WO2023058125A1 - ネットワークノード及び通信方法 - Google Patents

ネットワークノード及び通信方法 Download PDF

Info

Publication number
WO2023058125A1
WO2023058125A1 PCT/JP2021/036862 JP2021036862W WO2023058125A1 WO 2023058125 A1 WO2023058125 A1 WO 2023058125A1 JP 2021036862 W JP2021036862 W JP 2021036862W WO 2023058125 A1 WO2023058125 A1 WO 2023058125A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
wireless sensing
sensing
wireless
joint work
Prior art date
Application number
PCT/JP2021/036862
Other languages
English (en)
French (fr)
Inventor
淳 巳之口
マラ レディ サマ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2021/036862 priority Critical patent/WO2023058125A1/ja
Publication of WO2023058125A1 publication Critical patent/WO2023058125A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/14Flow control between communication endpoints using intermediate storage
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to network nodes and communication methods.
  • NR New Radio
  • LTE Long Term Evolution
  • 5G-Advanced/6G which is a further evolution of 5G, is "a terminal participates in collaborative work as a preparation for the network (NW) to provide value (for example, sensing data collection, collaborative learning (Federated Learning), etc. It assumes the use case of "participation in Note that the network here may mean a core network (CN).
  • NW network
  • CN core network
  • 5G-Advanced/6G assumes that information wirelessly sensed by terminals and/or base stations will be used for various purposes.
  • wireless sensing may mean that a terminal and/or base station receives a wireless signal disturbed by the surrounding environment during propagation and extracts necessary information from the received wireless signal.
  • information obtained by wireless sensing or wireless sensing information may mean information extracted in this way.
  • Non-Patent Document 1 gives an example of using wireless sensing information for the following purposes. - Using wireless sensing information in addition to existing sensors for vehicle/unmanned aerial vehicle (UAV) obstacle avoidance, route selection, danger detection, regulatory compliance, etc. • Environment mapping: Using wireless sensing information to perceive surroundings (landmarks, etc.) and reconstruct a 2D/3D map of the environment. This may be applied to location accuracy enhancement, environment related applications, and the like. • Weather/Air Pollution Monitoring: Using wireless sensing information as an alternative to existing hygrometers, etc., as electromagnetic waves are affected by humidity. • Real-time monitoring: using wireless sensing information for intrusion detection and the like.
  • Non-Patent Document 2 discloses such a basic system of wireless sensing.
  • the basic system of wireless sensing consists of, for example, a Reflective Object: an object from which information is sensed, a Transmitter: a terminal or base station that transmits radio signals to the object, and a Receiver: A terminal or base station that detects sensing information based on the reflection of radio signals from an object), an initiator (initiator: a terminal or NF (Network Function) that requests sensing information from the receiver), and an aggregation point (Aggregation Point (Device): a terminal or sensing server that aggregates sensing information).
  • a Reflective Object an object from which information is sensed
  • a Transmitter a terminal or base station that transmits radio signals to the object
  • a Receiver A terminal or base station that detects sensing information based on the reflection of radio signals from an object
  • an initiator initiator: a terminal or NF (Network Function) that requests sensing information
  • One aspect of the present disclosure provides a network node and communication method capable of suppressing intra-network traffic volume in wireless sensing data collection using terminals and base stations.
  • a network node includes a sensing device that performs wireless sensing and is selected from terminals and base stations, and an intermediate aggregation device that temporarily stores wireless sensing information detected and transmitted by the sensing device.
  • a control unit for determining performance information for performing wireless sensing and/or intermediate aggregation; a transmission unit for transmitting the performance information to the sensing device and/or the intermediate aggregation device; a receiving unit that receives the wireless sensing information from the intermediate aggregation device.
  • a network node temporarily stores a sensing device that performs wireless sensing and is selected from terminals and base stations, and wireless sensing information detected and transmitted by the sensing device. determining performance information for performing wireless sensing and/or intermediate aggregation to be provided to an intermediate aggregation device; transmitting the performance information to the sensing device and the intermediate aggregation device; , receiving the wireless sensing information.
  • FIG. 1 is a diagram for explaining an example of a communication system according to an embodiment of the present disclosure
  • FIG. FIG. 5 is a diagram showing an example of notification of participation intention and ability for each joint work type according to an embodiment of the present disclosure
  • Figure 4 illustrates an example of coordination or selection of collaboration participating UEs and/or gNBs in accordance with an embodiment of the present disclosure
  • FIG. 4 is a diagram illustrating an example of selection of collaborative work participating UEs according to an embodiment of the present disclosure
  • FIG. 11 illustrates an example of selection of a collaboration participating gNB according to an embodiment of the present disclosure
  • FIG. 2 is a diagram illustrating an example of wireless sensing information collection and aggregation and wireless sensing data generation according to an embodiment of the present disclosure
  • FIG. 4 illustrates another example of wireless sensing information collection and aggregation and wireless sensing data generation according to an embodiment of the present disclosure
  • FIG. 5 is a diagram illustrating an example of post-processing after generation of wireless sensing data according to an embodiment of the present disclosure
  • 1 is a diagram illustrating an example of a terminal according to an embodiment of the present disclosure
  • FIG. It is a diagram showing an example of a base station according to an embodiment of the present disclosure.
  • 1 is a diagram illustrating an example of a joint work execution device according to an embodiment of the present disclosure
  • FIG. 1 is a diagram illustrating an example of a joint work participation terminal coordinator according to an embodiment of the present disclosure
  • FIG. 1 is a diagram illustrating an example of a hardware configuration of a terminal, a base station, a joint work execution device, a joint work participation terminal coordinator, or another network node according to an embodiment of the present disclosure
  • existing technology may be used as appropriate.
  • the existing technology is, for example, existing LTE or existing 5G, but is not limited to existing LTE or existing 5G.
  • node names, signal names, etc. described in the 5G standard are currently used, but node names and signal names having the same functions as these are used. Names, etc. may be called by names different from these.
  • NG-RAN Next Generation-Radio Access Network 20 is a network node with radio access functionality, for example gNB (next generation Node B) (which may also be called a base station) 20.
  • NG-RAN 20 is connected to UE 10 , AMF (Access and Mobility Management Function) 30 - 1 and UPF (User Plane Function) 40 .
  • NG-RAN 20 may also be connected to DH (Data Hub) 50, as shown in FIG.
  • the AMF 30-1 is a network node having functions such as RAN interface termination, NAS (Non-Access Stratum) termination, registration management, connection management, reachability management, and mobility management.
  • AMF 30-1 includes UE 10, NG-RAN 20, SMF (Session Management function) 30-2, NSSF (Network Slice Selection Function) 30-3, NEF (Network Exposure Function) 30-4, NRF (Network Repository Function) 30- 5, UDM (Unified Data Management) 30-6, AUSF (Authentication Server Function) 30-7, PCF (Policy Control Function) 30-8, AF (Application Function) 30-9, NWDAF (Network Data Analytics Function) 30- 10, JWPF (Joint Work Performance Function) 30-11 and JWPTOF (Joint Work Participating Terminal Orchestration Function) 30-12.
  • AMF30-1, SMF30-2, NSSF30-3, NEF30-4, NRF30-5, UDM30-6, AUSF30-7, PCF30-8, AF30-9, NWDAF30-10, JWPF30-11 and JWPTOF30-12, respectively are network nodes connected to each other via interfaces Namf, Nsmf, Nnssf, Nnef, Nnrf, Nudm, Nausf, Npcf, Naf, Nnwdaf, Njwpf and Njwptof, respectively, based on the services of .
  • the SMF 30-2 is a network node that has functions such as session management, UE IP (Internet Protocol) address allocation and management, DHCP (Dynamic Host Configuration Protocol) function, ARP (Address Resolution Protocol) proxy, and roaming function.
  • UE IP Internet Protocol
  • DHCP Dynamic Host Configuration Protocol
  • ARP Address Resolution Protocol
  • NSSF 30-3 is a network node that has functions such as selecting a network slice to which the UE connects, determining the allowed NSSAI (Network Slice Selection Assistance Information), determining the NSSAI to be set, and determining the AMF set to which the UE connects. is.
  • NSSAI Network Slice Selection Assistance Information
  • the NEF 30-4 is a network node that has the function of notifying other NFs of capabilities and events.
  • the NRF 30-5 is a network node that has the function of discovering NF instances that provide services.
  • the UDM 30-6 is a network node that manages subscriber data and authentication data.
  • the UDM 30-6 is connected to a UDR (User Data Repository) holding the data.
  • UDR User Data Repository
  • the PCF 30-8 is a network node that has the function of performing network policy control.
  • AF30-9 is a network node that has the function of controlling the application server.
  • the NWDAF 30-10 is a network node that collects and analyzes data acquired by the network and provides analysis results.
  • JWPF 30-11 instructs one or more UE 10 and/or NG-RAN 20 to perform collaborative work (in this embodiment, radio sensing radio transmission, reception and/or intermediate aggregation), transmit intermediately aggregated wireless sensing information, perform final aggregation of the wireless sensing information, and generate meaningful wireless sensing data from the finally aggregated wireless sensing information.
  • JWPF 30-11 corresponds to the addition of the role of the final aggregation point to the latter when the "initiator" in the concept of the basic system is divided into the initiator and the collaborative work coordinator.
  • the name JWPF is just an example, and any name may be used for the network node as long as it can perform the operations according to the embodiments of the present disclosure.
  • Another example is the name of the interface Njwpf based on the service of JWPF 30-11.
  • the JWPF 30-11 may also be called a collaborative work execution device.
  • the JWPTOF 30-12 confirms the capabilities of each UE, willingness to participate, etc., selects UEs that participate in joint work (may be called joint work participating UEs), and rewards UEs that participate in joint work (for example, points, refunds, etc.).
  • the JWPTOF 30-12 may also select gNBs to participate in the collaboration (which may be referred to as collaboration participating gNBs).
  • collaboration participating gNBs may be referred to as collaboration participating gNBs.
  • the name JWPTOF is just an example, and any name may be used for the network node as long as it can perform the operations according to the embodiments of the present disclosure.
  • the name Njwptof based on the service of JWPTOF 30-12 is also an example.
  • the JWPTOF 30-12 may also be called a joint work participation terminal coordinator.
  • the JWPF 30-11 sets up a GTP-U (GPRS Tunneling Protocol for User Plane) tunnel with the UPF 40 connected to the DH 50.
  • the JWPF 30-11 can access the DH 50 via the user plane (hereinafter U plane) (UPF 40).
  • U plane user plane
  • UPF 40 user plane
  • the C plane control plane
  • the JWPF 30-11 can also access the DH 50 from within the 5GC via the C plane. can be accessed.
  • the UPF 40 functions as a PDU (Protocol Data Unit) session point for the outside interconnecting with the NG-RAN 20, DH 50 and DN (Data Network) 60, packet routing and forwarding, user plane QoS (Quality of Service) handling, etc. It is a network node that has a network node that transmits and receives user data.
  • one UPF 40 and DH 50 may constitute one network slice.
  • different UPFs 40 and DNs 60 may constitute different network slices.
  • a plurality of network slices are constructed in the wireless communication network according to the embodiment of the present disclosure.
  • One UPF 40 may operate one network slice, or one UPF 40 may operate a plurality of network slices.
  • the UPF 40 is physically one or more computers (servers, etc.), and can be made by logically integrating and dividing the hardware resources (CPU, memory, hard disk, network interface, etc.) of the computer.
  • a plurality of resources can be viewed as a resource pool and each resource can be used as a network slice for the resource pool.
  • the UPF 40 operating a network slice means, for example, managing the correspondence between the network slice and the resource, starting/stopping the resource, monitoring the operation status of the resource, and the like.
  • the DH 50 is a network node that aggregates various user data on the U-plane from the UE 10, that is, a (general-purpose) data hub for user data. Note that the DH 50 may also be called a data lake, a data aggregation distribution intermediary device, or the like.
  • the DH 50 is arranged in the 5GC U-plane and has a parallel relationship with N3 shown in FIG. That is, DH 50 may be placed between NG-RAN 20 and UPF 40 such that N3 (user plane interface between 5GC and NG-RAN 20) connects NG-RAN 20 and UPF 40 .
  • the DH 50 is connected to the specific UPF 40 via an internal interface within the specific UPF 40 . Also, as mentioned above, the DH 50 is accessible from the C-plane.
  • JWPF 30-11 described above to perform wireless sensing data collection with UE 10 and / or NG-RAN 20
  • the ability of each UE 10 participation
  • a JWPTOF 30-12 is introduced in the CN that confirms intentions, etc., selects joint work participating UEs 10 and/or NG-RAN 20, and rewards UEs that participate in joint works.
  • procedures involving JWPF 30-11 and JWPTOF 30-12 and accompanying procedures will be described.
  • FIG. 2 is a diagram illustrating an example of notification of participation intention and ability for each type of joint work, according to an embodiment of the present disclosure.
  • the NW (in this case, the UDM 30-6) holds participation intention information indicating the participation intention of each joint work type of the UE 10 as subscriber data in, for example, the UDR.
  • the UE 10 may transmit participation intention information indicating the participation intention for each joint work type to the NW via the AMF 30-1 or via the U plane (UPF 40).
  • the intention to participate may be collectively set by the AF 30-9.
  • the AF 30-9 or the UE 10 can also change the participation intention via the NEF 30-4.
  • the UE 10 notifies the NW of the capability for each type of joint work by appropriately setting the UE Capability in the 5GMM Capability IE of the registration request message during the registration procedure.
  • the 'capacity by collaboration type' is wireless sensing method, role (i.e. sender, receiver or intermediate aggregation point), data aggregation method (Null, intermediate aggregation , final aggregation, etc.). This allows the NW to recognize the ability of the UE 10 regarding collaborative work.
  • the wireless sensing method may be, for example, information indicating the wireless sensing method such as the frequency of the wireless signal used for wireless sensing and the number of antennas.
  • the sender may be, for example, information indicating that it is a device that transmits a wireless signal to an object of wireless sensing, or information that indicates that it is a device that transmits radio waves to a receiver.
  • the wireless signal is hereinafter referred to as a wireless sensing wireless signal, the name of the wireless signal is not limited to the wireless sensing wireless signal.
  • the receiver may be information indicating that it is a device that detects wireless sensing information based on wireless signal reflection from an object or wireless signals transmitted from a sender.
  • the intermediate aggregation point may be information indicating that the wireless sensing information detected by the receiver is temporarily aggregated and transmitted to another device.
  • the other device may be, for example, a device such as JWPF 30-11 that ultimately collects the wireless sensing information.
  • the UE 10 and the gNB 20 may play one or more roles of sender, receiver, and intermediate aggregation point.
  • Null may be, for example, information indicating the process of relaying data.
  • Intermediate aggregation may be, for example, information indicating intermediate collection of sensing information.
  • Final aggregation may be, for example, information indicating final collection of sensing information.
  • FIG. 3 is a diagram illustrating an example of coordination or selection of collaboration participating UEs 10 and/or gNBs 20, according to one embodiment of the present disclosure.
  • an external application requests wireless sensing data (i.e., need for wireless sensing data), the scope of wireless sensing data (eg, data type, target area, etc.).
  • wireless sensing data may refer to data that is meaningfully generated from wireless sensing information.
  • the data type may be, for example, the type, position, size, movement direction, movement speed, or state of the wireless sensing target (humidity when the target is the air, sleep when the target is a person) It may be information indicating the content of the wireless sensing information, such as breathing speed and depth).
  • the target area may be, for example, information indicating an area (eg, municipality, etc.) and/or a range (eg, traffic intersection, drone flight prohibited area), etc. for which wireless sensing information is collected.
  • step S202 the initiator notifies JWPF 30-11 via NEF 30-4 of the determined necessity of wireless sensing data, the scope of wireless sensing data, and the like.
  • step S203 the JWPF 30-11 inquires of the DH 50 whether or not the required wireless sensing data is available within the NW, based on the scope of the notified wireless sensing data.
  • DH50 transmits the required wireless sensing data stored in DH50 to JWPF 30-11 in step S204. That is, the JWPF 30-11 acquires necessary wireless sensing data from the DH50. In this case, the JWPF 30-11 does not perform radio sensing information collection, which is collaborative work with the UE 10 and/or the gNB 20.
  • the JWPF 30-11 collects wireless sensing information for generating the required wireless sensing data. It requests or requests the JWPTOF 30-12 to select the joint work participating UE 10 and/or the gNB 20. At the time of this request or request, JWPF 30-11 notifies JWPTOF 30-12 of the content of the joint work (collection of wireless sensing information in this embodiment) and the total amount of remuneration upon completion of the joint work.
  • step S206 the JWPTOF 30-12 selects joint work participating UEs 10 and/or gNBs 20 for collecting wireless sensing information. Step S206 is described in detail below with reference to FIGS. 4A and 4B.
  • step S207 JWPTOF 30-12 notifies JWPF 30-11 of the selected joint work participating UE 10 and/or gNB 20.
  • step S206 the JWPTOF 30-12 selects a collaboration participating UE 10 and/or gNB 20.
  • the case of selecting the joint work participating UE 10 and the case of selecting the joint work participating gNB 20 will be described separately.
  • the JWPTOF 30-12 selects UE candidates that match the contents of the joint work based on the external conditions and the above-mentioned obtained capabilities of the UE 10.
  • the external conditions include at least whether the UE 10 is in the joint work target area and whether the UE 10 is in an operation mode in which work can be performed (that is, whether it is not in a power saving mode).
