WO2023058654A1 - Three-dimensional knit structure and heat exchanger, filter member, and electrode - Google Patents

Three-dimensional knit structure and heat exchanger, filter member, and electrode Download PDF

Info

Publication number
WO2023058654A1
WO2023058654A1 PCT/JP2022/037137 JP2022037137W WO2023058654A1 WO 2023058654 A1 WO2023058654 A1 WO 2023058654A1 JP 2022037137 W JP2022037137 W JP 2022037137W WO 2023058654 A1 WO2023058654 A1 WO 2023058654A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal fibers
dimensional knitted
layer
dimensional
knitted fabric
Prior art date
Application number
PCT/JP2022/037137
Other languages
French (fr)
Japanese (ja)
Inventor
俊彦 幸
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Publication of WO2023058654A1 publication Critical patent/WO2023058654A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/14Other fabrics or articles characterised primarily by the use of particular thread materials
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/22Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes specially adapted for knitting goods of particular configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element

Definitions

  • the present invention relates to a three-dimensional knitted structure made by knitting metal fibers, and a heat exchanger, a filter member, and an electrode having the three-dimensional knitted structure.
  • Patent Literature 1 proposes a heat exchange member in which a metal porous layer is formed on the surface of a metal tube.
  • Patent Document 2 proposes a filter member made of a metal porous sintered body having a three-dimensional network structure.
  • Patent Document 3 discloses a porous aluminum sintered body having a structure in which aluminum fibers are sintered.
  • Patent Document 4 discloses a water electrolysis apparatus using a sintered body of titanium fibers as an electrode.
  • Patent Document 5 proposes a metal wire structure in which metal wires are woven.
  • This metal wire structure has a single-layer structure in the shape of a flat plate, and by stacking a plurality of these and then sintering them, it has a three-dimensional structure and can be used as the above-mentioned heat exchanger, filter member, electrode, etc. can be considered.
  • a heat exhaust clothing that covers the humanoid robot and a blower are provided, and a ventilation path is provided between the outer shell of the humanoid robot and the heat exhaust clothing to cool the humanoid robot. Cooling devices have been proposed that do.
  • JP 2014-095529 A Japanese Patent Application Laid-Open No. 2004-300526 JP 2016-194117 A JP 2018-156798 A JP-A-05-261146 JP 2020-075350 A
  • the metal porous bodies of Patent Documents 1 to 4 and the metal wire structure of Patent Document 5 are arranged as heat dissipation fins in the air blowing path. can be considered.
  • the metal porous bodies and metal wire structures described above since there are portions fixed by sintering, when they are arranged in a portion having a movable portion such as the outer shell of a humanoid robot, There is a possibility that the metal porous body and the metal wire structure will not expand and contract following the movement of the movable part, and the radiation fins will buffer each other and be plastically deformed. It should be noted that the above-described problems may also occur in heat exchangers, filter members, electrodes, etc., which are disposed at locations having movable parts.
  • the present invention has been made against the background of the above circumstances, and even if it is arranged in a place having a movable part, it expands and contracts following the movement of the movable part and suppresses plastic deformation. It is an object of the present invention to provide a three-dimensional knitted structure capable of achieving the above, and a heat exchanger, a filter member, and an electrode provided with this three-dimensional knitted structure.
  • a three-dimensional knitted structure is a three-dimensional knitted structure in which a plurality of single-layer knitted fabrics are laminated, is a structure in which metal fibers are woven in a loop shape, and is characterized in that the layers of the laminated single-layer knitted fabric are connected by interlayer metal fibers.
  • single-layer knitted fabrics having a structure in which metal fibers are knitted in a loop shape are laminated, and interlayer metal fibers connect the layers of the stacked single-layered knitted fabrics. Since the structure is such that the metal fibers are not fixed by sintering or the like, they can expand and contract following the movement of the movable part, and plastic deformation can be suppressed. In addition, since it has a structure in which metal fibers are woven, it is possible to ensure thermal conductivity and electrical conductivity in the same manner as the metal porous body. Therefore, it can be stably used as various members such as heat exchangers (radiating fins), filter members, and electrodes.
  • the interlayer metal fibers are part of the metal fibers constituting the single-layer knitted fabric, and the interlayer metal fibers have a loop shape. It is preferable to connect a plurality of the single-layer knitted fabrics by using a single-layer knitted fabric. In this case, part of the metal fibers constituting the single-layer knitted fabric are used as the interlayer metal fibers to connect a plurality of the single-layered knitted fabrics, so that thermal conductivity and electrical conductivity are further improved.
  • the metal fibers are made of copper or a copper alloy, aluminum or an aluminum alloy, titanium or a titanium alloy.
  • the metal fiber is made of any one of copper or copper alloy, aluminum or aluminum alloy, titanium or titanium alloy, so that thermal conductivity and electrical conductivity can be secured, and the heat exchanger (heat dissipation It can be used more stably as various members such as fins, filter members, and electrodes.
  • the porosity is within the range of 85% or more and 99% or less.
  • the fluid can be smoothly circulated inside the three-dimensional knitted structure, and the contact area between the metal fibers and the fluid can be ensured. Therefore, it can be used more stably as various members such as heat exchangers (radiating fins), filter members, and electrodes.
  • the porosity is the porosity with respect to the three-dimensional knitted structure.
  • a heat exchanger includes the three-dimensional knitted structure described above. Since the heat exchanger having this configuration includes the three-dimensional knitted structure described above, it can be used by arranging it in a location having a movable portion. Moreover, heat exchange efficiency can be improved by the contact between the fluid flowing through the inside of the three-dimensional knitted structure and the metal fibers.
  • a filter member according to an aspect of the present invention includes the three-dimensional knitted structure described above. Since the filter member having this configuration includes the three-dimensional knitted fabric structure described above, it can be used by arranging it in a location having a movable portion. Further, by circulating the fluid inside the three-dimensional knitted structure, substances in the fluid can be filtered.
  • An electrode according to an aspect of the present invention is characterized by including the three-dimensional knitted structure described above. Since the electrode having this configuration includes the three-dimensional knitted structure described above, it can be used by arranging it at a location having a movable portion. Further, the reaction can be promoted by the contact between the fluid flowing inside the three-dimensional knitted structure and the metal fibers.
  • a three-dimensional knitted structure capable of expanding and contracting following the movement of the movable portion and suppressing plastic deformation even when disposed at a location having the movable portion; , a heat exchanger, a filter member, and an electrode provided with this three-dimensional knitted structure can be provided.
  • FIG. 1 is a schematic explanatory diagram of a three-dimensional knitted structure that is an embodiment of the present invention, showing a normal state
  • FIG. 1 is a schematic explanatory diagram of a three-dimensional knitted structure that is an embodiment of the present invention, showing a contracted state
  • FIG. 1 is a schematic explanatory diagram of a three-dimensional knitted structure that is an embodiment of the present invention, showing a stretched state
  • FIG. 1 is an enlarged explanatory view of a single-layer knitted fabric of a three-dimensional knitted structure that is an embodiment of the present invention
  • FIG. FIG. 2 is an explanatory diagram of a method for manufacturing a three-dimensional knitted structure that is an embodiment of the present invention
  • FIG. 1 is an explanatory diagram of a heat exchanger (radiating fin) provided with a three-dimensional knitted structure that is an embodiment of the present invention
  • 1 is an explanatory diagram of a filter member provided with a three-dimensional knitted structure that is an embodiment of the present invention
  • FIG. 1 is an explanatory diagram of an electrode provided with a three-dimensional knitted structure that is an embodiment of the present invention
