WO2023058264A1 - 通信装置及び通信方法 - Google Patents
通信装置及び通信方法 Download PDFInfo
- Publication number
- WO2023058264A1 WO2023058264A1 PCT/JP2022/019831 JP2022019831W WO2023058264A1 WO 2023058264 A1 WO2023058264 A1 WO 2023058264A1 JP 2022019831 W JP2022019831 W JP 2022019831W WO 2023058264 A1 WO2023058264 A1 WO 2023058264A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- feedback
- setting
- sps
- harq
- identifier
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 81
- 238000000034 method Methods 0.000 title claims description 198
- 230000005540 biological transmission Effects 0.000 claims abstract description 141
- 238000012545 processing Methods 0.000 claims abstract description 47
- 230000008569 process Effects 0.000 claims description 173
- 230000006870 function Effects 0.000 description 44
- 238000010586 diagram Methods 0.000 description 24
- 230000011664 signaling Effects 0.000 description 18
- 238000007726 management method Methods 0.000 description 17
- 239000000872 buffer Substances 0.000 description 14
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 13
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 13
- 102100036409 Activated CDC42 kinase 1 Human genes 0.000 description 12
- 238000005516 engineering process Methods 0.000 description 12
- 230000000737 periodic effect Effects 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 230000004913 activation Effects 0.000 description 6
- 238000012937 correction Methods 0.000 description 6
- 238000013507 mapping Methods 0.000 description 6
- 230000009849 deactivation Effects 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000013468 resource allocation Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 230000003139 buffering effect Effects 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000001824 photoionisation detection Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 241000854291 Dianthus carthusianorum Species 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000013523 data management Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1822—Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1829—Arrangements specially adapted for the receiver end
- H04L1/1854—Scheduling and prioritising arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1829—Arrangements specially adapted for the receiver end
- H04L1/1864—ARQ related signaling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1867—Arrangements specially adapted for the transmitter end
- H04L1/1887—Scheduling and prioritising arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1867—Arrangements specially adapted for the transmitter end
- H04L1/1896—ARQ related signaling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/04—Error control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
Definitions
- NR new radio access technology
- a communication apparatus determines settings related to enabling and disabling feedback in retransmission control of dynamic scheduling based on the type of identifier used in a control signal that performs dynamic scheduling.
- a control circuit and a transmission circuit that performs transmission processing of the feedback signal based on whether the feedback is enabled or disabled.
- Hybrid automatic repeat request In Long Term Evolution (LTE) or 5G NR, for example, Hybrid automatic repeat request (HARQ) is applied to retransmission control during data transmission.
- LTE Long Term Evolution
- 5G NR 5th Generation NR
- HARQ Hybrid automatic repeat request
- the transmitting side performs channel coding (FEC: Forward Error Correction) such as turbo coding or Low Density Parity Check (LDPC) coding on data, and transmits the coded data. Further, for example, when decoding data, if there is an error in the received data, the receiving side saves the received data (for example, a soft decision value) in a buffer (in other words, it is also called buffering, storing, or holding). . Note that the buffers are also called HARQ soft buffers or simply soft buffers, for example.
- FEC Forward Error Correction
- LDPC Low Density Parity Check
- the receiving side when receiving resent data, the receiving side synthesizes (soft synthesizes) the received data (e.g., resent data or data related to a resend request) and the previously received data (in other words, stored data). , to decode the synthesized data.
- the receiving side can decode data using data with improved reception quality (for example, SNR: Signal to Noise Ratio).
- the transmitting side can improve the coding gain by transmitting different parity bits (for example, different Redundancy version (RV)) from the previous transmission.
- RV Redundancy version
- the receiving side divides the received data, for example, by process ID (also referred to as "PID" or "HARQ process ID”), which is identification information that identifies a process (or data), and stores it in a buffer. do.
- a base station for example, also called eNB or gNB
- eNB also called eNB or gNB
- NDI New Data Indicator
- RV New Data Indicator
- a terminal performs reception processing (eg, soft combining processing) of data (eg, Physical Downlink Shared Channel (PDSCH)) based on information about HARQ notified from the base station.
- reception processing eg, soft combining processing
- data eg, Physical Downlink Shared Channel (PDSCH)
- scheduling for data transmission includes, for example, “dynamic scheduling” and “semi-persistent scheduling (SPS)".
- dynamic scheduling allows time and frequency Scheduling that notifies terminal 200 of transmission parameters such as resources, Modulation and Coding Scheme (MCS), RV, or NDI may be used.
- SPS eg, semi-static scheduling
- MCS Modulation and Coding Scheme
- NDI NDI
- SPS eg, semi-static scheduling
- the base station uses the PDCCH (or DCI) to transmit parameters such as time and frequency resources used for data transmission for each data transmission unit (for example, slot) or Modulation and Coding Scheme (MCS) to the terminal. to notify.
- the base station transmits data (eg, PDSCH) after transmitting transmission parameters.
- the PDCCH may be transmitted using a preset time/frequency resource called CORESET (Control Resource Set).
- a base station In SPS, for example, a base station notifies a terminal in advance of a parameter such as a transmission cycle through higher layer signaling (eg, RRC signaling), and transmits data (eg, PDSCH) at the notified transmission cycle.
- a base station may activate SPS transmission, for example, by transmitting a specific PDCCH (eg, also called activation DCI).
- a specific PDCCH eg, also called activation DCI
- the base station may deactivate (de-activate) SPS transmission by transmitting a specific PDCCH (for example, also called deactivation DCI).
- CS-RNTI Configured Scheduling-Radio Network Temporary Identifier
- the HARQ process ID (PID) of the PDSCH transmitted in the SPS may be determined based on the transmission slot of the SPS PDSCH, for example.
- the HARQ process ID of SPS PDSCH may be determined by the following formula (see Non-Patent Document 2, for example).
- HARQ Process ID [floor (CURRENT_slot * 10 / (numberOfSlotsPerFrame * periodicity))] modulo nrofHARQ-Processes + harq-ProcID-Offset
- CURRENT_slot indicates the slot number in which the SPS PDSCH is transmitted
- numberOfSlotsPerFrame indicates the number of slots per frame
- periodicity indicates the transmission period
- nrofHARQ-Processes indicates the number of HARQ processes for SPS
- harq-ProcID- Offset indicates the process number offset.
- multiple SPS settings may be set for a terminal.
- dynamic scheduling may be performed even during the period when SPS is valid.
- retransmission of SPS PDSCH may be done by dynamic scheduling.
- CRC Cyclic Redundancy Check
- PDCCH in which the CRC part is scrambled by Cell-RNTI (C-RNTI) is used for scheduling of new data different from data transmitted by SPS.
- C-RNTI Cell-RNTI
- the PDSCH transmitted by dynamic scheduling is sometimes called, for example, "Dynamic Grant PDSCH (DG PDSCH)".