  • the JWPTOF 30-12 may determine whether or not the UE 10 is in the joint work target area by comparing the scope of the wireless sensing data and the location information of the UE 10.
  • step S2062 the JWPTOF 30-12 confirms the participation intention of each of the UE candidates selected in step S2061 in the joint work by acquiring the participation intention information stored in the UDR, for example.
  • step S2063 the JWPTOF 30-12 selects the UE candidates confirmed in step S2062 as willing to participate in the joint work as joint work participating UEs. After that, the process proceeds to step S207 in FIG.
  • the JWPTOF 30-12 does not have to determine whether the UE 10 is in the joint work target area in step S2061. Also, in step S2061, the JWPTOF 30-12 may select all UEs 10 as UE candidates regardless of the operation mode of the UEs 10 depending on the situation. Also, the order of steps S2061 and S2062 may be reversed.
  • the JWPTOF 30-12 adapts to the joint work content based on the external conditions and the acquired capability of the gNB 20 regarding the joint work (base station capability).
  • Select gNB candidates to For example, the external conditions may include at least whether the gNB 20 covers the collaboration target area.
  • the JWPTOF 30-12 may determine whether the gNB 20 covers the collaboration target area by matching the scope of the wireless sensing data with the gNB 20's cell location information.
  • the JWPTOF 30-12 may select the gNB 20 as a gNB candidate suitable for the content of the joint work, at least when the gNB 20 covers the joint work target area.
  • the capability of the gNB 20 regarding collaborative work may be similar to the capability of the UE 20 regarding collaborative work, and may be notified to the NW in the same manner as the UE 20 .
  • step S2066 the JWPTOF 30-12 selects the gNB candidates selected in step S2065 as joint work participating gNBs. After that, the process proceeds to step S207 in FIG.
  • step S2065 the JWPTOF 30-12 does not need to determine whether the gNB 20 covers the joint work target area.
  • step S301 the JWPF 30-11 separately transmits a sensing request to the selected joint work participating UE 10 and/or gNB 20.
  • the number of collaboration participation UE 10 and gNB 20 selected by JWPTOF 30-12 is one each.
  • the number of joint work participating UEs 10 and gNBs 20 selected by JWPTOF 30-12 is not limited to one.
  • the sensing request sent in step S301 includes, for example, an object, a wireless sensing method, a role (i.e., sender, receiver, or intermediate aggregation point), a data aggregation method (Null, intermediate aggregation, final aggregation, etc.), reporting conditions (eg, immediate, periodic, specified period, etc.), reporting location (eg, information identifying the destination to which the device that received the sensing request will next transmit (report) the wireless sensing information), and the like.
  • a role i.e., sender, receiver, or intermediate aggregation point
  • a data aggregation method Null, intermediate aggregation, final aggregation, etc.
  • reporting conditions eg, immediate, periodic, specified period, etc.
  • reporting location eg, information identifying the destination to which the device that received the sensing request will next transmit (report) the wireless sensing information
  • the JWPF 30-11 may transmit a sensing request in which the field indicating the data aggregation method is set to a value indicating intermediate aggregation to the joint work participating UE 10 and/or the gNB 20.
  • the JWPF 30-11 transmits a sensing request in which the field indicating the role is set to a value indicating the receiver and the field indicating the reporting location is set to a value indicating the gNB 20 to the joint work participating UE 10.
  • JWPF 30-11 sends a sensing request in which the field indicating role is set to a value indicating an intermediate aggregation point and the field indicating reporting location is set to a value indicating JWPF 30-11.
  • FIG. 5 assuming that these sensing requests have been sent to the UE 10 and the gNB 20 .
  • step S302 the UE 10 whose role is set to receiver extracts wireless sensing information.
  • step S303 UE 10 transmits the extracted wireless sensing information to gNB 20 according to the reporting conditions in the sensing request.
  • gNB 20 Since the role for gNB 20 is set as an intermediate aggregation point, gNB 20 intermediately aggregates the radio sensing information transmitted by UE 10 in step S304.
  • JWPF 30-11 is set as the reporting location for gNB 20
  • gNB 20 transmits the intermediately aggregated wireless sensing information to JWPF 30-11 in step S305.
  • step S306 the JWPF 30-11 generates wireless sensing data based on the wireless sensing information transmitted by the gNB20.
  • FIG. 6 is a diagram illustrating another example of wireless sensing information collection and aggregation and wireless sensing data generation according to an embodiment of the present disclosure. The processing shown in FIG. 6 is also executed after the joint work participation UE 10 and/or gNB 20 is notified to the JWPF 30-11 in step S207 of FIG.
  • step S401 the JWPF 30-11 separately transmits a sensing request to the selected joint work participating UE 10 and/or gNB 20.
  • the numbers of collaboration participants UE 10 and gNB 20 selected by JWPTOF 30-12 are three (UE 10X, UE 10Y and UE 10Z) and one, respectively.
  • the contents of the sensing request transmitted in step S401 are as described above.
  • the JWPF 30-11 sends a sensing request in which the field indicating the role is set to a value indicating the receiver and the field indicating the reporting location is set to a value indicating the UE 10Z to the joint work participating UEs 10X and 10Y.
  • the field indicating role is set to a value indicating an intermediate aggregation point
  • the field indicating data aggregation method is set to a value indicating Null
  • the field indicating a reporting location is set to A sensing request set to a value indicating the gNB 20 may be sent to the collaboration participating UE 10Z.
  • Null may simply represent the process of relaying data.
  • JWPF 30-11 may be sent to the collaboration participating gNB 20.
  • the field indicating role is set to a value indicating an intermediate aggregation point
  • the field indicating data aggregation method is set to a value indicating intermediate aggregation
  • the field indicating a reporting location is set to
  • JWPF 30-11 may be sent to the collaboration participating gNB 20.
  • these sensing requests have been sent to UE 10X, UE 10Y, UE 10Z and gNB 20.
  • FIG. 6 assume that these sensing requests have been sent to UE 10X, UE 10Y, UE 10Z and gNB 20.
  • step S402 the UE 10X whose role is set as a receiver extracts wireless sensing information.
  • step S403 the UE 10Y whose role is set as a receiver extracts wireless sensing information.
  • step S404 UE10X transmits the extracted wireless sensing information to UE10Z according to the reporting conditions in the sensing request.
  • step S405 the UE 10Z relays (transmits) the wireless sensing information received from the UE 10X to the gNB 20. .
  • step S406 UE10Y transmits the extracted wireless sensing information to UE10Z according to the reporting conditions in the sensing request.
  • the role is set to the intermediate aggregation point and the data aggregation method is set to Null, so in step S407, the UE 10Z relays (transmits) the wireless sensing information received from the UE 10Y to the gNB 20. .
  • gNB 20 For gNB 20, the role is set to intermediate aggregation point and the data aggregation method is set to intermediate aggregation, so in step S408 gNB 20 receives the radio sensing data sent by UE 10X and UE 10Y and relayed by UE 10Z. Intermediate aggregation of information.
  • JWPF 30-11 is set as the reporting location for gNB 20
  • gNB 20 transmits the intermediately aggregated wireless sensing information to JWPF 30-11 in step S409.
  • step S410 the JWPF 30-11 generates wireless sensing data based on the wireless sensing information transmitted by the gNB20.
  • roles, data aggregation methods, reporting conditions, reporting locations, etc. can be set in various ways, so wireless sensing information flexible reporting (sending), intermediate aggregation and final aggregation can be realized.
  • the gNB 20 can intermediately aggregate the radio sensing information transmitted by the UE. Since it can be stored, it is possible to suppress the amount of traffic in the NW. Note that the role of intermediate aggregation is not limited to the gNB 20, and may be the UE 10.
  • FIG. 7 is a diagram illustrating an example of post-processing after generation of wireless sensing data according to an embodiment of the present disclosure. The processing shown in FIG. 7 is executed after the wireless sensing data is generated in step S306 of FIG. 5 or step S410 of FIG.
  • step S501 the JWPF 30-11 responds to the initiator who notified the necessity of wireless sensing in step S202 of FIG. 3 by transmitting the generated wireless sensing data.
  • step S502 JWPF 30-11 notifies JWPTOF 30-12 that the (joint) work has ended.
  • step S503 the JWPF 30-11 transmits the (final) aggregated wireless sensing information and/or the generated wireless sensing data to the DH 50 for storage in the DH 50 for other uses or future uses.
  • step S504 JWPTOF 30-12 participates in the joint work based on the total remuneration notified from JWPF 30-11 in step S205 of FIG.
  • a reward (for example, a value obtained by dividing the total reward by the number of UEs 10 participating in the joint work) is recorded in the billing information of the UE 10 . In this way, by rewarding the UE 10 that has participated in the joint work, the UE 10 can be encouraged to participate in the joint work.
  • JWPF30-11 and JWPTOF30-12 are introduced into the 5GS CN
  • the present disclosure is not limited to this example.
  • JWPF30-11 or JWPTOF30-12 which integrates the functions of JWPF30-11 and JWPTOF30-12
  • an existing 5GC NF may implement the above-described functions of JWPF30-11 and JWPTOF30-12.
  • LMF Location Management Function
  • gNB 20 may implement the functions of JWPF 30-11 and JWPTOF 30-12. For example, such a gNB 20 may initiate radio sensing data collection according to internal logic, select a collaboration participating UE 10, and perform the collaboration with the selected UE 10.
  • the terminal 10, the base station 20, the joint work execution device 30-11, and the joint work participation terminal coordinator 30-12 that execute the processes and operations described so far will be explained.
  • the terminal 10, the base station 20, the joint work execution device 30-11, and the joint work participating terminal coordinator 30-12 include the functions described in the above examples.
  • the terminal 10, the base station 20, the joint work execution device 30-11, and the joint work participating terminal coordinator 30-12 may include only some of the functions described in the above examples.
  • FIG. 8 is a diagram illustrating an example of a functional configuration of terminal 10 according to an embodiment of the present disclosure.
  • the terminal 10 includes a transmitter 610 , a receiver 620 , a setter 630 and a controller 640 .
  • the functional configuration shown in FIG. 8 is merely an example. As long as the operation according to the embodiment of the present disclosure can be executed, the functional division and the name of the functional unit may be anything.
  • the transmission unit 610 generates a transmission signal from transmission data and wirelessly transmits the generated transmission signal.
  • the transmission unit 610 transmits radio for wireless sensing, participation intention for each type of joint work, ability, necessity of wireless sensing, scope, wireless sensing information, and the like.
  • the receiving unit 620 wirelessly receives various signals and acquires a higher layer signal from the received physical layer signal.
  • the receiving unit 620 also has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL/UL/SL control signals, etc. transmitted from the base station 20 .
  • the receiving unit 620 receives radio signals for wireless sensing, sensing requests, wireless sensing information, wireless sensing data, and the like.
  • the transmitting unit 610 as D2D communication, to the other terminal 10, PSCCH (Physical Sidelink Control Channel), PSSCH (Physical Sidelink Shared Channel), PSDCH (Physical Sidelink Discovery Channel), PSBCH (Physical Sidelink Broadcast Channel) etc.
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • PSDCH Physical Sidelink Discovery Channel
  • PSBCH Physical Sidelink Broadcast Channel
  • the receiving unit 620 receives PSCCH, PSSCH, PSDCH, PSBCH, etc. from other terminals 10 .
  • the transmission unit 610 transmits radio waves for wireless sensing and the like.
  • the receiving unit 620 receives radio for wireless sensing, wireless sensing information, and the like.
  • the setting unit 630 stores various setting information received from the base station 20 by the receiving unit 620 in a storage device (storage unit), and reads the setting information from the storage device as necessary.
  • the setting unit 630 also stores preset information that is set in advance in the storage device.
  • the contents of the configuration information and the preset information may include, for example, information related to PDU sessions, information related to collaborative work, and the like.
  • the setting unit 630 may be included in the control unit 640 .
  • the control unit 640 controls the terminal 10 as a whole.
  • the control unit 640 controls, for example, communication based on a PDU session or the like, communication related to joint work, and the like.
  • a functional unit related to signal transmission in control unit 640 may be included in transmitting unit 610
  • a functional unit related to signal reception in control unit 640 may be included in receiving unit 620 .
  • FIG. 9 is a diagram illustrating an example of a functional configuration of base station 20 according to an embodiment of the present disclosure.
  • the base station 20 includes a transmitting section 710, a receiving section 720, a setting section 730, and a control section 740.
  • the functional configuration shown in FIG. 9 is merely an example. As long as the operation according to the embodiment of the present disclosure can be executed, the functional division and the name of the functional unit may be anything.
  • the transmission unit 710 includes a function of generating a signal to be transmitted to the terminal 10 and wirelessly transmitting the generated signal.
  • the transmitter 710 also transmits inter-network node messages to other network nodes.
  • the transmission unit 710 transmits radio for wireless sensing, wireless sensing information, and the like.
  • the receiving unit 720 includes a function of receiving various signals transmitted from the terminal 10 and acquiring, for example, higher layer information from the received signals.
  • the transmission unit 710 has a function of transmitting NRPSS, NR-SSS, NR-PBCH, DL/UL control signals, etc. to the terminal 10 .
  • the receiver 720 also receives inter-network node messages from other network nodes. For example, the receiving unit 720 receives radio signals for wireless sensing, sensing requests, wireless sensing information, and the like.
  • the setting unit 730 stores preset information set in advance and various kinds of setting information to be transmitted to the terminal 10 in a storage device (storage unit), and reads preset information and setting information from the storage device as necessary.
  • the contents of the preset information and the configuration information may include, for example, information related to PDU sessions, information related to collaborative work, and the like. Note that the setting unit 730 may be included in the control unit 740 .
  • the control unit 740 controls the base station 20 as a whole.
  • the control unit 740 controls, for example, communication by a PDU session or the like, communication related to joint work, and the like. Also, the control unit 740 controls communication with the terminal 10 based on the terminal capability report regarding the radio parameters received from the terminal 10 .
  • a functional unit related to signal transmission in control unit 740 may be included in transmitting unit 710
  • a functional unit related to signal reception in control unit 740 may be included in receiving unit 720 .
  • FIG. 10 is a diagram showing an example of a functional configuration of a joint work execution device 30-11 according to an embodiment of the present disclosure.
  • the joint work execution device 30-11 includes a transmission section 810, a reception section 820, a setting section 830, and a control section 840.
  • the functional configuration shown in FIG. 10 is merely an example. As long as the operation according to the embodiment of the present disclosure can be executed, the functional division and the name of the functional unit may be anything.
  • the transmission unit 810 includes a function of generating a signal to be transmitted and transmitting the generated signal to the network.
  • the transmitting unit 810 may be used to inquire about data, request or request selection of the joint work participation terminal 10 and/or the base station 20 (including joint work content and total amount of remuneration), sensing request, wireless sensing data, wireless sensing information, etc. to send.
  • the receiving unit 820 includes a function of receiving various signals and acquiring, for example, higher layer information from the received signals. For example, the receiving unit 820 receives the necessity of wireless sensing, the scope, necessary data, notification of the joint work participation terminal 10 and/or the base station 20, wireless sensing information, and the like.
  • the setting unit 830 stores preset information and setting information set in advance in a storage device (storage unit), and reads preset information and setting information from the storage device as needed.
  • the contents of the preset information and the setting information may include, for example, information related to collaborative work.
  • the setting unit 830 may be included in the control unit 840 .
  • the control unit 840 controls the entire joint work execution device 30-11. In particular, the control unit 840 performs control related to execution of joint work, as described in the above example.
  • a functional unit related to signal transmission in control unit 840 may be included in transmitting unit 810
  • a functional unit related to signal reception in control unit 840 may be included in receiving unit 820 .
  • the control unit 840 controls a sensing device that performs wireless sensing (that is, a device that transmits wireless sensing wireless and/or a device that receives wireless sensing wireless) selected from terminals and base stations, and a sensing device It may determine performance information to provide to an intermediate aggregation device for temporarily storing wireless sensing information to be sensed and transmitted, and to perform wireless sensing and/or intermediate aggregation.
  • the transmitter 810 may transmit performance information to the sensing device and/or the intermediate aggregation device.
  • the receiving unit 820 may receive wireless sensing information from the intermediate aggregation device.
  • the receiver 820 may receive a sensing request from an initiator (ie, a terminal requesting sensing information, NF, or AF), and the transmitter 810 may return a sensing response to the initiator.
  • the control unit 840 selects, from the UE 10 and the gNB 20, a sensing device that performs wireless sensing (that is, a device that transmits wireless sensing wireless and/or a device that receives wireless sensing wireless), and a device detected by the sensing device. and an intermediate aggregation device that temporarily stores wireless sensing information to be transmitted.
  • the receiving unit 820 may receive the wireless sensing information detected by the sensing device from the intermediate aggregation device determined by the control unit 840 .
  • the UE 10 described with reference to FIG. 5 may correspond to the sensing device, and the gNB 20 may correspond to the intermediate aggregation device.
  • the UE 10X and UE 10Y described with reference to FIG. 6 may correspond to the sensing device, and the gNB 20 may correspond to the intermediate aggregation device.
  • the control unit 840 transmits a sensing request including information indicating the sender and / or receiver to the UE 10 and / or gNB 20, and notifies the UE 10 and / or gNB 20 that the sensing device has been determined. good.
