WO2023058647A1 - Production method for thermoplastic resin composition - Google Patents

Production method for thermoplastic resin composition Download PDF

Info

Publication number
WO2023058647A1
WO2023058647A1 PCT/JP2022/037104 JP2022037104W WO2023058647A1 WO 2023058647 A1 WO2023058647 A1 WO 2023058647A1 JP 2022037104 W JP2022037104 W JP 2022037104W WO 2023058647 A1 WO2023058647 A1 WO 2023058647A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
kneading
screw
resin composition
fibrous filler
Prior art date
Application number
PCT/JP2022/037104
Other languages
French (fr)
Japanese (ja)
Inventor
翔太 ▲高▼木
理恵子 松山
一史 鈴木
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Priority to CN202280067050.4A priority Critical patent/CN118103187A/en
Priority to JP2023522915A priority patent/JP7361240B2/en
Publication of WO2023058647A1 publication Critical patent/WO2023058647A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/55Screws having reverse-feeding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/59Screws characterised by details of the thread, i.e. the shape of a single thread of the material-feeding screw
    • B29C48/605Screws characterised by details of the thread, i.e. the shape of a single thread of the material-feeding screw the thread being discontinuous

Definitions

  • the present invention relates to a method for producing a thermoplastic resin composition containing a fibrous filler.
  • thermoplastic resin composition containing a dispersed fibrous filler such as glass fiber
  • a dispersed fibrous filler such as glass fiber
  • Fibrous fillers are usually made by applying a surface treatment agent, a sizing agent, etc. to fibers that will be the filler, converging them, and then cutting them into several mm lengths to form bundles (also called chopped strands). It is put into a twin-screw extruder in a state.
  • the bundles of the fibrous filler are defibrated, so that the fibrous filler is dispersed in the thermoplastic resin.
  • a fibrous filler that exists in an unfibrillated state may have adverse effects such as clogging of nozzles during injection molding and reduced strength when formed into a molded article. Therefore, it is desirable that the bundle of fibrous fillers be sufficiently defibrated.
  • thermoplastic resin compositions in a discharge range that could not be produced in the past, and the production volume (productivity) of thermoplastic resin compositions per unit time has increased. ing.
  • the discharge rate of the melt-kneaded material from the twin-screw extruder that is, the production amount of the thermoplastic resin composition per unit time is increased without considering the screw design, the entire bundle of the fibrous filler will not defibrate. The necessary stress is not applied all over and some of the fibrous filler remains unfibrillated.
  • Patent Document 1 a high-torque twin-screw extruder is used to extrude at a high discharge rate, and as a screw used in the kneading process of the twin-screw extruder, a flight portion having an arc-shaped notch is formed. A screw having one or more back-feeding screw elements with a thread is used.
  • a high-torque twin-screw extruder is used to increase the discharge rate to reduce the amount of unfibrillated fibrous filler, while suppressing the decomposition of the resin. Although the effect has been confirmed, it is still insufficient and there is room for improvement.
  • the present invention has been made in view of the above conventional problems, and its object is to reduce the amount of unfibrillated fibrous filler in a thermoplastic resin composition containing a fibrous filler, and to reduce the decomposition of the resin. It is an object of the present invention to provide a method for producing a thermoplastic resin composition capable of suppressing the
  • thermoplastic resin composition comprising a step of supplying a bundle of a thermoplastic resin and a fibrous filler to a twin-screw extruder having a pair of screws and melt-kneading them, The melt-kneading step is performed in a kneading zone of the twin-screw extruder, and each of the pair of screws in the kneading zone has a single flight portion having at least one notch.
  • a thermoplastic having a feed screw element and two or more forward screw elements, wherein the reverse feed screw element and the forward feed screw element are alternately arranged along the axial direction of the screw in a state of being adjacent to each other.
  • thermoplastic resin composition according to (1) above, wherein the thermoplastic resin is a polybutylene terephthalate resin.
  • thermoplastic resin and the fibrous filler bundle before the step of melt-kneading the thermoplastic resin and the fibrous filler bundle
  • the thermoplastic resin and the thermoplastic resin are mixed using a pair of screws equipped with a kneading disk having a length of 0.05D to 0.5D so that the length is 0.5D to 5.0D.
  • the method for producing a thermoplastic resin composition according to any one of the above (1) to (4), wherein the bundle of fibrous filler is melt-kneaded.
  • thermoplastic resin composition that can reduce the unfibrillated fibrous filler in a thermoplastic resin composition containing a fibrous filler and suppress the decomposition of the resin. can provide.
  • FIG. 1 is a conceptual diagram showing the configuration of a twin-screw extruder used in the method for producing a thermoplastic resin composition of the present embodiment
  • FIG. It is a perspective view showing (a) a forward feed screw element and (b) a single reverse feed screw element having a flight portion in which a notch is formed.
  • FIG. 4 is a conceptual diagram showing an arrangement mode of a forward screw element and a single backward screw element having a flight portion with a cutout.
  • FIG. 2 is a conceptual diagram showing the arrangement of a forward screw element and a single reverse screw element having a flight portion with a notch in Examples and Comparative Examples.
  • the method for producing a thermoplastic resin composition of the present embodiment includes a step of supplying a bundle of a thermoplastic resin and a fibrous filler to a twin-screw extruder having a pair of screws and melt-kneading them.
  • the melt-kneading step is a step of kneading the molten thermoplastic resin and the bundle of fibrous filler, and is performed in the kneading zone of the twin-screw extruder. It has two or more reverse feed screw elements (hereinafter also referred to as "reverse feed screw elements" for short) provided with a flight portion having one notch, and two or more forward feed screw elements.
  • the reverse feed screw elements and the forward feed screw elements are alternately arranged along the axial direction of the screw while being adjacent to each other.
  • each of the pair of screws in the kneading zone of the twin-screw extruder has a progressive screw element and a single flight portion in which at least one notch is formed.
  • the reverse feed screw elements are alternately arranged along the axial direction of the screw in an adjacent manner.
  • the reverse feed screw element has a single flight portion in which at least one notch is formed, when the bundle of fibrous filler in the resin composition travels through the notch, Stress is applied to the bundle of fibrous filler, and defibration proceeds. Therefore, in the kneading zone of the twin-screw extruder according to the present embodiment, the bundles of the fibrous filler can be sufficiently defibrated, and the unfibrillated fibrous filler can be reduced. Moreover, since the bundle of the fibrous filler can be sufficiently defibrated without increasing the rotation speed of the screw more than necessary, decomposition of the resin due to shear heat generation caused by an increase in the rotation speed of the screw can be prevented. can be done.
  • a twin-screw extruder is used to melt-knead the thermoplastic resin and the bundle of the fibrous filler.
  • the twin-screw extruder for example, one having the configuration shown in FIG. 1 can be mentioned.
  • a twin-screw extruder 10 shown in FIG. A die part 24 having a discharge die for discharging the melt-kneaded resin composition is provided.
  • Granular thermoplastic resin introduced into the first supply port 14 is transported as a solid to the plasticizing zone 16 and melted. There are no restrictions on the element configuration of the plasticization zone 16 provided that most of the thermoplastic resin is expected to melt.
  • the distance between the tip of one kneading disk and the inner wall of the barrel is 0.4 mm.
  • a set of kneading disc elements can be combined into a plasticizing zone.
  • the second supply port 18 has, for example, a side feeder screw, from which bundles of fibrous filler can be supplied to the twin-screw extruder 10 .
  • the pre-kneading zone 20 is located upstream of the kneading zone 22 and is an optional zone for pre-kneading a composition containing a thermoplastic resin and bundles of fibrous filler.
  • Preliminary kneading is carried out in the kneading zone 22 by positively contacting the molten or unmelted thermoplastic resin with the fibrous filler bundle before kneading the molten resin and the fibrous filler bundle. (wetting). Details will be described later.
  • the kneading zone 22 is located on the downstream side of the pre-kneading zone 20 and is a zone for melt-kneading the pre-kneaded composition containing a bundle of thermoplastic resin and fibrous filler.
  • D means the inner diameter of the barrel.
  • the length of the screw element is indicated as 0.5D, it means that the length is the axial length of the screw and is 0.5 times the inner diameter of the barrel.
  • This embodiment is characterized by the configuration of the screws in the kneading zone 22, and the pair of screws in the kneading zone includes two or more reverse feed screw elements each having a single flight portion in which at least one notch is formed. , and two or more progressive screw elements.
  • the reverse screw elements and the forward screw elements are alternately arranged along the axial direction of the screw while being adjacent to each other.
  • the flow of the molten resin composition is disturbed, and the fibrillation progresses as the bundles of the fibrous filler travel back and forth through the notches of the flight portions of the reverse feeding screw elements. . Therefore, the bundle of fibrous fillers can be sufficiently defibrated.
  • Each screw element is explained below.
  • the progressive screw element functions to convey the molten resin composition downstream.
  • the shape of the progressive screw element is not particularly limited as long as it has such a function. For example, as shown in FIG. is mentioned.
  • the number of threads of the progressive screw element is preferably 1 to 2 threads. Further, the length of the progressive screw element is more preferably 0.2D to 5D.
  • a reverse feed screw element is a screw element having a single flight portion with at least one notch formed therein.
  • the shape of the notch formed in the flight portion of the reverse feed screw element may be circular, U-shaped, V-shaped, rectangular, etc. Among them, circular arc-shaped and U-shaped are preferred.
