WO2012137666A1 - Process for producing pellets of glass-fiber-reinforced thermoplastic resin composition - Google Patents

Process for producing pellets of glass-fiber-reinforced thermoplastic resin composition Download PDF

Info

Publication number
WO2012137666A1
WO2012137666A1 PCT/JP2012/058400 JP2012058400W WO2012137666A1 WO 2012137666 A1 WO2012137666 A1 WO 2012137666A1 JP 2012058400 W JP2012058400 W JP 2012058400W WO 2012137666 A1 WO2012137666 A1 WO 2012137666A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
screw
glass fiber
kneading
reinforced thermoplastic
Prior art date
Application number
PCT/JP2012/058400
Other languages
French (fr)
Japanese (ja)
Inventor
邦紘 平田
石田 大
元一 平郡
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Priority to CN201280017404.0A priority Critical patent/CN103459110B/en
Publication of WO2012137666A1 publication Critical patent/WO2012137666A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/482Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs
    • B29B7/483Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs the other mixing parts being discs perpendicular to the screw axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/56Screws having grooves or cavities other than the thread or the channel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/57Screws provided with kneading disc-like elements, e.g. with oval-shaped elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/585Screws provided with gears interacting with the flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/59Screws characterised by details of the thread, i.e. the shape of a single thread of the material-feeding screw
    • B29C48/60Thread tops
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to a method for producing glass fiber reinforced thermoplastic resin composition pellets.
  • thermoplastic resin composition pellets As a method for producing glass fiber reinforced thermoplastic resin composition pellets by mixing and kneading glass fibers with a thermoplastic resin, first, a thermoplastic resin is supplied to an extruder and the thermoplastic resin is melted. Next, glass fibers are supplied to the molten thermoplastic resin, and the thermoplastic resin and glass fibers are mixed and kneaded in an extruder. Finally, a method of cooling and granulating the mixture is common.
  • the extruder generally, a single-screw extruder and a fully meshed twin-screw extruder in the same direction (hereinafter sometimes referred to as a twin-screw extruder) are used. Compared with a single screw extruder, a twin screw extruder has higher productivity and freedom of operation, and therefore, a twin screw extruder is more preferably used for producing glass fiber reinforced thermoplastic resin pellets. .
  • the glass fiber used in the production of the glass fiber reinforced thermoplastic resin composition pellets is a monofilament having a diameter of 6 ⁇ m to 20 ⁇ m, which is bundled into about 300 to 3000 pieces and wound on a roving, or the roving has a length of 1 Cut to 4 mm (hereinafter sometimes referred to as chopped strands).
  • thermoplastic resin Since chopped glass can be used more easily, in the case of producing glass fiber reinforced thermoplastic resin composition pellets industrially, the thermoplastic resin is supplied to a twin screw extruder, and after the thermoplastic resin is melted, The most common method is to supply chopped glass from the middle of a shaft extruder, mix and knead a molten thermoplastic resin and glass fiber, extrude the mixture, and cool and solidify.
  • the productivity of the glass fiber reinforced thermoplastic resin composition pellets using the above twin screw extruder is determined by the plasticizing and mixing and kneading ability of the twin screw extruder.
  • the plasticizing ability of the twin screw extruder depends on the screw design, the torque generated by the screw, the groove depth of the screw (the difference between the outer diameter and the valley diameter of the screw), the rotational speed of the screw, and the like.
  • Patent Document 1 discloses a twin screw extruder that has a high plasticizing ability and is excellent in productivity by defining a value obtained by dividing the distance between the centers of two screws by the cube of three as a torque density.
  • the mixing and kneading ability of the twin screw extruder depends on the screw design.
  • the residence time decreased with the improvement of the plasticizing ability of the twin screw extruder. For this reason, development of a screw design having an efficient mixing and kneading ability in a short time is required.
  • studies on techniques for increasing the plasticizing ability and kneading ability of a twin-screw extruder have been conducted.
  • a monofilament bundle is used as described above. This is because, in the method of supplying glass fibers to a twin-screw extruder without forming a bundle of monofilaments, the monofilament becomes cottony, loses fluidity, and is difficult to handle.
  • the chopped strand is mixed and kneaded in a twin-screw extruder until it is fibrillated and becomes a monofilament. At the same time, the chopped strand is broken by a screw or the like until the monofilament length reaches an average of 200 ⁇ m to 800 ⁇ m.
  • the monofilament will not be defibrated, and a part or all of the chopped strand that is in the state of a monofilament aggregate (undefibrated glass fiber bundle) will be resin composition It remains in the product pellet. If some or all of the chopped strands remain in the glass fiber reinforced thermoplastic resin composition pellets, in injection molding, some or all of the chopped strands may be clogged in the gate, making injection molding impossible, or injection molding. Even if it is possible, some or all of the chopped strands are present in the molded product, resulting in poor appearance or reduced function.
  • glass fiber reinforced thermoplastic resin compositions used as parts are required to be thin and molded into complex shapes.
  • the gate nozzle of a molding machine that performs such precision molding is often 1 mm or less.
  • the presence of undefined glass fiber bundles becomes a very serious defect.
  • the present invention has been made in order to solve the above-mentioned problems.
  • the object of the present invention is to increase the productivity of glass fiber reinforced thermoplastic resin composition pellets as compared with the prior art, and to collect the monofilaments in the manufactured pellets. It is providing the manufacturing method of the glass fiber reinforced thermoplastic resin composition pellet which can make very low the probability that (un-defibrated glass fiber bundle) remains.
  • the inventors of the present invention have made extensive studies to solve the above problems.
  • the physical quantities obtained by numerical analysis such as average shear stress history, average shear strain history, specific energy, shortest particle outflow time, etc., are the number N of pellets containing undefined glass fiber bundles (per unit weight). It is found that there is no clear correlation with the number of pellets containing undefined glass fiber bundles) and the smallest value among the time integral values of shear stress applied to each glass fiber bundle derived by the particle tracking method. minimum shear stress history value T min is has been found that there is a correlation between the pellets number N containing non-fibrillated glass fiber bundles.
  • the shear stress generated in the twin screw extruder is analyzed, and when the ratio (Q / Ns) between the discharge amount Q and the screw rotation speed Ns is constant, the minimum shear stress history value T min is controlled.
  • the present inventors have found that the number N of pellets per unit amount including undefined glass fibers can be controlled. Further, even if the ratio (Q / Ns) is not constant, the number N of pellets per unit amount including undefined glass fibers can be expressed by a specific formula using the T min and (Q / Ns). I found out.
  • the screw for kneading the thermoplastic resin and the glass fiber has a screw element having a specific shape, and can produce the glass fiber reinforced thermoplastic resin composition pellets under specific conditions, thereby solving the above-mentioned problem.
  • the present invention has been completed. More specifically, the present invention provides the following.
  • thermoplastic resin pellets using a twin screw extruder provided with screws that rotate and mesh with each other, wherein the thermoplastic resin is supplied to the extruder and heated.
  • a kneading step of kneading the plasticized thermoplastic resin with a screw an extrusion step of extruding the glass fiber reinforced thermoplastic resin composition after the kneading step, and the extruded glass fiber reinforced thermoplastic resin composition.
  • the screw includes one or more reverse feed screw elements each having a flight portion in which an arcuate cutout is formed.
  • the torque density which is a value obtained by dividing the torque of the screw in the single reverse feed screw element by the cube of the inter-center distance between the engaging screws, is 11 (Nm / cm 3 ) or more,
  • Q / Ns is divided by the cube of the center-to-core distance between the engaging screws.
  • thermoplastic resin composition pellets according to (1) or (2), wherein the thermoplastic resin is composed of a polybutylene terephthalate resin.
  • thermoplastic resin pellet according to (1) or (2) wherein the thermoplastic resin is composed of a liquid crystalline resin.
  • the productivity of the glass fiber reinforced thermoplastic resin composition pellets is increased more than before, and the probability that monofilament aggregates (undefined glass fiber bundles) remain in the manufactured pellets is very high. Can be lowered.
  • FIG. 1 is a schematic diagram illustrating an example of a screw configuration of an extruder.
  • FIG. 2 is a diagram schematically illustrating a reverse feed single screw element having a flight portion in which an arcuate cutout is formed.
  • FIG. 3 is a schematic diagram showing the screw configuration of the extruder used in the examples.
  • FIG. 4 is a diagram showing a specific screw pattern used in the example.
  • FIG. 5 is a diagram showing a specific screw shape used in the example.
  • FIG. 1 is a schematic diagram illustrating an example of a screw configuration of an extruder.
  • FIG. 2 is a diagram schematically illustrating a reverse feed single screw element having a flight portion in which an ar
  • FIG. 8 shows the minimum shear stress history value (Pa ⁇ sec) independent of the Q / Ns of the extruder used in the examples, and the number of pellets in which part or all of the glass fiber bundle is not defibrated (pieces / pellet 10 kg). It is a figure which shows the relationship (correlation line).
  • FIG. 8 shows the minimum shear stress history value (Pa ⁇ sec) independent of the Q / Ns of the extruder used in the examples, and the number of pellets in which part or all of the glass fiber bundle is not defibrated (pieces /
  • FIG. 9 is a diagram showing a distribution of shear stress history values for each type of screw element.
  • FIG. 10 is a diagram showing the relationship between the discharge rate and the number of pellets containing undefined glass fibers.
  • FIG. 11 is a diagram showing the relationship between the discharge amount and the discharge resin temperature (the temperature of the resin composition discharged from the die).
  • FIG. 12 is a diagram showing an operation region (maximum discharge amount) in which no undefined glass fiber bundle remains in the manufactured pellet.
  • the manufacturing method of the glass fiber reinforced thermoplastic resin composition pellet of the present invention includes the following steps.
  • a plasticizing process in which a thermoplastic resin is supplied to an extruder and heated, kneaded and plasticized. After the plasticization step, one or more glass fiber bundles are supplied to the extruder, and the glass fiber bundles and the plasticized thermoplastic resin are screwed together with the screws while the glass fiber bundles are defibrated.
  • a pelletizing step of pelletizing the extruded glass fiber reinforced thermoplastic resin composition.
  • the production method of the present invention uses a screw having a specific screw element in the kneading step.
  • FIG. 1 shows a twin-screw extruder including a cylinder 1, a screw 2 disposed in the cylinder, and a die 3 provided at a downstream end portion of the cylinder 1.
  • FIG. 1 also shows the screw configuration of the screw 2.
  • the screw 2 includes a supply unit 20, a plasticizing unit 21, a transport unit 22, and a kneading unit 23 in this order from the upstream side. A plasticizing process is performed in the supply unit 20 and the plasticizing unit 21.
  • a kneading step is performed in the conveying unit 22 and the kneading unit 23.
  • the extrusion process is performed after the kneading section 23.
  • a pelletization process is performed after the glass fiber reinforced thermoplastic resin composition is extruded from the die
  • the cylinder 1 in which the screw 2 is disposed includes a hopper 10 for supplying a raw material such as a thermoplastic resin to the supply unit 20 and a feed port for supplying auxiliary materials such as a glass fiber bundle to the conveyance unit 22. 11 and a vacuum vent 12 having vacuuming means such as a vacuum pump for performing vacuum deaeration at a predetermined degree of vacuum.
  • thermoplastic resin supplied from the hopper 10 is transferred and melted to make a homogeneous melt.
  • thermoplastic resin will be described, and then the details of the plasticizing process until the thermoplastic resin supplied from the hopper becomes a homogeneous melt will be described.
  • thermoplastic resin The kind of thermoplastic resin is not particularly limited. Specific examples of the thermoplastic resin include polypropylene, polyacetal, liquid crystal resin, polybutylene terephthalate, polyethylene terephthalate, polyphenylene sulfide, nylon 66, and the like. Among these thermoplastic resins, the lower the viscosity, the more likely the problem of undefining the glass fiber bundle is. This is because if the viscosity is low, shear stress hardly occurs in the molten state, and the glass fiber bundle in which the monofilaments are converged is difficult to be defibrated. Examples of the low-viscosity resin include polybutylene terephthalate, liquid crystal resin, polyethylene terephthalate, and nylon 66.
  • thermoplastic tree used as a raw material is shaped into a pellet.
  • thermoplastic resin composition containing other components may be used into the pellet form.
  • the plasticizing process is performed in the supply unit 20 and the plasticizing unit 21 of the screw 2.
  • the screw element used in the supply unit 20 include a transport element made of a flight.
  • the screw element used for the plasticizing portion 21 generally include a combination of screw elements such as reverse flight, seal ring, forward kneading disk, and reverse kneading disk.
  • Supplied part 20 transfers resin pellets.
  • the supply unit 20 functions to transfer the resin pellets from the hopper 10 side to the die 3 direction side. In general, preheating by an external heater is performed as a melting preparation stage. Further, since the resin pellet is sandwiched between the rotating screw 2 and the cylinder 1, a frictional force is applied to the resin pellet to generate frictional heat. The resin pellets may start to melt due to the preheating or frictional heat. In some cases, the supply unit 20 needs to adjust the groove depth of the screw 2 and adjust the preheating temperature by a conventionally known method so that the transfer of the resin pellets proceeds smoothly.
  • the plasticizing unit 21 applies pressure to the resin pellets transferred from the supply unit 20 to melt the resin pellets.
  • the resin pellets are further transferred forward (in the direction from the hopper 10 to the die 3) while melting.
  • the kneading step After the plasticizing step, one or more glass fiber bundles are supplied to an extruder and the glass fiber bundle is defibrated and melted in the plasticizing step with the defibrated glass fibers. And knead.
  • the kneading step is performed by the conveying unit 22 and the kneading unit 23 of the screw 2.
  • a screw element used by the conveyance part 22 the element for conveyance which consists of a forward flight is mentioned, for example.
  • screw element used in the kneading part 23 the combination of screw elements, such as a reverse flight, a seal ring, a forward kneading disk, a reverse kneading disk, is common.
  • At least a part of the kneading part 22 of the screw 2 is provided with a single reverse feed screw element having a flight part in which an arc-shaped notch is formed on the outer periphery.
  • the glass fiber bundle is a chopped strand in which 300 to 3000 monofilaments are bundled.
  • chopped strands in which 1100 pieces or 2200 pieces are bundled are preferably used.
  • the diameter of the monofilament is not particularly limited, but is preferably in the range of 6 ⁇ m to 20 ⁇ m, and those having a diameter of 6 ⁇ m, 10 ⁇ m, and 13 ⁇ m are widely distributed in the market.
  • a bundle of monofilaments can be continuously fed to the twin screw extruder while roving.
  • the chopped strand from which roving is cut is easy to handle in transportation and supply to a twin screw extruder.
  • the glass fiber bundle and the molten resin introduced from the feed port 11 are conveyed to the kneading unit 23.
  • this conveyance part 22 it is an area
  • shear stress is applied to the glass fiber bundle and the molten resin.
  • the glass fiber bundle is defibrated and the monofilament and the molten resin are kneaded.
  • the glass fiber reinforced thermoplastic resin composition is extruded and how it is pelletized.
  • the glass fiber reinforced thermoplastic resin composition extruded into a rod shape from the die 3 can be cut and pelletized.
  • the cutting method is not particularly limited, and a conventionally known method can be used.
  • the discharge amount in the extrusion process corresponds to the discharge amount Q
  • the rotation speed of the screw corresponds to the rotation speed Ns.
  • ⁇ Screw element> As a conventional kneading part of a screw, a combination of screw elements such as a reverse flight, a seal ring, a forward kneading disk, and a reverse kneading disk is generally used. However, in the case of high discharge under conditions where Q / Ns is large, some glass fiber bundles are not defibrated and remain undefibrated.
  • the present invention is a production method determined by using as an index the shear stress history value received by each glass fiber bundle in the extruder.
  • the minimum shear stress history value T min is the minimum value of the shear stress history value each glass fiber bundle is subjected in a twin-screw extruder.
  • the following formula (IV) is derived based on the number of pellets including fiber glass fiber bundles.
  • the following formula (IV) is also useful in that the amount of pellets containing undefined glass fiber bundles can be studied with one formula even if the Q / Ns condition changes.
  • the quantity of the pellet containing an undefined glass fiber bundle can be examined with one numerical formula (IV).