- NTN Non-Terrestrial Network
- LTE and NR Rel.15/16 are specified as radio access technologies for terrestrial networks.
- NR is being considered for expansion to non-terrestrial networks (NTN) such as communication using satellites or high-altitude pseudo-satellites (HAPS) (for example, see Non-Patent Document 1 reference).
- NPN non-terrestrial networks
- HAPS high-altitude pseudo-satellites
- Non-Patent Document 1 states that the maximum round-trip time (RTT) of radio wave propagation between a base station and a terminal is about 540 ms.
- retransmission control is performed based on individual HARQ-ACK feedback (for example, HARQ feedback or UL HARQ feedback) for HARQ processes. Therefore, in NTN with large RTT compared to terrestrial networks, a large number of HARQ processes can be used for continuous data transmission. For example, NTN considers disabling HARQ-ACK feedback for each HARQ process individually (see, for example, Non-Patent Document 1).
- QoS Quality of Service
- SPS-Config SPS settings
- the feedback enable/disable setting in each slot of SPS becomes common, and the QoS of data traffic can be easily satisfied.
- the feedback enable/disable setting for the HARQ process for a given HARQ process ID is different from the feedback enable/disable setting for the SPS setting. Describes how to disable it.
- enabling/disabling of feedback is set for the SPS configuration (e.g., SPS-Config).
- SPS-Config the SPS configuration
- the CRC part of the PDCCH used for scheduling the PDSCH Based on at least one of the type of RNTI that performs scrambling and the HARQ process ID, follow either the individual feedback enable/disable setting for the HARQ process, or the individual feedback enable/disable setting for the SPS setting. may be determined.
- a communication system includes base station 100 and terminal 200 .
- FIG. 2 is a block diagram showing a configuration example of part of the base station 100 (corresponding to a communication device, for example).
- a control unit determines the type of identifier (for example, RNTI) used for a control signal (for example, PDCCH) that performs dynamic scheduling. Based on, determine the settings for enabling and disabling feedback (for example, HARQ feedback) in retransmission control of dynamic scheduling.
- a receiving unit performs reception processing of a feedback signal (for example, HARQ-ACK) based on whether feedback is enabled or disabled.
- FIG. 3 is a block diagram showing a configuration example of part of the terminal 200 (corresponding to a communication device, for example).
- a control unit for example, corresponding to a control circuit uses a control signal (for example, PDCCH) for dynamic scheduling (for example, RNTI) for the type of identifier Based on this, the setting regarding the validity and invalidity of feedback (for example, HARQ feedback) in retransmission control of dynamic scheduling is determined.
- a transmission unit (for example, corresponding to a transmission circuit) performs transmission processing of a feedback signal (for example, HARQ-ACK) based on whether feedback is enabled or disabled.
- a feedback signal for example, HARQ-ACK
- the control unit 101 may, for example, generate information (for example, HARQprocess-disableULfeedback) regarding individual feedback enable/disable settings for the HARQ process.
- the control unit 101 may generate information about feedback-enabled HARQ process IDs and feedback-disabled HARQ process IDs.
- information on setting feedback enable/disable for each HARQ process may be included in the PDSCH-Config Information Element (IE).
- IE PDSCH-Config Information Element
- control unit 101 may generate, for example, information related to SPS settings.
- Information on SPS settings includes, for example, SPS transmission period (periodicity), number of HARQ processes (nrofHARQ-Processes), process number offset (harq-ProcID-Offset), and feedback enable/disable setting (for example, HARQfeedback). At least one may be included. Also, information on SPS configuration may be included in, for example, the SPS-Config IE.
- higher layer signaling for example, RRC reconfiguration message
- DCI different control signals
- the control section 101 outputs the generated control information to the encoding/modulation section 102 .
- Coding/modulating unit 102 for example, the input transmission data (e.g., transport block), and the control information input from the control unit 101, turbo code, error correction code such as LDPC code or polar code and modulation such as Quarter Phase Shift Keying (QPSK) or Quadrature Amplitude Modulation (QAM), and outputs the modulated signal to radio transmission section 103 .
- turbo code error correction code such as LDPC code or polar code
- modulation such as Quarter Phase Shift Keying (QPSK) or Quadrature Amplitude Modulation (QAM)
- QPSK Quarter Phase Shift Keying
- QAM Quadrature Amplitude Modulation
- the encoding/modulation section 102 may store transmission data in a buffer, for example.
- the encoding/modulation section 102 may perform the same processing as described above on transmission data (for example, retransmission data) stored in the buffer.
- the encoding/modulation unit 102 may delete the corresponding transmission data stored in the buffer.
- DCI downlink control information
- DCI may include data allocation information, eg, time and frequency resource allocation information, information on coding and modulation schemes (eg, MCS information).
- DCI includes, for example, HARQ process ID, NDI, RV, information indicating HARQ-ACK transmission timing (e.g., PDSCH-to-HARQ_feedback timing indicator), or Downlink Assignment Index (DAI) (e.g., Counter-DAI (C-DAI), Total-DAI (T-DAI)), which is input from retransmission control section 108, may be included.
- DCI Downlink Assignment Index
- an identifier for example, C-RNTI
- Portions may be scrambled.
- the base station 100 may generate DCI or PDCCH including control information for activating or deactivating (deactivating or releasing) SPS transmission, for example. After enabling SPS transmission, the base station 100 may periodically perform the data transmission process according to the SPS transmission periodicity. For example, control information (eg, DCI) such as data allocation information may not be generated and transmitted for periodic transmission of SPS.
- control information eg, DCI
- base station 100 scrambles the CRC part by an identifier (for example, CS-RNTI) individually assigned to terminal 200 may be used to notify the terminal 200 of the allocation information described above.
- Radio receiving section 105 for example, received via antenna 104, data signal from terminal 200 (e.g., Physical Uplink Shared Channel (PUSCH)) and control signals (e.g., HARQ-ACK information), It performs reception processing such as down-conversion and A/D conversion, and outputs the signal after reception processing to demodulation/decoding section 106 .
- PUSCH Physical Uplink Shared Channel
- control signals e.g., HARQ-ACK information
- HARQ-ACK determination section 107 for example, based on the HARQ-ACK information input from demodulation/decoding section 106, the presence or absence of an error (eg, ACK or NACK) for each transmitted transmission data (eg, transport block) ) is determined. For example, when the HARQ-ACK information is NACK, HARQ-ACK determination section 107 may instruct retransmission control section 108 to retransmit data. Also, for example, when the HARQ-ACK information is ACK, HARQ-ACK determination section 107 may instruct retransmission control section 108 not to retransmit data. Also, for example, when HARQ-ACK information is not received from terminal 200, HARQ-ACK determination section 107 may determine NACK.
- an error eg, ACK or NACK
- the retransmission control section 108 controls retransmission of transmission data (for example, PDSCH).