  • the radius (curvature radius) of the arc is preferably 0.05D to 0.15D, more preferably 0.06D, from the viewpoint of sufficiently defibrating the bundle of fibrous fillers. More preferably ⁇ 0.12D.
  • the number of notches in the reverse feed screw element is preferably 7 to 20, more preferably 9 to 16, from the viewpoint of sufficiently defibrating the bundle of fibrous filler.
  • the length of the reverse feed screw element is preferably 0.2D to 3.5D, more preferably 0.2D to 2.0D.
  • the forward screw elements and the reverse screw elements are alternately arranged adjacent to each other, an example of which is shown in FIG.
  • the arrows in FIG. 3 indicate the directions in which the molten resin composition flows.
  • the backward screw element 40 , the forward screw element 42 , the backward screw element 40 , the forward screw element 42 , and the backward screw element 40 are arranged in order from the upstream side of the flow of the molten resin composition. They are arranged adjacent to each other.
  • the length of the left and central reverse feed screw elements 40 is 1.0D
  • the length of the right reverse feed screw element 40 is 0.5D
  • the length of the forward feed screw element 42 is 0.5D. It is 5D.
  • FIG. 3(b) there is a configuration in which a plurality of screw elements each having a length of 0.5D are alternately arranged, and this configuration is shown in FIG. 3(b).
  • the backward screw element 40, the forward screw element 42, the backward screw element 40, the forward screw element 42, and the backward screw element 40 are shown in order from the upstream side of the flow of the molten resin composition. They are arranged adjacent to each other. Also, the lengths of the backward screw element 40 and the forward screw element 42 are both 0.5D.
  • the total number of such combinations in the kneading zone is preferably 2 to 10, more preferably 2 to 5.
  • one of the screw element and the reverse feed screw element may be arranged for the combination of the screw element and the reverse feed screw element. In that case, since the most downstream position is the position where the flow is most disturbed, it is preferable to arrange the backfeed screw element at that position.
  • the value obtained by dividing the discharge amount Q of the twin-screw extruder by the screw rotation speed Ns (Q/Ns) is further divided by the cube of the screw center distance (Q/Ns density) is 0. It is preferably 0.013 to 0.023 kg/h ⁇ rpm ⁇ cm 3 . This will be explained below.
  • Q/Ns is an operating condition parameter that affects defibration of bundles of fibrous fillers. The larger the Q/Ns, the smaller the specific energy given to the thermoplastic resin composition, so that the operation can be performed while suppressing the deterioration of the resin, but the bundles of the fibrous filler tend to be undisentangled.
  • the upper limit of Q/Ns is determined not only by the viscosity of the kneaded material and the degree of fibrillation of bundles of fibrous filler, but also by the screw design, the motor performance of the twin-screw extruder, and the meshing ratio of the screws.
  • the influence of the specific energy indicated by Q/Ns on the kneaded material depends on the size of the twin-screw extruder.
  • the amount of kneaded material in the twin-screw extruder is proportional to the effective volume in the twin-screw extruder for the same screw mesh ratio.
  • the effective volume is the spatial volume that can be filled with material in the twin-screw extruder, and this effective volume is proportional to the cube of the center-to-center distance between adjacent screws. Then, if the value obtained by dividing Q/Ns by the cube of the distance between adjacent screws is defined as the Q/Ns density, even if the size of the twin-screw extruder changes, the specific energy for a unit amount of kneaded material The influence can be compared with the Q/Ns density.
  • the Q/Ns density is 0.013 to 0.023 kg/h ⁇ rpm ⁇ cm 3 , and 0.015 to 0.021 kg/h ⁇ rpm ⁇ cm. 3 is more preferable, and 0.017 to 0.020 kg/h ⁇ rpm ⁇ cm 3 is even more preferable.
  • thermoplastic resin and the bundle of the fibrous filler before the step of melt-kneading the bundle of the thermoplastic resin and the fibrous filler.
  • a pre-kneading zone upstream of the kneading zone.
  • the thermoplastic resin and the fibrous material are kneaded using a pair of screws equipped with a kneading disk having a length of 0.05D to 0.5D so as to have a length of 0.5D to 5.0D.
  • melt-knead the bundle of fillers it is preferable to melt-knead the bundle of fillers.
  • the molten or unmelted thermoplastic resin and the fibrous filler are mixed before kneading the bundle of the molten resin and the fibrous filler in the kneading zone.
  • the melt-kneading of the molten resin and the bundle of fibrous filler in the kneading zone can proceed more effectively.
  • the thickness of the kneading disc used in the preliminary kneading zone is preferably 0.05D to 0.5D, more preferably 0.1D to 0.3D.
  • the thickness of the kneading disc is 0.05D to 0.5D, the strength and durability are sufficient, and the bundle of the thermoplastic resin in a molten or unmelted state and the fibrous filler are actively mixed. can be brought into contact (wet). Also, the load on the screw is small.
  • the length of the pre-kneading zone is preferably 0.5D to 5.0D, more preferably 1.0D to 4.0D.
  • the length of the pre-kneading zone is 0.5D to 5.0D, the wettability is sufficient, the length of the screw is not excessively long, and other zones are easily secured.
  • the shape of the kneading disc used in the preliminary kneading zone is not particularly limited, and may be any of a kneading disc, a shoulder cut kneading disc, and an eccentric kneading disc.
  • thermoplastic resin composition of the present embodiment Each component used in the method for producing the thermoplastic resin composition of the present embodiment will be described below.
  • thermoplastic resin In this embodiment, general-purpose plastics and engineering plastics can be used as thermoplastic resins, and crystalline thermoplastic resins and amorphous thermoplastic resins are preferably used.
  • Crystalline thermoplastic resins include polyacetal resin (POM), polybutylene terephthalate resin (PBT), polyarylene sulfide resin (PAS) such as polyphenylene sulfide resin (PPS), liquid crystalline polymer (LCP), and polyethylene terephthalate resin (PET). , polypropylene (PP), polyamide resin (PA), and the like.
  • examples of the fibrous filler include bundled bodies obtained by bundling a plurality of fibers such as glass fibers and carbon fibers.
  • a bundle of glass fibers (hereinafter also referred to as a "glass fiber bundle”) is a chopped strand in which hundreds to thousands of glass fibers (monofilaments) are bundled.
  • the diameter of the glass fiber is preferably in the range of 5-20 ⁇ m, more preferably 6-18 ⁇ m.
  • the length of the glass fiber is preferably 7-16 mm, more preferably 8-14 mm.
  • thermoplastic resins such as lubricants, release agents, antistatic agents, surfactants, fluorescent whitening agents, flame retardants, or organic polymers
  • lubricants such as lubricants, release agents, antistatic agents, surfactants, fluorescent whitening agents, flame retardants, or organic polymers
  • organic polymers One or more of inorganic or organic fibrous, powdery, plate-like fillers and the like can be added.
  • Examples 1 to 6, Comparative Examples 1 to 3 In each of the examples and comparative examples, a twin-screw extruder configured as shown in FIG. 1 was used to melt-knead 100 parts by mass of a polybutylene terephthalate resin and 43 parts by mass of a bundle of fibrous fillers under the following extrusion conditions. to obtain a resin composition in the form of pellets.
  • the polybutylene terephthalate resin was supplied from the first supply port 14
  • the bundled fibrous filler was supplied from the second supply port 18 . Details of each component used are as follows.
  • the reverse screw element 40 is a reverse screw element having a single flight portion in which 13 arc-shaped notches are formed (see FIG. 2(b)), and the forward screw element 42 is a two-row forward screw element. transport element (see FIG. 2(a)).
  • the length of the left and central reverse feed screw elements 40 is 1.0D
  • the length of the right reverse feed screw element 40 is 0.5D
  • the length of the forward feed screw element 42 is 0.5D. It is 5D.
  • three reverse feed screw elements 40 are arranged adjacent to each other.
  • the left and middle backfeed screw elements 40 have a length of 1.0D and the right backfeed screw elements 40 have a length of 0.5D.
  • three reverse feed screw elements 40 and two forward feed screw elements each having a flight portion in which 13 arc-shaped notches are formed. 44 are arranged alternately.
  • the forward screw element 44 differs from the reverse screw element 40 in that it is forward or reverse, but is otherwise the same.
  • the length of the left and central reverse screw elements 40 is 1.0D
  • the length of the right reverse screw element 40 is 0.5D
  • the length of the forward screw element 44 is 1.0D. 0D.
  • pre-kneading was performed in the pre-kneading zone of the twin-screw extruder under condition 1 or 2 below.
  • Condition 1 Two pairs of progressive kneading elements of 0.5D (0.1D ⁇ 5 elements, shift angle of 45°) with a gap of 0.4 mm at the tip of one side were used to make the length of 1.0D.
  • Condition 2 Four sets of 0.5D (0.1D x 5 elements, shift angle of 45°) progressive kneading elements with a gap of 0.4 mm at the tip on one side were used to give a length of 2.0D.
  • Examples 1 to 6 have a smaller number of unfibrillated glass fibers than Comparative Examples 1 to 3. That is, it was shown that unfibrillated glass fibers can be reduced by arranging the screw elements in the kneading zone as shown in FIG. 4(a).
  • Example 1 in which no preliminary kneading was performed
  • Examples 2 and 3 in which the same treatment as in Example 1 was performed except that preliminary kneading was performed, it was found that preliminarily kneading resulted in undisentangled fibers. It can be seen that the amount of glass fiber can be further reduced.
  • Example 6 the Q/Ns density was as low as 0.010 kg/h ⁇ rpm ⁇ cm 3 , and the number of unfibrillated glass fibers was not confirmed. However, it is considered that the resin temperature became 300° C. or higher and shear heat generation occurred.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

This method for producing a thermoplastic resin composition comprises a step for melting and kneading a thermoplastic resin and a bundled body of fibrous fillers by feeding the same to a twin-screw extruder having a pair of screws. The melting and kneading step is performed in a kneading zone of the twin-screw extruder. Each of the pair of screws disposed in the kneading zone has: two or more backward-feed screw elements that are each equipped with a single stripe of flight having at least one notch formed therein; and two or more forward-feed screw elements. The backward-feed screw elements and forward-feed screw elements are arranged alternately so as to be adjacent to each other in the axial direction of the screw.