  • the size of the twin-screw extruder is changed, it is necessary to derive the formula (IV) again.
  • a small twin screw extruder and a large twin screw extruder have different heat transfer amounts from the cylinders and heat energy applied to the molten resin. It is.
  • the screw diameter D is uniquely determined. Based on the screw diameter D, the arbitrarily determined lead length Le of the kneading part 23 of the screw, the discharge amount Q as the arbitrarily determined molding condition, and the screw rotational speed Ns, the minimum shear stress history value T min is derived.
  • the minimum shear stress history value T min can be derived using conventionally known three-dimensional flow analysis software in a twin-screw extruder. For example, it can be derived by particle tracking analysis as described in the examples.
  • the minimum shear stress history value T min is a time integration value obtained by performing time integration of shear stress.
  • the integration section is a section where shear stress is applied to the molten resin and the glass fiber bundle, and the extrusion shown in FIG. In the case of a machine, it is a section of the kneading unit 23.
  • the method for deriving the minimum shear stress history value Tmin is not particularly limited. A method of deriving using commercially available software, a method of deriving by experiment, and the like can be mentioned.
  • the number N of undefibrated pellets may be derived experimentally or using an analysis method or the like.
  • the horizontal axis is the minimum shear stress history value T min
  • the vertical axis is the number N of undefined pellets
  • a graph representing the above formula (IV) is created, thereby formula (IV) To derive.
  • Screw diameter D of the screw element vary from d1 to d2, the following equation (V) is established between the discharge amount Q M in the discharge amount Q m and a large extruder in a small extruder and, following equation (VI) is established between the screw rotation speed Ns M at a screw rotation speed Ns m and a large extruder a small extruder.
  • ⁇ and ⁇ in the above formulas (V) and (VI) are determined so that the specific energies applied to the molten resin are equal.
  • a method for determining ⁇ and ⁇ either a theoretical determination method or an experimental determination method may be used.
  • the parameter ⁇ is set so that the specific function, the total shear amount, the residence time, etc. of the objective function are the same between the small machine and the large machine.
  • are derived. Assuming the difference in heat transfer between the small machine and the large machine, the parameters ⁇ and ⁇ can be derived so that the specific energy as the objective function matches between the small machine and the large machine.
  • the objective function is a specific energy, or a parameter indicating physical properties is adopted, and the parameter ⁇ is statistically set so that the objective function matches between a small machine and a large machine. And a method of calculating ⁇ .
  • a single screw element having a flight part with a notch formed on the outer periphery is preferable because the minimum shear stress history value Tmin tends to increase.
  • a single screw element itself having a flight part with a notch formed on the outer periphery is known, and is described, for example, in Patent Document (DE4134026A1).
  • the number of undefibrated pellets can be suppressed to a small value.
  • the screw elements having the notches it is possible to use a reverse-feeding one having an arc-shaped notch, and the value of the minimum shear stress history value Tmin is set to reverse flight, seal ring, forward knee. It can be larger than a combination of screw elements such as a ding disk and a reverse kneading disk, and is preferable because the glass fiber bundle can be defibrated in a shorter time than other screw elements.
  • this one-way reverse feed screw element has a flight part in which an arc-shaped notch satisfying the following inequalities (I) to (III) is formed on the outer periphery.
  • FIG. 2 shows a schematic diagram of the single feed reverse feed screw element, wherein (a) is a sectional view in the axial direction, and (b) is a side view.
  • the single reverse feed screw element 4 includes a flight part 40 and an arc-shaped notch 41 formed on the outer periphery of the flight part 40.
  • the notch 41 is formed in a direction from the outer periphery of the flight part toward the axis of the screw element. 2 shows a case where the ellipse forms an arc shape, but the ellipse or the center of the circle forming the arc shape exists on the outer periphery of the flight part 40 (in FIG. 2A, the center of the ellipse is present). Indicated by O).
  • the notch has an arc shape, and the arc shape is formed by the circle or ellipse, so that there are advantages in manufacturing and minimizing a decrease in flight strength due to the notch.
  • the said circular arc shape should just be formed by said circle
  • the present invention is not limited to one in which the entire cutout is formed by the one circle or ellipse described above. However, it is preferable that substantially the entire arc shape is formed by one circle or ellipse.
  • the arc shape is most preferably a circle.
  • the range of the radius r is preferably 0.05D ⁇ r ⁇ 0.15D. If r is within the above range, the minimum shear stress history value Tmin tends to increase, which is preferable. A more preferable range of r is 0.06D ⁇ r ⁇ 0.12D.
  • the minimum shear stress history value T min tends to increase as the number of notches n increases.
  • the mechanical strength of the screw element decreases when the number of notches n increases excessively, it is preferable to adjust the number of notches n within the range of inequality (II).
  • a particularly preferable range of the number of notches n is 10 ⁇ n ⁇ 15, and the most preferable number of notches is 11.
  • the lead length Le of the screw element is not more than 0.3 times the screw diameter D of the screw element (Le is not more than 0.3D). If the lead length Le is 0.3D or less, even if the discharge rate Q is very high, undisrupted glass fibers tend not to be contained in the manufactured pellets. It should be noted that the discharge amount Q is very high, for example, when the screw element is provided with an axial length of 2D and a screw diameter D is 47 mm, the screw diameter is 47 mm. This is a twin screw extruder having a diameter D of 69 mm and is 800 kg / h or more. Even in such a high discharge area, problems due to the above-described undefined glass fibers can be suppressed.
  • the upper limit of the lead length Le of the screw element used in the present invention is preferably 0.3D or less, but the lower limit is preferably 0.1D or more. Setting it above this lower limit is preferable because the thickness of the flight part is maintained and the strength is maintained.
  • the function and shape of the single screw element having the flight part in which the arc-shaped notch is formed have been described above.
  • One of the features of the present invention is that the single line having the flight part in which the notch is formed.
  • the conventional low productivity can produce a glass reinforced resin composition without generating undefibrated glass.
  • pellets containing undefibrated glass are generated.
  • the torque density of the screw is set to 11 (Nm / cm 3 ) or more.
  • the torque density is 11 (Nm / cm 3 ) or more, the filling rate of the material in the extruder is increased, the energy density is reduced, and the temperature rise is low even if the rotational speed is higher than the conventional one.
  • a preferable range of the torque density is 13 (Nm / cm 3) or more 18 (Nm / cm 3) or less.
  • Q / Ns An important operating condition that affects whether or not unbreaked glass fibers are contained in the pellet is Q / Ns.
  • Q is the discharge amount and Ns is the screw rotation speed.
  • Q / Ns depends on the viscosity and specific energy of the glass fiber reinforced thermoplastic resin composition.
  • the upper limit of Q / Ns is determined by the torque density of extrusion and the meshing rate. When the torque density is high, the filling rate can be increased, and a large Q / Ns operating region can be adopted.
  • Q / Ns depends on the screw diameter of the extruder.
  • Q / Ns is scaled up according to the following relationship in a twin screw extruder having a constant meshing ratio.
  • D of the screw element becomes changed from d2 to D1
  • the screw rotation speed Ns 1 in a large extruder the following mathematical formula (VIII) is established.
  • Q 1 / Ns 1 (D 1 / d 2 ) ⁇ ⁇ (q 2 / ns 2 ) (VIII)
  • Q / Ns is an index of the filling rate, but if the meshing ratio is constant, the effective volume is proportional to the cube of the center-to-core distance between adjacent screws. It is proportional to the cube of the distance.
  • the effective volume refers to the volume of the space where the material can be filled in the twin-screw extruder.
  • Q / Ns depends on the size of the extruder as described above, but the value obtained by dividing the Q / Ns by the calculated value of the cube of the center-to-core distance between adjacent screws is the Q / Ns density.
  • the Q / Ns density is a constant value even if the size of the extruder is different.
  • the ratio of the outer diameter and the valley diameter of the screw is 1.54, the screw diameter is ⁇ 40 mm, and the diameter is ⁇ 70 mm.
  • the distance between the centers is the third power ( ⁇ 40 mm is 35.9 cm 3 , and ⁇ 70 mm is 192.4 cm 3 ).
  • it becomes a common value of 0.013 [kg / h / rpm / cm 3 ].
  • the present invention provides an element for a reverse feed flight having a flight part having a notch formed in the outer periphery of the kneading part under an operating condition where the Q / Ns density is 0.013 [kg / h / rpm / cm 3 ] or more. Is used to efficiently produce a glass-reinforced resin composition that does not contain glass undefibrated with high productivity.
  • a preferable Q / Ns density is 0.015 [kg / h / rpm / cm 3 ] or more and 0.018 [kg / h / rpm / cm 3 ] or less.
  • Carbon masterbatch glass fiber bundle 3 mm long chopped strand obtained by bundling 2200 monofilaments having a diameter of 13 ⁇ m
  • the composition is as follows. PBT is 67.5 mass%, carbon masterbatch is 2.5 mass%, glass fiber bundle is 30 mass%
  • Extrusion conditions are as follows.
  • Extruder Same direction full meshing type twin screw extruder TEX44 ⁇ II (manufactured by Nippon Steel) Screw diameter D of screw element is 0.047m Extrusion conditions; Barrel temperature; 220 ° C Screw design; (1) Outline The screw of the extruder can be represented as shown in FIG. 1, and the outline of the screw pattern shown in FIG. 3 is as follows.
  • the short diameter / 2 of the notch on the outer periphery of the BMS is 3 mm, and the long diameter / 2 (the direction in which the notch extends) is 4.15 mm.
  • FIG. 5 (a) has a kneading part b1 with a forward feed kneading disk having a length of 1.0D, and the kneading part b2 has a reverse feed flight with a length of 0.5D.
  • the screw shown in FIG. 5 (a) has a kneading part b1 with a forward feed kneading disk having a length of 1.0D, and the kneading part b2 has a reverse feed flight with a length of 0.5D.
  • the screw shown in FIG. 5 (c) has a single kneading part b1 having a notch having a length of 1.0D.
  • the screw shown in FIG. 5 (d) is a single reverse feed kneading disc with kneading part b1 having a notch length of 2.0D.
  • the kneading part b2 has a reverse feed flight with a length of 0.5D.
  • the screw shown in FIG. 5 (e) has a kneading part b1 with a notch with a length of 2.5D and a kneading part b2 0.5D length reverse feed
  • the analysis method is a finite volume method, a SOR method, or a SIMPLE algorithm.
  • a steady analysis is first performed, and an unsteady analysis is performed using this as an initial value.
  • tracer particles were arranged (about 5000 particles), and local information concerning the tracer particles was collected (particle tracking analysis).
  • Minimum value T min of the time integral value of the shear stress integrates the shear stress of local information relating to the tracer particles time, in which determining the minimum value of the total particle.
  • the correlation line is different for each Q / Ns. Therefore, the function of the formula (IV) is approximated by the method of least squares.
  • the approximate curve is shown in FIG. As shown in FIG. 8, it was possible to approximate with one correlation line independent of Q / Ns. Note that ⁇ was 3.0.
  • Formula (IV) can be used to study the amount of undefined glass fiber bundles contained in the pellet, and the screw element that the kneading unit has It was confirmed that the amount of undefined glass fiber bundles contained in the pellets can be examined with a single mathematical formula (IV) even if the types of are different.
  • a kneading disk (FIG. 5 (a) and (FIG. 5 (a) and ((5))) having a composition of 70% by mass of PBT resin and 30% by mass of glass fiber (glass monofilament diameter 13 ⁇ m) and used in a kneading part of a twin screw extruder (screw diameter 47 mm).
  • b) Evaluation of each simulation using the symbol FK) and a single reverse feed screw element (FIG. 5 (c) (d) (e) symbol BMS) having a notched flight part.
  • the distribution of the shear stress history value obtained by performing the time integration of the shear stress of the local information applied to the tracer particles by the same method as described in FIG.
  • the center of the notch is the outer peripheral part
  • a kneading part is composed of a single screw element having a flight part in which an arc-shaped notch is formed with a composition of 70% by mass of PBT resin and 30% by mass of glass fiber.
  • the simulation when used in the No. 23 was performed. Specifically, the relationship between the minimum shear stress history value T min obtained by the same method as in Evaluation 1 and the number of notches (groove number) n was obtained.
  • the minimum shear stress history value T min is high when the number n of notches per lead length Le is 13 to 15. As the number of notches n is larger, the minimum shear stress history value Tmin is higher. However, since the mechanical strength of the screw element decreases as the number of notches n increases, it can be said that 13 to 15 is preferable.
  • the center of the notch is on the outer periphery of the flight part, the shape of the notch is an ellipse, the short diameter / 2 of the notch on the outer periphery is 3 mm, and the long diameter / 2 (the direction in which the notch extends) is 3 mm, 4 mm, 4.
  • the results of Evaluation 4 are shown in Table 3.
  • the minimum shear stress history value T min has a maximum value when the major axis of the groove depth of the notch / 2 is 4 to 5 mm.
  • the short diameter / 2 of the notch on the outer periphery is 0.064D
  • the range of the long diameter / 2 in the groove depth direction is 0.085D to 0.11D.
  • the minimum shear stress history value increases as the radius increases even when the arc forms a circle.
  • the minimum shear stress history value is larger when the circular arc is formed than the ellipse is formed.
  • Example-1 In the examples, the following materials were used.
  • Carbon masterbatch glass fiber bundle 3 mm long chopped strand obtained by bundling 2200 monofilaments having a diameter of 13 ⁇ m
  • the composition is as follows. PBT is 67.5 mass%, carbon masterbatch is 2.5 mass%, glass fiber bundle is 30 mass%
  • Extruder Same direction complete meshing type twin screw extruder TEX44 ⁇ II (manufactured by Nippon Steel) Screw element diameter D is 0.047mm
  • the cylinder temperature is 220 ° C., and the extrusion conditions are listed in Table 6 below.
  • the specific screw pattern used in the examples is as shown in FIG.
  • the center of the notch is on the flight periphery.
  • Table 7 shows the results using the extruder shown in FIG. 5 (a)
  • Table 8 shows the results obtained using the extruder shown in FIG. 5 (b)
  • Table 9 shows the results obtained using the extruder shown in FIG. 5 (c).
  • Table 10 shows the results using the extruder shown in FIG. 5D
  • Table 11 shows the results obtained using the extruder shown in FIG.
  • FIG. 10 is a diagram showing the relationship between the discharge rate and the number of pellets containing undefined glass fibers.
  • 10 (a) and 10 (b) when FK is used in the kneading part, if Q / Ns is set to 0.8 or more, undefined bundles of glass may remain in many pellets. I can confirm.
  • FIG. 11A is a diagram showing a case where Q / Ns is 0.5 and 1.0
  • FIG. 11B is a diagram showing a case where Q / Ns is 0.8.
  • Q / Ns 0.5
  • the discharge amount is 300 kg / h
  • the discharge resin temperature is Since it exceeds 310 ° C.
  • the limit of the discharge amount is 300 kg / h.
  • the discharge resin temperature is less than 310 ° C. up to 700 kg / h, and if Q / Ns is increased, the productivity of high-quality pellets is dramatically improved.
  • FIG. 12 shows the operation region (maximum discharge amount) that is not performed.
  • the discharge rate at which the undefined glass fiber bundle does not remain in the pellet is the length (L / D) of the kneading disk (FK) used in the kneading part, and a single reverse feed having a flight part in which a notch is formed. Since it depends on the length (L / D) of the screw element (BMS), the relationship is shown by a straight line.
  • the resin has an inherent limit temperature at which the thermal decomposition becomes significant and the processing becomes a limit as the temperature rises. When the temperature of the resin reaches that temperature during pellet production, the discharge becomes a limit.
  • the kneading disk (FK) and the single-feed reverse screw element (BMS) having a flight part with a notch also increase the resin temperature as the length (L / D) used in the twin-screw extruder increases.
  • . 12 (a) to 12 (c) also show the limit of the resin temperature, and the intersection of the limit of the resin temperature and the limit at which the undefined glass fiber bundle does not remain in the pellet is the productivity. It is a limit.
  • FIGS. 12 (a) and 12 (b) the productivity when using a single reverse feed screw element (BMS) having a flight part with a notch used is a kneading disk (FK). It is shown that it is 2 to 4 times the case.
  • FIG.12 (c) shows the result when Q / Ns is as small as 0.5 with the same material and the same extruder.
  • the resin temperature rises greatly, and the productivity is limited at the temperature limit. It shows that there is no significant difference in productivity compared to the ding disc (FK).
  • the Q / Ns in FIGS. 12A and 12B are 1.0 and 0.8.
  • the above-described Q / Ns densities are 0.014 [kg / h / rpm / cm 3 ] and 0.018 [kg / h / rpm / cm 3 ], respectively.
  • Q / Ns is 0.5 and the Q / Ns density at this time will be 0.009 [kg / h / rpm / cm ⁇ 3 >].
  • a single reverse feed screw element having a flight part in which a notch is formed has a Q / Ns density of 0.013 [kg / h / rpm / cm 3 ] or more in an operating region. Since the defibrated glass fiber bundle is difficult to remain in the pellet, high productivity can be realized.

