000148,000 202202 V0V0
폴리(부틸아크릴레이트-co-메틸메타크릴레이트-co-비닐아세테이트)Poly (butyl acrylate-co-methylmethacrylate-co-vinylacetate) 450,000450,000 3535 V2V2
상기 실시예 1 내지 3 및 비교예 1에서 제조된 분리막에 대해 아래에 개시된 측정 방법으로 난연도, 열수축률, 및 통기도를 측정하고 그 결과를 표 2에 나타내었다.Flame retardance, heat shrinkage, and air permeability of the separators prepared in Examples 1 to 3 and Comparative Example 1 were measured by the methods described below, and the results are shown in Table 2.
실험예Experimental Example 1 : 난연성 측정 1: flame retardancy measurement
상기 실시예 1 내지 3 및 비교예 1에서 제조한 분리막에 대하여 하기와 같은 방법으로 시편을 제조하여 UL94 VB 난연 규정에 따라 난연성을 평가하였다. With respect to the separator prepared in Examples 1 to 3 and Comparative Example 1 to prepare a specimen in the following manner to evaluate the flame retardancy according to the UL94 VB flame retardant regulations.
실시예 1 내지 3 및 비교예 1에서 제조한 10cm X 50cm의 분리막을 접어서 10cm X 2cm로 만든 후, 상하부분을 고정하여 시편을 제조하였다. UL94 VB에 의거하여 난연 등급은 시편 연소 시간 기준으로 측정하였다 After folding the separation membrane of 10cm X 50cm prepared in Examples 1 to 3 and Comparative Example 1 to make 10cm X 2cm, a specimen was prepared by fixing the upper and lower portions. Flame retardant ratings were measured on the basis of specimen burn time in accordance with UL94 VB.
실험예Experimental Example 2 :  2 : 열수축률Heat shrinkage 측정 Measure
상기 실시예 1 내지 3, 및 비교예 1에서 제조된 분리막의 열수축률을 측정하기 위하여 하기의 방법을 수행하였다. 상기 실시예 및 비교예에 따라 제조된 분리막 각각을 가로(MD) 5 cm × 세로(TD) 5 cm로 제단하여 총 7개의 시료를 제작하였다. 상기 각 시료를 200 ℃의 챔버에서 각각 30분 동안 보관한 다음, 각 시료의 MD 방향 및 TD 방향의 수축 정도를 측정하여 열수축률을 계산하였다. In order to measure the thermal shrinkage of the separator prepared in Examples 1 to 3, and Comparative Example 1 was carried out the following method. A total of seven samples were prepared by cutting each of the separators prepared according to the Examples and Comparative Examples at a width of 5 cm and a length of 5 cm. Each sample was stored in a chamber at 200 ° C. for 30 minutes, and then heat shrinkage was calculated by measuring the shrinkage in the MD and TD directions of each sample.
실험예 3Experimental Example 3 : 통기도 측정 Breathability measurement
상기 실시예 1 내지 3, 및 비교예 1에서 제조된 분리막의 통기도를 EG01-55-1MR (Asahi Seiko 사)를 사용하여 100 cc의 공기가 분리막을 통과하는 데에 걸리는 시간을 측정하는 방법으로 측정하였다.The air permeability of the separator prepared in Examples 1 to 3 and Comparative Example 1 was measured by EG01-55-1MR (Asahi Seiko) to measure the time taken for 100 cc of air to pass through the separator. It was.
분리막의 난연도Flame Retardant of Membrane 통기도(sec/100cc)Breathability (sec / 100cc) 수축률(%)Shrinkage (%)
실시예 1Example 1 V0V0 220220 1미만Less than 1
실시예 2Example 2 V0V0 240240 1미만Less than 1
실시예 3Example 3 V0V0 250250 1미만Less than 1
비교예 1Comparative Example 1 V2V2 255255 5555
상기 표 2을 참조하면, 포스포네이트를 함유하는 제1 성분과 질소를 함유하는 제2 성분을 포함하는 고분자 수지를 이용하여 분리막을 제조하는 경우, 난연성이 V0으로 뛰어나다. 또한 열수축률이 1% 미만이며 통기도는 250 sec/100cc 이하인 것으로 확인되었다.Referring to Table 2, when the separation membrane is manufactured using a polymer resin including a first component containing phosphonate and a second component containing nitrogen, the flame retardancy is excellent as V0. In addition, the heat shrinkage was less than 1% and the ventilation was confirmed to be less than 250 sec / 100cc.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시예일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.Having described the specific parts of the present invention in detail, it will be apparent to those skilled in the art that such specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. will be. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (14)