Description

熱可塑性樹脂組成物の製造方法Method for producing thermoplastic resin composition
 本発明は、繊維状充填剤を含む熱可塑性樹脂組成物の製造方法に関する。 The present invention relates to a method for producing a thermoplastic resin composition containing a fibrous filler.
 ガラス繊維等の繊維状充填剤が分散された状態で含む熱可塑性樹脂組成物を製造する場合、熱可塑性樹脂と繊維状充填剤とを二軸押出機で溶融混練するのが一般的である。繊維状充填剤は、通常、充填剤となる繊維を表面処理剤や集束剤等を塗布した後に多数本収束させたのちに数mmの長さでカットして集束体(チョップドストランドとも呼ばれる)の状態で二軸押出機に投入される。そして、溶融混練時に、繊維状充填剤の集束体が解繊されることにより、熱可塑性樹脂中に繊維状充填剤が分散された状態とすることができる。 When producing a thermoplastic resin composition containing a dispersed fibrous filler such as glass fiber, it is common to melt-knead the thermoplastic resin and the fibrous filler with a twin-screw extruder. Fibrous fillers are usually made by applying a surface treatment agent, a sizing agent, etc. to fibers that will be the filler, converging them, and then cutting them into several mm lengths to form bundles (also called chopped strands). It is put into a twin-screw extruder in a state. During the melt-kneading, the bundles of the fibrous filler are defibrated, so that the fibrous filler is dispersed in the thermoplastic resin.
 ところが、繊維状充填剤の集束体の中には未解繊の状態で残存する場合がある。未解繊状態で存在する繊維状充填剤は射出成形の際にノズルの詰まりの原因となったり、成形品としたときに強度低下を招いたりする等の悪影響が危惧される。そのため、繊維状充填剤の集束体は十分に解繊されることが望まれる。 However, some bundles of fibrous filler may remain in an unfibrillated state. A fibrous filler that exists in an unfibrillated state may have adverse effects such as clogging of nozzles during injection molding and reduced strength when formed into a molded article. Therefore, it is desirable that the bundle of fibrous fillers be sufficiently defibrated.
 近年、二軸押出機の高トルク化により従来生産できなかった吐出領域での熱可塑性樹脂組成物の製造が可能となり、熱可塑性樹脂組成物の単位時間あたりの製造量(生産性)が増大している。しかし、スクリューデザインを考慮せず二軸押出機からの溶融混練物の吐出量すなわち熱可塑性樹脂組成物の単位時間当たりの製造量を増大させると、繊維状充填剤の集束体全体に解繊に必要な応力がくまなく付与されず一部の繊維状充填剤が未解繊の状態で残存する。未解繊の状態を低減するには、二軸押出機からの吐出量を減少させて、繊維状充填剤の集束体全体に解繊に必要な応力を付与することとなるが、そうすると生産性が低下する。生産性を低下させることなく未解繊を減少させるには、スクリューの回転数を高めればよい。しかし、スクリューの回転数を高めると、せん断発熱により溶融混練中に樹脂の分解を招くことが危惧される。そこで、スクリューデザインを変更して、未解繊の繊維状充填剤を低減しつつ、樹脂の分解を抑制するための技術が提案されている(特許文献1参照)。特許文献1においては、高トルクの二軸押出機を用い、高い吐出量で押出をしつつ、二軸押出機の混練工程で使用するスクリューとして、円弧状の切り欠きが形成されたフライト部を有する一条の逆送りスクリューエレメントを一以上有するスクリューを使用している。 In recent years, the high torque of twin-screw extruders has made it possible to manufacture thermoplastic resin compositions in a discharge range that could not be produced in the past, and the production volume (productivity) of thermoplastic resin compositions per unit time has increased. ing. However, if the discharge rate of the melt-kneaded material from the twin-screw extruder, that is, the production amount of the thermoplastic resin composition per unit time is increased without considering the screw design, the entire bundle of the fibrous filler will not defibrate. The necessary stress is not applied all over and some of the fibrous filler remains unfibrillated. In order to reduce the unfibrillated state, the discharge rate from the twin-screw extruder is reduced and the stress necessary for fibrillation is applied to the entire bundle of fibrous fillers. decreases. In order to reduce unfibrillated fiber without lowering productivity, the rotation speed of the screw should be increased. However, if the number of rotations of the screw is increased, there is a fear that the resin may be decomposed during melt-kneading due to shear heat generation. Therefore, a technique has been proposed for suppressing the decomposition of the resin while reducing the unfibrillated fibrous filler by changing the screw design (see Patent Document 1). In Patent Document 1, a high-torque twin-screw extruder is used to extrude at a high discharge rate, and as a screw used in the kneading process of the twin-screw extruder, a flight portion having an arc-shaped notch is formed. A screw having one or more back-feeding screw elements with a thread is used.
特許第5536705号公報Japanese Patent No. 5536705
 特許文献1に記載の製造方法により、高トルクの二軸押出機を用いて、吐出量を増大して未解繊の繊維状充填剤を低減させつつ、樹脂の分解を抑制することについて一定の効果が確認されているが、未だ不十分であり改善の余地が残されていた。 According to the production method described in Patent Document 1, a high-torque twin-screw extruder is used to increase the discharge rate to reduce the amount of unfibrillated fibrous filler, while suppressing the decomposition of the resin. Although the effect has been confirmed, it is still insufficient and there is room for improvement.
 本発明は、上記従来の問題点に鑑みなされたものであり、その課題は、繊維状充填剤を含む熱可塑性樹脂組成物における未解繊の繊維状充填剤を低減し、かつ、樹脂の分解を抑制することができる熱可塑性樹脂組成物の製造方法を提供することにある。 The present invention has been made in view of the above conventional problems, and its object is to reduce the amount of unfibrillated fibrous filler in a thermoplastic resin composition containing a fibrous filler, and to reduce the decomposition of the resin. It is an object of the present invention to provide a method for producing a thermoplastic resin composition capable of suppressing the
 前記課題を解決する本発明の一態様は以下の通りである。
(1)一対のスクリューを有する二軸押出機に、熱可塑性樹脂と繊維状充填剤の集束体とを供給して溶融混練する工程を含む、熱可塑性樹脂組成物の製造方法であって、
 前記溶融混練する工程は、前記二軸押出機の混練ゾーンで行われ、前記混練ゾーンにおける一対のスクリューのそれぞれには、少なくとも一つの切り欠きが形成された一条のフライト部を備える2以上の逆送りスクリューエレメントと、2以上の順送りスクリューエレメントとを有し、前記逆送りスクリューエレメントと、前記順送りスクリューエレメントとが隣接した状態で前記スクリューの軸方向に沿って交互に配置されている、熱可塑性樹脂組成物の製造方法。
One aspect of the present invention for solving the above problems is as follows.
(1) A method for producing a thermoplastic resin composition, comprising a step of supplying a bundle of a thermoplastic resin and a fibrous filler to a twin-screw extruder having a pair of screws and melt-kneading them,
The melt-kneading step is performed in a kneading zone of the twin-screw extruder, and each of the pair of screws in the kneading zone has a single flight portion having at least one notch. A thermoplastic having a feed screw element and two or more forward screw elements, wherein the reverse feed screw element and the forward feed screw element are alternately arranged along the axial direction of the screw in a state of being adjacent to each other. A method for producing a resin composition.
(2)前記熱可塑性樹脂がポリブチレンテレフタレート樹脂である、前記(1)に記載の熱可塑性樹脂組成物の製造方法。 (2) The method for producing a thermoplastic resin composition according to (1) above, wherein the thermoplastic resin is a polybutylene terephthalate resin.
(3)前記二軸押出機の吐出量Qをスクリュー回転数Nsで除した値(Q/Ns)を、スクリューの芯間距離の3乗でさらに除した値(Q/Ns密度)が0.013~0.023kg/h・rpm・cmである、前記(1)又は(2)に記載の熱可塑性樹脂組成物の製造方法。 (3) The value (Q/Ns) obtained by dividing the discharge rate Q of the twin-screw extruder by the screw rotation speed Ns (Q/Ns) is further divided by the cube of the distance between the centers of the screws (Q/Ns density) to be 0.0. 013 to 0.023 kg/h·rpm·cm 3 , the method for producing a thermoplastic resin composition according to (1) or (2) above.
(4)前記繊維状充填剤の集束体が、直径が5~20μmで、長さが1~5mmのガラス繊維のチョップドストランドである、前記(1)~(3)のいずれかに記載の熱可塑性樹脂組成物の製造方法。 (4) The heat according to any one of (1) to (3) above, wherein the bundle of fibrous filler is a chopped strand of glass fiber having a diameter of 5 to 20 μm and a length of 1 to 5 mm. A method for producing a plastic resin composition.
(5)前記熱可塑性樹脂と前記繊維状充填剤の集束体とを溶融混練する工程の前に、前記熱可塑性樹脂と前記繊維状充填剤の集束体とを予備混練する工程をさらに含み、
 前記予備混練する工程において、長さが0.05D~0.5Dのニーディングディスクを0.5D~5.0Dの長さとなるように装着された一対のスクリューを用いて前記熱可塑性樹脂と前記繊維状充填剤の集束体とを溶融混練する、前記(1)~(4)のいずれかに記載の熱可塑性樹脂組成物の製造方法。
(5) further comprising a step of pre-kneading the thermoplastic resin and the fibrous filler bundle before the step of melt-kneading the thermoplastic resin and the fibrous filler bundle,
In the pre-kneading step, the thermoplastic resin and the thermoplastic resin are mixed using a pair of screws equipped with a kneading disk having a length of 0.05D to 0.5D so that the length is 0.5D to 5.0D. The method for producing a thermoplastic resin composition according to any one of the above (1) to (4), wherein the bundle of fibrous filler is melt-kneaded.
 本発明によれば、繊維状充填剤を含む熱可塑性樹脂組成物における未解繊の繊維状充填剤を低減し、かつ、樹脂の分解を抑制することができる熱可塑性樹脂組成物の製造方法を提供することができる。 According to the present invention, there is provided a method for producing a thermoplastic resin composition that can reduce the unfibrillated fibrous filler in a thermoplastic resin composition containing a fibrous filler and suppress the decomposition of the resin. can provide.
本実施形態の熱可塑性樹脂組成物の製造方法において用いる二軸押出機の構成を示す概念図である。1 is a conceptual diagram showing the configuration of a twin-screw extruder used in the method for producing a thermoplastic resin composition of the present embodiment; FIG. (a)順送りスクリューエレメント、(b)切り欠きが形成されたフライト部を有する一条の逆送りスクリューエレメントを示す斜視図である。It is a perspective view showing (a) a forward feed screw element and (b) a single reverse feed screw element having a flight portion in which a notch is formed. 順送りスクリューエレメントと、切り欠きが形成されたフライト部を有する一条の逆送りスクリューエレメントとの配置態様を示す概念図である。FIG. 4 is a conceptual diagram showing an arrangement mode of a forward screw element and a single backward screw element having a flight portion with a cutout. 実施例・比較例における、順送りスクリューエレメントと、切り欠きが形成されたフライト部を有する一条の逆送りスクリューエレメントとの配置態様を示す概念図である。FIG. 2 is a conceptual diagram showing the arrangement of a forward screw element and a single reverse screw element having a flight portion with a notch in Examples and Comparative Examples.