Abstract

A process for producing pellets of a glass-fiber-reinforced thermoplastic resin composition is provided with which the productivity of pellets of a glass-fiber-reinforced thermoplastic resin composition can be rendered higher than in conventional processes and it is possible to minimize the probability that monofilament masses (unfibrillated glass-fiber bundles) remain in the produced pellets. In the process, a thermoplastic resin and glass fibers are kneaded with a screw which comprises a screw element having a specific shape, and pellets of a glass-fiber-reinforced thermoplastic resin composition are produced under specific conditions. The screw element having a specific shape is a single-thread back-feed screw element which has a flight part having circular-arc-shaped notches.

Description

ガラス繊維強化熱可塑性樹脂組成物ペレットの製造方法Method for producing glass fiber reinforced thermoplastic resin composition pellets
 本発明は、ガラス繊維強化熱可塑性樹脂組成物ペレットの製造方法に関する。 The present invention relates to a method for producing glass fiber reinforced thermoplastic resin composition pellets.
 熱可塑性樹脂にガラス繊維を混合混練し、ガラス繊維強化熱可塑性樹脂組成物ペレットを製造する方法としては、先ず、押出機に熱可塑性樹脂を供給し、該熱可塑性樹脂を溶融させる。次いで、溶融させた熱可塑性樹脂にガラス繊維を供給し、押出機内で熱可塑性樹脂とガラス繊維とを混合混練する。最後に、混合物を冷却、造粒する方法が一般的である。押出機は、一般的に、単軸押出機と同方向完全噛み合い型二軸押出機(以下、二軸押出機という場合がある)が使用される。単軸押出機と比較して、二軸押出機は、生産性と運転の自由度がより高いので、ガラス繊維強化熱可塑性樹脂組成物ペレットの製造には、二軸押出機がより好ましく用いられる。 As a method for producing glass fiber reinforced thermoplastic resin composition pellets by mixing and kneading glass fibers with a thermoplastic resin, first, a thermoplastic resin is supplied to an extruder and the thermoplastic resin is melted. Next, glass fibers are supplied to the molten thermoplastic resin, and the thermoplastic resin and glass fibers are mixed and kneaded in an extruder. Finally, a method of cooling and granulating the mixture is common. As the extruder, generally, a single-screw extruder and a fully meshed twin-screw extruder in the same direction (hereinafter sometimes referred to as a twin-screw extruder) are used. Compared with a single screw extruder, a twin screw extruder has higher productivity and freedom of operation, and therefore, a twin screw extruder is more preferably used for producing glass fiber reinforced thermoplastic resin pellets. .
 上記ガラス繊維強化熱可塑性樹脂組成物ペレットの製造において使用されるガラス繊維は、直径が6μm~20μmのモノフィラメントを300本~3000本くらいにまとめてロービングに巻き取ったものか、ロービングを長さ1~4mmにカットしたもの(以下、チョップドストランドという場合がある)である。チョップドガラスの方が容易に使用できるため、工業的にガラス繊維強化熱可塑性樹脂組成物ペレットを製造する場合においては、二軸押出機に熱可塑性樹脂を供給し、熱可塑性樹脂の溶融後、二軸押出機の途中からチョップドガラスを供給し、溶融状態の熱可塑性樹脂とガラス繊維とを混合混練し、混合物を押し出して、冷却固化する方法が最も多く行われている。 The glass fiber used in the production of the glass fiber reinforced thermoplastic resin composition pellets is a monofilament having a diameter of 6 μm to 20 μm, which is bundled into about 300 to 3000 pieces and wound on a roving, or the roving has a length of 1 Cut to 4 mm (hereinafter sometimes referred to as chopped strands). Since chopped glass can be used more easily, in the case of producing glass fiber reinforced thermoplastic resin composition pellets industrially, the thermoplastic resin is supplied to a twin screw extruder, and after the thermoplastic resin is melted, The most common method is to supply chopped glass from the middle of a shaft extruder, mix and knead a molten thermoplastic resin and glass fiber, extrude the mixture, and cool and solidify.
 上記の二軸押出機を用いて行うガラス繊維強化熱可塑性樹脂組成物ペレットの生産性は、二軸押出機の可塑化と混合混練の能力によって決定される。二軸押出機の可塑化能力は、スクリューデザイン、スクリューが発生するトルク、スクリューの溝深さ(スクリューの外径と谷径の差)、スクリューの回転数等に依存する。特許文献1には、2本のスクリューの芯間距離の3乗で割った値を、トルク密度と定義し可塑化能力が高く、生産性に優れた二軸押出機が開示されている。 The productivity of the glass fiber reinforced thermoplastic resin composition pellets using the above twin screw extruder is determined by the plasticizing and mixing and kneading ability of the twin screw extruder. The plasticizing ability of the twin screw extruder depends on the screw design, the torque generated by the screw, the groove depth of the screw (the difference between the outer diameter and the valley diameter of the screw), the rotational speed of the screw, and the like. Patent Document 1 discloses a twin screw extruder that has a high plasticizing ability and is excellent in productivity by defining a value obtained by dividing the distance between the centers of two screws by the cube of three as a torque density.
 また、二軸押出機の混合混練能力は、スクリューデザインにも依存する。二軸押出機の可塑化能力の向上に伴い、滞留時間が減少した。このため、短時間で効率のよい混合混練能力を持ったスクリューデザインの開発が求められている。このように二軸押出機の可塑化能力、混練能力を高める技術に関する検討が行なわれている。 Also, the mixing and kneading ability of the twin screw extruder depends on the screw design. The residence time decreased with the improvement of the plasticizing ability of the twin screw extruder. For this reason, development of a screw design having an efficient mixing and kneading ability in a short time is required. As described above, studies on techniques for increasing the plasticizing ability and kneading ability of a twin-screw extruder have been conducted.
 ところで、ガラス繊維としては、上述の通り、モノフィラメントが束になったものを使用する。ガラス繊維をモノフィラメントの束にせずに二軸押出機に供給する方法では、モノフィラメントが綿状になり、流動性がなくなり、取り扱いが難しいためである。上記チョップドストランドは、二軸押出機内で、解繊されモノフィラメントになるまで混合混練される。同時に、モノフィラメントの長さが、平均で200μm~800μmになるまでチョップドストランドはスクリュー等によって破断される。 By the way, as the glass fiber, a monofilament bundle is used as described above. This is because, in the method of supplying glass fibers to a twin-screw extruder without forming a bundle of monofilaments, the monofilament becomes cottony, loses fluidity, and is difficult to handle. The chopped strand is mixed and kneaded in a twin-screw extruder until it is fibrillated and becomes a monofilament. At the same time, the chopped strand is broken by a screw or the like until the monofilament length reaches an average of 200 μm to 800 μm.
 二軸押出機内での混合混練が不十分であると、モノフィラメントに解繊しないで、モノフィラメントの集合体(未解繊ガラス繊維束)の状態である、チョップドストランドの一部、もしくは全部が樹脂組成物ペレット中に残存する。ガラス繊維強化熱可塑性樹脂組成物ペレットに、チョップドストランドの一部、もしくは全部が残存した場合、射出成形において、ゲートに上記チョップドストランドの一部又は全部が詰まり、射出成形ができなくなるか、射出成形ができたとしても、成形品に上記チョップドストランドの一部又は全部が存在し、外観不良又は機能低下の原因となる。 If mixing and kneading in the twin-screw extruder is insufficient, the monofilament will not be defibrated, and a part or all of the chopped strand that is in the state of a monofilament aggregate (undefibrated glass fiber bundle) will be resin composition It remains in the product pellet. If some or all of the chopped strands remain in the glass fiber reinforced thermoplastic resin composition pellets, in injection molding, some or all of the chopped strands may be clogged in the gate, making injection molding impossible, or injection molding. Even if it is possible, some or all of the chopped strands are present in the molded product, resulting in poor appearance or reduced function.
 特に近年、エレクトロニクス関連の技術の進歩に伴い、部品として使用されるガラス繊維強化熱可塑性樹脂組成物は、薄肉で、複雑な形状に成形することが求められている。このような精密成形を行う成形機のゲートノズルは、1mm以下になる場合も多い。精密成形品においては、未解繊ガラス繊維束の存在が、非常に重大な欠陥になる。 Particularly in recent years, with the advancement of electronics-related technology, glass fiber reinforced thermoplastic resin compositions used as parts are required to be thin and molded into complex shapes. The gate nozzle of a molding machine that performs such precision molding is often 1 mm or less. In precision molded products, the presence of undefined glass fiber bundles becomes a very serious defect.
特表平11-512666号公報Japanese National Patent Publication No. 11-512666
 特許文献1の二軸押出機を使用すれば、生産性が向上するとされているが、特に上記のような精密成形品においては、高い吐出量の条件で滞留時間が短くなり、チョップドストランドを完全にモノフィラメントに解繊し、かつ、繊維長を短くすることが一層難しくなっている。 The use of the twin-screw extruder of Patent Document 1 is said to improve productivity. Particularly in the precision molded product as described above, the residence time is shortened under the condition of a high discharge amount, and the chopped strand is completely removed. It has become more difficult to defibrate monofilaments and shorten the fiber length.
 本発明は、上記課題を解決するためになされたものであり、その目的は、ガラス繊維強化熱可塑性樹脂組成物ペレットの生産性を従来よりも高めるとともに、製造されたペレット中にモノフィラメントの集合体(未解繊ガラス繊維束)が残存する確率を非常に低くすることが可能なガラス繊維強化熱可塑性樹脂組成物ペレットの製造方法を提供することにある。 The present invention has been made in order to solve the above-mentioned problems. The object of the present invention is to increase the productivity of glass fiber reinforced thermoplastic resin composition pellets as compared with the prior art, and to collect the monofilaments in the manufactured pellets. It is providing the manufacturing method of the glass fiber reinforced thermoplastic resin composition pellet which can make very low the probability that (un-defibrated glass fiber bundle) remains.
 本発明者らは、上記課題を解決するために鋭意研究を重ねた。
 その結果、数値解析によって得られる物理量である、平均せん断応力履歴、平均せん断歪履歴、比エネルギー、最短粒子流出時間等のいずれも、未解繊ガラス繊維束を含むペレット数N(単位重量あたりの未解繊ガラス繊維束を含むペレットの個数)と明確な相関がないこと、を見出すとともに、粒子追跡法によって導出される、各ガラス繊維束に加わるせん断応力の時間積分値の中で最も小さい値である最小せん断応力履歴値Tminが、未解繊ガラス繊維束を含むペレット数Nと相関があることを見出した。
 また、二軸押出機内で発生するせん断応力を解析し、吐出量Qとスクリュー回転数Nsとの比(Q/Ns)が一定の場合には、最小せん断応力履歴値Tminを制御することで、未解繊ガラス繊維を含む単位量あたりのペレット数Nを制御できることを見出した。
 さらに、上記比(Q/Ns)が一定でない場合であっても、未解繊ガラス繊維を含む単位量あたりのペレット数Nは上記Tmin及び(Q/Ns)を用いて特定の数式で表せることを見出した。
 さらに、熱可塑性樹脂とガラス繊維とを混練するスクリューが、特定の形状を有するスクリューエレメントを有し、特定の条件でガラス繊維強化熱可塑性樹脂組成物ペレットを製造することで、上記課題を解決できることを見出し、本発明を完成するに至った。より具体的には、本発明は以下のものを提供する。
The inventors of the present invention have made extensive studies to solve the above problems.
As a result, the physical quantities obtained by numerical analysis, such as average shear stress history, average shear strain history, specific energy, shortest particle outflow time, etc., are the number N of pellets containing undefined glass fiber bundles (per unit weight). It is found that there is no clear correlation with the number of pellets containing undefined glass fiber bundles) and the smallest value among the time integral values of shear stress applied to each glass fiber bundle derived by the particle tracking method. minimum shear stress history value T min is has been found that there is a correlation between the pellets number N containing non-fibrillated glass fiber bundles.
Further, the shear stress generated in the twin screw extruder is analyzed, and when the ratio (Q / Ns) between the discharge amount Q and the screw rotation speed Ns is constant, the minimum shear stress history value T min is controlled. The present inventors have found that the number N of pellets per unit amount including undefined glass fibers can be controlled.
Further, even if the ratio (Q / Ns) is not constant, the number N of pellets per unit amount including undefined glass fibers can be expressed by a specific formula using the T min and (Q / Ns). I found out.
Further, the screw for kneading the thermoplastic resin and the glass fiber has a screw element having a specific shape, and can produce the glass fiber reinforced thermoplastic resin composition pellets under specific conditions, thereby solving the above-mentioned problem. As a result, the present invention has been completed. More specifically, the present invention provides the following.
 (1) 互いに回転して噛み合うスクリューを備えた二軸の押出機を用いて、ガラス繊維強化熱可塑性樹脂組成物ペレットを製造する方法であって、熱可塑性樹脂を前記押出機に供給して加熱、混練し可塑化する可塑化工程と、前記可塑化工程後に、一束以上のガラス繊維束を前記押出機に供給して、前記ガラス繊維束を解繊しながら、解繊されたガラス繊維と可塑化した前記熱可塑性樹脂とをスクリューで混練する混練工程と、前記混練工程後に、ガラス繊維強化熱可塑性樹脂組成物を押出す押出工程と、押出された前記ガラス繊維強化熱可塑性樹脂組成物をペレット化するペレット化工程と、を備え、前記混練工程において、前記スクリューは、円弧状の切り欠きが形成されたフライト部を有する一条の逆送りスクリューエレメントを一以上有し、前記一条の逆送りスクリューエレメントにおけるスクリューのトルクを、前記噛み合うスクリュー間の芯間距離の3乗で除した値であるトルク密度が、11(Nm/cm)以上であり、前記混練工程におけるスクリュー回転数をNsとし、前記押出工程におけるガラス繊維強化熱可塑性樹脂組成物の吐出量をQとしたときに、Q/Nsを、前記噛み合うスクリュー間の芯間距離の3乗で除した値であるQ/Ns密度が、0.013(kg/h/rpm/cm)であるガラス繊維強化熱可塑性樹脂組成物ペレットの製造方法。 (1) A method for producing glass fiber reinforced thermoplastic resin pellets using a twin screw extruder provided with screws that rotate and mesh with each other, wherein the thermoplastic resin is supplied to the extruder and heated. A plasticizing step of kneading and plasticizing, and after the plasticizing step, supplying one or more bundles of glass fibers to the extruder, defibrating the glass fibers while disentangling the glass fiber bundles, A kneading step of kneading the plasticized thermoplastic resin with a screw, an extrusion step of extruding the glass fiber reinforced thermoplastic resin composition after the kneading step, and the extruded glass fiber reinforced thermoplastic resin composition. And in the kneading step, the screw includes one or more reverse feed screw elements each having a flight portion in which an arcuate cutout is formed. The torque density, which is a value obtained by dividing the torque of the screw in the single reverse feed screw element by the cube of the inter-center distance between the engaging screws, is 11 (Nm / cm 3 ) or more, When the screw rotation speed in the kneading step is Ns and the discharge amount of the glass fiber reinforced thermoplastic resin composition in the extruding step is Q, Q / Ns is divided by the cube of the center-to-core distance between the engaging screws. A method for producing glass fiber reinforced thermoplastic resin pellets having a Q / Ns density of 0.013 (kg / h / rpm / cm 3 ).
 (2) 前記一条の逆送りスクリューエレメントは、下記不等式(I)から(III)を満たす(1)に記載のガラス繊維強化熱可塑性樹脂組成物ペレットの製造方法。
 
0.05D≦r≦0.15D   (I)
7≦n≦20          (II)
Le≦0.3D         (III)
 
(上記不等式(I)中のrは、上記円弧状を形成する円の半径又は上記円弧状を形成する楕円の長径/2、あるいは短径/2であり、上記不等式(II)中のnは、上記一条の逆送りスクリューエレメントの1リード長あたりの切り欠き数であり、上記不等式(III)中のLeは、上記一条の逆送りスクリューエレメントのリード長であり、上記不等式(I)、(II)中のDは、スクリュー口径である。)
(2) The method for producing a glass fiber reinforced thermoplastic resin composition pellet according to (1), wherein the one reverse feed screw element satisfies the following inequalities (I) to (III).

0.05D ≦ r ≦ 0.15D (I)
7 ≦ n ≦ 20 (II)
Le ≦ 0.3D (III)