- transmission data for example, PDSCH
- retransmission control section 108 for transmission data, HARQ process ID, NDI, RV, information indicating HARQ-ACK transmission timing (eg, PDSCH-to-HARQ_feedback timing indicator), and DAI (C-DAI, T- DAI) may be generated.
- Retransmission control section 108 outputs the generated information on retransmission control to encoding/modulation section 102 .
- At least one of the demodulator/decoder 203, the HARQ-ACK generator 204, and the encoder/modulator 205 shown in FIG. 5 may be included in the controller shown in FIG. 3, for example. Also, at least one of the antenna 201 and the radio transmission section 206 shown in FIG. 5 may be included in the transmission section shown in FIG. 3, for example.
- Radio receiving section 202 for example, down-converts and A/Ds data signals (eg, PDSCH) and control signals (eg, PDCCH or DCI) from base station 100 received via antenna 201. It performs reception processing such as conversion, and outputs the signal after reception processing to demodulation/decoding section 203 .
- data signals eg, PDSCH
- control signals eg, PDCCH or DCI
- the demodulation/decoding section 203 performs channel estimation, demodulation processing, and decoding processing on the received signal input from the radio reception section 202, for example.
- the demodulator/decoder 203 may perform processing based on data allocation information (for example, modulation scheme and coding rate) included in the control signal.
- data allocation information for example, modulation scheme and coding rate
- demodulation/decoding section 203 uses an identifier (for example, RNTI such as C-RNTI or CS-RNTI) assigned to terminal 200 to generate the control signal (for example, PDCCH CRC part) may be descrambled.
- demodulation/decoding section 203 specifies the modulation scheme and coding rate based on, for example, data allocation information included in the detected control signal, and performs processing.
- the demodulation/decoding section 203 may determine whether the received data is the initial transmission data or the retransmission data, for example, based on the NDI included in the control signal. For example, in the case of initial transmission data, demodulation/decoding section 203 may perform error correction decoding and perform CRC determination. Further, for example, in the case of retransmission data, the demodulation/decoding section 203 may perform error correction decoding after combining the data stored in the buffer (past received data) and the received data, and perform CRC determination. Demodulation/decoding section 203 outputs the CRC determination result to HARQ-ACK generation section 204, for example.
- the HARQ-ACK generation unit 204 may generate HARQ-ACK information based on feedback enable/disable settings. Determination of feedback validation/invalidation will be described later.
- the HARQ-ACK generation unit 204 generates HARQ-ACK information (eg, ACK or NACK) based on the CRC determination result for data for which feedback is set to be valid. For example, HARQ-ACK generating section 204 generates ACK when CRC OK (eg, no error), and generates NACK when CRC NG (eg, error exists). Also, for example, when the terminal 200 receives a plurality of transport blocks or code blocks, the HARQ-ACK generation unit 204 generates HARQ-ACK for each of the plurality of transport blocks or code blocks, and generates a plurality of HARQ- A HARQ-ACK code block consisting of ACKs may be generated.
- HARQ-ACK information eg, ACK or NACK
- the HARQ-ACK generation unit 204 does not need to generate HARQ-ACK information for feedback-disabled data (or data in a feedback-disabled HARQ process). Note that terminal 200 does not have to transmit HARQ-ACK information generated for feedback-invalid data.
- the coding/modulation section 205 performs, for example, error correction coding and modulation processing on input transmission data (eg, transport block), and outputs the modulated signal to the radio transmission section 206 . Also, the coding/modulation unit 205 performs error correction coding and modulation processing on the HARQ-ACK information input from the HARQ-ACK generation unit 204, for example, and transmits the modulated signal to the radio transmission unit 206. Output.
- Radio transmission section 206 for example, performs transmission processing such as D/A conversion, up-conversion, and amplification on the signal input from encoding/modulation section 205, and transmits the radio signal after transmission processing from antenna 201. Send.
- terminal 200 may transmit HARQ-ACK information at timing based on the PDSCH-to-HARQ_feedback timing indicator included in the control signal from base station 100, for example.
- FIG. 6 is a sequence diagram showing an operation example of base station 100 and terminal 200 in this embodiment.
- the base station 100 determines HARQ feedback settings for the terminal 200 (S101).
- HARQ feedback settings may include, for example, individual feedback enable/disable settings for HARQ processes and individual feedback enable/disable settings for SPS settings (eg, SPS config).
- the terminal 200 identifies the HARQ feedback settings based on the control information (S103).
- the base station 100 transmits downlink data to the terminal 200 (S104).
- the terminal 200 receives downlink data, for example, based on data allocation information included in control information (S105).
- the terminal 200 performs HARQ-ACK information transmission processing for downlink data based on the HARQ feedback setting included in the control information (S106). For example, terminal 200 may determine whether to transmit HARQ-ACK information.
- the terminal 200 transmits HARQ-ACK information to the base station 100 when HARQ feedback is valid, and stops transmitting HARQ-ACK information when HARQ feedback is invalid (S107).
- the base station 100 controls retransmission of downlink data to the terminal 200 (S108). For example, base station 100 may perform retransmission control based on HARQ-ACK information from terminal 200 or may perform retransmission control without depending on HARQ-ACK information from terminal 200 .
- the base station 100 may, for example, notify the terminal 200 of information (for example, SPS-Config) related to SPS settings according to the QoS requirements or characteristics of communication traffic with each terminal 200 .
- information for example, SPS-Config
- the base station 100 may notify the terminal 200 that uses an application that periodically generates a similar amount of data, such as voice call or video transmission, with information on SPS settings.
- Information on SPS settings includes, for example, SPS transmission period (periodicity), number of HARQ processes (nrofHARQ-Processes), process number offset (harq-ProcID-Offset), and feedback enable/disable setting for SPS transmission (for example, HARQ feedback) may be included.
- the base station 100 may notify the terminal 200 of multiple (multiple sets) of SPS settings, for example, when communications of multiple applications are performed at the same time.
- FIG. 7 is a diagram showing an example of feedback settings when terminal 200 is notified of a single SPS setting.
- the number of HARQ processes (nrofHARQ-Processes) is set to 4, the HARQ process ID offset (harq-ProcID-Offset) is set to 0, and the SPS feedback enable/disable setting (HARQfeedback) for is set to "enable”.
- HARQ feedback for SPS settings based on the feedback enable/disable settings for SPS transmission (for example, HARQfeedback) in the SPS settings (SPS-Config) are applied.
- SPS-Config the feedback enable/disable settings for SPS transmission
- SPS-Config the SPS settings
- HARQ feedback in SPS setting is enabled, so terminal 200 transmits HARQ-ACK information (ACK or NACK) after receiving each SPS PDSCH.
- terminal 200 uses the RNTI (for example, the RNTI used for scrambling of the CRC portion) used in PDCCH for scheduling PDSCH (for example, DG PDSCH).
