WO2023057002A1 - Axiallager sowie axiallageranordnung umfassend zwei solche axiallager - Google Patents

Axiallager sowie axiallageranordnung umfassend zwei solche axiallager Download PDF

Info

Publication number
WO2023057002A1
WO2023057002A1 PCT/DE2022/100652 DE2022100652W WO2023057002A1 WO 2023057002 A1 WO2023057002 A1 WO 2023057002A1 DE 2022100652 W DE2022100652 W DE 2022100652W WO 2023057002 A1 WO2023057002 A1 WO 2023057002A1
Authority
WO
WIPO (PCT)
Prior art keywords
axial
axial bearing
flange
disk
bearing
Prior art date
Application number
PCT/DE2022/100652
Other languages
English (en)
French (fr)
Inventor
Sebastian Meyer
Wolfgang Fugel
Stefanie Schindler
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Publication of WO2023057002A1 publication Critical patent/WO2023057002A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/4605Details of interaction of cage and race, e.g. retention or centring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/54Cages for rollers or needles made from wire, strips, or sheet metal
    • F16C33/542Cages for rollers or needles made from wire, strips, or sheet metal made from sheet metal
    • F16C33/543Cages for rollers or needles made from wire, strips, or sheet metal made from sheet metal from a single part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/54Cages for rollers or needles made from wire, strips, or sheet metal
    • F16C33/542Cages for rollers or needles made from wire, strips, or sheet metal made from sheet metal
    • F16C33/543Cages for rollers or needles made from wire, strips, or sheet metal made from sheet metal from a single part
    • F16C33/545Cages for rollers or needles made from wire, strips, or sheet metal made from sheet metal from a single part rolled from a band
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/54Cages for rollers or needles made from wire, strips, or sheet metal
    • F16C33/542Cages for rollers or needles made from wire, strips, or sheet metal made from sheet metal
    • F16C33/543Cages for rollers or needles made from wire, strips, or sheet metal made from sheet metal from a single part
    • F16C33/546Cages for rollers or needles made from wire, strips, or sheet metal made from sheet metal from a single part with a M- or W-shaped cross section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/585Details of specific parts of races of raceways, e.g. ribs to guide the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/588Races of sheet metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/04Assembling rolling-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/30Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for axial load mainly
    • F16C19/305Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for axial load mainly consisting of rollers held in a cage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/40Shaping by deformation without removing material
    • F16C2220/42Shaping by deformation without removing material by working of thin-walled material such as sheet or tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/80Shaping by separating parts, e.g. by severing, cracking
    • F16C2220/84Shaping by separating parts, e.g. by severing, cracking by perforating; by punching; by stamping-out
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2226/00Joining parts; Fastening; Assembling or mounting parts
    • F16C2226/50Positive connections
    • F16C2226/52Positive connections with plastic deformation, e.g. caulking or staking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2226/00Joining parts; Fastening; Assembling or mounting parts
    • F16C2226/50Positive connections
    • F16C2226/70Positive connections with complementary interlocking parts
    • F16C2226/74Positive connections with complementary interlocking parts with snap-fit, e.g. by clips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts

Definitions

  • Axiallaqer and Axiallaqeranordnunq comprising two such Axiallaqer
  • the invention relates to an axial bearing comprising a cage with a plurality of rolling elements held therein, the cage having at least one rim extending radially inwards or outwards, at least one axial bearing disk having a radial flange which has a running surface for the rolling elements, and a flange adjoining the radial flange cylindrical axial flange surrounding the cage adjacent to the rim.
  • axial bearings are used to axially support two components that can be rotated relative to one another, on the one hand, and to support them axially, on the other hand.
  • An example is the mounting of a component in the shape of a ring disk on a surrounding structure.
  • a component can be a connector disk, for example, which is connected to a ring gear, which in turn is part of a transmission with a hydraulically actuated multi-disc brake on the ring gear, such a connector disk being supported axially on both sides by an axial bearing on the surrounding structure.
  • Such an arrangement is provided, for example, in an electric axle of a motor vehicle.
  • a running surface on which the rolling elements run is often provided via an axial bearing disk, which is arranged adjacent to the cage with the rolling elements, or is also snapped onto the cage in a captive manner.
  • the axial bearing disk is usually rectangular, especially when connected to the cage. It has a radial flange which has the running surface and a cylindrical axial flange which, depending on the design, surrounds the equipped cage on the outer circumference or on the inner circumference.
  • a circumferential snap edge or a plurality of radially projecting snap lugs are formed on this axial flange, for example, over which an undercut is formed, behind which the cage is snapped.
  • the cage regularly has a corresponding, radially projecting rim, which is angled at the end in known configurations and has a cylindrical axial flange section, via which the rim has its mechanical stability or ve strength is given.
  • this In order to ensure the self-support of the cage on the axial bearing washer, this must be made wider to ensure the necessary distance between the cage edge and the self-support, i.e. the cylindrical axial flange of the axial bearing washer is extended axially so that the snap lugs are sufficiently far from the axial Flange portion of the cage are positioned.
  • this leads to a correspondingly large axial overall height of the axial bearing, since the cylindrical axial flange of the axial bearing disk extends axially correspondingly far.
  • the rim has improved mechanical stability via the axial flange section in comparison to a simple radial flange-like rim. Nevertheless, the cage rim or the cage may bend during assembly, since the rim is pressed against the snap-in lugs during assembly and first has to be moved past them so that it snaps in behind them. This can lead to flange deflection, which is of course unintentional and cannot be detected, but can lead to premature failure of the bearing. It can also happen that the cage rim scratches extremely hard on the collar of the axial bearing washer, i.e. on the inwardly projecting snap lugs or the circumferential snap rim, whereby the mechanical stress can sometimes be so high that the rim is even cut or sheared off.
  • the invention is therefore based on the problem of specifying an axial bearing that is improved in comparison.
  • the rim is designed in two layers by means of a bend.
  • the cage rim in the axial bearing according to the invention has a double-layer design, which means that it is completely bent over by 180°.
  • This bending or double layering gives the rim a very high mechanical stability, with the bending at the rim circumference also forming a corresponding rounded slip bevel, which also enables easier slipping on the snap collar or the snap lugs of the axial bearing disk. This means that, on the one hand, the stability and mountability of the cage can be improved.
  • the cylindrical axial flange of the axial bearing washer can also be made shorter. It can be shortened by one or more millimeters, depending on the size of the axial bearing. This in turn means that the end of the axial flange no longer protrudes into the plane of the running surface, which could lead to possible collisions etc. in the event of a radial offset. Rather, it is possible to retract the axial end of the axial flange at least to the level of the running surface or beyond, so that any collision with the component to be supported or a second axial bearing washer, etc., is ruled out.
  • the axial length of the axial bearing can be shortened, while at the same time the mechanical stability of the cage and its ease of assembly is improved and, in particular, there is no bending or other impairment of the cage, which extends over moreover, this slip bevel itself is centered with respect to the snap collar or the snap lugs.
  • the axial bearing washer is angled, so it has an axial rim in addition to the radial rim, which also in this case serves to stiffen and guide the cage.
  • a circumferential, radially projecting snap collar or several circumferentially distributed, local and radially projecting snap lugs can be provided, as described, which can be formed on the axial bearing disk.
  • the self-retention can also be formed by beading the end of the axial flange after the axial bearing washer has been positioned with respect to the cage fitted with rolling elements.
  • the corresponding connection between the axial bearing washer and the cage is formed via this beading, which, like the snap-in edge or the snap-in lugs, forms an axial overlap over the double-layered edge area of the cage rim.
  • this flanging can only take place locally, that is to say that, seen around the circumference, flanging takes place locally at a number of positions.
  • a circumferential undercut can also be formed by beading the circumferential edge of the axial flange.
  • the invention also relates to an axial bearing arrangement, comprising a first axial bearing and a second axial bearing, each of the type described above, the two axial bearings being supported on opposite sides of a component in the form of an annular disk.
  • a component is supported axially on the surrounding structure via the two axial bearings.
  • the component is a connector disk that is connected to a ring gear, which in turn is part of a transmission with a hydraulically actuated multi-disc brake on the ring gear.
  • Such an arrangement is provided, for example, in an electric axle of a motor vehicle.
  • the annular disk-shaped component or the connector disk and in this case the switched ring gear can be mounted on the surrounding structure via the two axial bearings, on the one hand to ensure the rotatability of the operating element coupled to the component, i.e. here the ring gear, and on the other hand to To support axial forces from the operating element or the ring gear on the surrounding structure or to transmit it to it.
  • a component such as the connector disc
  • component surface does not act as a treadmill for the rolling elements of the two axial bearings, which is why an additional axial bearing disk is provided in this area, which defines the running surface.
  • An expedient development of the invention provides that a first axial bearing disk and a second axial bearing disk, which are connected to one another, are arranged on the component and rest on one side of the component, with the first axial bearing disk providing a running surface for the rolling elements of the first axial bearing and the second thrust bearing disk forms a running surface for the rolling elements of the second thrust bearing.
  • two further axial bearing washers are provided which are not fixed to the axial bearings themselves, and also not to a third-party object such as the surrounding structure, and which are also not on the component themselves are fixed in the appropriate mounting positions. Rather, the two thrust bearing washers are connected directly to one another and are consequently fixed to one another, with the result that they are held in position accordingly. This is because they are arranged on the two opposite sides of the component or the connector disk and extend at least in sections a little way around the annular disk-shaped component or the connector disk, in which area they are connected to one another. This results in an axial bearing disk construct that is fixed to the component in a self-retaining manner. It can no longer fall or change position significantly.
  • the two axial bearing disks expediently have a rectangular cross-section, each with an annular disk-shaped radial flange lying on the respective side and a cylindrical axial flange extending into a central opening of the annular disk-shaped component, the outer diameter of the axial flange of the first axial bearing disk being smaller than the inner diameter of the axial flange of the second axial bearing disk is, so that the two axial flanges overlap radially, and the two axial bearing disks are connected to one another in the area of the axial flanges.
  • the corresponding raceway over the radial flange can be made available, on the other hand, the corresponding connection structure can be realized via the two axial flanges.
  • the axial flanges also act as centering collars and serve to center the disc.
  • the two axial bearing disks are particularly preferably connected to one another via a snap connection, with one or more radially outwardly projecting locking lugs preferably being provided on the axial flange of the first axial bearing disk, which engage in a locking receptacle provided in the area of the axial flange of the second axial bearing disk, preferably as a locking receptacle on the axial flange a depression or a chamfer is provided at the transition from the axial flange to the radial flange.
  • the panes can be fixed to one another in a simple manner via this snap connection with the latching or snapping lugs and the latching receptacle or the chamfer.
  • the outer diameter of the axial flange of the second axial bearing washer can be smaller than the inner diameter of the opening of the component, so that there is no press fit between the axial flange and the inner circumference of the component in this area.
  • the length of the axial flange which is adjacent to the inner circumference of the opening of the component is dimensioned such that it cannot collide with the radial flange of the other axial washer, so that both axial bearing washers do not exert axial forces on one another.
  • the component may be a connector disc connected to an annulus gear axially journaled via the connector disc.