(The r in the inequality (I) is the radius of the circle forming the arc or the major axis / 2 or the minor axis / 2 of the ellipse forming the arc, and n in the inequality (II) is , The number of notches per one lead length of the one reverse feed screw element, and Le in the inequality (III) is the lead length of the one reverse feed screw element, the inequality (I), ( D) in II) is the screw diameter.)
 (3) 前記熱可塑性樹脂は、ポリブチレンテレフタレート系樹脂から構成される(1)又は(2)に記載のガラス繊維強化熱可塑性樹脂組成物ペレットの製造方法。 (3) The method for producing glass fiber reinforced thermoplastic resin composition pellets according to (1) or (2), wherein the thermoplastic resin is composed of a polybutylene terephthalate resin.
 (4) 前記熱可塑性樹脂は、液晶性樹脂から構成される(1)又は(2)に記載のガラス繊維強化熱可塑性樹脂組成物ペレットの製造方法。 (4) The method for producing a glass fiber reinforced thermoplastic resin pellet according to (1) or (2), wherein the thermoplastic resin is composed of a liquid crystalline resin.
 本発明によれば、ガラス繊維強化熱可塑性樹脂組成物ペレットの生産性を従来よりも高めるとともに、製造されたペレット中にモノフィラメントの集合体(未解繊ガラス繊維束)が残存する確率を非常に低くすることができる。 According to the present invention, the productivity of the glass fiber reinforced thermoplastic resin composition pellets is increased more than before, and the probability that monofilament aggregates (undefined glass fiber bundles) remain in the manufactured pellets is very high. Can be lowered.
図1は、押出機のスクリュー構成の一例を示す模式図である。FIG. 1 is a schematic diagram illustrating an example of a screw configuration of an extruder. 図2は、円弧状の切り欠きが形成されたフライト部を有する逆送り一条のスクリューエレメントを模式的に示す図である。FIG. 2 is a diagram schematically illustrating a reverse feed single screw element having a flight portion in which an arcuate cutout is formed. 図3は、実施例で使用した押出機のスクリュー構成を示す模式図である。FIG. 3 is a schematic diagram showing the screw configuration of the extruder used in the examples. 図4は、実施例で使用した具体的なスクリューパターンを示す図である。FIG. 4 is a diagram showing a specific screw pattern used in the example. 図5は、実施例で使用した具体的なスクリュー形状を示す図である。FIG. 5 is a diagram showing a specific screw shape used in the example. 図6は、実施例で使用した押出機のQ/Ns=1.0の条件で、最小剪断応力履歴値(Pa・sec)とガラス繊維束の一部又は全部が未解繊のペレット数(個/ペレット10kg)との関係を示す図である。FIG. 6 shows the minimum shear stress history value (Pa · sec) and the number of pellets in which part or all of the glass fiber bundle is undefined (Q / Ns = 1.0 of the extruder used in the examples). It is a figure which shows the relationship with a piece / pellet 10kg). 図7は、実施例で使用した押出機のQ/Ns=1.0、Q/Ns=0.8、Q/Ns=0.5の条件での、最小剪断応力履歴値(Pa・sec)とガラス繊維束の一部又は全部が未解繊のペレット数(個/ペレット10kg)との関係(相関線)を示す図である。FIG. 7 shows the minimum shear stress history value (Pa · sec) under the conditions of Q / Ns = 1.0, Q / Ns = 0.8 and Q / Ns = 0.5 of the extruder used in the examples. It is a figure which shows the relationship (correlation line) with the number of pellets (one piece / pellet 10kg) in which some or all of the glass fiber bundles are undefined. 図8は、実施例で使用した押出機のQ/Nsに依存しない最小剪断応力履歴値(Pa・sec)とガラス繊維束の一部又は全部が未解繊のペレット数(個/ペレット10kg)との関係(相関線)を示す図である。FIG. 8 shows the minimum shear stress history value (Pa · sec) independent of the Q / Ns of the extruder used in the examples, and the number of pellets in which part or all of the glass fiber bundle is not defibrated (pieces / pellet 10 kg). It is a figure which shows the relationship (correlation line). 図9は、スクリューエレメントの種類毎の剪断応力履歴値の分布を示す図である。FIG. 9 is a diagram showing a distribution of shear stress history values for each type of screw element. 図10は、吐出量と未解繊ガラス繊維を含むペレット数との関係を示す図である。FIG. 10 is a diagram showing the relationship between the discharge rate and the number of pellets containing undefined glass fibers. 図11は、吐出量と吐出樹脂温度(ダイから吐出される樹脂組成物の温度)との関係を示す図である。FIG. 11 is a diagram showing the relationship between the discharge amount and the discharge resin temperature (the temperature of the resin composition discharged from the die). 図12は、製造されたペレット中に未解繊ガラス繊維束が残存しない運転領域(最大吐出量)を示す図である。FIG. 12 is a diagram showing an operation region (maximum discharge amount) in which no undefined glass fiber bundle remains in the manufactured pellet.
 以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。 Hereinafter, embodiments of the present invention will be described. In addition, this invention is not limited to the following embodiment.
<ガラス繊維強化熱可塑性樹脂組成物ペレットの製造方法>
 本発明のガラス繊維強化熱可塑性樹脂組成物ペレットの製造方法は、以下の工程を備える。
 熱可塑性樹脂を押出機に供給して加熱、混練し可塑化する可塑化工程。
 上記可塑化工程後に、一束以上のガラス繊維束を上記押出機に供給して、上記ガラス繊維束を解繊しながら、解繊されたガラス繊維と可塑化した前記熱可塑性樹脂とをスクリューで混練する混練工程。
 上記混練工程後に、ガラス繊維強化熱可塑性樹脂組成物を押出す押出工程。
 押出された上記ガラス繊維強化熱可塑性樹脂組成物をペレット化するペレット化工程。
<Method for Producing Glass Fiber Reinforced Thermoplastic Resin Composition Pellet>
The manufacturing method of the glass fiber reinforced thermoplastic resin composition pellet of the present invention includes the following steps.
A plasticizing process in which a thermoplastic resin is supplied to an extruder and heated, kneaded and plasticized.
After the plasticization step, one or more glass fiber bundles are supplied to the extruder, and the glass fiber bundles and the plasticized thermoplastic resin are screwed together with the screws while the glass fiber bundles are defibrated. A kneading step for kneading.
An extrusion step of extruding the glass fiber reinforced thermoplastic resin composition after the kneading step.
A pelletizing step of pelletizing the extruded glass fiber reinforced thermoplastic resin composition.
 本発明の製造方法は、混練工程において、特定のスクリューエレメントを備えるスクリューを用いる。 The production method of the present invention uses a screw having a specific screw element in the kneading step.
 以下、図1に記載の二軸押出機を用いる場合を例に、本発明のガラス繊維強化熱可塑性樹脂組成物ペレットの製造方法を説明する。図1には、シリンダー1と、シリンダーに配設されたスクリュー2と、シリンダー1の下流側端部に設けられたダイ3と、を備える二軸押出機が示されている。そして、図1には、上記スクリュー2のスクリュー構成も示されている。具体的に、スクリュー2は、供給部20、可塑化部21、搬送部22、混練部23を、上流側からこの順で有する。供給部20及び可塑化部21で可塑化工程が行われる。搬送部22及び混練部23で混練工程が行われる。混練部23以降で押出工程が行われる。そして、押出機のダイ3からガラス繊維強化熱可塑性樹脂組成物が押し出されてからペレット化工程が行われる。 Hereinafter, the manufacturing method of the glass fiber reinforced thermoplastic resin composition pellets of the present invention will be described taking the case of using the twin screw extruder shown in FIG. 1 as an example. FIG. 1 shows a twin-screw extruder including a cylinder 1, a screw 2 disposed in the cylinder, and a die 3 provided at a downstream end portion of the cylinder 1. FIG. 1 also shows the screw configuration of the screw 2. Specifically, the screw 2 includes a supply unit 20, a plasticizing unit 21, a transport unit 22, and a kneading unit 23 in this order from the upstream side. A plasticizing process is performed in the supply unit 20 and the plasticizing unit 21. A kneading step is performed in the conveying unit 22 and the kneading unit 23. The extrusion process is performed after the kneading section 23. And a pelletization process is performed after the glass fiber reinforced thermoplastic resin composition is extruded from the die | dye 3 of an extruder.
 また、スクリュー2が配設されたシリンダー1は、供給部20に熱可塑性樹脂等の原料を供給するためのホッパ10と、搬送部22にガラス繊維束等の副原料を供給するためのフィード口11と、真空ポンプ等の減圧手段を有し所定の真空度で真空脱気を行なうための真空ベント12とを有する。 The cylinder 1 in which the screw 2 is disposed includes a hopper 10 for supplying a raw material such as a thermoplastic resin to the supply unit 20 and a feed port for supplying auxiliary materials such as a glass fiber bundle to the conveyance unit 22. 11 and a vacuum vent 12 having vacuuming means such as a vacuum pump for performing vacuum deaeration at a predetermined degree of vacuum.
[可塑化工程]
 可塑化工程では、ホッパ10から供給された熱可塑性樹脂を移送・溶融して、均質な溶融体を作る。先ず、熱可塑性樹脂について説明し、次いで、ホッパから供給された熱可塑性樹脂が均質な溶融体になるまでの可塑化工程の詳細を説明する。
[Plasticization process]
In the plasticizing step, the thermoplastic resin supplied from the hopper 10 is transferred and melted to make a homogeneous melt. First, the thermoplastic resin will be described, and then the details of the plasticizing process until the thermoplastic resin supplied from the hopper becomes a homogeneous melt will be described.
(熱可塑性樹脂)
 熱可塑性樹脂の種類は特に限定されない。熱可塑性樹脂の具体例としては、ポリプロピレン、ポリアセタール、液晶性樹脂、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンサルファイド、ナイロン66等が挙げられる。これらの熱可塑性樹脂の中でも特に、粘性の低いものほど、上記ガラス繊維束の未解繊の問題は生じやすい。粘性が低いと溶融状態ではせん断応力が発生し難くなり、モノフィラメントを収束したガラス繊維束は、解繊し難くなるからである。粘性の低い樹脂としては、例えば、ポリブチレンテレフタレート、液晶性樹脂、ポリエチレンテレフタレート、ナイロン66等が挙げられる。
(Thermoplastic resin)
The kind of thermoplastic resin is not particularly limited. Specific examples of the thermoplastic resin include polypropylene, polyacetal, liquid crystal resin, polybutylene terephthalate, polyethylene terephthalate, polyphenylene sulfide, nylon 66, and the like. Among these thermoplastic resins, the lower the viscosity, the more likely the problem of undefining the glass fiber bundle is. This is because if the viscosity is low, shear stress hardly occurs in the molten state, and the glass fiber bundle in which the monofilaments are converged is difficult to be defibrated. Examples of the low-viscosity resin include polybutylene terephthalate, liquid crystal resin, polyethylene terephthalate, and nylon 66.
 一般的に、原料となる上記熱可塑性樹は、ペレット状に成形したものが使用される。なお、その他の成分を含む熱可塑性樹脂組成物をペレット状にしたものを原料として用いてもよい。 Generally, the thermoplastic tree used as a raw material is shaped into a pellet. In addition, you may use what made the thermoplastic resin composition containing other components into the pellet form.
(可塑化工程の詳細)
 可塑化工程は、スクリュー2の供給部20と可塑化部21で行われる。供給部20で使用するスクリューエレメントとしては、例えばフライトからなる搬送用のエレメント等が挙げられる。可塑化部21に使用するスクリューエレメントとしては、一般的には、逆フライト、シールリング、順ニーディングディスク、逆ニーディングディスク等のスクリューエレメントの組み合わせ等が挙げられる。
(Details of plasticization process)
The plasticizing process is performed in the supply unit 20 and the plasticizing unit 21 of the screw 2. Examples of the screw element used in the supply unit 20 include a transport element made of a flight. Examples of the screw element used for the plasticizing portion 21 generally include a combination of screw elements such as reverse flight, seal ring, forward kneading disk, and reverse kneading disk.
 供給部20では樹脂ペレットを移送する。供給部20は、樹脂ペレットをホッパ10側からダイ3方向側に移送する働きをする。溶融の準備段階として外部ヒータによる予熱が行われる場合が一般的である。また、樹脂ペレットは、回転するスクリュー2とシリンダー1に挟まれるため、樹脂ペレットには摩擦力が加わり、摩擦熱が発生する。上記予熱や摩擦熱によって、樹脂ペレットが溶融し始める場合もある。場合によっては、供給部20では、樹脂ペレットの移送がスムーズに進むように、スクリュー2の溝深さの調整、予熱の温度調製を従来公知の方法で行う必要がある。 Supplied part 20 transfers resin pellets. The supply unit 20 functions to transfer the resin pellets from the hopper 10 side to the die 3 direction side. In general, preheating by an external heater is performed as a melting preparation stage. Further, since the resin pellet is sandwiched between the rotating screw 2 and the cylinder 1, a frictional force is applied to the resin pellet to generate frictional heat. The resin pellets may start to melt due to the preheating or frictional heat. In some cases, the supply unit 20 needs to adjust the groove depth of the screw 2 and adjust the preheating temperature by a conventionally known method so that the transfer of the resin pellets proceeds smoothly.
 可塑化部21では、供給部20から移送された樹脂ペレットに圧力を加えて樹脂ペレットを溶融する。可塑化部21では、樹脂ペレットにせん断応力が加わる結果、樹脂ペレットは溶融しながら、さらに前方(ホッパ10からダイ3の方向)へと移送される。 The plasticizing unit 21 applies pressure to the resin pellets transferred from the supply unit 20 to melt the resin pellets. In the plasticizing part 21, as a result of applying shear stress to the resin pellets, the resin pellets are further transferred forward (in the direction from the hopper 10 to the die 3) while melting.
[混練工程]
 混練工程では、可塑化工程後に、一束以上のガラス繊維束を押出機に供給して、上記ガラス繊維束を解繊しながら、解繊されたガラス繊維と可塑化工程で溶融した熱可塑性樹脂とを混練する。混練工程は、スクリュー2の搬送部22と混練部23とで行われる。搬送部22で使用するスクリューエレメントとしては、例えば、順フライトからなる搬送用のエレメントが挙げられる。また、混練部23で使用するスクリューエレメントとしては、逆フライト、シールリング、順ニーディングディスク、逆ニーディングディスク等のスクリューエレメントの組み合わせが一般的である。
[Kneading process]
In the kneading step, after the plasticizing step, one or more glass fiber bundles are supplied to an extruder and the glass fiber bundle is defibrated and melted in the plasticizing step with the defibrated glass fibers. And knead. The kneading step is performed by the conveying unit 22 and the kneading unit 23 of the screw 2. As a screw element used by the conveyance part 22, the element for conveyance which consists of a forward flight is mentioned, for example. Moreover, as a screw element used in the kneading part 23, the combination of screw elements, such as a reverse flight, a seal ring, a forward kneading disk, a reverse kneading disk, is common.
 本発明の製造方法においては、スクリュー2の混練部22の少なくとも一部に、外周に円弧状の切り欠きが形成されたフライト部を有する一条の逆送りスクリューエレメントを備える。混練部22の少なくとも一部に上記のスクリューエレメントを備えることで、製造されるペレット中に未解繊のガラス繊維束がほとんど残存しなくなる。 In the manufacturing method of the present invention, at least a part of the kneading part 22 of the screw 2 is provided with a single reverse feed screw element having a flight part in which an arc-shaped notch is formed on the outer periphery. By providing the screw element in at least a part of the kneading part 22, almost no undefined glass fiber bundle remains in the manufactured pellet.
 先ず、ガラス繊維束について簡単に説明する。ガラス繊維束は、300本から3000本のモノフィラメントが束になったチョップドストランドである。特に、1100本か2200本が束になったチョップドストランドが好ましく使用されている。また、モノフィラメントの径は、特に限定されないが、6μmから20μmの範囲のものが好ましく、6μm、10μm、13μmのものが、市場では多く流通している。なお、ロービングのままモノフィラメントの束を連続的に二軸押出機に供給することもできる。しかし、ロービングをカットしたチョップドストランドは、輸送、二軸押出機への供給において、取り扱いが容易である。 First, the glass fiber bundle will be briefly described. The glass fiber bundle is a chopped strand in which 300 to 3000 monofilaments are bundled. In particular, chopped strands in which 1100 pieces or 2200 pieces are bundled are preferably used. The diameter of the monofilament is not particularly limited, but is preferably in the range of 6 μm to 20 μm, and those having a diameter of 6 μm, 10 μm, and 13 μm are widely distributed in the market. A bundle of monofilaments can be continuously fed to the twin screw extruder while roving. However, the chopped strand from which roving is cut is easy to handle in transportation and supply to a twin screw extruder.
 搬送部22では、フィード口11から投入されたガラス繊維束と溶融樹脂とを混練部23まで搬送する。この搬送部22においては、スクリューの溝内部にガラス繊維束や溶融樹脂が完全に充満せず、ガラス繊維束にせん断力がかからない領域である。 In the conveyance unit 22, the glass fiber bundle and the molten resin introduced from the feed port 11 are conveyed to the kneading unit 23. In this conveyance part 22, it is an area | region where a glass fiber bundle and molten resin are not completely filled into the groove | channel of a screw, but a shearing force is not applied to a glass fiber bundle.
 混練部23では、ガラス繊維束及び溶融樹脂にせん断応力がかかる。せん断応力がかかることでガラス繊維束の解繊及びモノフィラメントと溶融樹脂との混練が進む。 In the kneading part 23, shear stress is applied to the glass fiber bundle and the molten resin. When the shear stress is applied, the glass fiber bundle is defibrated and the monofilament and the molten resin are kneaded.
[押出工程、ペレット化工程]
 ガラス繊維強化熱可塑性樹脂組成物がどのように押出され、どのようにペレット化されるかは特に限定されない。例えば、ダイ3から棒状に押出されたガラス繊維強化熱可塑性樹脂組成物を切断してペレット化することができる。なお、切断方法は特に限定されず、従来公知の方法を利用することができる。なお、押出工程における吐出量が吐出量Qにあたり、スクリューの回転数が回転数Nsにあたる。
[Extrusion process, pelletizing process]
There are no particular limitations on how the glass fiber reinforced thermoplastic resin composition is extruded and how it is pelletized. For example, the glass fiber reinforced thermoplastic resin composition extruded into a rod shape from the die 3 can be cut and pelletized. The cutting method is not particularly limited, and a conventionally known method can be used. The discharge amount in the extrusion process corresponds to the discharge amount Q, and the rotation speed of the screw corresponds to the rotation speed Ns.
<スクリューエレメント>
 従来のスクリューの混練部としては、逆フライト、シールリング、順ニーディングディスク、逆ニーディングディスク等のスクリューエレメントの組み合わせが一般的である。しかし、Q/Nsが大きい条件で、高吐出の場合、一部のガラス繊維束は解繊されず、未解繊のまま残存することになる。
<Screw element>
As a conventional kneading part of a screw, a combination of screw elements such as a reverse flight, a seal ring, a forward kneading disk, and a reverse kneading disk is generally used. However, in the case of high discharge under conditions where Q / Ns is large, some glass fiber bundles are not defibrated and remain undefibrated.
 本発明は、押出機内で各ガラス繊維束が受けるせん断応力履歴値を指標として、決められた製造方法である。具体的には、各ガラス繊維束が二軸押出機内で受けるせん断応力履歴値の中の最小値である最小せん断応力履歴値Tminを指標とする。最小せん断応力履歴値Tminを指標とすることで、未解繊ガラス繊維束が残存する製造方法と、未解繊ガラス繊維束がほとんど残存しない製造方法とを区別することができる。本発明は、未解繊ガラス繊維束が残存したペレットをほとんど生じさせないガラス繊維強化熱可塑性樹脂組成物ペレットの製造方法である。 The present invention is a production method determined by using as an index the shear stress history value received by each glass fiber bundle in the extruder. Specifically, as an index the minimum shear stress history value T min is the minimum value of the shear stress history value each glass fiber bundle is subjected in a twin-screw extruder. By using the minimum shear stress history value T min as an index, it is possible to distinguish between a production method in which an undisentangled glass fiber bundle remains and a production method in which an undefined glass fiber bundle hardly remains. This invention is a manufacturing method of the glass fiber reinforced thermoplastic resin composition pellet which hardly produces the pellet with which the undisentangled glass fiber bundle remained.
 先ず、最小せん断応力履歴値Tminを指標にすることについて説明する。ガラス繊維強化熱可塑性樹脂組成物の吐出量Q、混練部23におけるスクリューエレメントのスクリュー口径D、スクリュー回転数Ns、最小せん断応力履歴値Tmin、単位量あたりの未解繊ペレット数N(未解繊のガラス繊維束を含むペレットの数)に基づいて、下記数式(IV)を導出する。下記数式(IV)はQ/Nsの条件が変化しても、一つの式で、未解繊ガラス繊維束を含むペレットの量を検討できる点においても有用である。また、混練部が有するスクリューエレメントの種類が異なっても一つの数式(IV)で、未解繊ガラス繊維束を含むペレットの量を検討できる。ただし二軸押出機のサイズが変更になると、数式(IV)を導出しなおす必要がある。同じ吐出量Q及び同じスクリュー回転数Nsの条件であっても、小型の二軸押出機と大型の二軸押出機とでは、シリンダーからの伝熱量が異なり、溶融樹脂にかかる熱エネルギーが異なるからである。
Figure JPOXMLDOC01-appb-M000001
First, using the minimum shear stress history value Tmin as an index will be described. The discharge amount Q of the glass fiber reinforced thermoplastic resin composition, the screw diameter D of the screw element in the kneading section 23, the screw rotation speed Ns, the minimum shear stress history value T min , the number N of undefined pellets per unit amount (undissolved The following formula (IV) is derived based on the number of pellets including fiber glass fiber bundles. The following formula (IV) is also useful in that the amount of pellets containing undefined glass fiber bundles can be studied with one formula even if the Q / Ns condition changes. Moreover, even if the kind of screw element which a kneading part has differs, the quantity of the pellet containing an undefined glass fiber bundle can be examined with one numerical formula (IV). However, when the size of the twin-screw extruder is changed, it is necessary to derive the formula (IV) again. Even under the same discharge amount Q and the same screw rotation speed Ns, a small twin screw extruder and a large twin screw extruder have different heat transfer amounts from the cylinders and heat energy applied to the molten resin. It is.
Figure JPOXMLDOC01-appb-M000001
 使用する二軸押出機を決めると、一義的にスクリュー口径Dが決まる。このスクリュー口径D、任意に決定したスクリューの混練部23のリード長Le、任意に決定した成形条件である吐出量Q、スクリュー回転数Nsに基づいて、最小せん断応力履歴値Tminを導出する。 When the twin screw extruder to be used is determined, the screw diameter D is uniquely determined. Based on the screw diameter D, the arbitrarily determined lead length Le of the kneading part 23 of the screw, the discharge amount Q as the arbitrarily determined molding condition, and the screw rotational speed Ns, the minimum shear stress history value T min is derived.
 最小せん断応力履歴値Tminは、従来公知の二軸押出機内3次元流動解析ソフトウェアを用いて導出することができる。例えば、実施例に記載するような、粒子追跡解析で導出できる。最小せん断応力履歴値Tminはせん断応力の時間積分を行うことで得られる時間積分値であるが、積分区間は、溶融樹脂及びガラス繊維束にせん断応力がかかる区間であり、図1に示す押出機の場合には、混練部23の区間である。 The minimum shear stress history value T min can be derived using conventionally known three-dimensional flow analysis software in a twin-screw extruder. For example, it can be derived by particle tracking analysis as described in the examples. The minimum shear stress history value T min is a time integration value obtained by performing time integration of shear stress. The integration section is a section where shear stress is applied to the molten resin and the glass fiber bundle, and the extrusion shown in FIG. In the case of a machine, it is a section of the kneading unit 23.
 最小せん断応力履歴値Tminの導出方法は、特に限定されない。市販のソフトウェアを用いて導出する方法、実験により導出する方法等が挙げられる。 The method for deriving the minimum shear stress history value Tmin is not particularly limited. A method of deriving using commercially available software, a method of deriving by experiment, and the like can be mentioned.
 未解繊ペレット数Nについては、実験的に導出してもよいし、解析手法等を用いて導出してもよい。 The number N of undefibrated pellets may be derived experimentally or using an analysis method or the like.
 そして、これらの導出結果に基づき、横軸を最小せん断応力履歴値Tmin、縦軸を未解繊ペレット数Nとして、上記数式(IV)を表すグラフを作成することで、数式(IV)を導出する。 Then, based on these derivation results, the horizontal axis is the minimum shear stress history value T min , the vertical axis is the number N of undefined pellets, and a graph representing the above formula (IV) is created, thereby formula (IV) To derive.
 このグラフから未解繊ペレット数Nを所望の値以下にするために必要な最小せん断応力履歴値Tminを導出することができる。 From this graph, it is possible to derive the minimum shear stress history value T min necessary for setting the number N of undefined pellets to a desired value or less.
 続いて、二軸押出機のサイズを変更する場合について説明する。この場合、上記の関係式を導出しなおす必要があるが、所定の二軸押出機の場合の上記数式(IV)を既に導出している場合には、以下の方法で容易に、異なるサイズの二軸押出機を使用する場合に適用できる数式を導出することができる。 Next, the case of changing the size of the twin screw extruder will be described. In this case, the above relational expression needs to be derived again. However, when the above formula (IV) in the case of a predetermined twin-screw extruder has already been derived, different sizes can be easily obtained by the following method. Formulas applicable when using a twin screw extruder can be derived.
 スクリューエレメントのスクリュー口径Dが、d1からd2に変更になる場合、小型の押出機での吐出量Qと大型の押出機での吐出量Qとの間には下記数式(V)が成立し、小型の押出機でのスクリュー回転数Nsと大型の押出機でのスクリュー回転数Nsとの間には下記数式(VI)が成立する。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Screw diameter D of the screw element, vary from d1 to d2, the following equation (V) is established between the discharge amount Q M in the discharge amount Q m and a large extruder in a small extruder and, following equation (VI) is established between the screw rotation speed Ns M at a screw rotation speed Ns m and a large extruder a small extruder.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 溶融樹脂にかかる比エネルギーが同等になるように上記数式(V)、(VI)のδ及びεを決定する。δ及びεの決定方法としては、理論的に決定する方法、実験的に決定する方法のいずれでもよい。理論的に決定する方法としては、一般的には、断熱状態と仮定して、目的関数を比エネルギー、あるいは総せん断量、滞留時間等が、小型機と大型機で一致するように、パラメーターδ及びεが導出される。小型機と大型機の伝熱量の差を仮定して、目的関数としての比エネルギーが、小型機と大型機で一致するように、パラメーターδ及びεを導出することもできる。実験的に決定する方法としては、目的関数を、比エネルギーとするか、もしくは、物性を示すパラメーターを採用し、目的関数が、小型機と大型機とで一致するように、統計的にパラメーターδ及びεを算出するような方法が挙げられる。 Δ and ε in the above formulas (V) and (VI) are determined so that the specific energies applied to the molten resin are equal. As a method for determining δ and ε, either a theoretical determination method or an experimental determination method may be used. As a theoretical determination method, in general, assuming an adiabatic state, the parameter δ is set so that the specific function, the total shear amount, the residence time, etc. of the objective function are the same between the small machine and the large machine. And ε are derived. Assuming the difference in heat transfer between the small machine and the large machine, the parameters δ and ε can be derived so that the specific energy as the objective function matches between the small machine and the large machine. As a method for experimental determination, the objective function is a specific energy, or a parameter indicating physical properties is adopted, and the parameter δ is statistically set so that the objective function matches between a small machine and a large machine. And a method of calculating ε.
 小型の押出機と大型の押出機との間に成立する上記数式(V)、(VI)を導出することで、大型の押出機に成立する単位量あたりの未解繊ペレット数Nと最小せん断応力履歴値Tminとの間の下記数式(VII)を容易に導出することができる。
Figure JPOXMLDOC01-appb-M000004
By deriving the above formulas (V) and (VI) that are established between the small extruder and the large extruder, the number N of undefibrated pellets per unit amount and the minimum shearing that is established in the large extruder The following mathematical formula (VII) between the stress history value T min can be easily derived.
Figure JPOXMLDOC01-appb-M000004
 このように、最小せん断応力履歴値Tminの値が大きいほど、未解繊ペレット数Nの値が少なくなる傾向にある。したがって、最小せん断応力履歴値Tminが大きくなるような条件で、ガラス繊維強化熱可塑性樹脂組成物ペレットを製造する必要がある。 Thus, the larger the value of the minimum shear stress history value T min, there is a tendency that the value of the non-fibrillation pellets number N is reduced. Therefore, it is necessary to manufacture glass fiber reinforced thermoplastic resin composition pellets under conditions that increase the minimum shear stress history value Tmin .
 外周に切り欠きが形成されたフライト部を有する一条のスクリューエレメントは、最小せん断応力履歴値Tminが大きくなる傾向にあるため好ましい。外周に切り欠きが形成されたフライト部を有する一条のスクリューエレメント自体は公知であり、例えば、特許文献(DE4134026A1)に記載されている。 A single screw element having a flight part with a notch formed on the outer periphery is preferable because the minimum shear stress history value Tmin tends to increase. A single screw element itself having a flight part with a notch formed on the outer periphery is known, and is described, for example, in Patent Document (DE4134026A1).
 特に、以下に説明する一条の逆送りスクリューエレメントを使用することで、未解繊ペレット数を小さい値に抑えることができる。特に、上記切り欠きを有するスクリューエレメントの中でも、円弧状の切り欠きを有し逆送りのものを使用することが、上記最小剪断応力履歴値Tminの値を、逆フライト、シールリング、順ニーディングディスク、逆ニーディングディスク等のスクリューエレメントの組み合わせよりは大きくでき、他のスクリューエレメントよりも短時間で、ガラス繊維束を解繊できるという理由で好ましい。 In particular, by using a single reverse feed screw element described below, the number of undefibrated pellets can be suppressed to a small value. In particular, among the screw elements having the notches, it is possible to use a reverse-feeding one having an arc-shaped notch, and the value of the minimum shear stress history value Tmin is set to reverse flight, seal ring, forward knee. It can be larger than a combination of screw elements such as a ding disk and a reverse kneading disk, and is preferable because the glass fiber bundle can be defibrated in a shorter time than other screw elements.
 混練部23で使用される、上記一条の逆送りスクリューエレメントについて説明する。この一条の逆送りスクリューエレメントは、外周に、下記不等式(I)から(III)を満たす円弧状の切り欠きが形成されたフライト部を有することが好ましい。
 