  • the control unit 840 may, for example, transmit a sensing request including information indicating the intermediate aggregation point to the UE 10 and/or the gNB 20 and notify the UE 10 and/or the gNB 20 that the intermediate aggregation device has been determined.
  • the control unit 840 may transmit information regarding the transmission timing of the wireless sensing information to the joint work execution device 30-11 to the intermediate aggregation device. For example, the control unit 840 may transmit information about transmission timing under the reporting condition of the sensing request.
  • the information on the transmission timing may include, for example, the time zone, period, and/or period during which the traffic volume of the 5GS CN is suppressed.
  • the time slot, period, and/or period, etc., in which the traffic volume is suppressed may be determined by, for example, artificial intelligence (AI) such as deep learning.
  • AI artificial intelligence
  • the artificial intelligence may learn the traffic volume within the CN and determine the time period, period, and/or duration, etc., during which the traffic volume is curtailed.
  • the artificial intelligence function may be installed in the control unit 840, or may be installed in the NF such as the NWDAF 30-10 arranged in the CN.
  • the intermediate aggregation device determined by the control unit 840 may transmit the temporarily stored wireless sensing information to the joint work execution device 30-11 based on the information regarding the transmission timing transmitted from the control unit 840. .
  • the control unit 840 may determine, from among the UE 10 and the gNB 20, a relay device that receives the wireless sensing information detected and transmitted by the sensing device and transmits it to the intermediate aggregation device.
  • the control unit 840 may, for example, transmit a sensing request including NULL to the UE 10 and/or the gNB 20 and notify the UE 10 and/or the gNB 20 that the relay device has been determined.
  • a relay device determined to be a relay device by the control unit 840 may receive wireless sensing information transmitted from the sensing device and transmit the wireless sensing information to the intermediate aggregation device.
  • the UE 10Z described with reference to FIG. 6 may correspond to the relay device.
  • the control unit 840 may determine the sensing device and the intermediate aggregation device. In other words, when the target wireless sensing information is stored in the DH 50 arranged in the CN, the control unit 840 acquires the wireless sensing information from the DH 50 without determining the sensing device and the intermediate aggregation device. You may
  • the intermediate aggregation device temporarily stores the wireless sensing information of the sensing device, performs intermediate processing to compress the data volume, and when the traffic volume in the CN is small, the joint work execution device 30-11 Since it can be transmitted, the intra-CN traffic volume is suppressed.
  • FIG. 11 is a diagram showing an example of a functional configuration of a joint work participating terminal coordinator 30-12 according to an embodiment of the present disclosure.
  • the joint work participating terminal coordinator 30-12 includes a transmitting section 910, a receiving section 920, a setting section 930, and a control section 940.
  • the functional configuration shown in the figure is only an example. As long as the operation according to the embodiment of the present disclosure can be executed, the functional division and the name of the functional unit may be anything.
  • the transmission unit 910 includes a function of generating a signal to be transmitted and transmitting the generated signal to the network. For example, the transmission unit 910 transmits a notification of the joint work participation terminal 10 and/or the base station 20, or the like.
  • the receiving unit 920 includes a function of receiving various signals and acquiring, for example, higher layer information from the received signals. For example, the receiving unit 920 receives notification of the capabilities of the terminal 10 and/or the base station 20, request or request for selection of the joint work participating terminal 10 and/or the base station 20 (including joint work content and total remuneration), joint work Receive notice of termination of
  • the setting unit 930 stores preset information and setting information set in advance in a storage device (storage unit), and reads the preset information and setting information from the storage device as needed.
  • the contents of the preset information and the setting information may include, for example, information related to collaborative work.
  • the setting unit 930 may be included in the control unit 940 .
  • the control unit 940 controls the entire joint work participating terminal coordinator 30-12. In particular, the control unit 940 performs control related to selection of the terminal 10 and/or the base station 20 participating in the joint work, as described in the above example.
  • a functional unit related to signal transmission in control unit 940 may be included in transmitting unit 910
  • a functional unit related to signal reception in control unit 940 may be included in receiving unit 920 .
  • the receiving unit 920 may acquire information about the intention of the UE 10 to participate in the (joint) work performed by the network node, and terminal (UE) capabilities regarding the work.
  • the control unit 940 may select the UE 10 that participates in the work based on the information about the intention to participate and the terminal capability acquired by the receiving unit 920 .
  • the network node may be the joint work execution device 30-11, the joint work participation terminal coordinator 30-12, or another NF.
  • Terminal capabilities related to work may also include capabilities related to wireless sensing techniques, roles (sender, receiver, or intermediate aggregation point), data aggregation techniques (Null, intermediate aggregation, final aggregation, etc.), and the like.
  • the control unit 940 may select the UE 10 to participate in the work, further based on whether the UE 10 is in the work target area and whether the UE 10 is in an operation mode in which the work can be performed. .
  • the receiving unit 920 may receive the total reward when the work is completed.
  • the control unit 940 may reward the UE 10 participating in the work based on the received total reward.
  • the reward may be the provision of points, refunds, or the like.
  • the reward for the UE 10 that has participated in the work may be a value of the total reward divided by the number of UEs 10 that have participated in the work, such as giving points or refunding the value.
  • the joint work participating terminal coordinator 30-12 may be different from the network node that performs the work.
  • the network node that performs the work may be the joint work execution device 30-11.
  • the receiving unit 920 may acquire base station (gNB) capabilities related to work.
  • the control unit 940 may select gNBs 20 that participate in the work based on the base station capabilities acquired by the receiving unit 920 .
  • the control unit 940 may further select gNBs 20 that participate in the work based on whether the gNBs 20 are in the work target area.
  • gNB 20 that is more suitable for the joint work content based on external conditions other than the gNB 20's ability.
  • each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • Functions include judging, determining, determining, calculating, calculating, processing, deriving, investigating, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. can't
  • a functional block (component) that performs transmission is called a transmitting unit or transmitter.
  • the implementation method is not particularly limited.
  • a base station, a terminal, etc. may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 12 is a diagram illustrating an example of hardware configurations of a terminal, a base station, a joint work execution device, a joint work participating terminal coordinator, and other network nodes according to an embodiment of the present disclosure.
  • the terminal 10, the base station 20, the joint work execution device 30-11, the joint work participation terminal coordinator 30-12 and other network nodes described above are physically composed of a processor 1001, a memory 1002, a storage 1003, a communication device 1004 , an input device 1005, an output device 1006, a bus 1007, and the like.
  • the term "apparatus” can be read as a circuit, device, unit, or the like.
  • the hardware configuration of the terminal 10, base station 20, joint work execution device 30-11, joint work participation terminal coordination device 30-12, and other network nodes is configured to include one or more of each device shown in the figure. or may be configured without some of the devices.
  • Each function of terminal 10, base station 20, joint work execution device 30-11, joint work participation terminal coordinator 30-12 and other network nodes is implemented by predetermined software (program ), the processor 1001 performs calculations, controls communication by the communication device 1004, and controls at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 for example, operates an operating system and controls the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like.
  • CPU central processing unit
  • the control unit 640 , the control unit 740 , the control unit 840 , the control unit 940 and the like described above may be implemented by the processor 1001 .
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them.
  • programs program codes
  • the program a program that causes a computer to execute at least part of the operations described in the above embodiments is used.
  • the control unit 640 of the terminal 10 the control unit 740 of the base station 20, the control unit 840 of the joint work execution device 30-11, or the control unit 940 of the joint work participation terminal coordination device 30-12 are stored in the memory 1002, It may be implemented by a control program running on the processor 1001, and other functional blocks may be implemented in the same way.
  • FIG. Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via an electric communication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one of, for example, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be
  • ROM Read Only Memory
  • EPROM Erasable Programmable ROM
  • EEPROM Electrical Erasable Programmable ROM
  • RAM Random Access Memory
  • the memory 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the memory 1002 can store executable programs (program code), software modules, etc. for implementing a wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like.
  • Storage 1003 may also be called an auxiliary storage device.
  • the storage medium described above may be, for example, a database, server, or other suitable medium including at least one of memory 1002 and storage 1003 .
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to realize at least one of, for example, frequency division duplex (FDD) and time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmitting unit 610, the receiving unit 620, the transmitting unit 710, the receiving unit 720, the transmitting unit 810, the receiving unit 820, the transmitting unit 910, the receiving unit 920, etc. described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (eg, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the terminal 10, the base station 20, the joint work execution device 30-11, the joint work participation terminal coordinator 30-12 and other network nodes include microprocessors, digital signal processors (DSPs), ASICs (Application Specific Integrated Circuit), PLD (Programmable Logic Device), FPGA (Field Programmable Gate Array), etc., may be configured including hardware, and part or all of each functional block may be realized by the hardware good.
  • processor 1001 may be implemented using at least one of these pieces of hardware.
  • notification of information includes physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), higher layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • RRC signaling may also be called an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
  • Each aspect/embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), NR (New Radio), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark) )), IEEE 802.16 (WiMAX®), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth®, and other suitable systems and extended It may be applied to at least one of the next generation systems. Also, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G, etc.).
  • Base station operation Certain operations that are described in this disclosure as being performed by a base station may also be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may be performed by the base station and other network nodes other than the base station (e.g. MME or S-GW, etc. (including but not limited to).
  • MME or S-GW network nodes other than the base station
  • the case where there is one network node other than the base station is exemplified above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • (input/output direction) Information and the like can be output from the upper layer (or lower layer) to the lower layer (or higher layer). It may be input and output via multiple network nodes.
  • Input/output information and the like may be stored in a specific location (for example, memory), or may be managed using a management table. Input/output information and the like can be overwritten, updated, or appended. The output information and the like may be deleted. The entered information and the like may be transmitted to another device.
  • the determination may be made by a value represented by one bit (0 or 1), by a true/false value (Boolean: true or false), or by numerical comparison (for example, a predetermined value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.) to website, Wired and/or wireless technologies are included within the definition of transmission medium when sent from a server or other remote source.
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • Information, signal Information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • the channel and/or symbols may be signaling.
  • a signal may also be a message.
  • a component carrier may also be called a carrier frequency, a cell, a frequency carrier, or the like.
  • system As used in this disclosure, the terms “system” and “network” are used interchangeably.
  • radio resources may be indexed.
  • Base station wireless base station
  • base station radio base station
  • radio base station fixed station
  • NodeB nodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • a base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
  • a base station can accommodate one or more (eg, three) cells.
  • the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being associated with a base station subsystem (e.g., an indoor small base station (RRH: Communication services can also be provided by Remote Radio Head)).
  • RRH indoor small base station
  • the terms "cell” or “sector” refer to part or all of the coverage area of at least one of the base stations and base station subsystems that serve communication within such coverage.
  • terminal In this disclosure, terms such as “Mobile Station (MS),” “user terminal,” “User Equipment (UE),” “terminal,” etc. may be used interchangeably. .
  • a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of a base station and a mobile station may be called a transmitter, a receiver, a communication device, and the like. At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like.
  • the mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a user terminal.
  • communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.)
  • the terminal 10 may have the functions of the base station 20 described above.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be read as side channels.
  • a terminal in the present disclosure may be read as a base station.
  • the base station 20 may have the functions of the terminal 10 described above.
  • determining may encompass a wide variety of actions.
  • “Judgement”, “determining” are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (eg, lookup in a table, database, or other data structure), ascertaining as “judged” or “determined”, and the like.
  • "judgment” and “decision” are used for receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (accessing) (for example, accessing data in memory) may include deeming that something has been "determined” or “decided”.
  • judgment and “decision” are considered to be “judgment” and “decision” by resolving, selecting, choosing, establishing, comparing, etc. can contain.
  • judgment and “decision” may include considering that some action is “judgment” and “decision”.
  • judgment (decision) may be read as “assuming”, “expecting”, “considering”, or the like.
  • connection means any direct or indirect connection or connection between two or more elements, It can include the presence of one or more intermediate elements between two elements being “connected” or “coupled.” Couplings or connections between elements may be physical, logical, or a combination thereof. For example, “connection” may be read as "access”.
  • two elements are defined using at least one of one or more wires, cables, and printed electrical connections and, as some non-limiting and non-exhaustive examples, in the radio frequency domain. , electromagnetic energy having wavelengths in the microwave and optical (both visible and invisible) regions, and the like.
  • the reference signal may be abbreviated as RS (Reference Signal), or may be referred to as Pilot according to the applicable standard.
  • a radio frame may consist of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe. A subframe may also consist of one or more slots in the time domain. A subframe may be a fixed time length (eg, 1 ms) independent of numerology.
  • a numerology may be a communication parameter that applies to the transmission and/or reception of a signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, transmission and reception specific filtering operations performed by the receiver in the frequency domain, specific windowing operations performed by the transceiver in the time domain, and/or the like.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • radio frame configuration for example, transmission and reception specific filtering operations performed by the receiver in the frequency domain, specific windowing operations performed by the transceiver in the time domain, and/or the like.
  • Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations.
  • one subframe may be called a Transmission Time Interval (TTI)
  • TTI Transmission Time Interval
  • TTI Transmission Time Interval
  • TTI Transmission Time Interval
  • one slot or one minislot may be called a TTI.
  • TTI Transmission Time Interval
  • at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms may be Note that the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum scheduling time unit in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • a TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like.
  • a TTI that is shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers included in the RB may be the same regardless of the neumerology, eg twelve.
  • the number of subcarriers included in an RB may be determined based on neumerology.
  • One or more RBs are physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. may be called.
  • PRBs physical resource blocks
  • SCGs sub-carrier groups
  • REGs resource element groups
  • PRB pairs RB pairs, etc. may be called.
  • a resource block may be composed of one or more resource elements (RE: Resource Element).
  • RE Resource Element
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a bandwidth part (which may also be called a bandwidth part) represents a subset of contiguous common resource blocks (RBs) for a certain numerology in a certain carrier. good.
  • the common RB may be identified by an RB index based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or multiple BWPs may be configured for a UE within one carrier.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean that "A and B are different from C”.
  • Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”
  • One aspect of the present disclosure is useful for wireless communication systems.
  • UE terminal
  • NG-RAN gNB, base station
  • JWPF Joint Work Performance Device
  • JWPTOF joint work participation terminal coordinator