 本実施形態の熱可塑性樹脂組成物の製造方法は、一対のスクリューを有する二軸押出機に、熱可塑性樹脂と繊維状充填剤の集束体とを供給して溶融混練する工程を含む、熱可塑性樹脂組成物の製造方法である。溶融混練する工程は、溶融した熱可塑性樹脂と繊維状充填剤の集束体とを混練する工程であり、二軸押出機の混練ゾーンで行われ、混練ゾーンにおける一対のスクリューのそれぞれには、少なくとも一つの切り欠きが形成された一条のフライト部を備える2以上の逆送りスクリューエレメント(以下、省略して「逆送りスクリューエレメント」とも呼ぶ。)と、2以上の順送りスクリューエレメントとを有する。また、逆送りスクリューエレメントと、順送りスクリューエレメントとが隣接した状態でスクリューの軸方向に沿って交互に配置されている。 The method for producing a thermoplastic resin composition of the present embodiment includes a step of supplying a bundle of a thermoplastic resin and a fibrous filler to a twin-screw extruder having a pair of screws and melt-kneading them. A method for producing a resin composition. The melt-kneading step is a step of kneading the molten thermoplastic resin and the bundle of fibrous filler, and is performed in the kneading zone of the twin-screw extruder. It has two or more reverse feed screw elements (hereinafter also referred to as "reverse feed screw elements" for short) provided with a flight portion having one notch, and two or more forward feed screw elements. In addition, the reverse feed screw elements and the forward feed screw elements are alternately arranged along the axial direction of the screw while being adjacent to each other.
 本実施形態に熱可塑性樹脂組成物の製造方法においては、二軸押出機の混練ゾーンにおける一対のスクリューのそれぞれに、順送りスクリューエレメントと、少なくとも一つの切り欠きが形成された一条のフライト部を有する逆送りスクリューエレメントとが隣接した状態でスクリューの軸方向に沿って交互に配置されている。そのような構成により、混練ゾーンにおいて、溶融した樹脂組成物は、順送りスクリューエレメントによる順送り方向への流れと、当該順送りスクリューエレメントに隣接する逆送りスクリューエレメントによる逆送り方向への流れとにより、溶融した樹脂組成物の流れが攪乱される。しかも、逆送りスクリューエレメントには、少なくとも一つの切り欠きが形成された一条のフライト部を有するため、樹脂組成物中の繊維状充填剤の集束体が切り欠きを往来する際、樹脂組成物中の繊維状充填剤の集束体に応力が与えられ解繊が進行する。従って、本実施形態に係る二軸押出機の混練ゾーンにおいては、繊維状充填剤の集束体を十分に解繊することができ、未解繊の繊維状充填剤を低減することができる。しかも、スクリューの回転数を必要以上に高めることなく、繊維状充填剤の集束体を十分に解繊することができるため、スクリュー回転数の増大に起因するせん断発熱による樹脂の分解を防止することができる。 In the method for producing a thermoplastic resin composition in the present embodiment, each of the pair of screws in the kneading zone of the twin-screw extruder has a progressive screw element and a single flight portion in which at least one notch is formed. The reverse feed screw elements are alternately arranged along the axial direction of the screw in an adjacent manner. With such a configuration, in the kneading zone, the molten resin composition melts due to the flow in the forward direction by the forward screw element and the flow in the reverse direction by the reverse screw element adjacent to the forward screw element. The resin composition flow is disturbed. Moreover, since the reverse feed screw element has a single flight portion in which at least one notch is formed, when the bundle of fibrous filler in the resin composition travels through the notch, Stress is applied to the bundle of fibrous filler, and defibration proceeds. Therefore, in the kneading zone of the twin-screw extruder according to the present embodiment, the bundles of the fibrous filler can be sufficiently defibrated, and the unfibrillated fibrous filler can be reduced. Moreover, since the bundle of the fibrous filler can be sufficiently defibrated without increasing the rotation speed of the screw more than necessary, decomposition of the resin due to shear heat generation caused by an increase in the rotation speed of the screw can be prevented. can be done.
 本実施形態の熱可塑性樹脂組成物の製造方法においては、二軸押出機を用い、熱可塑性樹脂と繊維状充填剤の集束体とを溶融混練する。二軸押出機としては、例えば、図1に示す構成のものが挙げられる。図1に示す二軸押出機10は、熱可塑性樹脂を投入するためのホッパー12を備える第1供給口14、可塑化ゾーン16、第2供給口18、予備混練ゾーン20、混練ゾーン22、及び溶融混練された樹脂組成物が吐出される吐出ダイを備えたダイ部24を備える。第1供給口14に投入される粒状の熱可塑性樹脂は、可塑化ゾーン16に固体輸送され溶融される。熱可塑性樹脂の大部分の溶融が見込まれれば可塑化ゾーン16のエレメント構成に制限はない。例えば、片側のニーディングディスクの先端部とバレルの内壁との距離が0.4mmである1.0D(ディスク厚さ0.2D×5枚、ずらし角45°)の順送り2条ニーディングディスクエレメントを2組と、片側のニーディングディスクの先端部とバレルの内壁との距離が0.4mmである1.0D(ディスク厚さ0.2D×5枚、ずらし角45°)の逆送り2条ニーディングディスクエレメント1組とを組み合わせて可塑化ゾーンとすることができる。
 第2供給口18は、例えば、サイドフィーダースクリューを有し、ここから繊維状充填剤の集束体を二軸押出機10へ供給することができる。
 予備混練ゾーン20は、混練ゾーン22の上流側に位置し、熱可塑性樹脂と繊維状充填剤の集束体とを含む組成物を予備混練する、必要に応じて設けられるゾーンである。予備混練は、混練ゾーン22において行う、溶融樹脂と繊維状充填剤の集束体との混練前に、溶融又は未溶融の状態の熱可塑性樹脂と繊維状充填剤の集束体とを積極的に接触(濡れ)させるために実施する。詳細については後述する。
 混練ゾーン22は、予備混練ゾーン20の下流側に位置し、予備混練を終えた、熱可塑性樹脂と繊維状充填剤の集束体とを含む組成物を溶融混練するゾーンである。
 なお、本明細書において、Dはバレルの内径を意味する。例えば、スクリューエレメントの長さが0.5Dと表記された場合、当該長さはスクリューの軸方向の長さであり、バレルの内径の0.5倍であることを意味する。
In the method for producing the thermoplastic resin composition of the present embodiment, a twin-screw extruder is used to melt-knead the thermoplastic resin and the bundle of the fibrous filler. As the twin-screw extruder, for example, one having the configuration shown in FIG. 1 can be mentioned. A twin-screw extruder 10 shown in FIG. A die part 24 having a discharge die for discharging the melt-kneaded resin composition is provided. Granular thermoplastic resin introduced into the first supply port 14 is transported as a solid to the plasticizing zone 16 and melted. There are no restrictions on the element configuration of the plasticization zone 16 provided that most of the thermoplastic resin is expected to melt. For example, the distance between the tip of one kneading disk and the inner wall of the barrel is 0.4 mm. 2 sets of 1.0D (disc thickness 0.2D x 5 discs, shift angle 45 °) reverse feed 2 rows where the distance between the tip of the kneading disc on one side and the inner wall of the barrel is 0.4 mm A set of kneading disc elements can be combined into a plasticizing zone.
The second supply port 18 has, for example, a side feeder screw, from which bundles of fibrous filler can be supplied to the twin-screw extruder 10 .
The pre-kneading zone 20 is located upstream of the kneading zone 22 and is an optional zone for pre-kneading a composition containing a thermoplastic resin and bundles of fibrous filler. Preliminary kneading is carried out in the kneading zone 22 by positively contacting the molten or unmelted thermoplastic resin with the fibrous filler bundle before kneading the molten resin and the fibrous filler bundle. (wetting). Details will be described later.
The kneading zone 22 is located on the downstream side of the pre-kneading zone 20 and is a zone for melt-kneading the pre-kneaded composition containing a bundle of thermoplastic resin and fibrous filler.
In this specification, D means the inner diameter of the barrel. For example, when the length of the screw element is indicated as 0.5D, it means that the length is the axial length of the screw and is 0.5 times the inner diameter of the barrel.
 本実施形態においては、混練ゾーン22におけるスクリューの構成に特徴があり、混練ゾーンにおける一対のスクリューには、少なくとも一つの切り欠きが形成された一条のフライト部を有する2以上の逆送りスクリューエレメントと、2以上の順送りスクリューエレメントとを有する。そして、逆送りスクリューエレメントと、順送りスクリューエレメントとが隣接した状態でスクリューの軸方向に沿って交互に配置されている。混練ゾーンにおいては、上述の通り、溶融した樹脂組成物の流れが攪乱されるとともに、繊維状充填剤の集束体は逆送りスクリューエレメントのフライト部の切り欠きを往来することにより解繊が進行する。そのため、繊維状充填剤の集束体を十分に解繊することができる。
 以下に各スクリューエレメントについて説明する。
This embodiment is characterized by the configuration of the screws in the kneading zone 22, and the pair of screws in the kneading zone includes two or more reverse feed screw elements each having a single flight portion in which at least one notch is formed. , and two or more progressive screw elements. The reverse screw elements and the forward screw elements are alternately arranged along the axial direction of the screw while being adjacent to each other. In the kneading zone, as described above, the flow of the molten resin composition is disturbed, and the fibrillation progresses as the bundles of the fibrous filler travel back and forth through the notches of the flight portions of the reverse feeding screw elements. . Therefore, the bundle of fibrous fillers can be sufficiently defibrated.
Each screw element is explained below.
[順送りスクリューエレメント]
 順送りスクリューエレメントは、溶融した樹脂組成物を下流方向に搬送する機能を果たす。順送りスクリューエレメントがそのような機能を有するのであればその形状に特に制限はなく、例えば、図2(a)に示すように、フライト部が連続的に繋がっているフルフライト形状の二条スクリューエレメント30が挙げられる。
[Progressive screw element]
The progressive screw element functions to convey the molten resin composition downstream. The shape of the progressive screw element is not particularly limited as long as it has such a function. For example, as shown in FIG. is mentioned.
 順送りスクリューエレメントの条数としては、1~2条が好ましい。また、順送りスクリューエレメントの長さは、0.2D~5Dであることがより好ましい。  The number of threads of the progressive screw element is preferably 1 to 2 threads. Further, the length of the progressive screw element is more preferably 0.2D to 5D.
[逆送りスクリューエレメント]
 逆送りスクリューエレメントは、少なくとも一つの切り欠きが形成された一条のフライト部を有するスクリューエレメントである。例えば、図2(b)に示すように、13個の切り欠き36が形成された一条のフライト部34を有するスクリューエレメント32が挙げられる。
[Reverse feed screw element]
A reverse feed screw element is a screw element having a single flight portion with at least one notch formed therein. For example, as shown in FIG. 2(b), there is a screw element 32 having a single flight portion 34 in which 13 notches 36 are formed.
 逆送りスクリューエレメントのフライト部に形成された切り欠きの形状は、円弧状、U字型、V字型、矩形状などの形状が挙げられ、中でも、円弧状、U字型が好ましい。
 切り欠きが円弧状の場合、繊維状充填剤の集束体を十分に解繊する観点から、当該円弧の半径(曲率半径)は、0.05D~0.15Dであることが好ましく、0.06D~0.12Dであることがより好ましい。
The shape of the notch formed in the flight portion of the reverse feed screw element may be circular, U-shaped, V-shaped, rectangular, etc. Among them, circular arc-shaped and U-shaped are preferred.
When the notch is arc-shaped, the radius (curvature radius) of the arc is preferably 0.05D to 0.15D, more preferably 0.06D, from the viewpoint of sufficiently defibrating the bundle of fibrous fillers. More preferably ~0.12D.
 逆送りスクリューエレメントの切り欠きの個数は、繊維状充填剤の集束体を十分に解繊する観点から、7~20であることが好ましく、9~16であることがより好ましい。 The number of notches in the reverse feed screw element is preferably 7 to 20, more preferably 9 to 16, from the viewpoint of sufficiently defibrating the bundle of fibrous filler.