  • the three-dimensional knitted structure 10 of this embodiment is used as, for example, a heat exchanger (radiating fin), a filter member, and an electrode.
  • a three-dimensional knitted fabric structure 10 is formed by weaving metal fibers 11, and has a structure in which a plurality of single-layer knitted fabrics 15 are laminated.
  • the single-layer knitted fabric 15 has a structure in which metal fibers 11 are knitted in a loop shape 12 .
  • Interlayer metal fibers 13 connect the layers of the laminated single-layer knitted fabric 15 .
  • part of the metal fibers 11 constituting the single-layer knitted fabric 15 is used as the inter-layer metal fibers 13, and the layers of the laminated single-layer knitted fabric 15 are woven into the loop shape 12 by the inter-layer metal fibers 13.
  • the three-dimensional knitted fabric structure 10 of the present embodiment can be used not only in the surface direction of the single-layer knitted fabric 15 (left-right direction and depth direction in FIGS. 1A to 1C) but also in the lamination direction of the single-layer knitted fabric 15 (FIGS. 1C in the Z direction) also has a braided structure.
  • the single-layer knitted fabric 15 can be stretched in the plane direction.
  • the single-layer knitted fabric 15 Z direction in FIG. 1C can also be expanded and contracted.
  • the metal fibers 11 are continuous in the X direction in FIG. It has a structure with different thermal conductivity and electrical conductivity depending on the structure. Furthermore, by changing the density and frequency of weaving in the lamination direction, the thermal conductivity and electrical conductivity can be changed.
  • the single-layer knitted fabric 15 of the present embodiment is flat knitted in which loops 12 are formed and sequentially connected in the horizontal direction (X direction in FIG. 2). be. Flat knitting is also called knitting or jersey knitting.
  • the metal fibers 11 can be made of various metals depending on the intended use. In this embodiment, for example, copper or copper alloys, aluminum or aluminum alloys, titanium or titanium alloys, It is preferable to If the metal fibers 11 are made of copper or a copper alloy, they are particularly excellent in electrical conductivity and thermal conductivity. When the metal fibers 11 are made of aluminum or an aluminum alloy, they are excellent in electrical conductivity and thermal conductivity, and are also excellent in corrosion resistance. Also, the weight of the three-dimensional knitted structure 10 can be reduced. When the metal fiber 11 is made of titanium or a titanium alloy, it has excellent electrical and thermal conductivity, as well as excellent corrosion resistance. Moreover, the weight of the three-dimensional knitted structure 10 can be further reduced.
  • the cross-sectional shape of the metal fiber 11 is not particularly limited as long as it can be woven into the loop shape 12, but is preferably circular, elliptical or polygonal.
  • the average fiber diameter of the metal fibers 11 is preferably 0.1 mm or more and 10 mm or less, and more preferably 0.3 mm or more and 5 mm or less.
  • the three-dimensional knitted structure 10 of the present embodiment has a structure in which the metal fibers 11 are woven, voids are present inside.
  • the porosity of the three-dimensional knitted structure 10 is preferably in the range of 85% or more and 99% or less.
  • the metal fibers 11 are woven to form the single-layer knitted fabric 15 of the first layer.
  • the single-layer knitted fabric 15 of the second layer is formed while weaving it into the loop shape 12 of the single-layer knitted fabric 15 of the first layer. do. That is, the loop shape 12 also serves as the interlayer metal fiber 13 .
  • the three-dimensional knitted structure 10 of the present embodiment is manufactured.
  • the three-dimensional knitted structure 10 having the configuration described above is constructed by weaving one metal fiber 11 .
  • This heat exchanger 20 has radiation fins 21 made of the three-dimensional knitted structure 10 .
  • the heat radiation fins 21 are provided between a robot housing 25 serving as a heat source and heat exhaust clothing 26 covering the robot housing 25. It is inserted into path 27 and used.
  • one single-layer knitted fabric 15A of the radiation fins 21 (three-dimensional knitted structure 10) and the robot housing 25 are joined together, and the other single-layer knitted fabric 15A of the radiation fins 21 (three-dimensional knitted structure 10) is joined.
  • the single-layer knitted fabric 15B and the heat exhaust clothing 26 are joined together, and the radiation fins 21 (three-dimensional knitted fabric structure 10) are arranged so that the single-layer knitted fabric 15 is laminated from the robot housing 25 side to the heat exhaust clothing 26 side. are placed.
  • the single-layer knitted fabric 15 having a structure in which the metal fibers 11 are knitted in a loop shape is laminated, and the laminated single-layer Since the layers of the knitted fabric 15 are connected by inter-layer metal fibers, the metal fibers 11 are not fixed by sintering or the like. Even if it is provided, the three-dimensional knitted structure 10 will expand and contract following the movement of the movable part, and plastic deformation can be suppressed. Moreover, since the metal fiber 11 is woven into the structure, thermal conductivity and electrical conductivity can be ensured in the same manner as the metal porous body.
  • the interlayer metal fibers are part of the metal fibers 11 forming the single-layer knitted fabric 15, and the interlayer metal fibers have a loop shape to connect the plurality of single-layer knitted fabrics 15.
  • the interlayer metal fibers and the single-layer knitted fabric 15 are composed of the same metal fibers 11, so that the thermal conductivity and the electrical conductivity are further excellent.
  • the metal fibers 11 are made of copper or a copper alloy, aluminum or an aluminum alloy, titanium or a titanium alloy, thermal conductivity and electrical conductivity can be ensured, and heat It can be used more stably as various members such as exchangers (radiating fins), filter members, and electrodes.
  • the porosity is preferably in the range of 85% or more and 99% or less.
  • the fluid can be smoothly circulated inside the three-dimensional knitted structure, and the contact area between the metal fibers and the fluid can be ensured. Therefore, it can be used more stably as various members such as heat exchangers (radiating fins), filter members, and electrodes.
  • the heat exchanger 20 of the present embodiment includes the three-dimensional knitted fabric structure 10 of the present embodiment as the radiation fins 21, the single-layer knitted fabric 15 can be expanded and contracted in the plane direction and the stacking direction, and the movable part can be It can be used by arranging it in a place where it has.
  • the single-layer knitted fabric 15 may be a weft knitted fabric other than the plain knitted fabric, such as a rubber knitted fabric or a purl knitted fabric, or may be a warp knitted fabric in which the fabrics are sequentially connected in the longitudinal direction and knitted.
  • a part of the metal fibers constituting the single-layer knitted fabric has been described as being used as the interlayer metal fibers, but the present invention is not limited to this, and the metal fibers constituting the single-layer knitted fabric are Another metal fiber may be used as the interlayer metal fiber. That is, single-layer knitted fabrics as shown in FIG. 2 may be laminated and the layers may be connected with a plurality of ring-shaped metal fibers, or the layers may be connected with a plurality of spiral-shaped metal fibers.
  • the three-dimensional knitted structure is described as being used for a heat exchanger (radiating fin), but it is not limited to this, and as shown in FIG. , or may be used as an electrode 40, as shown in FIG.
  • a filter member 30 shown in FIG. 5 has a pipe body 31 and a filter 32 inserted into the pipe body 31 , and includes the three-dimensional knitted structure 10 as the filter 32 .
  • the three-dimensional knitted structure has a difference in thermal conductivity depending on the direction, it is desirable to arrange the direction in which the thermal conductivity is the largest in the heat transfer direction.
  • Electrode 40 shown in FIG. 6 is used in water electrolysis device 50 .
  • This water electrolysis device 50 includes a water electrolysis cell 51 having a pair of electrodes 40, 40 arranged opposite to each other and an ion permeable membrane 54 arranged between the pair of electrodes 40, 40. .
  • Catalyst layers 55 and 56 are formed on both surfaces of the ion permeable membrane 54 (surfaces in contact with the pair of electrodes 40 and 40), respectively.
  • a pair of electrodes 40 , 40 are formed of the three-dimensional knitted structure 10 .
  • water (H 2 O) is supplied to the anode side, and hydrogen ions (H + ) move in the water electrolysis cell 51 to electrolyze the water.
  • a three-dimensional knitted structure capable of expanding and contracting to follow the movement of the movable portion and suppressing plastic deformation even when arranged at a location having a movable portion, and the three-dimensional knitted structure.
  • Heat exchangers, filter members, and electrodes can be provided with knitted structures.