  1. 다공성 기재; 및 Porous substrates; And
    상기 다공성 기재의 일면 혹은 양면에 형성된 다공성 내열층을 포함하고,It includes a porous heat-resistant layer formed on one side or both sides of the porous substrate,
    상기 다공성 내열층은 제1 성분과 제2 성분을 함유하는 반복 단위를 포함하는 고분자 수지를 포함하며,The porous heat resistant layer includes a polymer resin including a repeating unit containing a first component and a second component,
    상기 제1 성분은 포스페이트 혹은 포스포네이트를 함유하고,The first component contains phosphate or phosphonate,
    상기 제2 성분은 질소를 함유하는 분리막.The second component is a separator containing nitrogen.
  2. 청구항 1에 있어서, 상기 제1 성분은 화학식 1 또는 화학식 2를 포함하는 분리막.The separation membrane of claim 1, wherein the first component comprises Formula 1 or Formula 2. 8.
    [화학식 1][Formula 1]
    Figure PCTKR2015008656-appb-I000045
    Figure PCTKR2015008656-appb-I000045
    [화학식 2][Formula 2]
    Figure PCTKR2015008656-appb-I000046
    Figure PCTKR2015008656-appb-I000046
    상기 화학식 1 및 화학식 2에서, R1 및 R2는 각각 독립적으로, 수소이거나; 치환되거나 비치환된, C1-6의 알킬, C2-6의 알케닐, C2-6의 알키닐, C3-20의 시클로알킬, 및 C6-30의 아릴로 이루어진 군에서 선택된다.In Formula 1 and Formula 2, R 1 and R 2 are each independently hydrogen; Substituted or unsubstituted, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-20 cycloalkyl, and C 6-30 aryl .
  3. 청구항 1에 있어서, 상기 제2 성분은 이미드 또는 아미드기를 포함하는 분리막.The separation membrane of claim 1, wherein the second component comprises an imide or an amide group.
  4. 청구항 3에 있어서, 상기 이미드는 프탈이미드를 포함하는 분리막.The separator of claim 3, wherein the imide comprises phthalimide.
  5. 청구항 1에 있어서, 상기 제2 성분은 화학식 3을 포함하는 분리막.The separation membrane of claim 1, wherein the second component comprises Formula 3. 3.
    [화학식 3][Formula 3]
    Figure PCTKR2015008656-appb-I000047
    Figure PCTKR2015008656-appb-I000047
    상기 화학식 3에서, R3은 수소이거나; 치환 또는 비치환된, C1-6의 알킬, C2-6의 알케닐, C2-6의 알키닐, C3-10의 시클로알킬, 및 C6-30의 아릴로 이루어진 군에서 선택된다.In Formula 3, R 3 is hydrogen; Substituted or unsubstituted, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-10 cycloalkyl, and C 6-30 aryl .
  6. 청구항 1에 있어서, 상기 반복 단위는 화학식 4 및 화학식 5 중 어느 하나의 반복 단위인 분리막. The separation membrane of claim 1, wherein the repeating unit is any one of Formulas 4 and 5.
    [화학식 4][Formula 4]
    Figure PCTKR2015008656-appb-I000048
    Figure PCTKR2015008656-appb-I000048
    [화학식 5][Formula 5]
    Figure PCTKR2015008656-appb-I000049
    Figure PCTKR2015008656-appb-I000049
    상기 화학식 4 및 화학식 5에서, R1 내지 R3은 각각 독립적으로, 수소이거나; 치환되거나 비치환된, C1-6의 알킬, C2-6의 알케닐, C2-6의 알키닐, C3-20의 시클로알킬, 및 C6-30의 아릴로 이루어진 군에서 선택된다.In Formula 4 and Formula 5, R 1 to R 3 are each independently hydrogen; Substituted or unsubstituted, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-20 cycloalkyl, and C 6-30 aryl .
  7. 청구항 1에 있어서, 상기 고분자 수지는 유리전이온도가 180℃ 내지 300℃인 분리막.The separation membrane of claim 1, wherein the polymer resin has a glass transition temperature of 180 ° C to 300 ° C.
  8. 청구항 1에 있어서, 상기 다공성 내열층은 폴리비닐리덴 플루오라이드계 폴리머를 추가로 포함하는 분리막.The separator of claim 1, wherein the porous heat-resistant layer further comprises a polyvinylidene fluoride polymer.
  9. 청구항 1에 있어서, 상기 다공성 내열층은 무기 입자를 추가로 함유하는 분리막.The separator of claim 1, wherein the porous heat resistant layer further contains inorganic particles.
  10. 청구항 9에 있어서, 상기 무기 입자는 Al2O3, SiO2, B2O3, Ga2O3, TiO2 및 SnO2로 이루어진 군에서 선택되는 1 종 이상을 포함하는 분리막.The separation membrane of claim 9, wherein the inorganic particles include one or more selected from the group consisting of Al 2 O 3 , SiO 2 , B 2 O 3 , Ga 2 O 3 , TiO 2, and SnO 2 .
  11. 청구항 10에 있어서, 상기 무기 입자의 함량은 상기 다공성 내열층 전체 고형분 총 중량에 대해 70 중량% 내지 98 중량%인 분리막.The separation membrane of claim 10, wherein the content of the inorganic particles is 70 wt% to 98 wt% with respect to the total weight of solids of the porous heat-resistant layer.
  12. 포스페이트 혹은 포스포네이트를 함유하는 제1 성분과 질소를 함유하는 제2 성분을 함유하는 반복 단위를 포함하는 고분자 수지 및 용매를 함유하는 다공성 내열층 조성물을 제조하고,Preparing a porous heat-resistant layer composition containing a polymer resin and a solvent comprising a repeating unit containing a first component containing phosphate or phosphonate and a second component containing nitrogen,
    다공성 기재의 일면 혹은 양면에 상기 다공성 내열층 조성물로 다공성 내열층을 형성하는 것을 포함하는 분리막의 제조방법.A method of manufacturing a separator comprising forming a porous heat resistant layer with the porous heat resistant layer composition on one or both surfaces of the porous substrate.
  13. 양극, 음극, 분리막 및 전해질을 포함하는 전기 화학 전지로서, 상기 분리막은 제1항 내지 제11항 중 어느 하나의 항에 기재된 분리막인, 전기 화학 전지.An electrochemical cell comprising a positive electrode, a negative electrode, a separator, and an electrolyte, wherein the separator is the separator according to any one of claims 1 to 11.
  14. 청구항 13에 있어서, 상기 전기 화학 전지는 리튬 이차 전지인, 전기 화학 전지.The electrochemical cell of claim 13, wherein the electrochemical cell is a lithium secondary battery.
PCT/KR2015/008656 2014-08-25 2015-08-19 Separator membrane having high heat resistance and flame retardancy, and electrochemical battery WO2016032166A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017508533A JP6657185B2 (en) 2014-08-25 2015-08-19 High heat resistant and flame retardant separation membrane and electrochemical cell
CN201580046070.3A CN107004806B (en) 2014-08-25 2015-08-19 High heat and flame resistant separator and electrochemical cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140110953A KR101709695B1 (en) 2014-08-25 2014-08-25 Heat-resistant, nonflammable, coated separator and battery
KR10-2014-0110953 2014-08-25