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示の一態様に係るネットワークノードは、端末及び基地局の中から選択された、無線センシングを行うセンシング装置と、センシング装置が検知し送信する無線センシング情報を一時的に記憶する中間集約装置と、に提供する、無線センシング及び/又は中間集約を遂行するための遂行情報を決定する制御部と、センシング装置及び/又は中間集約装置に、遂行情報を送信する送信部と、中間集約装置から、無線センシング情報を受信する受信部と、を有する。

Description

ネットワークノード及び通信方法
 本開示は、ネットワークノード及び通信方法に関する。
 LTE(Long Term Evolution)の後継システムであるNR(New Radio)(「5G」とも呼ばれる)においては、要求条件として、大容量のシステム、高速なデータ伝送速度、低遅延、多数の端末の同時接続、低コスト、省電力等を満たす技術が検討されている。
 5Gをさらに進化させた5G-Advanced/6Gは、「網(NW:Network)が価値提供するための準備としての共同作業に端末が参加する(例えば、センシングデータ収集、協調学習(Federated Learning)等への参加)」とのユースケースを想定している。なお、ここでの網とは、コアネットワーク(CN:Core Network)を意味してよい。
 センシングデータ収集に関連して、5G-Advanced/6Gでは、端末及び/又は基地局が無線センシングした情報を、様々な用途で使用することを想定している。
 ここで、無線センシングとは、端末及び/又は基地局が、伝搬の途中で周囲の環境によって乱された無線信号を受信し、受信した無線信号から必要な情報を抽出することを意味してよい。また、無線センシングした情報又は無線センシング情報とは、このようにして抽出された情報を意味してよい。
 例えば非特許文献1には、無線センシング情報を例えば以下の用途で使用する例が挙げられている。
 ・車両/無人機(UAV:Unmanned Aerial Vehicle)の障害回避、経路選択、危険検知、規制準拠等に、既存センサに加えて無線センシング情報を使用すること。
 ・環境マッピング:無線センシング情報を使用して、周辺状況(ランドマーク等)を認識し、環境の2次元/3次元地図を再構築すること。これは、位置精度向上、環境関連アプリケーション等に適用されてよい。
 ・天候/大気汚染監視:電磁波は湿度の影響を受けるため、既存の湿度計等の代替として無線センシング情報を使用すること。
 ・実時間監視:侵入検知等に無線センシング情報を使用すること。
 また、例えば非特許文献2には、そのような無線センシングの基本システムが開示されている。無線センシングの基本システムは、例えば、反射物体(Reflective Object:情報がセンシングされる対象物)と、送信者(Transmitter:無線信号を対象物に送信する端末又は基地局)と、受信者(Receiver:対象物からの無線信号の反射に基づいてセンシング情報を検出する端末又は基地局)と、起動者(Initiator:受信者に対してセンシング情報を要求する端末又はNF(Network Function))と、集約点(Aggregation Point (Device):センシング情報を集約する端末又はセンシングサーバ)と、を含む。
"New SID: 5G Architecture enhancements for Harmonized Communication and Sensing service",S2-2106022,3GPP TSG-WG SA2 Meeting #146e-meeting,3GPP,2021年8月 "New SID on Study on Sensing based services",S2-2106378,3GPP TSG SA2 Meeting #146E (e-meeting),3GPP,2021年8月
 しかし、端末及び基地局を用いた無線センシングデータ収集において、網内トラフィック量を抑制する手段は、まだ無い。
 本開示の一態様は、端末及び基地局を用いた無線センシングデータ収集において、網内トラフィック量を抑制できるネットワークノード及び通信方法を提供する。
 本開示の一態様に係るネットワークノードは、端末及び基地局の中から選択された、無線センシングを行うセンシング装置と、前記センシング装置が検知し送信する無線センシング情報を一時的に記憶する中間集約装置と、に提供する、無線センシング及び/又は中間集約を遂行するための遂行情報を決定する制御部と、前記センシング装置及び/又は前記中間集約装置に、前記遂行情報を送信する送信部と、前記中間集約装置から、前記無線センシング情報を受信する受信部と、を有する。
 本開示の一態様に係る通信方法は、ネットワークノードが、端末及び基地局の中から選択された、無線センシングを行うセンシング装置と、前記センシング装置が検知し送信する無線センシング情報を一時的に記憶する中間集約装置と、に提供する、無線センシング及び/又は中間集約を遂行するための遂行情報を決定し、前記センシング装置及び前記中間集約装置に、前記遂行情報を送信し、前記中間集約装置から、前記無線センシング情報を受信する。
本開示の一実施の形態に係る通信システムの例を説明するための図である。 本開示の一実施の形態に係る、共同作業種別毎の参加意思及び能力の通知の例を示す図である。 本開示の一実施の形態に係る、共同作業参加UE及び/又はgNBの調整又は選択の例を示す図である。 本開示の一実施の形態に係る、共同作業参加UEの選択の例を示す図である。 本開示の一実施の形態に係る、共同作業参加gNBの選択の例を示す図である。 本開示の一実施の形態に係る、無線センシング情報収集及び集約と無線センシングデータ生成との例を示す図である。 本開示の一実施の形態に係る、無線センシング情報収集及び集約と無線センシングデータ生成との別の例を示す図である。 本開示の一実施の形態に係る、無線センシングデータ生成後の後処理の例を示す図である。 本開示の一実施の形態に係る端末の一例を示す図である。 本開示の一実施の形態に係る基地局の一例を示す図である。 本開示の一実施の形態に係る共同作業遂行装置の一例を示す図である。 本開示の一実施の形態に係る共同作業参加端末調整装置の一例を示す図である。 本開示の一実施の形態に係る端末、基地局、共同作業遂行装置、共同作業参加端末調整装置又は他のネットワークノードのハードウェア構成の一例を示す図である。
 以下、図面を参照して本開示の実施の形態について説明する。なお、以下で説明する実施の形態は一例であり、本開示が適用される実施の形態は、以下の実施の形態に限られない。
 本開示の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用されてよい。当該既存技術は、例えば既存のLTE又は既存の5Gであるが、既存のLTE又は既存の5Gに限られない。
 また、以下の説明では、現在のところ5Gの規格書(又はLTEの規格書)に記載されているノード名、信号名等を使用しているが、これらと同様の機能を有するノード名、信号名等がこれらとは異なる名称で呼ばれてもよい。
 例えば、以下で説明する本開示の実施の形態では、既存のLTEで使用されているSS(Synchronization Signal)、PSS(Primary SS)、SSS(Secondary SS)、PBCH(Physical Broadcast Channel)、PRACH(Physical Random Access Channel)、PDCCH(Physical Downlink Control Channel)、PDSCH(Physical Downlink Shared Channel)、PUCCH(Physical Uplink Control Channel)、PUSCH(Physical Uplink Shared Channel)等の用語を使用することがある。また、NRにおける上述の用語は、NR-SS、NR-PSS、NR-SSS、NR-PBCH、NR-PRACH、NR-PDCCH、NR-PDSCH、NR-PUCCH、NR-PUSCH等に対応する。ただし、NRに使用される信号であっても、必ずしも「NR-」と明記するわけではない。
 (システム構成例)
 図1は、本開示の一実施の形態に係る通信システム1の例を説明するための図である。図1に示すように、通信システム1は、例えば、UE10(User Equipment:(ユーザ)端末と呼ばれてもよい)と、複数のネットワークノード20、30-1~30-12(NFと呼ばれてもよい)、40、50と、から構成される。以下、機能ごとに1つのネットワークノードが対応するものとするが、1つのネットワークノードが複数の機能を実現してもよいし、複数のネットワークノードが1つの機能を実現してもよい。また、以下に記載する「接続」は、論理的な接続であってもよいし、物理的な接続であってもよい。
 NG-RAN(Next Genaration - Radio Access Network)20は、無線アクセス機能を有するネットワークノードであり、例えばgNB(next generation Node B)(基地局と呼ばれてもよい)20であってよい。NG-RAN20は、UE10、AMF(Access and Mobility Management Function)30-1及びUPF(User Plane Function)40と接続される。また、図1に示すように、NG-RAN20は、DH(Data Hub)50と接続されることもある。
 AMF30-1は、RANインタフェースの終端、NAS(Non-Access Stratum)の終端、登録管理、接続管理、到達性管理、モビリティ管理等の機能を有するネットワークノードである。AMF30-1は、UE10、NG-RAN20、SMF(Session Management function)30-2、NSSF(Network Slice Selection Function)30-3、NEF(Network Exposure Function)30-4、NRF(Network Repository Function)30-5、UDM(Unified Data Management)30-6、AUSF(Authentication Server Function)30-7、PCF(Policy Control Function)30-8、AF(Application Function)30-9、NWDAF(Network Data Analytics Function)30-10、JWPF(Joint Work Performance Function)30-11及びJWPTOF(Joint Work Participating Terminal Orchestration Function)30-12と接続される。
 AMF30-1、SMF30-2、NSSF30-3、NEF30-4、NRF30-5、UDM30-6、AUSF30-7、PCF30-8、AF30-9、NWDAF30-10、JWPF30-11及びJWPTOF30-12は、各々のサービスに基づくインタフェースNamf、Nsmf、Nnssf、Nnef、Nnrf、Nudm、Nausf、Npcf、Naf、Nnwdaf、Njwpf及びNjwptofをそれぞれ介して相互に接続されるネットワークノードである。
 SMF30-2は、セッション管理、UEのIP(Internet Protocol)アドレス割り当て及び管理、DHCP(Dynamic Host Configuration Protocol)機能、ARP(Address Resolution Protocol)プロキシ、ローミング機能等の機能を有するネットワークノードである。
 NSSF30-3は、UEが接続するネットワークスライスの選択、許可されるNSSAI(Network Slice Selection Assistance Information)の決定、設定されるNSSAIの決定、UEが接続するAMFセットの決定等の機能を有するネットワークノードである。
 NEF30-4は、他のNFに能力及びイベントを通知する機能を有するネットワークノードである。
 NRF30-5は、サービスを提供するNFインスタンスを発見する機能を有するネットワークノードである。
 UDM30-6は、加入者データ及び認証データを管理するネットワークノードである。UDM30-6は、当該データを保持するUDR(User Data Repository)と接続される。
 AUSF30-7は、UDRに保持されている加入者データに対して加入者/UE10を認証するネットワークノードである。
 PCF30-8は、ネットワークのポリシ制御を行う機能を有するネットワークノードである。
 AF30-9は、アプリケーションサーバを制御する機能を有するネットワークノードである。
 NWDAF30-10は、ネットワークによって取得されるデータを収集及び分析し、分析結果を提供するネットワークノードである。
 JWPF30-11は、1つ以上のUE10及び/又はNG-RAN20に指示して、UE10及び/又はNG-RAN20に共同作業(本実施の形態では、無線センシング用無線の送信、受信及び/又は中間集約)を行わせ、中間集約された無線センシング情報を送信させて無線センシング情報の最終集約を行い、最終集約した無線センシング情報から、意味のある無線センシングデータを生成するネットワークノードである。換言すれば、JWPF30-11は、上記基本システムの概念における「起動者」を、起動者と共同作業調整者とに分けた場合の後者に、最終的な集約点の役割を加えたものにあたる。なお、JWPFという名称は一例であり、本開示の実施の形態に係る動作を実行できるのであれば、当該ネットワークノードの名称はどのようなものでもよい。また、JWPF30-11のサービスに基づくインタフェースNjwpfという名称も一例である。なお、JWPF30-11は、共同作業遂行装置と呼ばれてもよい。
 JWPTOF30-12は、各UEの能力、参加意思等を確認し、共同作業に参加するUE(共同作業参加UEと呼ばれてもよい)を選択し、共同作業に参加したUEに報酬(例えば、ポイント付与、返金等)を行うネットワークノードである。JWPTOF30-12はまた、共同作業に参加するgNB(共同作業参加gNBと呼ばれてもよい)を選択してもよい。なお、JWPTOFという名称は一例であり、本開示の実施の形態に係る動作を実行できるのであれば、当該ネットワークノードの名称はどのようなものでもよい。また、JWPTOF30-12のサービスに基づくインタフェースNjwptofという名称も一例である。なお、JWPTOF30-12は、共同作業参加端末調整装置と呼ばれてもよい。
 なお、本実施の形態において、共同作業は、JWPF30-11とUE10及び/又はNG-RAN20との無線センシング情報収集に限定されるものではなく、協調学習、他のセンサ情報の収集等であってもよい。したがって、JWPF30-11は、共同作業毎に実装されてよい。一方、JWPTOF30-12は、全ての共同作業に共通する調整を行うことができるので、共同作業毎に実装される必要がない。