  • this axial bearing arrangement can be part of an electrical axis according to the invention, which is also part of the invention.
  • Figure 1 shows a schematic representation of an axial bearing according to the invention in section according to a first embodiment
  • FIG. 2 shows a schematic representation of an axial bearing according to the invention in section according to a second embodiment
  • Figure 3 is a schematic representation of an assembled axial bearing assembly according to the invention.
  • FIG. 4 shows an enlarged partial view of the axial bearing arrangement from FIG.
  • FIG. 1 shows an axial bearing 1 according to the invention in a first embodiment.
  • the axial bearing 1 comprises a cage 2 with a plurality of pockets, in each of which a rolling element 3, here in the form of a roller, is accommodated.
  • the cage 2 has a radially extending rim 4 on the inner circumference, which is designed in two layers, which is realized by a bend. It has a first rim layer 5 which extends radially inwards from the cage body 6 . It goes over a bend 7 in a second rim layer 8, which runs parallel to the first rim layer 5 radially outwards again.
  • This double layer structure makes the cage rim 4 mechanically very stiff, but it is nevertheless capable of deflecting slightly if necessary during assembly in order to rust behind a snap or latching contour, which will be discussed further below.
  • a rounded snap or insertion bevel 9 is formed over the bend 7, via which it is possible to slide off a snap contour more easily.
  • the axial bearing 1 also includes an axial bearing disk 10 with a radial flange 11 which forms a raceway 12 for the rolling elements 3 . Radially on the inside, the radial flange 11 is followed by a cylindrical axial flange 13 which reaches through the cage 2 on the inside, that is to say surrounds it radially on the inside. As shown in FIG. 1, the length of the axial flange 13 is relatively short; in the example, the axial flange 13 does not extend into the rolling plane 14 of the rolling bodies 3, but is set back in relation to it. This shortening of the axial flange 13 is possible because, according to the invention, the rim 4 is very stiff due to the double layer.
  • the rim 4 would be bent at right angles, i.e. the rim section that forms the second rim layer 8 according to the invention would have extended axially to the right as a cylindrical axial flange.
  • the consequence of this would be that the axial flange 13 of the axial disk 10 would have had to be made longer in order to ensure that, if a snap contour is provided on the axial flange 13, for example, this would be spaced sufficiently far from the rim end.
  • the axial bearing disk 10 and thus the axial bearing 1 would therefore have been constructed significantly stronger when viewed axially, would therefore have been significantly wider than can now be realized according to the invention, which advantageously enables an axial shortening of the axial bearing.
  • the double layer or the bend 7 is already formed as part of the manufacture of the cage.
  • the cage is usually made from sheet metal by stamping and forming, during which manufacturing process the bend 7 can be formed at the same time.
  • FIG. 2 A further exemplary embodiment of an axial bearing 1 according to the invention is shown in FIG. 2, the same reference numbers being used for the same components.
  • a cage 2 with rolling bodies 3 is provided, which has a double-layered, bent rim 4 .
  • an axial bearing disk 10 is provided, which, however, is connected axially to the cage 2 in the example shown.
  • the free end of the axial flange 13 is bent radially outwards, resulting in a rim 15 which, seen axially, overlaps the cage rim 4 a little. This means that the cage 2 can no longer be removed from the axial bearing disk 10 since it is accommodated between the edge rim 15 and the radial flange 11 .
  • this edge rim 15 is formed by beading the end of the axial flange 13 . This can be done after assembling the equipped cage 2 with the axial bearing disk 10 .
  • a snap-in means 16 at the end on the axial flange 13, as shown by the dashed line.
  • This snap- Means 16 can be, for example, a circumferential snap collar, or several snap lugs distributed locally around the circumference, it being possible for the snap means to be formed during the manufacture of the cage.
  • the snap-in means 16 have an inclined outer surface which forms an insertion chamfer or snap-in chamfer.
  • the edge 4 runs with the rounded snap or insertion bevel 9 against the oblique snap or insertion bevel of the snap means 16. It springs in slightly until it gets behind the snap means 16, where it springs out again and engages behind the undercut. In this way, similar to the flanging at the edge to form the edge rim 15, a loss prevention device can also be realized via the snap-in means 16.
  • FIG. 3 shows an assembly situation of an axial bearing arrangement 17 according to the invention, for example in an electric axle for a motor vehicle.
  • the entire arrangement includes a ring gear 18 which meshes with an internal gear 19 .
  • the ring gear 18 is connected to a component 20 in the form of an annular disk, here in the form of a connector disk 21 , with the ring gear 18 being arranged on the outer edge of the connector disk 21 .
  • the connector disc 21 extends radially inward and is slightly angled.
  • the connector disk 21 Via the axial bearing arrangement 17 provided on the inner edge, the connector disk 21 is rotatably mounted axially on the one hand on the surrounding structure and on the other hand is also supported axially. This also makes it possible to support the ring gear 18 in rotation on the one hand and to support it axially on the other hand and to transmit axial forces acting on the ring gear 18 to the surrounding structure via the connector disk 21 .
  • the axial bearing arrangement 17 comprises a first axial bearing 22, which is arranged on the left-hand side of the connector disk 21 in the example shown, and a second axial bearing 23, which is arranged on the right-hand side of the connector disk 21.
  • the two axial bearings 22, 23 are constructed, for example, like one of the axial bearings 1 shown in FIGS.
  • Each axial bearing 22, 23 has a plurality of rolling elements 24, 25, which are each held or guided in a cage 26, 27.
  • Each axial bearing 22, 23 is axially separated from the respective surrounding structure by an outer axial bearing disk 28, 29. supports, these axial bearing discs 28, 29 each provide a running surface for the rolling bodies 24, 25, as already described with regard to FIGS. 1 and 2 and the axial bearing 1 shown there.
  • Each axial bearing 22 , 23 is also supported on the connector disk 21 via an axial bearing disk, with the first axial bearing 22 being supported on the connector disk 21 via a first axial bearing disk 30 and the second axial bearing 23 on a second axial bearing disk 31 .
  • the two axial bearing disks 30, 31 are positively connected to one another, that is to say captively fixed to one another and thus also to the connector disk 21, which is described in detail below with reference to FIG.
  • FIG. 4 shows a possibility of connecting the first axial bearing disk 30 to the second axial bearing disk 31 .
  • the two axial bearings 22, 23 with the rolling bodies 24, 25, which are in the form of rolls here, are shown in detail.
  • the rolling elements 24 roll on a running surface 32 of the first axial bearing disk 30
  • the rolling elements 25 roll on a running surface 33 of the second axial bearing disk 31 .
  • the first thrust bearing disk 30 is angled and has a radial flange 34 which bears against the left-hand side of the connector disk 21 and which has the hardened running surface 32 .
  • Radially on the inside, radial flange 34 is adjoined by an angled axial flange 35 which engages in a circular central opening 36 in connector disk 21 in the assembled position.
  • the second axial bearing disk 31 is also angled. It also has a radial flange 37 which rests on the right-hand side of the connector disk 21 and provides the running surface 33 for the rolling elements 25 . On the inner circumference of the radial flange 37 there is an axial flange 38 which also extends into the opening 36 but from the other side.
  • the two axial flanges 35 and 38 overlap each other radially, which means that there is a radial overlap.
  • the outer diameter of the axial flange of the second axial bearing disk 31 is smaller than the inner diameter of the opening 36, so that there is no interference fit in this area, i.e. the axial flange 38 does not rest on the inner circumference of the opening 36.
  • the outer diameter of the radial flange 35 is the first thrust bearing washer
  • FIG. 4 clearly shows that the axial flange 38 is dimensioned correspondingly short, so that it does not hit the radial flange 34 and no axial forces can be exerted from one axial bearing disk to the other axial bearing disk.
  • the two axial bearing disks 30, 31 are fixed directly to one another, resulting in a disk assembly that cannot be lost. At the same time, they are also fixed to the connector disk 21, which means that the axial bearing disk assembly is captively fixed to the connector disk 21 in the assembly position. Centering takes place via the two axial flanges 35, 38, which are ultimately also centner collars. In addition, the positive connection of the two axial bearing disks 30, 31 takes place in the area of the axial flanges 35, 38.
  • a snap connection 39 is provided for fixing the axial bearing washers 30,
  • a plurality of latching lugs 40 are formed on the radial flange 35, projecting radially outwards and can be designed as simple local bends.
  • the outer diameter of the locking lug edge is slightly larger than the inner diameter of the axial flange 38, so that there is basically an overlap.
  • a locking receptacle 41 is provided on the radial flange 38 , here in the form of a chamfer 42 which is provided at the transition from the axial flange 38 to the radial flange 37 .
  • This snap connection 39 ensures that the axial bearing disks 30 , 31 are securely fixed to one another, but also to the connector disk 21 .
  • rollers 24, 25 are shown as an example.
  • the radial flanges 34, 37 are of different lengths or end in different radial planes.
  • needles can also be provided as rolling bodies, and of course the length of the radial flanges can also be the same.
  • the arrangement of the axial flanges 35, 38 can also be reversed, so that the snapping takes place, so to speak, on the other side.
  • the two axial bearing disks 14, 15 with different thicknesses. This can be used to react to different load applications.
  • Thrust bearing washer first thrust bearing washer second thrust bearing washer tread