0.05D≦r≦0.15D   (I)
7≦n≦20          (II)
Le≦0.3D         (III)
 
(上記不等式(I)中のrは、上記円弧状を形成する円の半径又は上記円弧状を形成する楕円の長径/2、あるいは短径/2であり、上記不等式(II)中のnは、上記一条の逆送りスクリューエレメントの1リード長あたりの切り欠き数であり、上記不等式(III)中のLeは、上記一条の逆送りスクリューエレメントのリード長であり、上記不等式(I)、(II)中のDは、スクリュー口径である。)
The single feed reverse feed screw element used in the kneading section 23 will be described. It is preferable that this one-way reverse feed screw element has a flight part in which an arc-shaped notch satisfying the following inequalities (I) to (III) is formed on the outer periphery.

0.05D ≦ r ≦ 0.15D (I)
7 ≦ n ≦ 20 (II)
Le ≦ 0.3D (III)

(The r in the inequality (I) is the radius of the circle forming the arc or the major axis / 2 or the minor axis / 2 of the ellipse forming the arc, and n in the inequality (II) is , The number of notches per one lead length of the one reverse feed screw element, and Le in the inequality (III) is the lead length of the one reverse feed screw element, the inequality (I), ( D) in II) is the screw diameter.)
 上記一条の逆送りスクリューエレメントについて、図2を用いて説明する。図2には、上記一条の逆送りスクリューエレメントの模式図が示されており、(a)は軸方向の断面図であり、(b)は側面図である。 The above-mentioned reverse feed screw element will be described with reference to FIG. FIG. 2 shows a schematic diagram of the single feed reverse feed screw element, wherein (a) is a sectional view in the axial direction, and (b) is a side view.
 図2に示す通り、一条の逆送りスクリューエレメント4は、フライト部40と、フライト部40の外周に形成される円弧状の切り欠き41とを有する。切り欠き41は、フライト部の外周からスクリューエレメントの軸に向かう方向に形成される。図2では、楕円が円弧状を形成する場合を示したが、上記円弧状を形成する惰円又は円の中心はフライト部40の外周に存在する(図2(a)では上記楕円の中心をOで示した。)。上記切り欠きが、円弧状であり、且つこの円弧状が上記の円又は楕円で形成されることにより、製作上の利便さと、切り欠きによるフライトの強度低下を最小にするという効果がある。なお、上記円弧状の一部が、上記の円又は楕円で形成されていればよい。また、本発明は切り欠き全体が上記の一つの円又は楕円で形成されるものに限定されない。しかし、円弧状の略全体が一つの円又は楕円で形成されるものが好ましい。 2, the single reverse feed screw element 4 includes a flight part 40 and an arc-shaped notch 41 formed on the outer periphery of the flight part 40. The notch 41 is formed in a direction from the outer periphery of the flight part toward the axis of the screw element. 2 shows a case where the ellipse forms an arc shape, but the ellipse or the center of the circle forming the arc shape exists on the outer periphery of the flight part 40 (in FIG. 2A, the center of the ellipse is present). Indicated by O). The notch has an arc shape, and the arc shape is formed by the circle or ellipse, so that there are advantages in manufacturing and minimizing a decrease in flight strength due to the notch. In addition, the said circular arc shape should just be formed by said circle | round | yen or ellipse. Further, the present invention is not limited to one in which the entire cutout is formed by the one circle or ellipse described above. However, it is preferable that substantially the entire arc shape is formed by one circle or ellipse.
 また、上記円弧状は円で形成されるものが最も好ましい。また、上記円弧状が楕円で形成される場合には、切り欠きが延びる方向と楕円の長径が延びる方向とは、略一致することが好ましい。 The arc shape is most preferably a circle. When the arc shape is formed as an ellipse, it is preferable that the direction in which the cutout extends and the direction in which the major axis of the ellipse extend substantially coincide.
 また、上記半径rの大きさの範囲は、0.05D≦r≦0.15Dであることが好ましい。rが上記範囲内であれば、最小せん断応力履歴値Tminが大きくなる傾向にあるため好ましい。より好ましいrの大きさの範囲は、0.06D≦r≦0.12Dである。 The range of the radius r is preferably 0.05D ≦ r ≦ 0.15D. If r is within the above range, the minimum shear stress history value Tmin tends to increase, which is preferable. A more preferable range of r is 0.06D ≦ r ≦ 0.12D.
 また、切り欠き数nが多いほど、最小せん断応力履歴値Tminが大きくなる傾向にある。しかし、切り欠き数nが多くなり過ぎると、スクリューエレメントの機械的強度が低くなるため、切り欠き数nは不等式(II)の範囲に調整することが好ましい。特に好ましい切り欠き数nの範囲は、10≦n≦15であり、最も好ましい切り欠き数は11である。 Also, the minimum shear stress history value T min tends to increase as the number of notches n increases. However, since the mechanical strength of the screw element decreases when the number of notches n increases excessively, it is preferable to adjust the number of notches n within the range of inequality (II). A particularly preferable range of the number of notches n is 10 ≦ n ≦ 15, and the most preferable number of notches is 11.
 上記スクリューエレメントのリード長Leは、上記スクリューエレメントのスクリュー口径Dの0.3倍以下(Leが0.3D以下)である。上記リード長Leが0.3D以下であれば、吐出量Qが非常に高い条件であっても、製造されるペレットに未解繊のガラス繊維が含まれにくい傾向にある。なお、吐出量Qが非常に高いとは、例えば、上記スクリューエレメントを軸方向の長さが2Dになるように設け、スクリュー口径Dが47mmの2軸押出機で、およそ300kg/h以上、スクリューの口径Dが69mmの2軸押出機で、800kg/h以上であることを指す。このような高吐出領域でも、上述の未解繊ガラス繊維による問題を抑えることができる。 The lead length Le of the screw element is not more than 0.3 times the screw diameter D of the screw element (Le is not more than 0.3D). If the lead length Le is 0.3D or less, even if the discharge rate Q is very high, undisrupted glass fibers tend not to be contained in the manufactured pellets. It should be noted that the discharge amount Q is very high, for example, when the screw element is provided with an axial length of 2D and a screw diameter D is 47 mm, the screw diameter is 47 mm. This is a twin screw extruder having a diameter D of 69 mm and is 800 kg / h or more. Even in such a high discharge area, problems due to the above-described undefined glass fibers can be suppressed.
 上記の通り、本発明に用いる上記スクリューエレメントのリード長Leの上限は、0.3D以下であることが好ましいが、下限は0.1D以上であることが好ましい。この下限値以上に設定することは、フライト部の厚みを維持して強度を保つという理由で好ましい。 As described above, the upper limit of the lead length Le of the screw element used in the present invention is preferably 0.3D or less, but the lower limit is preferably 0.1D or more. Setting it above this lower limit is preferable because the thickness of the flight part is maintained and the strength is maintained.
 以上、円弧状の切り欠きが形成されたフライト部を有する一条のスクリューエレメントの機能と形状を説明したが、本発明の特徴の一つは、この切り欠きが形成されたフライト部を有する一条のスクリューエレメントを使用することで、ガラス強化樹脂組成物の生産性を飛躍的に向上させることにある。 The function and shape of the single screw element having the flight part in which the arc-shaped notch is formed have been described above. One of the features of the present invention is that the single line having the flight part in which the notch is formed. By using a screw element, the productivity of the glass reinforced resin composition is dramatically improved.
 通常のニーディングディスクを使用しても、従来の低い生産性では、ガラス未解繊を発生させずにガラス強化樹脂組成物を生産できる場合もあるが、生産性を高めていくと、前述のように、せん断応力履歴値が小さくなる部分において、ガラス未解繊を含むペレットが発生する。 Even if a normal kneading disk is used, the conventional low productivity can produce a glass reinforced resin composition without generating undefibrated glass. Thus, in the part where the shear stress history value becomes small, pellets containing undefibrated glass are generated.
<ガラス繊維強化熱可塑性樹脂組成物ペレットの生産性>
 スクリューで出力されるトルクを、隣り合うスクリュー間の芯間距離の3乗で割った値を、トルク密度と定義することで、押出機のサイズにかかわらず、トルク密度で、押出機の性能を規定することができる。
<Productivity of glass fiber reinforced thermoplastic resin composition pellets>
By defining the torque output by dividing the torque output by the screw by the cube of the center-to-core distance between adjacent screws, the torque density can be used to control the performance of the extruder regardless of the size of the extruder. Can be prescribed.
 本発明では、スクリューのトルク密度が、11(Nm/cm)以上になるように設定する。トルク密度が11(Nm/cm)以上になることで、押出機内の材料の充満率が高まり、エネルギー密度が小さくなり、回転数を、従来より高くしても温度上昇が低いという効果がある。また、好ましいトルク密度の範囲は13(Nm/cm)以上18(Nm/cm)以下である。 In the present invention, the torque density of the screw is set to 11 (Nm / cm 3 ) or more. When the torque density is 11 (Nm / cm 3 ) or more, the filling rate of the material in the extruder is increased, the energy density is reduced, and the temperature rise is low even if the rotational speed is higher than the conventional one. . Also, a preferable range of the torque density is 13 (Nm / cm 3) or more 18 (Nm / cm 3) or less.
 同様に、押出機による押出条件も、そのサイズにかかわらず、共通の指標で規定することが有効である。ペレット中に未解繊のガラス繊維が含まれるか否かに影響する、重要な運転条件はQ/Nsである。上記の通り、Qは吐出量であり、Nsはスクリュー回転数である。Q/Nsは、ガラス繊維強化熱可塑性樹脂組成物の粘度、比エネルギーに依存する。特定のガラス繊維強化熱可塑性樹脂組成では、押出のトルク密度と、噛合い率によって、Q/Nsの上限が決まる。トルク密度が高いと、充満率を上げることができ、大きなQ/Nsの運転領域が採用可能となる。Q/Nsが大きいと、回転数増加による樹脂の温度の上昇が緩慢になり、劣化が開始される限界樹脂温度に達するまで、高い回転数が実現でき、結果、高い吐出量を得ることができる。 Similarly, it is effective to define the extrusion conditions by the extruder using a common index regardless of the size. An important operating condition that affects whether or not unbreaked glass fibers are contained in the pellet is Q / Ns. As described above, Q is the discharge amount and Ns is the screw rotation speed. Q / Ns depends on the viscosity and specific energy of the glass fiber reinforced thermoplastic resin composition. In a specific glass fiber reinforced thermoplastic resin composition, the upper limit of Q / Ns is determined by the torque density of extrusion and the meshing rate. When the torque density is high, the filling rate can be increased, and a large Q / Ns operating region can be adopted. When Q / Ns is large, the increase in the temperature of the resin due to the increase in the number of rotations becomes slow, and a high number of rotations can be realized until reaching the limit resin temperature at which deterioration starts, and as a result, a high discharge amount can be obtained. .
 当然ながら、Q/Nsは、押出機のスクリュー口径に依存する。Q/Nsは、噛合い比率が一定の二軸押出機では、以下の関係でスケールアップされる。スクリューエレメントのスクリュー口径Dが、d2からD1に変更になる場合、小型の押出機での吐出量qと大型の押出機での吐出量Q、小型の押出機でのスクリュー回転数nsと大型の押出機でのスクリュー回転数Nsとの間には下記数式(VIII)が成立する。
 
/Ns=(D/dα×(q/ns)   (VIII)
 
Of course, Q / Ns depends on the screw diameter of the extruder. Q / Ns is scaled up according to the following relationship in a twin screw extruder having a constant meshing ratio. When the screw diameter D of the screw element becomes changed from d2 to D1, the discharge amount to Q 1 in discharge quantity q 2 and a large extruder a small extruder, screw rotation speed ns 2 on small extruder And the screw rotation speed Ns 1 in a large extruder, the following mathematical formula (VIII) is established.