 図1に示すように、JWPF30-11は、DH50に接続されているUPF40との間にGTP-U(GPRS Tunneling Protocol for User Plane)トンネルを設定する。これにより、JWPF30-11は、ユーザプレーン(以下Uプレーン)(UPF40)経由でDH50にアクセスすることができる。また、DH50が、他のNF(例えば図1に示すNWDAF30-10)経由で制御プレーン(以下Cプレーン)からもアクセス可能である場合には、JWPF30-11は、5GC内からCプレーン経由でもDH50にアクセスすることができる。
 UPF40は、NG-RAN20、DH50及びDN(Data Network)60と相互接続する外部に対するPDU(Protocol Data Unit)セッションポイント、パケットのルーティング及びフォワーディング、ユーザプレーンのQoS(Quality of Service)ハンドリング等の機能を有するネットワークノードであり、ユーザデータの送受信等を行う。
 例えば、あるUPF40及びDH50は、1つのネットワークスライスを構成してよい。また、例えば、別のUPF40及びDN60は、別のネットワークスライスを構成してよい。本開示の実施の形態に係る無線通信ネットワークでは、複数のネットワークスライスが構築されている。なお、1つのUPF40が1つのネットワークスライスを運用してもよいし、1つのUPF40が複数のネットワークスライスを運用してもよい。
 また、UPF40は、物理的には例えば1つ又は複数のコンピュータ(サーバ等)であり、当該コンピュータのハードウェアリソース(CPU、メモリ、ハードディスク、ネットワークインタフェース等)を論理的に統合・分割してできる複数のリソースをリソースプールとみなし、当該リソースプールにそれぞれのリソースをネットワークスライスとして使用することができる。UPF40がネットワークスライスを運用するとは、例えば、ネットワークスライスとリソースとの対応付けの管理、当該リソースの起動・停止、当該リソースの動作状況の監視等を行うことである。
 DH50は、UE10からのUプレーン上の多様なユーザデータを集約するネットワークノード、すなわち、ユーザデータ用の(汎用)データハブである。なお、DH50は、データレイク、データ集約配布仲介装置等と呼ばれてもよい。
 ここで、5GS内のN6(UPF40とDN60との間)にユーザデータ用のデータハブを導入した場合、UPF40とデータハブとの間の通信は必ずしも安全ではない。なぜならば、現在の標準仕様上、N6を経由するデータには、インテグリティ保護も暗号化も適用されないからである。かかる観点から、DH50は、5GCのUプレーン内に配置され、図1に示すN3に平行する関係にある。すなわちN3(5GCとNG-RAN20との間のユーザプレーンインタフェース)がNG-RAN20とUPF40を接続するように、DH50はNG-RAN20とUPF40との間に配置されてよい。
 図1に示すように、DH50は、特定のUPF40内の内部インタフェース経由で当該特定のUPF40に接続される。また、上述したように、DH50は、Cプレーンからもアクセス可能である。
 複数の端末や基地局を巻き込んで系統立って無線センシングデータ収集を行うとともに網内のトラフィック量を抑制する手段は、まだ無い。
 端末の共同作業参加に関し、網が共同作業に参加する端末を確認及び選択する手段は、まだ無い。
 上記に鑑みて、中間集約点を配置することでNW内トラフィック量を抑制しながら、UE10及び/又はNG-RAN20とともに無線センシングデータ収集を遂行する上述したJWPF30-11と、各UE10の能力、参加意思等を確認し、共同作業参加UE10及び/又はNG-RAN20を選択し、共同作業に参加したUEに報酬を行うJWPTOF30-12と、が、CNに導入される。以下では、JWPF30-11及びJWPTOF30-12が関与する手順及びこれに付随する手順について説明する。
 (共同作業種別毎の参加意思及び能力の通知)
 図2は、本開示の一実施の形態に係る、共同作業種別毎の参加意思及び能力の通知の例を示す図である。
 ステップS101において、NW(この場合はUDM30-6)は、UE10の共同作業種別毎の参加意思を示す参加意思情報を、加入者データとして、例えばUDRに保持する。例えば、UE10は、登録手順の際に、共同作業種別毎の参加意思を示す参加意思情報を、AMF30-1経由でNWに送信してもよいし、Uプレーン(UPF40)経由でNWに送信してもよい。あるいは、参加意思は、AF30-9によって一括に設定されてもよい。また、参加意思は、報酬(例えば、ポイント付与、返金等)に応じて変わることもあり得るので、AF30-9又はUE10は、NEF30-4経由で参加意思を変更することもできる。
 ステップS102において、UE10は、端末能力(UE Capability)として、すなわち、登録手順の際に登録要求メッセージの5GMM Capability IEに適宜設定することで、共同作業種別毎の能力をNWに通知する。例えば、共同作業が無線センシング情報収集である場合、「共同作業種別毎の能力」は、無線センシング手法、役割(すなわち、送信者、受信者又は中間集約点)、データ集約手法(Null、中間集約、最終集約等)等に関する能力を含む。これにより、NWは、UE10の共同作業に関する能力を認識することができる。
 なお、無線センシング手法は、例えば、無線センシングに用いる無線信号の周波数及びアンテナの本数といった無線センシングの手法を示す情報であってもよい。
 送信者とは、例えば、無線信号を無線センシングの対象物に送信する装置であることを示す情報であってもよいし、受信者に対して電波を送信する装置であることを示す情報であってもよい。なお、以下において、当該無線信号は、無線センシング用無線と呼称されるが、当該無線信号の名称は、無線センシング用無線に限定されるものではない。受信者とは、対象物からの無線信号の反射、又は、送信者から送信される無線信号に基づいて無線センシング情報を検出する装置であることを示す情報であってもよい。中間集約点とは、受信者が検出した無線センシング情報を一時的に集約し、他の装置に送信する装置であることを示す情報であってもよい。他の装置とは、例えば、無線センシング情報を最終的に収集する、JWPF30-11といった装置であってもよい。UE10及びgNB20が、送信者、受信者、及び中間集約点のいずれか1つ又は2以上の役割を担ってもよい。
 中間集約点のデータ集約手法に関し、Nullとは、例えば、データをリレーする処理を示す情報であってもよい。中間集約とは、例えば、センシング情報を中間収集することを示す情報であってもよい。最終集約とは、例えば、センシング情報を最終的に収集することを示す情報であってもよい。
 (共同作業参加UE及び/又はgNBの調整又は選択)
 図3は、本開示の一実施の形態に係る、共同作業参加UE10及び/又はgNB20の調整又は選択の例を示す図である。
 ステップS201において、外部アプリケーション、任意のNF30-X又はUE10であってよい起動者は、無線センシングデータを必要とすること(すなわち、無線センシンデータの必要性)、無線センシングデータのスコープ(例えば、データ種別、対象地域等)等を決定する。上述したように、無線センシングデータは、無線センシング情報から意味のあるものとして生成されるデータを意味してよい。
 なお、データ種別は、例えば、無線センシングの対象物の物体の種類、位置、大きさ、移動方向、移動速度、又は状態(対象物が大気の場合の湿度、対象物が人の場合の睡眠中呼吸の速度や深度)といった、無線センシング情報の内容を示す情報であってもよい。対象地域は、例えば、無線センシング情報を収集する地域(例えば、市町村等)及び/又は範囲(例えば、交通交差点、無人機飛行禁止区域)等を示す情報であってもよい。
 ステップS202において、起動者は、決定した無線センシングデータの必要性、無線センシングデータのスコープ等を、NEF30-4経由でJWPF30-11に通知する。
 ステップS203において、JWPF30-11は、通知された無線センシングデータのスコープ等に基づいて、必要な無線センシングデータがNW内で利用可能であるかどうかDH50に問い合わせる。
 DH50への問い合わせの結果、必要な無線センシングデータがNW内で利用可能である場合には、ステップS204において、DH50は、DH50に格納されている必要な無線センシングデータをJWPF30-11に送信する。すなわち、JWPF30-11は、必要な無線センシングデータをDH50から取得する。この場合、JWPF30-11は、UE10及び/又はgNB20との共同作業である無線センシング情報収集を行わない。
 一方、DH50への問い合わせの結果、必要な無線センシングデータがNW内で利用可能でない場合には、ステップS205において、JWPF30-11は、必要な無線センシングデータを生成するための無線センシング情報を収集する共同作業参加UE10及び/又はgNB20の選択をJWPTOF30-12に依頼又は要求する。この依頼又は要求の際に、JWPF30-11は、共同作業内容(本実施の形態では無線センシング情報収集)と、共同作業を終了した際の報酬総額と、をJWPTOF30-12に通知する。
 ステップS206において、JWPTOF30-12は、無線センシング情報を収集する共同作業参加UE10及び/又はgNB20を選択する。ステップS206については、図4A及び図4Bを参照して以下で詳細に説明する。
 ステップS207において、JWPTOF30-12は、選択した共同作業参加UE10及び/又はgNB20をJWPF30-11に通知する。
 (共同作業参加UE及び/又はgNBの選択)
 上述したように、ステップS206において、JWPTOF30-12は、共同作業参加UE10及び/又はgNB20を選択する。以下では、共同作業参加UE10を選択する場合と共同作業参加gNB20を選択する場合とを分けて説明する。
 [共同作業参加UEの選択]
 共同作業参加UE10を選択する場合を示す図4Aを参照すると、ステップS2061において、JWPTOF30-12は、外部条件及び取得した上述のUE10の能力に基づいて、共同作業内容に適合するUE候補を選定する。例えば、外部条件は、UE10が共同作業対象地域に在圏しているかどうか、及び、UE10が作業を実行できる動作モードであるかどうか(すなわち、省電力モードでないかどうか)を少なくとも含んでよい。例えば、JWPTOF30-12は、無線センシングデータのスコープとUE10の位置情報とを照合することによって、UE10が共同作業対象地域に在圏しているかどうかを判断してよい。また、例えば、JWPTOF30-12は、AMF30-1のサービスの購読を事前に要求しておくことによって、UE10が省電力モードでないかどうかを判断してよい。JWPTOF30-12は、少なくとも、UE10が共同作業対象地域に在圏しており、かつ、UE10が作業を実行できる動作モードである場合、当該UE10を、共同作業内容に適合するUE候補として選定してよい。
 次いで、ステップS2062において、JWPTOF30-12は、例えばUDRに格納されている参加意思情報を取得することによって、ステップS2061において選定されたUE候補の各々の共同作業への参加意思を確認する。
 次いで、ステップS2063において、JWPTOF30-12は、ステップS2062において共同作業への参加意思があると確認されたUE候補を、共同作業参加UEとして選択する。その後、処理は図3のステップS207へ進む。
 なお、共同作業対象地域に制限がない場合には、ステップS2061において、JWPTOF30-12は、UE10が共同作業対象地域に在圏しているかどうかを判断しなくてもよい。また、ステップS2061において、JWPTOF30-12は、状況に応じて、UE10の動作モードにかかわらず、全てのUE10をUE候補として選定してもよい。また、ステップS2061及びステップS2062の順番は逆であってもよい。
 [共同作業参加gNBの選択]
 共同作業参加gNB20を選択する場合を示す図4Bを参照すると、ステップS2065において、JWPTOF30-12は、外部条件及び取得した共同作業に関するgNB20の能力(基地局能力)に基づいて、共同作業内容に適合するgNB候補を選定する。例えば、外部条件は、gNB20が共同作業対象地域をカバーしているかどうかを少なくとも含んでよい。例えば、JWPTOF30-12は、無線センシングデータのスコープとgNB20のセルの位置情報とを照合することによって、gNB20が共同作業対象地域をカバーしているかどうかを判断してよい。JWPTOF30-12は、少なくとも、gNB20が共同作業対象地域をカバーしている場合、当該gNB20を、共同作業内容に適合するgNB候補として選定してよい。なお、共同作業に関するgNB20の能力は、共同作業に関するUE20の能力の同様であってよく、UE20と同様にNWに通知されてよい。
 次いで、ステップS2066において、JWPTOF30-12は、ステップS2065において選定されたgNB候補を、共同作業参加gNBとして選択する。その後、処理は図3のステップS207へ進む。
 なお、共同作業対象地域に制限がない場合には、ステップS2065において、JWPTOF30-12は、gNB20が共同作業対象地域をカバーしているかどうかを判断しなくてもよい。
 (無線センシング情報収集及び集約と無線センシングデータ生成)
 図5は、本開示の一実施の形態に係る、無線センシング情報収集及び集約と無線センシングデータ生成との例を示す図である。図5に示す処理は、図3のステップS207において共同作業参加UE10及び/又はgNB20がJWPF30-11に通知された後に実行される。
 ステップS301において、JWPF30-11は、選択された共同作業参加UE10及び/又はgNB20にセンシング要求を別個に送信する。この例では、JWPTOF30-12によって選択された共同作業参加UE10及びgNB20の数は、それぞれ1つである。JWPTOF30-12によって選択される共同作業参加UE10及びgNB20の数は、1つに限定されるものではないことは言うまでもない。
 ステップS301において送信されるセンシング要求は、例えば、対象物、無線センシング手法、役割(すなわち、送信者、受信者又は中間集約点)、データ集約手法(Null、中間集約、最終集約等)、報告条件(例えば、即時、周期、指定期間等)、報告場所(例えば、当該センシング要求を受信したデバイスが無線センシング情報を次に送信(報告)する送信先を識別する情報)等を含んでよい。
 例えば、JWPF30-11は、データ集約手法を示すフィールドが、中間集約を示す値に設定されたセンシング要求を共同作業参加UE10及び/又はgNB20に送信してもよい。
 さらに、例えば、JWPF30-11は、役割を示すフィールドが、受信者を示す値に設定され、かつ、報告場所を示すフィールドが、gNB20を示す値に設定されたセンシング要求を共同作業参加UE10に送信してもよい。また、例えば、JWPF30-11は、役割を示すフィールドが、中間集約点を示す値に設定され、かつ、報告場所を示すフィールドが、JWPF30-11を示す値に設定されたセンシング要求を共同作業参加gNB20に送信してもよい。これらのセンシング要求がUE10及びgNB20に送信されたと仮定して、図5の説明を続ける。