- HARQ feedback settings for dynamic scheduling may be determined based on the type of For example, when C-RNTI is used, setting values according to individual feedback enable/disable settings (HARQprocess-disableULfeedback) may be applied to the HARQ process (or HARQ process ID). Also, for example, when CS-RNTI is used, setting values according to individual feedback enable/disable settings (HARQfeedback) may be applied to SPS settings.
- base station 100 and terminal 200 use HARQ process ID Feedback disable (disable) may be set according to the individual feedback enable/disable setting (HARQprocess-disableULfeedback). In this case, terminal 200 does not need to transmit HARQ-ACK information for the PDSCH. Also, the base station 100 may perform retransmission control on the assumption that HARQ-ACK information for the PDSCH will not be transmitted, for example.
- base station 100 and terminal 200 set SPS You may set HARQ feedback enable according to individual feedback enable/disable setting (HARQfeedback).
- terminal 200 may transmit HARQ-ACK information for the PDSCH.
- the base station 100 may, for example, receive HARQ-ACK information for the PDSCH and perform retransmission control based on the received HARQ-ACK information.
- HARQ feedback may be set according to the valid/invalid setting.
- CS-RNTI is used for the PDCCH that schedules the PDSCH
- the PDCCH indicates the PID set in the SPS
- base station 100 and terminal 200 individually enable feedback for SPS setting.
- - HARQ feedback may be set according to the disabled setting.
- terminal 200 determines that the PDCCH is invalid and discards it.
- base station 100 and terminal 200 enable/disable feedback for PDSCH (for example, DG PDSCH) scheduled by dynamic scheduling based on the type of RNTI used for PDCCH on which dynamic scheduling is performed.
- PDSCH for example, DG PDSCH
- CS-RNTI is used for PDCCH scrambling for scheduling PDSCH used for retransmitting SPS-transmitted data.
- the terminal 200 determines the feedback enable/disable setting when the RNTI type is CS-RNTI according to the feedback enable/disable setting for SPS transmission (HARQfeedback).
- the same feedback enable/disable setting can be applied to both initial transmission and retransmission.
- HARQ feedback valid is set for SPS PDSCH (for example, periodic transmission by SPS)
- HARQ feedback valid is set for DG PDSCH used for retransmission of SPS.
- the same HARQ feedback setting (enable or disable) as the HARQ feedback setting (enable or disable) set for periodic transmission of SPS is applied, so it is possible to perform transmission that satisfies the QoS requirements of SPS data. becomes.
- C-RNTI is used for PDCCH scrambling for scheduling PDSCH used for transmission (or retransmission) of data different from SPS-transmitted data. Therefore, the terminal 200 determines the feedback enable/disable setting when the RNTI type is C-RNTI according to the feedback enable/disable setting for each HARQ process, thereby performing dynamic scheduling without depending on the SPS setting. It is possible to perform communication by enabling/disabling feedback according to the characteristics of traffic to be used.
- FIG. 8 is a diagram showing an example of feedback settings when terminal 200 is notified of multiple SPS settings.
- base station 100 and terminal 200 use the HARQ process ID (in other words, Then, based on the HARQ process ID used for dynamic scheduling, the feedback enable/disable setting may be determined. For example, base station 100 and terminal 200 may determine feedback enable/disable settings depending on whether the HARQ process ID used for dynamic scheduling is the HARQ process ID used for SPS transmission.
- An SPS may be called, for example, Configured scheduling, Configured grant, or Grant free.
- FIG. 12 shows functional separation between NG-RAN and 5GC.
- Logical nodes in NG-RAN are gNBs or ng-eNBs.
- 5GC has logical nodes AMF, UPF and SMF.
- Session Management Function hosts the following main functions: - session management; - allocation and management of IP addresses for UEs; - UPF selection and control; - the ability to configure traffic steering in the User Plane Function (UPF) to route traffic to the proper destination; - policy enforcement and QoS in the control part; - Notification of downlink data.
- UPF User Plane Function
- RRC is a higher layer signaling (protocol) used for UE and gNB configuration.
- the AMF prepares the UE context data (which includes, for example, the PDU session context, security keys, UE Radio Capabilities, UE Security Capabilities, etc.) and the initial context Send to gNB with INITIAL CONTEXT SETUP REQUEST.
- the gNB then activates AS security together with the UE. This is done by the gNB sending a SecurityModeCommand message to the UE and the UE responding to the gNB with a SecurityModeComplete message.
- the present disclosure provides control circuitry for operationally establishing a Next Generation (NG) connection with a gNodeB and an operationally NG connection so that signaling radio bearers between the gNodeB and User Equipment (UE) are set up.
- a 5th Generation Core (5GC) entity eg, AMF, SMF, etc.
- AMF Next Generation
- SMF User Equipment
- the gNodeB sends Radio Resource Control (RRC) signaling including a Resource Allocation Configuration Information Element (IE) to the UE via the signaling radio bearer.
- RRC Radio Resource Control
- IE Resource Allocation Configuration Information Element
- the UE then performs uplink transmission or downlink reception based on the resource allocation configuration.
- Figure 14 shows some of the use cases for 5G NR.
- the 3rd generation partnership project new radio (3GPP NR) considers three use cases envisioned by IMT-2020 to support a wide variety of services and applications.
- the first stage of specifications for high-capacity, high-speed communications (eMBB: enhanced mobile-broadband) has been completed.
- Current and future work includes expanding eMBB support, as well as ultra-reliable and low-latency communications (URLLC) and Massively Connected Machine Type Communications (mMTC). Standardization for massive machine-type communications is included
- Figure 14 shows some examples of envisioned usage scenarios for IMT beyond 2020 (see eg ITU-RM.2083 Figure 2).
- URLLC use cases have strict performance requirements such as throughput, latency (delay), and availability.
- URLLLC use cases are envisioned as one of the elemental technologies to realize these future applications such as wireless control of industrial production processes or manufacturing processes, telemedicine surgery, automation of power transmission and distribution in smart grids, and traffic safety. ing.
- URLLLC ultra-reliability is supported by identifying technologies that meet the requirements set by TR 38.913.
- an important requirement includes a target user plane latency of 0.5 ms for UL (uplink) and 0.5 ms for DL (downlink).
- the general URLLC requirement for one-time packet transmission is a block error rate (BLER) of 1E-5 for a packet size of 32 bytes with a user plane latency of 1 ms.
- BLER block error rate
- NRURLC NR Ultra User Downlink Control Channel
- enhancements for compact DCI PDCCH repetition, and increased PDCCH monitoring.
- enhancement of UCI Uplink Control Information
- enhancement of enhanced HARQ Hybrid Automatic Repeat Request
- minislot refers to a Transmission Time Interval (TTI) containing fewer symbols than a slot (a slot comprises 14 symbols).
- TTI Transmission Time Interval
- the 5G QoS (Quality of Service) model is based on QoS flows, and includes QoS flows that require a guaranteed flow bit rate (GBR: Guaranteed Bit Rate QoS flows), and guaranteed flow bit rates. support any QoS flows that do not exist (non-GBR QoS flows). Therefore, at the NAS level, a QoS flow is the finest granularity of QoS partitioning in a PDU session.