Abstract

This three-dimensional knit structure (10) is characterized in that multiple layers of single layer knit fabric (15) are laminated, the single layer knit fabric (15) is a structure in which metal fibers (11) having a loop shape (12) are interweaved, and interlayer metal fibers (13) connect the laminated layers of the single layer knit fabric (15).

Description

立体編物構造体、および、熱交換器、フィルター部材、電極Three-dimensional knitted structure, heat exchanger, filter member, electrode
 本発明は、金属繊維を編んだ立体編物構造体、この立体編物構造体を備えた熱交換器、フィルター部材、電極に関するものである。
 本願は、2021年10月5日に、日本に出願された特願2021-164104号に基づき優先権を主張し、その内容をここに援用する。
TECHNICAL FIELD The present invention relates to a three-dimensional knitted structure made by knitting metal fibers, and a heat exchanger, a filter member, and an electrode having the three-dimensional knitted structure.
This application claims priority based on Japanese Patent Application No. 2021-164104 filed in Japan on October 5, 2021, the content of which is incorporated herein.
 従来、例えば各種電池における電極及び集電体、熱交換器用部材、消音部材、フィルター部材、衝撃吸収部材等として、例えば、銅、アルミニウム、チタン等の金属の多孔質体が使用されている。
 例えば、特許文献1には、金属管表面に金属多孔質層を形成した熱交換部材が提案されている。
 特許文献2には、三次元網目構造の金属多孔質焼結体からなるフィルター部材が提案されている。
 特許文献3には、アルミニウム繊維を焼結した構造の多孔質アルミニウム焼結体が開示されている。
 特許文献4には、水電解装置の電極として、チタン繊維の焼結体を用いたものが開示されている。
2. Description of the Related Art Conventionally, porous bodies of metals such as copper, aluminum and titanium have been used as electrodes and current collectors, heat exchanger members, noise absorbing members, filter members, shock absorbing members and the like in various batteries.
For example, Patent Literature 1 proposes a heat exchange member in which a metal porous layer is formed on the surface of a metal tube.
Patent Document 2 proposes a filter member made of a metal porous sintered body having a three-dimensional network structure.
Patent Document 3 discloses a porous aluminum sintered body having a structure in which aluminum fibers are sintered.
Patent Document 4 discloses a water electrolysis apparatus using a sintered body of titanium fibers as an electrode.
 また、特許文献5には、金属線を編み込んだ金属線構造体が提案されている。この金属線構造体は平板状をなす単層構造とされており、これを複数積層した後に焼結することで、3次元構造とし、上述の熱交換器、フィルター部材、電極等として使用することが考えられる。
 さらに、特許文献6には、人型ロボットを覆う排熱服と、送風機と、を有し、人型ロボットの外郭と排熱服との間に送風経路を設けて、人型ロボットの冷却を行う冷却装置が提案されている。
Further, Patent Document 5 proposes a metal wire structure in which metal wires are woven. This metal wire structure has a single-layer structure in the shape of a flat plate, and by stacking a plurality of these and then sintering them, it has a three-dimensional structure and can be used as the above-mentioned heat exchanger, filter member, electrode, etc. can be considered.
Furthermore, in Patent Document 6, a heat exhaust clothing that covers the humanoid robot and a blower are provided, and a ventilation path is provided between the outer shell of the humanoid robot and the heat exhaust clothing to cool the humanoid robot. Cooling devices have been proposed that do.
特開2014-095529号公報JP 2014-095529 A 特開2004-300526号公報Japanese Patent Application Laid-Open No. 2004-300526 特開2016-194117号公報JP 2016-194117 A 特開2018-156798号公報JP 2018-156798 A 特開平05-261146号公報JP-A-05-261146 特開2020-075350号公報JP 2020-075350 A
 ところで、特許文献6に示す人型ロボットの冷却装置において、冷却効率を向上させるために、送風経路に特許文献1-4の金属多孔質体や特許文献5の金属線構造体を放熱フィンとして配置することが考えられる。
 しかしながら、上述の金属多孔質体や金属線構造体においては、焼結によって固定された箇所が存在するために、人型ロボットの外郭のように可動部を有する箇所に配設した場合には、可動部の動作に追従して金属多孔質体や金属線構造体が伸縮せず、放熱フィン同士が緩衝して塑性変形してしまうおそれがあった。
 なお、可動部を有する箇所に配設された熱交換器、フィルター部材、電極等においても、上述の問題が生じるおそれがあった。
By the way, in the cooling device for the humanoid robot shown in Patent Document 6, in order to improve the cooling efficiency, the metal porous bodies of Patent Documents 1 to 4 and the metal wire structure of Patent Document 5 are arranged as heat dissipation fins in the air blowing path. can be considered.
However, in the metal porous bodies and metal wire structures described above, since there are portions fixed by sintering, when they are arranged in a portion having a movable portion such as the outer shell of a humanoid robot, There is a possibility that the metal porous body and the metal wire structure will not expand and contract following the movement of the movable part, and the radiation fins will buffer each other and be plastically deformed.
It should be noted that the above-described problems may also occur in heat exchangers, filter members, electrodes, etc., which are disposed at locations having movable parts.
 本発明は、以上のような事情を背景としてなされたものであって、可動部を有する箇所に配設した場合であっても、可動部の動きに追従して伸縮し、塑性変形を抑制することが可能な立体編物構造体、および、この立体編物構造体を備えた熱交換器、フィルター部材、電極を提供することを目的としている。 The present invention has been made against the background of the above circumstances, and even if it is arranged in a place having a movable part, it expands and contracts following the movement of the movable part and suppresses plastic deformation. It is an object of the present invention to provide a three-dimensional knitted structure capable of achieving the above, and a heat exchanger, a filter member, and an electrode provided with this three-dimensional knitted structure.
 このような課題を解決して、前記目的を達成するために、本発明の一態様に係る立体編物構造体は、複数の単層編物を積層した立体編物構造体であって、前記単層編物は、金属繊維がループ形状を有して編み込まれた構造であり、積層された前記単層編物の層間を層間金属繊維が接続していることを特徴としている。 In order to solve such problems and achieve the above objects, a three-dimensional knitted structure according to one aspect of the present invention is a three-dimensional knitted structure in which a plurality of single-layer knitted fabrics are laminated, is a structure in which metal fibers are woven in a loop shape, and is characterized in that the layers of the laminated single-layer knitted fabric are connected by interlayer metal fibers.
 この構成の立体編物構造体によれば、金属繊維がループ形状を有して編み込まれた構造の単層編物が積層され、積層された前記単層編物の層間を層間金属繊維が接続している構造とされているので、金属繊維が焼結等によって固定されておらず、可動部の動作に追従して伸縮することができ、塑性変形を抑制することが可能となる。また、金属繊維が編み込まれた構造とされているので、金属多孔質体と同様に、熱伝導性、導電性を確保することができる。
 よって、熱交換器(放熱フィン)、フィルター部材、電極等の各種部材として安定して利用することができる。
According to the three-dimensional knitted structure having this configuration, single-layer knitted fabrics having a structure in which metal fibers are knitted in a loop shape are laminated, and interlayer metal fibers connect the layers of the stacked single-layered knitted fabrics. Since the structure is such that the metal fibers are not fixed by sintering or the like, they can expand and contract following the movement of the movable part, and plastic deformation can be suppressed. In addition, since it has a structure in which metal fibers are woven, it is possible to ensure thermal conductivity and electrical conductivity in the same manner as the metal porous body.
Therefore, it can be stably used as various members such as heat exchangers (radiating fins), filter members, and electrodes.
 ここで、本発明の一態様に係る立体編物構造体においては、前記層間金属繊維が、前記単層編物を構成する前記金属繊維の一部であって、前記層間金属繊維が、ループ形状を有して複数の前記単層編物を接続していることが好ましい。
 この場合、前記単層編物を構成する前記金属繊維の一部が前記層間金属繊維とされ、複数の前記単層編物を接続しているので、さらに熱伝導性および導電性に優れている。
Here, in the three-dimensional knitted structure according to one aspect of the present invention, the interlayer metal fibers are part of the metal fibers constituting the single-layer knitted fabric, and the interlayer metal fibers have a loop shape. It is preferable to connect a plurality of the single-layer knitted fabrics by using a single-layer knitted fabric.
In this case, part of the metal fibers constituting the single-layer knitted fabric are used as the interlayer metal fibers to connect a plurality of the single-layered knitted fabrics, so that thermal conductivity and electrical conductivity are further improved.
 また、本発明の一態様に係る立体編物構造体においては、前記金属繊維は、銅又は銅合金、アルミニウム又はアルミニウム合金、チタン又はチタン合金のいずれかで構成されていることが好ましい。