 逆送りスクリューエレメントの長さは、0.2D~3.5Dであることが好ましく、0.2D~2.0Dであることがより好ましい。 The length of the reverse feed screw element is preferably 0.2D to 3.5D, more preferably 0.2D to 2.0D.
 本実施形態においては、順送りスクリューエレメント及び逆送りスクリューエレメントは、隣接した状態で交互に配置されるが、その例を図3に示す。図3における矢印は溶融した樹脂組成物が流れる方向を示す。図3(a)においては、溶融した樹脂組成物の流れの上流側から順に、逆送りスクリューエレメント40、順送りスクリューエレメント42、逆送りスクリューエレメント40、順送りスクリューエレメント42、及び逆送りスクリューエレメント40のそれぞれが隣接した状態で配置されている。また、左側と中央の逆送りスクリューエレメント40の長さは1.0Dであり、右側の逆送りスクリューエレメント40の長さは0.5Dであり、順送りスクリューエレメント42の長さはいずれも0.5Dである。 In this embodiment, the forward screw elements and the reverse screw elements are alternately arranged adjacent to each other, an example of which is shown in FIG. The arrows in FIG. 3 indicate the directions in which the molten resin composition flows. In FIG. 3( a ), the backward screw element 40 , the forward screw element 42 , the backward screw element 40 , the forward screw element 42 , and the backward screw element 40 are arranged in order from the upstream side of the flow of the molten resin composition. They are arranged adjacent to each other. The length of the left and central reverse feed screw elements 40 is 1.0D, the length of the right reverse feed screw element 40 is 0.5D, and the length of the forward feed screw element 42 is 0.5D. It is 5D.
 繊維状充填剤の集束体を十分に解繊するには、溶融した樹脂組成物の流れをより攪乱することが好ましく、そのためには順送りスクリューエレメント及び逆送りスクリューエレメントの組合せが多数存在することが好ましい。そのようなスクリューエレメントの組合せを多数存在させるには、それぞれの長さを短くして交互に配置することが好ましい。例えば、それぞれの長さが0.5Dである複数のスクリューエレメント交互に配置する形態であり、その形態を図3(b)に示す。図3(b)においては、溶融した樹脂組成物の流れの上流側から順に、逆送りスクリューエレメント40、順送りスクリューエレメント42、逆送りスクリューエレメント40、順送りスクリューエレメント42、及び逆送りスクリューエレメント40のそれぞれが隣接した状態で配置されている。また、逆送りスクリューエレメント40及び順送りスクリューエレメント42の長さはいずれも0.5Dである。 In order to sufficiently defibrate the bundle of fibrous filler, it is preferable to further disturb the flow of the molten resin composition. preferable. In order to have a large number of such combinations of screw elements, it is preferable to shorten the length of each and alternately arrange them. For example, there is a configuration in which a plurality of screw elements each having a length of 0.5D are alternately arranged, and this configuration is shown in FIG. 3(b). In FIG. 3(b), the backward screw element 40, the forward screw element 42, the backward screw element 40, the forward screw element 42, and the backward screw element 40 are shown in order from the upstream side of the flow of the molten resin composition. They are arranged adjacent to each other. Also, the lengths of the backward screw element 40 and the forward screw element 42 are both 0.5D.
 本実施形態において、隣接して配置される順送りスクリューエレメントと逆送りスクリューエレメントとの組合せを1とした場合、混練ゾーンにおける当該組合せの総数は、2~10が好ましく、2~5がより好ましい。また、スクリューエレメントと逆送りスクリューエレメントとの組合せに対して、さらにスクリューエレメント及び逆送りスクリューエレメントのいずれか1つを配置してもよい。その場合、最も下流側の位置が最も流れが攪乱される位置であることから、その位置に逆送りスクリューエレメントを配置することが好ましい。 In the present embodiment, when the number of combinations of forward screw elements and reverse screw elements arranged adjacent to each other is 1, the total number of such combinations in the kneading zone is preferably 2 to 10, more preferably 2 to 5. Further, one of the screw element and the reverse feed screw element may be arranged for the combination of the screw element and the reverse feed screw element. In that case, since the most downstream position is the position where the flow is most disturbed, it is preferable to arrange the backfeed screw element at that position.
 本実施形態において、二軸押出機の吐出量Qをスクリュー回転数Nsで除した値(Q/Ns)を、スクリューの芯間距離の3乗でさらに除した値(Q/Ns密度)が0.013~0.023kg/h・rpm・cmであることが好ましい。それについて以下に説明する。
 繊維状充填剤の集束体の解繊に影響を与える運転条件パラメーターとして、Q/Nsが挙げられる。Q/Nsが大きいほど、熱可塑性樹脂組成物に与える比エネルギーが小さくなるため、樹脂劣化を抑制した運転が可能となるが、繊維状充填剤の集束体の未解繊が発生しやすくなる。Q/Nsの上限は、混練物の粘度、繊維状充填剤の集束体の解繊度合いだけでなく、スクリューデザイン、二軸押出機のモーター性能、スクリューの噛合い比率によって決まる。
 当然ながら、Q/Nsが示す比エネルギーの混練物への影響は、二軸押出機のサイズに依存する。二軸押出機内の混練物の量は、スクリューの噛合い比率が同じ場合、二軸押出機内の有効体積に比例する。有効体積とは、二軸押出機内で材料が充満することのできる空間体積であり、この有効体積は隣り合うスクリュー間の芯間距離の3乗と比例関係にある。そして、Q/Nsを隣り合うスクリューの芯間距離の3乗で除した値を、Q/Ns密度と定義すると、二軸押出機のサイズが変わっても、単位量の混練物に対する比エネルギーの影響はQ/Ns密度で比較が可能となる。
In the present embodiment, the value obtained by dividing the discharge amount Q of the twin-screw extruder by the screw rotation speed Ns (Q/Ns) is further divided by the cube of the screw center distance (Q/Ns density) is 0. It is preferably 0.013 to 0.023 kg/h·rpm·cm 3 . This will be explained below.
Q/Ns is an operating condition parameter that affects defibration of bundles of fibrous fillers. The larger the Q/Ns, the smaller the specific energy given to the thermoplastic resin composition, so that the operation can be performed while suppressing the deterioration of the resin, but the bundles of the fibrous filler tend to be undisentangled. The upper limit of Q/Ns is determined not only by the viscosity of the kneaded material and the degree of fibrillation of bundles of fibrous filler, but also by the screw design, the motor performance of the twin-screw extruder, and the meshing ratio of the screws.
Of course, the influence of the specific energy indicated by Q/Ns on the kneaded material depends on the size of the twin-screw extruder. The amount of kneaded material in the twin-screw extruder is proportional to the effective volume in the twin-screw extruder for the same screw mesh ratio. The effective volume is the spatial volume that can be filled with material in the twin-screw extruder, and this effective volume is proportional to the cube of the center-to-center distance between adjacent screws. Then, if the value obtained by dividing Q/Ns by the cube of the distance between adjacent screws is defined as the Q/Ns density, even if the size of the twin-screw extruder changes, the specific energy for a unit amount of kneaded material The influence can be compared with the Q/Ns density.
 本実施形態においては、Q/Ns密度が0.013~0.023kg/h・rpm・cmとなる運転条件下で運転することが好ましく、0.015~0.021kg/h・rpm・cmがより好ましく、0.017~0.020 kg/h・rpm・cmがさらに好ましい。上記範囲内で運転することで、樹脂分解の発生を抑えながら繊維状充填剤の集束体の未解繊の発生を抑えることができる。 In the present embodiment, it is preferable to operate under operating conditions where the Q/Ns density is 0.013 to 0.023 kg/h·rpm·cm 3 , and 0.015 to 0.021 kg/h·rpm·cm. 3 is more preferable, and 0.017 to 0.020 kg/h·rpm·cm 3 is even more preferable. By operating within the above range, it is possible to suppress the occurrence of unfibrillated bundles of the fibrous filler while suppressing the occurrence of resin decomposition.
 本実施形態においては、熱可塑性樹脂と繊維状充填剤の集束体とを溶融混練する工程の前に、熱可塑性樹脂と繊維状充填剤の集束体とを予備混練する工程をさらに含むことが好ましい。換言すると、図1に示す通り、混練ゾーンの上流側に予備混練ゾーンを設けることが好ましい。予備混練する工程においては、長さが0.05D~0.5Dのニーディングディスクを0.5D~5.0Dの長さとなるように装着された一対のスクリューを用いて熱可塑性樹脂と繊維状充填剤の集束体とを溶融混練することが好ましい。予備混練する工程を含むことで、上述の通り、混練ゾーンにおいて行う、溶融樹脂と繊維状充填剤の集束体との混練前に、溶融又は未溶融の状態の熱可塑性樹脂と繊維状充填剤の集束体とを積極的に接触(濡れ)させ、混練ゾーンでの溶融樹脂と繊維状充填剤の集束物との溶融混練をより効果的に進めることができる。 In this embodiment, it is preferable to further include a step of pre-kneading the thermoplastic resin and the bundle of the fibrous filler before the step of melt-kneading the bundle of the thermoplastic resin and the fibrous filler. . In other words, as shown in FIG. 1, it is preferable to provide a pre-kneading zone upstream of the kneading zone. In the pre-kneading step, the thermoplastic resin and the fibrous material are kneaded using a pair of screws equipped with a kneading disk having a length of 0.05D to 0.5D so as to have a length of 0.5D to 5.0D. It is preferable to melt-knead the bundle of fillers. By including the step of pre-kneading, as described above, the molten or unmelted thermoplastic resin and the fibrous filler are mixed before kneading the bundle of the molten resin and the fibrous filler in the kneading zone. By positively contacting (wetting) the bundle, the melt-kneading of the molten resin and the bundle of fibrous filler in the kneading zone can proceed more effectively.
 予備混練ゾーンにおいて使用するニーディングディスクの厚みは、0.05D~0.5Dが好ましく、0.1D~0.3Dであることがより好ましい。ニーディングディスクの厚みが0.05D~0.5Dであると、強度や耐久性が十分であるとともに、溶融又は未溶融の状態の熱可塑性樹脂と繊維状充填剤の集束体とを積極的に接触(濡れ)させることができる。また、スクリューに対する負荷が小さい。 The thickness of the kneading disc used in the preliminary kneading zone is preferably 0.05D to 0.5D, more preferably 0.1D to 0.3D. When the thickness of the kneading disc is 0.05D to 0.5D, the strength and durability are sufficient, and the bundle of the thermoplastic resin in a molten or unmelted state and the fibrous filler are actively mixed. can be brought into contact (wet). Also, the load on the screw is small.
 予備混練ゾーン長さは、0.5D~5.0Dが好ましく、1.0D~4.0Dがより好ましい。予備混練ゾーン長さが0.5D~5.0Dであると、濡れが十分で、スクリューの長さが過度に長くならず、他のゾーンの確保が容易となる。 The length of the pre-kneading zone is preferably 0.5D to 5.0D, more preferably 1.0D to 4.0D. When the length of the pre-kneading zone is 0.5D to 5.0D, the wettability is sufficient, the length of the screw is not excessively long, and other zones are easily secured.
 予備混練ゾーンにおいて使用するニーディングディスクの形状は特に制限はなく、ニーディングディスク、ショルダーカットニーディングディスク、偏心ニーディングディスクのいずれでもよい。 The shape of the kneading disc used in the preliminary kneading zone is not particularly limited, and may be any of a kneading disc, a shoulder cut kneading disc, and an eccentric kneading disc.
 以下、本実施形態の熱可塑性樹脂組成物の製造方法において使用する各成分について説明する。 Each component used in the method for producing the thermoplastic resin composition of the present embodiment will be described below.
[熱可塑性樹脂]