- a QoS flow is identified within a PDU session by a QoS Flow ID (QFI) carried in an encapsulation header over the NG-U interface.
- QFI QoS Flow ID
- Figure 15 shows further functional units of the 5G architecture: Network Slice Selection Function (NSSF), Network Repository Function (NRF), Unified Data Management (UDM), Authentication Server Function (AUSF), Access and Mobility Management Function (AMF) , Session Management Function (SMF), and Data Network (DN, eg, service by operator, Internet access, or service by third party). All or part of the core network functions and application services may be deployed and operated in a cloud computing environment.
- NSF Network Slice Selection Function
- NRF Network Repository Function
- UDM Unified Data Management
- AUSF Authentication Server Function
- AMF Access and Mobility Management Function
- SMSF Session Management Function
- DN Data Network
- QoS requirements for at least one of URLLC, eMMB and mMTC services are set during operation to establish a PDU session including radio bearers between a gNodeB and a UE according to the QoS requirements.
- the functions of the 5GC e.g., NEF, AMF, SMF, PCF, UPF, etc.
- a control circuit that, in operation, serves using the established PDU session;
- An application server eg AF of 5G architecture
- Each functional block used in the description of the above embodiments is partially or wholly realized as an LSI, which is an integrated circuit, and each process described in the above embodiments is partially or wholly implemented as It may be controlled by one LSI or a combination of LSIs.
- An LSI may be composed of individual chips, or may be composed of one chip so as to include some or all of the functional blocks.
- the LSI may have data inputs and outputs.
- LSIs are also called ICs, system LSIs, super LSIs, and ultra LSIs depending on the degree of integration.
- a communication device may include a radio transceiver and processing/control circuitry.
- a wireless transceiver may include a receiver section and a transmitter section, or functions thereof.
- a wireless transceiver (transmitter, receiver) may include an RF (Radio Frequency) module and one or more antennas.
- RF modules may include amplifiers, RF modulators/demodulators, or the like.
- Non-limiting examples of communication devices include telephones (mobile phones, smart phones, etc.), tablets, personal computers (PCs) (laptops, desktops, notebooks, etc.), cameras (digital still/video cameras, etc.).
- digital players digital audio/video players, etc.
- wearable devices wearable cameras, smartwatches, tracking devices, etc.
- game consoles digital book readers
- telehealth and telemedicine (remote health care/medicine prescription) devices vehicles or mobile vehicles with communication capabilities (automobiles, planes, ships, etc.), and combinations of the various devices described above.
- Communication includes data communication by cellular system, wireless LAN system, communication satellite system, etc., as well as data communication by a combination of these.
- Communication apparatus also includes devices such as controllers and sensors that are connected or coupled to communication devices that perform the communication functions described in this disclosure. Examples include controllers and sensors that generate control and data signals used by communication devices to perform the communication functions of the communication device.
- Communication equipment also includes infrastructure equipment, such as base stations, access points, and any other equipment, device, or system that communicates with or controls the various equipment, not limited to those listed above. .
- the control circuit determines a first setting individually set for semi-static scheduling to enable and disable the feedback. and if the identifier is a second identifier different from the first identifier, a second setting that is set individually for the retransmission process is determined to be the setting for enabling and disabling the feedback.
- the control circuit determines a first setting individually set for semi-static scheduling to enable and disable the feedback. and if the identifier is a second identifier different from the first identifier, if the retransmission process number used for the dynamic scheduling is used in the semi-static scheduling, the first If the setting is determined to be the feedback valid and invalid setting, and the retransmission process number used for the dynamic scheduling is not used in the semi-static scheduling, the second set individually for the retransmission process is set to enable or disable the feedback.
- control circuit includes a first setting individually set for semi-static scheduling and a second setting individually set for a retransmission process based on the type of the identifier. Any one of the settings is determined to be the feedback valid and invalid settings, and the first setting is the second setting corresponding to one of the retransmission process numbers used for the semi-static scheduling; is determined based on the settings of
- control circuit includes a first setting individually set for semi-static scheduling and a second setting individually set for a retransmission process based on the type of the identifier. Either one of the settings is determined to be the feedback valid or invalid setting, and the control circuit does not perform the reception process of the retransmission data in the semi-static scheduling when the first setting is feedback invalid. .
- a communication apparatus determines settings related to enabling and disabling feedback in retransmission control of dynamic scheduling based on the type of identifier used in a control signal that performs dynamic scheduling.
- a control circuit and a reception circuit that performs reception processing of the feedback signal based on whether the feedback is enabled or disabled.
- a communication device relates to validity and invalidity of feedback in retransmission control of dynamic scheduling based on a type of an identifier used in a control signal that performs dynamic scheduling.
- a setting is determined, and processing for transmitting the feedback signal is performed based on the setting of whether the feedback is valid or invalid.
- a communication device relates to validity and invalidity of feedback in retransmission control of dynamic scheduling based on a type of an identifier used in a control signal that performs dynamic scheduling.
- a setting is determined, and reception processing of the signal of the feedback is performed based on the setting of enabling and disabling the feedback.