 ステップS302において、役割が受信者に設定されているUE10は、無線センシング情報を抽出する。
 UE10に対して報告場所がgNB20に設定されているので、ステップS303において、UE10は、センシング要求の中の報告条件に従って、抽出した無線センシング情報をgNB20に送信する。
 gNB20に対して役割が中間集約点に設定されているので、ステップS304において、gNB20は、UE10によって送信された無線センシング情報を中間集約する。
 gNB20に対して報告場所がJWPF30-11に設定されているので、ステップS305において、gNB20は、中間集約した無線センシング情報をJWPF30-11に送信する。
 ステップS306において、JWPF30-11は、gNB20によって送信された無線センシング情報に基づいて、無線センシングデータを生成する。
 図6は、本開示の一実施の形態に係る、無線センシング情報収集及び集約と無線センシングデータ生成との別の例を示す図である。図6に示す処理も、図3のステップS207において共同作業参加UE10及び/又はgNB20がJWPF30-11に通知された後に実行される。
 ステップS401において、JWPF30-11は、選択された共同作業参加UE10及び/又はgNB20にセンシング要求を別個に送信する。この例では、JWPTOF30-12によって選択された共同作業参加UE10及びgNB20の数はそれぞれ、3つ(UE10X、UE10Y及びUE10Z)及び1つである。
 ステップS401において送信されるセンシング要求の内容は、上述した通りである。
 例えば、JWPF30-11は、役割を示すフィールドが、受信者を示す値に設定され、かつ、報告場所を示すフィールドが、UE10Zを示す値に設定されたセンシング要求を共同作業参加UE10X及び10Yに送信してもよい。また、例えば、JWPF30-11は、役割を示すフィールドが、中間集約点を示す値に設定され、データ集約手法を示すフィールドが、Nullを示す値に設定され、かつ、報告場所を示すフィールドが、gNB20を示す値に設定されたセンシング要求を共同作業参加UE10Zに送信してもよい。ここで、Nullは、単にデータをリレーする処理を表してよい。また、例えば、JWPF30-11は、役割を示すフィールドが、中間集約点を示す値に設定され、データ集約手法を示すフィールドが、中間集約を示す値に設定され、かつ、報告場所を示すフィールドが、JWPF30-11を示す値に設定されたセンシング要求を共同作業参加gNB20に送信してもよい。これらのセンシング要求が、UE10X、UE10Y、UE10Z及びgNB20に送信されたと仮定して、図6の説明を続ける。
 ステップS402において、役割が受信者に設定されているUE10Xは、無線センシング情報を抽出する。
 ステップS403において、役割が受信者に設定されているUE10Yは、無線センシング情報を抽出する。
 UE10Xに対して報告場所がUE10Zに設定されているので、ステップS404において、UE10Xは、センシング要求の中の報告条件に従って、抽出した無線センシング情報をUE10Zに送信する。
 UE10Zに対して、役割が中間集約点に設定されており、データ集約手法がNullに設定されているので、ステップS405において、UE10Zは、UE10Xから受信した無線センシング情報をgNB20にリレー(送信)する。
 UE10Yに対して報告場所がUE10Zに設定されているので、ステップS406において、UE10Yは、センシング要求の中の報告条件に従って、抽出した無線センシング情報をUE10Zに送信する。
 UE10Zに対して、役割が中間集約点に設定されており、データ集約手法がNullに設定されているので、ステップS407において、UE10Zは、UE10Yから受信した無線センシング情報をgNB20にリレー(送信)する。
 gNB20に対して、役割が中間集約点に設定されており、データ集約手法が中間集約に設定されているので、ステップS408において、gNB20は、UE10X及びUE10Yによって送信されてUE10Zによってリレーされた無線センシング情報を中間集約する。
 gNB20に対して報告場所がJWPF30-11に設定されているので、ステップS409において、gNB20は、中間集約した無線センシング情報をJWPF30-11に送信する。
 ステップS410において、JWPF30-11は、gNB20によって送信された無線センシング情報に基づいて、無線センシングデータを生成する。
 図5及び図6に示す処理によれば、ステップS301及びステップS401において送信されるセンシング要求において、役割、データ集約手法、報告条件、報告場所等を多様に設定することができるので、無線センシング情報の柔軟な報告(送信)、中間集約及び最終集約を実現することが可能である。
 また、図5及び図6に示す処理によれば、ステップS304及びステップS408において、gNB20は、UEによって送信された無線センシング情報を中間集約することができるので、すなわち、無線センシング情報を一時的に記憶することができるので、NW内トラフィック量を抑制することが可能である。なお、中間集約する役割を担うのは、gNB20に限定されず、UE10であってもよい。
 (無線センシングデータ生成後の後処理)
 図7は、本開示の一実施の形態に係る、無線センシングデータ生成後の後処理の例を示す図である。図7に示す処理は、図5のステップS306又は図6のステップS410において無線センシングデータが生成された後に実行される。
 ステップS501において、JWPF30-11は、図3のステップS202において無線センシングの必要性等を通知した起動者に、生成した無線センシングデータを送信することによって、当該起動者に回答する。
 ステップS502において、JWPF30-11は、(共同)作業が終了したことをJWPTOF30-12に通知する。
 ステップS503において、JWPF30-11は、他用途や将来用途の目的で、DH50に格納するために、(最終)集約した無線センシング情報及び/又は生成した無線センシングデータをDH50に送信する。
 作業が終了したことが通知されると、ステップS504において、JWPTOF30-12は、図3のステップS205においてJWPF30-11から通知された報酬総額に基づいて、例えばCHF(Charging Function)において、共同作業参加UE10の課金情報に報酬(例えば、報酬総額を共同作業参加UE10の数で除算した値)を記録する。このように、共同作業に参加したUE10に対して報酬を行うことで、共同作業への参加をUE10に促すことができる。
 以上、新規のNFであるJWPF30-11及びJWPTOF30-12を5GSのCNに導入する例について説明したが、本開示はこの例に限定されない。例えば、JWPF30-11の機能とJWPTOF30-12の機能とを統合したJWPF30-11又はJWPTOF30-12のみが5GSに導入されてもよい。あるいは、例えば、JWPF30-11及びJWPTOF30-12を5GSに導入する代わりに、既存の5GC NFが、JWPF30-11及びJWPTOF30-12の上述した機能を実現してもよい。例えば、LMF(Location Management Function)等が、JWPF30-11及びJWPTOF30-12の機能を実現してもよい。
 あるいは、RAN最適化シナリオの場合、gNB20が、JWPF30-11及びJWPTOF30-12の機能を実現してもよい。例えば、このようなgNB20は、内部論理に従って無線センシングデータ収集を起動し、共同作業参加UE10を選択し、選択したUE10とともに当該共同作業を遂行してもよい。
 (装置構成)
 次に、これまでに説明した処理及び動作を実行する端末10、基地局20、共同作業遂行装置30-11及び共同作業参加端末調整装置30-12の機能構成例を説明する。端末10、基地局20、共同作業遂行装置30-11及び共同作業参加端末調整装置30-12は、上記の例で説明した機能を含む。しかしながら、端末10、基地局20、共同作業遂行装置30-11及び共同作業参加端末調整装置30-12は、上記の例で説明した機能のうちの一部の機能のみを含んでもよい。
 <端末10>
 図8は、本開示の一実施の形態に係る端末10の機能構成の一例を示す図である。図8に示すように、端末10は、送信部610と、受信部620と、設定部630と、制御部640と、を備える。図8に示す機能構成は一例に過ぎない。本開示の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
 送信部610は、送信データから送信信号を生成し、生成した送信信号を無線送信する。例えば、送信部610は、無線センシング用無線、共同作業種別毎の参加意思、能力、無線センシングの必要性、スコープ、無線センシング情報等を送信する。受信部620は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、受信部620は、基地局20から送信されたNR-PSS、NR-SSS、NR-PBCH、DL/UL/SL制御信号等を受信する機能を有する。例えば、受信部620は、無線センシング用無線、センシング要求、無線センシング情報、無線センシングデータ等を受信する。また、例えば、送信部610は、D2D通信として、他の端末10に、PSCCH(Physical Sidelink Control Channel)、PSSCH(Physical Sidelink Shared Channel)、PSDCH(Physical Sidelink Discovery Channel)、PSBCH(Physical Sidelink Broadcast Channel)等を送信し、受信部620は、他の端末10から、PSCCH、PSSCH、PSDCH、PSBCH等を受信する。例えば、送信部610は、無線センシング用無線等を送信する。受信部620は、無線センシング用無線、無線センシング情報等を受信する。
 設定部630は、受信部620により基地局20から受信した各種の設定情報を記憶装置(記憶部)に格納し、必要に応じて記憶装置から設定情報を読み出す。また、設定部630は、予め設定される事前設定情報も記憶装置に格納する。設定情報及び事前設定情報の内容は、例えば、PDUセッションに係る情報、共同作業に係る情報等を含んでよい。なお、設定部630は、制御部640に含まれてもよい。
 制御部640は、端末10全体の制御を行う。制御部640は、例えば、PDUセッション等による通信、共同作業に係る通信等に係る制御を行う。制御部640における信号送信に関する機能部は、送信部610に含まれてもよく、制御部640における信号受信に関する機能部は、受信部620に含まれてもよい。
 <基地局20>
 図9は、本開示の一実施の形態に係る基地局20の機能構成の一例を示す図である。図9に示すように、基地局20は、送信部710と、受信部720と、設定部730と、制御部740と、を備える。図9に示す機能構成は一例に過ぎない。本開示の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
 送信部710は、端末10に送信する信号を生成し、生成した信号を無線送信する機能を含む。また、送信部710は、ネットワークノード間メッセージを他のネットワークノードに送信する。例えば、送信部710は、無線センシング用無線、無線センシング情報等を送信する。受信部720は、端末10から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、送信部710は、NRPSS、NR-SSS、NR-PBCH、DL/UL制御信号等を端末10に送信する機能を有する。また、受信部720は、ネットワークノード間メッセージを他のネットワークノードから受信する。例えば、受信部720は、無線センシング用無線、センシング要求、無線センシング情報等を受信する。
 設定部730は、予め設定される事前設定情報、及び、端末10に送信する各種の設定情報を記憶装置(記憶部)に格納し、必要に応じて記憶装置から事前設定情報及び設定情報を読み出す。事前設定情報及び設定情報の内容は、例えば、PDUセッションに係る情報、共同作業に係る情報等を含んでよい。なお、設定部730は、制御部740に含まれてもよい。
 制御部740は、基地局20全体の制御を行う。制御部740は、例えば、PDUセッション等による通信、共同作業に係る通信等に係る制御を行う。また、制御部740は、端末10から受信した無線パラメータに関する端末能力報告に基づいて、端末10との通信を制御する。制御部740における信号送信に関する機能部は、送信部710に含まれてもよく、制御部740における信号受信に関する機能部は、受信部720に含まれてもよい。
 <共同作業遂行装置30-11>
 図10は、本開示の一実施の形態に係る共同作業遂行装置30-11の機能構成の一例を示す図である。図10に示すように、共同作業遂行装置30-11は、送信部810と、受信部820と、設定部830と、制御部840と、を備える。図10に示す機能構成は一例に過ぎない。本開示の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
 送信部810は、送信する信号を生成し、生成した信号をネットワークに送信する機能を含む。例えば、送信部810は、データの問い合わせ、共同作業参加端末10及び/又は基地局20の選択の依頼又は要求(共同作業内容及び報酬総額を含む)、センシング要求、無線センシングデータ、無線センシング情報等を送信する。受信部820は、各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。例えば、受信部820は、無線センシングの必要性、スコープ、必要なデータ、共同作業参加端末10及び/又は基地局20の通知、無線センシング情報等を受信する。
 設定部830は、予め設定される事前設定情報及び設定情報を記憶装置(記憶部)に格納し、必要に応じて記憶装置から事前設定情報及び設定情報を読み出す。事前設定情報及び設定情報の内容は、例えば、共同作業に係る情報等を含んでよい。なお、設定部830は、制御部840に含まれてもよい。
 制御部840は、共同作業遂行装置30-11全体の制御を行う。特に、制御部840は、上記の例で説明したように、共同作業の遂行に係る制御を行う。制御部840における信号送信に関する機能部は、送信部810に含まれてもよく、制御部840における信号受信に関する機能部は、受信部820に含まれてもよい。
 制御部840は、端末及び基地局の中から選択された、無線センシングを行うセンシング装置(すなわち、無線センシング用無線を送信する装置及び/又は無線センシング用無線を受信する装置)と、センシング装置が検知し送信する無線センシング情報を一時的に記憶する中間集約装置と、に提供する、無線センシング及び/又は中間集約を遂行するための遂行情報を決定してもよい。送信部810は、センシング装置及び/又は中間集約装置に、遂行情報を送信してもよい。受信部820は、中間集約装置から、無線センシング情報を受信してもよい。受信部820は、起動者(すなわち、センシング情報を要求する端末、NF、またはAF)からセンシング要求を受け、送信部810は、起動者にセンシング応答を返してもよい。