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

Axiallager (1) umfassend einen Käfig (2) mit mehreren darin gehalterten Wälzkörpern (3), wobei der Käfig wenigstens einen sich radial nach innen oder außen erstreckenden Bord (4) aufweist, sowie wenigstens eine Axiallagerscheibe (10) mit einem Radialflansch (11), der eine Lauffläche (12) für die Wälzkörper (3) aufweist, sowie einem an den Radialflansch anschließenden zylindrischen Axialflansch (13), der den Käfig benachbart zum Bord umgreift, wobei der Bord mittels einer Umbiegung (9) doppellagig ausgeführt ist.

Description

Axiallaqer sowie Axiallaqeranordnunq umfassend zwei solche Axiallaqer
Die Erfindung betrifft ein Axiallager umfassend einen Käfig mit mehreren darin gehalterten Wälzkörpern, wobei der Käfig wenigstens einen sich radial nach innen oder außen erstreckenden Bord aufweist, wenigstens eine Axiallagerscheibe mit einem Radialflansch, der eine Lauffläche für die Wälzkörper aufweist, sowie einem an den Radialflansch anschließenden zylindrischen Axialflansch, der den Käfig benachbart zum Bord umgreift.
Axiallager dienen bekanntlich dazu, zwei relativ zueinander verdrehbare Bauteile einerseits axial drehzulagern, und andererseits axial abzustützen. Ein Beispiel ist die Lagerung eines ringscheibenförmigen Bauteils an einer Umgebungskonstruktion. Ein solches Bauteil kann beispielsweise eine Verbinderscheibe sein, die mit einem Hohlrad verbunden ist, das wiederum Teil eines Getriebes mit hydraulisch betätigter Lamellenbremse am Hohlrad ist, wobei eine solche Verbinderscheibe beidseits axial über jeweils ein Axiallager an der Umgebungskonstruktion abgestützt ist. Eine solche Anordnung ist beispielsweise bei einer elektrischen Achse eines Kraftfahrzeugs vorgesehen.
Eine Lauffläche, auf der die Wälzkörper laufen, wird oft über eine Axiallagerscheibe bereitgestellt, die benachbart zum Käfig mit den Wälzkörpern angeordnet ist, oder auch verliergesichert mit dem Käfig verschnappt ist. Die Axiallagerscheibe ist zumeist, insbesondere im Falle einer Verbindung zum Käfig, rechtwinklig ausgeführt, sie weist einen Radialflansch auf, der die Lauffläche aufweist, sowie einen zylindrischen Axialflansch, der je nach Ausgestaltung den bestückten Käfig am Außenumfang oder am Innenumfang umgreift. An diesem Axialflansch sind beispielsweise ein umlaufender Schnapprand oder mehrere radial vorspringende Schnappnasen ausgebildet, worüber ein Hinterschnitt gebildet wird, hinter dem der Käfig verschnappt ist. Hierzu weist der Käfig regelmäßig einen entsprechenden, radial abstehenden Bord auf, der bei bekannten Ausgestaltungen endseitig abgewinkelt ist und einen zylindrischen axialen Flanschabschnitt aufweist, über den dem Bord seine mechanische Stabilität respekti- ve Festigkeit verliehen wird. Um die Selbsthalterung des Käfigs an der Axiallagerscheibe sicherzustellen, muss diese breiter ausgeführt sein, um den notwendigen Abstand zwischen dem Käfigbord und der Selbsthalterung sicherzustellen, das heißt, dass der zylindrische Axialflansch der Axiallagerscheibe axial gesehen verlängert ausgeführt ist, damit die Schnappnasen hinreichend weit vom axialen Flanschabschnitt des Käfigs positioniert sind. Dies wiederum führt aber zu einer entsprechend großen axialen Bauhöhe des Axiallagers, da sich eben der zylindrische Axialflansch der Axiallagerscheibe entsprechend weit axial erstreckt. Zwar weist der Bord über den axialen Flanschabschnitt eine verbesserte mechanische Stabilität im Vergleich zu einem einfachen radialflanschartigen Bord auf. Gleichwohl kann es aber im Rahmen der Montage zu einem Verbiegen des Käfigbords respektive des Käfigs kommen, da der Bord beim Montieren gegen die Schnappnasen gedrückt wird und erst an diesen vorbeibewegt werden muss, damit er dahinter einschnappt. Hierbei kann es zu einer Bordverbiegung kommen, die natürlich ungewollt ist und nicht detektiert werden kann, aber zu einem verfrühten Ausfall des Lagers führen kann. Auch kann es vorkommen, dass der Käfigbord extrem stark am Kragen der Axiallagerscheibe, also an den nach innen vorspringenden Schnappnasen oder dem um laufenden Schnapprand, kratzt, wobei die mechanische Belastung mitunter so hoch sein kann, dass hierbei der Bord sogar eingeschnitten oder abgeschert wird. Ein weiteres Problem mit dem relativ weit axial vorstehenden Axialflansch kann darin liegen, dass, wenn es zu einem größeren radialen Versatz der gelagerten Bauteile zueinander kommt, das eine Bauteil gegen diesen Axialflansch läuft, was natürlich ebenfalls nachteilig ist. Schließlich kann es, sofern an beiden Seiten derartige Axiallagerscheiben vorgesehen und mit dem Käfig verschnappt sind, bei einem entsprechenden radialen Versatz auch zu einer Kollision mit der Gegenlaufbahn respektive dem anderen Radialflansch kommen.
Der Erfindung liegt damit das Problem zugrunde, ein demgegenüber verbessertes Axiallager anzugeben.
Zur Lösung dieses Problems ist bei einem Axiallager der eingangs genannten Art erfindungsgemäß vorgesehen, dass der Bord mittels einer Umbiegung doppellagig ausgeführt ist. Anders als bei bisher bekannten Ausgestaltungen, bei denen der Bord quasi im Querschnitt rechtwinklig ist, ist bei dem erfindungsgemäßen Axiallager der Käfigbord doppellagig ausgeführt, das heißt, dass er vollständig um 180° umgebogen ist. Über diese Umbiegung respektive Doppellagigkeit wird dem Bord eine sehr hohe mechanische Stabilität verliehen, wobei des Weiteren durch die Umbiegung am Bordumfang eine entsprechende rundliche Schlupffase ausgebildet wird, die darüber hinaus ein erleichtertes Abgleiten an dem Schnappbund oder den Schnappnasen der Axiallagerscheibe ermöglicht. Das heißt, dass hierüber zum einen die Stabilität und Montierbarkeit des Käfigs verbessert werden kann. Zum anderen kann, nachdem der erfindungsgemäß umgebogene, also doppellagige Käfigbord axial deutlich kürzer ist als der um 90° abgewinkelte Käfigbord, auch der zylindrische Axialflansch der Axiallagerscheibe kürzer ausgeführt werden. Eine Verkürzung um einen oder auch mehr Millimeter ist möglich, abhängig von der Baugröße des Axiallagers. Dies führt wiederum dazu, dass das Ende des Axialflanschs nicht mehr quasi in die Laufflächenebene hineinsteht, wodurch es bei radialem Versatz zu etwaigen Kollisionen etc. kommen könnte. Vielmehr besteht so die Möglichkeit, das axiale Ende des Axialflanschs bis mindestens in die Ebene der Lauffläche zurückzuziehen, oder darüber hinaus, so dass jedwede Kollision mit dem zu lagernden Bauteil oder einer zweiten Axiallagerscheibe etc. ausgeschlossen ist. Insgesamt kann also die axiale Baulänge des Axiallagers verkürzt werden, wobei gleichzeitig auch die mechanische Stabilität des Käfigs und seine Montierbarkeit verbessert wird und es insbesondere, auch geometriebedingt durch die Ausbildung der Schlupffase, nicht zu einem Verbiegen oder einer sonstigen Beeinträchtigung des Käfigs, der sich über diese Schlupffase darüber hinaus auch selbst bezüglich des Schnappbundes oder der Schnappnasen zentriert, kommt.