- One aspect of the present disclosure is useful for wireless communication systems.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
Long Term Evolution(LTE)又は5G NRでは、例えば、データ送信の際の再送制御にHybrid automatic repeat request(HARQ)が適用される。
HARQ Process ID = [floor (CURRENT_slot × 10 / (numberOfSlotsPerFrame× periodicity))] modulo nrofHARQ-Processes + harq-ProcID-Offset
LTE、及び、NR Rel.15/16は、地上ネットワーク向けの無線アクセス技術として仕様化されている。一方で、NRは、衛星又は高高度疑似衛星(HAPS:High-altitude platform station)を用いた通信等の地上以外のネットワーク(NTN)への拡張が検討されている(例えば、非特許文献1を参照)。
[通信システムの概要]
本開示の一実施の形態に係る通信システムは、基地局100及び端末200を備える。
図4は、本実施の形態に係る基地局100の構成の一例を示すブロック図である。基地局100は、例えば、制御部101と、符号化・変調部102と、無線送信部103と、アンテナ104と、無線受信部105と、復調・復号部106と、HARQ-ACK判定部107と、再送制御部108とを備える。
次に、端末200の構成例を説明する。
次に、基地局100及び端末200の動作例について説明する。
次に、フィードバック有効・無効の設定の例、及び、端末200におけるフィードバックの有効化及び無効化の判断方法の例について説明する。
図7は、単一のSPS設定が端末200に通知される場合のフィードバック設定の一例を示す図である。
図8は、複数のSPS設定が端末200に通知される場合のフィードバック設定の一例を示す図である。
本実施の形態において、基地局及び端末の構成は実施の形態1の基地局100及び端末200と同様でよい。
本実施の形態において、基地局及び端末の構成は実施の形態1の基地局100及び端末200と同様でよい。
本実施の形態において、基地局及び端末の構成は実施の形態1の基地局100及び端末200と同様でよい。
例1:HARQフィードバックが無効化されるSPS設定に対しては、端末はそのSPS設定に関連したPDSCHの再送を受信することを期待(expect)しない(或いは、想定(assume)しない)。
例2:HARQフィードバックが無効化されるSPS設定に対しては、端末はCS-RNTIによってスクランブリングされ、NDI=1であるPDCCHを受信することを期待しない(或いは、想定しない)。
例3:HARQフィードバックが無効化されるSPS設定に対しては、端末はCS-RNTIによってスクランブリングされ、NDI=1であるPDCCHを無視(ignore)する(又は破棄(discard)する)。
例4:端末はCS-RNTIによってスクランブリングされ、NDI=1であるPDCCHであって、SPSによりスケジューリングされ、HARQフィードバックが無効化されるPDSCHと同じHARQプロセスIDを示すPDCCHを受信することを期待しない(或いは、想定しない)。
例5:端末はCS-RNTIによってスクランブリングされ、NDI=1であるPDCCHであって、SPSによりスケジューリングされ、HARQフィードバックが無効化されるPDSCHと同じHARQプロセスIDを示すPDCCHを無視する(又は破棄する)。
上述した各実施の形態及び各変形例に示した機能、動作又は処理を端末200がサポートするか否かを示す情報が、例えば、端末200の能力(capability)情報あるいは能力パラメータとして、端末200から基地局100へ送信(あるいは通知)されてもよい。
本開示において、本開示の一実施例に関連する下り制御信号(又は、下り制御情報)は、例えば、物理層のPhysical Downlink Control Channel(PDCCH)において送信される信号(又は、情報)でもよく、上位レイヤのMedium Access Control Control Element(MAC CE)又はRadio Resource Control(RRC)において送信される信号(又は、情報)でもよい。また、信号(又は、情報)は、下り制御信号によって通知される場合に限定されず、仕様(又は、規格)において予め規定されてもよく、基地局及び端末に予め設定されてもよい。
本開示の一実施例において、基地局は、Transmission Reception Point(TRP)、クラスタヘッド、アクセスポイント、Remote Radio Head(RRH)、eNodeB (eNB)、gNodeB(gNB)、Base Station(BS)、Base Transceiver Station(BTS)、親機、ゲートウェイなどでもよい。また、サイドリンク通信では、基地局の役割を端末が担ってもよい。また、基地局の代わりに、上位ノードと端末の通信を中継する中継装置であってもよい。また、路側器であってもよい。
本開示の一実施例は、例えば、上りリンク、下りリンク、及び、サイドリンクの何れに適用してもよい。例えば、本開示の一実施例を上りリンクのPhysical Uplink Shared Channel(PUSCH)、Physical Uplink Control Channel(PUCCH)、Physical Random Access Channel(PRACH)、下りリンクのPhysical Downlink Shared Channel(PDSCH)、PDCCH、Physical Broadcast Channel(PBCH)、又は、サイドリンクのPhysical Sidelink Shared Channel(PSSCH)、Physical Sidelink Control Channel(PSCCH)、Physical Sidelink Broadcast Channel(PSBCH)に適用してもよい。
本開示の一実施例は、例えば、データチャネル及び制御チャネルの何れに適用してもよい。例えば、本開示の一実施例におけるチャネルをデータチャネルのPDSCH、PUSCH、PSSCH、又は、制御チャネルのPDCCH、PUCCH、PBCH、PSCCH、PSBCHの何れかに置き換えてもよい。
本開示の一実施例において、参照信号は、例えば、基地局及び移動局の双方で既知の信号であり、Reference Signal(RS)又はパイロット信号と呼ばれることもある。参照信号は、Demodulation Reference Signal(DMRS)、Channel State Information - Reference Signal(CSI-RS)、Tracking Reference Signal(TRS)、Phase Tracking Reference Signal(PTRS)、Cell-specific Reference Signal(CRS)、又は、Sounding Reference Signal(SRS)の何れでもよい。
本開示の一実施例において、時間リソースの単位は、スロット及びシンボルの1つ又は組み合わせに限らず、例えば、フレーム、スーパーフレーム、サブフレーム、スロット、タイムスロットサブスロット、ミニスロット又は、シンボル、Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier - Frequency Division Multiplexing(SC-FDMA)シンボルといった時間リソース単位でもよく、他の時間リソース単位でもよい。また、1スロットに含まれるシンボル数は、上述した実施の形態において例示したシンボル数に限定されず、他のシンボル数でもよい。
本開示の一実施例は、ライセンスバンド、アンライセンスバンド(unlicensed spectrum, shared spectrum)のいずれに適用してもよい。各信号の送信前にchannel access procedure (Listen Before Talk(LBT)、キャリアセンス、Channel Clear Assessment(CCA)が実施されてもよい。
本開示の一実施例は、基地局と端末との間の通信(Uuリンク通信)、端末と端末との間の通信(Sidelink通信)、Vehicle to Everything(V2X)の通信のいずれに適用してもよい。例えば、本開示の一実施例におけるチャネルをPSCCH、PSSCH、Physical Sidelink Feedback Channel(PSFCH)、PSBCH、PDCCH、PUCCH、PDSCH、PUSCH、又は、PBCHの何れかに置き換えてもよい。
本開示の一実施例において、アンテナポートは、1本又は複数の物理アンテナから構成される論理的なアンテナ(アンテナグループ)を指す。例えば、アンテナポートは必ずしも1本の物理アンテナを指すとは限らず、複数のアンテナから構成されるアレイアンテナ等を指すことがある。例えば、アンテナポートが何本の物理アンテナから構成されるかは規定されず、端末局が基準信号(Reference signal)を送信できる最小単位として規定されてよい。また、アンテナポートはプリコーディングベクトル(Precoding vector)の重み付けを乗算する最小単位として規定されることもある。
3GPPは、100GHzまでの周波数範囲で動作する新無線アクセス技術(NR)の開発を含む第5世代携帯電話技術(単に「5G」ともいう)の次のリリースに向けて作業を続けている。5G規格の初版は2017年の終わりに完成しており、これにより、5G NRの規格に準拠した端末(例えば、スマートフォン)の試作および商用展開に移ることが可能である。