 または、制御部840は、UE10及びgNB20の中から、無線センシングを行うセンシング装置(すなわち、無線センシング用無線を送信する装置及び/又は無線センシング用無線を受信する装置)と、センシング装置が検出し送信する無線センシング情報を一時的に記憶する中間集約装置と、を決定してもよい。受信部820は、制御部840が決定した中間集約装置から、センシング装置が検出した無線センシング情報を受信してもよい。
 なお、一例として、図5で説明したUE10が、センシング装置に相当し、gNB20が、中間集約装置に相当してもよい。また、一例として、図6で説明したUE10X及びUE10Yが、センシング装置に相当し、gNB20が、中間集約装置に相当してもよい。
 制御部840は、例えば、送信者及び/又は受信者を示す情報を含むセンシング要求を、UE10及び/又はgNB20に送信し、センシング装置に決定したことを、UE10及び/又はgNB20に通知してもよい。制御部840は、例えば、中間集約点を示す情報を含むセンシング要求を、UE10及び/又はgNB20に送信し、中間集約装置に決定したことを、UE10及び/又はgNB20に通知してもよい。
 制御部840は、中間集約装置に対し、無線センシング情報の共同作業遂行装置30-11への送信タイミングに関する情報を送信してもよい。例えば、制御部840は、送信タイミングに関する情報を、センシング要求の報告条件において、送信してもよい。
 送信タイミングに関する情報には、例えば、5GSのCNのトラフィック量が抑制される時間帯、周期、及び/又は期間等が含まれてもよい。トラフィック量が抑制される時間帯、周期、及び/又は期間等は、例えば、ディープラーニングといった人工知能(AI:Artificial Intelligence)によって、決定されてもよい。人工知能は、CN内のトラフィック量を学習し、トラフィック量が抑制される時間帯、周期、及び/又は期間等を決定してもよい。人工知能の機能は、制御部840が搭載してもよいし、CN内に配置されたNWDAF30-10等のNFに搭載されてもよい。制御部840によって決定された中間集約装置は、制御部840から送信された送信タイミングに関する情報に基づいて、一時的に記憶した無線センシング情報を、共同作業遂行装置30-11に送信してもよい。
 制御部840は、UE10及びgNB20の中から、センシング装置が検出し送信した無線センシング情報を受信し、中間集約装置に送信する中継装置を決定してもよい。制御部840は、例えば、NULLを含むセンシング要求を、UE10及び/又はgNB20に送信し、中継装置に決定したことを、UE10及び/又はgNB20に通知してもよい。制御部840によって中継装置と決定された中継装置は、センシング装置から送信される無線センシング情報を受信し、中間集約装置に送信してもよい。
 なお、一例として、図6で説明したUE10Zが、中継装置に相当してもよい。
 制御部840は、CN内に配置されるDH50に、目的の無線センシング情報が記憶されていない場合、センシング装置と中間集約装置とを決定してもよい。換言すれば、制御部840は、CN内に配置されるDH50に、目的の無線センシング情報が記憶されている場合、センシング装置と中間集約装置とを決定せず、DH50から、無線センシング情報を取得してもよい。
 (効果)
 以上の構成によって、CN内のトラフィック量が抑制される。例えば、中間集約装置が、センシング装置の無線センシング情報を一時的に記憶し、中間的な処理を施しデータ量を圧縮し、CN内のトラフィック量が少ないときに、共同作業遂行装置30-11に送信できるので、CN内トラフィック量が抑制される。
 また、制御部840が、センシング装置としてUE10を決定し、中間集約装置としてgNB20を決定した場合、UE10は、無線センシング情報を一時的に記憶しなくてよい。従って、UE10は、無線センシング情報の記憶に使用する記憶装置の記憶容量を低減できる。
 <共同作業参加端末調整装置30-12>
 図11は、本開示の一実施の形態に係る共同作業参加端末調整装置30-12の機能構成の一例を示す図である。図11に示すように、共同作業参加端末調整装置30-12は、送信部910と、受信部920と、設定部930と、制御部940と、を備える。図に示す機能構成は一例に過ぎない。本開示の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
 送信部910は、送信する信号を生成し、生成した信号をネットワークに送信する機能を含む。例えば、送信部910は、共同作業参加端末10及び/又は基地局20の通知等を送信する。受信部920は、各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。例えば、受信部920は、端末10及び/又は基地局20の能力の通知、共同作業参加端末10及び/又は基地局20の選択の依頼又は要求(共同作業内容及び報酬総額を含む)、共同作業の終了の通知等を受信する。
 設定部930は、予め設定される事前設定情報及び設定情報を記憶装置(記憶部)に格納し、必要に応じて記憶装置から事前設定情報及び設定情報を読み出す。事前設定情報及び設定情報の内容は、例えば、共同作業に係る情報等を含んでよい。なお、設定部930は、制御部940に含まれてもよい。
 制御部940は、共同作業参加端末調整装置30-12全体の制御を行う。特に、制御部940は、上記の例で説明したように、共同作業に参加する端末10及び/又は基地局20の選択に係る制御を行う。制御部940における信号送信に関する機能部は、送信部910に含まれてもよく、制御部940における信号受信に関する機能部は、受信部920に含まれてもよい。
 受信部920は、ネットワークノードが遂行する(共同)作業へのUE10の参加意思に関する情報と、作業に関する端末(UE)能力と、を取得してもよい。制御部940は、受信部920が取得した参加意思に関する情報及び端末能力に基づいて、作業に参加するUE10を選択してもよい。
 なお、ネットワークノードは、共同作業遂行装置30-11であってもよいし、共同作業参加端末調整装置30-12であってもよいし、別のNFであってもよい。また、作業に関する端末能力は、無線センシング手法、役割(送信者、受信者又は中間集約点)、データ集約手法(Null、中間集約、最終集約等)等に関する能力を含んでもよい。
 制御部940は、UE10が作業の対象地域に在圏しているかどうかと、UE10が作業を実行できる動作モードであるかどうかと、にさらに基づいて、作業に参加するUE10を選択してもよい。
 受信部920は、作業を終了した際の報酬総額を受信してもよい。制御部940は、受信した報酬総額に基づいて、作業に参加したUE10に報酬を行ってもよい。
 一例として、報酬は、ポイント付与、返金等であってもよい。また、作業に参加したUE10への報酬は、報酬総額を作業に参加したUE10の数で除算した値分のポイント付与、返金等であってもよい。
 本共同作業参加端末調整装置30-12は、作業を遂行するネットワークノードとは異なってもよい。
 一例として、作業を遂行するネットワークノードは、共同作業遂行装置30-11であってもよい。
 受信部920は、作業に関する基地局(gNB)能力を取得してもよい。制御部940は、受信部920が取得した基地局能力に基づいて、作業に参加するgNB20を選択してもよい。
 制御部940は、gNB20が作業の対象地域に在圏しているかどうかにさらに基づいて、作業に参加するgNB20を選択してもよい。
 (効果)
 以上の構成によって、UE10の共同作業への参加意思及び共同作業に関するUE10の能力を確認することができ、UE10の参加意思及び能力に基づいて、共同作業に参加するUE10を選択することができる。
 さらに、UE10の参加意思及び能力以外の外部条件にさらに基づいて、共同作業内容により適合するUE10を選択することができる。
 さらに、共同作業に参加したUE10に報酬を行うことで、共同作業への参加をUE10に促すことができる。
 さらに、全ての共同作業に共通する調整を行うことができるので、共同作業参加端末調整装置30-12を共同作業毎に実装する必要がない。
 さらに、共同作業に関するgNB20の能力を確認することができ、gNB20の能力に基づいて、共同作業に参加するgNB20を選択することができる。
 さらに、gNB20の能力以外の外部条件にさらに基づいて、共同作業内容により適合するgNB20を選択することができる。
 (ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施の形態における基地局、端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図12は、本開示の一実施の形態に係る端末、基地局、共同作業遂行装置、共同作業参加端末調整装置及び他のネットワークノードのハードウェア構成の一例を示す図である。上述の端末10、基地局20、共同作業遂行装置30-11、共同作業参加端末調整装置30-12及び他のネットワークノードは、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。端末10、基地局20、共同作業遂行装置30-11、共同作業参加端末調整装置30-12及び他のネットワークノードのハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 端末10、基地局20、共同作業遂行装置30-11、共同作業参加端末調整装置30-12及び他のネットワークノードにおける各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述の制御部640、制御部740、制御部840及び制御部940などは、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、端末10の制御部640、基地局20の制御部740、共同作業遂行装置30-11の制御部840又は共同作業参加端末調整装置30-12の制御部940は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送信部610、受信部620、送信部710、受信部720、送信部810、受信部820、送信部910及び受信部920などは、通信装置1004によって実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、端末10、基地局20、共同作業遂行装置30-11、共同作業参加端末調整装置30-12及び他のネットワークノードは、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 (情報の通知、シグナリング)
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
 (適用システム)
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、NR(New Radio)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
 (処理手順等)
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 (基地局の動作)
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
 (入出力の方向)
 情報等(※「情報、信号」の項目参照)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 (入出力された情報等の扱い)
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
 (判定方法)
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 (ソフトウェア)
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 (情報、信号)
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
 (「システム」、「ネットワーク」)
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 (パラメータ、チャネルの名称)
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 (基地局(無線基地局))
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)」、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 (端末)
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
 (基地局/移動局)
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局20が有する機能を端末10が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示における端末は、基地局で読み替えてもよい。この場合、上述の端末10が有する機能を基地局20が有する構成としてもよい。
 (用語の意味、解釈)
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 (参照信号)
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 (「に基づいて」の意味)
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 (「第1の」、「第2の」)
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 (手段)
 上記の各装置の構成における「部」を、「手段」、「回路」、「デバイス」等に置き換えてもよい。
 (オープン形式)
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 (TTI等の時間単位、RBなどの周波数単位、無線フレーム構成)無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 (態様のバリエーション等)
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
 本開示の一態様は、無線通信システムに有用である。
 10 UE(端末)
 20 NG-RAN(gNB,基地局)
 30-11 JWPF(共同作業遂行装置)
 30-12 JWPTOF(共同作業参加端末調整装置)
 610,710,810,910 送信部
 620,720,820,920 受信部
 630,730,830,930 設定部
 640,740,840,940 制御部