Publications (1)

Publication Number Publication Date
WO2016032166A1 true WO2016032166A1 (en) 2016-03-03

Family

ID=55400010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008656 WO2016032166A1 (en) 2014-08-25 2015-08-19 Separator membrane having high heat resistance and flame retardancy, and electrochemical battery

Country Status (4)

Country Link
JP (1) JP6657185B2 (en)
KR (1) KR101709695B1 (en)
CN (1) CN107004806B (en)
WO (1) WO2016032166A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101937320B1 (en) * 2016-06-23 2019-01-11 삼성에스디아이 주식회사 Separator for rechargeable battery and rechargeable battery including the same
US20200243827A1 (en) * 2017-11-29 2020-07-30 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery
US10487077B1 (en) 2018-06-14 2019-11-26 Sabic Global Technologies B.V. Bis(benzoxazinyl)phthalimidine and associated curable composition and composite
KR20210051064A (en) * 2019-10-29 2021-05-10 주식회사 엘지화학 Separator Comprising Gas Generant and Manufacturing Method Thereof
CN112234259B (en) * 2020-01-06 2022-04-12 蜂巢能源科技有限公司 Battery cell manufacturing method and lithium ion battery
CN111916637B (en) * 2020-07-31 2022-06-17 江苏厚生新能源科技有限公司 Polyolefin microporous membrane with flame-retardant coating, preparation method thereof and lithium battery
KR20220021857A (en) 2020-08-14 2022-02-22 주식회사 유뱃 Separator for Electrochemical Device
CN112331856B (en) * 2020-11-03 2022-06-07 华东理工大学华昌聚合物有限公司 Lithium ion battery electrode binder and preparation method and application thereof
CN113991172B (en) * 2021-09-30 2024-01-30 中国地质大学(武汉) Linear single ion conductive polymer electrolyte PECB, preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050076A (en) * 2008-07-03 2010-03-04 Hitachi Chem Co Ltd Separator for electrochemical element, lithium battery or lithium ion battery using this, and manufacturing method of separator for electrochemical element
JP2012204203A (en) * 2011-03-25 2012-10-22 Mitsui Chemicals Inc Binder resin composition for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
KR20140018126A (en) * 2012-08-01 2014-02-12 제일모직주식회사 Separator containing coating layer and battery using the separator
KR20140070199A (en) * 2012-11-30 2014-06-10 주식회사 엘지화학 Porous separator and preparation method thereof
JP2014116078A (en) * 2012-12-06 2014-06-26 Shin Kobe Electric Mach Co Ltd Lithium ion secondary battery, secondary battery system including the same, nonaqueous electrolytic solution for lithium ion secondary battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4092516B2 (en) * 1998-04-01 2008-05-28 日産化学工業株式会社 Heat-resistant phosphorus-containing polyamide copolymer
KR100775310B1 (en) 2004-12-22 2007-11-08 주식회사 엘지화학 Organic/inorganic composite microporous membrane and electrochemical device prepared thereby
CN103917370A (en) * 2011-09-22 2014-07-09 三菱树脂株式会社 Method for producing laminated porous film, and laminated porous film
CN102643421B (en) * 2012-04-23 2013-09-18 天津师范大学 Novel polymer containing phosphonate group and preparation method and application of novel polymer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050076A (en) * 2008-07-03 2010-03-04 Hitachi Chem Co Ltd Separator for electrochemical element, lithium battery or lithium ion battery using this, and manufacturing method of separator for electrochemical element
JP2012204203A (en) * 2011-03-25 2012-10-22 Mitsui Chemicals Inc Binder resin composition for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
KR20140018126A (en) * 2012-08-01 2014-02-12 제일모직주식회사 Separator containing coating layer and battery using the separator
KR20140070199A (en) * 2012-11-30 2014-06-10 주식회사 엘지화학 Porous separator and preparation method thereof
JP2014116078A (en) * 2012-12-06 2014-06-26 Shin Kobe Electric Mach Co Ltd Lithium ion secondary battery, secondary battery system including the same, nonaqueous electrolytic solution for lithium ion secondary battery