Wie beschrieben besteht die Möglichkeit, das axiale Ende des Axialflanschs zurückzuziehen, den Axialflansch also kürzer auszugestalten. Er sollte sich bis maximal zur Wälzebene der Wälzkörper erstrecken, kann aber auch wie bereits beschrieben kürzer sein.
Mitunter ist es bei manchen Anwendungen nicht zwingend, die Axiallagerscheibe mit dem Käfig zu verschnappen. Dennoch ist die Axiallagerscheibe winklig ausgeführt, weist also neben dem Radialbord auch einen Axialbord auf, der auch in diesem Fall der Versteifung und der Käfigführung dient. Soll jedoch eine Selbsthalterung vorgesehen sein, so können wie beschrieben entweder ein um laufender, radial vorspringender Schnappbund oder mehrere um den Umfang verteilte, lokale und radial vorspringende Schnappnasen vorgesehen sein, die von Haus aus an der Axiallagerscheibe ausgeformt werden können. Alternativ dazu kann die Selbsthalterung auch über eine Umbördelung des Endes des Axialflanschs gebildet werden, nachdem die Axiallagerscheibe bezüglich des mit Wälzkörpern bestückten Käfigs positioniert wurde. Über diese Umbördelung, die, wie auch der Schnapprand oder die Schnappnasen, einen axialen Übergriff über den doppellagigen Randbereich des Käfigbords bildet, wird die entsprechende Verbindung aus Axiallagerscheibe und Käfig gebildet. Dabei kann diese Umbördelung nur lokal erfolgen, das heißt, dass um den Umfang gesehen an mehreren Positionen lokal umgebördelt wird. Alternativ kann auch ein umlaufender Hinterschnitt durch Umbördeln des umlaufenden Randes des Axialflanschs gebildet werden.
Neben dem Axiallager selbst betrifft die Erfindung ferner eine Axiallageranordnung, umfassend ein erstes Axiallager und ein zweites Axiallager jeweils der vorstehend beschriebenen Art, wobei die beiden Axiallager an gegenüberliegenden Seiten eines ringscheibenförmigen Bauteils abgestützt sind. Ein solches Bauteil wird über die beiden Axiallager axial an der Umgebungskonstruktion abgestützt. Beispielsweise handelt es sich bei dem Bauteil um eine Verbinderscheibe, die mit einem Hohlrad verbunden ist, das wiederum Teil eines Getriebes mit hydraulisch betätigter Lamellenbremse am Hohlrad ist. Eine solche Anordnung ist beispielsweise bei einer elektrischen Achse eines Kraftfahrzeugs vorgesehen. Über die beiden Axiallager kann das ringscheibenförmige Bauteil bzw. die Verbinderscheibe und in diesem Fall über sie das geschaltete Hohlrad an der Umgebungskonstruktion gelagert werden, um einerseits die Drehbarkeit des mit dem Bauteil gekoppelten Betriebselements, hier also des Hohlrads, zu gewährleisten, und um andererseits die Axialkräfte aus dem Betriebselement respektive dem Hohlrad an der Umgebungskonstruktion abzustützen respektive an diese zu übertragen.
Da es sich bei einem solchen Bauteil wie beispielsweise der Verbinderscheibe mitunter um ein Blechbauteil handelt, mithin also ein etwas weicheres Bauteil, das sich bei anliegender Axialkraft geringfügig verformen kann, eignet sich die beidseitige Bauteil- oberfläche nicht als Laufband für die Wälzkörper der beiden Axiallager, weshalb in diesem Bereich jeweils eine zusätzliche Axiallagerscheibe vorgesehen ist, die die Lauffläche definiert. Dabei sieht eine zweckmäßige Weiterbildung der Erfindung vor, dass am Bauteil eine erste Axiallagerscheibe und eine zweite Axiallagerscheibe, die miteinander verbunden sind, angeordnet sind, und an jeweils einer Seite des Bauteils anliegen, wobei die erste Axiallagerscheibe eine Lauffläche für die Wälzkörper des ersten Axiallagers und die zweite Axiallagerscheibe eine Lauffläche für die Wälzkörper des zweiten Axiallagers bildet.
Bei der erfindungsgemäßen Axiallageranordnung sind neben der Verwendung der erfindungsgemäßen, in ihrem axialen Bauraum deutlich verkürzten Axial lager zwei weitere Axiallagerscheiben vorgesehen, die nicht an den Axiallagern selbst fixiert sind, und auch nicht an einem Drittgegenstand wie beispielsweise der Umgebungskonstruktion, und die auch nicht am Bauteil selbst in entsprechenden Befestigungspositionen fixiert sind. Vielmehr sind die beiden Axiallagerscheiben direkt miteinander verbunden und folglich aneinander fixiert, was dazu führt, dass sie entsprechend in Position gehalten werden. Denn sie sind an den beiden gegenüberliegenden Seiten des Bauteils respektive der Verbinderscheibe angeordnet und erstrecken sich zumindest abschnittsweise ein Stück weit um das ringscheibenförmige Bauteil respektive die Verbinderscheibe herum, in welchem Bereich sie miteinander verbunden sind. Es ergibt sich demzufolge ein Axiallagerscheibenkonstrukt, das selbsthalternd am Bauteil festgelegt ist. Es kann nicht mehr herabfallen oder seine Position nennenswert ändern.
Dabei weisen zweckmäßigerweise die beiden Axiallagerscheiben einen rechtwinkligen Querschnitt auf, mit jeweils einem an der jeweiligen Seite anliegenden ringscheibenförmigen Radialflansch und einem sich in eine zentrale Öffnung des ringscheibenförmigen Bauteils erstreckenden zylindrischen Axialflansch, wobei der Außendurchmesser des Axialflanschs der ersten Axiallagerscheibe kleiner als der Innendurchmesser des Axialflanschs der zweiten Axiallagerscheibe ist, so dass sich die beiden Axialflansche radial überlappen, und wobei die beiden Axiallagerscheiben im Bereich der Axialflansche miteinander verbunden sind. Durch die im Querschnitt rechtwinklige Ausgestaltung der beiden Axiallagerscheiben mit dem Radialflansch und dem Axialflansch kann auf einfache Weise einerseits die entsprechende Laufbahn über den Radial- flansch zur Verfügung gestellt werden, andererseits kann über die beiden Axialflansche die entsprechende Verbindungsstruktur realisiert werden. Denn die beiden Axialflansche weisen unterschiedliche Durchmesser auf, so dass sie einander im Durchgriffsbereich überlappen, wo sie miteinander verbunden werden können. Die Axialflansche wirken auch als Zentrierbunde und dienen der Scheibenzentrierung.
Besonders bevorzugt sind die beiden Axiallagerscheiben über eine Schnappverbindung miteinander verbunden, wobei vorzugsweise am Axialflansch der ersten Axiallagerscheibe eine oder mehrere radial nach außen vorspringende Rastnasen vorgesehen sind, die in eine im Bereich des Axialflanschs der zweiten Axiallagerscheibe vorgesehene Rastaufnahmen eingreifen, wobei vorzugsweise als Rastaufnahme am Axialflansch eine Eintiefung oder am Übergang des Axialflanschs zum Radialflansch eine Fase vorgesehen ist. Über diese Schnappverbindung mit den Rast- oder Schnappnasen und der Rastaufnahme oder der Fase kann auf einfache Weise die Scheibenfixierung aneinander erfolgen.