Claims (6)

  1.  端末及び基地局の中から選択された、無線センシングを行うセンシング装置と、前記センシング装置が検知し送信する無線センシング情報を一時的に記憶する中間集約装置と、に提供する、無線センシング及び/又は中間集約を遂行するための遂行情報を決定する制御部と、
     前記センシング装置及び/又は前記中間集約装置に、前記遂行情報を送信する送信部と、
     前記中間集約装置から、前記無線センシング情報を受信する受信部と、
     を有するネットワークノード。
  2.  前記受信部は、起動者からセンシング要求を受け、前記送信部は、前記起動者にセンシング応答を返す、
     請求項1に記載のネットワークノード。
  3.  前記制御部は、前記中間集約装置に対し、前記無線センシング情報の当該ネットワークノードへの送信タイミングに関する情報を送信する、
     請求項1又は2に記載のネットワークノード。
  4.  前記制御部は、前記端末及び前記基地局の中から、前記センシング装置が検知し送信した前記無線センシング情報を受信し、前記中間集約装置に送信する中継装置を決定する、
     請求項1から3のいずれか一項に記載のネットワークノード。
  5.  前記制御部は、コアネットワーク内に配置されるデータハブ及び/又はデータレイクに目的の無線センシング情報が記憶されていない場合、前記センシング装置と前記中間集約装置とを決定することを依頼または要求する、
     請求項1から4のいずれか一項に記載のネットワークノード。
  6.  ネットワークノードが、
     端末及び基地局の中から選択された、無線センシングを行うセンシング装置と、前記センシング装置が検知し送信する無線センシング情報を一時的に記憶する中間集約装置と、に提供する、無線センシング及び/又は中間集約を遂行するための遂行情報を決定し、
     前記センシング装置及び前記中間集約装置に、前記遂行情報を送信し、
     前記中間集約装置から、前記無線センシング情報を受信する、
     通信方法。
PCT/JP2021/036862 2021-10-05 2021-10-05 ネットワークノード及び通信方法 WO2023058125A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/036862 WO2023058125A1 (ja) 2021-10-05 2021-10-05 ネットワークノード及び通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/036862 WO2023058125A1 (ja) 2021-10-05 2021-10-05 ネットワークノード及び通信方法

Publications (1)

Publication Number Publication Date
WO2023058125A1 true WO2023058125A1 (ja) 2023-04-13

Family

ID=85804025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036862 WO2023058125A1 (ja) 2021-10-05 2021-10-05 ネットワークノード及び通信方法

Country Status (1)

Country Link
WO (1) WO2023058125A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017152774A (ja) * 2016-02-22 2017-08-31 株式会社国際電気通信基礎技術研究所 移動端末装置、それを備えた無線通信システム、コンピュータに実行させるためのプログラム、およびプログラムを記録したコンピュータ読み取り可能な記録媒体
JP2018137575A (ja) * 2017-02-21 2018-08-30 ソニー株式会社 制御装置及び方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017152774A (ja) * 2016-02-22 2017-08-31 株式会社国際電気通信基礎技術研究所 移動端末装置、それを備えた無線通信システム、コンピュータに実行させるためのプログラム、およびプログラムを記録したコンピュータ読み取り可能な記録媒体
JP2018137575A (ja) * 2017-02-21 2018-08-30 ソニー株式会社 制御装置及び方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"New SID on Study on Sensing based services", 3GPP TSG SA2 MEETING #146E (E-MEETING, August 2021 (2021-08-01)
"New SID: 5G Architecture enhancements for Harmonized Communication and Sensing service", 3GPP TSG-WG SA2 MEETING #146 E-MEETING, August 2021 (2021-08-01)

Similar Documents

Publication Publication Date Title
JP7325447B2 (ja) 端末及び通信方法
JP7245266B2 (ja) ネットワークノード、ネットワークシステム及び通知方法
JP7204403B2 (ja) ネットワークノード
EP3793302A1 (en) Communication device
US11902932B2 (en) User equipment
WO2020250395A1 (ja) 無線通信ノード及び無線通信方法
EP3905805A1 (en) User device
JP2020053719A (ja) ユーザ装置及びネットワークノード
WO2023058125A1 (ja) ネットワークノード及び通信方法
WO2023058130A1 (ja) ネットワークノード及び通信方法
WO2021166246A1 (ja) ネットワーク装置、端末、識別情報付与方法、及び測定データ送信方法
JP7325507B2 (ja) 端末、通信方法及び通信システム
CN114557037B (zh) 接入控制装置和用户面装置
JP7313423B2 (ja) 基地局、通信方法、及び無線通信システム
WO2023007611A1 (ja) ネットワークノード及び通信方法
WO2023007614A1 (ja) ネットワークノード及び通信方法
US20220232521A1 (en) Terminal
JP2023156536A (ja) 端末、無線通信方法、及び基地局
WO2023017589A1 (ja) 端末および通信方法
WO2023175969A1 (ja) ネットワーク装置及び無線基地局
WO2022234665A1 (ja) 端末、通信システム、および、制御方法
JP7431849B2 (ja) 基地局、通信システム及び測定方法
WO2024029091A1 (ja) 端末及び無線通信方法
WO2023013076A1 (ja) ネットワークノード及び通信方法
WO2023022150A1 (ja) 端末、無線通信システム及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21959867

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021959867

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021959867

Country of ref document: EP

Effective date: 20240506