 本実施形態において、熱可塑性樹脂としては汎用プラスチックやエンジニアリングプラスチックを使用することができ、結晶性熱可塑性樹脂や非晶性熱可塑性樹脂が好適に用いられる。結晶性熱可塑性樹脂としてはポリアセタール樹脂(POM)、ポリブチレンテレフタレート樹脂(PBT)、ポリフェニレンサルファイド樹脂(PPS)等のポリアリーレンサルファイド樹脂(PAS)、液晶性ポリマー(LCP)、ポリエチレンテレフタレート樹脂(PET)、ポリプロピレン(PP)、ポリアミド樹脂(PA)等が挙げられる。
[Thermoplastic resin]
In this embodiment, general-purpose plastics and engineering plastics can be used as thermoplastic resins, and crystalline thermoplastic resins and amorphous thermoplastic resins are preferably used. Crystalline thermoplastic resins include polyacetal resin (POM), polybutylene terephthalate resin (PBT), polyarylene sulfide resin (PAS) such as polyphenylene sulfide resin (PPS), liquid crystalline polymer (LCP), and polyethylene terephthalate resin (PET). , polypropylene (PP), polyamide resin (PA), and the like.
[繊維状充填剤]
 本実施形態において、繊維状充填剤としては、ガラス繊維、炭素繊維等の複数本を集束した集束体が挙げられる。ガラス繊維の集束体(以下、「ガラス繊維束」とも呼ぶ。)は、数百~数千本のガラス繊維(モノフィラメント)が束になったチョップドストランドである。また、ガラス繊維の直径は、5~20μmの範囲のものが好ましく、6~18μmのものがより好ましい。さらに、ガラス繊維の長さは7~16mmのものが好ましく、8~14mmのものがより好ましい。
[Fibrous filler]
In the present embodiment, examples of the fibrous filler include bundled bodies obtained by bundling a plurality of fibers such as glass fibers and carbon fibers. A bundle of glass fibers (hereinafter also referred to as a "glass fiber bundle") is a chopped strand in which hundreds to thousands of glass fibers (monofilaments) are bundled. The diameter of the glass fiber is preferably in the range of 5-20 μm, more preferably 6-18 μm. Furthermore, the length of the glass fiber is preferably 7-16 mm, more preferably 8-14 mm.
[他の成分]
 本実施形態においては、必要に応じて、熱可塑性樹脂に対する一般的な添加剤、例えば、滑剤、離型剤、帯電防止剤、界面活性剤、蛍光増白剤、難燃剤、又は、有機高分子材料、無機若しくは有機の繊維状、粉体状、板状の充填剤等を1種又は2種以上添加することができる。
[Other ingredients]
In the present embodiment, if necessary, common additives for thermoplastic resins, such as lubricants, release agents, antistatic agents, surfactants, fluorescent whitening agents, flame retardants, or organic polymers One or more of inorganic or organic fibrous, powdery, plate-like fillers and the like can be added.
 以下に、実施例により本実施形態をさらに具体的に説明するが、本実施形態は以下の実施例に限定されるものではない。 Although the present embodiment will be described in more detail below with reference to examples, the present embodiment is not limited to the following examples.
[実施例1~6、比較例1~3]
 各実施例・比較例において、図1に示す構成の二軸押出機を用い、ポリブチレンテレフタレート樹脂100質量部と、繊維状充填剤の集束物43質量部とを以下の押出条件にて溶融混練し、ペレット状の樹脂組成物を得た。なお、ポリブチレンテレフタレート樹脂は、第1供給口14から供給し、繊維状充填剤の集束物は第2供給口18から供給した。また、使用した各成分の詳細は以下の通りである。
(1)ポリブチレンテレフタレート樹脂
 ポリプラスチックス(株)製、PBT樹脂(固有粘度(o-クロロフェノール中において温度35℃で測定):0.8dL/g))
(2)束状繊維状充填剤
 日本電気硝子(株)製、チョップドストランド(直径:10.5μm、長さ:3.0mm)
[Examples 1 to 6, Comparative Examples 1 to 3]
In each of the examples and comparative examples, a twin-screw extruder configured as shown in FIG. 1 was used to melt-knead 100 parts by mass of a polybutylene terephthalate resin and 43 parts by mass of a bundle of fibrous fillers under the following extrusion conditions. to obtain a resin composition in the form of pellets. The polybutylene terephthalate resin was supplied from the first supply port 14 , and the bundled fibrous filler was supplied from the second supply port 18 . Details of each component used are as follows.
(1) Polybutylene terephthalate resin Polyplastics Co., Ltd., PBT resin (intrinsic viscosity (measured in o-chlorophenol at a temperature of 35 ° C.): 0.8 dL / g))
(2) Bundled fibrous filler Chopped strand (diameter: 10.5 μm, length: 3.0 mm) manufactured by Nippon Electric Glass Co., Ltd.
(押出条件)
 ・二軸押出機:TEX44αII、日本製鋼所(株)製
 ・シリンダー温度:270℃
 ・スクリュー回転数:320rpm
 ・押出量:300kg/hr
(Extrusion conditions)
・Twin-screw extruder: TEX44αII, manufactured by Japan Steel Works, Ltd. ・Cylinder temperature: 270°C
・Screw rotation speed: 320 rpm
・Extrusion rate: 300 kg/hr
 一方、二軸押出機の混練ゾーンは、実施例1~6においては、図4(a)に示すように、3個の逆送りスクリューエレメント40と、2個の順送りスクリューエレメント42とが交互に配置されている。なお、逆送りスクリューエレメント40は、円弧状の切り欠きが13個形成された一条のフライト部を有する逆送りスクリューエレメントであり(図2(b)参照)、順送りスクリューエレメント42は、二条の順送り搬送エレメントである(図2(a)参照)。また、左側と中央の逆送りスクリューエレメント40の長さは1.0Dであり、右側の逆送りスクリューエレメント40の長さは0.5Dであり、順送りスクリューエレメント42の長さはいずれも0.5Dである。
 比較例1は、図4(b)に示すように、3個の逆送りスクリューエレメント40が互いに隣接した状態で配置されている。左側と中央の逆送りスクリューエレメント40の長さは1.0Dであり、右側の逆送りスクリューエレメント40の長さは0.5Dである。
 比較例2~3は、図4(c)に示すように、3個の逆送りスクリューエレメント40と、円弧状の切り欠き13個が形成された一条のフライト部を有する2個の順送りスクリューエレメント44とが交互に配置されている。順送りスクリューエレメント44は、逆送りスクリューエレメント40とは、順送りか逆送りかの点で異なり、それ以外は同じである。また、左側と中央の逆送りスクリューエレメント40の長さは1.0Dであり、右側の逆送りスクリューエレメント40の長さは0.5Dであり、順送りスクリューエレメント44の長さはいずれも1.0Dである。
On the other hand, in the kneading zone of the twin-screw extruder, in Examples 1 to 6, as shown in FIG. are placed. In addition, the reverse screw element 40 is a reverse screw element having a single flight portion in which 13 arc-shaped notches are formed (see FIG. 2(b)), and the forward screw element 42 is a two-row forward screw element. transport element (see FIG. 2(a)). The length of the left and central reverse feed screw elements 40 is 1.0D, the length of the right reverse feed screw element 40 is 0.5D, and the length of the forward feed screw element 42 is 0.5D. It is 5D.
In Comparative Example 1, as shown in FIG. 4B, three reverse feed screw elements 40 are arranged adjacent to each other. The left and middle backfeed screw elements 40 have a length of 1.0D and the right backfeed screw elements 40 have a length of 0.5D.
In Comparative Examples 2 and 3, as shown in FIG. 4(c), three reverse feed screw elements 40 and two forward feed screw elements each having a flight portion in which 13 arc-shaped notches are formed. 44 are arranged alternately. The forward screw element 44 differs from the reverse screw element 40 in that it is forward or reverse, but is otherwise the same. The length of the left and central reverse screw elements 40 is 1.0D, the length of the right reverse screw element 40 is 0.5D, and the length of the forward screw element 44 is 1.0D. 0D.
 また、各実施例・比較例においては、二軸押出機の予備混練ゾーンにおいて、以下の条件1又は2に基づく予備混練を実行した。
 条件1:片側の先端部の隙間が0.4mmである0.5D(0.1D×5枚、ずらし角45°)の順送りニーディングエレメントを2組用いて1.0Dの長さとした。
 条件2:片側の先端部の隙間が0.4mmである0.5D(0.1D×5枚、ずらし角45°)の順送りニーディングエレメントを4組用いて2.0Dの長さとした。
Further, in each of the examples and comparative examples, pre-kneading was performed in the pre-kneading zone of the twin-screw extruder under condition 1 or 2 below.
Condition 1: Two pairs of progressive kneading elements of 0.5D (0.1D×5 elements, shift angle of 45°) with a gap of 0.4 mm at the tip of one side were used to make the length of 1.0D.
Condition 2: Four sets of 0.5D (0.1D x 5 elements, shift angle of 45°) progressive kneading elements with a gap of 0.4 mm at the tip on one side were used to give a length of 2.0D.
<評価>
 各実施例・比較例において得られたペレットを用い、以下の評価を行った。
[ガラス繊維の未解繊数評価]
 各実施例・比較例で得られたペレット状の樹脂組成物に対し、X線CT装置(コムスキャンテクノ(株)製、ScanXmate-D090SS270)を用い、以下の測定条件にて未解繊のガラス繊維の個数を計数した。具体的には、各樹脂ペレット9gをサンプルセルに入れ、X線CT透過像を撮影し、輝度が高く映る未解繊のガラス繊維束の個数を計数した。計数結果を表1に示す。
(測定条件)
 管電圧:54kV
 管電流:130μA
 解像度20.0μm
 画像マトリックス幅1856×高さ1472
<Evaluation>
The following evaluations were performed using the pellets obtained in each example and comparative example.
[Evaluation of the number of unfibrillated glass fibers]
An X-ray CT device (ScanXmate-D090SS270, manufactured by Comscan Techno Co., Ltd.) was used for the pellet-shaped resin composition obtained in each example and comparative example, and unfibrillated glass was measured under the following measurement conditions. The number of fibers was counted. Specifically, 9 g of each resin pellet was placed in a sample cell, an X-ray CT transmission image was taken, and the number of unbroken glass fiber bundles showing high brightness was counted. Table 1 shows the counting results.
(Measurement condition)
Tube voltage: 54kV
Tube current: 130μA
Resolution 20.0 μm
Image matrix width 1856 x height 1472
[樹脂温度]
 各実施例・比較例の樹脂組成物の調製時に、二軸押出機に設置された溶融樹脂の吐出ダイの穴に熱電対型温度計の温度測定部を挿入し、表示温度が安定した時点での表示温度を読み取った。読み取った温度を表1に示す。
[Resin temperature]
When preparing the resin composition of each example and comparative example, insert the temperature measurement part of the thermocouple type thermometer into the hole of the molten resin discharge die installed in the twin-screw extruder, and when the display temperature is stabilized read the displayed temperature. The temperature readings are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、実施例1~6は、比較例1~3よりもガラス繊維の未解繊数が少ないことが分かる。すなわち、混練ゾーンにおけるスクリューエレメントの配置態様を図4(a)のようにすることで、未解繊のガラス繊維を低減できることが示された。また、予備混練を行わなかった実施例1と、予備混練を行ったこと以外は実施例1と同様に処理した実施例2及び3との比較から、予備混練を行った方が未解繊のガラス繊維をより低減できることが分かる。
 実施例6は、Q/Ns密度が0.010kg/h・rpm・cmと低く、ガラス繊維の未解繊数は確認されなかった。ただし、樹脂温度が300℃以上となり、せん断発熱が発生していると考えられる。
From Table 1, it can be seen that Examples 1 to 6 have a smaller number of unfibrillated glass fibers than Comparative Examples 1 to 3. That is, it was shown that unfibrillated glass fibers can be reduced by arranging the screw elements in the kneading zone as shown in FIG. 4(a). In addition, from a comparison between Example 1 in which no preliminary kneading was performed and Examples 2 and 3 in which the same treatment as in Example 1 was performed except that preliminary kneading was performed, it was found that preliminarily kneading resulted in undisentangled fibers. It can be seen that the amount of glass fiber can be further reduced.
In Example 6, the Q/Ns density was as low as 0.010 kg/h·rpm·cm 3 , and the number of unfibrillated glass fibers was not confirmed. However, it is considered that the resin temperature became 300° C. or higher and shear heat generation occurred.