Q 1 / Ns 1 = (D 1 / d 2 ) α × (q 2 / ns 2 ) (VIII)
 上記の式(VIII)におけるαは、噛合い比率が一定の二軸押出機では、通常、α=3が採用される。Q/Nsは、充満率の指標であるが、噛合い比率が一定であれば、有効体積が隣り合うスクリュー間の芯間距離の3乗に比例するので、充満率も隣り合うスクリュー間の芯間距離の3乗に比例する。ここで有効体積とは、二軸押出機内で材料が充満することのできる空間の体積を指す。 In the above formula (VIII), α = 3 is usually adopted in a twin-screw extruder having a constant meshing ratio. Q / Ns is an index of the filling rate, but if the meshing ratio is constant, the effective volume is proportional to the cube of the center-to-core distance between adjacent screws. It is proportional to the cube of the distance. Here, the effective volume refers to the volume of the space where the material can be filled in the twin-screw extruder.
 Q/Nsは前述のごとく押出機のサイズに依存するが、隣り合うスクリュー間の芯間距離の3乗を求めて、その求めた値でQ/Nsを割った値を、Q/Ns密度と定義すると、押出機のサイズが異なってもQ/Ns密度は、一定の値になる。 Q / Ns depends on the size of the extruder as described above, but the value obtained by dividing the Q / Ns by the calculated value of the cube of the center-to-core distance between adjacent screws is the Q / Ns density. When defined, the Q / Ns density is a constant value even if the size of the extruder is different.
 例えば、ガラス繊維強化熱可塑性樹脂組成物では、スクリューの外径と谷径の比率1.54で、スクリュー口径がΦ40mm、口径Φ70mmの押出機で、高い生産性を実現するQ/Nsとして、口径Φ40mmでQ/Ns≧0.47、口径Φ70mmでQ/Ns≧2.5が採用されるとして、これを芯間距離の3乗(Φ40mmは35.9cm、Φ70mmは192.4cm)で割ると0.013[kg/h/rpm/cm]と共通の値となる。 For example, in the glass fiber reinforced thermoplastic resin composition, the ratio of the outer diameter and the valley diameter of the screw is 1.54, the screw diameter is Φ40 mm, and the diameter is Φ70 mm. Assuming that Q / Ns ≧ 0.47 at Φ40 mm and Q / Ns ≧ 2.5 at Φ70 mm, the distance between the centers is the third power (Φ40 mm is 35.9 cm 3 , and Φ70 mm is 192.4 cm 3 ). When it is divided, it becomes a common value of 0.013 [kg / h / rpm / cm 3 ].
 本発明は、Q/Ns密度が0.013[kg/h/rpm/cm]以上の運転条件で、混練部に外周に切り欠きが形成されたフライト部を有する一条の逆送りフライトのエレメントを使用することで、ガラス未解繊を含まないガラス強化樹脂組成物を効率よく高い生産性で製造する方法である。好ましいQ/Ns密度は、0.015[kg/h/rpm/cm]以上0.018[kg/h/rpm/cm]以下である。 The present invention provides an element for a reverse feed flight having a flight part having a notch formed in the outer periphery of the kneading part under an operating condition where the Q / Ns density is 0.013 [kg / h / rpm / cm 3 ] or more. Is used to efficiently produce a glass-reinforced resin composition that does not contain glass undefibrated with high productivity. A preferable Q / Ns density is 0.015 [kg / h / rpm / cm 3 ] or more and 0.018 [kg / h / rpm / cm 3 ] or less.
 以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, although an example and a comparative example are shown and the present invention is explained concretely, the present invention is not limited to these examples.
<評価1>
 評価1においては以下の材料を用いた。
熱可塑性樹脂:ポリブチレンテレフタレート樹脂(PBT)(メルトインデックス(MI)=70g/10分)
カーボンマスターバッチ
ガラス繊維束:直径が13μmのモノフィラメントを2200本束ねた長さ3mmのチョップドストランド
 また、組成は以下の通りである。
PBTが67.5質量%、カーボンマスターバッチが2.5質量%、ガラス繊維束が30質量%
 押出条件は以下の通りである。
押出機:同方向完全噛み合い型二軸押出機TEX44αII(日本製鋼所製)スクリューエレメントのスクリュー口径Dが0.047m
押出条件;
Figure JPOXMLDOC01-appb-T000005
バレル温度;220℃
スクリューデザイン;
(1)概略
 押出機のスクリューは図1のように表すことができ、図3に示すスクリューパターンの概略は以下の通りである。
C1:ホッパ
C2~C5:供給部
C5~C6:可塑化部
C6~C8:輸送部
C9:フィード口
C10:混練部A
C11:混練部B(混練部b1、混練部b2からなる)
(2)評価1で使用した具体的なスクリューパターンは、図4に示す通りである。なお、ニーディングディスクで、各ディスクが送り方向に45°位相がずれているものをFKとし、逆送りの1条のフライトで切り欠きのあるエレメントをBMSとする。また、1.0D等は、混練部b1の長さを表す。BMSの外周上の切欠きの短径/2は3mm、長径/2(切り欠きが延びる方向)は、4.15mmである。
図4(a)に示すスクリューパターンをFK1.0D(L/D=1)、
図4(b)に示すスクリューパターンをFK2.0D(L/D=2)、
図4(c)に示すスクリューパターンをBMS1.0D(L/D=1)、
図4(d)に示すスクリューパターンをBMS2.0D(L/D=2)、
図4(e)に示すスクリューパターンをBMS2.5D(L/D=2.5)、
とする。L/Dは、混練部b1の長さ(L)とスクリューエレメントのスクリュー口径(D)との比(L/D)である。なお、実施形態の説明における混練部23の長さLは、混練部b1の長さにあたる。
(3)スクリューの形状
 図4に示すスクリューパターンはそれぞれC11の混練部Bのみ異なる。C11の混練部Bのスクリューの形状を図5に示す。図4(a)のパターンのスクリュー形状を図5(a)に示し、図4(b)のパターンのスクリュー形状を図5(b)に示し、図4(c)のパターンのスクリュー形状を図5(c)に示し、図4(d)のパターンのスクリュー形状を図5(d)に示し、図4(e)のパターンのスクリュー形状を図5(e)に示した。
 図5(a)に示すスクリューは混練部b1が長さ1.0Dの順送りニーディングディスク、混練部b2が長さ0.5Dの逆送りフライト
 図5(b)に示すスクリューは混練部b1が長さ2.0Dの順送りニーディングディスク、混練部b2が長さ0.5Dの逆送りフライト
 図5(c)に示すスクリューは混練部b1が長さ1.0Dの切り欠き含有の1条の逆送りニーディングディスク、混練部b2が長さ0.5Dの逆送りフライト
 図5(d)に示すスクリューは混練部b1が長さ2.0Dの切り欠き含有の1条の逆送りニーディングディスク、混練部b2が長さ0.5Dの逆送りフライト
 図5(e)に示すスクリューは混練部b1が長さ2.5Dの切り欠き含有の1条の逆送りニーディングディスク、混練部b2が長さ0.5Dの逆送りフライト
<Evaluation 1>
In Evaluation 1, the following materials were used.
Thermoplastic resin: Polybutylene terephthalate resin (PBT) (melt index (MI) = 70 g / 10 min)
Carbon masterbatch glass fiber bundle: 3 mm long chopped strand obtained by bundling 2200 monofilaments having a diameter of 13 μm The composition is as follows.
PBT is 67.5 mass%, carbon masterbatch is 2.5 mass%, glass fiber bundle is 30 mass%
Extrusion conditions are as follows.
Extruder: Same direction full meshing type twin screw extruder TEX44αII (manufactured by Nippon Steel) Screw diameter D of screw element is 0.047m
Extrusion conditions;
Figure JPOXMLDOC01-appb-T000005
Barrel temperature; 220 ° C
Screw design;
(1) Outline The screw of the extruder can be represented as shown in FIG. 1, and the outline of the screw pattern shown in FIG. 3 is as follows.
C1: Hoppers C2 to C5: Supply sections C5 to C6: Plasticization sections C6 to C8: Transport section C9: Feed port C10: Kneading section A
C11: Kneading part B (consisting of kneading part b1 and kneading part b2)
(2) The specific screw pattern used in Evaluation 1 is as shown in FIG. A kneading disk having a 45 ° phase shift in the feeding direction is defined as FK, and an element having a notch in one reverse flight is defined as BMS. Moreover, 1.0D etc. represents the length of the kneading part b1. The short diameter / 2 of the notch on the outer periphery of the BMS is 3 mm, and the long diameter / 2 (the direction in which the notch extends) is 4.15 mm.
The screw pattern shown in FIG. 4A is FK1.0D (L / D = 1),
The screw pattern shown in FIG. 4B is FK2.0D (L / D = 2),
The screw pattern shown in FIG. 4 (c) is BMS1.0D (L / D = 1),
The screw pattern shown in FIG. 4 (d) is BMS2.0D (L / D = 2),
The screw pattern shown in FIG. 4 (e) is BMS2.5D (L / D = 2.5),
And L / D is a ratio (L / D) between the length (L) of the kneading part b1 and the screw diameter (D) of the screw element. In addition, the length L of the kneading part 23 in the description of the embodiment corresponds to the length of the kneading part b1.
(3) Screw shape The screw patterns shown in FIG. 4 differ only in the kneading part B of C11. The shape of the screw of the kneading part B of C11 is shown in FIG. The screw shape of the pattern of FIG. 4 (a) is shown in FIG. 5 (a), the screw shape of the pattern of FIG. 4 (b) is shown in FIG. 5 (b), and the screw shape of the pattern of FIG. 5 (c), the screw shape of the pattern of FIG. 4 (d) is shown in FIG. 5 (d), and the screw shape of the pattern of FIG. 4 (e) is shown in FIG. 5 (e).
The screw shown in FIG. 5 (a) has a kneading part b1 with a forward feed kneading disk having a length of 1.0D, and the kneading part b2 has a reverse feed flight with a length of 0.5D. The screw shown in FIG. A forward kneading disc having a length of 2.0D, a reverse feed flight in which the kneading part b2 has a length of 0.5D. The screw shown in FIG. 5 (c) has a single kneading part b1 having a notch having a length of 1.0D. Reverse feed kneading disc, reverse feed flight with kneading part b2 of 0.5D length The screw shown in FIG. 5 (d) is a single reverse feed kneading disc with kneading part b1 having a notch length of 2.0D. The kneading part b2 has a reverse feed flight with a length of 0.5D. The screw shown in FIG. 5 (e) has a kneading part b1 with a notch with a length of 2.5D and a kneading part b2 0.5D length reverse feed Light
 Q/Ns=1.0の条件で、図6に示すような最小せん断応力履歴値(Pa・sec)とガラス繊維束の一部又は全部が未解繊のペレット数(個/ペレット10kg)との関係を求めた。具体的には以下のような方法で導出した。 Under the condition of Q / Ns = 1.0, the minimum shear stress history value (Pa · sec) as shown in FIG. 6 and the number of pellets in which part or all of the glass fiber bundle is undefined (pieces / pellet 10 kg) Sought the relationship. Specifically, it was derived by the following method.
 先ず、上記関係の導出に必要な、L/D、吐出量Q、スクリュー回転数Ns、未解繊ペレット数N、最小せん断応力履歴値Tminの組を複数決定する。L/D、吐出量Q、スクリュー回転数Nsを任意に決めて、以下の方法で、最小せん断応力履歴値Tminを導出し、実験により未解繊ペレット数Nを求めた。具体的には以下のようにして求めた。 First, necessary for derivation of the relationship, L / D, the discharge amount Q, screw rotation speed Ns, non fibrillation pellets number N, a plurality determine a set of minimum shear stress history value T min. L / D, the discharge amount Q, by arbitrarily determining the screw rotation speed Ns, the following method, to derive the minimum shear stress history value T min, was determined non-fibrillated pellets number N by experiments. Specifically, it was determined as follows.
 先ず、シミュレーションによる最小せん断応力履歴値(Pa・sec)の導出について説明する。
 二軸押出機内3次元流動解析ソフト(アールフロー社製ScrewFlow-Multi)を用いて同方向完全噛み合い型二軸押出機内の樹脂挙動を解析した。
 解析の際に用いた支配方程式は、連続式(A)、ナビエ-ストークス式(B)、温度バランス式(C)である。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
First, the derivation of the minimum shear stress history value (Pa · sec) by simulation will be described.
Resin behavior in the same direction complete meshing type twin screw extruder was analyzed using a three-dimensional flow analysis software in the twin screw extruder (Screw Flow-Multi, manufactured by Earl Flow).
The governing equations used in the analysis are the continuous equation (A), the Navier-Stokes equation (B), and the temperature balance equation (C).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 解析仮定として、非圧縮性流体で、完全溶融・完全充満とした。また、粘度近似式はアレニウス近似及びWLF近似を使用した。解析手法は、有限体積法、SOR法、SIMPLEアルゴリズムであり、計算としては、まず定常解析を行い、これを初期値として、非定常解析を行った。非定常解析の後、トレーサー粒子を配置(約5000個)して、トレーサー粒子にかかる局所情報を収集した(粒子追跡解析)。せん断応力の時間積分値の最小値Tminは、トレーサー粒子にかかる局所情報のせん断応力を時間積分し、全粒子の最小値を求めたものである。 As an analysis assumption, the incompressible fluid was completely melted and completely filled. Moreover, Arrhenius approximation and WLF approximation were used for the viscosity approximation formula. The analysis method is a finite volume method, a SOR method, or a SIMPLE algorithm. As a calculation, a steady analysis is first performed, and an unsteady analysis is performed using this as an initial value. After unsteady analysis, tracer particles were arranged (about 5000 particles), and local information concerning the tracer particles was collected (particle tracking analysis). Minimum value T min of the time integral value of the shear stress integrates the shear stress of local information relating to the tracer particles time, in which determining the minimum value of the total particle.
 次いで、実験による未解繊ペレット数の導出について説明する。
 PBTを二軸押出機に供給した後、上記押出条件で、ガラスのチョップドストランドを供給し、混練混合した後、ダイから樹脂組成物を押出し、溶融した樹脂組成をダイから引取りストランドにして、水槽でストランドを冷却固化して、カッターで、ストランドを3mmの長さに切断してペレットを作成した。ペレットを10kg採取し、黒色のペレットの中のガラス未解繊(銀色の凝集塊)を目視にて探し、ガラス未解繊を含んだペレットの個数を数えた。
Next, derivation of the number of undefined pellets by experiment will be described.
After supplying PBT to a twin screw extruder, glass chopped strands are supplied under the above extrusion conditions, kneaded and mixed, then the resin composition is extruded from the die, and the molten resin composition is taken up from the die to form a strand. The strand was cooled and solidified in a water tank, and the strand was cut into a length of 3 mm with a cutter to produce a pellet. 10 kg of the pellets were collected, glass undefibrated (silver-colored agglomerates) in the black pellets were visually found, and the number of pellets containing glass undefibrated was counted.
 未解繊ペレット数と最小せん断応力履歴値と間の関係を表す近似曲線(相関線)を、最小二乗方法で求めた。Q/Ns=1.0で、混練部Bに前述のように図4(a)から(e)の異なるエレメントを入れ、かつ、異なるQで実験とシミュレーションを行った結果、以下のようなひとつの近似曲線が得られた。近似曲線については図6に示した。
Figure JPOXMLDOC01-appb-M000009
An approximate curve (correlation line) representing the relationship between the number of undefined pellets and the minimum shear stress history value was obtained by the method of least squares. When Q / Ns = 1.0, the different elements shown in FIGS. 4 (a) to 4 (e) were added to the kneading part B as described above, and the experiment and simulation were performed with different Q values. An approximate curve was obtained. The approximate curve is shown in FIG.
Figure JPOXMLDOC01-appb-M000009
 上記数式(III)のαが11.5042、βが-2.200となった。 In the above formula (III), α was 11.5042, and β was −2.200.
 Q/Ns=0.8、Q/Ns=0.5の条件でも、上記と同様にして、図7に示すように、最小せん断応力履歴値(Pa・sec)とガラス繊維束の一部又は全部が未解繊のペレット数(個/ペレット10kg)との関係(相関線)を求めた。なお、図7にはQ/Ns=1.0の場合の相関線についても示した。 Even under the conditions of Q / Ns = 0.8 and Q / Ns = 0.5, as shown in FIG. 7, the minimum shear stress history value (Pa · sec) and a part of the glass fiber bundle or The relationship (correlation line) with the number of undefibrated pellets (pieces / pellet 10 kg) was obtained. FIG. 7 also shows the correlation line when Q / Ns = 1.0.
 図7に示すように、Q/Ns毎に相関線が異なる。そこで、上記数式(IV)の形式の関数に最小二乗法で近似した。近似曲線を図8に示した。図8に示すように、Q/Nsに依存しない一つの相関線で近似できた。なお、γは3.0であった。 As shown in FIG. 7, the correlation line is different for each Q / Ns. Therefore, the function of the formula (IV) is approximated by the method of least squares. The approximate curve is shown in FIG. As shown in FIG. 8, it was possible to approximate with one correlation line independent of Q / Ns. Note that γ was 3.0.
 図8に示すように、所定の最小せん断応力履歴値以上であれば、単位量あたりの未解繊ペレット数が所定の値未満になることが確認できた。 As shown in FIG. 8, it was confirmed that the number of undefined pellets per unit amount was less than a predetermined value as long as it was a predetermined minimum shear stress history value or more.
 以上の通り、数式(IV)はQ/Nsの条件が変化しても、一つの式で、ペレット中に含まれる未解繊ガラス繊維束の量を検討でき、また、混練部が有するスクリューエレメントの種類が異なっても一つの数式(IV)で、ペレット中に含まれる未解繊ガラス繊維束の量を検討できることが確認された。 As described above, even if the Q / Ns condition changes, Formula (IV) can be used to study the amount of undefined glass fiber bundles contained in the pellet, and the screw element that the kneading unit has It was confirmed that the amount of undefined glass fiber bundles contained in the pellets can be examined with a single mathematical formula (IV) even if the types of are different.
<評価2>
 PBT樹脂70質量%、ガラス繊維30質量%(ガラスモノフィラメント径13μm)の組成で、二軸押出機(スクリュー口径47mm)の混練部に、一般に使用されるニーディングディスク(図5(a)及び(b)記号FK)と、切り欠きが形成されたフライト部を有する一条の逆送りスクリューエレメント(図5(c)(d)(e)記号BMS)を使用した場合の、それぞれのシミュレーションを、評価1に記載の方法と同様の方法で行い、トレーサー粒子にかかる局所情報のせん断応力を時間積分したせん断応力履歴値の分布を図9に示した。切り欠きの中心は外周部として、逆送りのフライト(図中記号BMS)のリード長LeをL/D=0.25とし、切り欠きの円弧状を形成する円の半径はr=3mmとしている。
<Evaluation 2>
A kneading disk (FIG. 5 (a) and (FIG. 5 (a) and ((5))) having a composition of 70% by mass of PBT resin and 30% by mass of glass fiber (glass monofilament diameter 13 μm) and used in a kneading part of a twin screw extruder (screw diameter 47 mm). b) Evaluation of each simulation using the symbol FK) and a single reverse feed screw element (FIG. 5 (c) (d) (e) symbol BMS) having a notched flight part. The distribution of the shear stress history value obtained by performing the time integration of the shear stress of the local information applied to the tracer particles by the same method as described in FIG. The center of the notch is the outer peripheral part, the lead length Le of the reverse feed flight (symbol BMS in the figure) is L / D = 0.25, and the radius of the circle forming the arc shape of the notch is r = 3 mm. .
 ニーディングディスク(FK)では、せん断応力履歴値の小さいところから、広い範囲に分布が広がっている。小さいせん断応力履歴値を有することは、ガラス未解繊が残存する確率が高いことを意味している。一方、切り欠きが形成されたフライト部を有する一条の逆送りスクリューエレメントでは、せん断応力履歴値の分布は狭いため、最小のせん断応力履歴値の値が大きい。このため、上記切り欠きを有するスクリューエレメントを使用すれば、ペレット中に未解繊ガラス繊維束が残存し難くなる。 In kneading discs (FK), the distribution spreads over a wide range from where the shear stress history value is small. Having a small shear stress history value means that there is a high probability that glass undefibration remains. On the other hand, in a single reverse feed screw element having a flight part in which a notch is formed, since the distribution of shear stress history values is narrow, the minimum shear stress history value is large. For this reason, if the screw element which has the said notch is used, it will become difficult to remain | survive an undisentangled glass fiber bundle in a pellet.
<評価3>
 次に、この最小せん断応力履歴値を、指標として、切り欠きエレメントに求められる形状を、流動解析により説明する。図1に示す二軸押出機(スクリュー口径47mm)において、PBT樹脂70質量%、ガラス繊維30質量%の組成で、円弧状の切り欠きが形成されたフライト部を有する一条のスクリューエレメントを混練部23に使用した場合のシミュレーションを行った。具体的には、評価1と同様の方法で求めた最小せん断応力履歴値Tminと、切り欠き個数(溝数)nの関係を求めた。円弧状の切り欠きの中心は外周部として、円弧状の切り欠きが形成されたフライト部を有する一条の逆送りスクリューエレメント(BMS)については、リード長LeがL/D=0.2、0.25、0.3の3条件で評価を行なった。また、円弧状は楕円から形成され、この楕円の短径/2は3mm、長径/2(切り欠きが延びる方向)は4.1mmとした。評価3の結果を表2に示した。
Figure JPOXMLDOC01-appb-T000010
<Evaluation 3>