 この場合、前記金属繊維は、銅又は銅合金、アルミニウム又はアルミニウム合金、チタン又はチタン合金のいずれかで構成されているので、熱伝導性、導電性を確保することができ、熱交換器(放熱フィン)、フィルター部材、電極等の各種部材としてさらに安定して利用することができる。
Moreover, in the three-dimensional knitted structure according to one aspect of the present invention, it is preferable that the metal fibers are made of copper or a copper alloy, aluminum or an aluminum alloy, titanium or a titanium alloy.
In this case, the metal fiber is made of any one of copper or copper alloy, aluminum or aluminum alloy, titanium or titanium alloy, so that thermal conductivity and electrical conductivity can be secured, and the heat exchanger (heat dissipation It can be used more stably as various members such as fins, filter members, and electrodes.
 さらに、本発明の一態様に係る立体編物構造体においては、空隙率が85%以上99%以下の範囲内であることが好ましい。
 この場合、空隙率が上述の範囲内とされているので、立体編物構造体の内部に流体を円滑に流通させることができるとともに、金属繊維と流体との接触面積を確保することができる。よって、熱交換器(放熱フィン)、フィルター部材、電極等の各種部材としてさらに安定して利用することができる。なお、空隙率は、立体編物構造体に対する空隙率である。
Furthermore, in the three-dimensional knitted structure according to one aspect of the present invention, it is preferable that the porosity is within the range of 85% or more and 99% or less.
In this case, since the porosity is within the above range, the fluid can be smoothly circulated inside the three-dimensional knitted structure, and the contact area between the metal fibers and the fluid can be ensured. Therefore, it can be used more stably as various members such as heat exchangers (radiating fins), filter members, and electrodes. The porosity is the porosity with respect to the three-dimensional knitted structure.
 本発明の一態様に係る熱交換器は、上述の立体編物構造体を備えていることを特徴としている。
 この構成の熱交換器においては、上述の立体編物構造体を備えているので、可動部を有する箇所に配設して使用することができる。また、立体編物構造体の内部を流通する流体と金属繊維との接触により、熱交換効率を向上させることができる。
A heat exchanger according to an aspect of the present invention includes the three-dimensional knitted structure described above.
Since the heat exchanger having this configuration includes the three-dimensional knitted structure described above, it can be used by arranging it in a location having a movable portion. Moreover, heat exchange efficiency can be improved by the contact between the fluid flowing through the inside of the three-dimensional knitted structure and the metal fibers.
 本発明の一態様に係るフィルター部材は、上述の立体編物構造体を備えていることを特徴としている。
 この構成のフィルター部材においては、上述の立体編物構造体を備えているので、可動部を有する箇所に配設して使用することができる。また、立体編物構造体の内部に流体を流通させることで、流体中の物質をフィルタリングすることができる。
A filter member according to an aspect of the present invention includes the three-dimensional knitted structure described above.
Since the filter member having this configuration includes the three-dimensional knitted fabric structure described above, it can be used by arranging it in a location having a movable portion. Further, by circulating the fluid inside the three-dimensional knitted structure, substances in the fluid can be filtered.
 本発明の一態様に係る電極は、上述の立体編物構造体を備えていることを特徴としている。
 この構成の電極においては、上述の立体編物構造体を備えているので、可動部を有する箇所に配設して使用することができる。また、立体編物構造体の内部を流通する流体と金属繊維との接触により、反応を促進することができる。
An electrode according to an aspect of the present invention is characterized by including the three-dimensional knitted structure described above.
Since the electrode having this configuration includes the three-dimensional knitted structure described above, it can be used by arranging it at a location having a movable portion. Further, the reaction can be promoted by the contact between the fluid flowing inside the three-dimensional knitted structure and the metal fibers.
 本発明の上記態様によれば、可動部を有する箇所に配設した場合であっても、可動部の動きに追従して伸縮し、塑性変形を抑制することが可能な立体編物構造体、および、この立体編物構造体を備えた熱交換器、フィルター部材、電極を提供することができる。 According to the above aspect of the present invention, a three-dimensional knitted structure capable of expanding and contracting following the movement of the movable portion and suppressing plastic deformation even when disposed at a location having the movable portion; , a heat exchanger, a filter member, and an electrode provided with this three-dimensional knitted structure can be provided.
本発明の実施形態である立体編物構造体の概略説明図であり、通常状態を示す。1 is a schematic explanatory diagram of a three-dimensional knitted structure that is an embodiment of the present invention, showing a normal state; FIG. 本発明の実施形態である立体編物構造体の概略説明図であり、収縮状態を示す。1 is a schematic explanatory diagram of a three-dimensional knitted structure that is an embodiment of the present invention, showing a contracted state; FIG. 本発明の実施形態である立体編物構造体の概略説明図であり、伸長状態を示す。1 is a schematic explanatory diagram of a three-dimensional knitted structure that is an embodiment of the present invention, showing a stretched state; FIG. 本発明の実施形態である立体編物構造体の単層編物の拡大説明図である。1 is an enlarged explanatory view of a single-layer knitted fabric of a three-dimensional knitted structure that is an embodiment of the present invention; FIG. 本発明の実施形態である立体編物構造体の製造方法の説明図である。FIG. 2 is an explanatory diagram of a method for manufacturing a three-dimensional knitted structure that is an embodiment of the present invention; 本発明の実施形態である立体編物構造体を備えた熱交換器(放熱フィン)の説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram of a heat exchanger (radiating fin) provided with a three-dimensional knitted structure that is an embodiment of the present invention; 本発明の実施形態である立体編物構造体を備えたフィルター部材の説明図である。1 is an explanatory diagram of a filter member provided with a three-dimensional knitted structure that is an embodiment of the present invention; FIG. 本発明の実施形態である立体編物構造体を備えた電極の説明図である。1 is an explanatory diagram of an electrode provided with a three-dimensional knitted structure that is an embodiment of the present invention; FIG.
 以下に、本発明の実施形態である立体編物構造体について、添付した図面を参照して説明する。
 本実施形態である立体編物構造体10は、例えば、熱交換器(放熱フィン)、フィルター部材、電極として用いられるものである。
A three-dimensional knitted structure according to an embodiment of the present invention will be described below with reference to the accompanying drawings.
The three-dimensional knitted structure 10 of this embodiment is used as, for example, a heat exchanger (radiating fin), a filter member, and an electrode.
 図1A~図1Cに示すように、本実施形態である立体編物構造体10は、金属繊維11を編み込んで形成されたものであり、複数の単層編物15が積層された構造とされている。
 単層編物15は、図2に示すように、金属繊維11がループ形状12を有して編み込まれた構造とされている。
As shown in FIGS. 1A to 1C, a three-dimensional knitted fabric structure 10 according to the present embodiment is formed by weaving metal fibers 11, and has a structure in which a plurality of single-layer knitted fabrics 15 are laminated. .
As shown in FIG. 2, the single-layer knitted fabric 15 has a structure in which metal fibers 11 are knitted in a loop shape 12 .
 そして、積層された単層編物15の層間を層間金属繊維13が接続している構造とされている。
 本実施形態では、単層編物15を構成する金属繊維11の一部が層間金属繊維13とされており、積層された単層編物15の層間を、層間金属繊維13によってループ形状12に編み込んで接続している。
 すなわち、本実施形態である立体編物構造体10は、単層編物15の面方向(図1A~図1Cの左右方向および奥行き方向)のみでなく、単層編物15の積層方向(図1A~図1CのZ方向)においても、編み込み構造とされている。
Interlayer metal fibers 13 connect the layers of the laminated single-layer knitted fabric 15 .
In the present embodiment, part of the metal fibers 11 constituting the single-layer knitted fabric 15 is used as the inter-layer metal fibers 13, and the layers of the laminated single-layer knitted fabric 15 are woven into the loop shape 12 by the inter-layer metal fibers 13. Connected.
That is, the three-dimensional knitted fabric structure 10 of the present embodiment can be used not only in the surface direction of the single-layer knitted fabric 15 (left-right direction and depth direction in FIGS. 1A to 1C) but also in the lamination direction of the single-layer knitted fabric 15 (FIGS. 1C in the Z direction) also has a braided structure.
 単層編物15においては、編み込み構造とされていることから、単層編物15の面方向において伸縮可能となる。
 本実施形態においては、上述のように、単層編物15の積層方向においても編み込み構造とされていることから、図1A~図1Cに示すように、単層編物15の積層方向(図1A~図1CのZ方向)にも伸縮可能となる。
 また、図2に示すように、例えば図2のX方向は金属繊維11が連続しているため、熱伝導性および導電性がY方向に比べて大きく、単層編物15内であっても方向によって熱伝導性および導電性が異なる構造となっている。さらに、積層方向においても編み込みの密度や頻度等を変更することで、熱伝導性および導電性を変化させることができる。