図12は、NG-RANと5GCとの間の機能分離を示す。NG-RANの論理ノードは、gNBまたはng-eNBである。5GCは、論理ノードAMF、UPF、およびSMFを有する。
- 無線ベアラ制御(Radio Bearer Control)、無線アドミッション制御(Radio Admission Control)、接続モビリティ制御(Connection Mobility Control)、上りリンクおよび下りリンクの両方におけるリソースのUEへの動的割当(スケジューリング)等の無線リソース管理(Radio Resource Management)の機能;
- データのIPヘッダ圧縮、暗号化、および完全性保護;
- UEが提供する情報からAMFへのルーティングを決定することができない場合のUEのアタッチ時のAMFの選択;
- UPFに向けたユーザプレーンデータのルーティング;
- AMFに向けた制御プレーン情報のルーティング;
- 接続のセットアップおよび解除;
- ページングメッセージのスケジューリングおよび送信;
- システム報知情報(AMFまたは運用管理保守機能(OAM:Operation, Admission, Maintenance)が発信源)のスケジューリングおよび送信;
- モビリティおよびスケジューリングのための測定および測定報告の設定;
- 上りリンクにおけるトランスポートレベルのパケットマーキング;
- セッション管理;
- ネットワークスライシングのサポート;
- QoSフローの管理およびデータ無線ベアラに対するマッピング;
- RRC_INACTIVE状態のUEのサポート;
- NASメッセージの配信機能;
- 無線アクセスネットワークの共有;
- デュアルコネクティビティ;
- NRとE-UTRAとの緊密な連携。
- Non-Access Stratum(NAS)シグナリングを終端させる機能;
- NASシグナリングのセキュリティ;
- Access Stratum(AS)のセキュリティ制御;
- 3GPPのアクセスネットワーク間でのモビリティのためのコアネットワーク(CN:Core Network)ノード間シグナリング;
- アイドルモードのUEへの到達可能性(ページングの再送信の制御および実行を含む);
- 登録エリアの管理;
- システム内モビリティおよびシステム間モビリティのサポート;
- アクセス認証;
- ローミング権限のチェックを含むアクセス承認;
- モビリティ管理制御(加入およびポリシー);
- ネットワークスライシングのサポート;
- Session Management Function(SMF)の選択。
- intra-RATモビリティ/inter-RATモビリティ(適用可能な場合)のためのアンカーポイント;
- データネットワークとの相互接続のための外部PDU(Protocol Data Unit)セッションポイント;
- パケットのルーティングおよび転送;
- パケット検査およびユーザプレーン部分のポリシールールの強制(Policy rule enforcement);
- トラフィック使用量の報告;
- データネットワークへのトラフィックフローのルーティングをサポートするための上りリンククラス分類(uplink classifier);
- マルチホームPDUセッション(multi-homed PDU session)をサポートするための分岐点(Branching Point);
- ユーザプレーンに対するQoS処理(例えば、パケットフィルタリング、ゲーティング(gating)、UL/DLレート制御(UL/DL rate enforcement);
- 上りリンクトラフィックの検証(SDFのQoSフローに対するマッピング);
- 下りリンクパケットのバッファリングおよび下りリンクデータ通知のトリガ機能。
- セッション管理;
- UEに対するIPアドレスの割当および管理;
- UPFの選択および制御;
- 適切な宛先にトラフィックをルーティングするためのUser Plane Function(UPF)におけるトラフィックステアリング(traffic steering)の設定機能;
- 制御部分のポリシーの強制およびQoS;
- 下りリンクデータの通知。
図13は、NAS部分の、UEがRRC_IDLEからRRC_CONNECTEDに移行する際のUE、gNB、およびAMF(5GCエンティティ)の間のやり取りのいくつかを示す(TS 38.300 v15.6.0参照)。
図14は、5G NRのためのユースケースのいくつかを示す。3rd generation partnership project new radio(3GPP NR)では、多種多様なサービスおよびアプリケーションをサポートすることがIMT-2020によって構想されていた3つのユースケースが検討されている。大容量・高速通信(eMBB:enhanced mobile-broadband)のための第一段階の仕様の策定が終了している。現在および将来の作業には、eMBBのサポートを拡充していくことに加えて、高信頼・超低遅延通信(URLLC:ultra-reliable and low-latency communications)および多数同時接続マシンタイプ通信(mMTC:massive machine-type communicationsのための標準化が含まれる。図14は、2020年以降のIMTの構想上の利用シナリオのいくつかの例を示す(例えばITU-R M.2083 図2参照)。
5GのQoS(Quality of Service)モデルは、QoSフローに基づいており、保証されたフロービットレートが求められるQoSフロー(GBR:Guaranteed Bit Rate QoSフロー)、および、保証されたフロービットレートが求められないQoSフロー(非GBR QoSフロー)をいずれもサポートする。したがって、NASレベルでは、QoSフローは、PDUセッションにおける最も微細な粒度のQoSの区分である。QoSフローは、NG-Uインタフェースを介してカプセル化ヘッダ(encapsulation header)において搬送されるQoSフローID(QFI:QoS Flow ID)によってPDUセッション内で特定される。
101 制御部
102,205 符号化・変調部
103,206 無線送信部
104,201 アンテナ
105,202 無線受信部
106,203 復調・復号部
107 HARQ-ACK判定部
108 再送制御部
200 端末
204 HARQ-ACK生成部
Claims (10)
- 動的なスケジューリングを行う制御信号に使用される識別子の種別に基づいて、前記動的なスケジューリングの再送制御におけるフィードバックの有効及び無効に関する設定を決定する制御回路と、
前記フィードバックの有効及び無効の設定に基づいて、前記フィードバックの信号の送信処理を行う送信回路と、
を具備する通信装置。 - 前記制御回路は、前記識別子が第1の識別子の場合、準静的なスケジューリングに個別に設定される第1の設定を、前記フィードバックの有効及び無効の設定に決定し、前記識別子が前記第1の識別子と異なる第2の識別子の場合、再送プロセスに個別に設定される第2の設定を、前記フィードバックの有効及び無効の設定に決定する、
請求項1に記載の通信装置。 - 前記準静的なスケジューリングにおけるデータの再送は、前記動的なスケジューリングにより行われ、
前記第1の識別子は、前記準静的なスケジューリングにおけるデータの再送のスケジューリングを行う前記制御信号のスクランブリングに使用され、
前記第2の識別子は、前記準静的なスケジューリングにおけるデータと異なるデータのスケジューリングを行う前記制御信号のスクランブリングに使用される、
請求項2に記載の通信装置。 - 前記制御回路は、前記識別子が前記第1の識別子の場合、複数の前記第1の設定のうち、前記動的なスケジューリングに使用される再送プロセス番号に対応する設定を、前記フィードバックの有効及び無効の設定に決定する、
請求項2に記載の通信装置。 - 前記制御回路は、
前記識別子が第1の識別子の場合、準静的なスケジューリングに個別に設定される第1の設定を、前記フィードバックの有効及び無効の設定に決定し、
前記識別子が前記第1の識別子と異なる第2の識別子の場合、前記動的なスケジューリングに使用される再送プロセス番号が前記準静的なスケジューリングにおいて使用される場合には、前記第1の設定を前記フィードバックの有効及び無効の設定に決定し、前記動的なスケジューリングに使用される再送プロセス番号が前記準静的なスケジューリングにおいて使用されない場合には、再送プロセスに個別に設定される第2の設定を前記フィードバックの有効及び無効の設定に決定する、
請求項1に記載の通信装置。 - 前記制御回路は、前記識別子の種別に基づいて、準静的なスケジューリングに個別に設定される第1の設定、及び、再送プロセスに個別に設定される第2の設定の何れか一方を、前記フィードバックの有効及び無効の設定に決定し、
前記第1の設定は、前記準静的なスケジューリングに使用される再送プロセス番号のうちの一つに対応する前記第2の設定に基づいて決定される、
請求項1に記載の通信装置。 - 前記制御回路は、前記識別子の種別に基づいて、準静的なスケジューリングに個別に設定される第1の設定、及び、再送プロセスに個別に設定される第2の設定の何れか一方を、前記フィードバックの有効及び無効の設定に決定し、
前記制御回路は、前記第1の設定がフィードバック無効の場合、前記準静的なスケジューリングにおける再送データの受信処理を行わない、
請求項1に記載の通信装置。 - 動的なスケジューリングを行う制御信号に使用される識別子の種別に基づいて、前記動的なスケジューリングの再送制御におけるフィードバックの有効及び無効に関する設定を決定する制御回路と、
前記フィードバックの有効及び無効の設定に基づいて、前記フィードバックの信号の受信処理を行う受信回路と、