Claims (5)

  1.  一対のスクリューを有する二軸押出機に、熱可塑性樹脂と繊維状充填剤の集束体とを供給して溶融混練する工程を含む、熱可塑性樹脂組成物の製造方法であって、
     前記溶融混練する工程は、前記二軸押出機の混練ゾーンで行われ、前記混練ゾーンにおける一対のスクリューのそれぞれには、少なくとも一つの切り欠きが形成された一条のフライト部を備える2以上の逆送りスクリューエレメントと、2以上の順送りスクリューエレメントとを有し、前記逆送りスクリューエレメントと、前記順送りスクリューエレメントとが隣接した状態で前記スクリューの軸方向に沿って交互に配置されている、熱可塑性樹脂組成物の製造方法。
    A method for producing a thermoplastic resin composition, comprising a step of supplying a bundle of a thermoplastic resin and a fibrous filler to a twin-screw extruder having a pair of screws and melt-kneading them,
    The melt-kneading step is performed in a kneading zone of the twin-screw extruder, and each of the pair of screws in the kneading zone has a single flight portion having at least one notch. A thermoplastic having a feed screw element and two or more forward screw elements, wherein the reverse feed screw element and the forward feed screw element are alternately arranged along the axial direction of the screw in a state of being adjacent to each other. A method for producing a resin composition.
  2.  前記熱可塑性樹脂がポリブチレンテレフタレート樹脂である、請求項1に記載の熱可塑性樹脂組成物の製造方法。 The method for producing a thermoplastic resin composition according to claim 1, wherein the thermoplastic resin is polybutylene terephthalate resin.
  3.  前記二軸押出機の吐出量Qをスクリュー回転数Nsで除した値(Q/Ns)を、スクリューの芯間距離の3乗でさらに除した値(Q/Ns密度)が0.013~0.023kg/h・rpm・cmである、請求項1又は2に記載の熱可塑性樹脂組成物の製造方法。 The value (Q/Ns) obtained by dividing the discharge amount Q of the twin-screw extruder by the screw rotation speed Ns (Q/Ns density) is further divided by the cube of the screw center distance (Q/Ns density) 0.013 to 0. 3. The method for producing a thermoplastic resin composition according to claim 1 or 2, wherein the pressure is 0.023 kg/h·rpm·cm 3 .
  4.  前記繊維状充填剤の集束体が、直径が5~20μmで、長さが1~5mmのガラス繊維のチョップドストランドである、請求項1~3のいずれか1項に記載の熱可塑性樹脂組成物の製造方法。 The thermoplastic resin composition according to any one of claims 1 to 3, wherein the bundle of fibrous filler is a chopped strand of glass fiber having a diameter of 5 to 20 µm and a length of 1 to 5 mm. manufacturing method.
  5.  前記熱可塑性樹脂と前記繊維状充填剤の集束体とを溶融混練する工程の前に、前記熱可塑性樹脂と前記繊維状充填剤の集束体とを予備混練する工程をさらに含み、
     前記予備混練する工程において、長さが0.05D~0.5Dのニーディングディスクを0.5D~5.0Dの長さとなるように装着された一対のスクリューを用いて前記熱可塑性樹脂と前記繊維状充填剤の集束体とを溶融混練する、請求項1~4のいずれか1項に記載の熱可塑性樹脂組成物の製造方法。
    Further comprising a step of pre-kneading the thermoplastic resin and the fibrous filler bundle before the step of melt-kneading the thermoplastic resin and the fibrous filler bundle,
    In the pre-kneading step, the thermoplastic resin and the thermoplastic resin are mixed using a pair of screws equipped with a kneading disk having a length of 0.05D to 0.5D so that the length is 0.5D to 5.0D. The method for producing a thermoplastic resin composition according to any one of claims 1 to 4, wherein the bundle of fibrous filler is melt-kneaded.
PCT/JP2022/037104 2021-10-06 2022-10-04 Production method for thermoplastic resin composition WO2023058647A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280067050.4A CN118103187A (en) 2021-10-06 2022-10-04 Process for producing thermoplastic resin composition
JP2023522915A JP7361240B2 (en) 2021-10-06 2022-10-04 Method for producing thermoplastic resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-164604 2021-10-06
JP2021164604 2021-10-06