Der Außendurchmesser des Axialflanschs der zweiten Axiallagerscheibe kann dabei kleiner als der Innendurchmesser der Öffnung des Bauteils sein, so dass es in diesem Bereich zu keiner Presspassung zwischen dem Axialflansch und dem Innenumfang des Bauteils kommt. Darüber hinaus ist der Axialflansch, der benachbart zum Innenumfang der Öffnung des Bauteils ist, in seiner Länge so bemessen, dass er nicht mit dem Radialflansch der anderen Axialscheibe kollidieren kann, so dass beide Axiallagerscheiben keine Axialkräfte aufeinander ausüben.
Wie beschrieben kann es sich bei dem Bauteil um eine Verbinderscheibe handeln, die mit einem Hohlrad verbunden ist, das über die Verbinderscheibe axial gelagert ist.
Erfindungsgemäß kann diese Axiallageranordnung Teil einer erfindungsgemäßen elektrischen Achse sein, die ebenfalls Teil der Erfindung ist.
Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen erläutert. Die Zeichnungen sind schematische Darstellungen und zeigen: Figur 1 eine Prinzipdarstellung eines erfindungsgemäßen Axiallagers im Schnitt gemäß einer ersten Ausführungsform,
Figur 2 eine Prinzipdarstellung eines erfindungsgemäßen Axiallagers im Schnitt gemäß einer zweiten Ausführungsform,
Figur 3 eine Prinzipdarstellung einer montierten erfindungsgemäßen Axiallageranordnung, und
Figur 4 eine vergrößerte Teilansicht der Axiallageranordnung aus Figur 3.
Figur 1 zeigt ein erfindungsgemäßes Axiallager 1 einer ersten Ausführungsform. Das Axiallager 1 umfasst einen Käfig 2, mit einer Mehrzahl an Taschen, in denen jeweils ein Wälzkörper 3, hier in Form einer Rolle, aufgenommen ist. Der Käfig 2 weist im gezeigten Beispiel am Innenumfang einen sich radial erstreckenden Bord 4 auf, der doppellagig ausgeführt ist, was über eine Umbiegung realisiert ist. Er weist eine erste Bordlage 5 auf, die sich vom Käfigkörper 6 radial nach innen erstreckt. Sie geht über eine Umbiegung 7 in eine zweite Bordlage 8 über, die parallel zur ersten Bordlage 5 wieder radial nach außen läuft. Über diese Doppellagigkeit wird der Käfigbord 4 mechanisch sehr steif, gleichwohl ist er in der Lage, bei Bedarf im Rahmen der Montage geringfügig einzufedern, um hinter einer Schnapp- oder Rastkontur zu verrsten, worauf nachfolgend noch eingegangen wird. Über die Umbiegung 7 bildet sich eine rundliche Schnapp- oder Einführfase 9, über die ein erleichtertes Abgleiten an einer Schnappkontur möglich ist.
Das Axiallager 1 umfasst des Weiteren eine Axiallagerscheibe 10, mit einem Radialflansch 11 , der eine Laufbahn 12 für die Wälzkörper 3 bildet. Radial innen schließt sich an den Radialflansch 11 ein zylindrischer Axialflansch 13 an, der den Käfig 2 innenseitig durchgreift, ihn also radial innen umgreift. Die Länge des Axialflanschs 13 ist, wie Figur 1 zeigt, relativ kurz, der Axialflansch 13 erstreckt sich im Beispiel nicht bis in die Wälzebene 14 der Wälzkörper 3, sondern ist ihr gegenüber zurückgezogen. Diese Verkürzung des Axialflanschs 13 ist möglich, da erfindungsgemäß der Bord 4 über die Doppellagigkeit sehr steif ist. Demgegenüber wäre zur Realisierung einer entsprechenden mechanischen Festigkeit bei bekannten Käfigen gemäß des Standes der Technik der Bord 4 rechtwinklig gebogen, das heißt, dass der Bordabschnitt, der erfindungsgemäß die zweite Bordlage 8 bildet, sich als zylindrischer Axialflansch axial nach rechts erstreckt hätte. Dies hätte zur Folge, dass der Axialflansch 13 der Axialscheibe 10 hätte länger ausgeführt werden müssen, um sicherzustellen, dass, wenn am Axialflansch 13 beispielsweise eine Schnappkontur vorgesehen ist, diese hinreichend weit von dem Bordende beabstandet wäre. Die Axiallagerscheibe 10 und damit das Axiallager 1 hätten also axial gesehen deutlich stärker aufgebaut, wären also deutlich breiter gewesen, als erfindungsgemäß nun realisierbar, was vorteilhaft eine axiale Verkürzung des Axiallagers ermöglicht.
Die Doppellagigkeit respektive die Umbiegung 7 wird im Rahmen der Käfigherstellung bereits mit ausgebildet. Der Käfig wird zumeist aus einem Metallblech durch Stanzen und Umformen hergestellt, während welches Herstellungsvorgangs die Umbiegung 7 sogleich mit ausgebildet werden kann.
Ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Axiallagers 1 zeigt Figur 2, wobei für gleiche Bauteile gleiche Bezugszeichen verwendet werden. Auch hier ist ein Käfig 2 mit Wälzkörpern 3 vorgesehen, der einen doppellagigen, umgebogenen Bord 4 aufweist. Auch hier ist eine Axiallagerscheibe 10 vorgesehen, die im gezeigten Beispiel jedoch axial mit dem Käfig 2 verbunden ist. Hierzu ist das freie Ende des Axi- alflanschs 13 radial nach außen umgebogen, so dass sich ein Randbord 15 ergibt, der den Käfigbord 4 axial gesehen ein Stück weit übergreift. Das heißt, dass der Käfig 2 nicht mehr von der Axiallagerscheibe 10 entfernt werden kann, da er zwischen dem Randbord 15 und dem Radialflansch 11 aufgenommen ist.
Dieser Randbord 15 ist im gezeigten Ausführungsbeispiel durch Umbördeln des Endes des Axialflanschs 13 gebildet. Dies kann nach Zusammensetzen des bestückten Käfigs 2 mit der Axiallagerscheibe 10 erfolgen.
Alternativ ist hier die Möglichkeit dargestellt, ein Schnappmittel 16 endseitig am Axialflansch 13 auszubilden, wie durch die gestrichelte Linie dargestellt. Dieses Schnapp- mittel 16 kann beispielsweise ein umlaufender, Schnappbund sein, oder aber mehrere lokal um den Umfang verteilte Schnappnasen, wobei das Schnappmittel bereits bei der Herstellung des Käfigs ausgebildet werden können. Die Schnappmittel 16 weisen eine schräge Außenfläche auf, die eine Einführfase oder Schnappfase ausbildet. Beim Fügen läuft der Bord 4 mit der gerundeten Schnapp- oder Einführfase 9 gegen die schräge Schnapp- oder Einführfase des Schnappmittels 16. Er federt geringfügig ein, bis er hinter das Schnappmittel 16 gelangt, wo er wieder ausfedert und den Hinterschnitt hintergreift. Auf diese Weise kann, ähnlich wie durch die randseitige Umbördelung zur Bildung des Randbords 15, auch über die Schnappmittel 16 eine Verliersicherung realisiert werden.
Figur 3 zeigt eine Montagesituation einer erfindungsgemäßen Axiallageranordnung 17 beispielsweise in einer elektrischen Achse für ein Kraftfahrzeug. Die gesamte Anordnung umfasst ein Hohlrad 18, das mit einem innenliegenden Zahnrad 19 kämmt. Das Hohlrad 18 ist mit einem ringscheibenförmigen Bauteil 20 hier in Form einer Verbinderscheibe 21 verbunden, wobei das Hohlrad 18 am äußeren Rand der Verbinderscheibe 21 angeordnet ist. Die Verbinderscheibe 21 zieht sich radial nach innen und ist leicht gewinkelt ausgeführt. Über die am innen Rand vorgesehene Axiallageranordnung 17 ist die Verbinderscheibe 21 axial an der Umgebungskonstruktion einerseits drehgelagert, andererseits auch axial abgestützt. Dies ermöglicht es, auch das Hohlrad 18 einerseits drehzulagern, andererseits auch axial abzustützen und auf das Hohlrad 18 wirkende Axialkräfte über die Verbinderscheibe 21 in die Umgebungskonstruktion zu übertragen.