 本実施形態の単層編物15は、図2に示すように、ループ形状12を形成しながら、横方向(図2のX方向)に順次連結させて編んだ平編み(flat Knitting)したものである。平編みは、メリヤス編み、天竺編みともいう。
Since the single-layer knitted fabric 15 has a knitted structure, the single-layer knitted fabric 15 can be stretched in the plane direction.
In the present embodiment, as described above, since the single-layer knitted fabric 15 is also knitted in the lamination direction, as shown in FIGS. 1A to 1C, the single-layer knitted fabric 15 Z direction in FIG. 1C) can also be expanded and contracted.
Further, as shown in FIG. 2, for example, the metal fibers 11 are continuous in the X direction in FIG. It has a structure with different thermal conductivity and electrical conductivity depending on the structure. Furthermore, by changing the density and frequency of weaving in the lamination direction, the thermal conductivity and electrical conductivity can be changed.
As shown in FIG. 2, the single-layer knitted fabric 15 of the present embodiment is flat knitted in which loops 12 are formed and sequentially connected in the horizontal direction (X direction in FIG. 2). be. Flat knitting is also called knitting or jersey knitting.
 ここで、金属繊維11は、使用用途に応じて各種金属で構成することができ、本実施形態では、例えば、銅又は銅合金、アルミニウム又はアルミニウム合金、チタン又はチタン合金のいずれかで構成されたものとすることが好ましい。
 金属繊維11が、銅又は銅合金で構成されている場合には、導電性および熱伝導性に特に優れることになる。
 金属繊維11が、アルミニウム又はアルミニウム合金で構成されている場合には、導電性および熱伝導性に優れるとともに耐食性にも優れる。また、立体編物構造体10の軽量化を図ることもできる。
 金属繊維11が、チタン又はチタン合金で構成されている場合には、導電性および熱伝導性に優れるとともに耐食性にも優れる。また、立体編物構造体10のさらなる軽量化を図ることもできる。
 金属繊維11の断面形状は、ループ形状12に編み込むことができれば特に限定されないが、円、楕円または多角形であることが好ましい。金属繊維11の平均繊維径は、0.1mm以上10mm以下であることが好ましく、0.3mm以上5mm以下であることがより好ましい。
Here, the metal fibers 11 can be made of various metals depending on the intended use. In this embodiment, for example, copper or copper alloys, aluminum or aluminum alloys, titanium or titanium alloys, It is preferable to
If the metal fibers 11 are made of copper or a copper alloy, they are particularly excellent in electrical conductivity and thermal conductivity.
When the metal fibers 11 are made of aluminum or an aluminum alloy, they are excellent in electrical conductivity and thermal conductivity, and are also excellent in corrosion resistance. Also, the weight of the three-dimensional knitted structure 10 can be reduced.
When the metal fiber 11 is made of titanium or a titanium alloy, it has excellent electrical and thermal conductivity, as well as excellent corrosion resistance. Moreover, the weight of the three-dimensional knitted structure 10 can be further reduced.
The cross-sectional shape of the metal fiber 11 is not particularly limited as long as it can be woven into the loop shape 12, but is preferably circular, elliptical or polygonal. The average fiber diameter of the metal fibers 11 is preferably 0.1 mm or more and 10 mm or less, and more preferably 0.3 mm or more and 5 mm or less.
 また、本実施形態である立体編物構造体10においては、金属繊維11が編み込まれた構造とされていることから、内部に空隙が存在することになる。そして、本実施形態では、立体編物構造体10の空隙率は85%以上99%以下の範囲内であることが好ましい。
 なお、本実施形態である立体編物構造体10においては、上述のように、単層編物15の面方向および積層方向に伸縮可能とされているが、伸長した状態および収縮した状態においても、上述の空隙率を満足することが好ましい。空隙率は、立体編物構造体10の見かけの体積をV(cm)、重量をW(g)、金属繊維11の金属自体の密度をρ(g/cm)としたときに、下記式より算出される。
 空隙率(%)=(1-(W/V)/ρ)×100
In addition, since the three-dimensional knitted structure 10 of the present embodiment has a structure in which the metal fibers 11 are woven, voids are present inside. In this embodiment, the porosity of the three-dimensional knitted structure 10 is preferably in the range of 85% or more and 99% or less.
In addition, in the three-dimensional knitted fabric structure 10 of the present embodiment, as described above, the single-layer knitted fabric 15 can be stretched and contracted in the plane direction and the stacking direction. It is preferable to satisfy the porosity of The porosity is expressed by the following formula, where V (cm 3 ) is the apparent volume of the three-dimensional knitted structure 10, W (g) is the weight, and ρ (g/cm 3 ) is the density of the metal itself of the metal fibers 11. Calculated from
Porosity (%) = (1 - (W / V) / ρ) × 100
 次に、本実施形態である立体編物構造体10の製造方法について、図3を参照して説明する。
 まず、金属繊維11を編み込んで第一層目の単層編物15を形成する。次に、第一層目の単層編物15の一部の金属繊維11を用いて、第一層目の単層編物15のループ形状12に編み込みつつ第二層目の単層編物15を形成する。つまり、ループ形状12が層間金属繊維13を兼ねている。これを繰り返すことにより、本実施形態である立体編物構造体10が製造される。
 本実施形態では、1本の金属繊維11を編み込むことにより、上述の構成の立体編物構造体10が構成されている。
Next, a method for manufacturing the three-dimensional knitted structure 10 according to this embodiment will be described with reference to FIG.
First, the metal fibers 11 are woven to form the single-layer knitted fabric 15 of the first layer. Next, using a part of the metal fibers 11 of the single-layer knitted fabric 15 of the first layer, the single-layer knitted fabric 15 of the second layer is formed while weaving it into the loop shape 12 of the single-layer knitted fabric 15 of the first layer. do. That is, the loop shape 12 also serves as the interlayer metal fiber 13 . By repeating this, the three-dimensional knitted structure 10 of the present embodiment is manufactured.
In this embodiment, the three-dimensional knitted structure 10 having the configuration described above is constructed by weaving one metal fiber 11 .
 ここで、本実施形態である立体編物構造体10を備えた熱交換器20について、図4を用いて説明する。
 この熱交換器20は、立体編物構造体10からなる放熱フィン21を有している。この放熱フィン21(立体編物構造体10)は、図4に示すように、発熱源となるロボット筐体25と、このロボット筐体25を覆う排熱服26と、の間に形成された送風経路27に挿入されて使用される。
Here, the heat exchanger 20 provided with the three-dimensional knitted fabric structure 10 of this embodiment will be described with reference to FIG.
This heat exchanger 20 has radiation fins 21 made of the three-dimensional knitted structure 10 . As shown in FIG. 4, the heat radiation fins 21 (three-dimensional knitted fabric structure 10) are provided between a robot housing 25 serving as a heat source and heat exhaust clothing 26 covering the robot housing 25. It is inserted into path 27 and used.
 このとき、図4に示すように、放熱フィン21(立体編物構造体10)の一の単層編物15Aとロボット筐体25とが接合され、放熱フィン21(立体編物構造体10)の他の単層編物15Bと排熱服26とが接合されており、放熱フィン21(立体編物構造体10)は、単層編物15がロボット筐体25側から排熱服26側へ積層されるように配置されている。 At this time, as shown in FIG. 4, one single-layer knitted fabric 15A of the radiation fins 21 (three-dimensional knitted structure 10) and the robot housing 25 are joined together, and the other single-layer knitted fabric 15A of the radiation fins 21 (three-dimensional knitted structure 10) is joined. The single-layer knitted fabric 15B and the heat exhaust clothing 26 are joined together, and the radiation fins 21 (three-dimensional knitted fabric structure 10) are arranged so that the single-layer knitted fabric 15 is laminated from the robot housing 25 side to the heat exhaust clothing 26 side. are placed.
 この状態で、排熱服26とロボット筐体25との間の送風経路27に送風する。すると、送風経路27が膨らみ、排熱服26とロボット筐体25とが離間する方向に移動することになる。このとき、放熱フィン21(立体編物構造体10)は、単層編物15がロボット筐体25側から排熱服26側へ積層されるように配置されているので、積層方向(図4のZ方向)に伸びるように変形する。このとき、積層された単層編物15同士の接触点が増加し、熱伝導が効率良く行われることになる。 In this state, air is blown through the air blowing path 27 between the heat exhaust clothing 26 and the robot housing 25 . As a result, the airflow path 27 expands, and the heat exhaust clothing 26 and the robot housing 25 are moved in the direction of being separated from each other. At this time, the radiation fins 21 (three-dimensional knitted fabric structure 10) are arranged such that the single-layer knitted fabric 15 is stacked from the robot housing 25 side to the heat exhaust clothing 26 side, so the stacking direction (Z in FIG. 4) direction). At this time, the number of contact points between the laminated single-layer knitted fabrics 15 increases, and heat conduction is efficiently performed.