Next, the shape required for the notch element will be described by flow analysis using the minimum shear stress history value as an index. In the twin-screw extruder shown in FIG. 1 (screw diameter 47 mm), a kneading part is composed of a single screw element having a flight part in which an arc-shaped notch is formed with a composition of 70% by mass of PBT resin and 30% by mass of glass fiber. The simulation when used in the No. 23 was performed. Specifically, the relationship between the minimum shear stress history value T min obtained by the same method as in Evaluation 1 and the number of notches (groove number) n was obtained. For a single reverse feed screw element (BMS) having an arc-shaped notch as the outer peripheral portion and a flight portion in which the arc-shaped notch is formed, the lead length Le is L / D = 0.2, 0 Evaluation was performed under three conditions of .25 and 0.3. The arc shape is formed from an ellipse, and the minor axis / 2 of this ellipse is 3 mm and the major axis / 2 (the direction in which the notch extends) is 4.1 mm. The results of Evaluation 3 are shown in Table 2.
Figure JPOXMLDOC01-appb-T000010
 表2によると、最小せん断応力履歴値Tminは、1リード長Leあたりの切り欠きの数nが、13~15で高い値を示している。切り欠きの数nが多い方が、最小せん断応力履歴値Tminが高い。しかしながら、切り欠き数nが増加すると、スクリューエレメントの機械的強度が低下するので、13から15が好ましいといえる。 According to Table 2, the minimum shear stress history value T min is high when the number n of notches per lead length Le is 13 to 15. As the number of notches n is larger, the minimum shear stress history value Tmin is higher. However, since the mechanical strength of the screw element decreases as the number of notches n increases, it can be said that 13 to 15 is preferable.
<評価4>
 図1に示す二軸押出機(口径47mm)において、PBT樹脂70質量%、ガラス繊維30質量%の組成で、円弧状切り欠きが形成されたフライト部を有する一条のスクリューエレメントを混練部23に使用した場合のシミュレーションを行なった。具体的には、評価1に記載の方法と同様の方法で求めた最小せん断応力履歴値Tminと、切り欠きの深さ方向の長径との関係を示している。切欠きの中心はフライト部の外周上で、切り欠きの形状は楕円で、外周上の切欠きの短径/2は3mm、長径/2(切り欠きが延びる方向)が3mm、4mm、4.125mm、4.5mm、5mmの場合でシミュレーションを行なった。また、切り欠き数nを11、上記切り欠きを有するスクリューエレメントのリード長LeはL/D=0.25とした。評価4の結果を表3に示した。
Figure JPOXMLDOC01-appb-T000011
<Evaluation 4>
In the twin-screw extruder (diameter 47 mm) shown in FIG. 1, a single screw element having a flight part in which an arc-shaped notch is formed with a composition of 70% by mass of PBT resin and 30% by mass of glass fiber is added to the kneading part 23. A simulation was performed when used. Specifically, the relationship between the minimum shear stress history value T min obtained by the same method as described in Evaluation 1 and the major axis in the depth direction of the notch is shown. The center of the notch is on the outer periphery of the flight part, the shape of the notch is an ellipse, the short diameter / 2 of the notch on the outer periphery is 3 mm, and the long diameter / 2 (the direction in which the notch extends) is 3 mm, 4 mm, 4. The simulation was performed in the case of 125 mm, 4.5 mm, and 5 mm. Further, the number of notches n was 11, and the lead length Le of the screw element having the notches was L / D = 0.25. The results of Evaluation 4 are shown in Table 3.
Figure JPOXMLDOC01-appb-T000011
 表3によると、最小せん断応力履歴値Tminは、切り欠きの溝深さの長径/2が4~5mmで極大値を有する。口径Dに対して、外周上の切欠きの上記短径/2は0.064D、溝深さ方向の長径/2の範囲は、0.085D~0.11Dである。 According to Table 3, the minimum shear stress history value T min has a maximum value when the major axis of the groove depth of the notch / 2 is 4 to 5 mm. With respect to the diameter D, the short diameter / 2 of the notch on the outer periphery is 0.064D, and the range of the long diameter / 2 in the groove depth direction is 0.085D to 0.11D.
<評価5>
 短径/2の大きさを表3に示すものに変更した以外は、評価4と同様の方法で、最小せん断応力履歴値Tminと、切り欠きが形成される方向に対して垂直方向に延びる長径の関係を示した。評価5の結果を表4に示した。
Figure JPOXMLDOC01-appb-T000012
<Evaluation 5>
Except that the size of the minor axis / 2 is changed to that shown in Table 3, it extends in the direction perpendicular to the minimum shear stress history value Tmin and the direction in which the notch is formed, in the same manner as in the evaluation 4. The long diameter relationship was shown. The results of Evaluation 5 are shown in Table 4.
Figure JPOXMLDOC01-appb-T000012
 評価5によれば、円弧状を形成する楕円の長径が、切り欠きが延びる方向に対して垂直方向に延びるものであっても、長径が大きくなることで、最小せん断応力履歴値の値は大きくなることが確認された。また、評価4と評価5との比較から、上記楕円の長径は、切り欠きが延びる方向に延びる方が効果が高い。 According to Evaluation 5, even when the major axis of the ellipse forming the arc shape extends in a direction perpendicular to the direction in which the notch extends, the larger value of the major axis increases the minimum shear stress history value. It was confirmed that Further, from comparison between Evaluation 4 and Evaluation 5, it is more effective that the major axis of the ellipse extends in the direction in which the cutout extends.
<評価6>
 円弧状を形成するものが円になった以外は、評価4と同様の方法で、最小せん断応力履歴値Tminと、円の半径の関係を示した。評価6の結果を表5に示した。
Figure JPOXMLDOC01-appb-T000013
<Evaluation 6>
The relationship between the minimum shear stress history value Tmin and the radius of the circle was shown in the same manner as in Evaluation 4 except that the circular arc was changed into a circle. The results of Evaluation 6 are shown in Table 5.
Figure JPOXMLDOC01-appb-T000013
 円弧を形成するのが円の場合においても、半径が大きくなることで、最小せん断応力履歴値が大きくなることが確認された。また、評価4~6の比較から、円弧状を形成するのが楕円よりも円の方が、最小せん断応力履歴値が大きくなることが確認された。 It was confirmed that the minimum shear stress history value increases as the radius increases even when the arc forms a circle. In addition, from the comparison of evaluations 4 to 6, it was confirmed that the minimum shear stress history value is larger when the circular arc is formed than the ellipse is formed.
<実施例―1>
 実施例においては以下の材料を用いた。
熱可塑性樹脂:ポリブチレンテレフタレート樹脂(PBT)(メルトインデックス(MI)=70g/10分)
カーボンマスターバッチ
ガラス繊維束:直径が13μmのモノフィラメントを2200本束ねた長さ3mmのチョップドストランド
 また、組成は以下の通りである。
PBTが67.5質量%、カーボンマスターバッチが2.5質量%、ガラス繊維束が30質量%
 押出機:同方向完全噛み合い型二軸押出機TEX44αII(日本製鋼所製)スクリューエレメントの口径Dが0.047mm
シリンダー温度を220℃とし、押出条件を下記表6に記載
Figure JPOXMLDOC01-appb-T000014
 実施例で使用した具体的なスクリューパターンは、図5に示す通りである。なお、ニーディングディスクで、各ディスクが送り方向に45°位相がずれているものをFK、逆送りの1条のフライトで切り欠きのあるスクリューエレメントをBMSとする。
<Example-1>
In the examples, the following materials were used.
Thermoplastic resin: Polybutylene terephthalate resin (PBT) (melt index (MI) = 70 g / 10 min)
Carbon masterbatch glass fiber bundle: 3 mm long chopped strand obtained by bundling 2200 monofilaments having a diameter of 13 μm The composition is as follows.
PBT is 67.5 mass%, carbon masterbatch is 2.5 mass%, glass fiber bundle is 30 mass%
Extruder: Same direction complete meshing type twin screw extruder TEX44αII (manufactured by Nippon Steel) Screw element diameter D is 0.047mm
The cylinder temperature is 220 ° C., and the extrusion conditions are listed in Table 6 below.
Figure JPOXMLDOC01-appb-T000014
The specific screw pattern used in the examples is as shown in FIG. A kneading disk, in which each disk is 45 ° out of phase in the feed direction, is FK, and a screw element having a notch in one reverse flight is called BMS.
 ここで使用された一条の逆送りフライトの切り欠きの半径rは、0.064Dで、1周あたりの切り欠きの数nは、n=11である。切り欠きの中心は、フライト外周上である。 The notch radius r of the single reverse flight used here is 0.064D, and the number n of notches per round is n = 11. The center of the notch is on the flight periphery.
 次いで、実験による未解繊ペレット数の導出について説明する。
 PBTを二軸押出機に供給した後、ガラスのチョップドストランドを供給し、上記表6に示す押出条件で、混練混合し、ダイから樹脂組成物を押出した。押し出した樹脂組成物を、ダイから引き取りストランドにして、水槽でストランドを冷却固化して、カッターで、ストランドを3mmの長さに切断してペレットを作製した。ペレットを10kg採取し、黒色のペレットの中のガラス未解繊(銀色の凝集塊)を目視にて探し、ガラス未解繊を含んだペレットの個数を数えた。表7は図5(a)の押出機を用いた結果であり、表8は図5(b)の押出機を用いた結果であり、表9は図5(c)の押出機を用いた結果であり、表10は図5(d)の押出機を用いた結果であり、表11は図5(e)の押出機を用いた結果である。
Next, derivation of the number of undefined pellets by experiment will be described.
After PBT was supplied to the twin screw extruder, glass chopped strands were supplied, kneaded and mixed under the extrusion conditions shown in Table 6 above, and the resin composition was extruded from the die. The extruded resin composition was taken out from the die to form a strand, the strand was cooled and solidified in a water tank, and the strand was cut to a length of 3 mm with a cutter to produce a pellet. 10 kg of the pellets were collected, glass undefibrated (silver-colored agglomerates) in the black pellets were visually found, and the number of pellets containing glass undefibrated was counted. Table 7 shows the results using the extruder shown in FIG. 5 (a), Table 8 shows the results obtained using the extruder shown in FIG. 5 (b), and Table 9 shows the results obtained using the extruder shown in FIG. 5 (c). Table 10 shows the results using the extruder shown in FIG. 5D, and Table 11 shows the results obtained using the extruder shown in FIG.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 図10は、吐出量と未解繊ガラス繊維を含むペレット数との関係を示す図である。図10(a)には、Q/Ns=0.8の例についてまとめており、図10(b)にはQ/Ns=1.0についてまとめている。図10(a)、(b)から、混練部にFKを使用した場合には、Q/Nsを0.8以上にすると、ガラスの未解繊束が多くのペレットに残存してしまうことが確認できる。これに対して、BMSを備えるスクリューを用いると、口径Φ=47mmの二軸押出機で、Q/Ns=0.8以上の領域で、吐出量が600kg/hr以上であっても、未解繊ガラス繊維を含むペレット(未解繊ペレット)の発生を抑えられることが確認された。 FIG. 10 is a diagram showing the relationship between the discharge rate and the number of pellets containing undefined glass fibers. FIG. 10A summarizes examples of Q / Ns = 0.8, and FIG. 10B summarizes Q / Ns = 1.0. 10 (a) and 10 (b), when FK is used in the kneading part, if Q / Ns is set to 0.8 or more, undefined bundles of glass may remain in many pellets. I can confirm. On the other hand, if a screw equipped with BMS is used, even if the discharge rate is 600 kg / hr or more in a region of Q / Ns = 0.8 or more in a twin screw extruder having a diameter of Φ = 47 mm, it is unsolved. It was confirmed that generation | occurrence | production of the pellet (non-defibrated pellet) containing fiber glass fiber can be suppressed.
 また、吐出量と吐出樹脂温度(ダイから吐出される樹脂組成物の温度)との関係を図11にまとめた。図11(a)は、Q/Nsが0.5、1.0の場合について示す図であり、図11(b)はQ/Nsが0.8の場合について示す図である。本実施例で使用したPBT樹脂は、300-310℃までは劣化しないと考えるが、図11(a)で、Q/Ns=0.5では、吐出量が300kg/hで、吐出樹脂温度が310℃を超過するので、吐出量の限界は、300kg/hである。しかし、Q/Ns=1.0では、700kg/hまで、吐出樹脂温度が310℃未満であり、Q/Nsを大きくすれば、高品質なペレットの生産性が飛躍的に改善される。 Also, the relationship between the discharge amount and the discharge resin temperature (the temperature of the resin composition discharged from the die) is summarized in FIG. FIG. 11A is a diagram showing a case where Q / Ns is 0.5 and 1.0, and FIG. 11B is a diagram showing a case where Q / Ns is 0.8. Although it is considered that the PBT resin used in this example does not deteriorate up to 300-310 ° C., in FIG. 11A, when Q / Ns = 0.5, the discharge amount is 300 kg / h, and the discharge resin temperature is Since it exceeds 310 ° C., the limit of the discharge amount is 300 kg / h. However, at Q / Ns = 1.0, the discharge resin temperature is less than 310 ° C. up to 700 kg / h, and if Q / Ns is increased, the productivity of high-quality pellets is dramatically improved.
 以上、図10、図11から確認できるように、外周に切り欠きが形成されたフライト部を有する一条の逆送りスクリューエレメントを備えたスクリューを用いると、Q、及びQ/Nsの大きな条件で、未解繊ペレットの発生を抑えられ、かつ、樹脂が劣化しない温度以下で押し出せることが確認された。これに対して、通常使用されるニーディングディスク(FK)では、Q、及びQ/Nsが小さな条件でないと、未解繊ペレットの発生が抑えられない。Q/Nsが小さい条件は、吐出量が低くなることを指す。 As described above, as can be confirmed from FIGS. 10 and 11, when using a screw having a single reverse feed screw element having a flight part with a notch formed on the outer periphery, under a large condition of Q and Q / Ns, It was confirmed that the generation of undefined pellets can be suppressed and the resin can be extruded at a temperature that does not deteriorate the resin. On the other hand, in a kneading disk (FK) that is normally used, the occurrence of undefined pellets cannot be suppressed unless the Q and Q / Ns are small. The condition where Q / Ns is small indicates that the discharge amount is low.
 さらに、上記実施例、比較例の各条件でのペレットの製造における、最小剪断応力履歴値Tminを上述の方法で求めた。一般に使用されるニーディングディスク(FK)、切り欠きが形成されたフライト部を有する一条の逆送りスクリューエレメント(BMS)のそれぞれの場合で、製造されたペレット中に未解繊ガラス繊維束が残存しない運転領域(最大吐出量)を図12に示した。図12はスクリュー口径D=Φ47mmの二軸押出機を使用した場合のデータであり、図12(a)はQ/Ns=1.0の場合の結果であり、図12(b)は、Q/Ns=0.8の場合の結果であり、図12(c)はQ/Ns=0.5の場合の結果を示す。 Furthermore, the embodiment described above, in the manufacture of pellets for each condition of the comparative example, the minimum shear stress history value T min determined in the manner described above. In each case of a commonly used kneading disk (FK) and a single reverse feed screw element (BMS) having a flight part with a notch formed, undefined glass fiber bundles remain in the produced pellets. FIG. 12 shows the operation region (maximum discharge amount) that is not performed. FIG. 12 shows data when a twin screw extruder having a screw diameter D = Φ47 mm is used, FIG. 12A shows the result when Q / Ns = 1.0, and FIG. FIG. 12C shows the result when Q / Ns = 0.5.
 未解繊ガラス繊維束がペレット中に残存しない吐出量は、混練部で使用するニーディングディスク(FK)の長さ(L/D)、切り欠きが形成されたフライト部を有する一条の逆送りスクリューエレメント(BMS)の長さ(L/D)に依存するので、その関係を直線で示している。一方、樹脂には、温度が上昇すると熱分解が著しくなり、プロセッシングが限界となる固有の限界温度がある。ペレット製造中に樹脂の温度が、その温度に到達すると、吐出が限界となる。ニーディングディスク(FK)も切り欠きが形成されたフライト部を有する一条の逆送りスクリューエレメント(BMS)も、二軸押出機内で使用する長さ(L/D)が増加すると樹脂温度が上昇する。図12(a)~図12(c)では、その樹脂温度の限界も示しており、樹脂温度の限界と、未解繊ガラス繊維束がペレット中に残存しない限界との交点が、生産性の限界である。 The discharge rate at which the undefined glass fiber bundle does not remain in the pellet is the length (L / D) of the kneading disk (FK) used in the kneading part, and a single reverse feed having a flight part in which a notch is formed. Since it depends on the length (L / D) of the screw element (BMS), the relationship is shown by a straight line. On the other hand, the resin has an inherent limit temperature at which the thermal decomposition becomes significant and the processing becomes a limit as the temperature rises. When the temperature of the resin reaches that temperature during pellet production, the discharge becomes a limit. The kneading disk (FK) and the single-feed reverse screw element (BMS) having a flight part with a notch also increase the resin temperature as the length (L / D) used in the twin-screw extruder increases. . 12 (a) to 12 (c) also show the limit of the resin temperature, and the intersection of the limit of the resin temperature and the limit at which the undefined glass fiber bundle does not remain in the pellet is the productivity. It is a limit.
 図12(a)、図12(b)では、切り欠きが形成されたフライト部を有する一条の逆送りスクリューエレメント(BMS)を使用した場合の生産性は、ニーディングディスク(FK)を使用した場合の2倍から4倍であることを示している。一方、図12(c)は、同じ材料、同じ押出機で、Q/Nsが0.5と小さい場合の結果を示す。図12(c)の条件では、切り欠きが形成されたフライト部を有する一条の逆送りスクリューエレメント(BMS)を使用すると、樹脂温度の上昇が大きく、温度限界で生産性が制限されて、ニーディングディスク(FK)と比較して、生産性において顕著な差が無いことを示している。このことは、Q/Nsを大きくして、生産性を高める為に、切り欠きが形成されたフライト部を有する一条の逆送りスクリューエレメントが有効であることを示していると同時に、Q/Nsが小さいときは、フライト部を有する一条の逆送りスクリューエレメントの使用が有効ではないことを示している。 In FIGS. 12 (a) and 12 (b), the productivity when using a single reverse feed screw element (BMS) having a flight part with a notch used is a kneading disk (FK). It is shown that it is 2 to 4 times the case. On the other hand, FIG.12 (c) shows the result when Q / Ns is as small as 0.5 with the same material and the same extruder. Under the conditions of FIG. 12 (c), when a single reverse feed screw element (BMS) having a flight part with a notch is used, the resin temperature rises greatly, and the productivity is limited at the temperature limit. It shows that there is no significant difference in productivity compared to the ding disc (FK). This indicates that a single reverse feed screw element having a notched flight portion is effective to increase Q / Ns and increase productivity, and at the same time, Q / Ns Is small, it indicates that the use of a single reverse feed screw element having a flight part is not effective.
 図12(a)、図12(b)のQ/Nsは、1.0及び0.8である。前述のQ/Ns密度は、それぞれ0.014[kg/h/rpm/cm]、0.018[kg/h/rpm/cm]となる。図12(c)では、Q/Nsが0.5で、このときのQ/Ns密度は、0.009[kg/h/rpm/cm]になる。以上の結果を整理すると、切り欠きが形成されたフライト部を有する一条の逆送りスクリューエレメントは、Q/Ns密度が0.013[kg/h/rpm/cm]以上の運転領域で、未解繊ガラス繊維束をペレット中に残存させにくいので、高い生産性を実現することができる。 The Q / Ns in FIGS. 12A and 12B are 1.0 and 0.8. The above-described Q / Ns densities are 0.014 [kg / h / rpm / cm 3 ] and 0.018 [kg / h / rpm / cm 3 ], respectively. In FIG.12 (c), Q / Ns is 0.5 and the Q / Ns density at this time will be 0.009 [kg / h / rpm / cm < 3 >]. To summarize the above results, a single reverse feed screw element having a flight part in which a notch is formed has a Q / Ns density of 0.013 [kg / h / rpm / cm 3 ] or more in an operating region. Since the defibrated glass fiber bundle is difficult to remain in the pellet, high productivity can be realized.
 1    シリンダー
 10   ホッパ
 11   フィード口
 12   真空ベント
 2    スクリュー
 20   供給部
 21   可塑化部
 22   搬送部
 23   混練部
 3    ダイ
 4    一条の逆送りスクリューエレメント
 40   フライト部
 41   切り欠き
DESCRIPTION OF SYMBOLS 1 Cylinder 10 Hopper 11 Feed port 12 Vacuum vent 2 Screw 20 Supply part 21 Plasticizing part 22 Conveying part 23 Kneading part 3 Die 4 Single feed reverse feed screw element 40 Flight part 41 Notch