Also Published As

Publication number Publication date
KR101709695B1 (en) 2017-02-24
CN107004806A (en) 2017-08-01
KR20160025079A (en) 2016-03-08
JP6657185B2 (en) 2020-03-04
CN107004806B (en) 2020-03-20
JP2017529657A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
WO2016032166A1 (en) Separator membrane having high heat resistance and flame retardancy, and electrochemical battery
WO2019088672A1 (en) Anode active material for electrochemical device, anode comprising same anode active material, and electrochemical device comprising same anode
WO2017217596A1 (en) Composite electrolyte for lithium metal battery, method for manufacturing same, and lithium metal battery comprising same
WO2015076611A1 (en) Separator comprising coating layer, and battery using same
WO2018004277A1 (en) Separator for secondary battery and lithium secondary battery comprising same
WO2016175515A1 (en) Highly heat resistant and flame retardant separator, and electrochemical cell
WO2017188537A1 (en) Separator comprising porous adhesive layer, and lithium secondary battery using same
WO2015065102A1 (en) Lithium secondary battery
WO2020130270A1 (en) Separator for lithium secondary battery, and lithium secondary battery comprising same
WO2018016737A1 (en) Lithium secondary battery comprising cathode active material for synthesizing lithium cobalt oxide, and manufacturing method therefor
WO2019074306A2 (en) Positive electrode active material, method for preparing same, and lithium secondary battery comprising same
WO2020111432A1 (en) Heat resistant layer composition, lithium secondary battery separator comprising heat resistant layer formed therefrom, and lithium secondary battery comprising same
WO2020138627A1 (en) Separator for lithium secondary battery, and lithium secondary battery comprising same
WO2018164402A1 (en) Electrode assembly and lithium battery comprising same
WO2019078688A2 (en) Lithium secondary battery positive electrode active material, method for preparing same, and lithium secondary battery positive electrode and lithium secondary battery comprising same
WO2017209383A1 (en) Carbon-based fiber sheet and lithium-sulfur battery including same
WO2020067830A1 (en) Positive electrode active material for secondary battery, method for producing same, and lithium secondary battery comprising same
WO2020149681A1 (en) Anode and secondary battery comprising anode
WO2019066129A2 (en) Composite anode active material, manufacturing method therefor, and lithium secondary battery having anode including same
WO2019078506A2 (en) Method for preparing cathode active material for lithium secondary battery, cathode active material prepared thereby, cathode comprising same for lithium secondary battery, and lithium secondary battery
WO2015076574A1 (en) Separator and secondary battery using same
WO2018062883A2 (en) Anode for lithium secondary battery comprising mesh-shaped insulating layer, and lithium secondary battery comprising same
WO2017003077A1 (en) Highly heat-resistant separation membrane and lithium secondary battery
WO2019066585A1 (en) Method for preparing cathode active material for secondary battery, cathode active material prepared thereby, and lithium secondary battery comprising same
WO2022045858A1 (en) Electrochemical device separator and electrochemical device comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836378

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017508533

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15836378

Country of ref document: EP

Kind code of ref document: A1