 以上のような構成とされた本実施形態である立体編物構造体10によれば、金属繊維11がループ形状を有して編み込まれた構造の単層編物15が積層され、積層された単層編物15の層間を層間金属繊維が接続している構造とされているので、金属繊維11が焼結等によって固定されておらず、この立体編物構造体10を、可動部を有する各種装置に配設しても、可動部の動作に追従して立体編物構造体10が伸縮することになり、塑性変形を抑制することが可能となる。
 また、金属繊維11が編み込まれた構造とされているので、金属多孔質体と同様に、熱伝導性、導電性を確保することができる。
According to the three-dimensional knitted fabric structure 10 of the present embodiment configured as described above, the single-layer knitted fabric 15 having a structure in which the metal fibers 11 are knitted in a loop shape is laminated, and the laminated single-layer Since the layers of the knitted fabric 15 are connected by inter-layer metal fibers, the metal fibers 11 are not fixed by sintering or the like. Even if it is provided, the three-dimensional knitted structure 10 will expand and contract following the movement of the movable part, and plastic deformation can be suppressed.
Moreover, since the metal fiber 11 is woven into the structure, thermal conductivity and electrical conductivity can be ensured in the same manner as the metal porous body.
 本実施形態において、前記層間金属繊維が、単層編物15を構成する金属繊維11の一部であって、前記層間金属繊維が、ループ形状を有して複数の単層編物15を接続する構成とされている場合には、層間金属繊維と単層編物15とが同一の金属繊維11で構成されることから、さらに熱伝導性および導電性に優れている。 In the present embodiment, the interlayer metal fibers are part of the metal fibers 11 forming the single-layer knitted fabric 15, and the interlayer metal fibers have a loop shape to connect the plurality of single-layer knitted fabrics 15. , the interlayer metal fibers and the single-layer knitted fabric 15 are composed of the same metal fibers 11, so that the thermal conductivity and the electrical conductivity are further excellent.
 本実施形態において、金属繊維11が、銅又は銅合金、アルミニウム又はアルミニウム合金、チタン又はチタン合金のいずれかで構成されている場合には、熱伝導性、導電性を確保することができ、熱交換器(放熱フィン)、フィルター部材、電極等の各種部材としてさらに安定して利用することができる。 In this embodiment, when the metal fibers 11 are made of copper or a copper alloy, aluminum or an aluminum alloy, titanium or a titanium alloy, thermal conductivity and electrical conductivity can be ensured, and heat It can be used more stably as various members such as exchangers (radiating fins), filter members, and electrodes.
 また、本実施形態において、空隙率が85%以上99%以下の範囲内であることが好ましい。
 この場合、空隙率が上述の範囲内とされているので、立体編物構造体の内部に流体を円滑に流通させることができるとともに、金属繊維と流体との接触面積を確保することができる。よって、熱交換器(放熱フィン)、フィルター部材、電極等の各種部材としてさらに安定して利用することができる。
Moreover, in the present embodiment, the porosity is preferably in the range of 85% or more and 99% or less.
In this case, since the porosity is within the above range, the fluid can be smoothly circulated inside the three-dimensional knitted structure, and the contact area between the metal fibers and the fluid can be ensured. Therefore, it can be used more stably as various members such as heat exchangers (radiating fins), filter members, and electrodes.
 本実施形態の熱交換器20は、放熱フィン21として本実施形態である立体編物構造体10を備えているので、単層編物15の面方向および積層方向に伸縮することができ、可動部を有する箇所に配設して使用することができる。 Since the heat exchanger 20 of the present embodiment includes the three-dimensional knitted fabric structure 10 of the present embodiment as the radiation fins 21, the single-layer knitted fabric 15 can be expanded and contracted in the plane direction and the stacking direction, and the movable part can be It can be used by arranging it in a place where it has.
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 本実施形態では、図1A~図1Cおよび図2に示す構造の立体編物構造体を例に挙げて説明したが、これに限定されることはない。
Although the embodiment of the present invention has been described above, the present invention is not limited to this, and can be modified as appropriate without departing from the technical idea of the invention.
Although the three-dimensional knitted structure shown in FIGS. 1A to 1C and 2 has been described as an example in the present embodiment, the present invention is not limited to this.
 例えば、図2に示すような構造の単層編物15ではなく、ループ形状12を有していれば、他の構造の単層編物であってもよい。単層編物は、平編み以外の緯編み、例えば、ゴム編み、パール編みしたものであってもよく、縦方向に順次連結させて編んだ経編みしたものであってもよい。
 また、本実施形態では、単層編物を構成する金属繊維の一部を層間金属繊維として使用するものとして説明したが、これに限定されることはなく、単層編物を構成する金属繊維とは別の金属繊維を、層間金属繊維として用いてもよい。つまり、図2に示すような単層編物を積層し、複数のリング状の金属繊維で層間を接続してもよく、複数の螺旋形状の金属繊維で層間を接続してもよい。
For example, instead of the single-layer knitted fabric 15 having the structure shown in FIG. The single-layer knitted fabric may be a weft knitted fabric other than the plain knitted fabric, such as a rubber knitted fabric or a purl knitted fabric, or may be a warp knitted fabric in which the fabrics are sequentially connected in the longitudinal direction and knitted.
Further, in the present embodiment, a part of the metal fibers constituting the single-layer knitted fabric has been described as being used as the interlayer metal fibers, but the present invention is not limited to this, and the metal fibers constituting the single-layer knitted fabric are Another metal fiber may be used as the interlayer metal fiber. That is, single-layer knitted fabrics as shown in FIG. 2 may be laminated and the layers may be connected with a plurality of ring-shaped metal fibers, or the layers may be connected with a plurality of spiral-shaped metal fibers.
 また、本実施形態では、立体編物構造体を熱交換器(放熱フィン)に用いるものとして説明したが、これに限定されることはなく、図5に示すように、フィルター部材30として使用してもよいし、図6に示すように、電極40として使用してもよい。
 図5に示すフィルター部材30は、管本体31と、管本体31に挿入されたフィルター32とを有しており、フィルター32として立体編物構造体10を備えている。なお、立体編物構造体は、方向によって熱伝導性に差があるため、熱伝導性が最も大きい方向を伝熱方向に配置することが望ましい。
Further, in the present embodiment, the three-dimensional knitted structure is described as being used for a heat exchanger (radiating fin), but it is not limited to this, and as shown in FIG. , or may be used as an electrode 40, as shown in FIG.
A filter member 30 shown in FIG. 5 has a pipe body 31 and a filter 32 inserted into the pipe body 31 , and includes the three-dimensional knitted structure 10 as the filter 32 . In addition, since the three-dimensional knitted structure has a difference in thermal conductivity depending on the direction, it is desirable to arrange the direction in which the thermal conductivity is the largest in the heat transfer direction.
 図6に示す電極40は、水電解装置50に用いられるものである。この水電解装置50においては、対向配置された一対の電極40,40と、これら一対の電極40,40の間に配置されたイオン透過膜54と、を備えた水電解セル51を備えている。なお、イオン透過膜54の両面(一対の電極40,40との接触面)には、それぞれ触媒層55,56が形成されている。そして、一対の電極40,40が立体編物構造体10で構成されている。水電解装置50では、陽極側に水(HO)が供給され、水電解セル51の中で水素イオン(H)が移動することで、水が電気分解される。 Electrode 40 shown in FIG. 6 is used in water electrolysis device 50 . This water electrolysis device 50 includes a water electrolysis cell 51 having a pair of electrodes 40, 40 arranged opposite to each other and an ion permeable membrane 54 arranged between the pair of electrodes 40, 40. . Catalyst layers 55 and 56 are formed on both surfaces of the ion permeable membrane 54 (surfaces in contact with the pair of electrodes 40 and 40), respectively. A pair of electrodes 40 , 40 are formed of the three-dimensional knitted structure 10 . In the water electrolysis device 50 , water (H 2 O) is supplied to the anode side, and hydrogen ions (H + ) move in the water electrolysis cell 51 to electrolyze the water.
 本発明によれば、可動部を有する箇所に配設した場合であっても、可動部の動きに追従して伸縮し、塑性変形を抑制することが可能な立体編物構造体、および、この立体編物構造体を備えた熱交換器、フィルター部材、電極を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, a three-dimensional knitted structure capable of expanding and contracting to follow the movement of the movable portion and suppressing plastic deformation even when arranged at a location having a movable portion, and the three-dimensional knitted structure. Heat exchangers, filter members, and electrodes can be provided with knitted structures.
10 立体編物構造体
11 金属繊維
12 ループ形状
13 層間金属繊維
15 単層編物
20 熱交換器
30 フィルター部材
40 電極
REFERENCE SIGNS LIST 10 Three-dimensional knitted fabric structure 11 Metal fiber 12 Loop shape 13 Interlayer metal fiber 15 Single layer knitted fabric 20 Heat exchanger 30 Filter member 40 Electrode