Claims (4)

  1.  互いに回転して噛み合うスクリューを備えた二軸の押出機を用いて、ガラス繊維強化熱可塑性樹脂組成物ペレットを製造する方法であって、
     熱可塑性樹脂を前記押出機に供給して加熱、混練し可塑化する可塑化工程と、
     前記可塑化工程後に、一束以上のガラス繊維束を前記押出機に供給して、前記ガラス繊維束を解繊しながら、解繊されたガラス繊維と可塑化した前記熱可塑性樹脂とをスクリューで混練する混練工程と、
     前記混練工程後に、ガラス繊維強化熱可塑性樹脂組成物を押出す押出工程と、
     押出された前記ガラス繊維強化熱可塑性樹脂組成物をペレット化するペレット化工程と、を備え、
     前記混練工程において、前記スクリューは、円弧状の切り欠きが形成されたフライト部を有する一条の逆送りスクリューエレメントを一以上有し、
     前記一条の逆送りスクリューエレメントにおけるスクリューのトルクを、前記噛み合うスクリュー間の芯間距離の3乗で除した値であるトルク密度が、11(Nm/cm)以上であり、
     前記混練工程におけるスクリュー回転数をNsとし、前記押出工程におけるガラス繊維強化熱可塑性樹脂組成物の吐出量をQとしたときに、Q/Nsを、前記噛み合うスクリュー間の芯間距離の3乗で除した値であるQ/Ns密度が、0.013(kg/h/rpm/cm)であるガラス繊維強化熱可塑性樹脂組成物ペレットの製造方法。
    A method for producing glass fiber reinforced thermoplastic resin pellets using a twin-screw extruder equipped with screws that rotate and mesh with each other,
    A plasticizing step of supplying a thermoplastic resin to the extruder and heating, kneading and plasticizing;
    After the plasticizing step, one or more glass fiber bundles are supplied to the extruder, and the defibrated glass fibers and the plasticized thermoplastic resin are screwed together while defibrating the glass fiber bundles. A kneading step for kneading;
    After the kneading step, an extrusion step of extruding the glass fiber reinforced thermoplastic resin composition,
    Pelletizing step of pelletizing the extruded glass fiber reinforced thermoplastic resin composition,
    In the kneading step, the screw has one or more reverse feed screw elements having a flight part in which arc-shaped notches are formed,
    The torque density, which is a value obtained by dividing the torque of the screw in the single reverse screw element by the cube of the inter-center distance between the engaging screws, is 11 (Nm / cm 3 ) or more,
    When the screw rotation speed in the kneading step is Ns, and the discharge amount of the glass fiber reinforced thermoplastic resin composition in the extrusion step is Q, Q / Ns is the cube of the distance between the cores engaged with each other. The manufacturing method of the glass fiber reinforced thermoplastic resin composition pellet whose Q / Ns density which is the value which remove | divided is 0.013 (kg / h / rpm / cm < 3 >).
  2.  前記一条の逆送りスクリューエレメントは、下記不等式(I)から(III)を満たす請求項1に記載のガラス繊維強化熱可塑性樹脂組成物ペレットの製造方法。
     
    0.05D≦r≦0.15D   (I)
    7≦n≦20          (II)
    Le≦0.3D         (III)
     
    (上記不等式(I)中のrは、上記円弧状を形成する円の半径又は上記円弧状を形成する楕円の長径/2、あるいは短径/2であり、上記不等式(II)中のnは、上記一条の逆送りスクリューエレメントの1リード長あたりの切り欠き数であり、上記不等式(III)中のLeは、上記一条の逆送りスクリューエレメントのリード長であり、上記不等式(I)、(II)中のDは、スクリュー口径である。)
    The method for producing glass fiber reinforced thermoplastic resin pellets according to claim 1, wherein the one reverse feed screw element satisfies the following inequalities (I) to (III).

    0.05D ≦ r ≦ 0.15D (I)
    7 ≦ n ≦ 20 (II)
    Le ≦ 0.3D (III)

    (The r in the inequality (I) is the radius of the circle forming the arc or the major axis / 2 or the minor axis / 2 of the ellipse forming the arc, and n in the inequality (II) is , The number of notches per one lead length of the one reverse feed screw element, and Le in the inequality (III) is the lead length of the one reverse feed screw element, the inequality (I), ( D) in II) is the screw diameter.)
  3.  前記熱可塑性樹脂は、ポリブチレンテレフタレート系樹脂から構成される請求項1又は2に記載のガラス繊維強化熱可塑性樹脂組成物ペレットの製造方法。 The method for producing glass fiber reinforced thermoplastic resin pellets according to claim 1 or 2, wherein the thermoplastic resin is composed of a polybutylene terephthalate resin.
  4.  前記熱可塑性樹脂は、液晶性樹脂から構成される請求項1又は2に記載のガラス繊維強化熱可塑性樹脂組成物ペレットの製造方法。 The method for producing glass fiber reinforced thermoplastic resin composition pellets according to claim 1 or 2, wherein the thermoplastic resin is composed of a liquid crystalline resin.
PCT/JP2012/058400 2011-04-01 2012-03-29 Process for producing pellets of glass-fiber-reinforced thermoplastic resin composition WO2012137666A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280017404.0A CN103459110B (en) 2011-04-01 2012-03-29 The production method of glass fiber-reinforced thermoplastic resin composition's particle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011082313A JP5536705B2 (en) 2011-04-01 2011-04-01 Method for producing glass fiber reinforced thermoplastic resin composition pellets
JP2011-082313 2011-04-01

Publications (1)

Publication Number Publication Date
WO2012137666A1 true WO2012137666A1 (en) 2012-10-11

Family

ID=46969067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058400 WO2012137666A1 (en) 2011-04-01 2012-03-29 Process for producing pellets of glass-fiber-reinforced thermoplastic resin composition

Country Status (5)

Country Link
JP (1) JP5536705B2 (en)
CN (1) CN103459110B (en)
MY (1) MY163186A (en)
TW (1) TWI501859B (en)
WO (1) WO2012137666A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140306370A1 (en) * 2013-04-12 2014-10-16 Corning Incorporated Mixing segments for an extrusion apparatus and methods of manufacturing a honeycomb structure
JP2022542509A (en) * 2019-07-29 2022-10-04 ランクセス・ドイチュランド・ゲーエムベーハー Polybutylene terephthalate with low THF content

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2965889A1 (en) * 2014-07-11 2016-01-13 Covestro Deutschland AG Mixing elements with improved dispersant effect
JP7432080B2 (en) 2018-09-13 2024-02-16 三菱エンジニアリングプラスチックス株式会社 Manufacturing method of resin pellets
CN116847963A (en) * 2021-02-16 2023-10-03 三菱化学株式会社 Process for producing fiber-reinforced polybutylene terephthalate resin composition
JP7361240B2 (en) 2021-10-06 2023-10-13 ポリプラスチックス株式会社 Method for producing thermoplastic resin composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0860001A (en) * 1994-06-14 1996-03-05 Toray Ind Inc Fiber-reinforced thermoplastic resin pellet and production thereof
JPH10180841A (en) * 1996-12-25 1998-07-07 Asahi Chem Ind Co Ltd Side feed extruder of powder and extrusion method using the extruder
JP2002018842A (en) * 2000-07-10 2002-01-22 Sumitomo Chem Co Ltd Method for manufacturing liquid crystalline resin pellet
JP2002103327A (en) * 2000-10-04 2002-04-09 Asahi Kasei Corp Method for manufacturing glass fiber reinforced polyamide resin
WO2005099984A1 (en) * 2004-04-15 2005-10-27 Polyplastics Co., Ltd. Method for producing resin composition pellet containing fibrous filler having controlled length
WO2006123824A1 (en) * 2005-05-18 2006-11-23 Polyplastics Co., Ltd. Process for producing resin composition containing fibrous filler in high concentration and resin composition pellet
JP2010000654A (en) * 2008-06-19 2010-01-07 Japan Steel Works Ltd:The Method and equipment for manufacturing fiber-reinforced resin pellet

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4134026C2 (en) * 1991-10-15 1994-04-21 Werner & Pfleiderer Co-rotating screw kneader
KR950003362A (en) * 1993-07-21 1995-02-16 마에다 가츠노스케 Fiber Reinforced Thermoplastic Structures, Manufacturing Method and Extruder
JP4387036B2 (en) * 2000-04-28 2009-12-16 旭化成ケミカルズ株式会社 Method of kneading liquid additive using single thread reverse screw notch screw
JP2002120271A (en) * 2000-10-13 2002-04-23 Japan Steel Works Ltd:The Screw for twin-screw kneader-extruder
JP2004284195A (en) * 2003-03-24 2004-10-14 Toshiba Mach Co Ltd Screws of twin-screw extruder
JP3886467B2 (en) * 2003-04-10 2007-02-28 株式会社日本製鋼所 Screw kneading extruder
JP2007007864A (en) * 2005-06-28 2007-01-18 Toshiba Mach Co Ltd Plasticator of on-line blending injection molding machine
KR100998619B1 (en) * 2008-07-22 2010-12-07 신일화학공업(주) Continuous flow extruder

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0860001A (en) * 1994-06-14 1996-03-05 Toray Ind Inc Fiber-reinforced thermoplastic resin pellet and production thereof
JPH10180841A (en) * 1996-12-25 1998-07-07 Asahi Chem Ind Co Ltd Side feed extruder of powder and extrusion method using the extruder
JP2002018842A (en) * 2000-07-10 2002-01-22 Sumitomo Chem Co Ltd Method for manufacturing liquid crystalline resin pellet
JP2002103327A (en) * 2000-10-04 2002-04-09 Asahi Kasei Corp Method for manufacturing glass fiber reinforced polyamide resin
WO2005099984A1 (en) * 2004-04-15 2005-10-27 Polyplastics Co., Ltd. Method for producing resin composition pellet containing fibrous filler having controlled length
WO2006123824A1 (en) * 2005-05-18 2006-11-23 Polyplastics Co., Ltd. Process for producing resin composition containing fibrous filler in high concentration and resin composition pellet
JP2010000654A (en) * 2008-06-19 2010-01-07 Japan Steel Works Ltd:The Method and equipment for manufacturing fiber-reinforced resin pellet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140306370A1 (en) * 2013-04-12 2014-10-16 Corning Incorporated Mixing segments for an extrusion apparatus and methods of manufacturing a honeycomb structure
US9586187B2 (en) * 2013-04-12 2017-03-07 Corning Incorporated Mixing segments for an extrusion apparatus and methods of manufacturing a honeycomb structure
JP2022542509A (en) * 2019-07-29 2022-10-04 ランクセス・ドイチュランド・ゲーエムベーハー Polybutylene terephthalate with low THF content
JP7325603B2 (en) 2019-07-29 2023-08-14 ランクセス・ドイチュランド・ゲーエムベーハー Polybutylene terephthalate with low THF content

Also Published As

Publication number Publication date
TWI501859B (en) 2015-10-01
JP5536705B2 (en) 2014-07-02
CN103459110A (en) 2013-12-18
MY163186A (en) 2017-08-15
JP2012213997A (en) 2012-11-08
TW201302430A (en) 2013-01-16
CN103459110B (en) 2015-07-29

Similar Documents

Publication Publication Date Title
JP5536705B2 (en) Method for producing glass fiber reinforced thermoplastic resin composition pellets
CN100575029C (en) Be mixed with the preparation method and the resin composition pellet of resin combination of the fibrous filler of high concentration
EP1768823B1 (en) Apparatus for plasticating thermoplastic resin including polypropylene
JP5457933B2 (en) Method for producing composite pellet for extrusion molding, and composite pellet for extrusion produced by the above method
DE69916894T2 (en) METHOD AND DEVICE FOR EXTRUDING POLYCARBONATE WITH A LOW BULK DENSITY
WO2011136273A1 (en) Method for producing composite pellet for extrusion molding, and composite pellet for extrusion molding produced by the method
JP5632236B2 (en) Simulation device, program, and recording medium
JP5536704B2 (en) Method for producing glass fiber reinforced thermoplastic resin composition pellets
JP5632235B2 (en) Method for producing glass fiber reinforced thermoplastic resin composition pellets
US20050063246A1 (en) Mixing and kneading device for polymer compositions
JP2018161860A (en) Production method of pellets of thermoplastic resin composition
JP6914541B2 (en) Molding machine for thermoplastic resin composition and manufacturing method
JPS5839659B2 (en) Thermoplastic extrusion method
US6699416B2 (en) Impact modifier material and method and apparatus for the production thereof
JP7361240B2 (en) Method for producing thermoplastic resin composition
CN218557913U (en) Extrusion screw for BFS
JP2023079184A (en) Molding machine for molded product of thermoplastic resin composition, and method for manufacturing molded product
JP4707377B2 (en) Molding method for thermoplastic resin film
JPS63199623A (en) Thermoplastic resin molding screw
WO2017170112A1 (en) Method for manufacturing injection molding feedstock and method for manufacturing resin molding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12767661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1301005633

Country of ref document: TH

122 Ep: pct application non-entry in european phase

Ref document number: 12767661

Country of ref document: EP

Kind code of ref document: A1