Die Axiallageranordnung 17umfasst ein erstes Axiallager 22, das im gezeigten Beispiel an der linken Seite der Verbinderscheibe 21 angeordnet ist, sowie ein zweites Axiallager 23, das an der rechten Seite der Verbinderscheibe 21 angeordnet ist. Die beiden Axiallager 22, 23 sind z.B. wie eines der in den Figuren 1 und 2 gezeigten Axiallager 1 aufgebaut.
Jedes Axiallager 22, 23 weist eine Mehrzahl an Wälzkörpern 24, 25 auf, die jeweils in einem Käfig 26, 27 gehaltert bzw. geführt sind. Zur jeweiligen Umgebungskonstruktion hin ist jedes Axiallager 22, 23 über eine äußere Axiallagerscheibe 28, 29 axial abge- stützt, wobei diese Axiallagerscheiben 28, 29 jeweils eine Lauffläche für die Wälzkörper 24, 25 zur Verfügung stellen, wie bezüglich der Figuren 1 und 2 und den dort gezeigten Axiallager 1 bereits beschrieben. Zur Verbinderscheibe 21 ist jedes Axiallager 22, 23 ebenfalls über eine Axiallagerscheibe abgestützt, wobei das erste Axiallager 22 über eine erste Axiallagerscheibe 30 und das zweite Axiallager 23 über eine zweite Axiallagerscheibe 31 zur Verbinderscheibe 21 hin abgestützt ist. Die beiden Axiallagerscheiben 30, 31 sind formschlüssig miteinander verbunden, also unverlierbar aneinander und damit auch an der Verbinderscheibe 21 fixiert, was nachfolgend im Detail bezüglich der Figuren 4 beschrieben wird.
Figur 4 zeigt eine Möglichkeit der Verbindung der ersten Axiallagerscheibe 30 mit der zweiten Axiallagerscheibe 31 . Dargestellt sind ausschnittsweise die beiden Axiallager 22, 23 mit den Wälzkörpern 24, 25, die hier rollenförmig sind. Die Wälzkörper 24 wälzen auf einer Lauffläche 32 der ersten Axiallagerscheibe 30, die Wälzkörper 25 wälzen auf einer Lauffläche 33 der zweiten Axiallagerscheibe 31 . Die erste Axiallagerscheibe 30 ist gewinkelt ausgeführt und weist einen Radialflansch 34 auf, der an der linken Seite der Verbinderscheibe 21 anliegt und der die gehärtete Lauffläche 32 aufweist. Radial innen schließt sich an den Radialflansch 34 ein abgewinkelter Axialflansch 35 an, der in der Montagestellung in eine kreisrunde zentrale Öffnung 36 der Verbinderscheibe 21 eingreift.
Auch die zweite Axiallagerscheibe 31 ist gewinkelt ausgeführt. Auch sie weist einen an der rechten Seite der Verbinderscheibe 21 anliegenden Radialflansch 37 auf, der die Lauffläche 33 für die Wälzkörper 25 zur Verfügung stellt. An dem Innenumfang des Radialflanschs 37 schließt sich ein Axialflansch 38 an, der sich ebenfalls, jedoch von der anderen Seite her, in die Öffnung 36 erstreckt.
Wie Figur 4 zeigt, überlappen die beiden Axialflansche 35 und 38 einander radial, das heißt, dass ein radialer Übergriff gegeben ist. Dabei ist einerseits der Außendurchmesser des Axialflanschs der zweiten Axiallagerscheibe 31 kleiner als der Innendurchmesser der Öffnung 36, so dass in diesem Bereich kein Pressverband gegeben ist, das heißt, dass der Axialflansch 38 nicht am Innenumfang der Öffnung 36 anliegt. Ferner ist der Außendurchmesser des Radialflanschs 35 der ersten Axiallagerscheibe
30 etwas kleiner als der Innendurchmesser des Radialflanschs 38 der zweiten Axiallagerscheibe 31 , so dass auch hier kein Pressverband gegeben ist.
Des Weiteren zeigt Figur 4 deutlich, dass der Axialflansch 38 entsprechend kurz bemessen ist, so dass er nicht am Radialflansch 34 anstößt und keine Axialkräfte von der einen Axiallagerscheibe auf die andere Axiallagerscheibe ausgeübt werden können.
Die beiden Axiallagerscheiben 30, 31 sind direkt aneinander fixiert, so dass sich ein unverlierbarer Scheibenverbund ergibt. Gleichzeitig sind sie hierüber auch an der Verbinderscheibe 21 festgelegt, das heißt, dass der Axiallagerscheibenverbund in der Montagestellung unverlierbar an der Verbinderscheibe 21 fixiert ist. Die Zentrierung erfolgt über die beiden Axialflansche 35, 38, die letztlich auch Zentnerbunde sind. Darüber hinaus findet die formschlüssige Verbindung der beiden Axiallagerscheiben 30, 31 im Bereich der Axialflansche 35, 38 statt.
Vorgesehen ist eine Schnappverbindung 39 zur Fixierung der Axiallagerscheiben 30,
31 aneinander. Am Radialflansch 35 sind um den Umfang verteilt mehrere Rastnasen 40 radial nach außen vorspringend ausgebildet, die als einfache lokale Ausbiegungen ausgeführt sein können. Der Außendurchmesser der Rastnasenkante ist etwas größer als der Innendurchmesser des Axialflanschs 38, so dass grundsätzlich eine Überdeckung gegeben ist.
An dem Radialflansch 38 ist eine Rastaufnahme 41 vorgesehen, hier in Form einer Fase 42, die quasi am Übergang des Axialflanschs 38 zum Radialflansch 37 vorgesehen ist. Das heißt, dass dort eine Eingriffs- oder Hintergriffsgeometrie über die Rastaufnahme 41 realisiert ist, in die die Rastnasen 40 in der Montagestellung einschnappen. Durch diese Schnappverbindung 39 wird eine sichere Festlegung der Axiallagerscheiben 30, 31 aneinander, aber auch an der Verbinderscheibe 21 realisiert.
Im Rahmen der Montage ist es lediglich erforderlich, die beiden Axiallagerscheiben 30, 31 entgegengesetzt gegen die Verbinderscheibe 21 zu bewegen. Die Zentrierung erfolgt automatisch über die in die Öffnung 36 eingreifenden Axialflansche 35, 38. Zu Beginn der Zusammenschiebebewegung laufen die Rastnasen 40 auf den Innenumfang des Axialflanschs 38 auf und werden geringfügig eingefedert. Mit Erreichen der Montageendstellung schnappen die Rastnasen 40 wieder radial nach außen und in die Rastaufnahme 41 respektive die Fase 42 ein, so dass die Schnappverbindung gegeben ist.
Bei der hier gezeigten Erfindungsausgestaltung sind exemplarisch als Wälzkörper 24, 25 Rollen dargestellt. Ferner sind die Radialflansche 34, 37 unterschiedlich lang bzw. enden in unterschiedlichen Radialebenen. Alternativ können als Wälzkörper auch Nadeln vorgesehen sein, wie natürlich auch die Länge der Radialflansche gleich sein kann. Im Unterschied zu der Ausführungsform gemäß Figur 4 kann die Anordnung der Axialflansche 35, 38 auch umgekehrt sein, so dass die Verschnappung quasi an der anderen Seite erfolgt. Weiterhin besteht die Möglichkeit, bei Bedarf die beiden Axial- lagerscheiben 14, 15 unterschiedlich dick auszulegen. Hierüber kann auf unterschiedliche Lasteinbringungen reagiert werden.
Bezuqszeichenliste
Axiallager
Käfig
Wälzkörper
Bord
Bordlage
Käfigkörper
Umbiegung
Bordlage
Schnapp- oder Einführfase
Axiallagerscheibe
Radialflansch
Laufbahn
Axialflansch
Ebene
Randbord
Schnappmittel
Axiallageranordnung
Hohlrad
Zahnrad
Bauteil
Verbinderscheibe
Axiallager
Axiallager
Wälzkörper
Wälzkörper
Käfig
Käfig
Axiallagerscheibe
Axiallagerscheibe erste Axial lagerscheibe zweite Axiallagerscheibe Lauffläche
Lauffläche
Radialflansch
Axialflansch
Öffnung
Radialflansch
Axialflansch
Schnappverbindung
Rastnase
Rastaufnahme
Fase