Claims (7)

  1.  複数の単層編物を積層した立体編物構造体であって、
     前記単層編物は、金属繊維がループ形状を有して編み込まれた構造であり、
     積層された前記単層編物の層間を層間金属繊維が接続していることを特徴とする立体編物構造体。
    A three-dimensional knitted fabric structure in which a plurality of single-layer knitted fabrics are laminated,
    The single-layer knitted fabric has a structure in which metal fibers are knitted in a loop shape,
    A three-dimensional knitted structure, characterized in that interlayer metal fibers connect layers of the laminated single-layer knitted fabrics.
  2.  前記層間金属繊維が、前記単層編物を構成する前記金属繊維の一部であって、
     前記層間金属繊維が、ループ形状を有して複数の前記単層編物を接続していることを特徴とする請求項1に記載の立体編物構造体。
    The interlayer metal fibers are part of the metal fibers constituting the single-layer knitted fabric,
    2. The three-dimensional knitted fabric structure according to claim 1, wherein the interlayer metal fibers have loop shapes and connect the plurality of single-layer knitted fabrics.
  3.  前記金属繊維は、銅又は銅合金、アルミニウム又はアルミニウム合金、チタン又はチタン合金のいずれかで構成されていることを特徴とする請求項1または請求項2に記載の立体編物構造体。  The three-dimensional knitted structure according to claim 1 or claim 2, wherein the metal fibers are made of any one of copper or a copper alloy, aluminum or an aluminum alloy, titanium or a titanium alloy.
  4.  空隙率が85%以上99%以下の範囲内であることを特徴とする請求項1から請求項3のいずれか一項に記載の立体編物構造体。 The three-dimensional knitted structure according to any one of claims 1 to 3, characterized in that the porosity is within the range of 85% or more and 99% or less.
  5.  請求項1から請求項4のいずれか一項に記載の立体編物構造体を備えていることを特徴とする熱交換器。 A heat exchanger comprising the three-dimensional knitted structure according to any one of claims 1 to 4.
  6.  請求項1から請求項4のいずれか一項に記載の立体編物構造体を備えていることを特徴とするフィルター部材。 A filter member comprising the three-dimensional knitted structure according to any one of claims 1 to 4.
  7.  請求項1から請求項4のいずれか一項に記載の立体編物構造体を備えていることを特徴とする電極。 An electrode comprising the three-dimensional knitted structure according to any one of claims 1 to 4.
PCT/JP2022/037137 2021-10-05 2022-10-04 Three-dimensional knit structure and heat exchanger, filter member, and electrode WO2023058654A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021164104A JP2023055020A (en) 2021-10-05 2021-10-05 Cubic knitted fabric structure body, heat exchanger, filter member, electrode
JP2021-164104 2021-10-05