を具備する通信装置。 - 通信装置は、
動的なスケジューリングを行う制御信号に使用される識別子の種別に基づいて、前記動的なスケジューリングの再送制御におけるフィードバックの有効及び無効に関する設定を決定し、
前記フィードバックの有効及び無効の設定に基づいて、前記フィードバックの信号の送信処理を行う、
通信方法。 - 通信装置は、
動的なスケジューリングを行う制御信号に使用される識別子の種別に基づいて、前記動的なスケジューリングの再送制御におけるフィードバックの有効及び無効に関する設定を決定し、
前記フィードバックの有効及び無効の設定に基づいて、前記フィードバックの信号の受信処理を行う、
通信方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22878137.3A EP4415420A1 (en) | 2021-10-08 | 2022-05-10 | Communication device and communication method |
JP2023552688A JPWO2023058264A1 (ja) | 2021-10-08 | 2022-05-10 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021166187 | 2021-10-08 | ||
JP2021-166187 | 2021-10-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023058264A1 true WO2023058264A1 (ja) | 2023-04-13 |
Family
ID=85804066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/019831 WO2023058264A1 (ja) | 2021-10-08 | 2022-05-10 | 通信装置及び通信方法 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4415420A1 (ja) |
JP (1) | JPWO2023058264A1 (ja) |
WO (1) | WO2023058264A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021029296A1 (ja) * | 2019-08-14 | 2021-02-18 | ソニー株式会社 | 端末装置、基地局装置、端末装置の制御方法および基地局装置の制御方法 |
JP2021166187A (ja) | 2015-05-18 | 2021-10-14 | 株式会社半導体エネルギー研究所 | 蓄電体 |
-
2022
- 2022-05-10 JP JP2023552688A patent/JPWO2023058264A1/ja active Pending
- 2022-05-10 EP EP22878137.3A patent/EP4415420A1/en active Pending
- 2022-05-10 WO PCT/JP2022/019831 patent/WO2023058264A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021166187A (ja) | 2015-05-18 | 2021-10-14 | 株式会社半導体エネルギー研究所 | 蓄電体 |
WO2021029296A1 (ja) * | 2019-08-14 | 2021-02-18 | ソニー株式会社 | 端末装置、基地局装置、端末装置の制御方法および基地局装置の制御方法 |
Non-Patent Citations (6)
Title |
---|
"NR; Medium Access Control (MAC) protocol specification (Release 16", 3GPP, TS 38.321, V16.6.0, September 2021 (2021-09-01) |
"Solutions for NR to support non-terrestrial networks (NTN) (Release 16", 3GPP, TR 38.821, V16.1.0, May 2021 (2021-05-01) |
APPLE: "On HARQ Enhancements for NTN", 3GPP DRAFT; R1-2006521, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 8 August 2020 (2020-08-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051918087 * |
ETRI: "Discussion on HARQ Enhancements for NTN", 3GPP DRAFT; R1-2109812, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20211011 - 20211019, 1 October 2021 (2021-10-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052058741 * |
PANASONIC: "HARQ enhancement for NTN", 3GPP DRAFT; R1-2109868, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-meeting; 20211011 - 20211019, 1 October 2021 (2021-10-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052058797 * |
VIVO: "Discussion on HARQ enhancements for NR-NTN", 3GPP DRAFT; R1-2108973, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20211011 - 20211019, 1 October 2021 (2021-10-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052057808 * |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023058264A1 (ja) | 2023-04-13 |
EP4415420A1 (en) | 2024-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022074884A1 (ja) | 端末、基地局及び通信方法 | |
WO2021210264A1 (ja) | 移動局、基地局、受信方法及び送信方法 | |
WO2022014279A1 (ja) | 端末、基地局及び通信方法 | |
WO2021131307A1 (ja) | 通信装置及び通信方法 | |
WO2023058264A1 (ja) | 通信装置及び通信方法 | |
KR20230048310A (ko) | 단말 및 사이드링크 통신 제어 방법 | |
WO2022215299A1 (ja) | 基地局、端末、及び、通信方法 | |
WO2023013522A1 (ja) | 基地局、端末、及び、通信方法 | |
WO2023100470A1 (ja) | 基地局、端末及び通信方法 | |
WO2023119756A1 (ja) | 通信装置及び通信方法 | |
WO2022085254A1 (ja) | 通信装置及び通信方法 | |
WO2022239289A1 (ja) | 通信装置、及び、通信方法 | |
WO2023013217A1 (ja) | 基地局、端末及び通信方法 | |
WO2024171521A1 (ja) | 基地局、端末及び通信方法 | |
WO2022195952A1 (ja) | 端末、基地局及び通信方法 | |
WO2023013191A1 (ja) | 通信装置、及び、通信方法 | |
WO2024034198A1 (ja) | 端末、基地局及び通信方法 | |
WO2022079955A1 (ja) | 端末、基地局及び通信方法 | |
WO2023203938A1 (ja) | 端末、基地局、通信方法及び集積回路 | |
WO2024029157A1 (ja) | 端末、基地局、及び、通信方法 | |
WO2023013192A1 (ja) | 端末、基地局及び通信方法 | |
WO2023100471A1 (ja) | 基地局、端末及び通信方法 | |
WO2022208989A1 (ja) | 通信装置、及び、通信方法 | |
WO2023139852A1 (ja) | 端末、基地局、及び、通信方法 | |
WO2024024259A1 (ja) | 端末、基地局、及び、通信方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22878137 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023552688 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18697936 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022878137 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022878137 Country of ref document: EP Effective date: 20240508 |