Claims

Patentansprüche
1 . Axiallager umfassend einen Käfig (2) mit mehreren darin gehalterten Wälzkörpern (3), wobei der Käfig (2) wenigstens einen sich radial nach innen oder außen erstreckenden Bord (4) aufweist, sowie wenigstens eine Axiallagerscheibe (10) mit einem Radialflansch (11 ), der eine Lauffläche (12) für die Wälzkörper (3) aufweist, sowie einem an den Radialflansch (11 ) anschließenden zylindrischen Axialflansch (13), der den Käfig (2) benachbart zum Bord (4) umgreift, dadurch gekennzeichnet, dass der Bord (4) mittels einer Umbiegung (9) doppellagig ausgeführt ist.
2. Axiallager nach Anspruch 1 , dadurch gekennzeichnet, dass sich der Axialflansch (13) bis maximal bis zur Ebene (14) der Wälzkörper (3) erstreckt.
3. Axiallager nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass am Axialflansch (13) endseitig ein oder mehrere Hinterschnitte, der oder die den Bord (4) axial übergreifen, vorgesehen sind.
4. Axiallager nach Anspruch 3, dadurch gekennzeichnet, dass der oder die Hinterschnitte durch einen umlaufenden Schnappbund oder mehrere Schnappnasen (16) oder durch eine Umbördelung (15) des Endes des Axialflanschs (13) gebildet ist oder sind.
5. Axiallager nach Anspruch 4, dadurch gekennzeichnet, dass ein umlaufenderHin- terschnitt durch Umbördeln des umlaufenden Rands des Axialflanschs (13) gebildet ist, oder dass mehrere lokale Hinterschnitte durch lokales Umbördeln des Rands gebildet sind.
6. Axiallageranordnung umfassend ein erstes Axiallager (30) und ein zweites Axiallager (31 ) jeweils nach einem der vorangehenden Ansprüche, wobei die beiden Axiallager (22, 23) an gegenüberliegenden Seiten eines ringscheibenförmigen Bauteils (20) abgestützt sind.
7. Axiallageranordnung nach Anspruch 6, dadurch gekennzeichnet, dass am Bauteil (20) eine erste Axiallagerscheibe (30) und eine zweite Axiallagerscheibe (31 ), die miteinander verbunden sind, angeordnet sind, und die an jeweils einer Seite des Bauteils (4) anliegen, wobei die erste Axiallagerscheibe (30) eine Lauffläche für die Wälzkörper (24) des ersten Axiallagers (22) und die zweite Axiallagerscheibe (31 ) eine Lauffläche für die Wälzkörper (25) des zweiten Axiallagers (23) bildet.
8. Axiallageranordnung nach Anspruch 7, dadurch gekennzeichnet, dass die beiden Axiallagerscheiben (30, 31 ) einen rechtwinkligen Querschnitt aufweisen, mit jeweils einem an der jeweiligen Seite anliegenden ringscheibenförmigen Radialflansch (34) und einem sich in eine zentrale Öffnung (36) des ringscheibenförmigen Bauteils (20) erstreckenden zylindrischen Axialflansch (35), wobei der Außendurchmesser des Axialflanschs (35) der ersten Axiallagerscheibe (30) kleiner als der Innendurchmesser des Axialflanschs (38) der zweiten Axiallagerscheibe (31 ) ist, so dass sich die beiden Axialflansche (35, 38) radial überlappen, und wobei die beiden Axiallagerscheiben (30, 31 ) im Bereich der Axialflansche (35, 38) miteinander verbunden sind.
9. Axiallageranordnung nach Anspruch 8, dadurch gekennzeichnet, dass die beiden Axiallagerscheiben (30, 31 ) über eine Schnappverbindung (39) verbunden sind, wobei vorzugsweise am Axialflansch (35) der ersten Axiallagerscheibe (30) eine oder mehrere radial nach außen vorspringende Rastnasen (40) vorgesehen sind, die in eine im Bereich des Axialflanschs (38) der zweiten Axiallagescheibe (31 ) vorgesehene Rastaufnahme (41 ) eingreifen, wobei vorzugsweise als Rastaufnahme (41 ) am Axialflansch eine Eintiefung oder am Übergang des Axialflanschs zum Radialflansch eine Fase (42) vorgesehen ist.
10. Elektrische Antriebsachse, umfassend wenigstens eine Axiallageranordnung nach einem der vorangehenden Ansprüche
PCT/DE2022/100652 2021-10-05 2022-09-02 Axiallager sowie axiallageranordnung umfassend zwei solche axiallager WO2023057002A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021125803.0 2021-10-05
DE102021125803.0A DE102021125803A1 (de) 2021-10-05 2021-10-05 Axiallager sowie Axiallageranordnung umfassend zwei solche Axiallager

Publications (1)

Publication Number Publication Date
WO2023057002A1 true WO2023057002A1 (de) 2023-04-13

Family

ID=83280255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2022/100652 WO2023057002A1 (de) 2021-10-05 2022-09-02 Axiallager sowie axiallageranordnung umfassend zwei solche axiallager

Country Status (2)

Country Link
DE (1) DE102021125803A1 (de)
WO (1) WO2023057002A1 (de)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100058750A1 (en) * 2007-01-24 2010-03-11 Rino Fukami Thrust roller bearing and torque converter
DE102010048479A1 (de) * 2010-10-14 2012-04-19 Schaeffler Technologies Gmbh & Co. Kg Axiallageranordnung
US20160131202A1 (en) * 2014-11-06 2016-05-12 Schaeffler Technologies Gmbh & Co. Kg Latch assembly including diaphragm spring and thrust bearing

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10228017B2 (en) 2017-08-10 2019-03-12 Schaeffler Technologies AG & Co. KG Encapsulated carrier hub and thrust needle bearing assembly
DE102018130947A1 (de) 2018-12-05 2020-06-10 Schaeffler Technologies AG & Co. KG Axial-Wälzlager
US10683891B1 (en) 2018-12-07 2020-06-16 Schaeffler Technologies AG & Co. KG Stacked thrust bearing arrangement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100058750A1 (en) * 2007-01-24 2010-03-11 Rino Fukami Thrust roller bearing and torque converter
DE102010048479A1 (de) * 2010-10-14 2012-04-19 Schaeffler Technologies Gmbh & Co. Kg Axiallageranordnung
US20160131202A1 (en) * 2014-11-06 2016-05-12 Schaeffler Technologies Gmbh & Co. Kg Latch assembly including diaphragm spring and thrust bearing

Also Published As

Publication number Publication date
DE102021125803A1 (de) 2023-04-06

Similar Documents

Publication Publication Date Title
DE102011003704A1 (de) Labyrinthdichtung eines Radiallagers mit Radialflansch
WO2010149457A1 (de) Wellscheibe und wellenlageranordnung
EP1744069A1 (de) Axialwälzlageranordnung
WO2010049154A1 (de) Synchronnabe
DE112009002345T5 (de) Verarbeitung von Videodaten in Geräten mit eingeschränkten Ressourcen
DE102011079750A1 (de) Kombiniertes Radial-Axial-Rollenlager
DE102017126999A1 (de) Lageranordnung
EP2265834B1 (de) Käfig für ein wälzlager
DE102008062740A1 (de) Lageranordnung mit mindestens zwei sich in axialem Abstand befindlichen Lagern
EP2406515B1 (de) Geregelte axiale vorspanneinheit
WO2009143804A2 (de) Lagersatz für eine axial- und radial zu führende welle
WO2023057002A1 (de) Axiallager sowie axiallageranordnung umfassend zwei solche axiallager
DE19860688B4 (de) Wälzlagerkäfig
DE102016210696B3 (de) Axialwinkelscheibe
EP2325509B1 (de) Wälzlager mit aus blech hergestellten lagerringen
DE102021125805B4 (de) Axiallageranordnung
WO2019137573A1 (de) Axialnadellager sowie verfahren zur herstellung einer laufscheibe eines solchen axialnadellagers
DE19542876A1 (de) Wälzlager sowie Verfahren zu dessen Herstellung
EP2400172A1 (de) Wälzkörpereinheit mit geteiltem Aussenring und Transportring
WO2020007394A1 (de) Lageranordnung sowie darin vorgesehenes halteringelement
DE102021123373B4 (de) Axialwälzlagereinheit mit zwischen kreisringförmigen Axiallagerscheiben angeordneten Wälzkörpern als in sich selbst haltende Baueinheit
DE102009059844A1 (de) Radnabe mit getriebeseitigem Schraubenanschlag
WO2023036369A1 (de) Axialwälzlagereinheit mit zwischen kreisringförmigen axiallagerscheiben angeordneten wälzkörpern und einem funktionsintigriertem lagerkäfig
DE102021133204A1 (de) Getrieberadanordnung sowie Verfahren zur Fertigung der Getrieberadanordnung
DE102023102109A1 (de) Axialwälzlager

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22768626

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 22768626

Country of ref document: EP

Kind code of ref document: A1