Publications (1)

Publication Number Publication Date
WO2023058654A1 true WO2023058654A1 (en) 2023-04-13

Family

ID=85803502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037137 WO2023058654A1 (en) 2021-10-05 2022-10-04 Three-dimensional knit structure and heat exchanger, filter member, and electrode

Country Status (2)

Country Link
JP (1) JP2023055020A (en)
WO (1) WO2023058654A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3562082A (en) * 1967-10-27 1971-02-09 Uniroyal Inc Flexible high-stretch laminate with surface skins and coiled-filament non-woven fabric spacer
JPH03297528A (en) * 1990-04-17 1991-12-27 Kokusan Buhin Kogyo Kk Porous body made of wire net and its manufacture
JP2002540312A (en) * 1999-03-29 2002-11-26 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム Heat resistant clothing
JP2007514059A (en) * 2003-11-07 2007-05-31 キジュ カン Three-dimensional porous lightweight structure woven directly with continuous wire and manufacturing method thereof
DE102008034937A1 (en) * 2008-07-26 2010-02-04 Müller Textil GmbH Spacer fabric, particularly for vehicle seats, has two flat fabric layers made of plastic threads and pile layer made of spacer threads
JP2012513901A (en) * 2008-12-30 2012-06-21 キーゼルシュタイン ゲーエムベーハー Lightweight three-dimensional wire structure and manufacturing method thereof
JP2020133094A (en) * 2019-02-15 2020-08-31 ミュラー・テクスティール・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Spacer fabric part, method to form heater equipment consisting of spacer fabric part, and heatable interior component for motor vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3562082A (en) * 1967-10-27 1971-02-09 Uniroyal Inc Flexible high-stretch laminate with surface skins and coiled-filament non-woven fabric spacer
JPH03297528A (en) * 1990-04-17 1991-12-27 Kokusan Buhin Kogyo Kk Porous body made of wire net and its manufacture
JP2002540312A (en) * 1999-03-29 2002-11-26 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム Heat resistant clothing
JP2007514059A (en) * 2003-11-07 2007-05-31 キジュ カン Three-dimensional porous lightweight structure woven directly with continuous wire and manufacturing method thereof
DE102008034937A1 (en) * 2008-07-26 2010-02-04 Müller Textil GmbH Spacer fabric, particularly for vehicle seats, has two flat fabric layers made of plastic threads and pile layer made of spacer threads
JP2012513901A (en) * 2008-12-30 2012-06-21 キーゼルシュタイン ゲーエムベーハー Lightweight three-dimensional wire structure and manufacturing method thereof
JP2020133094A (en) * 2019-02-15 2020-08-31 ミュラー・テクスティール・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Spacer fabric part, method to form heater equipment consisting of spacer fabric part, and heatable interior component for motor vehicle

Also Published As

Publication number Publication date
JP2023055020A (en) 2023-04-17

Similar Documents

Publication Publication Date Title
US20120107662A1 (en) Thermal management matrix
US20120325440A1 (en) Cooling device
US11239008B2 (en) Resistors for dynamic braking
JP5589016B2 (en) Battery module
JP6337675B2 (en) Heat storage system
WO2023058654A1 (en) Three-dimensional knit structure and heat exchanger, filter member, and electrode
JP3122917U (en) Heat dissipation device
EP1511969B1 (en) Heat exchanger
WO2017032657A1 (en) Thermal interface element
JP2007012287A (en) Cell for fuel cell, fuel cell stack and fuel cell
US10724803B2 (en) Heat pipe and method for making the same
EP2446211B1 (en) Improved heat exchanger
JP2008249223A (en) Stack and its manufacturing method
JP2009168326A (en) Narrow metal wire, wick structure, and heat pipe using the same
JP2009295657A (en) Porous material and its production process
CN210805744U (en) High-efficient heat radiation structure suitable for high-power IGBT
CN110822969B (en) Heat storage device
JP2013021140A (en) Cooling apparatus
JP3956778B2 (en) Thin heat pipe
JP2007294548A (en) Thermoelectric conversion device
JP2019096555A (en) Battery module
CN216898514U (en) Heat conducting cable and heat radiating device
CN215598085U (en) Tube type heating furnace body without transformer
CN220750895U (en) Temperature equalizing plate and electronic device comprising same
CN216905801U (en) Radiating assembly and wind-solar storage direct-current micro-grid control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878522

Country of ref document: EP

Kind code of ref document: A1