Publications (1)

Publication Number Publication Date
WO2023058647A1 true WO2023058647A1 (en) 2023-04-13

Family

ID=85803500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037104 WO2023058647A1 (en) 2021-10-06 2022-10-04 Production method for thermoplastic resin composition

Country Status (4)

Country Link
JP (1) JP7361240B2 (en)
CN (1) CN118103187A (en)
TW (1) TW202330709A (en)
WO (1) WO2023058647A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5017469A (en) * 1973-06-18 1975-02-24
JP2006035677A (en) * 2004-07-28 2006-02-09 Polyplastics Co Manufacturing method of liquid crystalline resin composition
WO2006123824A1 (en) * 2005-05-18 2006-11-23 Polyplastics Co., Ltd. Process for producing resin composition containing fibrous filler in high concentration and resin composition pellet
JP2012213997A (en) * 2011-04-01 2012-11-08 Polyplastics Co Method of manufacturing glass fiber reinforced thermoplastic resin composition pellet
CN103978662A (en) * 2014-05-09 2014-08-13 天津翰克科技有限公司 Twin-screw structure of plastic extruder
JP2020040356A (en) * 2018-09-13 2020-03-19 三菱エンジニアリングプラスチックス株式会社 Method for manufacturing resin pellet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5632235B2 (en) * 2010-08-27 2014-11-26 ポリプラスチックス株式会社 Method for producing glass fiber reinforced thermoplastic resin composition pellets

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5017469A (en) * 1973-06-18 1975-02-24
JP2006035677A (en) * 2004-07-28 2006-02-09 Polyplastics Co Manufacturing method of liquid crystalline resin composition
WO2006123824A1 (en) * 2005-05-18 2006-11-23 Polyplastics Co., Ltd. Process for producing resin composition containing fibrous filler in high concentration and resin composition pellet
JP2012213997A (en) * 2011-04-01 2012-11-08 Polyplastics Co Method of manufacturing glass fiber reinforced thermoplastic resin composition pellet
CN103978662A (en) * 2014-05-09 2014-08-13 天津翰克科技有限公司 Twin-screw structure of plastic extruder
JP2020040356A (en) * 2018-09-13 2020-03-19 三菱エンジニアリングプラスチックス株式会社 Method for manufacturing resin pellet

Also Published As

Publication number Publication date
CN118103187A (en) 2024-05-28
JP7361240B2 (en) 2023-10-13
TW202330709A (en) 2023-08-01
JPWO2023058647A1 (en) 2023-04-13

Similar Documents

Publication Publication Date Title
US6428728B1 (en) Fiber reinforced thermoplastic resin structure, process for production of same, and extruder for production of same
JP4786648B2 (en) Manufacturing method of resin composition with high concentration of fibrous filler and resin composition pellet
TWI393620B (en) Method for producing resin composition pellet with length of fibrous filler controlled
US7993737B2 (en) Natural fiber-reinforced thermoplastic resin injection molding
KR20160045111A (en) Twin screw extruder for use in manufacturing fiber-reinforced resin composition and process for manufacturing fiber-reinforced resin composition
WO2012137666A1 (en) Process for producing pellets of glass-fiber-reinforced thermoplastic resin composition
JP3646316B2 (en) Manufacturing method of fiber reinforced thermoplastic resin structure and extruder for manufacturing the same
WO2023058647A1 (en) Production method for thermoplastic resin composition
TWI496675B (en) Glass fiber reinforced thermoplastic synthetic resin composites for the production of compressed products
WO2023234220A1 (en) Method for producing thermoplastic resin composition
JPH081662A (en) Production of fiber-reinforced thermoplastic resin pellet, fiber-reinforced thermoplastic resin pellet, and die device
JP7168714B2 (en) Method for producing thermoplastic resin composition
JP2018161860A (en) Production method of pellets of thermoplastic resin composition
JP7073115B2 (en) pellet
US20230302699A1 (en) Plasticizing unit
JP6821354B2 (en) Biaxial extruder
JPH0692508B2 (en) Long fiber reinforced polyolefin resin composition
JP7426451B1 (en) Method for producing glass fiber reinforced polyamide resin composition
JP2022154027A (en) Method for producing resin pellet containing reinforcing fiber
CN111020782A (en) Carbon fiber chopped fiber bundle
US20240033974A1 (en) Method for producing fiber-reinforced composite material
JP7084144B2 (en) Pellet manufacturing method
JP2022154028A (en) Reinforcement fiber-containing resin pellet

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023522915

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE