WO2023056915A1 - Polynucleotides encoding interleukin-12 (il-12) and related composition and methods thereof - Google Patents

Polynucleotides encoding interleukin-12 (il-12) and related composition and methods thereof Download PDF

Info

Publication number
WO2023056915A1
WO2023056915A1 PCT/CN2022/123722 CN2022123722W WO2023056915A1 WO 2023056915 A1 WO2023056915 A1 WO 2023056915A1 CN 2022123722 W CN2022123722 W CN 2022123722W WO 2023056915 A1 WO2023056915 A1 WO 2023056915A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
nucleic acid
sequence
polypeptide
fusion protein
Prior art date
Application number
PCT/CN2022/123722
Other languages
French (fr)
Inventor
Xu Xu
Bo YING
Zhaoxiang REN
Xia ZHONG
Yuhang JIANG
Huayuan YAN
Original Assignee
Suzhou Abogen Biosciences Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Abogen Biosciences Co., Ltd. filed Critical Suzhou Abogen Biosciences Co., Ltd.
Priority to CN202280006934.9A priority Critical patent/CN116829578A/en
Publication of WO2023056915A1 publication Critical patent/WO2023056915A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/54Interleukins [IL]
    • C07K14/5434IL-12
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/54Interleukins [IL]
    • C07K14/5443IL-15
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present disclosure generally relates to nucleic acid molecules encoding interleukin-12 (IL-12) , or polypeptides comprising IL-12 or functional fragment of IL-12.
  • the present disclosure also relates to nucleic acid molecules encoding interleukin-15 (IL-15) , or polypeptides comprising IL-15 or functional fragment of IL-12.
  • the present disclosure also relate to compositions, including lipid nanoparticles (LNPs) , comprising the nucleic acid molecules, and related therapeutic methods and uses for the management or treatment of cancer in human.
  • LNPs lipid nanoparticles
  • Interleukin-12 is a pro-inflammatory cytokine naturally produced by many different immune cells in response to antigenic stimulation (e.g., dendritic cells, macrophages, neutrophils, and human B-lymphoblastoid cells (NC-37) ) .
  • IL-12 plays an important role in innate and adaptive immunity, and has become the focus of various studies in the field of oncology. While IL-12 has been recognized as a possible anti-cancer therapeutic agent, early clinical studies did not yield satisfactory results, due to various factors such as toxicity and poor efficacy. Hence, there is a need for improved therapeutic methods and compositions for using IL-12 in the treatment of cancer.
  • nucleic acid molecules encoding IL-12.
  • IL-12 interleukin-12
  • IL-12B interleukin-12 ⁇ subunit
  • IL-12A interleukin-12 ⁇ subunit
  • the IL-12A polypeptide is hIL-12A and the IL-12B polypeptide is hIL-12B, or the IL-12A polypeptide is mIL-12A and the IL-12B polypeptide is mIL-12B.
  • the nucleic acid encoding an IL-12 containing fusion protein, wherein the nucleic acid comprises a coding region comprising one or more sequence selected from SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, and SEQ ID NO: 29; SEQ ID NO: 77, SEQ ID NO: 78, SEQ ID NO: 79, SEQ ID NO: 80, SEQ ID NO: 81, SEQ ID NO: 82, and SEQ ID NO: 83, or a transcribed RNA sequence thereof.
  • the coding region comprises a first sequence selected from SEQ ID NO: 77, SEQ ID NO: 78, and SEQ ID NO: 79, or a transcribed RNA sequence thereof, and a second sequence selected from SEQ ID NO: 80 and SEQ ID NO: 81, or a transcribed RNA sequence thereof.
  • the coding region comprises a first sequence of SEQ ID NO: 82 or a transcribed RNA sequence thereof, and a second sequence of SEQ ID NO: 83 or a transcribed RNA sequence thereof.
  • the coding region comprises one or more open reading frames (ORFs) , and wherein at least one ORF encodes the IL-12 containing fusion protein.
  • the nucleic acid comprises a coding region, wherein the coding region comprises one or more open reading frames (ORFs) , and wherein at least one ORF encodes the IL-12 containing fusion protein.
  • ORFs open reading frames
  • the one or more ORFs consist a coding sequence as set forth in Tables 1 and 3.
  • the one or more ORFs consist a coding sequence selected from SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, and SEQ ID NO: 29, or a transcribed RNA sequence thereof.
  • the one or more ORFs encodes a peptide or protein selected from SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 24 and SEQ ID NO: 28.
  • the nucleic acid further comprises a 5’ untranslated region (5’ -UTR) , wherein the 5’ -UTR comprises the sequence set forth in any one of SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, and SEQ ID NO: 37.
  • the nucleic acid further comprises a 3’ untranslated region (3’ -UTR) , wherein the 3’ -UTR comprises the sequence set forth in SEQ ID NO: 38 or SEQ ID NO: 39.
  • the 3’ -UTR further comprises a poly-A tail or a polyadenylation signal.
  • the nucleic acid comprises one or more functional nucleotide analogs that are selected from pseudouridine and 1-methyl-pseudouridine.
  • the functional nucleotide analogs is about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, or about 100%of the uridines of the nucleic acid.
  • about 100%of the uridines of the nucleic acid is pseudouridine.
  • the nucleic acid is DNA or mRNA. In some embodiments, the nucleic acid is DNA comprising the sequence selected from SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, and SEQ ID NO: 48. In some embodiments, the nucleic acid is mRNA comprising the sequence selected from SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, and SEQ ID NO: 49.
  • IL-15R ⁇ IL-15 receptor alpha subunit
  • the nucleic acid comprises a coding region comprising one or more sequence selected from SEQ ID NO: 33, SEQ ID NO: 13, SEQ ID NO: 86, SEQ ID NO: 15, SEQ ID NO: 89, SEQ ID NO: 72, and SEQ ID NO: 74, or a transcribed RNA sequence thereof.
  • the encoded fusion protein comprises the sequence selected from SEQ ID NO: 32, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 71, and SEQ ID NO: 73.
  • the coding region comprises one or more open reading frames (ORFs) , and wherein at least one ORF encodes the IL-15 containing fusion protein.
  • the nucleic acid comprises a coding region, wherein the coding region comprises one or more open reading frames (ORFs) , and wherein at least one ORF encodes the IL-15 containing fusion protein.
  • the one or more ORFs consist a coding sequence selected from SEQ ID NO: 33, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 72, and SEQ ID NO: 74, or a transcribed RNA sequence thereof.
  • the one or more ORFs encodes a peptide or protein selected from SEQ ID NO: 32, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 71, and SEQ ID NO: 73.
  • the nucleic acid further comprises a 5’ untranslated region (5’ -UTR) , wherein the 5’ -UTR comprises the sequence set forth in any one of SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, and SEQ ID NO: 37.
  • the nucleic acid further comprises a 3’ untranslated region (3’ -UTR) , wherein the 3’ -UTR comprises the sequence set forth in SEQ ID NO: 38 or SEQ ID NO: 39.
  • the 3’ -UTR further comprises a poly-A tail or a polyadenylation signal.
  • the nucleic acid further comprises one or more functional nucleotide analogs that are selected from pseudouridine and 1-methyl-pseudouridine.
  • the functional nucleotide analogs are about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, or about 100%of the uridines of the nucleic acid.
  • about 100%of the uridines of the nucleic acid is pseudouridine.
  • the nucleic acid is DNA or mRNA. In some embodiments, the nucleic acid is DNA comprising the sequence selected from SEQ ID NO: 52. In some embodiments, the nucleic acid is mRNA comprising the sequence of SEQ ID NO: 53.
  • the nucleic acid encoding an IL-15 containing fusion protein of the present disclosure further encodes an IL-12 polypeptide.
  • the IL-12 polypeptide is an IL-12 containing fusion protein comprising an interleukin-12 ⁇ subunit (IL-12B) polypeptide fused to an interleukin-12 ⁇ subunit (IL-12A) polypeptide.
  • the coding region comprises one or more open reading frames (ORFs) that encodes the IL-12 polypeptide.
  • the one or more ORFs encoding the IL-12 polypeptide consists a coding sequence selected from SEQ ID NO: 5, SEQ ID NO: 77, SEQ ID NO: 78 SEQ ID NO: 79, SEQ ID NO: 7, SEQ ID NO: 80, SEQ ID NO: 81, SEQ ID NO: 9, SEQ ID NO: 82, SEQ ID NO: 11, SEQ ID NO: 83, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, and SEQ ID NO: 29, or a transcribed RNA sequence thereof.
  • the IL-12 polypeptide comprises a sequence selected from SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 24 and SEQ ID NO: 28.
  • the nucleic acid comprises one or more functional nucleotide analogs that are selected from pseudouridine and 1-methyl-pseudouridine.
  • the functional nucleotide analogs are about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, or about 100%of the uridines of the nucleic acid.
  • about 100%of the uridines of the nucleic acid is pseudouridine.
  • provided herein are vectors comprising the nucleic acid of the present disclosure. In some embodiments, provided herein are vectors comprising the vectors of the present disclosure. In some embodiments, provided herein are cells comprising the nucleic acid of the present disclosure.
  • composition comprising (i) the nucleic acid encoding the IL-12 polypeptide according to the present disclosure and (ii) at least one first lipid.
  • the composition further comprises (iii) a nucleic acid encoding a IL-15 polypeptide of the present disclosure.
  • the first lipid is a compound according to Formula 01-I, 01-II, 02-I, 02-II, 03-I, 03-II-A, 03-II-B, 03-II-C, 03-II-D, 04-I, 04-III, 04-IV, and sub-formula thereof.
  • the first lipid is a compound listed in any one of Table 01-I, Table 02-I, Table 03-I, and Table 04-I.
  • the first lipid is a compound selected from the compounds listed in any one of Table 01-1, Table 02-1, Table 03-1, and Table 04-1. In some embodiments, the first lipid is a compound selected from C1 to C6. In some embodiments, the first lipid is C1.
  • the composition further comprises at least a second lipid selected from a neutral lipid, a steroid, a phospholipid and a polymer conjugated lipid.
  • the composition comprises:
  • the composition is formulated as lipid nanoparticles encapsulating the nucleic acid in a lipid shell.
  • the composition is a pharmaceutical composition further comprising a pharmaceutically acceptable carrier, diluent or excipient.
  • provided herein is a method for managing or treating cancer in a subject in need thereof, comprising administering to the subject a therapeutically effective amount of the nucleic acid encoding the IL-12 polypeptide according to the present disclosure or a pharmaceutical composition comprising thereof, wherein the cancer is selected from breast cancer, melanoma, and colon cancer.
  • the method further comprises administering to the subject a therapeutically effective amount of a composition comprising a nucleic acid encoding an antagonist of PD-1 or a therapeutically effective amount of a composition comprising an antagonist of PD-1.
  • nucleic acid encoding the antagonist of PD-1 is the same as the nucleic acid encoding the IL-12 containing fusion protein, wherein the nucleic acid comprises at least two ORFs, and wherein the first ORF encodes the IL-12 containing fusion protein and the second ORF encodes the antagonist of PD-1.
  • the antagonist of PD-1 is an anti-PD-1 antibody or antigen-binding fragment thereof that specifically binds to PD-1 and blocks binding of PD-1 to its natural ligands.
  • the anti-PD-1 antibody is nivolumab or pembrolizumab.
  • the method further comprises administering to the subject a therapeutically effective amount of a composition comprising a nucleic acid encoding an IL-15 containing fusion protein or a therapeutically effective amount of a composition comprising an IL-15 containing fusion protein.
  • the IL-15 containing fusion protein comprises human IL-15 or mouse IL-15.
  • the method comprises administering the therapeutically effective amount of the composition comprising the nucleic acid encoding the IL-15 containing fusion protein, wherein the nucleic acid encoding the IL-15 polypeptide is the same as the nucleic acid encoding the IL-12 containing fusion protein, and wherein the nucleic acid comprises at least two ORFs, and wherein the first ORF encodes the IL-12 containing fusion protein and the second ORF encodes the IL-15 containing fusion protein.
  • the method comprises administering the therapeutically effective amount of the composition comprising the nucleic acid encoding the IL-15 containing fusion protein, wherein the nucleic acid encoding the IL-15 containing fusion protein is different from the nucleic acid encoding the IL-12 containing fusion protein.
  • the IL-15 containing fusion protein comprises IL-15 receptor alpha subunit (IL-15R ⁇ ) fused to IL-15.
  • the IL-12 containing fusion protein comprises the amino acid sequence selected from SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 24 and SEQ ID NO: 28.
  • the nucleic acid encoding the IL-12 polypeptide comprises an ORF comprising the sequence selected from SEQ ID NOS: 5, SEQ ID NO: 77, SEQ ID NO: 78 SEQ ID NO: 79, SEQ ID NO: 7, SEQ ID NO: 80, SEQ ID NO: 81, SEQ ID NO: 9, SEQ ID NO: 82, SEQ ID NO: 11, SEQ ID NO: 83, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, and SEQ ID NO: 29, or a transcribed RNA sequence thereof.
  • the IL-15 containing fusion protein comprises the amino acid sequence selected from SEQ ID NO: 32, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 71, and SEQ ID NO: 73.
  • the nucleic acid encoding the IL-15 polypeptide comprises an ORF comprising the sequence selected from SEQ ID NO: 33, SEQ ID NO: 13, SEQ ID NO: 86, SEQ ID NO: 15, SEQ ID NO: 89, SEQ ID NO: 72, and SEQ ID NO: 74, or a transcribed RNA sequence thereof.
  • the subject is a human or a non-human mammal.
  • the cancer is relapsed or metastasis.
  • the subject has previously received treatment with an antagonist of PD-1, and wherein the cancer is either refectory or irresponsive to the treatment or relapsed from the treatment.
  • administration of the nucleic acid or pharmaceutical composition comprising the nucleic acid is via intratumoral administration.
  • the method comprises administering lipid nanoparticles encapsulating the nucleic acid to the subject, and wherein the lipid nanoparticles are endocytosed by the cells in the subject.
  • the nucleic acid is expressed by the cells in the subject.
  • the administering is via intratumoral, intraperitoneal, or subcutaneous route.
  • the tumor size is reduced by about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%or about 100%.
  • the number of tumor-infiltrating lymphocytes (TIL) in the subject is increased.
  • the TIL comprises CD8 + T cells and/or IFN ⁇ + T.
  • a ratio between the number of CD8 + T cells and the number Treg cells (CD8 + T/Treg) is increased in the tumor microenvironment in the subject.
  • PD-L1 expression on the tumor cells is increased in the subject.
  • FIG. 1 is a schematic illustration of an mRNA molecule encoding an IL-12 fusion protein according to the present disclosure.
  • the mRNA molecule comprises a 5’ -Cap, a 5’ -UTR, a coding region, a 3’ -UTR and a polyA tail.
  • the coding region can encode a fusion protein of an IL-12B polypeptide (including the IL-12B signal peptide) fused to an IL-12A polypeptide via a peptidic linker.
  • the IL-12A or IL-12B polypeptide can originate from human or mouse.
  • FIG. 2 shows ELISA results of expression of hIL-12 containing fusion protein in expi293F cells.
  • X-axis shows the mRNA constructs encoding different versions of the hIL-12 containing fusion proteins that were used to transfected the cells.
  • Y axis shows protein concentration in the cell culture supernatant (ng/ml) .
  • FIG. 3A shows ELISA results of expression of hIL-12 containing fusion protein in HS578T cells.
  • X-axis shows the mRNA constructs encoding different versions of the hIL-12 containing fusion proteins that were used to transfected the cells, and three negative control groups.
  • Y axis shows protein concentration in the cell culture supernatant (ng/ml) .
  • FIG. 3B shows ELISA results of expression of hIL-12 containing fusion protein in expi293F cells transfected by mRNA constructs encoding hIL-12 fusion protein version 1 (hIL-12 fusion v. 1) or its pseudouridine -modified version (hIL-12 fusion v. 1- ⁇ ) measured at different time points after transfection.
  • X-axis shows the time point of measurement.
  • Y axis shows protein concentration in the cell culture supernatant (ng/ml) .
  • FIG. 3C shows ELISA results of expression of hIL-12 containing fusion protein in HS578T cells transfected by mRNA constructs encoding hIL-12 fusion protein version 1 (hIL-12 fusion v. 1) or its pseudouridine -modified version (hIL-12 fusion v. 1- ⁇ ) measured at different time points after transfection.
  • X-axis shows the time point of measurement.
  • Y axis shows protein concentration in the cell culture supernatant (ng/ml) .
  • FIG. 4A shows measurement of IL-12 activity expressed by expi293T cells transfected with mRNA constructs encoding hIL-12 fusion version 1 (hIL-12 fusion v. 1) and its pseudouridine-modified version (hIL-12 fusion v. 1- ⁇ ) .
  • Recombinant hIL-12 protein was included as a positive control.
  • X-axis shows the Log [concentration of IL-12] ;
  • Y axis shows the IL-12 activity measured as the optical density (OD) value.
  • FIG. 4B shows measurement of IL-12 activity expressed by HS578T cells transfected with mRNA constructs encoding hIL-12 fusion version 1 (hIL-12 fusion v. 1) and its pseudouridine-modified version (hIL-12 fusion v. 1- ⁇ ) .
  • Recombinant hIL-12 protein was included as a positive control.
  • X-axis shows the Log [concentration of IL-12] ;
  • Y axis shows the IL-12 activity measured as the optical density (OD) value.
  • FIG. 5A shows ELISA results of expression of mIL-12 containing fusion protein in EMT-6 cells.
  • X-axis shows the mRNA constructs encoding mIL-12 fusion protein reference molecule (mIL-12 fusion ref. ) and mIL-12 fusion protein version 1 (mIL-12 fusion v. 1) that were used to transfected the cells.
  • Y axis shows protein concentration in the cell culture supernatant (ng/ml) .
  • FIG. 5B shows measurement of IL-12 activity expressed by EMT-6 cells transfected with mRNA constructs encoding mIL-12 fusion protein reference molecule (mIL-12 fusion ref. ) and mIL-12 fusion protein version 1 (mIL-12 fusion v. 1) .
  • Recombinant mIL-12 protein (Invogen-Mouse IL-12) was included as a positive control.
  • X-axis shows the Log [concentration of IL-12] ;
  • Y axis shows the IL-12 activity measured as the optical density (OD) value.
  • FIG. 6A shows ELISA results of expression of mIL-12 containing fusion protein in 4T1 cells.
  • X-axis shows the mRNA constructs encoding mIL-12 fusion protein reference molecule (mIL-12 fusion ref. ) and mIL-12 fusion protein version 1 (mIL-12 fusion v. 1) that were used to transfected the cells.
  • Y axis shows protein concentration in the cell culture supernatant (ng/ml) .
  • FIG. 6B shows measurement of IL-12 activity expressed by 4T1 cells transfected with mRNA constructs encoding mIL-12 fusion protein reference molecule (mIL-12 fusion ref. ) and mIL-12 fusion protein version 1 (mIL-12 fusion v. 1) .
  • Recombinant mIL-12 protein (Invogen-Mouse IL-12) was included as a positive control.
  • X-axis shows the Log [concentration of IL-12] ;
  • Y axis shows the IL-12 activity measured as the optical density (OD) value.
  • FIG. 7A shows ELISA results of expression of mIL-12 containing fusion protein in HEK293 cells.
  • X-axis shows the mRNA constructs encoding mIL-12 fusion protein reference molecule (mIL-12 fusion ref. ) and mIL-12 fusion protein version 1 (mIL-12 fusion v. 1) that were used to transfected the cells.
  • Y axis shows protein concentration in the cell culture supernatant (ng/ml) .
  • FIG. 7B shows measurement of IL-12 activity expressed by HEK293 cells transfected with mRNA constructs encoding mIL-12 fusion protein reference molecule (mIL-12 fusion ref. ) and mIL-12 fusion protein version 1 (mIL-12 fusion v. 1) .
  • Recombinant mIL-12 protein (Invivogen-Mouse IL-12) was included as a positive control.
  • X-axis shows the Log [concentration of IL-12] ;
  • Y axis shows the IL-12 activity measured as the optical density (OD) value.
  • FIG. 8 shows tumor volumes in breast cancer model mice treated with LNP composition containing mRNA encoding mIL-12 containing polypeptide (mIL-12 fusion v. 1- ⁇ ) at different dosages (G3 to G6) .
  • Mice receiving PBS (G1) or LNP composition containing mRNA with no starting codon (G2) were included as negative control.
  • Mice receiving recombinant mIL-12 polypeptide (G7) were included as the positive control.
  • FIG. 9 shows tumor volumes in breast cancer model mice treated with LNP composition containing mRNA encoding mIL-12 containing polypeptide (mIL-12 fusion v. 1- ⁇ ) at different dosages (G8 to G11) .
  • Mice receiving PBS (G1) or LNP composition containing mRNA with no starting codon (G2) were included as negative control.
  • Mice receiving recombinant mIL-12 polypeptide (G7) were included as the positive control.
  • FIG. 10 shows tumor volumes in breast cancer model mice treated with LNP composition containing mRNA encoding mIL-12 containing polypeptide (mIL-12 fusion v. 1- ⁇ ) or LNP composition containing mRNA encoding mIL-12 containing polypeptide reference molecule (mIL-12 fusion ref- ⁇ ) .
  • Mice receiving PBS (G1) were included as negative control.
  • FIGS. 11A to 11L show tumor volumes in individual mice in the treatment groups (G1 to G12) as shown in FIGS. 8 to 10.
  • FIG. 12 shows body weight of breast cancer model mice treated with LNP composition containing mRNA encoding mIL-12 containing polypeptide (mIL-12 fusion v. 1- ⁇ ) at different dosages (G3 to G6) .
  • Mice receiving PBS (G1) or LNP composition containing mRNA with no starting codon (G2) were included as negative control.
  • Mice receiving recombinant mIL-12 polypeptide (G7) were included as the positive control.
  • FIG. 13 shows body weight of breast cancer model mice treated with LNP composition containing mRNA encoding mIL-12 containing polypeptide (mIL-12 fusion v. 1- ⁇ ) at different dosages (G8 to G11) .
  • Mice receiving PBS (G1) or LNP composition containing mRNA with no starting codon (G2) were included as negative control.
  • Mice receiving recombinant mIL-12 polypeptide (G7) were included as the positive control.
  • FIGS. 14A to 14H show tumor volumes in individual mice that showed complete response (CR) in the treatment groups (G3 to G9) and re-challenged with EMT6 inoculation. A group of healthy mice inoculated with the EMT6 cells were included as the control.
  • FIG. 15A shows the ratio of CD8+/Treg in tumor tissues in mice treated with LNP containing mRNA encoding IL-12 containing polypeptide alone (mIL-12 fusion v. 1- ⁇ ) , with an anti-PD1 antibody alone (RMP1-14) , or in combination (mIL-12 fusion v. 1- ⁇ + RMP1-14) .
  • Mice receiving PBS or LNP containing mRNA with no starting codon (NST) were included as negative controls.
  • FIG. 15B shows the percentage of IFN- ⁇ + T cells in lymphocyte in mice treated with LNP containing mRNA encoding IL-12 containing polypeptide alone (mIL-12 fusion v. 1- ⁇ ) , with an anti-PD1 antibody alone (RMP1-14) , or in combination (mIL-12 fusion v. 1- ⁇ + RMP1-14) .
  • Mice receiving PBS or LNP containing mRNA with no starting codon (NST) were included as negative controls.
  • FIG. 15C shows the percentage of PD-L1+ cells in tumor tissues in mice treated with LNP containing mRNA encoding IL-12 containing polypeptide alone (mIL-12 fusion v. 1- ⁇ ) , with anti-PD1 antibody alone (RMP1-14) , or in combination (mIL-12 fusion v. 1- ⁇ + RMP1-14) .
  • Mice receiving PBS or LNP containing mRNA with no starting codon (NST) were included as negative controls.
  • FIG. 16 shows tumor volumes in breast cancer model mice treated mRNA encoding IL-12 containing polypeptide formulated in LNP containing different cationic lipids (G3 to G14) . Mice treated with PBS or LNP containing mRNA without starting codon (G2) were included as negative controls.
  • FIG. 17A shows tumor volumes in melanoma model mice treated with LNP composition containing mRNA encoding mIL-12 containing polypeptide (mIL-12 fusion v. 1- ⁇ ) alone, treated with an anti-PD-1 antibody RMP1-14 alone, or in combination (G3 to G11) .
  • Mice receiving PBS (G1) or LNP composition containing mRNA with no starting codon (G2) were included as negative controls.
  • Mice receiving recombinant mIL-12 polypeptide alone (G12) or in combination with anti-PD-1 antibody RMP1-14 (G13) were included as the positive controls.
  • the tumor volumes were measured from tumors receiving intratumoral administration of the LNP composition.
  • FIG. 17B shows tumor volumes in melanoma model mice treated with LNP composition containing mRNA encoding mIL-12 containing polypeptide (mIL-12 fusion v. 1- ⁇ ) alone, treated with an anti-PD-1 antibody RMP1-14 alone, or in combination (G3 to G11) .
  • Mice receiving PBS (G1) or LNP composition containing mRNA with no starting codon (G2) were included as negative controls.
  • Mice receiving recombinant mIL-12 polypeptide alone (G12) or in combination with anti-PD-1 antibody RMP1-14 (G13) were included as the positive controls.
  • the LNP compositions were administered intratumorally, and the tumor volumes were measured from tumors on the untreated side of the animal.
  • FIG. 18 shows the survival of melanoma model mice treated with LNP composition containing mRNA encoding mIL-12 containing polypeptide (mIL-12 fusion v. 1- ⁇ ) alone, treated with an anti-PD-1 antibody RMP1-14 alone, or in combination (G3 to G11) .
  • Mice receiving PBS (G1) or LNP composition containing mRNA with no starting codon (G2) were included as negative controls.
  • Mice receiving recombinant mIL-12 polypeptide alone (G12) or in combination with anti-PD-1 antibody RMP1-14 (G13) were included as the positive controls.
  • FIG. 19 shows tumor volumes in breast cancer model mice treated with LNP composition containing mRNA encoding mIL-12 containing polypeptide (mIL-12 fusion v. 1- ⁇ ) alone, treated with an anti-PD-1 antibody RMP1-14 alone, or in combination (G3 to G9) .
  • Mice receiving PBS (G1) or LNP composition containing mRNA with no starting codon (G2) were included as negative controls.
  • Mice receiving recombinant mIL-12 polypeptide alone (G120or in combination with anti-PD-1 antibody RMP1-14 (G11) were included as the positive controls.
  • FIGS. 20A to 20K show tumor volumes in individual mice in the treatment groups (G1 to G11) as shown in FIG. 19.
  • FIG. 21 shows tumor volumes in colon cancer model mice treated with LNP composition containing mRNA encoding mIL-12 containing polypeptide (mIL-12 fusion v. 1- ⁇ ) alone, treated with an anti-PD-1 antibody RMP1-14 alone, or in combination (G3 to G9) .
  • Mice receiving PBS (G1) or LNP composition containing mRNA with no starting codon (G2) were included as negative controls.
  • FIGS. 22A to 22I show tumor volumes in individual mice in the treatment groups (G1 to G9) as shown in FIG. 21.
  • FIG. 23 is a schematic illustration of an mRNA molecule encoding a hIL-15 fusion protein according to the present disclosure.
  • the mRNA molecule comprises a 5’ -Cap, a 5’ -UTR, a coding region, a 3’ -UTR and a polyA tail.
  • the coding region can encode a fusion protein of the Sushi domain of hIL-15 receptor alpha subunit (hIL-15R ⁇ sushi) polypeptide (including the hIL-15R ⁇ signal peptide) fused to a hIL-15polypeptide via a peptidic linker.
  • FIG. 24A shows ELISA results of expression of hIL-15 containing fusion protein in expi293F cells by detecting hIL-15.
  • X-axis shows the mRNA constructs encoding different versions of the hIL-15 containing fusion proteins that were used to transfected the cells.
  • Y axis shows protein concentration in the cell culture supernatant (pg/ml) .
  • FIG. 24B shows ELISA results of expression of hIL-15 containing fusion protein in expi293F cells by detecting hIL-15R ⁇ .
  • X-axis shows the mRNA constructs encoding different versions of the hIL-15 containing fusion proteins that were used to transfected the cells.
  • Y axis shows protein concentration in the cell culture supernatant (pg/ml) .
  • FIG. 25 shows measurement of IL-15 activity expressed by expi293T cells transfected with mRNA constructs encoding hIL-15 fusion version 1 (hIL-15 fusion v. 1) and its pseudouridine-modified version (hIL-15 fusion v. 1- ⁇ ) , and hIL-15 fusion protein reference molecule (hIL-15 fusion ref. ) and its pseudouridine-modified version (hIL-15 fusion v. 1ref. - ⁇ ) .
  • Recombinant hIL-15 polypeptide was included as a positive control.
  • X-axis shows the Log [concentration of IL-15] ;
  • Y axis shows the IL-15 activity measured as the optical density (OD) value.
  • FIG. 26 shows injection dose dependent expression of hIL-12 protein in mice receiving intratumoral injection of a LNP composition containing hIL-12 encoding mRNA.
  • Y-axis shows the hIL-12 protein concentration (pg/g) and X-axis shows the sampling time (hours) post injection.
  • nucleic acid molecules encoding interleukin-12 (IL-12) , or polypeptides comprising IL-12 or functional fragment of IL-12.
  • nucleic acid molecules encoding interleukin-15 (IL-15) , or polypeptides comprising IL-15 or functional fragment of IL-15.
  • compositions including lipid nanoparticles (LNPs) , comprising the nucleic acid molecules, and related therapeutic methods and uses for the management or treatment of breast cancer, melanoma or colon cancer in human. Additional features of the present disclosure will become apparent to those skilled in the art upon consideration of the following detailed description of particular embodiments.
  • lipid refers to a group of organic compounds that include, but are not limited to, esters of fatty acids and are generally characterized by being poorly soluble in water, but soluble in many nonpolar organic solvents. While lipids generally have poor solubility in water, there are certain categories of lipids (e.g., lipids modified by polar groups, e.g., DMG-PEG2000) that have limited aqueous solubility and can dissolve in water under certain conditions. Known types of lipids include biological molecules such as fatty acids, waxes, sterols, fat-soluble vitamins, monoglycerides, diglycerides, triglycerides, and phospholipids.
  • lipids include biological molecules such as fatty acids, waxes, sterols, fat-soluble vitamins, monoglycerides, diglycerides, triglycerides, and phospholipids.
  • Lipids can be divided into at least three classes: (1) “simple lipids, ” which include fats and oils as well as waxes; (2) “compound lipids, ” which include phospholipids and glycolipids (e.g., DMPE-PEG2000) ; and (3) “derived lipids” such as steroids. Further, as used herein, lipids also encompass lipidoid compounds.
  • the term “lipidoid compound, ” also simply “lipidoid” refers to a lipid-like compound (e.g. an amphiphilic compound with lipid-like physical properties) .
  • lipid nanoparticle refers to a particle having at least one dimension on the order of nanometers (nm) (e.g., 1 to 1,000 nm) , which contains one or more types of lipid molecules.
  • the LNP provided herein can further contain at least one non-lipid payload molecule (e.g., one or more nucleic acid molecules) .
  • the LNP comprises a non-lipid payload molecule either partially or completely encapsulated inside a lipid shell.
  • the payload is a negatively charged molecule (e.g., mRNA encoding a therapeutic protein)
  • the lipid components of the LNP comprise at least one cationic lipid.
  • the cationic lipids can interact with the negatively charged payload molecules and facilitates incorporation and/or encapsulation of the payload into the LNP during LNP formation.
  • Other lipids that can form part of a LNP as provided herein include but are not limited to neutral lipids and charged lipids, such as steroids, polymer conjugated lipids, and various zwitterionic lipids.
  • a LNP according to the present disclosure comprises one or more cationic lipids of Formula 01-I, 01-II, 02-I, 02-II, 03-I, 03-II-A, 03-II-B, 03-II-C, 03-II-D, 04-I, 04-III, 04-IV (and sub-formulas thereof) as described herein.
  • cationic lipid refers to a lipid that is either positively charged at any pH value or hydrogen ion activity of its environment, or capable of being positively charged in response to the pH value or hydrogen ion activity of its environment (e.g., the environment of its intended use) .
  • the term “cationic” encompasses both “permanently cationic” and “cationisable. ”
  • the positive charge in a cationic lipid results from the presence of a quaternary nitrogen atom.
  • the cationic lipid comprises a zwitterionic lipid that assumes a positive charge in the environment of its intended use (e.g., at physiological pH) .
  • the cationic lipid is one or more lipids of Formula 01-I, 01-II, 02-I, 02-II, 03-I, 03-II-A, 03-II-B, 03-II-C, 03-II-D, 04-I, 04-III, 04-IV (and sub-formulas thereof) (and sub-formulas thereof) as described herein.
  • polymer conjugated lipid refers to a molecule comprising both a lipid portion and a polymer portion.
  • An example of a polymer conjugated lipid is a pegylated lipid (PEG-lipid) , in which the polymer portion comprises a polyethylene glycol.
  • neutral lipid encompasses any lipid molecules existing in uncharged forms or neutral zwitterionic forms at a selected pH value or within a selected pH range.
  • the selected useful pH value or range corresponds to the pH condition in an environment of the intended uses of the lipids, such as the physiological pH.
  • neutral lipids that can be used in connection with the present disclosure include, but are not limited to, phosphotidylcholines such as 1, 2-distearoyl-sn-glycero-3-phosphocholine (DSPC) , 1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) , 1, 2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) , 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) , 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) , phophatidylethanolamines such as 1, 2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) , 2- ( (2, 3-bis (oleoyloxy) propyl) dimethylammonio) ethyl hydrogen phosphate (DOPE) ,
  • charged lipid encompasses any lipid molecules that exist in either positively charged or negatively charged forms at a selected pH or within a selected pH range.
  • the selected pH value or range corresponds to the pH condition in an environment of the intended uses of the lipids, such as the physiological pH.
  • neutral lipids that can be used in connection with the present disclosure include, but are not limited to, phosphatidylserines, phosphatidic acids, phosphatidylglycerols, phosphatidylinositols, sterol hemisuccinates, dialkyl trimethylarnmonium-propanes, (e.g., DOTAP, DOTMA) , dialkyl dimethylaminopropanes, ethyl phosphocholines, dimethylaminoethane carbamoyl sterols (e.g., DC-Chol) , 1, 2-dioleoyl-sn-glycero-3-phospho-L-serine sodium salt (DOPS-Na) , 1, 2-dioleoyl-sn-glycero-3-phospho- (1'-rac-glycerol) sodium salt (DOPG-Na) , and 1, 2-dioleoyl-sn-g
  • alkyl refers to a straight or branched hydrocarbon chain radical consisting solely of carbon and hydrogen atoms, which is saturated.
  • the alkyl group has, for example, from one to twenty-four carbon atoms (C 1 -C 24 alkyl) , four to twenty carbon atoms (C 4 -C 20 alkyl) , six to sixteen carbon atoms (C 6 -C 16 alkyl) , six to nine carbon atoms (C 6 -C 9 alkyl) , one to fifteen carbon atoms (C 1 -C 15 alkyl) , one to twelve carbon atoms (C 1 -C 12 alkyl) , one to eight carbon atoms (C 1 -C 8 alkyl) or one to six carbon atoms (C 1 -C 6 alkyl) and which is attached to the rest of the molecule by a single bond.
  • alkyl groups include, but are not limited to, methyl, ethyl, n-propyl, 1-methylethyl (isopropyl) , n-butyl, n-pentyl, 1, 1-dimethylethyl (t-butyl) , 3-methylhexyl, 2-methylhexyl, and the like. Unless otherwise specified, an alkyl group is optionally substituted.
  • alkenyl refers to a straight or branched hydrocarbon chain radical consisting solely of carbon and hydrogen atoms, which contains one or more carbon-carbon double bonds.
  • alkenyl also embraces radicals having “cis” and “trans” configurations, or alternatively, “E” and “Z” configurations, as appreciated by those of ordinary skill in the art.
  • the alkenyl group has, , for example, from two to twenty-four carbon atoms (C 2 -C 24 alkenyl) , four to twenty carbon atoms (C 4 -C 20 alkenyl) , six to sixteen carbon atoms (C 6 -C 16 alkenyl) , six to nine carbon atoms (C 6 -C 9 alkenyl) , two to fifteen carbon atoms (C 2 -C 15 alkenyl) , two to twelve carbon atoms (C 2 -C 12 alkenyl) , two to eight carbon atoms (C 2 -C 8 alkenyl) or two to six carbon atoms (C 2 -C 6 alkenyl) and which is attached to the rest of the molecule by a single bond.
  • alkenyl groups include, but are not limited to, ethenyl, prop-1-enyl, but-1-enyl, pent-1-enyl, penta-1, 4-dienyl, and the like. Unless otherwise specified, an alkenyl group is optionally substituted.
  • alkynyl refers to a straight or branched hydrocarbon chain radical consisting solely of carbon and hydrogen atoms, which contains one or more carbon-carbon triple bonds.
  • the alkynyl group has, for example, from two to twenty-four carbon atoms (C 2 -C 24 alkynyl) , four to twenty carbon atoms (C 4 -C 20 alkynyl) , six to sixteen carbon atoms (C 6 -C 16 alkynyl) , six to nine carbon atoms (C 6 -C 9 alkynyl) , two to fifteen carbon atoms (C 2 -C 15 alkynyl) , two to twelve carbon atoms (C 2 -C 12 alkynyl) , two to eight carbon atoms (C 2 -C 8 alkynyl) or two to six carbon atoms (C 2 -C 6 alkynyl) and which is attached to the
  • alkynyl groups include, but are not limited to, ethynyl, propynyl, butynyl, pentynyl, and the like. Unless otherwise specified, an alkynyl group is optionally substituted.
  • alkylene or “alkylene chain” refers to a straight or branched multivalent (e.g., divalent or trivalent) hydrocarbon chain linking the rest of the molecule to a radical group, consisting solely of carbon and hydrogen, which is saturated.
  • the alkylene has, for example, from one to twenty-four carbon atoms (C 1 -C 24 alkylene) , one to fifteen carbon atoms (C 1 -C 15 alkylene) , one to twelve carbon atoms (C 1 -C 12 alkylene) , one to eight carbon atoms (C 1 -C 8 alkylene) , one to six carbon atoms (C 1 -C 6 alkylene) , two to four carbon atoms (C 2 -C 4 alkylene) , one to two carbon atoms (C 1 -C 2 alkylene) .
  • alkylene groups include, but are not limited to, methylene, ethylene, propylene, n-butylene, and the like.
  • the alkylene chain is attached to the rest of the molecule through a single bond and to the radical group through a single bond.
  • the points of attachment of the alkylene chain to the rest of the molecule and to the radical group can be through one carbon or any two carbons within the chain. Unless otherwise specified, an alkylene chain is optionally substituted.
  • alkenylene refers to a straight or branched multivalent (e.g., divalent or trivalent) hydrocarbon chain linking the rest of the molecule to a radical group, consisting solely of carbon and hydrogen, which contains one or more carbon-carbon double bonds.
  • the alkenylene has, for example, from two to twenty-four carbon atoms (C 2 -C 24 alkenylene) , two to fifteen carbon atoms (C 2 -C 15 alkenylene) , two to twelve carbon atoms (C 2 -C 12 alkenylene) , two to eight carbon atoms (C 2 -C 8 alkenylene) , two to six carbon atoms (C 2 -C 6 alkenylene) or two to four carbon atoms (C 2 -C 4 alkenylene) .
  • alkenylene include, but are not limited to, ethenylene, propenylene, n-butenylene, and the like.
  • the alkenylene is attached to the rest of the molecule through a single or double bond and to the radical group through a single or double bond.
  • the points of attachment of the alkenylene to the rest of the molecule and to the radical group can be through one carbon or any two carbons within the chain. Unless otherwise specified, an alkenylene is optionally substituted.
  • cycloalkyl refers to a non-aromatic monocyclic or polycyclic hydrocarbon radical consisting solely of carbon and hydrogen atoms, and which is saturated. Cycloalkyl group may include fused or bridged ring systems. In one embodiment, the cycloalkyl has, for example, from 3 to 15 ring carbon atoms (C 3 -C 15 cycloalkyl) , from 3 to 10 ring carbon atoms (C 3 -C 10 cycloalkyl) , or from 3 to 8 ring carbon atoms (C 3 -C 8 cycloalkyl) .
  • the cycloalkyl is attached to the rest of the molecule by a single bond.
  • Examples of monocyclic cycloalkyl radicals include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl.
  • Examples of polycyclic cycloalkyl radicals include, but are not limited to, adamantyl, norbornyl, decalinyl, 7, 7-dimethyl-bicyclo [2.2.1] heptanyl, and the like. Unless otherwise specified, a cycloalkyl group is optionally substituted.
  • cycloalkylene is a multivalent (e.g., divalent or trivalent) cycloalkyl group. Unless otherwise specified, a cycloalkylene group is optionally substituted.
  • cycloalkenyl refers to a non-aromatic monocyclic or polycyclic hydrocarbon radical consisting solely of carbon and hydrogen atoms, and which includes one or more carbon-carbon double bonds. Cycloalkenyl may include fused or bridged ring systems. In one embodiment, the cycloalkenyl has, for example, from 3 to 15 ring carbon atoms (C 3 -C 15 cycloalkenyl) , from 3 to 10 ring carbon atoms (C 3 -C 10 cycloalkenyl) , or from 3 to 8 ring carbon atoms (C 3 -C 8 cycloalkenyl) .
  • the cycloalkenyl is attached to the rest of the molecule by a single bond.
  • monocyclic cycloalkenyl radicals include, but are not limited to, cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclooctenyl, and the like. Unless otherwise specified, a cycloalkenyl group is optionally substituted.
  • cycloalkenylene is a multivalent (e.g., divalent or trivalent) cycloalkenyl group. Unless otherwise specified, a cycloalkenylene group is optionally substituted.
  • heterocyclyl refers to a non-aromatic radical monocyclic or polycyclic moiety that contains one or more (e.g., one, one or two, one to three, or one to four) heteroatoms independently selected from nitrogen, oxygen, phosphorous, and sulfur.
  • the heterocyclyl may be attached to the main structure at any heteroatom or carbon atom.
  • a heterocyclyl group can be a monocyclic, bicyclic, tricyclic, tetracyclic, or other polycyclic ring system, wherein the polycyclic ring systems can be a fused, bridged or spiro ring system.
  • Heterocyclyl polycyclic ring systems can include one or more heteroatoms in one or more rings.
  • a heterocyclyl group can be saturated or partially unsaturated.
  • Saturated heterocycloalkyl groups can be termed “heterocycloalkyl” .
  • Partially unsaturated heterocycloalkyl groups can be termed “heterocycloalkenyl” if the heterocyclyl contains at least one double bond, or “heterocycloalkynyl” if the heterocyclyl contains at least one triple bond.
  • the heterocyclyl has, for example, 3 to 18 ring atoms (3-to 18-membered heterocyclyl) , 4 to 18 ring atoms (4-to 18-membered heterocyclyl) , 5 to 18 ring atoms (3-to 18-membered heterocyclyl) , 4 to 8 ring atoms (4-to 8-membered heterocyclyl) , or 5 to 8 ring atoms (5-to 8-membered heterocyclyl) .
  • a numerical range such as “3 to 18” refers to each integer in the given range; e.g., “3 to 18 ring atoms” means that the heterocyclyl group can consist of 3 ring atoms, 4 ring atoms, 5 ring atoms, 6 ring atoms, 7 ring atoms, 8 ring atoms, 9 ring atoms, 10 ring atoms, etc., up to and including 18 ring atoms.
  • heterocyclyl groups include, but are not limited to, imidazolyl, imidazolidinyl, oxazolyl, oxazolidinyl, thiazolyl, thiazolidinyl, pyrazolidinyl, pyrazolyl, isoxazolidinyl, isoxazolyl, isothiazolidinyl, isothiazolyl, morpholinyl, pyrrolyl, pyrrolidinyl, furyl, tetrahydrofuryl, thiophenyl, pyridinyl, piperidinyl, quinolyl, and isoquinolyl. Unless otherwise specified, a heterocyclyl group is optionally substituted.
  • heterocyclylene is a multivalent (e.g., divalent or trivalent) heterocyclyl group. Unless otherwise specified, a heterocyclylene group is optionally substituted.
  • aryl refers to a monocyclic aromatic group and/or multicyclic monovalent aromatic group that contain at least one aromatic hydrocarbon ring.
  • the aryl has from 6 to 18 ring carbon atoms (C 6 -C 18 aryl) , from 6 to 14 ring carbon atoms (C 6 -C 14 aryl) , or from 6 to 10 ring carbon atoms (C 6 -C 10 aryl) .
  • aryl groups include, but are not limited to, phenyl, naphthyl, fluorenyl, azulenyl, anthryl, phenanthryl, pyrenyl, biphenyl, and terphenyl.
  • aryl also refers to bicyclic, tricyclic, or other multicyclic hydrocarbon rings, where at least one of the rings is aromatic and the others of which may be saturated, partially unsaturated, or aromatic, for example, dihydronaphthyl, indenyl, indanyl, or tetrahydronaphthyl (tetralinyl) . Unless otherwise specified, an aryl group is optionally substituted.
  • arylene is a multivalent (e.g., divalent or trivalent) aryl group. Unless otherwise specified, an arylene group is optionally substituted.
  • heteroaryl refers to a monocyclic aromatic group and/or multicyclic aromatic group that contains at least one aromatic ring, wherein at least one aromatic ring contains one or more (e.g., one, one or two, one to three, or one to four) heteroatoms independently selected from O, S, and N.
  • the heteroaryl may be attached to the main structure at any heteroatom or carbon atom. In certain embodiments, the heteroaryl has from 5 to 20, from 5 to 15, or from 5 to 10 ring atoms.
  • heteroaryl also refers to bicyclic, tricyclic, or other multicyclic rings, where at least one of the rings is aromatic and the others of which may be saturated, partially unsaturated, or aromatic, wherein at least one aromatic ring contains one or more heteroatoms independently selected from O, S, and N.
  • Examples of monocyclic heteroaryl groups include, but are not limited to, pyrrolyl, pyrazolyl, pyrazolinyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, thiadiazolyl, isothiazolyl, furanyl, thienyl, oxadiazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, and triazinyl.
  • bicyclic heteroaryl groups include, but are not limited to, indolyl, benzothiazolyl, benzoxazolyl, benzothienyl, quinolinyl, tetrahydroisoquinolinyl, isoquinolinyl, benzimidazolyl, benzopyranyl, indolizinyl, benzofuranyl, isobenzofuranyl, chromonyl, coumarinyl, cinnolinyl, quinoxalinyl, indazolyl, purinyl, pyrrolopyridinyl, furopyridinyl, thienopyridinyl, dihydroisoindolyl, and tetrahydroquinolinyl.
  • tricyclic heteroaryl groups include, but are not limited to, carbazolyl, benzindolyl, phenanthrollinyl, acridinyl, phenanthridinyl, and xanthenyl. Unless otherwise specified, a heteroaryl group is optionally substituted.
  • heteroarylene is a multivalent (e.g., divalent or trivalent) heteroaryl group. Unless otherwise specified, a heteroarylene group is optionally substituted.
  • the substituent is a C 1 -C 12 alkyl group. In other embodiments, the substituent is a cycloalkyl group. In other embodiments, the substituent is a halo group, such as fluoro. In other embodiments, the substituent is an oxo group. In other embodiments, the substituent is a hydroxyl group. In other embodiments, the substituent is an alkoxy group (-OR’ ) . In other embodiments, the substituent is a carboxyl group. In other embodiments, the substituent is an amino group (-NR’ R’ ) .
  • optionally substituted means that the subsequently described event of circumstances may or may not occur, and that the description includes instances where said event or circumstance occurs and instances in which it does not.
  • optionally substituted alkyl means that the alkyl radical may or may not be substituted and that the description includes both substituted alkyl radicals and alkyl radicals having no substitution.
  • prodrug of a biologically active compound refers to a compound that may be converted under physiological conditions or by solvolysis to the biologically active compound.
  • prodrug refers to a metabolic precursor of the biologically active compound that is pharmaceutically acceptable.
  • a prodrug may be inactive when administered to a subject in need thereof, but is converted in vivo to the biologically active compound.
  • Prodrugs are typically rapidly transformed in vivo to yield the parent biologically active compound, for example, by hydrolysis in blood.
  • the prodrug compound often offers advantages of solubility, tissue compatibility or delayed release in a mammalian organism (see, Bundgard, H., Design of Prodrugs (1985) , pp.
  • prodrugs are provided in Higuchi, T., et al., A.C.S. Symposium Series, Vol. 14, and in Bioreversible Carriers in Drug Design, Ed. Edward B. Roche, American Pharmaceutical Association and Pergamon Press, 1987.
  • prodrug is also meant to include any covalently bonded carriers, which release the active compound in vivo when such prodrug is administered to a mammalian subject.
  • Prodrugs of a compound may be prepared by modifying functional groups present in the compound in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to the parent compound.
  • Prodrugs include compounds wherein a hydroxyl, amino or mercapto group is bonded to any group that, when the prodrug of the compound is administered to a mammalian subject, cleaves to form a free hydroxyl, free amino or free mercapto group, respectively.
  • prodrugs include, but are not limited to, acetate, formate and benzoate derivatives of alcohol or amide derivatives of amine functional groups in the compounds provided herein.
  • the term “pharmaceutically acceptable salt” includes both acid and base addition salts.
  • Examples of pharmaceutically acceptable acid addition salts include, but are not limited to, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, and organic acids such as, but not limited to, acetic acid, 2, 2-dichloroacetic acid, adipic acid, alginic acid, ascorbic acid, aspartic acid, benzenesulfonic acid, benzoic acid, 4-acetamidobenzoic acid, camphoric acid, camphor-10-sulfonic acid, capric acid, caproic acid, caprylic acid, carbonic acid, cinnamic acid, citric acid, cyclamic acid, dodecylsulfuric acid, ethane-1, 2-disulfonic acid, ethanesulfonic acid, 2-hydroxyethanesulfonic acid, formic acid, fumaric acid, galactaric acid, gentisic acid, glucoheptonic acid, gluconic acid, glu
  • Examples of pharmaceutically acceptable base addition salt include, but are not limited to, salts prepared from addition of an inorganic base or an organic base to a free acid compound.
  • Salts derived from inorganic bases include, but are not limited to, the sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like.
  • the inorganic salts are the ammonium, sodium, potassium, calcium, and magnesium salts.
  • Salts derived from organic bases include, but are not limited to, salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as ammonia, isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, diethanolamine, ethanolamine, deanol, 2-dimethylaminoethanol, 2-diethylaminoethanol, dicyclohexylamine, lysine, arginine, histidine, caffeine, procaine, hydrabamine, choline, betaine, benethamine, benzathine, ethylenediamine, glucosamine, methylglucamine, theobromine, triethanolamine, tromethamine, purines, piperazine, piperidine, N-ethylpiperidine, polyamine resins and the like.
  • the organic bases are isopropyl
  • a compound provided herein may contain one or more asymmetric centers and may thus give rise to enantiomers, diastereomers, and other stereoisomeric forms that may be defined, in terms of absolute stereochemistry, as (R) -or (S) -or, as (D) -or (L) -for amino acids. Unless otherwise specified, a compound provided herein is meant to include all such possible isomers, as well as their racemic and optically pure forms. Optically active (+) and (-) , (R) -and (S) -, or (D) -and (L) -isomers may be prepared using chiral synthons or chiral reagents, or resolved using conventional techniques, for example, chromatography and fractional crystallization.
  • the term “isomer” refers to different compounds that have the same molecular formula.
  • “Stereoisomers” are isomers that differ only in the way the atoms are arranged in space.
  • “Atropisomers” are stereoisomers from hindered rotation about single bonds.
  • “Enantiomers” are a pair of stereoisomers that are non-superimposable mirror images of each other. A mixture of a pair of enantiomers in any proportion can be known as a “racemic” mixture.
  • “Diastereoisomers” are stereoisomers that have at least two asymmetric atoms, but which are not mirror-images of each other.
  • Stepoisomers can also include E and Z isomers, or a mixture thereof, and cis and trans isomers or a mixture thereof.
  • a compound described herein is isolated as either the E or Z isomer.
  • a compound described herein is a mixture of the E and Z isomers.
  • Tautomers refers to isomeric forms of a compound that are in equilibrium with each other. The concentrations of the isomeric forms will depend on the environment the compound is found in and may be different depending upon, for example, whether the compound is a solid or is in an organic or aqueous solution.
  • a compound described herein can contain unnatural proportions of atomic isotopes at one or more of the atoms.
  • the compounds may be radiolabeled with radioactive isotopes, such as for example tritium (3H) , iodine-125 (125I) , sulfur-35 (35S) , or carbon-14 (14C) , or may be isotopically enriched, such as with deuterium (2H) , carbon-13 (13C) , or nitrogen-15 (15N) .
  • an “isotopolog” is an isotopically enriched compound.
  • isotopically enriched refers to an atom having an isotopic composition other than the natural isotopic composition of that atom. “Isotopically enriched” may also refer to a compound containing at least one atom having an isotopic composition other than the natural isotopic composition of that atom. The term “isotopic composition” refers to the amount of each isotope present for a given atom. Radiolabeled and isotopically enriched compounds are useful as therapeutic agents, e.g., cancer therapeutic agents, research reagents, e.g., binding assay reagents, and diagnostic agents, e.g., in vivo imaging agents.
  • isotopologs of a compound described herein are deuterium, carbon-13, and/or nitrogen-15 enriched.
  • deuterated means a compound wherein at least one hydrogen (H) has been replaced by deuterium (indicated by D or 2H) , that is, the compound is enriched in deuterium in at least one position.
  • the term “pharmaceutically acceptable carrier, diluent or excipient” includes without limitation any adjuvant, carrier, excipient, glidant, sweetening agent, diluent, preservative, dye/colorant, flavor enhancer, surfactant, wetting agent, dispersing agent, suspending agent, stabilizer, isotonic agent, solvent, or emulsifier which has been approved by the United States Food and Drug Administration as being acceptable for use in humans or domestic animals.
  • composition is intended to encompass a product containing the specified ingredients (e.g., a mRNA molecule provided herein) in, optionally, the specified amounts.
  • polynucleotide or “nucleic acid, ” as used interchangeably herein, refers to polymers of nucleotides of any length and includes, e.g., DNA and RNA.
  • the nucleotides can be deoxyribonucleotides, ribonucleotides, modified nucleotides or bases, and/or their analogs, or any substrate that can be incorporated into a polymer by DNA or RNA polymerase or by a synthetic reaction.
  • a polynucleotide may comprise modified nucleotides, such as methylated nucleotides and their analogs.
  • Nucleic acid can be in either single-or double-stranded forms.
  • nucleic acid also includes nucleic acid mimics such as locked nucleic acids (LNAs) , peptide nucleic acids (PNAs) , and morpholinos.
  • LNAs locked nucleic acids
  • PNAs peptide nucleic acids
  • morpholinos morpholinos.
  • Oligonucleotide refers to short synthetic polynucleotides that are generally, but not necessarily, fewer than about 200 nucleotides in length.
  • oligonucleotide and polynucleotide are not mutually exclusive. The description above for polynucleotides is equally and fully applicable to oligonucleotides.
  • the left-hand end of any single-stranded polynucleotide sequence disclosed herein is the 5’ end; the left-hand direction of double-stranded polynucleotide sequences is referred to as the 5’ direction.
  • the direction of 5’ to 3’ addition of nascent RNA transcripts is referred to as the transcription direction; sequence regions on the DNA strand having the same sequence as the RNA transcript that are 5’ to the 5’ end of the RNA transcript are referred to as “upstream sequences” ; sequence regions on the DNA strand having the same sequence as the RNA transcript that are 3’ to the 3’ end of the RNA transcript are referred to as “downstream sequences. ”
  • an “isolated nucleic acid” is a nucleic acid, for example, an RNA, DNA, or mixed nucleic acids, which is substantially separated from other genome DNA sequences as well as proteins or complexes such as ribosomes and polymerases, which naturally accompany a native sequence.
  • An “isolated” nucleic acid molecule is one which is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid molecule.
  • an “isolated” nucleic acid molecule, such as an mRNA molecule can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized.
  • nucleic acid molecules encoding an antigen as described herein are isolated or purified.
  • the term embraces nucleic acid sequences that have been removed from their naturally occurring environment, and includes recombinant or cloned DNA or RNA isolates and chemically synthesized analogues or analogues biologically synthesized by heterologous systems.
  • a substantially pure molecule may include isolated forms of the molecule.
  • nucleic acid or grammatical equivalents thereof as it is used in reference to nucleic acid molecule encompasses (a) a nucleic acid molecule in its native state or when manipulated by methods well known to those skilled in the art that can be transcribed to produce mRNA which is then translated into a peptide and/or polypeptide, and (b) the mRNA molecule itself.
  • the antisense strand is the complement of such a nucleic acid molecule, and the encoding sequence can be deduced therefrom.
  • coding region refers to a portion in an encoding nucleic acid sequence that is translated into a peptide or polypeptide.
  • UTR untranslated region
  • 5’ -UTR a UTR is referred to as the 5’ -UTR if located to the 5’-end of a coding region
  • 3’ -UTR a UTR is referred to as the 3’ -UTR if located to the 3’ -end of a coding region.
  • mRNA refers to a message RNA molecule comprising one or more open reading frame (ORF) that can be translated by a cell or an organism provided with the mRNA to produce one or more peptide or protein product.
  • ORF open reading frame
  • the region containing the one or more ORFs is referred to as the coding region of the mRNA molecule.
  • the mRNA molecule further comprises one or more untranslated regions (UTRs) .
  • the mRNA is a monocistronic mRNA that comprises only one ORF.
  • the monocistronic mRNA encodes a peptide or protein comprising at least one epitope of a selected antigen (e.g., a pathogenic antigen or a tumor associated antigen) .
  • the mRNA is a multicistronic mRNA that comprises two or more ORFs.
  • the multiecistronic mRNA encodes two or more peptides or proteins that can be the same or different from each other.
  • each peptide or protein encoded by a multicistronic mRNA comprises at least one epitope of a selected antigen.
  • different peptide or protein encoded by a multicistronic mRNA each comprises at least one epitope of different antigens.
  • the at least one epitope can be at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, or at least 10 epitopes of an antigen.
  • nucleobases encompasses purines and pyrimidines, including natural compounds adenine, thymine, guanine, cytosine, uracil, inosine, and natural or synthetic analogs or derivatives thereof.
  • nucleotide analog refers to a modified version of a canonical nucleotide A, G, C, U or T that (a) retains the base-pairing properties of the corresponding canonical nucleotide, and (b) contains at least one chemical modification to (i) the nucleobase, (ii) the sugar group, (iii) the phosphate group, or (iv) any combinations of (i) to (iii) , of the corresponding natural nucleotide.
  • base pairing encompasses not only the canonical Watson-Crick adenine-thymine, adenine-uracil, or guanine-cytosine base pairs, but also base pairs formed between canonical nucleotides and functional nucleotide analogs or between a pair of functional nucleotide analogs, wherein the arrangement of hydrogen bond donors and hydrogen bond acceptors permits hydrogen bonding between a modified nucleobase and a canonical nucleobase or between two complementary modified nucleobase structures.
  • a functional analog of guanosine (G) retains the ability to base-pair with cytosine (C) or a functional analog of cytosine.
  • a functional nucleotide analog can be either naturally occurring or non-naturally occurring. Accordingly, a nucleic acid molecule containing a functional nucleotide analog can have at least one modified nucleobase, sugar group and/or internucleoside linkage. Exemplary chemical modifications to the nucleobases, sugar groups, or internucleoside linkages of a nucleic acid molecule are provided herein.
  • translational enhancer element refers to an region in a nucleic acid molecule that functions to promotes translation of a coding sequence of the nucleic acid into a protein or peptide product, such as via cap-dependent or cap-independent translation.
  • a TEE typically locates in the UTR region of a nucleic acid molecule (e.g., mRNA) and enhance the translational level of a coding sequence located either upstream or downstream. For example, a TEE in a 5’ -UTR of a nucleic acid molecule can locate between the promoter and the starting codon of the nucleic acid molecule.
  • TEE sequences are known in the art (Wellensiek et al. Genome-wide profiling of human cap-independent translation-enhancing elements, Nature Methods, 2013 Aug; 10 (8) : 747–750; Chappell et al. PNAS June 29, 2004 101 (26) 9590-9594) . Some TEEs are known to be conserved across multiple species (Pánek et al. Nucleic Acids Research, Volume 41, Issue 16, 1 September 2013, Pages 7625–7634) .
  • stem-loop sequence refers to a single-stranded polynucleotide sequence having at least two regions that are complementary or substantially complementary to each other when read in opposite directions, and thus capable of base-pairing with each other to form at least one double helix and an unpaired loop.
  • the resulting structure is known as a stem-loop structure, a hairpin, or a hairpin loop, which is a secondary structure found in many RNA molecules.
  • peptide refers to a polymer containing between two and fifty (2-50) amino acid residues linked by one or more covalent peptide bond (s) .
  • the terms apply to naturally occurring amino acid polymers as well as amino acid polymers in which one or more amino acid residues is a non-naturally occurring amino acid (e.g., an amino acid analog or non-natural amino acid) .
  • polypeptide and protein are used interchangeably herein to refer to a polymer of amino acid residues linked by covalent peptide bonds. That is, a description directed to a polypeptide applies equally to a description of a protein, and vice versa.
  • the terms apply to naturally occurring amino acid polymers as well as amino acid polymers in which one or more amino acid residues is a non-naturally occurring amino acid (e.g., an amino acid analog) .
  • the terms encompass amino acid chains of any length, including full length proteins (e.g., antigens) .
  • derivative refers to a starting peptide or polypeptide that comprises an amino acid sequence of the starting peptide or protein, or a fragment of a starting peptide or protein, which has been altered by the introduction of amino acid residue substitutions, deletions, or additions.
  • derivative also refers to a fragment of a starting peptide or protein, which has been chemically modified, e.g., by the covalent attachment of any type of molecule to the starting polypeptide.
  • a starting peptide or protein or a fragment of the starting peptide or protein may be chemically modified, e.g., by glycosylation, acetylation, pegylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, chemical cleavage, formulation, metabolic synthesis of tunicamycin, linkage to a cellular ligand or other protein, etc.
  • the derivatives are modified in a manner that is different from the starting peptide or polypeptides, either in the type or location of the molecules attached. Derivatives further include deletion of one or more chemical groups which are naturally present on the starting peptide or protein.
  • a derivative of a starting peptide or protein or a fragment of a starting peptide or protein may contain one or more non-classical amino acids.
  • a derivative is a functional derivative of the native or unmodified starting peptide or polypeptide from which it was derived.
  • the starting peptide or polypeptide is naturally occurring.
  • the term “functional derivative” refers to a derivative that retains one or more functions or activities of the starting peptide or polypeptide from which it was derived.
  • the starting peptide or polypeptide is naturally occurring.
  • a functional derivative of an IL-12A protein may retain the ability of associating with IL-12B and/or interacting with an IL-12 receptor to activate IL-12 signaling pathway.
  • a functional derivative of an IL-12B protein may retain the ability of associating with IL-12A and/or interacting with an IL-12 receptor to activate IL-12 signaling pathway.
  • a functional derivative of an IL-15 polypeptide may retain the ability of interaction with an IL-15 receptor and/or activating an IL-15 signaling pathway.
  • a functional derivative of an IL-15 receptor polypeptide may retain the ability of interaction with an IL-15 polypeptide and/or activating an IL-15 signaling pathway. Whether a derivative of a peptide or polypeptide retains a desirable function or activity of the original peptide or polypeptide can be determined by conducting in vitro or in vivo assays to assess whether such function or activity of the original peptide or polypeptide is affected by the modifications in its derivative.
  • identity refers to a relationship between the sequences of two or more polypeptide molecules or two or more nucleic acid molecules, as determined by aligning and comparing the sequences. “Percent (%) amino acid sequence identity” with respect to a reference polypeptide sequence is defined as the percentage of amino acid residues in a candidate sequence that are identical with the amino acid residues in the reference polypeptide sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity.
  • Alignment for purposes of determining percent amino acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN, or MEGALIGN (DNAStar, Inc. ) software. Those skilled in the art can determine appropriate parameters for aligning sequences, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared.
  • a “modification” of an amino acid residue/position refers to a change of a primary amino acid sequence as compared to a starting amino acid sequence, wherein the change results from a sequence alteration involving said amino acid residue/position.
  • typical modifications include substitution of the residue with another amino acid (e.g., a conservative or non-conservative substitution) , insertion of one or more (e.g., generally fewer than 5, 4, or 3) amino acids adjacent to said residue/position, and/or deletion of said residue/position.
  • fragment refers to a peptide or polypeptide that comprises less than the full-length amino acid sequence. Such a fragment may arise, for example, from a truncation at the amino terminus, a truncation at the carboxy terminus, and/or an internal deletion of a residue (s) from the amino acid sequence. Fragments may, for example, result from alternative RNA splicing or from in vivo protease activity.
  • fragments refers to polypeptides comprising an amino acid sequence of at least 5 contiguous amino acid residues, at least 10 contiguous amino acid residues, at least 15 contiguous amino acid residues, at least 20 contiguous amino acid residues, at least 25 contiguous amino acid residues, at least 30 contiguous amino acid residues, at least 40 contiguous amino acid residues, at least 50 contiguous amino acid residues, at least 60 contiguous amino residues, at least 70 contiguous amino acid residues, at least 80 contiguous amino acid residues, at least 90 contiguous amino acid residues, at least contiguous 100 amino acid residues, at least 125 contiguous amino acid residues, at least 150 contiguous amino acid residues, at least 175 contiguous amino acid residues, at least 200 contiguous amino acid residues, at least 250, at least 300, at least 350, at least 400, at least 450, at least 500, at least 550, at least 600, at least 650, at least 700, at least
  • interleukin-12 IL12 or “IL-12” are used exchangeable herein to refer to the heterodimeric cytokine encoded by genes IL-12A and IL-12B.
  • IL-12 consists of two subunits, which are connected by disulphide-bonds (Kobayashi et al. J Exp Med. 1989 Sep 1; 170 (3) : 827-45; Stern et al. Proc Natl Acad Sci U S A. 1990 Sep; 87 (17) : 6808-12. ) .
  • the smaller p35 monomer 35 kDa ⁇ -chain referred to herein as ‘IL-12A’
  • IL-12B the gene for the larger p40 monomer
  • IL-12B the gene for the larger p40 monomer
  • Co-expression results in the formation of the biologically active p70 heterodimer (Gubler et al. Proc Natl Acad Sci U S A. 1991 May 15; 88 (10) : 4143-7) .
  • GenBank Accession Number NM_000882.4 contains an exemplary amino acid sequence for human IL-12 subunit alpha isoform 1 precursor:
  • IL15 interleukin-15
  • IL-15 is a 14-15 kDa glycoprotein encoded by the 34 kb region on chromosome 4q31 (Waldmann and Tagya; Annu Rev Immunol. 1999; 17: 19-49.)
  • GenBank Accession Number NP_751915.1 contains an exemplary amino acid sequence for human IL-15:
  • IL-15 is a pleiotropic cytokine that plays important roles in both innate and adaptive immunity.
  • IL-15 functions through the trimeric IL-15 receptor (IL-15R) complex, which consists of a high affinity binding ⁇ -chain (IL-15R ⁇ ) and the common IL-2R ⁇ -and ⁇ -chains.
  • IL-15R trimeric IL-15 receptor
  • vector refers to a substance that is used to carry or include a nucleic acid sequence, including for example, a nucleic acid sequence encoding a peptide or protein as described herein, in order to introduce a nucleic acid sequence into a host cell, or serve as a transcription template to carry out in vitro transcription reaction in a cell-free system to produce mRNA.
  • Vectors applicable for use include, for example, expression vectors, plasmids, phage vectors, viral vectors, episomes, and artificial chromosomes, which can include selection sequences or markers operable for stable integration into a host cell’s chromosome. Additionally, the vectors can include one or more selectable marker genes and appropriate transcription or translation control sequences.
  • Selectable marker genes that can be included, for example, provide resistance to antibiotics or toxins, complement auxotrophic deficiencies, or supply critical nutrients not in the culture media.
  • Transcription or translation control sequences can include constitutive and inducible promoters, transcription enhancers, transcription terminators, and the like, which are well known in the art.
  • both nucleic acid molecules can be inserted, for example, into a single expression vector or in separate expression vectors.
  • the encoding nucleic acids can be operationally linked to one common transcription or translation control sequence or linked to different transcription or translation control sequences, such as one inducible promoter and one constitutive promoter.
  • the introduction of nucleic acid molecules into a host cell can be confirmed using methods well known in the art. Such methods include, for example, nucleic acid analysis such as Northern blots or polymerase chain reaction (PCR) amplification of mRNA, immunoblotting for expression of gene products, or other suitable analytical methods to test the expression of an introduced nucleic acid sequence or its corresponding gene product.
  • nucleic acid analysis such as Northern blots or polymerase chain reaction (PCR) amplification of mRNA
  • immunoblotting for expression of gene products or other suitable analytical methods to test the expression of an introduced nucleic acid sequence or its corresponding gene product.
  • nucleic acid molecules are expressed in a sufficient amount to produce a desired product (e.g., a mRNA transcript of the nucleic acid as described herein) , and it is further understood that expression levels can be optimized to obtain sufficient expression using methods well known in the art.
  • a desired product e.g., a mRNA transcript of the nucleic acid as described herein
  • antibody is intended to include a polypeptide product of B cells within the immunoglobulin class of polypeptides that is able to bind to a specific molecular antigen and is composed of two identical pairs of polypeptide chains, wherein each pair has one heavy chain (about 50-70 kDa) and one light chain (about 25 kDa) , each amino-terminal portion of each chain includes a variable region of about 100 to about 130 or more amino acids, and each carboxy-terminal portion of each chain includes a constant region. See, e.g., Antibody Engineering (Borrebaeck ed., 2d ed. 1995) ; and Kuby, Immunology (3d ed. 1997) .
  • the specific molecular antigen can be bound by an antibody provided herein, including a polypeptide, a fragment or an epitope thereof.
  • Antibodies also include, but are not limited to, synthetic antibodies, recombinantly produced antibodies, camelized antibodies, intrabodies, anti-idiotypic (anti-Id) antibodies, and functional fragments of any of the above, which refers to a portion of an antibody heavy or light chain polypeptide that retains some or all of the binding activity of the antibody from which the fragment was derived.
  • functional fragments include single-chain Fvs (scFv) (e.g., including monospecific, bispecific, etc.
  • antibodies provided herein include immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, for example, antigen-binding domains or molecules that contain an antigen-binding site (e.g., one or more CDRs of an antibody) .
  • antigen-binding domains or molecules that contain an antigen-binding site e.g., one or more CDRs of an antibody
  • the antibodies provided herein can be of any class (e.g., IgG, IgE, IgM, IgD, and IgA) or any subclass (e.g., IgG1, IgG2, IgG3, IgG4, IgA1, and IgA2) of immunoglobulin molecule.
  • administer refers to the act of injecting or otherwise physically delivering a substance as it exists outside the body (e.g., a lipid nanoparticle composition as described herein) into a patient, such as by mucosal, intradermal, intravenous, intramuscular delivery, and/or any other method of physical delivery described herein or known in the art.
  • a disease, disorder, condition, or a symptom thereof is being treated, administration of the substance typically occurs after the onset of the disease, disorder, condition, or symptoms thereof.
  • a disease, disorder, condition, or symptoms thereof are being prevented, administration of the substance typically occurs before the onset of the disease, disorder, condition, or symptoms thereof.
  • Chronic administration refers to administration of the agent (s) in a continuous mode (e.g., for a period of time such as days, weeks, months, or years) as opposed to an acute mode, so as to maintain the initial therapeutic effect (activity) for an extended period of time.
  • Intermittent administration is treatment that is not consecutively done without interruption, but rather is cyclic in nature.
  • target delivery refers to the process that promotes the arrival of a delivered agent (such as a therapeutic payload molecule in a lipid nanoparticle composition as described herein) at a specific organ, tissue, cell and/or intracellular compartment (referred to as the targeted location) more than any other organ, tissue, cell or intracellular compartment (referred to as the non-target location) .
  • a delivered agent such as a therapeutic payload molecule in a lipid nanoparticle composition as described herein
  • Targeted delivery can be detected using methods known in the art, for example, by comparing the concentration of the delivered agent in a targeted cell population with the concentration of the delivered agent at a non-target cell population after systemic administration. In certain embodiments, targeted delivery results in at least 2 fold higher concentration at a targeted location as compared to a non-target location.
  • an “effective amount” is generally an amount sufficient to reduce the severity and/or frequency of symptoms, eliminate the symptoms and/or underlying cause, prevent the occurrence of symptoms and/or their underlying cause, and/or improve or remediate the damage that results from or is associated with a disease, disorder, or condition, including, for example, infection and neoplasia.
  • the effective amount is a therapeutically effective amount or a prophylactically effective amount.
  • terapéuticaally effective amount refers to the amount of an agent (e.g., a lipid nanoparticle composition as described herein) that is sufficient to reduce and/or ameliorate the severity and/or duration of a given disease, disorder, or condition, and/or a symptom related thereto (e.g., an infectious disease such as caused by viral infection, or a neoplastic disease such as cancer) .
  • a “therapeutically effective amount” of a substance/molecule/agent of the present disclosure may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of the substance/molecule/agent to elicit a desired response in the individual.
  • a therapeutically effective amount encompasses an amount in which any toxic or detrimental effects of the substance/molecule/agent are outweighed by the therapeutically beneficial effects.
  • the term “therapeutically effective amount” refers to an amount of a lipid nanoparticle composition as described herein or a therapeutic or prophylactic agent contained therein (e.g., a therapeutic mRNA) effective to treat a disease, disorder, or condition, in a subject or mammal.
  • a “prophylactically effective amount” is an amount of a pharmaceutical composition that, when administered to a subject, will have the intended prophylactic effect, e.g., preventing, delaying, or reducing the likelihood of the onset (or reoccurrence) of a disease, disorder, condition, or associated symptom (s) (e.g., an infectious disease such as caused by viral infection, or a neoplastic disease such as cancer) .
  • a prophylactically effective amount may be less than a therapeutically effective amount.
  • the full therapeutic or prophylactic effect does not necessarily occur by administration of one dose, and may occur only after administration of a series of doses. Thus, a therapeutically or prophylactically effective amount may be administered in one or more administrations.
  • treat, ” “treating, ” and “treatment” refer to an alleviation, in whole or in part, of a disorder, disease or condition, or one or more of the symptoms associated with a disorder, disease, or condition, or slowing or halting of further progression or worsening of those symptoms, or alleviating or eradicating the cause (s) of the disorder, disease, or condition itself.
  • a subject is administered one or more therapies (e.g., prophylactic or therapeutic agents, such as a lipid nanoparticle composition as described herein) to “manage” an infectious or neoplastic disease, one or more symptoms thereof, so as to prevent the progression or worsening of the disease.
  • therapies e.g., prophylactic or therapeutic agents, such as a lipid nanoparticle composition as described herein
  • prevent, ” and “prevention” refer to reducing the likelihood of the onset (or recurrence) of a disease, disorder, condition, or associated symptom (s) .
  • prophylactic agent refers to any agent that can totally or partially inhibit the development, recurrence, onset, or spread of disease and/or symptom related thereto in a subject.
  • therapeutic agent refers to any agent that can be used in treating, preventing, or alleviating a disease, disorder, or condition, including in the treatment, prevention, or alleviation of one or more symptoms of a disease, disorder, or condition and/or a symptom related thereto.
  • the term “therapy” refers to any protocol, method, and/or agent that can be used in the prevention, management, treatment, and/or amelioration of a disease, disorder, or condition.
  • the terms “therapies” and “therapy” refer to a biological therapy, supportive therapy, and/or other therapies useful in the prevention, management, treatment, and/or amelioration of a disease, disorder, or condition, known to one of skill in the art such as medical personnel.
  • side effects encompasses unwanted and/or adverse effects of a therapy (e.g., a prophylactic or therapeutic agent) . Unwanted effects are not necessarily adverse. An adverse effect from a therapy (e.g., a prophylactic or therapeutic agent) might be harmful, uncomfortable, or risky.
  • a therapy e.g., a prophylactic or therapeutic agent
  • side effects include, diarrhea, cough, gastroenteritis, wheezing, nausea, vomiting, anorexia, abdominal cramping, fever, pain, loss of body weight, dehydration, alopecia, dyspenea, insomnia, dizziness, mucositis, nerve and muscle effects, fatigue, dry mouth, loss of appetite, rashes or swellings at the site of administration, flu-like symptoms such as fever, chills, and fatigue, digestive tract problems, and allergic reactions. Additional undesired effects experienced by patients are numerous and known in the art. Many are described in Physician’s Desk Reference (68th ed. 2014) .
  • a subject is a mammal, such as a non-primate (e.g., cow, pig, horse, cat, dog, rat, etc. ) or a primate (e.g., monkey and human) .
  • the subject is a human.
  • the subject is a mammal (e.g., a human) having an infectious disease or neoplastic disease.
  • the subject is a mammal (e.g., a human) at risk of developing an infectious disease or neoplastic disease.
  • the term “elderly human” refers to a human 65 years or older.
  • the term “human adult” refers to a human that is 18 years or older.
  • the term “human child” refers to a human that is 1 year to 18 years old.
  • the term “human toddler” refers to a human that is 1 year to 3 years old.
  • the term “human infant” refers to a newborn to 1 year old year human.
  • detectable probe refers to a composition that provides a detectable signal.
  • the term includes, without limitation, any fluorophore, chromophore, radiolabel, enzyme, antibody or antibody fragment, and the like, that provide a detectable signal via its activity.
  • detectable agent refers to a substance that can be used to ascertain the existence or presence of a desired molecule, such as an antigen encoded by an mRNA molecule as described herein, in a sample or subject.
  • a detectable agent can be a substance that is capable of being visualized or a substance that is otherwise able to be determined and/or measured (e.g., by quantitation) .
  • substantially all refers to at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 98%, at least about 99%, or about 100%.
  • the term “about” or “approximately” means an acceptable error for a particular value as determined by one of ordinary skill in the art, which depends in part on how the value is measured or determined. In certain embodiments, the term “about” or “approximately” means within 1, 2, 3, or 4 standard deviations. In certain embodiments, the term “about” or “approximately” means within 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.05%, or less of a given value or range. As used herein, when “about” is used in connection with a numerical range, the term “about” is meant to apply to both ends of such range modified by the term “about” (e.g., “about 5 to 10” means “about 5 to about 10”) .
  • the therapeutic nucleic acid molecules for the management, prevention and treatment of breast cancer, melanoma or colon cancer.
  • the therapeutic nucleic acid encodes a peptide or polypeptide, which upon administration into a subject in need thereof, is expressed by the cells in the subject to produce the encoded peptide or polypeptide.
  • the therapeutic nucleic acid molecules are DNA molecules.
  • the therapeutic nucleic acid molecules are RNA molecules.
  • the therapeutic nucleic acid molecules are mRNA molecules.
  • the mRNA molecule of the present disclosure encodes a peptide or polypeptide of interest, including any naturally occurring polypeptide or functional derivative thereof.
  • a peptide or polypeptide encoded by an mRNA may be of any size and may have any secondary structure or activity.
  • the polypeptide encoded by an mRNA payload can have a therapeutic effect when expressed in a cell.
  • the mRNA molecule of the present disclosure comprises at least one coding region encoding a peptide or polypeptide of interest (e.g., an open reading frame (ORF) ) .
  • the nucleic acid molecule further comprises at least one untranslated region (UTR) .
  • the untranslated region (UTR) is located upstream (to the 5’ -end) of the coding region, and is referred to herein as the 5’ -UTR.
  • the untranslated region (UTR) is located downstream (to the 3’ -end) of the coding region, and is referred to herein as the 3’ -UTR.
  • the nucleic acid molecule comprises both a 5’ -UTR and a 3’ -UTR.
  • the 5’ -UTR comprises a 5’ -Cap structure.
  • the nucleic acid molecule comprises a Kozak sequence (e.g., in the 5’ -UTR) .
  • the nucleic acid molecule comprises a poly-A region (e.g., in the 3’ -UTR) .
  • the nucleic acid molecule comprises a polyadenylation signal (e.g., in the 3’ -UTR) .
  • the nucleic acid molecule comprises stabilizing region (e.g., in the 3’ -UTR) .
  • the nucleic acid molecule comprises a secondary structure.
  • the secondary structure is a stem-loop.
  • the nucleic acid molecule comprises a stem-loop sequence (e.g., in the 5’ -UTR and/or the 3’ -UTR) .
  • the nucleic acid molecule comprises one or more intronic regions capable of being excised during splicing.
  • the nucleic acid molecule comprises one or more region selected from a 5’ -UTR, and a coding region.
  • the nucleic acid molecule comprises one or more region selected from a coding region and a 3’ -UTR. In a specific embodiment, the nucleic acid molecule comprises one or more region selected from a 5’ -UTR, a coding region, and a 3’ -UTR.
  • the nucleic acid molecule of the present disclosure comprises at least one coding region.
  • the coding region is an open reading frame (ORF) that encodes for a single peptide or protein.
  • the coding region comprises at least two ORFs, each encoding a peptide or protein.
  • the encoded peptides and/or proteins can be the same as or different from each other.
  • the multiple ORFs in a coding region are separated by non-coding sequences.
  • a non-coding sequence separating two ORFs comprises an internal ribosome entry sites (IRES) .
  • an internal ribosome entry sites can act as the sole ribosome binding site, or serve as one of multiple ribosome binding sites of an mRNA.
  • An mRNA molecule containing more than one functional ribosome binding site can encode several peptides or proteins that are translated independently by the ribosomes (e.g., multicistronic mRNA) .
  • the nucleic acid molecule of the present disclosure e.g., mRNA
  • IRES sequences that can be used in connection with the present disclosure include, without limitation, those from picomaviruses (e.g., FMDV) , pest viruses (CFFV) , polio viruses (PV) , encephalomyocarditis viruses (ECMV) , foot-and-mouth disease viruses (FMDV) , hepatitis C viruses (HCV) , classical swine fever viruses (CSFV) , murine leukemia virus (MLV) , simian immune deficiency viruses (SIV) or cricket paralysis viruses (CrPV) .
  • picomaviruses e.g., FMDV
  • CFFV pest viruses
  • PV polio viruses
  • ECMV encephalomyocarditis viruses
  • FMDV foot-and-mouth disease viruses
  • HCV hepatitis C viruses
  • CSFV classical swine fever viruses
  • MLV murine leukemia virus
  • SIV simian immune deficiency
  • the nucleic acid molecule of the present disclosure encodes for at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more than 10 peptides or proteins. Peptides and proteins encoded by a nucleic acid molecule can be the same or different.
  • the nucleic acid molecule of the present disclosure encodes a dipeptide (e.g., camosine and anserine) .
  • the nucleic acid molecule encodes a tripeptide.
  • the nucleic acid molecule encodes a tetrapeptide.
  • the nucleic acid molecule encodes a pentapeptide.
  • the nucleic acid molecule encodes a hexapeptide. In some embodiments, the nucleic acid molecule encodes a heptapeptide. In some embodiments, the nucleic acid molecule encodes an octapeptide. In some embodiments, the nucleic acid molecule encodes a nonapeptide. In some embodiments, the nucleic acid molecule encodes a decapeptide. In some embodiments, the nucleic acid molecule encodes a peptide or polypeptide that has at least about 15 amino acids. In some embodiments, the nucleic acid molecule encodes a peptide or polypeptide that has at least about 50 amino acids.
  • the nucleic acid molecule encodes a peptide or polypeptide that has at least about 100 amino acids. In some embodiments, the nucleic acid molecule encodes a peptide or polypeptide that has at least about 150 amino acids. In some embodiments, the nucleic acid molecule encodes a peptide or polypeptide that has at least about 300 amino acids. In some embodiments, the nucleic acid molecule encodes a peptide or polypeptide that has at least about 500 amino acids. In some embodiments, the nucleic acid molecule encodes a peptide or polypeptide that has at least about 1000 amino acids.
  • the nucleic acid molecule of the present disclosure is at least about 30 nucleotides (nt) in length. In some embodiments, the nucleic acid molecule is at least about 35 nt in length. In some embodiments, the nucleic acid molecule is at least about 40 nt in length. In some embodiments, the nucleic acid molecule is at least about 45 nt in length. In some embodiments the nucleic acid molecule is at least about 50 nt in length. In some embodiments, the nucleic acid molecule is at least about 55 nt in length. In some embodiments, the nucleic acid molecule is at least about 60 nt in length.
  • the nucleic acid molecule is at least about 65 nt in length. In some embodiments, the nucleic acid molecule is at least about 70 nt in length. In some embodiments, the nucleic acid molecule is at least about 75 nt in length. In some embodiments, the nucleic acid molecule is at least about 80 nt in length. In some embodiments the nucleic acid molecule is at least about 85 nt in length. In some embodiments, the nucleic acid molecule is at least about 90 nt in length. In some embodiments, the nucleic acid molecule is at least about 95 nt in length. In some embodiments, the nucleic acid molecule is at least about 100 nt in length.
  • the nucleic acid molecule is at least about 120 nt in length. In some embodiments, the nucleic acid molecule is at least about 140 nt in length. In some embodiments, the nucleic acid molecule is at least about 160 nt in length. In some embodiments, the nucleic acid molecule is at least about 180 nt in length. In some embodiments, the nucleic acid molecule is at least about 200 nt in length. In some embodiments, the nucleic acid molecule is at least about 250 nt in length. In some embodiments, the nucleic acid molecule is at least about 300 nt in length. In some embodiments, the nucleic acid molecule is at least about 400 nt in length.
  • the nucleic acid molecule is at least about 500 nt in length. In some embodiments, the nucleic acid molecule is at least about 600 nt in length. In some embodiments, the nucleic acid molecule is at least about 700 nt in length. In some embodiments, the nucleic acid molecule is at least about 800 nt in length. In some embodiments, the nucleic acid molecule is at least about 900 nt in length. In some embodiments, the nucleic acid molecule is at least about 1000 nt in length. In some embodiments, the nucleic acid molecule is at least about 1100 nt in length. In some embodiments, the nucleic acid molecule is at least about 1200 nt in length.
  • the nucleic acid molecule is at least about 1300 nt in length. In some embodiments, the nucleic acid molecule is at least about 1400 nt in length. In some embodiments, the nucleic acid molecule is at least about 1500 nt in length. In some embodiments, the nucleic acid molecule is at least about 1600 nt in length. In some embodiments, the nucleic acid molecule is at least about 1700 nt in length. In some embodiments, the nucleic acid molecule is at least about 1800 nt in length. In some embodiments, the nucleic acid molecule is at least about 1900 nt in length. In some embodiments, the nucleic acid molecule is at least about 2000 nt in length.
  • the nucleic acid molecule is at least about 2500 nt in length. In some embodiments, the nucleic acid molecule is at least about 3000 nt in length. In some embodiments, the nucleic acid molecule is at least about 3500 nt in length. In some embodiments, the nucleic acid molecule is at least about 4000 nt in length. In some embodiments, the nucleic acid molecule is at least about 4500 nt in length. In some embodiments, the nucleic acid molecule is at least about 5000 nt in length.
  • the therapeutic nucleic acid of the present disclosure encodes a peptide or protein comprising interleukin-12 (IL-12) or a functional derivative thereof. In specific embodiments, the therapeutic nucleic acid of the present disclosure encodes a peptide or protein comprising a human IL-12 (hIL-12) or a functional derivative thereof. In specific embodiments, the therapeutic nucleic acid of the present disclosure encodes a peptide or protein comprising a mouse IL-12 (mIL-12) or a functional derivative thereof.
  • IL-12 interleukin-12
  • hIL-12 human IL-12
  • mIL-12 mouse IL-12
  • the therapeutic nucleic acid of the present disclosure encodes a single polypeptide comprising IL-12A or a functional derivative thereof. In some embodiments, the therapeutic nucleic acid of the present disclosure encodes a single polypeptide comprising IL-12B or a function fragment or variant thereof. In some embodiments, the therapeutic nucleic acid of the present disclosure comprises at least two ORFs, the first ORF encoding an IL-12A polypeptide or a functional derivative thereof, and the second ORF encoding an IL-12B polypeptide or a functional derivative thereof. In some embodiments, the therapeutic nucleic acid of the present disclosure encodes a single polypeptide comprising IL-12A or a functional derivative thereof fused to IL-12B or a functional derivative thereof.
  • the therapeutic nucleic acid of the present disclosure encodes a single polypeptide comprising the IL-12A or a functional derivative thereof and IL-12B or a functional derivative thereof fused directly or by a linker.
  • the therapeutic nucleic acid of the present disclosure comprises at least two nucleic acid molecules, the first nucleic acid molecule encoding IL-12A or a functional derivative thereof, and the second nucleic acid molecule encoding IL-12B or a functional derivative thereof.
  • the therapeutic nucleic acid of the present disclosure encodes a peptide or protein comprising interleukin-15 (IL-15) or a functional derivative thereof. In specific embodiments, the therapeutic nucleic acid of the present disclosure encodes a peptide or protein comprising a human IL-15 (hIL-15) or a functional derivative thereof. In specific embodiments, the therapeutic nucleic acid of the present disclosure encodes a peptide or protein comprising a mouse IL-15 (mIL-15) or a functional derivative thereof.
  • IL-15 interleukin-15
  • hIL-15 human IL-15
  • mIL-15 mouse IL-15
  • the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising IL-15 or functional derivative thereof that is fused to an IL-15 receptor (IL-15R) polypeptide or functional derivative thereof.
  • IL-15R IL-15 receptor
  • the IL-15R polypeptide is IL-15R ⁇ subunit (IL-15R ⁇ ) .
  • the IL-15R polypeptide is the Sushi domain of IL-15R ⁇ .
  • the fusion between IL-15 or functional derivative thereof and IL-15R polypeptide or functional derivative can be either direct or via a peptidic linker.
  • Table 1 shows exemplary IL-12 and IL-15 sequences that can be encoded by the nucleic acid molecules of the present disclosure.
  • Table 1 Exemplary hIL-12 and hIL-15 sequences.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-12A or a functional derivative thereof.
  • the encoded polypeptide comprises an amino acid sequence of SEQ ID NO: 4.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-12A or a functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 5.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-12A or a functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 5.
  • the nucleic acid molecule is an mRNA molecule.
  • the encoded polypeptide comprises a functional derivative of hIL-12A having an amino acid sequence that has at least about 85%sequence identity with SEQ ID NO: 4.
  • the encoded polypeptide comprises a functional derivative of hIL-12A having an amino acid sequence that has at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity with SEQ ID NO: 4.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-12A or a functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 77.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-12A or a functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 77.
  • the nucleic acid molecule is an mRNA molecule.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-12A or a functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 78.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-12A or a functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 78.
  • the nucleic acid molecule is an mRNA molecule.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-12A or a functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 79.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-12A or a functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 79.
  • the nucleic acid molecule is an mRNA molecule.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-12B or a functional derivative thereof.
  • the encoded polypeptide comprises an amino acid sequence of SEQ ID NO: 6.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-12B or a functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 7.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-12B or a functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 7.
  • the nucleic acid molecule is an mRNA molecule. In particular embodiments, the nucleic acid molecule is an mRNA molecule. In some embodiments, the encoded polypeptide comprises a functional derivative of hIL-12B having an amino acid sequence that has at least about 85%sequence identity with SEQ ID NO: 6. In some embodiments, the encoded polypeptide comprises a functional derivative of hIL-12B having an amino acid sequence that has at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity with SEQ ID NO: 6.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-12B or a functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 80.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-12B or a functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 80.
  • the nucleic acid molecule is an mRNA molecule.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-12B or a functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 81.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-12B or a functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 81.
  • the nucleic acid molecule is an mRNA molecule.
  • the therapeutic nucleic acid of the present disclosure comprises at least two ORFs, the first ORF encoding a polypeptide comprising hIL-12A or a functional derivative thereof, and the second ORF encoding a polypeptide comprising hIL-12B or a functional derivative thereof.
  • the first ORF encodes a polypeptide comprising the amino acid sequence of SEQ ID NO: 4.
  • the second ORF encodes a polypeptide comprising the amino acid sequence of SEQ ID NO: 6.
  • the therapeutic nucleic acid of the present disclosure comprises at least two ORFs, the first ORF encoding a polypeptide comprising a functional derivative of hIL-12A, and the second ORF encoding a polypeptide comprising a functional derivative of hIL-12B.
  • the first ORF encodes a polypeptide having an amino acid sequence that has at least about 85%sequence identity with SEQ ID NO: 4
  • the second ORF encodes a polypeptide having an amino acid sequence that has at least about 85%sequence identity with SEQ ID NO: 6.
  • the first ORF encodes a polypeptide having an amino acid sequence that has at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity with SEQ ID NO: 4
  • the second ORF encodes a polypeptide having an amino acid sequence that has at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity with SEQ ID NO: 6.
  • the therapeutic nucleic acid of the present disclosure comprises at least two ORFs, the first ORF encoding hIL-12A comprises the DNA coding sequence of SEQ ID NO: 5 or a transcribed RNA sequence thereof, and the second ORF encoding hIL-12B comprises the DNA coding sequence of SEQ ID NO: 7 or a transcribed RNA sequence thereof.
  • the therapeutic nucleic acid of the present disclosure comprises at least two ORFs, the first ORF encoding hIL-12A comprises the DNA coding sequence of SEQ ID NO: 5 or a transcribed RNA sequence thereof, and the second ORF encoding hIL-12B comprises the DNA coding sequence of SEQ ID NO: 80 or a transcribed RNA sequence thereof.
  • the therapeutic nucleic acid of the present disclosure comprises at least two ORFs, the first ORF encoding hIL-12A comprises the DNA coding sequence of SEQ ID NO: 5 or a transcribed RNA sequence thereof, and the second ORF encoding hIL-12B comprises the DNA coding sequence of SEQ ID NO: 81 or a transcribed RNA sequence thereof.
  • the nucleic acid molecule is an mRNA molecule.
  • the therapeutic nucleic acid of the present disclosure comprises at least two ORFs, the first ORF encoding hIL-12A comprises the DNA coding sequence of SEQ ID NO: 77 or a transcribed RNA sequence thereof, and the second ORF encoding hIL-12B comprises the DNA coding sequence of SEQ ID NO: 7 or a transcribed RNA sequence thereof.
  • the therapeutic nucleic acid of the present disclosure comprises at least two ORFs, the first ORF encoding hIL-12A comprises the DNA coding sequence of SEQ ID NO: 77 or a transcribed RNA sequence thereof, and the second ORF encoding hIL-12B comprises the DNA coding sequence of SEQ ID NO: 80 or a transcribed RNA sequence thereof.
  • the therapeutic nucleic acid of the present disclosure comprises at least two ORFs, the first ORF encoding hIL-12A comprises the DNA coding sequence of SEQ ID NO: 77 or a transcribed RNA sequence thereof, and the second ORF encoding hIL-12B comprises the DNA coding sequence of SEQ ID NO: 81 or a transcribed RNA sequence thereof.
  • the nucleic acid molecule is an mRNA molecule.
  • the therapeutic nucleic acid of the present disclosure comprises at least two ORFs, the first ORF encoding hIL-12A comprises the DNA coding sequence of SEQ ID NO: 78 or a transcribed RNA sequence thereof, and the second ORF encoding hIL-12B comprises the DNA coding sequence of SEQ ID NO: 7 or a transcribed RNA sequence thereof.
  • the therapeutic nucleic acid of the present disclosure comprises at least two ORFs, the first ORF encoding hIL-12A comprises the DNA coding sequence of SEQ ID NO: 78 or a transcribed RNA sequence thereof, and the second ORF encoding hIL-12B comprises the DNA coding sequence of SEQ ID NO: 80 or a transcribed RNA sequence thereof.
  • the therapeutic nucleic acid of the present disclosure comprises at least two ORFs, the first ORF encoding hIL-12A comprises the DNA coding sequence of SEQ ID NO: 78 or a transcribed RNA sequence thereof, and the second ORF encoding hIL-12B comprises the DNA coding sequence of SEQ ID NO: 81 or a transcribed RNA sequence thereof.
  • the nucleic acid molecule is an mRNA molecule.
  • the therapeutic nucleic acid of the present disclosure comprises at least two ORFs, the first ORF encoding hIL-12A comprises the DNA coding sequence of SEQ ID NO: 79 or a transcribed RNA sequence thereof, and the second ORF encoding hIL-12B comprises the DNA coding sequence of SEQ ID NO: 7 or a transcribed RNA sequence thereof.
  • the therapeutic nucleic acid of the present disclosure comprises at least two ORFs, the first ORF encoding hIL-12A comprises the DNA coding sequence of SEQ ID NO: 79 or a transcribed RNA sequence thereof, and the second ORF encoding hIL-12B comprises the DNA coding sequence of SEQ ID NO: 80 or a transcribed RNA sequence thereof.
  • the therapeutic nucleic acid of the present disclosure comprises at least two ORFs, the first ORF encoding hIL-12A comprises the DNA coding sequence of SEQ ID NO: 79 or a transcribed RNA sequence thereof, and the second ORF encoding hIL-12B comprises the DNA coding sequence of SEQ ID NO: 81 or a transcribed RNA sequence thereof.
  • the nucleic acid molecule is an mRNA molecule.
  • the therapeutic nucleic acid of the present disclosure comprises at least two nucleic acid molecules, the first nucleic acid molecule encoding a polypeptide comprising hIL-12A or a functional derivative thereof, and the second nucleic acid molecule encoding a polypeptide comprising hIL-12B or a functional derivative thereof.
  • the first nucleic acid molecule encodes a polypeptide comprising the amino acid sequence of SEQ ID NO: 4
  • the second nucleic acid molecule encodes a polypeptide comprising the amino acid sequence of SEQ ID NO: 6.
  • the therapeutic nucleic acid of the present disclosure comprises at least two nucleic acid molecules, the first nucleic acid molecule encoding a polypeptide comprising a functional derivative of hIL-12A, and the second nucleic acid molecule encoding a polypeptide comprising a functional derivative of hIL-12B.
  • the first nucleic acid molecule encodes a polypeptide comprising an amino acid sequence having at least about 85%sequence identity with SEQ ID NO: 4
  • the second nucleic acid molecule encodes a polypeptide comprising an amino acid sequence having at least about 85%sequence identity with SEQ ID NO: 6.
  • the first nucleic acid molecule encodes a polypeptide comprising an amino acid sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity with SEQ ID NO: 4
  • the second nucleic acid molecule encodes a polypeptide comprising an amino acid sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity with SEQ ID NO: 6.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising mIL-12A or a functional derivative thereof.
  • the encoded polypeptide comprises an amino acid sequence of SEQ ID NO: 8.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising mIL-12A or a functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 9.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising mIL-12A or a functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 9.
  • the nucleic acid molecule is an mRNA molecule.
  • the encoded polypeptide comprises a functional derivative of mIL-12A having an amino acid sequence that has at least about 85%sequence identity with SEQ ID NO: 8.
  • the encoded polypeptide comprises a functional derivative of mIL-12A having an amino acid sequence that has at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity with SEQ ID NO: 8.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising mIL-12A or a functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 82.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising mIL-12A or a functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 82.
  • the nucleic acid molecule is an mRNA molecule.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising mIL-12B or a functional derivative thereof.
  • the encoded polypeptide comprises an amino acid sequence of SEQ ID NO: 10.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising mIL-12B or a functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 11.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising mIL-12B or a functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 11.
  • the nucleic acid molecule is an mRNA molecule.
  • the encoded polypeptide comprises a functional derivative of mIL-12B having an amino acid sequence that has at least about 85%sequence identity with SEQ ID NO: 10.
  • the encoded polypeptide comprises a functional derivative of mIL-12B having an amino acid sequence that has at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity with SEQ ID NO: 10.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising mIL-12B or a functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 83.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising mIL-12B or a functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 83.
  • the nucleic acid molecule is an mRNA molecule.
  • the therapeutic nucleic acid of the present disclosure comprises at least two ORFs, the first ORF encoding a polypeptide comprising mIL-12A or a functional derivative thereof, and the second ORF encoding a polypeptide comprising mIL-12B or a functional derivative thereof.
  • the first ORF encodes a polypeptide comprising the amino acid sequence of SEQ ID NO: 8.
  • the second ORF encodes a polypeptide comprising the amino acid sequence of SEQ ID NO: 10.
  • the therapeutic nucleic acid of the present disclosure comprises at least two ORFs, the first ORF encoding a polypeptide comprising a functional derivative of mIL-12A, and the second ORF encoding a polypeptide comprising a functional derivative of mIL-12B.
  • the first ORF encodes a polypeptide having an amino acid sequence that has at least about 85%sequence identity with SEQ ID NO: 8
  • the second ORF encodes a polypeptide having an amino acid sequence that has at least about 85%sequence identity with SEQ ID NO: 10.
  • the first ORF encodes a polypeptide having an amino acid sequence that has at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity with SEQ ID NO: 8
  • the second ORF encodes a polypeptide having an amino acid sequence that has at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity with SEQ ID NO: 10.
  • the therapeutic nucleic acid of the present disclosure comprises at least two ORFs, the first ORF encoding mIL-12A polypeptide comprises the DNA coding sequence of SEQ ID NO: 9 or a transcribed RNA sequence thereof, and the second ORF encoding mIL-12B comprises the DNA coding sequence of SEQ ID NO: 11, or a transcribed RNA sequence thereof.
  • the nucleic acid is a mRNA molecule.
  • the therapeutic nucleic acid of the present disclosure comprises at least two ORFs, the first ORF encoding mIL-12A polypeptide comprises the DNA coding sequence of SEQ ID NO: 9 or a transcribed RNA sequence thereof, and the second ORF encoding mIL-12B comprises the DNA coding sequence of SEQ ID NO: 83, or a transcribed RNA sequence thereof.
  • the nucleic acid is a mRNA molecule.
  • the therapeutic nucleic acid of the present disclosure comprises at least two ORFs, the first ORF encoding mIL-12A polypeptide comprises the DNA coding sequence of SEQ ID NO: 82 or a transcribed RNA sequence thereof, and the second ORF encoding mIL-12B comprises the DNA coding sequence of SEQ ID NO: 11, or a transcribed RNA sequence thereof.
  • the nucleic acid is a mRNA molecule.
  • the therapeutic nucleic acid of the present disclosure comprises at least two ORFs, the first ORF encoding mIL-12A polypeptide comprises the DNA coding sequence of SEQ ID NO: 82 or a transcribed RNA sequence thereof, and the second ORF encoding mIL-12B comprises the DNA coding sequence of SEQ ID NO: 83, or a transcribed RNA sequence thereof.
  • the nucleic acid is a mRNA molecule.
  • the therapeutic nucleic acid of the present disclosure comprises at least two nucleic acid molecules, the first nucleic acid molecule encoding a polypeptide comprising mIL-12A or a functional derivative thereof, and the second nucleic acid molecule encoding a polypeptide comprising mIL-12B or a functional derivative thereof.
  • the first nucleic acid molecule encodes a polypeptide comprising the amino acid sequence of SEQ ID NO: 8
  • the second nucleic acid molecule encodes a polypeptide comprising the amino acid sequence of SEQ ID NO: 10.
  • the therapeutic nucleic acid of the present disclosure comprises at least two nucleic acid molecules, the first nucleic acid molecule encoding a polypeptide comprising a functional derivative of mIL-12A, and the second nucleic acid molecule encoding a polypeptide comprising a functional derivative of mIL-12B.
  • the first nucleic acid molecule encodes a polypeptide comprising an amino acid sequence having at least about 85%sequence identity with SEQ ID NO: 8
  • the second nucleic acid molecule encodes a polypeptide comprising an amino acid sequence having at least about 85%sequence identity with SEQ ID NO: 10.
  • the first nucleic acid molecule encodes a polypeptide comprising an amino acid sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity with SEQ ID NO: 8
  • the second nucleic acid molecule encodes a polypeptide comprising an amino acid sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity with SEQ ID NO: 10.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-15 or a functional derivative thereof.
  • the encoded polypeptide comprises an amino acid sequence of SEQ ID NO: 12.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-15 or a functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 13.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-15 or a functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 13.
  • the nucleic acid molecule is an mRNA molecule.
  • the encoded polypeptide comprises a functional derivative of hIL-15 having an amino acid sequence that has at least about 85%sequence identity with SEQ ID NO: 12.
  • the encoded polypeptide comprises a functional derivative of hIL-15 having an amino acid sequence that has at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity with SEQ ID NO: 12.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-15 or a functional derivative thereof.
  • the encoded polypeptide comprises an amino acid sequence of SEQ ID NO: 84.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-15 or a functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 85.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-15 or a functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 85.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-15 or a functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 86.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-15 or a functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 86.
  • the nucleic acid molecule is an mRNA molecule.
  • the encoded polypeptide comprises a functional derivative of hIL-15 having an amino acid sequence that has at least about 85%sequence identity with SEQ ID NO: 84. In some embodiments, the encoded polypeptide comprises a functional derivative of hIL-15 having an amino acid sequence that has at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity with SEQ ID NO: 84.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-15 receptor or functional derivative thereof.
  • the hIL-15 receptor polypeptide is hIL-15R ⁇ or a functional derivative thereof.
  • the hIL-15 receptor polypeptide is the Sushi domain of hIL-15R ⁇ or a functional derivative thereof.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-15 receptor or functional derivative thereof, and wherein the encoded polypeptide has an amino acid sequence of SEQ ID NO: 14.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-15 receptor or functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 15.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-15 receptor or a functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 15.
  • the nucleic acid molecule is an mRNA molecule.
  • the encoded polypeptide comprises a functional derivative of hIL-15 receptor having an amino acid sequence that has at least about 85%sequence identity with SEQ ID NO: 14.
  • the encoded polypeptide comprises a functional derivative of hIL-15 receptor having an amino acid sequence that has at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity with SEQ ID NO: 14.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-15 receptor or functional derivative thereof.
  • the hIL-15 receptor polypeptide is hIL-15R ⁇ or a functional derivative thereof.
  • the hIL-15 receptor polypeptide is the Sushi domain of hIL-15R ⁇ or a functional derivative thereof.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-15 receptor or functional derivative thereof, and wherein the encoded polypeptide has an amino acid sequence of SEQ ID NO: 87.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-15 receptor or functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 88.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-15 receptor or a functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 88.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-15 receptor or functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 89.
  • the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-15 receptor or a functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 89.
  • the nucleic acid molecule is an mRNA molecule.
  • the encoded polypeptide comprises a functional derivative of hIL-15 receptor having an amino acid sequence that has at least about 85%sequence identity with SEQ ID NO: 87.
  • the encoded polypeptide comprises a functional derivative of hIL-15 receptor having an amino acid sequence that has at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity with SEQ ID NO: 87.
  • the therapeutic nucleic acid of the present disclosure encodes a single polypeptide comprising IL-12A or a functional derivative thereof fused to IL-12B or a functional derivative thereof.
  • the IL-12A polypeptide is fused to the N terminus of the IL-12B polypeptide.
  • the IL-12B polypeptide is fused to the N terminus of the IL-12A polypeptide.
  • the IL-12A is hIL-12A or a functional derivative thereof.
  • the hIL-12A or functional derivative thereof comprises a sequence of SEQ ID NO: 4.
  • the hIL-12A or functional derivative thereof comprises a sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity with SEQ ID NO: 4.
  • the IL-12B is hIL-12B or a functional derivative thereof.
  • the hIL-12B or functional derivative thereof comprises a sequence of SEQ ID NO: 6.
  • the hIL-12A or functional derivative thereof comprises a sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity with SEQ ID NO: 6.
  • the nucleic acid comprises the coding sequence for hIL-12A of SEQ ID NO: 5 or a transcribed RNA sequence thereof, and the coding sequence for hIL-12B of SEQ ID NO: 7 or a transcribed RNA sequence thereof. In some embodiments of the fusion protein, the nucleic acid comprises the coding sequence for hIL-12A of SEQ ID NO: 5 or a transcribed RNA sequence thereof, and the coding sequence for hIL-12B of SEQ ID NO: 80 or a transcribed RNA sequence thereof.
  • the nucleic acid comprises the coding sequence for hIL-12A of SEQ ID NO: 5 or a transcribed RNA sequence thereof, and the coding sequence for hIL-12B of SEQ ID NO: 81 or a transcribed RNA sequence thereof.
  • the nucleic acid is mRNA.
  • the nucleic acid comprises the coding sequence for hIL-12A of SEQ ID NO: 77 or a transcribed RNA sequence thereof, and the coding sequence for hIL-12B of SEQ ID NO: 7 or a transcribed RNA sequence thereof. In some embodiments of the fusion protein, the nucleic acid comprises the coding sequence for hIL-12A of SEQ ID NO: 77 or a transcribed RNA sequence thereof, and the coding sequence for hIL-12B of SEQ ID NO: 80 or a transcribed RNA sequence thereof.
  • the nucleic acid comprises the coding sequence for hIL-12A of SEQ ID NO: 77 or a transcribed RNA sequence thereof, and the coding sequence for hIL-12B of SEQ ID NO: 81 or a transcribed RNA sequence thereof.
  • the nucleic acid is mRNA.
  • the nucleic acid comprises the coding sequence for hIL-12A of SEQ ID NO: 78 or a transcribed RNA sequence thereof, and the coding sequence for hIL-12B of SEQ ID NO: 7 or a transcribed RNA sequence thereof. In some embodiments of the fusion protein, the nucleic acid comprises the coding sequence for hIL-12A of SEQ ID NO: 78 or a transcribed RNA sequence thereof, and the coding sequence for hIL-12B of SEQ ID NO: 80 or a transcribed RNA sequence thereof.
  • the nucleic acid comprises the coding sequence for hIL-12A of SEQ ID NO: 78 or a transcribed RNA sequence thereof, and the coding sequence for hIL-12B of SEQ ID NO: 81 or a transcribed RNA sequence thereof.
  • the nucleic acid is mRNA.
  • the nucleic acid comprises the coding sequence for hIL-12A of SEQ ID NO: 79 or a transcribed RNA sequence thereof, and the coding sequence for hIL-12B of SEQ ID NO: 7 or a transcribed RNA sequence thereof. In some embodiments of the fusion protein, the nucleic acid comprises the coding sequence for hIL-12A of SEQ ID NO: 79 or a transcribed RNA sequence thereof, and the coding sequence for hIL-12B of SEQ ID NO: 80 or a transcribed RNA sequence thereof.
  • the nucleic acid comprises the coding sequence for hIL-12A of SEQ ID NO: 79 or a transcribed RNA sequence thereof, and the coding sequence for hIL-12B of SEQ ID NO: 81 or a transcribed RNA sequence thereof.
  • the nucleic acid is mRNA.
  • the therapeutic nucleic acid of the present disclosure encodes a single polypeptide comprising IL-12A or a functional derivative thereof fused to IL-12B or a functional derivative thereof.
  • the IL-12A polypeptide is fused to the N terminus of the IL-12B polypeptide.
  • the IL-12B polypeptide is fused to the N terminus of the IL-12A polypeptide.
  • the IL-12A is mIL-12A or a functional derivative thereof.
  • the mIL-12A or functional derivative thereof comprises a sequence of SEQ ID NO: 8.
  • the mIL-12A or functional derivative thereof comprises a sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity of SEQ ID NO: 8.
  • the IL-12B is mIL-12B or a functional derivative thereof.
  • the mIL-12B or functional derivative thereof comprises a sequence of SEQ ID NO: 10.
  • the mIL-12A or functional derivative thereof comprises a sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity with SEQ ID NO: 10.
  • the nucleic acid comprises the coding sequence for mIL-12A of SEQ ID NO: 9 or a transcribed RNA sequence thereof, and the coding sequence for mIL-12B of SEQ ID NO: 11 or a transcribed RNA sequence thereof. In some embodiments of the fusion protein, the nucleic acid comprises the coding sequence for mIL-12A of SEQ ID NO: 9 or a transcribed RNA sequence thereof, and the coding sequence for mIL-12B of SEQ ID NO: 83 or a transcribed RNA sequence thereof.
  • the nucleic acid comprises the coding sequence for mIL-12A of SEQ ID NO: 82 or a transcribed RNA sequence thereof, and the coding sequence for mIL-12B of SEQ ID NO: 11 or a transcribed RNA sequence thereof. In some embodiments of the fusion protein, the nucleic acid comprises the coding sequence for mIL-12A of SEQ ID NO: 82 or a transcribed RNA sequence thereof, and the coding sequence for mIL-12B of SEQ ID NO: 83 or a transcribed RNA sequence thereof. In some embodiments, the nucleic acid is mRNA.
  • the therapeutic nucleic acid of the present disclosure encodes a single polypeptide comprising the IL-12A or a functional derivative thereof and IL-12B or a functional derivative thereof fused directly or by a linker.
  • Various peptidic linkers for example, having at least 5, 10, 15, 20, 25, 30, or 50 amino acids, can be used in connection with the IL-12 containing fusion proteins of the present disclosure.
  • Table 2 shows exemplary peptidic linkers that can be used in connection with the present disclosure.
  • the therapeutic nucleic acid of the present disclosure encodes a single polypeptide comprising IL-15 or a function derivative thereof fused to an IL-15R polypeptide or a functional derivative thereof.
  • the IL-15R is IL-15R ⁇ .
  • the IL-15R is the Sushi domain of IL-15R ⁇ .
  • the IL-15 polypeptide is fused to the N terminus of the IL-15R polypeptide.
  • the IL-15 receptor polypeptide is fused to the N terminus of the IL-15 polypeptide.
  • the IL-15 is hIL-15 or a functional derivative thereof.
  • the hIL-15 or functional derivative thereof comprises a sequence of SEQ ID NO: 12. In specific embodiments, the hIL-15 or functional derivative thereof comprises a sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity of SEQ ID NO: 12. In some embodiments, the IL-15R is hIL-15R or a functional derivative thereof. In specific embodiments, the hIL-15R or functional derivative thereof comprises a sequence of SEQ ID NO: 14. In specific embodiments, the hIL-15R or functional derivative thereof comprises a sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity of SEQ ID NO: 14.
  • the nucleic acid comprises the coding sequence for hIL-15 of SEQ ID NO: 13 or a transcribed RNA sequence thereof, and the coding sequence for hIL-15R of SEQ ID NO: 15 or a transcribed RNA sequence thereof.
  • the nucleic acid is mRNA.
  • the therapeutic nucleic acid of the present disclosure encodes a single polypeptide comprising IL-15 or a function derivative thereof fused to an IL-15R polypeptide or a functional derivative thereof.
  • the IL-15R is IL-15R ⁇ .
  • the IL-15R is the Sushi domain of IL-15R ⁇ .
  • the IL-15 polypeptide is fused to the N terminus of the IL-15R polypeptide.
  • the IL-15 receptor polypeptide is fused to the N terminus of the IL-15 polypeptide.
  • the IL-15 is hIL-15 or a functional derivative thereof.
  • the hIL-15 or functional derivative thereof comprises a sequence of SEQ ID NO: 84. In specific embodiments, the hIL-15 or functional derivative thereof comprises a sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity of SEQ ID NO: 84. In some embodiments, the IL-15R is hIL-15R or a functional derivative thereof. In specific embodiments, the hIL-15R or functional derivative thereof comprises a sequence of SEQ ID NO: 88. In specific embodiments, the hIL-15R or functional derivative thereof comprises a sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity of SEQ ID NO: 88.
  • the nucleic acid comprises the coding sequence for hIL-15 of SEQ ID NO: 85 or a transcribed RNA sequence thereof, and the coding sequence for hIL-15R of SEQ ID NO: 88 or a transcribed RNA sequence thereof. In some embodiments of the fusion protein, the nucleic acid comprises the coding sequence for hIL-15 of SEQ ID NO: 85 or a transcribed RNA sequence thereof, and the coding sequence for hIL-15R of SEQ ID NO: 89 or a transcribed RNA sequence thereof.
  • the nucleic acid comprises the coding sequence for hIL-15 of SEQ ID NO: 86 or a transcribed RNA sequence thereof, and the coding sequence for hIL-15R of SEQ ID NO: 88 or a transcribed RNA sequence thereof. In some embodiments of the fusion protein, the nucleic acid comprises the coding sequence for hIL-15 of SEQ ID NO: 86 or a transcribed RNA sequence thereof, and the coding sequence for hIL-15R of SEQ ID NO: 89 or a transcribed RNA sequence thereof. In some embodiments, the nucleic acid is mRNA.
  • the IL-15 is mIL-15 or a functional derivative thereof. In some embodiments, the IL-15 is mIL-15R or a functional derivative thereof.
  • the therapeutic nucleic acid of the present disclosure encodes a single polypeptide comprising the IL-15 or a functional derivative thereof and IL-15R or a functional derivative thereof fused directly or by a linker.
  • Various peptidic linkers for example, having at least 5, 10, 15, 20, 25, 30, or 50 amino acids, can be used in connection with the IL-15 containing fusion proteins of the present disclosure.
  • Table 2 shows exemplary peptidic linkers (SEQ ID NOS: 16-23) that can be used in connection with the present disclosure.
  • a signal peptide can mediate transportation of a polypeptide fused thereto to particular locations of a cell.
  • the therapeutic nucleic acid molecule of the present disclosure encodes a fusion protein comprising an IL-12 peptide or polypeptide fused to a signal peptide.
  • the IL-12 polypeptide is one or more selected from (a) hIL-12A or a functional derivative thereof, (b) hIL-12B or a functional derivative thereof, (c) IL-12A from a non-human vertebrate species, such as mIL-12A, or a functional derivative thereof, (d) IL-12B from a non-human vertebrate species, such as mIL-12B or a functional derivative thereof, (e) a fusion protein comprising at least two of (a) to (d) .
  • the IL-12 peptide or polypeptide is an IL-12 containing fusion protein comprising IL-12A or a functional derivative thereof fused to IL-12B or a functional derivative thereof.
  • the fusion between IL-12A or a functional derivative thereof and the IL-12B or a functional derivative thereof is via a peptidic linker, such as a peptidic linker as described herein.
  • the IL-12A or a functional derivative thereof is fused directly to the IL-12B or a functional derivative thereof.
  • the IL-12 containing fusion protein comprises IL-12A or a functional derivative thereof fused to the N terminus of IL-12B or a functional derivative thereof.
  • the IL-12 containing fusion protein comprises IL-12B or a functional derivative thereof fused to the N terminus of IL-12A or a functional derivative thereof.
  • the IL-12A in an IL-12 containing fusion peptide is hIL-12A.
  • an IL-12 containing fusion protein comprises the sequence of SEQ ID NO: 4.
  • an IL-12 containing fusion protein comprises the sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity of SEQ ID NO: 4.
  • the IL-12B in an IL-12 containing fusion peptide is hIL-12B.
  • an IL-12 containing fusion protein comprises the sequence of SEQ ID NO: 6.
  • an IL-12 containing fusion protein comprises the sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity of SEQ ID NO: 6. In specific embodiments, an IL-12 containing fusion protein comprises the sequences of SEQ ID NO: 4 and SEQ ID NO: 6. In specific embodiments, an IL-12 containing fusion protein comprises the sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity of SEQ ID NO: 4 and the sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity of SEQ ID NO: 6.
  • the IL-12A in an IL-12 containing fusion peptide is IL-12A from a non-human vertebrate species, such as mIL-12A.
  • an IL-12 containing fusion protein comprises the sequence of SEQ ID NO: 8.
  • an IL-12 containing fusion protein comprises the sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity of SEQ ID NO: 8.
  • the IL-12B in an IL-12 containing fusion peptide is IL-12B from a non-human vertebrate species, such as mIL-12B.
  • an IL-12 containing fusion protein comprises the sequence of SEQ ID NO: 10. In specific embodiments, an IL-12 containing fusion protein comprises the sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity of SEQ ID NO: 10. In specific embodiments, an IL-12 containing fusion protein comprises the sequences of SEQ ID NO: 8 and SEQ ID NO: 10.
  • an IL-12 containing fusion protein comprises the sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity of SEQ ID NO: 8 and the sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity of SEQ ID NO: 10.
  • a signal peptide can fuse to the N terminus of the IL-12 peptide or polypeptide described herein.
  • a signal peptide can fuse to the C terminus of the IL-12 peptide or polypeptide described herein.
  • a signal peptide that can be fused to the IL-12 peptide or polypeptide described herein can have a sequence selected from the natural signal peptide of hIL-12A having the sequence of MCPARSLLLVATLVLLDHLSLA (SEQ ID NO: 56) , the natural signal peptide of hIL-12B having the sequence of MCHQQLVISWFSLVFLASPLVA (SEQ ID NO: 57) , the natural signal peptide of mIL-12A having the sequence of MCQSRYLLFLATLALLNHLSLA (SEQ ID NO: 58) , the natural signal peptide of mIL-12B having the sequence of MCPQKLTISWFAIVLLVSPLMA (SEQ ID NO: 59) , the natural signal peptide of hIL-15 having a sequence of MRISKPHLRSISIQCYLCLLLNSHFLTEA (SEQ ID NO: 60) , the natural signal peptide of hIL-15R having the sequence of MAP
  • the therapeutic nucleic acid molecule of the present disclosure encodes a fusion protein comprising an IL-15 peptide or polypeptide fused to a signal peptide.
  • the IL-15 polypeptide is one or more selected from (a) hIL-15, (b) IL-15 of a non-human vertebrate species, such as mIL-15, and (c) a functional derivative of any one of (a) and (b) .
  • the IL-15 peptide or polypeptide is an IL-15 containing fusion protein comprising IL-15 polypeptide or a functional derivative thereof fused to IL-15R or a functional derivative thereof.
  • the fusion between IL-15 or a functional derivative thereof and the IL-15R or a functional derivative thereof is via a peptidic linker, such as a peptidic linker as described herein.
  • the IL-15 or a functional derivative thereof is fused directly to the IL-15R or a functional derivative thereof.
  • the IL-15 containing fusion protein comprises IL-15 or a functional derivative thereof fused to the N terminus of IL-15R or a functional derivative thereof.
  • the IL-15 containing fusion protein comprises IL-15R or a functional derivative thereof fused to the N terminus of IL-15 or a functional derivative thereof.
  • the IL-15 in an IL-15 containing fusion peptide is hIL-15.
  • an IL-15 containing fusion protein comprises the sequence of SEQ ID NO: 12.
  • an IL-15 containing fusion protein comprises the sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity of SEQ ID NO: 12.
  • the IL-15R in an IL-15 containing fusion peptide is hIL-15R.
  • an IL-15 containing fusion protein comprises the sequence of SEQ ID NO: 14.
  • an IL-15 containing fusion protein comprises the sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity of SEQ ID NO: 14.
  • an IL-15 containing fusion protein comprises the sequences of SEQ ID NO: 12 and SEQ ID NO: 14.
  • an IL-15 containing fusion protein comprises the sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity of SEQ ID NO: 12 and the sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity of SEQ ID NO: 14.
  • the IL-15 in an IL-15 containing fusion peptide is originated from a non-human vertebrate species, such as mIL-15.
  • the IL-15R in an IL-15 containing fusion peptide is IL-15R originated from a non-human vertebrate species, such as mIL-15R.
  • the IL-15R is IL-15R ⁇ .
  • the IL-15R is the Sushi domain of IL-15R ⁇ .
  • a signal peptide can fuse to the N terminus of the IL-15 peptide or polypeptide described herein.
  • a signal peptide can fuse to the C terminus of the IL-15 peptide or polypeptide described herein.
  • a signal peptide that can be fused to the IL-15 peptide or polypeptide described herein can be selected from the natural signal peptide of hIL-12A having the sequence of MCPARSLLLVATLVLLDHLSLA (SEQ ID NO: 56) , the natural signal peptide of hIL-12B having the sequence of MCHQQLVISWFSLVFLASPLVA (SEQ ID NO: 57) , the natural signal peptide of mIL-12A having the sequence of MCQSRYLLFLATLALLNHLSLA (SEQ ID NO: 58) , the natural signal peptide of mIL-12B having the sequence of MCPQKLTISWFAIVLLVSPLMA (SEQ ID NO: 59) , the natural signal peptide of hIL-15 having a sequence of MRISKPHLRSISIQCYLCLLLNSH
  • Table 3 shows exemplary sequences of IL-12 or IL-15 containing fusion proteins according to the present disclosure, with the N-terminal signal peptide and/or an internal linker peptide sequence (s) marked with underlines.
  • Table 3 Exemplary sequences of fusion proteins.
  • the therapeutic nucleic acid encodes a fusion protein comprising a hIL-12A polypeptide or functional derivative thereof fused to a hIL-12B polypeptide or functional derivative thereof.
  • the fusion between the hIL-12A polypeptide of functional derivative thereof and the hIL-12B polypeptide or functional derivative thereof is via a peptidic linker.
  • the peptidic linker can have at least 5, 10, 15, 20, 25, 30, or 50 amino acids.
  • the peptidic linker comprises the amino acid sequence selected from SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, and SEQ ID NO: 22.
  • the hIL-12A polypeptide or functional derivative thereof comprises the amino acid sequence of SEQ ID NO: 4 or a functional fragment or derivative thereof having at least about 85%, at least about 90%, at least about 95%, at least about 97%sequence identity with SEQ ID NO: 4.
  • the hIL-12B polypeptide or functional derivative thereof comprises the amino acid sequence of SEQ ID NO: 6 or a functional fragment or derivative thereof having at least about 85%, at least about 90%, at least about 95%, at least about 97%sequence identity with SEQ ID NO: 6.
  • the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising hIL-12A polypeptide or functional derivative thereof fused via a peptidic linker with hIL-12B polypeptide or functional derivative thereof, wherein the encoded polypeptide comprises an amino acid sequence of SEQ ID NO: 24, or functional fragment or derivative thereof having at least about 85%, at least about 90%, at least about 95%, at least about 97%sequence identity with SEQ ID NO: 24.
  • the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising hIL-12A polypeptide or functional derivative thereof fused via a peptidic linker with hIL-12B polypeptide or functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 25.
  • the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising hIL-12A polypeptide or functional derivative thereof fused via a peptidic linker with hIL-12B polypeptide or functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 25.
  • the nucleic acid molecule is an mRNA molecule.
  • the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising hIL-12A polypeptide or functional derivative thereof fused via a peptidic linker with hIL-12B polypeptide or functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 26.
  • the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising hIL-12A polypeptide or functional derivative thereof fused via a peptidic linker with hIL-12B polypeptide or functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 26.
  • the nucleic acid molecule is an mRNA molecule.
  • the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising hIL-12A polypeptide or functional derivative thereof fused via a peptidic linker with hIL-12B polypeptide or functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 27.
  • the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising hIL-12A polypeptide or functional derivative thereof fused via a peptidic linker with hIL-12B polypeptide or functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 27.
  • the nucleic acid molecule is an mRNA molecule.
  • the therapeutic nucleic acid encodes a fusion protein comprising a mIL-12A polypeptide or functional derivative thereof fused to a mIL-12B polypeptide or functional derivative thereof.
  • the fusion between the mIL-12A polypeptide of functional derivative thereof and the mIL-12B polypeptide or functional derivative thereof is via a peptidic linker.
  • the peptidic linker can have at least 5, 10, 15, 20, 25, 30, or 50 amino acids.
  • the peptidic linker comprises the amino acid sequence selected from SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, and SEQ ID NO: 22.
  • the mIL-12A polypeptide or functional derivative thereof comprises the amino acid sequence of SEQ ID NO: 8 of a functional derivative or fragment thereof having at least about 85%, at least about 90%, at least about 95%, at least about 97%sequence identity with SEQ ID NO: 8.
  • the mIL-12B polypeptide or functional derivative thereof comprises the amino acid sequence of SEQ ID NO: 10 or a functional derivative or fragment thereof having at least about 85%, at least about 90%, at least about 95%, at least about 97%sequence identity with SEQ ID NO: 10.
  • the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising mIL-12A polypeptide or functional derivative thereof fused via a peptidic linker with mIL-12B polypeptide or functional derivative thereof, wherein the encoded polypeptide comprises an amino acid sequence of SEQ ID NO: 28, or functional fragment or derivative thereof having at least about 85%, at least about 90%, at least about 95%, at least about 97%sequence identity with SEQ ID NO: 28.
  • the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising mIL-12A polypeptide or functional derivative thereof fused via a peptidic linker with mIL-12B polypeptide or functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 29.
  • the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising mIL-12A polypeptide or functional derivative thereof fused via a peptidic linker with mIL-12B polypeptide or functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 29.
  • the nucleic acid molecule is an mRNA molecule.
  • the therapeutic nucleic acid encodes a fusion protein comprising a hIL-15 polypeptide or functional derivative thereof fused to a hIL-15 receptor polypeptide or functional derivative thereof.
  • the fusion between the hIL-15 polypeptide or functional derivative thereof and the hIL-15 receptor polypeptide or functional derivative thereof is via a peptidic linker.
  • the peptidic linker can have at least 5, 10, 15, 20, 25, 30, or 50 amino acids.
  • the peptidic linker comprises the amino acid sequence selected from SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, and SEQ ID NO: 22.
  • the hIL-15 polypeptide or functional derivative thereof comprises the amino acid sequence of SEQ ID NO: 12 of a functional derivative or fragment thereof having at least about 85%, at least about 90%, at least about 95%, at least about 97%sequence identity with SEQ ID NO: 12.
  • the hIL-15 receptor polypeptide is hIL-15R ⁇ or a functional derivative thereof.
  • the hIL-15 receptor polypeptide is the Sushi domain of hIL-15R ⁇ or a functional derivative thereof.
  • the hIL-15 receptor polypeptide or functional derivative thereof comprises the amino acid sequence of SEQ ID NO: 14 or a functional derivative or fragment thereof having at least about 85%, at least about 90%, at least about 95%, at least about 97%sequence identity with SEQ ID NO: 14.
  • the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising hIL-15 polypeptide or functional derivative thereof fused via a peptidic linker with hIL-15 receptor polypeptide or functional derivative thereof, wherein the encoded polypeptide comprises an amino acid sequence of SEQ ID NO: 30, or functional fragment or derivative thereof having at least about 85%, at least about 90%, at least about 95%, at least about 97%sequence identity with SEQ ID NO: 30.
  • the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising hIL-15 polypeptide or functional derivative thereof fused via a peptidic linker with hIL-15 receptor polypeptide or functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 31.
  • the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising hIL-15 polypeptide or functional derivative thereof fused via a peptidic linker with hIL-15 receptor polypeptide or functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 31.
  • the nucleic acid molecule is an mRNA molecule.
  • the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising hIL-15 polypeptide or functional derivative thereof fused via a peptidic linker with hIL-15 receptor polypeptide or functional derivative thereof, wherein the encoded polypeptide comprises an amino acid sequence of SEQ ID NO: 32, or functional fragment or derivative thereof having at least about 85%, at least about 90%, at least about 95%, at least about 97%sequence identity with SEQ ID NO: 32.
  • the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising hIL-15 polypeptide or functional derivative thereof fused via a peptidic linker with hIL-15 receptor polypeptide or functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 33.
  • the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising hIL-15 polypeptide or functional derivative thereof fused via a peptidic linker with hIL-15 receptor polypeptide or functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 33.
  • the nucleic acid molecule is an mRNA molecule.
  • the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising a polypeptide comprising hIL-12A or a functional derivative thereof fused to a signal peptide.
  • the therapeutic nucleic acid encodes a polypeptide comprising the sequence of SEQ ID NO: 63.
  • the therapeutic nucleic acid comprises the sequence of SEQ ID NO: 64.
  • the therapeutic nucleic acid comprises a RNA sequence transcribed from SEQ ID NO: 64.
  • the nucleic acid molecule is an mRNA molecule.
  • the therapeutic nucleic acid encodes a polypeptide comprising the sequence having at least about 85%, at least about 90%, at least about 95%, at least about 97%sequence identity with of SEQ ID NO: 63.
  • the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising a polypeptide comprising hIL-12B or a functional derivative thereof fused to a signal peptide.
  • the therapeutic nucleic acid encodes a polypeptide comprising the sequence of SEQ ID NO: 65.
  • the therapeutic nucleic acid comprises the sequence of SEQ ID NO: 66.
  • the therapeutic nucleic acid comprises a RNA sequence transcribed from SEQ ID NO: 66.
  • the nucleic acid molecule is an mRNA molecule.
  • the therapeutic nucleic acid encodes a polypeptide comprising the sequence having at least about 85%, at least about 90%, at least about 95%, at least about 97%sequence identity with of SEQ ID NO: 65.
  • the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising a polypeptide comprising mIL-12A or a functional derivative thereof fused to a signal peptide.
  • the therapeutic nucleic acid encodes a polypeptide comprising the sequence of SEQ ID NO: 67.
  • the therapeutic nucleic acid comprises the sequence of SEQ ID NO: 68.
  • the therapeutic nucleic acid comprises a RNA sequence transcribed from SEQ ID NO: 68.
  • the nucleic acid molecule is an mRNA molecule.
  • the therapeutic nucleic acid encodes a polypeptide comprising the sequence having at least about 85%, at least about 90%, at least about 95%, at least about 97%sequence identity with of SEQ ID NO: 67.
  • the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising a polypeptide comprising mIL-12B or a functional derivative thereof fused to a signal peptide.
  • the therapeutic nucleic acid encodes a polypeptide comprising the sequence of SEQ ID NO: 69.
  • the therapeutic nucleic acid comprises the sequence of SEQ ID NO: 70.
  • the therapeutic nucleic acid comprises a RNA sequence transcribed from SEQ ID NO: 70.
  • the nucleic acid molecule is an mRNA molecule.
  • the therapeutic nucleic acid encodes a polypeptide comprising the sequence having at least about 85%, at least about 90%, at least about 95%, at least about 97%sequence identity with of SEQ ID NO: 69.
  • the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising a polypeptide comprising hIL-15 or a functional derivative thereof fused to a signal peptide.
  • the therapeutic nucleic acid encodes a polypeptide comprising the sequence of SEQ ID NO: 71.
  • the therapeutic nucleic acid comprises the sequence of SEQ ID NO: 72.
  • the therapeutic nucleic acid comprises a RNA sequence transcribed from SEQ ID NO: 72.
  • the nucleic acid molecule is an mRNA molecule.
  • the therapeutic nucleic acid encodes a polypeptide comprising the sequence having at least about 85%, at least about 90%, at least about 95%, at least about 97%sequence identity with of SEQ ID NO: 71.
  • the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising a polypeptide comprising hIL-15R or a functional derivative thereof fused to a signal peptide.
  • the therapeutic nucleic acid encodes a polypeptide comprising the sequence of SEQ ID NO: 73.
  • the therapeutic nucleic acid comprises the sequence of SEQ ID NO: 74.
  • the therapeutic nucleic acid comprises a RNA sequence transcribed from SEQ ID NO: 74.
  • the nucleic acid molecule is an mRNA molecule.
  • the therapeutic nucleic acid encodes a polypeptide comprising the sequence having at least about 85%, at least about 90%, at least about 95%, at least about 97%sequence identity with of SEQ ID NO: 73.
  • a 5’ -cap structure of a polynucleotide is involved in nuclear export and increasing polynucleotide stability and binds the mRNA Cap Binding Protein (CBP) , which is responsible for polynucleotide stability in the cell and translation competency through the association of CBP with poly-A binding protein to form the mature cyclic mRNA species.
  • CBP mRNA Cap Binding Protein
  • the 5’ -cap structure further assists the removal of 5’ -proximal introns removal during mRNA splicing.
  • the nucleic acid molecules of the present disclosure comprise a 5’ -cap structure.
  • Nucleic acid molecules may be 5’ -end capped by the endogenous transcription machinery of a cell to generate a 5’ -ppp-5’ -triphosphate linkage between a terminal guanosine cap residue and the 5’ -terminal transcribed sense nucleotide of the polynucleotide. This 5’ -guanylate cap may then be methylated to generate an N7-methyl-guanylate residue.
  • the ribose sugars of the terminal and/or anteterminal transcribed nucleotides of the 5’ end of the polynucleotide may optionally also be 2’ -O-methylated.
  • 5’ -decapping through hydrolysis and cleavage of the guanylate cap structure may target a nucleic acid molecule, such as an mRNA molecule, for degradation.
  • the nucleic acid molecules of the present disclosure comprise one or more alterations to the natural 5’ -cap structure generated by the endogenous process.
  • a modification on the 5’ -cap may increase the stability of polynucleotide, increase the half-life of the polynucleotide, and could increase the polynucleotide translational efficiency.
  • Exemplary alterations to the natural 5’ -Cap structure include generation of a non-hydrolyzable cap structure preventing decapping and thus increasing polynucleotide half-life.
  • modified nucleotides may be used during the capping reaction.
  • a Vaccinia Capping Enzyme from New England Biolabs (Ipswich, Mass. ) may be used with ⁇ -thio-guanosine nucleotides according to the manufacturer’s instructions to create a phosphorothioate linkage in the 5’ -ppp-5’ cap.
  • Additional modified guanosine nucleotides may be used, such as ⁇ -methyl-phosphonate and seleno-phosphate nucleotides.
  • Additional exemplary alterations to the natural 5’ -Cap structure also include modification at the 2’ -and/or 3’ -position of a capped guanosine triphosphate (GTP) , a replacement of the sugar ring oxygen (that produced the carbocyclic ring) with a methylene moiety (CH2) , a modification at the triphosphate bridge moiety of the cap structure, or a modification at the nucleobase (G) moiety.
  • GTP capped guanosine triphosphate
  • CH2 methylene moiety
  • G nucleobase
  • Additional exemplary alterations to the natural 5’ -cap structure include, but are not limited to, 2’ -O-methylation of the ribose sugars of 5’ -terminal and/or 5’ -anteterminal nucleotides of the polynucleotide (as mentioned above) on the 2’ -hydroxy group of the sugar.
  • Multiple distinct 5’ -cap structures can be used to generate the 5’ -cap of a polynucleotide, such as an mRNA molecule.
  • Additional exemplary 5’ -Cap structures that can be used in connection with the present disclosure further include those described in International Patent Publication Nos. WO2008127688, WO 2008016473, and WO 2011015347, the entire contents of each of which are incorporated herein by reference.
  • 5’ -terminal caps can include cap analogs.
  • Cap analogs which herein are also referred to as synthetic cap analogs, chemical caps, chemical cap analogs, or structural or functional cap analogs, differ from natural (i.e., endogenous, wild-type, or physiological) 5’ -caps in their chemical structure, while retaining cap function.
  • Cap analogs may be chemically (i.e., non-enzymatically) or enzymatically synthesized and/linked to a polynucleotide.
  • the Anti-Reverse Cap Analog (ARCA) cap contains two guanosines linked by a 5’ -5’ -triphosphate group, wherein one guanosine contains an N7-methyl group as well as a 3’ -O-methyl group (i.e., N7, 3’ -O-dimethyl-guanosine-5’ -triphosphate-5’ -guanosine, m7G-3’ mppp-G, which may equivalently be designated 3’ O-Me-m7G (5’ ) ppp (5’ ) G) .
  • N7, 3’ -O-dimethyl-guanosine-5’ -triphosphate-5’ -guanosine, m7G-3’ mppp-G which may equivalently be designated 3’ O-Me-m7G (5’ ) ppp (5’ ) G
  • the 3’ -O atom of the other, unaltered, guanosine becomes linked to the 5’ -terminal nucleotide of the capped polynucleotide (e.g., an mRNA) .
  • the N7-and 3’ -O-methlyated guanosine provides the terminal moiety of the capped polynucleotide (e.g., mRNA) .
  • mCAP Another exemplary cap structure is mCAP, which is similar to ARCA but has a 2’ -O-methyl group on guanosine (i.e., N7, 2’ -O-dimethyl-guanosine-5’ -triphosphate-5’ -guanosine, m7Gm-ppp-G) .
  • guanosine i.e., N7, 2’ -O-dimethyl-guanosine-5’ -triphosphate-5’ -guanosine, m7Gm-ppp-G
  • a cap analog can be a dinucleotide cap analog.
  • the dinucleotide cap analog may be modified at different phosphate positions with a boranophosphate group or a phophoroselenoate group such as the dinucleotide cap analogs described in U.S. Patent No. : 8,519,110, the entire content of which is herein incorporated by reference in its entirety.
  • a cap analog can be a N7- (4-chlorophenoxyethyl) substituted dinucleotide cap analog known in the art and/or described herein.
  • Non-limiting examples of N7- (4-chlorophenoxyethyl) substituted dinucleotide cap analogs include a N7- (4-chlorophenoxyethyl) -G (5’ ) ppp (5’ ) G and a N7- (4-chlorophenoxyethyl) -m3’ -OG (5’ ) ppp (5’ ) G cap analog (see, e.g., the various cap analogs and the methods of synthesizing cap analogs described in Kore et al.
  • a cap analog useful in connection with the nucleic acid molecules of the present disclosure is a 4-chloro/bromophenoxyethyl analog.
  • a cap analog can include a guanosine analog.
  • Useful guanosine analogs include but are not limited to inosine, N1-methyl-guanosine, 2’ -fluoro-guanosine, 7-deaza-guanosine, 8-oxo-guanosine, 2-amino-guanosine, LNA-guanosine, and 2-azido-guanosine.
  • cap analogs allow for the concomitant capping of a polynucleotide in an in vitro transcription reaction, up to 20%of transcripts remain uncapped. This, as well as the structural differences of a cap analog from the natural 5’ -cap structures of polynucleotides produced by the endogenous transcription machinery of a cell, may lead to reduced translational competency and reduced cellular stability.
  • a nucleic acid molecule of the present disclosure can also be capped post-transcriptionally, using enzymes, in order to generate more authentic 5’ -cap structures.
  • the phrase “more authentic” refers to a feature that closely mirrors or mimics, either structurally or functionally, an endogenous or wild type feature. That is, a “more authentic” feature is better representative of an endogenous, wild-type, natural or physiological cellular function, and/or structure as compared to synthetic features or analogs of the prior art, or which outperforms the corresponding endogenous, wild-type, natural, or physiological feature in one or more respects.
  • Non-limiting examples of more authentic 5’ -cap structures useful in connection with the nucleic acid molecules of the present disclosure are those which, among other things, have enhanced binding of cap binding proteins, increased half-life, reduced susceptibility to 5’ -endonucleases, and/or reduced 5’ -decapping, as compared to synthetic 5’ -cap structures known in the art (or to a wild-type, natural or physiological 5’ -cap structure) .
  • recombinant Vaccinia Virus Capping Enzyme and recombinant 2’ -O-methyltransferase enzyme can create a canonical 5’ -5’ -triphosphate linkage between the 5’ -terminal nucleotide of a polynucleotide and a guanosine cap nucleotide wherein the cap guanosine contains an N7-methylation and the 5’ -terminal nucleotide of the polynucleotide contains a 2’ -O-methyl.
  • a structure is termed the Cap1 structure.
  • cap results in a higher translational-competency, cellular stability, and a reduced activation of cellular pro-inflammatory cytokines, as compared, e.g., to other 5’ cap analog structures known in the art.
  • Other exemplary cap structures include 7mG (5’ ) ppp (5’ ) N, pN2p (Cap 0) , 7mG (5’ ) ppp (5’ ) NlmpNp (Cap 1) , 7mG (5’ ) -ppp (5’ ) NlmpN2mp (Cap 2) , and m (7) Gpppm (3) (6, 6, 2’ ) Apm (2’ ) Apm (2’ ) Cpm (2) (3, 2’ ) Up (Cap 4) .
  • nucleic acid molecules of the present disclosure can be capped post-transcriptionally, and because this process is more efficient, nearly 100%of the nucleic acid molecules may be capped.
  • the nucleic acid molecules of the present disclosure comprise one or more untranslated regions (UTRs) .
  • an UTR is positioned upstream to a coding region in the nucleic acid molecule, and is termed 5’ -UTR.
  • an UTR is positioned downstream to a coding region in the nucleic acid molecule, and is termed 3’ -UTR.
  • the sequence of an UTR can be homologous or heterologous to the sequence of the coding region found in a nucleic acid molecule.
  • Multiple UTRs can be included in a nucleic acid molecule and can be of the same or different sequences, and/or genetic origin. According to the present disclosure, any portion of UTRs in a nucleic acid molecule (including none) can be codon optimized and any may independently contain one or more different structural or chemical modification, before and/or after codon optimization.
  • a nucleic acid molecule of the present disclosure comprises UTRs and coding regions that are homologous with respect to each other.
  • a nucleic acid molecule of the present disclosure e.g., mRNA
  • a nucleic acid molecule comprising the UTR and a coding sequence of a detectable probe can be administered in vitro (e.g., cell or tissue culture) or in vivo (e.g., to a subject) , and an effect of the UTR sequence (e.g., modulation on the expression level, cellular localization of the encoded product, or half-life of the encoded product) can be measured using methods known in the art.
  • an effect of the UTR sequence e.g., modulation on the expression level, cellular localization of the encoded product, or half-life of the encoded product
  • the UTR of a nucleic acid molecule of the present disclosure comprises at least one translation enhancer element (TEE) that functions to increase the amount of polypeptide or protein produced from the nucleic acid molecule.
  • TEE translation enhancer element
  • the TEE is located in the 5’ -UTR of the nucleic acid molecule.
  • the TEE is located at the 3’ -UTR of the nucleic acid molecule.
  • at least two TEE are located at the 5’ -UTR and 3’ -UTR of the nucleic acid molecule respectively.
  • a nucleic acid molecule of the present disclosure can comprise one or more copies of a TEE sequence or comprise more than one different TEE sequences.
  • different TEE sequences that are present in a nucleic acid molecule of the present disclosure can be homologues or heterologous with respect to one another.
  • the TEE can be an internal ribosome entry site (IRES) , HCV-IRES or an IRES element. Chappell et al. Proc. Natl. Acad. Sci. USA 101: 9590-9594, 2004; Zhou et al. Proc. Natl. Acad. Sci. 102: 6273-6278, 2005. Additional internal ribosome entry site (IRES) that can be used in connection with the present disclosure include but are not limited to those described in U.S. Patent No. 7,468,275, U.S. Patent Publication No.
  • the TEE can be those described in Supplemental Table 1 and in Supplemental Table 2 of Wellensiek et al Genome-wide profiling of human cap-independent translation-enhancing elements, Nature Methods, 2013 Aug; 10 (8) : 747–750; the content of which is incorporated by reference in its entirety.
  • Additional exemplary TEEs that can be used in connection with the present disclosure include but are not limited to the TEE sequences disclosed in U.S. Patent No. 6,310,197, U.S. Patent No. 6,849,405, U.S. Patent No. 7,456,273, U.S. Patent No. 7,183,395, U.S. Patent Publication No. 2009/0226470, U.S. Patent Publication No. 2013/0177581, U.S. Patent Publication No. 2007/0048776, U.S. Patent Publication No. 2011/0124100, U.S. Patent Publication No. 2009/0093049, International Patent Publication No. WO2009/075886, International Patent Publication No. WO2012/009644, and International Patent Publication No.
  • a nucleic acid molecule of the present disclosure comprises at least one UTR that comprises at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18 at least 19, at least 20, at least 21, at least 22, at least 23, at least 24, at least 25, at least 30, at least 35, at least 40, at least 45, at least 50, at least 55 or more than 60 TEE sequences.
  • the TEE sequences in the UTR of a nucleic acid molecule are copies of the same TEE sequence.
  • At least two TEE sequences in the UTR of a nucleic acid molecule are of different TEE sequences.
  • multiple different TEE sequences are arranged in one or more repeating patterns in the UTR region of a nucleic acid molecule.
  • a repeating pattern can be, for example, ABABAB, AABBAABBAABB, ABCABCABC, or the like, where in these exemplary patterns, each capitalized letter (A, B, or C) represents a different TEE sequence.
  • at least two TEE sequences are consecutive with one another (i.e., no spacer sequence in between) in a UTR of a nucleic acid molecule.
  • a UTR can comprise a TEE sequence-spacer sequence module that is repeated at least once, at least twice, at least 3 times, at least 4 times, at least 5 times, at least 6 times, at least 7 times, at least 8 times, at least 9 times, or more than 9 times in the UTR.
  • the UTR can be a 5’ -UTR, a 3’ -UTR or both 5’ -UTR and 3’ -UTR of a nucleic acid molecule.
  • the UTR of a nucleic acid molecule of the present disclosure comprises at least one translation suppressing element that functions to decrease the amount of polypeptide or protein produced from the nucleic acid molecule.
  • the UTR of the nucleic acid molecule comprises one or more miR sequences or fragment thereof (e.g., miR seed sequences) that are recognized by one or more microRNA.
  • the UTR of the nucleic acid molecule comprises one or more stem-loop structure that downregulates translational activity of the nucleic acid molecule.
  • Other mechanisms for suppressing translational activities associated with a nucleic acid molecule are known in the art.
  • the UTR can be a 5’ -UTR, a 3’ -UTR or both 5’ -UTR and 3’ -UTR of a nucleic acid molecule.
  • Table 4 shows exemplary 5’ -UTR and 3’ -UTR sequences that can be used in connection with the present disclosure.
  • the nucleic acid molecule of the present disclosure comprises a 5’ -UTR selected from SEQ ID NOS: 34 to 37. In specific embodiments, the nucleic acid molecule of the present disclosure comprises a 3’ -UTR selected from SEQ ID NOS: 38 and 39. In specific embodiments, the nucleic acid molecule of the present disclosure comprises a 5’ -UTR selected from SEQ ID NOS: 34 to 37 and a 3’ -UTR selected from SEQ ID NOS: 38 and 39.
  • the nucleic acid molecule may further comprise a coding region having a sequence as described in Section 5.3.1 (Coding Region) such as any of the DNA coding sequences in Tables 1 and 3 or equivalent RNA sequences thereof.
  • the nucleic acid molecules described in this paragraph can be RNA molecules in vitro transcribed.
  • poly-Aregion a long chain of adenosine nucleotides (poly-Aregion) is normally added to messenger RNA (mRNA) molecules to increase the stability of the molecule.
  • mRNA messenger RNA
  • poly-A polymerase adds a chain of adenosine nucleotides to the RNA.
  • the process called polyadenylation, adds a poly-A region that is between 100 and 250 residues long. Without being bound by the theory, it is contemplated that a poly-A region can confer various advantages to the nucleic acid molecule of the present disclosure.
  • a nucleic acid molecule of the present disclosure comprises a polyadenylation signal.
  • a nucleic acid molecule of the present disclosure comprises one or more polyadenylation (poly-A) regions.
  • a poly-A region is composed entirely of adenine nucleotides or functional analogs thereof.
  • the nucleic acid molecule comprises at least one poly-A region at its 3’ -end.
  • the nucleic acid molecule comprises at least one poly-A region at its 5’ -end.
  • the nucleic acid molecule comprises at least one poly-A region at its 5’ -end and at least one poly-A region at its 3’ -end.
  • the poly-A region can have varied lengths in different embodiments. Particularly, in some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 30 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 35 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 40 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 45 nucleotides in length.
  • the poly-A region of a nucleic acid molecule of the present disclosure is at least 50 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 55 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 60 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 65 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 70 nucleotides in length.
  • the poly-A region of a nucleic acid molecule of the present disclosure is at least 75 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 80 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 85 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 90 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 95 nucleotides in length.
  • the poly-A region of a nucleic acid molecule of the present disclosure is at least 100 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 110 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 120 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 130 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 140 nucleotides in length.
  • the poly-A region of a nucleic acid molecule of the present disclosure is at least 150 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 160 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 170 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 180 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 190 nucleotides in length.
  • the poly-A region of a nucleic acid molecule of the present disclosure is at least 200 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 225 nucleotides in length. In some embodiments, the poly-Aregion of a nucleic acid molecule of the present disclosure is at least 250 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 275 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 300 nucleotides in length.
  • the poly-A region of a nucleic acid molecule of the present disclosure is at least 350 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 400 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 450 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 500 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 600 nucleotides in length.
  • the poly-A region of a nucleic acid molecule of the present disclosure is at least 700 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 800 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 900 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 1000 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 1100 nucleotides in length.
  • the poly-A region of a nucleic acid molecule of the present disclosure is at least 1200 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 1300 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 1400 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 1500 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 1600 nucleotides in length.
  • the poly-A region of a nucleic acid molecule of the present disclosure is at least 1700 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 1800 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 1900 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 2000 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 2250 nucleotides in length.
  • the poly-A region of a nucleic acid molecule of the present disclosure is at least 2500 nucleotides in length. In some embodiments, the poly-Aregion of a nucleic acid molecule of the present disclosure is at least 2750 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 3000 nucleotides in length.
  • length of a poly-A region in a nucleic acid molecule can be selected based on the overall length of the nucleic acid molecule, or a portion thereof (such as the length of the coding region or the length of an open reading frame of the nucleic acid molecule, etc. ) .
  • the poly-A region accounts for about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%or more of the total length of nucleic acid molecule containing the poly-A region.
  • RNA-binding proteins can bind to the poly-A region located at the 3’ -end of an mRNA molecule.
  • PABP poly-A binding proteins
  • the nucleic acid molecule of the present disclosure comprises at least one binding site for poly-A binding protein (PABP) .
  • PABP poly-A binding protein
  • the nucleic acid molecule is conjugated or complex with a PABP before loaded into a delivery vehicle (e.g., lipid nanoparticles) .
  • the nucleic acid molecule of the present disclosure comprises a poly-A-G quartet.
  • the G-quartet is a cyclic hydrogen bonded array of four guanosine nucleotides that can be formed by G-rich sequences in both DNA and RNA.
  • the G-quartet is incorporated at the end of the poly-A region.
  • the resultant polynucleotides e.g., mRNA
  • the nucleic acid molecule of the present disclosure may include a poly-A region and may be stabilized by the addition of a 3’ -stabilizing region.
  • the 3’ -stabilizing region which may be used to stabilize a nucleic acid molecule (e.g., mRNA) including the poly-A or poly-A-G quartet structures as described in International Patent Publication No. WO2013/103659, the content of which is incorporated herein by reference in its entirety.
  • the 3’ -stabilizing region which may be used in connection with the nucleic acid molecules of the present disclosure include a chain termination nucleoside such as but is not limited to 3’ -deoxyadenosine (cordycepin) , 3’ -deoxyuridine, 3’ -deoxycytosine, 3’ -deoxyguanosine, 3’ -deoxythymine, 2’ , 3’ -dideoxynucleosides, such as 2’ , 3’ -dideoxyadenosine, 2’ , 3’ -dideoxyuridine, 2’ , 3’ -dideoxycytosine, 2’ , 3’ -dideoxyguanosine, 2’ , 3’ -dideoxythymine, a 2’ -deoxynucleoside, or an O-methylnucleoside, 3’ -deoxynucleoside, 2’ , 3’ -dideoxynucleoside,
  • Table 5 shows exemplary full length vector sequences encoding IL-12 polypeptides according to the present disclosure, and corresponding mRNA transcripts containing the 5’ -CAP, 5’ -UTR, 3’ -UTR, and coding sequences.
  • Table 5 Exemplary full length plasmid and mRNA transcript sequences.
  • the therapeutic nucleic acid of the present disclosure encodes an IL-12 containing fusion protein.
  • the therapeutic nucleic acid is a vector comprising the sequence selected from SEQ ID NOS: 40, 42, 44, 46, and 48.
  • the therapeutic nucleic acid comprises a RNA sequence transcribed from the vector sequence selected from SEQ ID NOS: 40, 42, 44, 46, and 48.
  • the nucleic acid molecule is an mRNA molecule.
  • the nucleic acid molecule is an mRNA molecule comprising the sequence selected from SEQ ID NOS: 41, 43, 45, 47, and 49.
  • the therapeutic nucleic acid of the present disclosure encodes an IL-15 containing fusion protein.
  • the therapeutic nucleic acid is a vector comprising the sequence of SEQ ID NO: 52.
  • the therapeutic nucleic acid comprises a RNA sequence transcribed from the vector sequence of SEQ ID NO: 52.
  • the nucleic acid molecule is an mRNA molecule.
  • the nucleic acid molecule is an mRNA molecule comprising the sequence of SEQ ID NO: 53.
  • a stem-loop structure can direct RNA folding, protect structural stability of a nucleic acid molecule (e.g., mRNA) , provide recognition sites for RNA binding proteins, and serve as a substrate for enzymatic reactions.
  • a nucleic acid molecule e.g., mRNA
  • the incorporation of a miR sequence and/or a TEE sequence changes the shape of the stem loop region which may increase and/or decrease translation (Kedde et al. A Pumilio-induced RNA structure switch in p27-3’ UTR controls miR-221 and miR-222 accessibility. Nat Cell Biol., 2010 Oct; 12 (10) : 1014-20, the content of which is herein incorporated by reference in its entirety) .
  • the nucleic acid molecules as described herein may assume a stem-loop structure, such as but is not limited to a histone stem loop.
  • the stem-loop structure is formed from a stem-loop sequence that is about 25 or about 26 nucleotides in length such as, but not limited to, those as described in International Patent Publication No. WO2013/103659, the content of which is incorporated herein by reference in its entirety. Additional examples of stem-loop sequences include those described in International Patent Publication No. WO2012/019780 and International Patent Publication No. WO201502667, the contents of which are incorporated herein by reference.
  • the step-loop sequence comprises a TEE as described herein. In some embodiments, the step-loop sequence comprises a miR sequence as described herein. In specific embodiments, the stem loop sequence may include a miR-122 seed sequence. In specific embodiments, the nucleic acid molecule comprises the stem-loop sequence CAAAGGCTCTTTTCAGAGCCACCA (SEQ ID NO: 75) . In other embodiments, the nucleic acid molecule comprises the stem-loop sequence CAAAGGCUCUUUUCAGAGCCACCA (SEQ ID NO: 76) .
  • the nucleic acid molecule of the present disclosure comprises a stem-loop sequence located upstream (to the 5’ -end) of the coding region in a nucleic acid molecule. In some embodiments, the stem-loop sequence is located within the 5’ - UTR of the nucleic acid molecule. In some embodiments, the nucleic acid molecule of the present disclosure (e.g., mRNA) comprises a stem-loop sequence located downstream (to the 3’ -end) of the coding region in a nucleic acid molecule. In some embodiments, the stem-loop sequence is located within the 3’ -UTR of the nucleic acid molecule.
  • a nucleic acid molecule can contain more than one stem-loop sequences.
  • the nucleic acid molecule comprises at least one stem-loop sequence in the 5’ -UTR, and at least one stem-loop sequence in the 3’ -UTR.
  • a nucleic acid molecule comprising a stem-loop structure further comprises a stabilization region.
  • the stabilization region comprises at least one chain terminating nucleoside that functions to slow down degradation and thus increases the half-life of the nucleic acid molecule.
  • Exemplary chain terminating nucleoside that can be used in connection with the present disclosure include but are not limited to 3’ -deoxyadenosine (cordycepin) , 3’ -deoxyuridine, 3’ -deoxycytosine, 3’ -deoxyguanosine, 3’ -deoxythymine, 2’ , 3’ -dideoxynucleosides, such as 2’ , 3’ -dideoxyadenosine, 2’ , 3’ -dideoxyuridine, 2’ , 3’ -dideoxycytosine, 2’ , 3’ -dideoxyguanosine, 2’ , 3’ -dideoxythymine, a 2’ -deoxynucleoside, or an O-methylnucleoside, 3’ -deoxynucleoside, 2’ , 3’ -dideoxynucleoside 3’ -O-methylnucleosides, 3’ -O-
  • a stem-loop structure may be stabilized by an alteration to the 3’ -region of the polynucleotide that can prevent and/or inhibit the addition of oligio (U) (International Patent Publication No. WO2013/103659, incorporated herein by reference in its entirety) .
  • a nucleic acid molecule of the present disclosure comprises at least one stem-loop sequence and a poly-A region or polyadenylation signal.
  • Non-limiting examples of polynucleotide sequences comprising at least one stem-loop sequence and a poly-A region or a polyadenylation signal include those described in International Patent Publication No. WO2013/120497, International Patent Publication No. WO2013/120629, International Patent Publication No. WO2013/120500, International Patent Publication No. WO2013/120627, International Patent Publication No. WO2013/120498, International Patent Publication No. WO2013/120626, International Patent Publication No. WO2013/120499 and International Patent Publication No. WO2013/120628, the content of each of which is incorporated herein by reference in its entirety.
  • the nucleic acid molecule comprising a stem-loop sequence and a poly-A region or a polyadenylation signal can encode for a pathogen antigen or fragment thereof such as the polynucleotide sequences described in International Patent Publication No. WO2013/120499 and International Patent Publication No. WO2013/120628, the content of each of which is incorporated herein by reference in its entirety.
  • the nucleic acid molecule comprising a stem-loop sequence and a poly-A region or a polyadenylation signal can encode for a therapeutic protein such as the polynucleotide sequences described in International Patent Publication No. WO2013/120497 and International Patent Publication No. WO2013/120629, the content of each of which is incorporated herein by reference in its entirety.
  • the nucleic acid molecule comprising a stem-loop sequence and a poly-A region or a polyadenylation signal can encode for a tumor antigen or fragment thereof such as the polynucleotide sequences described in International Patent Publication No. WO2013/120500 and International Patent Publication No. WO2013/120627, the content of each of which is incorporated herein by reference in its entirety.
  • the nucleic acid molecule comprising a stem-loop sequence and a poly-A region or a polyadenylation signal can code for an allergenic antigen or an autoimmune self-antigen such as the polynucleotide sequences described in International Patent Publication No. WO2013/120498 and International Patent Publication No. WO2013/120626, the content of each of which is incorporated herein by reference in its entirety.
  • a payload nucleic acid molecule described herein contains only canonical nucleotides selected from A (adenosine) , G (guanosine) , C (cytosine) , U (uridine) , and T (thymidine) .
  • canonical nucleotides selected from A (adenosine) , G (guanosine) , C (cytosine) , U (uridine) , and T (thymidine) .
  • Examples of such as useful properties in the context of the present disclosure include but are not limited to increased stability of the nucleic acid molecule, reduced immunogenicity of the nucleic acid molecule in inducing innate immune responses, enhanced production of protein encoded by the nucleic acid molecule, increased intracellular delivery and/or retention of the nucleic acid molecule, and/or reduced cellular toxicity of the nucleic acid molecule, etc.
  • a payload nucleic acid molecule comprises at least one functional nucleotide analog as described herein.
  • the functional nucleotide analog contains at least one chemical modification to the nucleobase, the sugar group and/or the phosphate group.
  • a payload nucleic acid molecule comprising at least one functional nucleotide analog contains at least one chemical modification to the nucleobases, the sugar groups, and/or the internucleoside linkage. Exemplary chemical modifications to the nucleobases, sugar groups, or internucleoside linkages of a nucleic acid molecule are provided herein.
  • ranging from 0%to 100%of all nucleotides in a payload nucleic acid molecule can be functional nucleotide analogs as described herein.
  • a functional nucleotide analog can be present at any position (s) of a nucleic acid molecule, including the 5’ -terminus, 3’ -terminus, and/or one or more internal positions.
  • a single nucleic acid molecule can contain different sugar modifications, different nucleobase modifications, and/or different types internucleoside linkages (e.g., backbone structures) .
  • nucleotide analogs as described herein.
  • all nucleotides of a kind e.g., all purine-containing nucleotides as a kind, or all pyrimidine-containing nucleotides as a kind, or all A, G, C, T or U as a kind
  • a payload nucleic acid molecule can be functional nucleotide analogs as described herein.
  • a functional nucleotide analog can be present at any position (s) of a nucleic acid molecule, including the 5’ -terminus, 3’ -terminus, and/or one or more internal positions.
  • a single nucleic acid molecule can contain different sugar modifications, different nucleobase modifications, and/or different types internucleoside linkages (e.g., backbone structures) .
  • a functional nucleotide analog contains a non-canonical nucleobase.
  • canonical nucleobases e.g., adenine, guanine, uracil, thymine, and cytosine
  • Exemplary modification to nucleobases include but are not limited to one or more substitutions or modifications including but not limited to alkyl, aryl, halo, oxo, hydroxyl, alkyloxy, and/or thio substitutions; one or more fused or open rings, oxidation, and/or reduction.
  • the non-canonical nucleobase is a modified uracil. In specific embodiments, at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%or 95%of uracil (s) in the present nucleic acid molecule are modified. In specific embodiments, all (100%) of the uracil (s) in the present nucleic acid molecule are modified.
  • nucleobases and nucleosides having an modified uracil include pseudouridine ( ⁇ ) , pyridin-4-one ribonucleoside, 5-aza-uracil, 6-aza-uracil, 2-thio-5-aza-uracil, 2-thio-uracil (s2U) , 4-thio-uracil (s4U) , 4-thio-pseudouridine, 2-thio-pseudouridine, 5-hydroxy-uracil (ho5U) , 5-aminoallyl-uracil, 5-halo-uracil (e.g., 5-iodo-uracil or 5-bromo-uracil) , 3-methyl-uracil (m3U) , 5-methoxy-uracil (mo5U) , uracil 5-oxyacetic acid (cmo5U) , uracil 5-oxyacetic acid methyl ester (mcmo5U) , 5-carboxymethyl
  • the non-canonical nucleobase is a modified cytosine. In specific embodiments, at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%or 95%of cytosine (s) in the present nucleic acid molecule are modified. In specific embodiments, all (100%) of the cytosine (s) in the present nucleic acid molecule are modified.
  • nucleobases and nucleosides having a modified cytosine include 5-aza-cytosine, 6-aza-cytosine, pseudoisocytidine, 3-methyl-cytosine (m3C) , N4-acetyl-cytosine (ac4C) , 5-formyl-cytosine (f5C) , N4-methyl-cytosine (m4C) , 5-methyl-cytosine (m5C) , 5-halo-cytosine (e.g., 5-iodo-cytosine) , 5-hydroxymethyl-cytosine (hm5C) , 1-methyl-pseudoisocytidine, pyrrolo-cytosine, pyrrolo-pseudoisocytidine, 2-thio-cytosine (s2C) , 2-thio-5-methyl-cytosine, 4-thio-pseudoisocytidine, 4-thio-1-methyl-pseudoisoc
  • the non-canonical nucleobase is a modified adenine. In specific embodiments, at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%or 95%of adenine (s) in the present nucleic acid molecule are modified. In specific embodiments, all (100%) of the adenine (s) in the present nucleic acid molecule are modified.
  • nucleobases and nucleosides having an alternative adenine include 2-amino-purine, 2, 6-diaminopurine, 2-amino-6-halo-purine (e.g., 2-amino-6-chloro-purine) , 6-halo-purine (e.g., 6-chloro-purine) , 2-amino-6-methyl-purine, 8-azido-adenine, 7-deaza-adenine, 7-deaza-8-aza-adenine, 7-deaza-2-amino-purine, 7-deaza-8-aza-2-amino-purine, 7-deaza-2, 6-diaminopurine, 7-deaza-8-aza-2, 6-diaminopurine, 1-methyl-adenine (m1A) , 2-methyl-adenine (m2A) , N6-methyl-adenine (m6A) , 2-methylthio-N6-methyl-adenine (ms),
  • the non-canonical nucleobase is a modified guanine.
  • at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%or 95%of guanine (s) in the present nucleic acid molecule are modified.
  • all (100%) of the guanine (s) in the present nucleic acid molecule are modified.
  • nucleobases and nucleosides having a modified guanine include inosine (I) , 1-methyl-inosine (m1I) , wyosine (imG) , methylwyosine (mimG) , 4-demethyl-wyosine (imG-14) , isowyosine (imG2) , wybutosine (yW) , peroxywybutosine (o2yW) , hydroxywybutosine (OHyW) , undermodified hydroxywybutosine (OHyW*) , 7-deaza-guanine, queuosine (Q) , epoxyqueuosine (oQ) , galactosyl-queuosine (galQ) , mannosyl-queuosine (manQ) , 7-cyano-7-deaza-guanine (preQO) , 7-aminomethyl-7-deaza
  • the non-canonical nucleobase of a functional nucleotide analog can be independently a purine, a pyrimidine, a purine or pyrimidine analog.
  • the non-canonical nucleobase can be modified adenine, cytosine, guanine, uracil, or hypoxanthine.
  • the non-canonical nucleobase can also include, for example, naturally-occurring and synthetic derivatives of a base, including pyrazolo [3, 4-d] pyrimidines, 5-methylcytosine (5-me-C) , 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil) , 4-thiouracil, 8-halo (e.g., 8-bromo) , 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxy and other 8
  • the present nucleic acid molecule comprises modifications to uracil.
  • the present nucleic acid molecule comprises one or more pseudouridine ( ⁇ ) .
  • at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%or 95%of uridine (s) in the present nucleic acid molecule are replaced by pseudouridine ( ⁇ ) .
  • all (100%) of the uridine (s) in the present nucleic acid molecule are replaced by pseudouridine ( ⁇ ) .
  • the present nucleic acid molecule comprises one or more 1-methyl-pseudouridine (m1 ⁇ ) .
  • at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%or 95%of uridine (s) in the present nucleic acid molecule are replaced by 1-methyl-pseudouridine (m 1 ⁇ ) .
  • all (100%) of the uridine (s) in the present nucleic acid molecule are replaced by 1-methyl-pseudouridine (m 1 ⁇ ) .
  • a functional nucleotide analog contains a non-canonical sugar group.
  • the non-canonical sugar group can be a 5-carbon or 6-carbon sugar (such as pentose, ribose, arabinose, xylose, glucose, galactose, or a deoxy derivative thereof) with one or more substitutions, such as a halo group, a hydroxy group, a thiol group, an alkyl group, an alkoxy group, an alkenyloxy group, an alkynyloxy group, an cycloalkyl group, an aminoalkoxy group, an alkoxyalkoxy group, an hydroxyalkoxy group, an amino group, an azido group, an aryl group, an aminoalkyl group, an aminoalkenyl group, an aminoalkynyl group, etc.
  • RNA molecules contains the ribose sugar group, which is a 5-membered ring having an oxygen.
  • exemplary, non-limiting alternative nucleotides include replacement of the oxygen in ribose (e.g., with S, Se, or alkylene, such as methylene or ethylene) ; addition of a double bond (e.g., to replace ribose with cyclopentenyl or cyclohexenyl) ; ring contraction of ribose (e.g., to form a 4-membered ring of cyclobutane or oxetane) ; ring expansion of ribose (e.g., to form a 6-or 7-membered ring having an additional carbon or heteroatom, such as for anhydrohexitol, altritol, mannitol, cyclohexanyl, cyclohexenyl, and morpholino (that also has a phosphoramidate backbone
  • the sugar group contains one or more carbons that possess the opposite stereochemical configuration of the corresponding carbon in ribose.
  • a nucleic acid molecule can include nucleotides containing, e.g., arabinose or L-ribose, as the sugar.
  • the nucleic acid molecule includes at least one nucleoside wherein the sugar is L-ribose, 2’ -O-methyl-ribose, 2’ -fluoro-ribose, arabinose, hexitol, an LNA, or a PNA.
  • the payload nucleic acid molecule of the present disclosure can contain one or more modified internucleoside linkage (e.g., phosphate backbone) .
  • Backbone phosphate groups can be altered by replacing one or more of the oxygen atoms with a different substituent.
  • the functional nucleotide analogs can include the replacement of an unaltered phosphate moiety with another internucleoside linkage as described herein.
  • alternative phosphate groups include, but are not limited to, phosphorothioate, phosphoroselenates, boranophosphates, boranophosphate esters, hydrogen phosphonates, phosphoramidates, phosphorodiamidates, alkyl or aryl phosphonates, and phosphotriesters.
  • Phosphorodithioates have both non-linking oxygens replaced by sulfur.
  • the phosphate linker can also be altered by the replacement of a linking oxygen with nitrogen (bridged phosphoramidates) , sulfur (bridged phosphorothioates) , and carbon (bridged methylene-phosphonates) .
  • the alternative nucleosides and nucleotides can include the replacement of one or more of the non-bridging oxygens with a borane moiety (BH3) , sulfur (thio) , methyl, ethyl, and/or methoxy.
  • a borane moiety BH3
  • sulfur (thio) a sulfur (thio)
  • methyl ethyl
  • methoxy e.g., methoxy
  • two non-bridging oxygens at the same position e.g., the alpha ( ⁇ ) , beta ( ⁇ ) or gamma ( ⁇ ) position
  • the replacement of one or more of the oxygen atoms at the position of the phosphate moiety is provided to confer stability (such as against exonucleases and endonucleases) to RNA and DNA through the unnatural phosphorothioate backbone linkages.
  • Phosphorothioate DNA and RNA have increased nuclease resistance and subsequently a longer half-life in a cellular environment.
  • internucleoside linkages that may be employed according to the present disclosure, including internucleoside linkages which do not contain a phosphorous atom, are described herein.
  • nucleic acid molecules e.g., mRNA
  • compositions, formulations and/or methods associated therewith that can be used in connection with the present disclosure further include those described in WO2002/098443, WO2003/051401, WO2008/052770, WO2009127230, WO2006122828, WO2008/083949, WO2010088927, WO2010/037539, WO2004/004743, WO2005/016376, WO2006/024518, WO2007/095976, WO2008/014979, WO2008/077592, WO2009/030481, WO2009/095226, WO2011069586, WO2011026641, WO2011/144358, WO2012019780, WO2012013326, WO2012089338, WO2012113513, WO2012116811, WO2012116810, WO2013113502, WO2013113501, WO2013113736, WO2013143698
  • nucleic acid molecules as described herein can by isolated or synthesized using methods known in the art.
  • DNA or RNA molecules to be used in connection with the present disclosure are chemically synthesized.
  • DNA or RNA molecules to be used in connection with the present disclosure are isolated from a natural source.
  • mRNA molecules to be used in connection with the present disclosure are biosynthesized using a host cell.
  • an mRNA is produced by transcribing a corresponding DNA sequencing using a host cell.
  • a DNA sequence encoding an mRNA sequence is incorporated into an expression vector, which vector is then introduced into a host cell (e.g., E. coli) using methods known in the art. The host cell is then cultured under a suitable condition to produce mRNA transcripts.
  • a cell-free (in vitro) transcription system comprising enzymes of the transcription machinery of a host cell can be used to produce mRNA transcripts.
  • nucleic acid molecules described herein are formulated for in vitro and in vivo delivery.
  • the nucleic acid molecule is formulated into a lipid-containing composition.
  • the lipid-containing composition forms lipid nanoparticles enclosing the nucleic acid molecule within a lipid shell.
  • the lipid shells protects the nucleic acid molecules from degradation.
  • the lipid nanoparticles also facilitate transportation of the enclosed nucleic acid molecules into intracellular compartments and/or machinery to exert an intended therapeutic of prophylactic function.
  • nucleic acids when present in the lipid nanoparticles, are resistant in aqueous solution to degradation with a nuclease.
  • Lipid nanoparticles comprising nucleic acids and their method of preparation are known in the art, such as those disclosed in, e.g., U.S. Patent Publication No. 2004/0142025, U.S. Patent Publication No. 2007/0042031, PCT Publication No. WO 2017/004143, PCT Publication No. WO 2015/199952, PCT Publication No. WO 2013/016058, and PCT Publication No. WO 2013/086373, the full disclosures of each of which are herein incorporated by reference in their entirety for all purposes.
  • the largest dimension of a nanoparticle composition provided herein is 1 ⁇ m or shorter (e.g., ⁇ 1 ⁇ m, ⁇ 900 nm, ⁇ 800 nm, ⁇ 700 nm, ⁇ 600 nm, ⁇ 500 nm, ⁇ 400 nm, ⁇ 300 nm, ⁇ 200 nm, ⁇ 175 nm, ⁇ 150 nm, ⁇ 125 nm, ⁇ 100 nm, ⁇ 75 nm, ⁇ 50 nm, or shorter) , such as when measured by dynamic light scattering (DLS) , transmission electron microscopy, scanning electron microscopy, or another method.
  • the lipid nanoparticle provided herein has at least one dimension that is in the range of from about 40 to about 200 nm. In one embodiment, the at least one dimension is in the range of from about 40 to about 100 nm.
  • Nanoparticle compositions that can be used in connection with the present disclosure include, for example, lipid nanoparticles (LNPs) , nano liproprotein particles, liposomes, lipid vesicles, and lipoplexes.
  • nanoparticle compositions are vesicles including one or more lipid bilayers.
  • a nanoparticle composition includes two or more concentric bilayers separated by aqueous compartments. Lipid bilayers may be functionalized and/or crosslinked to one another. Lipid bilayers may include one or more ligands, proteins, or channels.
  • nanoparticle compositions as described comprise a lipid component including at least one cationic lipid, such as a compound according to Formula 01-I, 01-II, 02-I, 02-II, 03-I, 03-II-A, 03-II-B, 03-II-C, 03-II-D, 04-I, 04-III, 04-IV (and sub-formulas thereof) (and sub-formulas thereof) as described herein.
  • a nanoparticle composition may include a lipid component including one of compounds provided herein. Nanoparticle compositions may also include one or more other lipid or non-lipid components as described below.
  • the cationic lipid contained in the compositions provided herein is a cationic lipid described in International Patent Publication No. WO2021204175, the entirety of which is incorporated herein by reference.
  • the cationic lipid is a compound of Formula (01-I) :
  • G 1 and G 2 are each independently a bond, C 2 -C 12 alkylene, or C 2 -C 12 alkenylene, wherein one or more -CH 2 -in the alkylene or alkenylene is optionally replaced by -O-;
  • R 1 and R 2 are each independently C 6 -C 32 alkyl or C 6 -C 32 alkenyl
  • R a , R b , R d , and R e are each independently H, C 1 -C 24 alkyl, or C 2 -C 24 alkenyl;
  • R c and R f are each independently C 1 -C 32 alkyl or C 2 -C 32 alkenyl
  • G 3 is C 2 -C 24 alkylene, C 2 -C 24 alkenylene, C 3 -C 8 cycloalkylene, or C 3 -C 8 cycloalkenylene;
  • R 3 is -N (R 4 ) R 5 ;
  • R 4 is C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkenyl, 4-to 8-membered heterocyclyl, or C 6 -C 10 aryl; or R 4 , G 3 or part of G 3 , together with the nitrogen to which they are attached form a cyclic moiety;
  • R 5 is C 1 -C 12 alkyl or C 3 -C 8 cycloalkyl; or R 4 , R 5 , together with the nitrogen to which they are attached form a cyclic moiety;
  • x 0, 1 or 2;
  • alkyl, alkenyl, cycloalkyl, cycloalkenyl, heterocyclyl, aryl, alkylene, alkenylene, cycloalkylene, cycloalkenylene, arylene, heteroarylene, and cyclic moiety is independently optionally substituted.
  • the cationic lipid is a compound of Formula (01-II) :
  • G 1 and G 2 are each independently a bond, C 2 -C 12 alkylene, or C 2 -C 12 alkenylene, wherein one or more -CH 2 -in the alkylene or alkenylene is optionally replaced by -O-;
  • R 1 and R 2 are each independently C 6 -C 32 alkyl or C 6 -C 32 alkenyl
  • R a , R b , R d , and R e are each independently H, C 1 -C 24 alkyl, or C 2 -C 24 alkenyl;
  • R c and R f are each independently C 1 -C 32 alkyl or C 2 -C 32 alkenyl
  • G 4 is a bond, C 1 -C 23 alkylene, C 2 -C 23 alkenylene, C 3 -C 8 cycloalkylene, or C 3 -C 8 cycloalkenylene;
  • R 3 is -N (R 4 ) R 5 ;
  • R 4 is C 1 -C 12 alkyl, C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkenyl, 4-to 8-membered heterocyclyl, or C 6 -C 10 aryl; or R 4 , G 3 or part of G 3 , together with the nitrogen to which they are attached form a cyclic moiety;
  • R 5 is C 1 -C 12 alkyl or C 3 -C 8 cycloalkyl; or R 4 , R 5 , together with the nitrogen to which they are attached form a cyclic moiety;
  • x 0, 1 or 2;
  • alkyl, alkenyl, cycloalkyl, cycloalkenyl, heterocyclyl, aryl, alkylene, alkenylene, cycloalkylene, cycloalkenylene, arylene, heteroarylene, and cyclic moiety is independently optionally substituted.
  • the compound is a compound of Formula (01-I-B) , (01-I-B’ ) , (01-I-B” ) , (01-I-C) , (01-I-D) , or (01-I-E) :
  • G 1 and G 2 are each independently C 3 -C 7 alkylene. In one embodiment, G 1 and G 2 are each independently C 5 alkylene. In one embodiment, G 3 is C 2 -C 4 alkylene. In one embodiment, G 3 is C 2 alkylene. In one embodiment, G 3 is C 4 alkylene.
  • R 3 has one of the following structures:
  • R 1 , R 2 , R c and R f are each independently branched C 6 -C 32 alkyl or branched C 6 -C 32 alkenyl. In one embodiment, R 1 , R 2 , R c and R f are each independently branched C 6 -C 24 alkyl or branched C 6 -C 24 alkenyl. In one embodiment, R 1 , R 2 , R c and R f are each independently -R 7 -CH (R 8 ) (R 9 ) , wherein R 7 is C 0 -C 5 alkylene, and R 8 and R 9 are independently C 2 -C 10 alkyl.
  • R 1 , R 2 , R c and R f are each independently -R 7 -CH (R 8 ) (R 9 ) , wherein R 7 is C 0 -C 1 alkylene, and R 8 and R 9 are independently C 4 -C 8 alkyl.
  • the compound is a compound in Table 01-1, or a pharmaceutically acceptable salt, prodrug or stereoisomer thereof.
  • the cationic lipid contained in the compositions provided herein is a cationic lipid described in International Patent Application No. PCT/CN2022/072694, the entirety of which is incorporated herein by reference.
  • the cationic lipid is a compound of Formula (02-I) :
  • R 1 and R 2 are each independently C 6 -C 24 alkyl or C 6 -C 24 alkenyl
  • R a , R b , R d , and R e are each independently H, C 1 -C 24 alkyl, or C 2 -C 24 alkenyl;
  • R c and R f are each independently C 1 -C 24 alkyl or C 2 -C 24 alkenyl
  • G 3 is C 2 -C 12 alkylene or C 2 -C 12 alkenylene, wherein part or all of alkylene or alkenylene is optionally replaced by a C 3 -C 8 cycloalkylene or C 3 -C 8 cycloalkenylene;
  • R 3 is -N (R 4 ) R 5 , -OR 6 , or -SR 6 ;
  • R 4 is C 1 -C 12 alkyl, C 2 -C 12 alkenyl, C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkenyl, C 6 -C 10 aryl, or 4-to 8-membered heterocycloalkyl;
  • R 5 is H, C 1 -C 12 alkyl, C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkenyl, C 6 -C 10 aryl, or 4-to 8-membered heterocycloalkyl;
  • R 6 is hydrogen, C 1 -C 12 alkyl, C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkenyl, or C 6 -C 10 aryl;
  • x 0, 1, or 2;
  • each alkyl, alkenyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, aryl, alkylene, alkenylene, cycloalkylene, and cycloalkenylene is independently optionally substituted.
  • the cationic lipid is a compound of Formula (02-II) :
  • R 1 and R 2 are each independently C 6 -C 24 alkyl or C 6 -C 24 alkenyl
  • R a , R b , R d , and R e are each independently H, C 1 -C 24 alkyl, or C 2 -C 24 alkenyl;
  • R c and R f are each independently C 1 -C 24 alkyl or C 2 -C 24 alkenyl
  • G 3 is C 2 -C 12 alkylene or C 2 -C 12 alkenylene, wherein part or all of alkylene or alkenylene is optionally replaced by a C 3 -C 8 cycloalkylene or C 3 -C 8 cycloalkenylene;
  • R 3 is -N (R 4 ) R 5 , -OR 6 , or -SR 6 ;
  • R 4 is C 1 -C 12 alkyl, C 2 -C 12 alkenyl, C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkenyl, C 6 -C 10 aryl, or 4-to 8-membered heterocycloalkyl;
  • R 5 is H, C 1 -C 12 alkyl, C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkenyl, C 6 -C 10 aryl, or 4-to 8-membered heterocycloalkyl;
  • R 6 is hydrogen, C 1 -C 12 alkyl, C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkenyl, or C 6 -C 10 aryl;
  • x 0, 1, or 2;
  • each alkyl, alkenyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, aryl, alkylene, alkenylene, cycloalkylene, and cycloalkenylene is independently optionally substituted.
  • the compound is a compound of Formula (02-V-A) , (02-V-B) , (02-V-C) , (02-V-D) , (02-V-E) , (02-V-F) :
  • z is an integer from 2 to 12
  • x0 is an integer from 1 to 11;
  • y0 is an integer from 1 to 11;
  • x1 is an integer from 0 to 9;
  • y1 is an integer from 0 to 9;
  • x2 is an integer from 2 to 5;
  • x3 is an integer from 1 to 5;
  • x4 is an integer from 0 to 3;
  • y2 is an integer from 2 to 5;
  • y3 is an integer from 1 to 5;
  • y4 is an integer from 0 to 3;
  • z is an integer from 2 to 6. In one embodiment, z is 2, 4, or 5. In one embodiment, x0 and y0 are independently 2 to 6. In one embodiment, x0 and y0 are independently 4 or 5. In one embodiment, x1 and y1 are independently 2 to 6. In one embodiment, x1 and y1 are independently 4 or 5. In one embodiment, x2 and y2 are independently an integer from 2 to 5. In one embodiment, x2 and y2 are independently 3 or 5. In one embodiment, x3 and y3 are both 1. In one embodiment, x4 and y4 are independently 0 or 1.
  • R 1 and R 2 are independently straight C 6 -C 10 alkyl, or -R 7 -CH (R 8 ) (R 9 ) , wherein R 7 is C 0 -C 5 alkylene, and R 8 and R 9 are independently C 2 -C 10 alkyl or C 2 -C 10 alkenyl.
  • the compound is a compound of formula (02-VI-A) , (02-VI-B) , (02-VI-C) , (02-VI-D) , (02-VI-E) , or (02-VI-F) :
  • z is an integer from 2 to 12;
  • y is an integer from 2 to 12;
  • x0 is an integer from 1 to 11;
  • x1 is an integer from 0 to 9;
  • x2 is an integer from 2 to 5;
  • x3 is an integer from 1 to 5;
  • x4 is an integer from 0 to 3;
  • z is an integer from 2 to 6. In one embodiment, z is 2, 4 or 5. In one embodiment, x0 is 4 or 5. In one embodiment, x1 is 4 or 5. In one embodiment, x2 is an integer from 2 to 5. In one embodiment, x2 is 3 or 5. In one embodiment, x3 is 0 or 1. In one embodiment, y is an integer from 2 to 6. In one embodiment, y is 5.
  • R 1 is straight C 6 -C 10 alkyl or -R 7 -CH (R 8 ) (R 9 ) , wherein R 7 is C 0 -C 5 alkylene, and R 8 and R 9 are independently C 2 -C 10 alkyl or C 2 -C 10 alkenyl.
  • R 2 and R f are each independently straight C 6 -C 18 alkyl, C 6 -C 18 alkenyl, or -R 7 -CH (R 8 ) (R 9 ) , wherein R 7 is C 0 -C 5 alkylene, and R 8 and R 9 are independently C 2 -C 10 alkyl or C 2 -C 10 alkenyl.
  • R d and R e are each independently H.
  • the compound is a compound in Table 02-1, or a pharmaceutically acceptable salt, prodrug or stereoisomer thereof.
  • the cationic lipid contained in the particles or compositions provided herein is a cationic lipid described in International Patent Publication No. WO2022152109, the entirety of which is incorporated herein by reference.
  • the cationic lipid is a compound of Formula (03-I) :
  • G 1 and G 2 are each independently a bond, C 2 -C 12 alkylene, or C 2 -C 12 alkenylene, wherein one or more -CH 2 -in G 1 and G 2 is optionally replaced by -O-;
  • R 1 and R 2 are each independently C 6 -C 24 alkyl or C 6 -C 24 alkenyl
  • R a , R b , R d , and R e are each independently H, C 1 -C 24 alkyl, or C 2 -C 24 alkenyl;
  • R c and R f are each independently C 1 -C 24 alkyl or C 2 -C 24 alkenyl
  • G 3 is C 2 -C 12 alkylene or C 2 -C 12 alkenylene, wherein part or all of alkylene or alkenylene is optionally replaced by C 3 -C 8 cycloalkylene, C 3 -C 8 cycloalkenylene, C 3 -C 8 cycloalkynylene, 4-to 8-membered heterocyclylene, C 6 -C 10 arylene, or 5-to 10-membered heteroarylene;
  • R 3 is hydrogen, C 1 -C 12 alkyl, C 2 -C 12 alkenyl, C 2 -C 12 alkynyl, C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkenyl, C 3 -C 8 cycloalkynyl, 4-to 8-membered heterocyclyl, C 6 -C 10 aryl, or 5-to 10-membered heteroaryl; or R 3 , G 1 or part of G 1 , together with the nitrogen to which they are attached form a cyclic moiety; or R 3 , G 3 or part of G 3 , together with the nitrogen to which they are attached form a cyclic moiety;
  • R 4 is C 1 -C 12 alkyl or C 3 -C 8 cycloalkyl
  • x 0, 1, or 2;
  • n 1 or 2;
  • n 1 or 2;
  • alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, cycloalkynyl, heterocyclyl, aryl, heteroaryl, alkylene, alkenylene, cycloalkylene, cycloalkenylene, cycloalkynylene, heterocyclylene, arylene, heteroarylene, and cyclic moiety is independently optionally substituted.
  • the compound is a compound of Formula (03-II-A) :
  • the compound is a compound of Formula (03-II-B) :
  • the compound is a compound of Formula (03-II-C) :
  • the compound is a compound of Formula (03-II-D) :
  • G 1 and G 2 are each independently C 2 -C 12 alkylene. In one embodiment, G 1 and G 2 are each independently C 5 alkylene. In one embodiment, G 3 is C 2 -C 6 alkylene.
  • R 3 is C 1 -C 12 alkyl, C 2 -C 12 alkenyl, or C 3 -C 8 cycloalkyl. In one embodiment, R 3 is C 3 -C 8 cycloalkyl. In one embodiment, R 3 is unsubstituted. In one embodiment, R 4 is substituted C 1 -C 12 alkyl. In one embodiment, R 4 is –CH 2 CH 2 OH. In one embodiment, R 4 is – (CH 2 ) 5 OH.
  • R 1 , R 2 , R c , and R f are each independently straight C 6 -C 18 alkyl, straight C 6 -C 18 alkenyl, or -R 7 -CH (R 8 ) (R 9 ) , wherein R 7 is C 0 -C 5 alkylene, and R 8 and R 9 are independently C 2 -C 10 alkyl or C 2 -C 10 alkenyl.
  • R 1 , R 2 , R c , and R f are each independently straight C 7 -C 15 alkyl, straight C 7 -C 15 alkenyl, or -R 7 -CH (R 8 ) (R 9 ) , wherein R 7 is C 0 -C 1 alkylene, and R 8 and R 9 are independently C 4 -C 8 alkyl or C 6 -C 10 alkenyl.
  • R a , R b , R d , and R e are each independently H.
  • R b and R e are each independently straight C 7 -C 15 alkyl, straight C 7 -C 15 alkenyl.
  • the compound is a compound in Table 03-1, or a pharmaceutically acceptable salt, prodrug or stereoisomer thereof.
  • the cationic lipid contained in the particles or compositions provided herein is a cationic lipid described in International Patent Application No. PCT/CN2022/094227, the entirety of which is incorporated herein by reference.
  • the cationic lipid is a compound of Formula (04-I) :
  • G 1 and G 2 are each independently a bond, C 2 -C 12 alkylene, or C 2 -C 12 alkenylene;
  • R 1 and R 2 are each independently C 5 -C 32 alkyl or C 5 -C 32 alkenyl
  • R a , R b , R d , and R e are each independently H, C 1 -C 24 alkyl, or C 2 -C 24 alkenyl;
  • R c and R f are each independently C 1 -C 32 alkyl or C 2 -C 32 alkenyl
  • R 0 is C 1 -C 12 alkyl, C 2 -C 12 alkenyl, C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkenyl, C 6 -C 10 aryl, or 4-to 8-membered heterocycloalkyl;
  • G 3 is C 2 -C 12 alkylene or C 2 -C 12 alkenylene
  • R 4 is C 1 -C 12 alkyl, C 2 -C 12 alkenyl, C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkenyl, C 6 -C 10 aryl, or 4-to 8-membered heterocycloalkyl;
  • R 5 is C 1 -C 12 alkyl, C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkenyl, C 6 -C 10 aryl, or 4-to 8-membered heterocycloalkyl;
  • x 0, 1, or 2;
  • s is 0 or 1;
  • each alkyl, alkenyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, aryl, alkylene, alkenylene, arylene, and heteroarylene, is independently optionally substituted.
  • the cationic lipid is a compound of Formula (04-III) :
  • R 1 and R 2 are each independently C 5 -C 32 alkyl or C 5 -C 32 alkenyl
  • R 0 is C 1 -C 12 alkyl, C 2 -C 12 alkenyl, C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkenyl, C 6 -C 10 aryl, or 4-to 8-membered heterocycloalkyl;
  • G 3 is C 2 -C 12 alkylene or C 2 -C 12 alkenylene
  • G 4 is C 2 -C 12 alkylene or C 2 -C 12 alkenylene
  • R 3 is -N (R 4 ) R 5 or -OR 6 ;
  • R 4 is C 1 -C 12 alkyl, C 2 -C 12 alkenyl, C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkenyl, C 6 -C 10 aryl, or 4-to 8-membered heterocycloalkyl;
  • R 5 is C 1 -C 12 alkyl, C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkenyl, C 6 -C 10 aryl, or 4-to 8-membered heterocycloalkyl; or R 4 , R 5 , together with the nitrogen to which they are attached form a cyclic moiety;
  • R 6 is hydrogen, C 1 -C 12 alkyl, C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkenyl, or C 6 -C 10 aryl; and wherein each alkyl, alkenyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, aryl, alkylene, alkenylene, and cyclic moiety is independently optionally substituted.
  • the compound is a compound of Formula (04-IV) :
  • G 3 is C 2 -C 4 alkylene. In one embodiment, G 4 is C 2 -C 4 alkylene.
  • R 0 is C 1 -C 6 alkyl.
  • R 3 is -OH.
  • R 3 is -N (R 4 ) R 5 .
  • R 4 is C 3 -C 8 cycloalkyl.
  • R 4 is unsubstituted.
  • R 5 is –CH 2 CH 2 OH.
  • R 1 and R 2 are each independently branched C 6 -C 24 alkyl or branched C 6 -C 24 alkenyl.
  • R 1 and R 2 are each independently -R 7 -CH (R 8 ) (R 9 ) , wherein R 7 is C 1 -C 5 alkylene, and R 8 and R 9 are independently C 2 -C 10 alkyl or C 2 -C 10 alkenyl.
  • R 1 is straight C 6 -C 24 alkyl and R 2 is branched C 6 -C 24 alkyl.
  • R 1 is straight C 6 -C 24 alkyl and R 2 is -R 7 -CH (R 8 ) (R 9 ) , wherein R 7 is C 1 -C 5 alkylene, and R 8 and R 9 are independently C 2 -C 10 alkyl.
  • the compound is a compound in Table 04-1, or a pharmaceutically acceptable salt, prodrug or stereoisomer thereof.
  • any embodiment of the compounds provided herein, as set forth above, and any specific substituent and/or variable in the compound provided herein, as set forth above, may be independently combined with other embodiments and/or substituents and/or variables of the compounds to form embodiments not specifically set forth above.
  • substituents and/or variables may be listed for any particular group or variable, it is understood that each individual substituent and/or variable may be deleted from the particular embodiment and/or claim and that the remaining list of substituents and/or variables will be considered to be within the scope of embodiments provided herein.
  • a nanoparticle composition provided herein comprises one or more charged or ionizable lipids in addition to a lipid according Formula 01-I, 01-II, 02-I, 02-II, 03-I, 03-II-A, 03-II-B, 03-II-C, 03-II-D, 04-I, 04-III, 04-IV (and sub-formulas thereof) .
  • lipid according Formula 01-I, 01-II, 02-I, 02-II, 03-I, 03-I, 03-II-A, 03-II-B, 03-II-C, 03-II-D, 04-I, 04-III, 04-IV (and sub-formulas thereof) .
  • certain charged or zwitterionic lipid components of a nanoparticle composition resembles the lipid component in the cell membrane, thereby can improve cellular uptake of the nanoparticle.
  • Exemplary charged or ionizable lipids that can form part of the present nanoparticle composition include but are not limited to 3- (didodecylamino) -N1, N1, 4-tridodecyl-1-piperazineethanamine (KL10) , N1- [2- (didodecylamino) ethyl] -N1, N4, N4-tridodecyl-1, 4-piperazinediethanamine (KL22) , 14, 25-ditridecyl-15, 18, 21, 24-tetraaza-octatriacontane (KL25) , 1, 2-dilinoleyloxy-N, N-dimethylaminopropane (DLinDMA) , 2, 2-dilinoleyl-4-dimethylaminomethyl- [1, 3] -dioxolane (DLin-K-DMA) , heptatriaconta-6, 9, 28, 31-tetraen-19-yl 4-
  • Additional exemplary charged or ionizable lipids that can form part of the present nanoparticle composition include the lipids (e.g., lipid 5) described in Sabnis et al. “A Novel Amino Lipid Series for mRNA Delivery: Improved Endosomal Escape and Sustained Pharmacology and Safety in Non-human Primates” , Molecular Therapy Vol. 26 No 6, 2018, the entirety of which is incorporated herein by reference.
  • suitable cationic lipids include N- [1- (2, 3-dioleyloxy) propyl] -N, N, N-trimethylammonium chloride (DOTMA) ; N- [1- (2, 3-dioleoyloxy) propyl] -N, N, N-trimethylammonium chloride (DOTAP) ; 1, 2-dioleoyl-sn-glycero-3-ethylphosphocholine (DOEPC) ; 1, 2-dilauroyl-sn-glycero-3-ethylphosphocholine (DLEPC) ; 1, 2-dimyristoyl-sn-glycero-3-ethylphosphocholine (DMEPC) ; 1, 2-dimyristoleoyl-sn-glycero-3-ethylphosphocholine (14: 1) ; N1- [2- ( (1S) -1- [ (3-aminopropyl) amino] -4- [di (3
  • cationic lipids with headgroups that are charged at physiological pH such as primary amines (e.g., DODAG N', N'-dioctadecyl-N-4, 8-diaza-10-aminodecanoylglycine amide) and guanidinium head groups (e.g., bis-guanidinium-spermidine-cholesterol (BGSC) , bis-guanidiniumtren-cholesterol (BGTC) , PONA, and (R) -5-guanidinopentane-1, 2-diyl dioleate hydrochloride (DOPen-G) ) .
  • primary amines e.g., DODAG N', N'-dioctadecyl-N-4, 8-diaza-10-aminodecanoylglycine amide
  • guanidinium head groups e.g., bis-guanidinium-spermidine-cholesterol (BGSC
  • cationic lipid is (R) -5- (dimethylamino) pentane-1, 2-diyl dioleate hydrochloride (DODAPen-Cl) .
  • the cationic lipid is a particular enantiomer or the racemic form, and includes the various salt forms of a cationic lipid as above (e.g., chloride or sulfate) .
  • the cationic lipid is N- [1- (2, 3-dioleoyloxy) propyl] -N, N, N-trimethylammonium chloride (DOTAP-Cl) or N- [1- (2, 3-dioleoyloxy) propyl] -N, N, N-trimethylammonium sulfate (DOTAP-Sulfate) .
  • DOTAP-Cl N-trimethylammonium chloride
  • DOTAP-Sulfate N- [1- (2, 3-dioleoyloxy) propyl] -N, N, N-trimethylammonium sulfate
  • the cationic lipid is an ionizable cationic lipid such as, e.g., dioctadecyldimethylammonium bromide (DDAB) ; 1, 2-dilinoleyloxy-3-dimethylaminopropane (DLinDMA) ; 2, 2-dilinoleyl-4- (2dimethylaminoethyl) - [1, 3] -dioxolane (DLin-KC2-DMA) ; heptatriaconta-6, 9, 28, 31-tetraen-19-yl 4- (dimethylamino) butanoate (DLin-MC3-DMA) ; 1, 2-dioleoyloxy-3-dimethylaminopropane (DODAP) ; 1, 2-dioleyloxy-3-dimethylaminopropane (DODMA) ; and morpholinocholesterol (Mo-CHOL) .
  • DDAB dioct
  • the charged or ionizable lipid that can form part of the present nanoparticle composition is a lipid including a cyclic amine group. Additional cationic lipids that are suitable for the formulations and methods disclosed herein include those described in WO2015199952, WO2016176330, and WO2015011633, the entire contents of each of which are hereby incorporated by reference in their entireties. Additionally, in some embodiments, the charged or ionizable lipid that can form part of the present nanoparticle composition is a lipid including a cyclic amine group. Additional cationic lipids that are suitable for the formulations and methods disclosed herein include those described in WO2015199952, WO2016176330, and WO2015011633, the entire contents of each of which are hereby incorporated by reference in their entireties.
  • the lipid component of a nanoparticle composition can include one or more polymer conjugated lipids, such as PEGylated lipids (PEG lipids) .
  • PEG lipids PEGylated lipids
  • a polymer conjugated lipid component in a nanoparticle composition can improve of colloidal stability and/or reduce protein absorption of the nanoparticles.
  • Exemplary cationic lipids that can be used in connection with the present disclosure include but are not limited to PEG-modified phosphatidylethanolamines, PEG-modified phosphatidic acids, PEG-modified ceramides, PEG-modified dialkylamines, PEG-modified diacylglycerols, PEG-modified dialkylglycerols, and mixtures thereof.
  • a PEG lipid may be PEG-c-DOMG, PEG-DMG, PEG-DLPE, PEG-DMPE, PEG-DPPC, PEG-DSPE, Ceramide-PEG2000, or Chol-PEG2000.
  • the polymer conjugated lipid is a pegylated lipid.
  • some embodiments include a pegylated diacylglycerol (PEG-DAG) such as 1- (monomethoxy-polyethyleneglycol) -2, 3-dimyristoylglycerol (PEG-DMG) , a pegylated phosphatidylethanoloamine (PEG-PE) , a PEG succinate diacylglycerol (PEG-S-DAG) such as 4-O- (2’ , 3’ -di (tetradecanoyloxy) propyl-1-O- ( ⁇ -methoxy (polyethoxy) ethyl) butanedioate (PEG-S-DMG) , a pegylated ceramide (PEG-cer) , or a PEG dialkoxypropylcarbamate such as ⁇ -methoxy (polyethoxy) ethy
  • the polymer conjugated lipid is present in a concentration ranging from 1.0 to 2.5 molar percent. In one embodiment, the polymer conjugated lipid is present in a concentration of about 1.7 molar percent. In one embodiment, the polymer conjugated lipid is present in a concentration of about 1.5 molar percent.
  • the molar ratio of cationic lipid to the polymer conjugated lipid ranges from about 35: 1 to about 25: 1. In one embodiment, the molar ratio of cationic lipid to polymer conjugated lipid ranges from about 100: 1 to about 20: 1.
  • the molar ratio of cationic lipid to the polymer conjugated lipid ranges from about 35: 1 to about 25: 1. In one embodiment, the molar ratio of cationic lipid to polymer conjugated lipid ranges from about 100: 1 to about 20: 1.
  • the pegylated lipid has the following Formula:
  • R 12 and R 13 are each independently a straight or branched, saturated or unsaturated alkyl chain containing from 10 to 30 carbon atoms, wherein the alkyl chain is optionally interrupted by one or more ester bonds;
  • w has a mean value ranging from 30 to 60.
  • R12 and R13 are each independently straight, saturated alkyl chains containing from 12 to 16 carbon atoms.
  • the average w ranges from 42 to 55, for example, the average w is 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54 or 55. In some specific embodiments, the average w is about 49.
  • the pegylated lipid has the following Formula:
  • the lipid component of a nanoparticle composition can include one or more structural lipids.
  • structural lipids can stabilize the amphiphilic structure of a nanoparticle, such as but not limited to the lipid bilayer structure of a nanoparticle.
  • Exemplary structural lipids that can be used in connection with the present disclosure include but are not limited to cholesterol, fecosterol, sitosterol, ergosterol, campesterol, stigmasterol, brassicasterol, tomatidine, tomatine, ursolic acid, alpha-tocopherol, and mixtures thereof.
  • the structural lipid is cholesterol.
  • the structural lipid includes cholesterol and a corticosteroid (such as prednisolone, dexamethasone, prednisone, and hydrocortisone) , or a combination thereof.
  • the lipid nanoparticles provided herein comprise a steroid or steroid analogue.
  • the steroid or steroid analogue is cholesterol.
  • the steroid is present in a concentration ranging from 39 to 49 molar percent, 40 to 46 molar percent, from 40 to 44 molar percent, from 40 to 42 molar percent, from 42 to 44 molar percent, or from 44 to 46 molar percent.
  • the steroid is present in a concentration of 40, 41, 42, 43, 44, 45, or 46 molar percent.
  • the molar ratio of cationic lipid to the steroid ranges from 1.0: 0.9 to 1.0: 1.2, or from 1.0: 1.0 to 1.0: 1.2. In one embodiment, the molar ratio of cationic lipid to cholesterol ranges from about 5: 1 to 1: 1. In one embodiment, the steroid is present in a concentration ranging from 32 to 40 mol percent of the steroid.
  • the molar ratio of cationic lipid to the steroid ranges from 1.0: 0.9 to 1.0: 1.2, or from 1.0: 1.0 to 1.0: 1.2. In one embodiment, the molar ratio of cationic lipid to cholesterol ranges from about 5: 1 to 1: 1. In one embodiment, the steroid is present in a concentration ranging from 32 to 40 mol percent of the steroid.
  • the lipid component of a nanoparticle composition can include one or more phospholipids, such as one or more (poly) unsaturated lipids.
  • phospholipids may assemble into one or more lipid bilayers structures.
  • Exemplary phospholipids that can form part of the present nanoparticle composition include but are not limited to 1, 2-distearoyl-sn-glycero-3-phosphocholine (DSPC) , 1, 2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) , 1, 2-dilinoleoyl-sn-glycero-3-phosphocholine (DLPC) , 1, 2-dimyristoyl-sn-glycero-phosphocholine (DMPC) , 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) , 1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) , 1, 2-diundecanoyl-sn-glycero-phosphocholine (DUPC) , 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) , 1, 2-di-O
  • Additional exemplary neutral lipids include, for example, dipalmitoylphosphatidylglycerol (DPPG) , palmitoyloleoyl-phosphatidylethanolamine (POPE) and dioleoyl-phosphatidylethanolamine 4- (N-maleimidomethyl) -cyclohexane-1carboxylate (DOPE-mal) , dipalmitoyl phosphatidyl ethanolamine (DPPE) , dimyristoylphosphoethanolamine (DMPE) , distearoyl-phosphatidylethanolamine (DSPE) , 16-O-monomethyl PE, 16-O-dimethyl PE, 18-1-trans PE, 1-stearioyl-2-oleoylphosphatidyethanol amine (SOPE) , and 1, 2-dielaidoyl-sn- glycero-3-phophoethanolamine (transDOPE) .
  • DPPG dipalmitoylphosphatidylglyce
  • the neutral lipid is 1, 2-distearoyl-sn-glycero-3phosphocholine (DSPC) .
  • the neutral lipid is selected from DSPC, DPPC, DMPC, DOPC, POPC, DOPE and SM.
  • the neutral lipid is phosphatidylcholine (PC) , phosphatidylethanolamine (PE) phosphatidylserine (PS) , phosphatidic acid (PA) , or phosphatidylglycerol (PG) .
  • PC phosphatidylcholine
  • PE phosphatidylethanolamine
  • PS phosphatidylserine
  • PA phosphatidic acid
  • PG phosphatidylglycerol
  • phospholipids that can form part of the present nanoparticle composition also include those described in WO2017/112865, the entire content of which is hereby incorporated by reference in its entirety.
  • nanoparticle compositions described herein can include at least one lipid component and one or more additional components, such as a therapeutic and/or prophylactic agent (e.g., the therapeutic nucleic acid described herein) .
  • a nanoparticle composition may be designed for one or more specific applications or targets.
  • the elements of a nanoparticle composition may be selected based on a particular application or target, and/or based on the efficacy, toxicity, expense, ease of use, availability, or other feature of one or more elements.
  • the particular formulation of a nanoparticle composition may be selected for a particular application or target according to, for example, the efficacy and toxicity of particular combinations of elements.
  • the lipid component of a nanoparticle composition may include, for example, a lipid according to one of Formula 01-I, 01-II, 02-I, 02-II, 03-I, 03-II-A, 03-II-B, 03-II-C, 03-II-D, 04-I, 04-III, 04-IV (and sub-formulas thereof) described herein, a phospholipid (such as an unsaturated lipid, e.g., DOPE or DSPC) , a polymer conjugated lipid (such as a PEG lipid) , and a structural lipid (such as a steroid) .
  • the elements of the lipid component may be provided in specific fractions.
  • a nanoparticle compositions comprising a cationic or ionizable lipid compound provided herein, a therapeutic agent, and one or more excipients.
  • cationic or ionizable lipid compound comprises a compound according to one of Formula 01-I, 01-II, 02-I, 02-II, 03-I, 03-II-A, 03-II-B, 03-II-C, 03-II-D, 04-I, 04-III, 04-IV (and sub-formulas thereof) as described herein, and optionally one or more additional ionizable lipid compounds.
  • the one or more excipients are selected from neutral lipids, phospholipids, steroids, and polymer conjugated lipids.
  • the therapeutic agent is encapsulated within or associated with the lipid nanoparticle.
  • nanoparticle composition comprising:
  • nanoparticle composition comprising:
  • the nanoparticle composition comprising:
  • the nanoparticle composition comprising:
  • mol percent refers to a component’s molar percentage relative to total mols of all lipid components in the LNP (i.e., total mols of cationic lipid (s) , the neutral lipid, the steroid and the polymer conjugated lipid) .
  • the therapeutic agent is a nucleic acid molecule according to the present disclosure.
  • the therapeutic agent comprises any one or more nucleic acid sequences described in Section 5.3 (Therapeutic Nucleic Acids) herein.
  • the lipid nanoparticle comprises from 40 to 50 mol percent, from 41 to 49 mol percent, from 41 to 48 mol percent, from 42 to 48 mol percent, from 43 to 48 mol percent, from 44 to 48 mol percent, from 45 to 48 mol percent, from 46 to 48 mol percent, or from 47.2 to 47.8 mol percent of the cationic lipid.
  • the lipid nanoparticle comprises about 47.0, 47.1, 47.2, 47.3, 47.4, 47.5, 47.6, 47.7, 47.8, 47.9, or 48.0 mol percent of the cationic lipid.
  • the lipid nanoparticle comprises about 50 mol percent of the cationic lipid.
  • the neutral lipid is present in a concentration ranging from 5 to 15 mol percent, 7 to 13 mol percent, or 9 to 11 mol percent. In one embodiment, the neutral lipid is present in a concentration of about 9.5, 10 or 10.5 mol percent. In one embodiment, the molar ratio of the cationic lipid to the neutral lipid ranges from about 4.1: 1.0 to about 4.9: 1.0, from about 4.5: 1.0 to about 4.8: 1.0, or from about 4.7: 1.0 to 4.8: 1.0.
  • the steroid is present in a concentration ranging from 38 to 49 molar percent, 40 to 46 molar percent, from 40 to 44 molar percent, from 40 to 42 molar percent, from 42 to 44 molar percent, or from 44 to 46 molar percent. In one embodiment, the steroid is present in a concentration of 40, 41, 42, 43, 44, 45, or 46 molar percent. In one embodiment, the steroid is present in a concentration of 38.0, 38.1, 38.2, 38.3, 38.4, 38.5, 38.6, 38.7, 38.8, or 38.9 molar percent. In one embodiment, the molar ratio of cationic lipid to the steroid ranges from 1.0: 0.9 to 1.0: 1.2, or from 1.0: 1.0 to 1.0: 1.2. In one embodiment, the steroid is cholesterol.
  • the lipid nanoparticle comprises about 50 mol percent of the cationic lipid, and about 38.5 mol percent of steroid. In some embodiments, the molar ratio of cationic lipid to the steroid is 1.3: 1.0. In one embodiment, the steroid is cholesterol.
  • the therapeutic agent to lipid ratio in the LNP i.e., N/P, were N represents the moles of cationic lipid and P represents the moles of phosphate present as part of the nucleic acid backbone
  • N/P ranges from 6: 1 to 20: 1 or 2: 1 to 12: 1.
  • Exemplary N/P ranges include about 3: 1. About 6: 1, about 12: 1 and about 22: 1.
  • lipid nanoparticle comprising:
  • a cationic lipid having an effective pKa greater than 6.0; ii) from 5 to 15 mol percent of a neutral lipid;
  • a therapeutic agent or a pharmaceutically acceptable salt or prodrug thereof, wherein the mol percent is determined based on total mol of lipid present in the lipid nanoparticle.
  • the cationic lipid can be any of a number of lipid species which carry a net positive charge at a selected pH, such as physiological pH. Exemplary cationic lipids are described herein below.
  • the cationic lipid has a pKa greater than 6.25.
  • the cationic lipid has a pKa greater than 6.5.
  • the cationic lipid has a pKa greater than 6.1, greater than 6.2, greater than 6.3, greater than 6.35, greater than 6.4, greater than 6.45, greater than 6.55, greater than 6.6, greater than 6.65, or greater than 6.7.
  • the lipid nanoparticle comprises from 40 to 45 mol percent of the cationic lipid. In one embodiment, the lipid nanoparticle comprises from 45 to 50 mole percent of the cationic lipid.
  • the molar ratio of the cationic lipid to the neutral lipid ranges from about 2: 1 to about 8: 1. In one embodiment, the lipid nanoparticle comprises from 5 to 10 mol percent of the neutral lipid.
  • Exemplary anionic lipids include, but are not limited to, phosphatidylglycerol, dioleoylphosphatidylglycerol (DOPG) , dipalmitoylphosphatidylglycerol (DPPG) or 1, 2-distearoyl-sn-glycero-3-phospho- (1'-rac-glycerol) (DSPG) .
  • DOPG dioleoylphosphatidylglycerol
  • DPPG dipalmitoylphosphatidylglycerol
  • DSPG 1, 2-distearoyl-sn-glycero-3-phospho- (1'-rac-glycerol
  • the lipid nanoparticle comprises from 1 to 10 mole percent of the anionic lipid. In one embodiment, the lipid nanoparticle comprises from 1 to 5 mole percent of the anionic lipid. In one embodiment, the lipid nanoparticle comprises from 1 to 9 mole percent, from 1 to 8 mole percent, from 1 to 7 mole percent, or from 1 to 6 mole percent of the anionic lipid. In one embodiment, the mol ratio of anionic lipid to neutral lipid ranges from 1: 1 to 1: 10.
  • the steroid cholesterol In one embodiment, the steroid cholesterol. In one embodiment, the molar ratio of the cationic lipid to cholesterol ranges from about 5: 1 to 1: 1. In one embodiment, the lipid nanoparticle comprises from 32 to 40 mol percent of the steroid.
  • the sum of the mol percent of neutral lipid and mol percent of anionic lipid ranges from 5 to 15 mol percent. In one embodiment, wherein the sum of the mol percent of neutral lipid and mol percent of anionic lipid ranges from 7 to 12 mol percent.
  • the mol ratio of anionic lipid to neutral lipid ranges from 1: 1 to 1: 10. In one embodiment, the sum of the mol percent of neutral lipid and mol percent steroid ranges from 35 to 45 mol percent.
  • the lipid nanoparticle comprises:
  • the lipid nanoparticle comprises from 1.0 to 2.5 mol percent of the conjugated lipid. In one embodiment, the polymer conjugated lipid is present in a concentration of about 1.5 mol percent.
  • the neutral lipid is present in a concentration ranging from 5 to 15 mol percent, 7 to 13 mol percent, or 9 to 11 mol percent. In one embodiment, the neutral lipid is present in a concentration of about 9.5, 10 or 10.5 mol percent. In one embodiment, the molar ratio of the cationic lipid to the neutral lipid ranges from about 4.1: 1.0 to about 4.9: 1.0, from about 4.5: 1.0 to about 4.8: 1.0, or from about 4.7: 1.0 to 4.8: 1.0.
  • the steroid is cholesterol. In some embodiments, the steroid is present in a concentration ranging from 39 to 49 molar percent, 40 to 46 molar percent, from 40 to 44 molar percent, from 40 to 42 molar percent, from 42 to 44 molar percent, or from 44 to 46 molar percent. In one embodiment, the steroid is present in a concentration of 40, 41, 42, 43, 44, 45, or 46 molar percent. In certain embodiments, the molar ratio of cationic lipid to the steroid ranges from 1.0: 0.9 to 1.0: 1.2, or from 1.0: 1.0 to 1.0: 1.2.
  • the molar ratio of cationic lipid to steroid ranges from 5: 1 to 1: 1.
  • the lipid nanoparticle comprises from 1.0 to 2.5 mol percent of the conjugated lipid. In one embodiment, the polymer conjugated lipid is present in a concentration of about 1.5 mol percent.
  • the molar ratio of cationic lipid to polymer conjugated lipid ranges from about 100: 1 to about 20: 1. In one embodiment, the molar ratio of cationic lipid to the polymer conjugated lipid ranges from about 35: 1 to about 25: 1.
  • the molar ratio of cationic lipid to polymer conjugated lipid ranges from about 100: 1 to about 20: 1. In one embodiment, the molar ratio of cationic lipid to the polymer conjugated lipid ranges from about 35: 1 to about 25: 1.
  • the lipid nanoparticle has a mean diameter ranging from 50 nm to 100 nm, or from 60 nm to 85 nm.
  • the composition comprises a cationic lipid provided herein, DSPC, cholesterol, and PEG-lipid, and mRNA.
  • the a cationic lipid provided herein, DSPC, cholesterol, and PEG-lipid are at a molar ratio of about 50: 10: 38.5: 1.5.
  • Nanoparticle compositions can be designed for one or more specific applications or targets.
  • a nanoparticle composition can be designed to deliver a therapeutic and/or prophylactic agent such as an RNA to a particular cell, tissue, organ, or system or group thereof in a mammal’s body.
  • Physiochemical properties of nanoparticle compositions can be altered in order to increase selectivity for particular bodily targets. For instance, particle sizes can be adjusted based on the fenestration sizes of different organs.
  • the therapeutic and/or prophylactic agent included in a nanoparticle composition can also be selected based on the desired delivery target or targets.
  • a therapeutic and/or prophylactic agent can be selected for a particular indication, condition, disease, or disorder and/or for delivery to a particular cell, tissue, organ, or system or group thereof (e.g., localized or specific delivery) .
  • a nanoparticle composition can include an mRNA encoding a polypeptide of interest capable of being translated within a cell to produce the polypeptide of interest.
  • Such a composition can be designed to be specifically delivered to a particular organ.
  • a composition can be designed to be specifically delivered to a mammalian liver.
  • the amount of a therapeutic and/or prophylactic agent in a nanoparticle composition can depend on the size, composition, desired target and/or application, or other properties of the nanoparticle composition as well as on the properties of the therapeutic and/or prophylactic agent.
  • the amount of an RNA useful in a nanoparticle composition can depend on the size, sequence, and other characteristics of the RNA.
  • the relative amounts of a therapeutic and/or prophylactic agent and other elements (e.g., lipids) in a nanoparticle composition can also vary.
  • the wt/wt ratio of the lipid component to a therapeutic and/or prophylactic agent in a nanoparticle composition can be from about 5: 1 to about 60: 1, such as about 5: 1, 6: 1, 7: 1, 8: 1, 9: 1, 10: 1, 11: 1, 12: 1, 13: 1, 14: 1, 15: 1, 16: 1, 17: 1, 18: 1, 19: 1, 20: 1, 22: 1, 25: 1, 30: 1, 35: 1, 40: 1, 45: 1, 50: 1, and 60: 1.
  • the wt/wt ratio of the lipid component to a therapeutic and/or prophylactic agent can be from about 10: 1 to about 40: 1.
  • the wt/wt ratio is about 20: 1.
  • the amount of a therapeutic and/or prophylactic agent in a nanoparticle composition can, for example, be measured using absorption spectroscopy (e.g., ultraviolet-visible spectroscopy) .
  • a nanoparticle composition includes one or more RNAs, and the one or more RNAs, lipids, and amounts thereof can be selected to provide a specific N: P ratio.
  • the N: P ratio of the composition refers to the molar ratio of nitrogen atoms in one or more lipids to the number of phosphate groups in an RNA. In some embodiments, a lower N: P ratio is selected.
  • the one or more RNA, lipids, and amounts thereof can be selected to provide an N: P ratio from about 2: 1 to about 30: 1, such as 2: 1, 3: 1, 4: 1, 5: 1, 6: 1, 7: 1, 8: 1, 9: 1, 10: 1, 12: 1, 14: 1, 16: 1, 18: 1, 20: 1, 22: 1, 24: 1, 26: 1, 28: 1, or 30: 1.
  • the N: P ratio can be from about 2: 1 to about 8: 1.
  • the N: P ratio is from about 5: 1 to about 8: 1.
  • the N: P ratio may be about 5.0: 1, about 5.5: 1, about 5.67: 1, about 6.0: 1, about 6.5: 1, or about 7.0: 1.
  • the N: P ratio may be about 5.67: 1.
  • the physical properties of a nanoparticle composition can depend on the components thereof.
  • a nanoparticle composition including cholesterol as a structural lipid can have different characteristics compared to a nanoparticle composition that includes a different structural lipid.
  • the characteristics of a nanoparticle composition can depend on the absolute or relative amounts of its components. For instance, a nanoparticle composition including a higher molar fraction of a phospholipid may have different characteristics than a nanoparticle composition including a lower molar fraction of a phospholipid. Characteristics may also vary depending on the method and conditions of preparation of the nanoparticle composition.
  • Nanoparticle compositions may be characterized by a variety of methods. For example, microscopy (e.g., transmission electron microscopy or scanning electron microscopy) may be used to examine the morphology and size distribution of a nanoparticle composition. Dynamic light scattering or potentiometry (e.g., potentiometric titrations) may be used to measure zeta potentials. Dynamic light scattering may also be utilized to determine particle sizes. Instruments such as the Zetasizer Nano ZS (Malvem Instruments Ltd, Malvem, Worcestershire, UK) may also be used to measure multiple characteristics of a nanoparticle composition, such as particle size, polydispersity index, and zeta potential.
  • microscopy e.g., transmission electron microscopy or scanning electron microscopy
  • Dynamic light scattering or potentiometry e.g., potentiometric titrations
  • Dynamic light scattering may also be utilized to determine particle sizes.
  • Instruments such as the Ze
  • the mean size of a nanoparticle composition can be between 10s of nm and 100s of nm.
  • the mean size can be from about 40 nm to about 150 nm, such as about 40 nm, 45 nm, 50 nm, 55 nm, 60 nm, 65 nm, 70 nm, 75 nm, 80 nm, 85 nm, 90 nm, 95 nm, 100 nm, 105 nm, 110 nm, 115 nm, 120 nm, 125 nm, 130 nm, 135 nm, 140 nm, 145 nm, or 150 nm.
  • the mean size of a nanoparticle composition can be from about 50 nm to about 100 nm, from about 50 nm to about 90 nm, from about 50 nm to about 80 nm, from about 50 nm to about 70 nm, from about 50 nm to about 60 nm, from about 60 nm to about 100 nm, from about 60 nm to about 90 nm, from about 60 nm to about 80 nm, from about 60 nm to about 70 nm, from about 70 nm to about 100 nm, from about 70 nm to about 90 nm, from about 70 nm to about 80 nm, from about 80 nm to about 100 nm, from about 80 nm to about 90 nm, or from about 90 nm to about 100 nm.
  • the mean size of a nanoparticle composition can be from about 70 nm to about 100 nm. In some embodiments, the mean size can be about 80
  • a nanoparticle composition can be relatively homogenous.
  • a polydispersity index can be used to indicate the homogeneity of a nanoparticle composition, e.g., the particle size distribution of the nanoparticle compositions.
  • a small (e.g., less than 0.3) polydispersity index generally indicates a narrow particle size distribution.
  • a nanoparticle composition can have a polydispersity index from about 0 to about 0.25, such as 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.20, 0.21, 0.22, 0.23, 0.24, or 0.25.
  • the polydispersity index of a nanoparticle composition can be from about 0.10 to about 0.20.
  • the zeta potential of a nanoparticle composition can be used to indicate the electrokinetic potential of the composition.
  • the zeta potential can describe the surface charge of a nanoparticle composition.
  • Nanoparticle compositions with relatively low charges, positive or negative, are generally desirable, as more highly charged species can interact undesirably with cells, tissues, and other elements in the body.
  • the zeta potential of a nanoparticle composition can be from about -10 mV to about +20 mV, from about -10 mV to about +15 mV, from about -10 mV to about +10 mV, from about -10 mV to about +5 mV, from about -10 mV to about 0 mV, from about -10 mV to about -5 mV, from about -5 mV to about +20 mV, from about -5 mV to about +15 mV, from about -5 mV to about +10 mV, from about -5 mV to about +5 mV, from about -5 mV to about 0 mV, from about 0 mV to about +20 mV, from about 0 mV to about +15 mV, from about 0 mV to about +10 mV, from about 0 mV to about +5 mV, from about 0 mV to about +20 mV
  • the efficiency of encapsulation of a therapeutic and/or prophylactic agent describes the amount of therapeutic and/or prophylactic agent that is encapsulated or otherwise associated with a nanoparticle composition after preparation, relative to the initial amount provided.
  • the encapsulation efficiency is desirably high (e.g., close to 100%) .
  • the encapsulation efficiency can be measured, for example, by comparing the amount of therapeutic and/or prophylactic agent in a solution containing the nanoparticle composition before and after breaking up the nanoparticle composition with one or more organic solvents or detergents. Fluorescence can be used to measure the amount of free therapeutic and/or prophylactic agent (e.g., RNA) in a solution.
  • free therapeutic and/or prophylactic agent e.g., RNA
  • the encapsulation efficiency of a therapeutic and/or prophylactic agent can be at least 50%, for example 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%.
  • the encapsulation efficiency can be at least 80%. In certain embodiments, the encapsulation efficiency can be at least 90%.
  • a nanoparticle composition can optionally comprise one or more coatings.
  • a nanoparticle composition can be formulated in a capsule, film, or tablet having a coating.
  • a capsule, film, or tablet including a composition described herein can have any useful size, tensile strength, hardness, or density.
  • nanoparticle compositions can be formulated in whole or in part as pharmaceutical compositions.
  • Pharmaceutical compositions can include one or more nanoparticle compositions.
  • a pharmaceutical composition can include one or more nanoparticle compositions including one or more different therapeutic and/or prophylactic agents.
  • Pharmaceutical compositions can further include one or more pharmaceutically acceptable excipients or accessory ingredients such as those described herein.
  • General guidelines for the formulation and manufacture of pharmaceutical compositions and agents are available, for example, in Remington’s The Science and Practice of Pharmacy, 21 st Edition, A. R. Gennaro; Lippincott, Williams &Wilkins, Baltimore, Md., 2006.
  • excipients and accessory ingredients can be used in any pharmaceutical composition, except insofar as any conventional excipient or accessory ingredient can be incompatible with one or more components of a nanoparticle composition.
  • An excipient or accessory ingredient can be incompatible with a component of a nanoparticle composition if its combination with the component can result in any undesirable biological effect or otherwise deleterious effect.
  • one or more excipients or accessory ingredients can make up greater than 50%of the total mass or volume of a pharmaceutical composition including a nanoparticle composition.
  • the one or more excipients or accessory ingredients can make up 50%, 60%, 70%, 80%, 90%, or more of a pharmaceutical convention.
  • a pharmaceutically acceptable excipient is at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%pure.
  • an excipient is approved for use in humans and for veterinary use.
  • an excipient is approved by United States Food and Drug Administration.
  • an excipient is pharmaceutical grade.
  • an excipient meets the standards of the United States Pharmacopoeia (USP) , the European Pharmacopoeia (EP) , the British Pharmacopoeia, and/or the International Pharmacopoeia.
  • a pharmaceutical composition in accordance with the present disclosure will vary, depending upon the identity, size, and/or condition of the subject treated and further depending upon the route by which the composition is to be administered.
  • a pharmaceutical composition can comprise between 0.1%and 100% (wt/wt) of one or more nanoparticle compositions.
  • the nanoparticle compositions and/or pharmaceutical compositions of the disclosure are refrigerated or frozen for storage and/or shipment (e.g., being stored at a temperature of 4 °C. or lower, such as a temperature between about -150 °C and about 0 °C or between about -80 °C and about -20 °C (e.g., about -5 °C, -10 °C, -15 °C, -20 °C, -25 °C, -30 °C, -40 °C, -50 °C, -60 °C, -70 °C, -80 °C, -90 °C, -130 °C or -150 °C) .
  • a temperature of 4 °C. or lower such as a temperature between about -150 °C and about 0 °C or between about -80 °C and about -20 °C (e.g., about -5 °C, -10 °C, -15
  • the pharmaceutical composition comprising a compound of any of Formula 01-I, 01-II, 02-I, 02-II, 03-I, 03-II-A, 03-II-B, 03-II-C, 03-II-D, 04-I, 04-III, 04-IV (and sub-formulas thereof) is a solution that is refrigerated for storage and/or shipment at, for example, about -20 °C, -30 °C, -40 °C, -50 °C, -60 °C, -70 °C, or -80 °C
  • the disclosure also relates to a method of increasing stability of the nanoparticle compositions and/or pharmaceutical compositions comprising a compound of any of Formula 01-I, 01-II, 02-I, 02-II, 03-I, 03-II-A, 03-II-B, 03-II-C, 03-II-D, 04-I, 04-III, 04-IV (and sub-formulas
  • the nanoparticle compositions and/or pharmaceutical compositions disclosed herein are stable for about at least 1 week, at least 2 weeks, at least 3 weeks, at least 4 weeks, at least 5 weeks, at least 6 weeks, at least 1 month, at least 2 months, at least 4 months, at least 6 months, at least 8 months, at least 10 months, at least 12 months, at least 14 months, at least 16 months, at least 18 months, at least 20 months, at least 22 months, or at least 24 months, e.g., at a temperature of 4 °C or lower (e.g., between about 4 °C and -20 °C) .
  • the formulation is stabilized for at least 4 weeks at about 4 °C
  • the pharmaceutical composition of the disclosure comprises a nanoparticle composition disclosed herein and a pharmaceutically acceptable carrier selected from one or more of Tris, an acetate (e.g., sodium acetate) , an citrate (e.g., sodium citrate) , saline, PBS, and sucrose.
  • the pharmaceutical composition of the disclosure has a pH value between about 7 and 8 (e.g., 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9 or 8.0, or between 7.5 and 8 or between 7 and 7.8) .
  • a pharmaceutical composition of the disclosure comprises a nanoparticle composition disclosed herein, Tris, saline and sucrose, and has a pH of about 7.5-8, which is suitable for storage and/or shipment at, for example, about -20 °C
  • a pharmaceutical composition of the disclosure comprises a nanoparticle composition disclosed herein and PBS and has a pH of about 7-7.8, suitable for storage and/or shipment at, for example, about 4 °C or lower.
  • Stability, ” “stabilized, ” and “stable” in the context of the present disclosure refers to the resistance of nanoparticle compositions and/or pharmaceutical compositions disclosed herein to chemical or physical changes (e.g., degradation, particle size change, aggregation, change in encapsulation, etc. ) under given manufacturing, preparation, transportation, storage and/or in-use conditions, e.g., when stress is applied such as shear force, freeze/thaw stress, etc.
  • Nanoparticle compositions and/or pharmaceutical compositions including one or more nanoparticle compositions can be administered to any patient or subject, including those patients or subjects that can benefit from a therapeutic effect provided by the delivery of a therapeutic and/or prophylactic agent to one or more particular cells, tissues, organs, or systems or groups thereof, such as the renal system.
  • a therapeutic and/or prophylactic agent to one or more particular cells, tissues, organs, or systems or groups thereof, such as the renal system.
  • compositions suitable for administration to humans in order to render the compositions suitable for administration to various animals is well understood, and the ordinarily skilled veterinary pharmacologist can design and/or perform such modification with merely ordinary, if any, experimentation.
  • Subjects to which administration of the compositions is contemplated include, but are not limited to, humans, other primates, and other mammals, including commercially relevant mammals such as cattle, pigs, hoses, sheep, cats, dogs, mice, and/or rats.
  • a pharmaceutical composition including one or more nanoparticle compositions can be prepared by any method known or hereafter developed in the art of pharmacology. In general, such preparatory methods include bringing the active ingredient into association with an excipient and/or one or more other accessory ingredients, and then, if desirable or necessary, dividing, shaping, and/or packaging the product into a desired single-or multi-dose unit.
  • a pharmaceutical composition in accordance with the present disclosure can be prepared, packaged, and/or sold in bulk, as a single unit dose, and/or as a plurality of single unit doses.
  • a “unit dose” is discrete amount of the pharmaceutical composition comprising a predetermined amount of the active ingredient (e.g., nanoparticle composition) .
  • the amount of the active ingredient is generally equal to the dosage of the active ingredient which would be administered to a subject and/or a convenient fraction of such a dosage such as, for example, one-half or one-third of such a dosage.
  • compositions can be prepared in a variety of forms suitable for a variety of routes and methods of administration.
  • pharmaceutical compositions can be prepared in liquid dosage forms (e.g., emulsions, microemulsions, nanoemulsions, solutions, suspensions, syrups, and elixirs) , injectable forms, solid dosage forms (e.g., capsules, tablets, pills, powders, and granules) , dosage forms for topical and/or transdermal administration (e.g., ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants, and patches) , suspensions, powders, and other forms.
  • liquid dosage forms e.g., emulsions, microemulsions, nanoemulsions, solutions, suspensions, syrups, and elixirs
  • injectable forms e.g., solid dosage forms (e.g., capsules, tablets, pills, powders, and granules)
  • Liquid dosage forms for oral and parenteral administration include, but are not limited to, pharmaceutically acceptable emulsions, microemulsions, nanoemulsions, solutions, suspensions, syrups, and/or elixirs.
  • liquid dosage forms can comprise inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1, 3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils) , glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.
  • inert diluents commonly used in the
  • oral compositions can include additional therapeutic and/or prophylactic agents, additional agents such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and/or perfuming agents.
  • additional agents such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and/or perfuming agents.
  • solubilizing agents such as CremophorTM, alcohols, oils, modified oils, glycols, polysorbates, cyclodextrins, polymers, and/or combinations thereof.
  • Injectable preparations for example, sterile injectable aqueous or oleaginous suspensions can be formulated according to the known art using suitable dispersing agents, wetting agents, and/or suspending agents.
  • Sterile injectable preparations can be sterile injectable solutions, suspensions, and/or emulsions in nontoxic parenterally acceptable diluents and/or solvents, for example, as a solution in 1, 3-butanediol.
  • the acceptable vehicles and solvents that can be employed are water, Ringer’s solution, U.S.P., and isotonic sodium chloride solution.
  • Sterile, fixed oils are conventionally employed as a solvent or suspending medium.
  • any bland fixed oil can be employed including synthetic mono-or diglycerides.
  • Fatty acids such as oleic acid can be used in the preparation of injectables.
  • Injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter, and/or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium prior to use.
  • the disclosure features methods of delivering a therapeutic and/or prophylactic agent to a mammalian cell or organ, producing a polypeptide of interest in a mammalian cell, and treating a disease or disorder in a mammal in need thereof comprising administering to a mammal and/or contacting a mammalian cell with a nanoparticle composition including a therapeutic and/or prophylactic agent.
  • provided herein are also methods for managing or treating cancer in a subject using the therapeutic nucleic acids and/or pharmaceutical composition described herein.
  • Specific cancers that can be treated in accordance with the methods described herein include breast cancer, melanoma, and colon cancer.
  • the breast cancer is triple negative breast cancer.
  • the method for managing or treating cancer comprises administering to the subject a therapeutically effective amount of a nucleic acid encoding an IL-12 containing polypeptide. In some embodiments, the method for managing or treating cancer comprises administering to the subject a therapeutically effective amount of a nucleic acid encoding an IL-15 containing polypeptide. In some embodiments, the method for managing or treating cancer comprises administering to the subject a therapeutically effective amount of both a nucleic acid encoding an IL-12 containing polypeptide and a nucleic acid encoding an IL-15 containing polypeptide.
  • the nucleic acid encoding an IL-12 containing polypeptide and the nucleic acid encoding an IL-15 containing polypeptide are separate nucleic acid molecules. In some embodiments, the nucleic acid encoding an IL-12 containing polypeptide and the nucleic acid encoding an IL-15 containing polypeptide form part of the same nucleic acid molecule. In some embodiment, the administered nucleic acid is a therapeutic nucleic acid according to the present disclosure as described in Section 5.3 (Therapeutic Nucleic Acids) , such as the nucleic acid sequences disclosed in Tables 1, 3 and 5.
  • the method for managing or treating cancer comprises administering to the subject a therapeutically effective amount of a pharmaceutical composition comprising the nucleic acid encoding an IL-12 containing polypeptide, either alone or in combination with a therapeutically effective amount of a pharmaceutical composition comprising the nucleic acid encoding an IL-15 containing polypeptide.
  • the administration of the pharmaceutical composition comprising the IL-12 containing polypeptide and the pharmaceutical composition comprising the IL-15 containing polypeptide are simultaneous or sequential with one another.
  • the administered pharmaceutical composition is a lipid-containing composition according to the present disclosure as described in Section 5.4 (Nanoparticle Composition) .
  • the method for managing or treating cancer comprises administering to the subject a therapeutically effective amount of a pharmaceutical composition comprising both a nucleic acid encoding an IL-12 containing polypeptide, and a nucleic acid encoding an IL-15 containing polypeptide.
  • the nucleic acid encoding the IL-12 containing polypeptide and the nucleic acid encoding the IL-15 containing polypeptide are separate nucleic acid molecules contained in the pharmaceutical composition.
  • the nucleic acid encoding the IL-12 containing polypeptide and the nucleic acid encoding the IL-15 containing polypeptide form part of the same nucleic acid molecule contained in the pharmaceutical composition.
  • the administered pharmaceutical composition is a lipid-containing composition according to the present disclosure as described in Section 5.4 (Nanoparticle Composition) .
  • the method for managing or treating cancer comprises administering to the subject a therapeutically effective amount of a nucleic acid encoding an IL-12 containing polypeptide in combination with an antagonist of PD1 or a nucleic acid encoding the antagonist of PD-1. In some embodiments, the method for managing or treating cancer comprises administering to the subject a therapeutically effective amount of a pharmaceutical composition comprising a nucleic acid encoding an IL-12 containing polypeptide in combination with a pharmaceutical composition comprising the antagonist of PD-1 or nucleic acid encoding the antagonist of PD-1. In various embodiments, the administration of the nucleic acid encoding the IL-12 containing polypeptide or pharmaceutical composition thereof can be simultaneously or sequentially with the nucleic acid encoding the antagonist of PD-1 or the pharmaceutical composition thereof.
  • the antagonist of PD-1 is an antibody or antigen binding fragment thereof that specifically binds to PD-1 and blocks binding of PD-1 to its natural ligands.
  • the natural ligand of PD-1 is PD-L1. In some embodiments, the natural ligand of PD-1 is PD-L2.
  • the anti-PD-1 antibody (or an antigen-binding portion thereof) useful for the disclosure is pembrolizumab.
  • Pembrolizumab also known as “ ” , lambrolizumab, and MK-3475
  • Pembrolizumab is a humanized monoclonal IgG4 antibody directed against human cell surface receptor PD-1 (programmed death-1 or programmed cell death-1) .
  • Pembrolizumab has been approved by the FDA for the treatment of relapsed or refractory melanoma and advanced NSCLC.
  • the anti-PD-1 antibody useful for the disclosure is nivolumab.
  • Nivolumab also known as “ ” ; formerly designated 5C4, BMS-936558, MDX-1106, or ONO-4538
  • S228P fully human IgG4
  • PD-1 immune checkpoint inhibitor antibody that selectively prevents interaction with PD-1 ligands (PD-L1 and PD-L2) , thereby blocking the down-regulation of antitumor T-cell functions
  • U.S. Patent No. 8,008,449 Wang et al, 2014 Cancer Immunol Res. 2 (9) : 846-56) .
  • Nivolumab has shown activity in a variety of advanced solid tumors including renal cell carcinoma (renal adenocarcinoma, or hypernephroma) , melanoma, and non-small cell lung cancer (NSCLC) (Topalian et al., 2012a; Topalian et al., 2014; Drake et al., 2013; WO 2013/173223.
  • renal cell carcinoma renal adenocarcinoma, or hypernephroma
  • NSCLC non-small cell lung cancer
  • the anti-PD-1 antibody is MEDI0680 (formerly AMP-514) , which is a monoclonal antibody against the PD-1 receptor.
  • the anti-PD-1 antibody is BGB-A317, which is a humanized monoclonal antibody.
  • BGB-A317 is described in U.S. Publ. No. 2015/0079109.
  • a PD-1 antagonist is AMP-224, which is a B7-DC Fc fusion protein.
  • Additional antagonistic PD-1 antibody known in the art can be used in connection with the present disclosure, including but not limited to cemiplimab, atezolizumab, dostarlimab, durvalumab, avelumab, and toripalimab.
  • the method for managing or treating cancer comprises administering to the subject a therapeutically effective amount of a nucleic acid encoding an IL-12 containing polypeptide or a pharmaceutical composition thereof in combination with an antagonist of PD-1 or a pharmaceutical composition thereof.
  • the administration of the nucleic acid encoding the IL-12 containing polypeptide or pharmaceutical composition thereof can be simultaneously or sequentially with the nucleic acid encoding the antagonist of PD-1 or the pharmaceutical composition thereof.
  • the pharmaceutical composition containing the nucleic acid encoding the IL-12 containing polypeptide and/or the nucleic acid encoding the antagonist of PD-1 is a lipid-containing composition according to the present disclosure as described in Section 5.4 (Nanoparticle Composition) .
  • the method for managing or treating cancer comprises administering to the subject a therapeutically effective amount of a nucleic acid encoding an IL-12 containing polypeptide or a pharmaceutical composition thereof in combination with a nucleic acid encoding the antagonist of PD-1 or a pharmaceutical composition thereof.
  • the nucleic acid encoding an IL-12 containing polypeptide and the nucleic acid encoding the antagonist of PD-1 are separate nucleic acid molecules. In some embodiments, the nucleic acid encoding an IL-12 containing polypeptide and the nucleic acid encoding the antagonist of PD-1 form part of the same nucleic acid molecule. In some embodiments, the nucleic acid encoding the IL-12 containing polypeptide and the nucleic acid encoding the antagonist of PD-1 are formulated in separate pharmaceutical compositions for simultaneous or sequential administration to the subject.
  • the nucleic acid encoding the IL-12 containing polypeptide and the nucleic acid encoding the antagonist of PD-1 are formulated in the same pharmaceutical composition.
  • the pharmaceutical composition containing the nucleic acid encoding the IL-12 containing polypeptide and/or the nucleic acid encoding the antagonist of PD-1 is a lipid-containing composition according to the present disclosure as described in Section 5.4 (Nanoparticle Composition) .
  • the nucleic acid encoding the IL-12 containing polypeptide is a therapeutic nucleic acid according to the present disclosure as described in Section 5.3 (Therapeutic Nucleic Acids) such as the nucleic acid sequences disclosed in Tables 1, 3 and 5.
  • the nucleic acid encoding the antagonist of PD-1 encodes an anti-PD-1 antibody or antigen binding fragment thereof.
  • Nucleic acids encoding antibodies or antigen binding fragments of antibodies can be obtained using standard molecular biology techniques.
  • hybridomas e.g., hybridomas prepared from transgenic mice carrying human immunoglobulin genes as described further below
  • cDNAs encoding the light and heavy chains of the antibody made by the hybridoma can be obtained by standard PCR amplification or cDNA cloning techniques.
  • nucleic acid encoding the antibody can be recovered from the library.
  • VH and VL segments are obtained, these DNA fragments can be further manipulated by standard recombinant DNA techniques, for example to convert the variable region genes to full-length antibody chain genes, to Fab fragment genes or to a scFv gene.
  • a VL-or VH-encoding DNA fragment is operatively linked to another DNA fragment encoding another protein, such as an antibody constant region or a flexible linker.
  • the term “operatively linked” is intended to mean that the two DNA fragments are joined such that the amino acid sequences encoded by the two DNA fragments remain in-frame.
  • the isolated DNA encoding the VH region can be converted to a full-length heavy chain gene by operatively linking the VH-encoding DNA to another DNA molecule encoding heavy chain constant regions (CH1, CH2 and CH3) .
  • heavy chain constant regions CH1, CH2 and CH3 .
  • the sequences of human heavy chain constant region genes are known in the art (see e.g., Kabat, E. A., et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242) and DNA fragments encompassing these regions can be obtained by standard PCR amplification.
  • the heavy chain constant region can be an IgG1, IgG2, IgG3, IgG4, IgA, IgE, IgM or IgD constant region, but most preferably is an IgG1 or IgG4 constant region.
  • the VH-encoding DNA can be operatively linked to another DNA molecule encoding only the heavy chain CH1 constant region.
  • the isolated DNA encoding the VL region can be converted to a full-length light chain gene (as well as a Fab light chain gene) by operatively linking the VL-encoding DNA to another DNA molecule encoding the light chain constant region, CL.
  • the sequences of human light chain constant region genes are known in the art (see e.g., Kabat, E. A., et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242) and DNA fragments encompassing these regions can be obtained by standard PCR amplification.
  • the light chain constant region can be a kappa or lambda constant region, but most preferably is a kappa constant region.
  • the VH-and VL-encoding DNA fragments are operatively linked to another fragment encoding a flexible linker, e.g., encoding the amino acid sequence (Gly4-Ser) 3, such that the VH and VL sequences can be expressed as a contiguous single-chain protein, with the VL and VH regions joined by the flexible linker (see e.g., Bird et al. (1988) Science 242: 423-426; Huston et al. (1988) Proc. Natl. Acad. Sci. USA 85: 5879-5883; McCafferty et al., (1990) Nature 348: 552-554) .
  • a flexible linker e.g., encoding the amino acid sequence (Gly4-Ser) 3, such that the VH and VL sequences can be expressed as a contiguous single-chain protein, with the VL and VH regions joined by the flexible linker (see e.g., Bird et al. (19
  • the method for managing or treating cancer comprises administering to the subject a therapeutically effective amount of (a) a nucleic acid encoding an IL-12 containing polypeptide, (b) a nucleic acid encoding an IL-15 containing polypeptide, and (c) a nucleic acid encoding an antagonist of PD-1.
  • the nucleic acids encoding the IL-12 containing polypeptide, the nucleic acid encoding the IL-15 containing polypeptide, and the nucleic acid encoding the antagonist of PD-1 can be separate nucleic molecules.
  • nucleic acids encoding the IL-12 containing polypeptide, the nucleic acid encoding the IL-15 containing polypeptide, and the nucleic acid encoding the antagonist of PD-1 form part of the same nucleic molecule.
  • the nucleic acid encoding the IL-12 containing polypeptide and/or the nucleic acid encoding the IL-15 containing polypeptide is a therapeutic nucleic acid according to the present disclosure as described in Section 5.3 (Therapeutic Nucleic Acids) , such as the nucleic acid sequences disclosed in Tables 1, 3 and 5.
  • the nucleic acids encoding the IL-12 containing polypeptide, the nucleic acid encoding the IL-15 containing polypeptide, and the nucleic acid encoding the antagonist of PD-1 can each be formulated in a separate pharmaceutical composition for simultaneous or sequential administration to the subject. In other embodiments, at least two the nucleic acids encoding the IL-12 containing polypeptide, the nucleic acid encoding the IL-15 containing polypeptide, and the nucleic acid encoding the antagonist of PD-1 are formulated in the same pharmaceutical composition.
  • the pharmaceutical composition is a lipid-containing composition according to the present disclosure as described in Section 5.4 (Nanoparticle Composition) .
  • the method for managing or treating cancer comprises administering to the subject a therapeutically effective amount of (a) a nucleic acid encoding an IL-12 containing polypeptide, (b) a nucleic acid encoding an IL-15 containing polypeptide, and (c) an antagonist of PD-1.
  • the nucleic acids encoding the IL-12 containing polypeptide, and the nucleic acid encoding the IL-15 containing polypeptide can be separate nucleic molecules.
  • the nucleic acids encoding the IL-12 containing polypeptide and the nucleic acid encoding the IL-15 containing polypeptide form part of the same nucleic molecule.
  • the nucleic acid encoding the IL-12 containing polypeptide and/or the nucleic acid encoding the IL-15 containing polypeptide is a therapeutic nucleic acid according to the present disclosure as described in Section 5.3 (Therapeutic Nucleic Acids) , such as the nucleic acid sequences disclosed in Tables 1, 3 and 5.
  • the nucleic acids encoding the IL-12 containing polypeptide and the nucleic acid encoding the IL-15 containing polypeptide, and the antagonist of PD-1 can each be formulated in a separate pharmaceutical composition for simultaneous or sequential administration to the subject.
  • nucleic acids encoding the IL-12 containing polypeptide and the nucleic acid encoding the IL-15 containing polypeptide are formulated in the same pharmaceutical composition.
  • the pharmaceutical composition is a lipid-containing composition according to the present disclosure as described in Section 5.4 (Nanoparticle Composition) .
  • the enhanced immune response comprises an increase in the number of tumor-infiltrating lymphocytes (TIL) in the subject.
  • TIL tumor-infiltrating lymphocytes
  • the TIL comprises CD8+ T cells.
  • the TIL comprises IFN ⁇ + T cells.
  • the TIL comprises CD8+ T cells and IFN ⁇ + T cells.
  • administration of the therapeutic nucleic acid described herein, a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein, or a combination therapy described herein results in an increase in the ratio between the number of CD8+ T cells and the number Treg cells (CD8+ T/Treg) in the tumor microenvironment of the subject.
  • administration of the therapeutic nucleic acid described herein, a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein, or a combination therapy described herein results in upregulation of PD-L1 expression on the tumor cells in the subject.
  • administration of the therapeutic nucleic acid described herein, a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein, or a combination therapy described herein results in a reduction of the tumor size in the subject.
  • the tumor size is reduced by about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%or 100%following the administration.
  • the cancer patient shows complete remission following the administration.
  • the composition of the present disclosure can further comprise one or more additional therapeutic agents.
  • the additional therapeutic agent and the therapeutic nucleic acid of the present disclosure can be co-formulated in one composition.
  • the additional therapeutic agent can be formulated as part of the composition comprising the therapeutic nucleic acid of the present disclosure.
  • the additional therapeutic agent and therapeutic nucleic acid of the present disclosure can be formulated as separate compositions or dose units for co-administration either sequentially or simultaneously to a subject.
  • the therapeutic nucleic acid of the present disclosure is formulated as part of a lipid-containing composition as described in Section 5.4 (Nanoparticle Compositions) , and the additional therapeutic agent is formulated as a separate composition.
  • the therapeutic nucleic acid of the present disclosure is formulated as part of a lipid-containing composition as described in Section 5.4 (Nanoparticle Compositions) , wherein the additional therapeutic agent is also formulated as part of the lipid-containing composition.
  • the therapeutic nucleic acid of the present disclosure is formulated so that the therapeutic nucleic acid is encapsulated in a lipid shell of a lipid nanoparticle as described in Section 5.4 (Nanoparticle Compositions) , and the additional therapeutic agent is formulated as a separate composition.
  • the therapeutic nucleic acid of the present disclosure is formulated so that the therapeutic nucleic acid is encapsulated in a lipid shell of a lipid nanoparticle as described in Section 5.4 (Nanoparticle Compositions) , wherein the lipid nanoparticles also enclose the additional therapeutic agent molecule or a nucleic acid encoding the additional therapeutic agent molecule.
  • the therapeutic nucleic acid of the present disclosure is formulated so that the therapeutic nucleic acid is encapsulated in a lipid shell of a lipid nanoparticle as described in Section 5.4 (Nanoparticle Compositions) , wherein the lipid nanoparticles and the additional therapeutic agent are formulated into a single composition.
  • the agonist of a co-stimulatory signal is an agonist of a co-stimulatory molecule (e.g., co-stimulatory receptor) found on immune cells, such as, T-lymphocytes (e.g., CD4+ or CD8+ T-lymphocytes) , NK cells and/or antigen-presenting cells (e.g., dendritic cells or macrophages) .
  • a co-stimulatory molecule e.g., co-stimulatory receptor
  • immune cells such as, T-lymphocytes (e.g., CD4+ or CD8+ T-lymphocytes) , NK cells and/or antigen-presenting cells (e.g., dendritic cells or macrophages) .
  • co-stimulatory molecules include glucocorticoid-induced tumor necrosis factor receptor (GITR) , Inducible T-cell costimulator (ICOS or CD278) , OX40 (CD134) , CD27, CD28, 4-IBB (CD137) , CD40, lymphotoxin alpha (LT alpha) , LIGHT (lymphotoxin-like, exhibits inducible expression, and competes with herpes simplex virus glycoprotein D for HVEM, a receptor expressed by T lymphocytes) , CD226, cytotoxic and regulatory T cell molecule (CRT AM) , death receptor 3 (DR3) , lymphotoxin-beta receptor (LTBR) , transmembrane activator and CAML interactor (TACI) , B cell-activating factor receptor (BAFFR) , and B cell maturation protein (BCMA) .
  • GITR glucocorticoid-induced tumor necrosis factor receptor
  • ICOS or CD278 In
  • the agonist of a co-stimulatory receptor is an antibody or antigen-binding fragment thereof that specifically binds to the co-stimulatory receptor.
  • co-stimulatory receptors include GITR, ICOS, OX40, CD27, CD28, 4-1BB, CD40, LT alpha, LIGHT, CD226, CRT AM, DR3, LTBR, TACI, BAFFR, and BCMA.
  • the antibody is a monoclonal antibody.
  • the antibody is an sc-Fv.
  • the antibody is a bispecific antibody that binds to two receptors on an immune cell.
  • the bispecific antibody binds to a receptor on an immune cell and to another receptor on a virus infected diseased cell.
  • the antibody is a human or humanized antibody.
  • the agonist of a co-stimulatory receptor is a ligand of the co-stimulatory receptor or a functional derivative thereof.
  • the ligand is fragment of a native ligand.
  • native ligands include ICOSL, B7RP1, CD137L, OX40L, CD70, herpes virus entry mediator (HVEM) , CD80, and CD86.
  • HVEM herpes virus entry mediator
  • the antagonist is an antagonist of an inhibitory molecule (e.g., inhibitory receptor) found on immune cells, such as, e.g., T-lymphocytes (e.g., CD4+ or CD8+ T-lymphocytes) , NK cells and/or antigen-presenting cells (e.g., dendritic cells or macrophages) .
  • an inhibitory molecule e.g., inhibitory receptor
  • immune cells such as, e.g., T-lymphocytes (e.g., CD4+ or CD8+ T-lymphocytes)
  • NK cells e.g., CD4+ or CD8+ T-lymphocytes
  • antigen-presenting cells e.g., dendritic cells or macrophages
  • inhibitory molecules include cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4 or CD52) , programmed cell death protein 1 (PD1 or CD279) , B and T-lymphocyte attenuator (BTLA) , killer cell immunoglobulin-like receptor (KIR) , lymphocyte activation gene 3 (LAG3) , T-cell membrane protein 3 (TIM3) , CD 160, adenosine A2a receptor (A2aR) , T cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT) , leukocyte-associated immunoglobulin-like receptor 1 (LAIR1) , and CD 160.
  • CTLA-4 or CD52 cytotoxic T-lymphocyte-associated antigen 4
  • PD1 or CD279 programmed cell death protein 1
  • B and T-lymphocyte attenuator (BTLA) killer cell immunoglobulin-like receptor
  • KIR killer cell immunoglobulin-like receptor
  • LAG3 lymphocyte activation gene 3
  • the antagonist of an inhibitory receptor is an antibody (or an antigen-binding fragment) that specifically binds to the native ligand for the inhibitory receptor and blocks the native ligand from binding to the inhibitory receptor and transducing an inhibitory signal (s) .
  • the antibody is a monoclonal antibody.
  • the antibody is an sc-Fv.
  • the antibody is a bispecific antibody that binds to two receptors on an immune cell.
  • the bispecific antibody binds to a receptor on an immune cell and to another receptor on a virus infected diseased cell.
  • the antibody is a human or humanized antibody.
  • the antagonist of an inhibitory receptor is a soluble receptor or a functional derivative thereof that specifically binds to the native ligand for the inhibitory receptor and blocks the native ligand from binding to the inhibitory receptor and transducing an inhibitory signal (s) .
  • native ligands for inhibitory receptors include PDL-1, PDL-2, B7-H3, B7-H4, HVEM, Gal9 and adenosine.
  • inhibitory receptors that bind to a native ligand include CTLA-4, PD-1, BTLA, KIR, LAG3, TIM3, and A2aR.
  • the antagonist of an inhibitory receptor is an antibody (or an antigen-binding fragment) or ligand that binds to the inhibitory receptor, but does not transduce an inhibitory signal (s) .
  • inhibitory receptors include CTLA-4, PD1, BTLA, KIR, LAG3, TIM3, and A2aR.
  • the antibody is a monoclonal antibody.
  • the antibody is an scFv.
  • the antibody is a human or humanized antibody.
  • a specific example of an antibody to inhibitory receptor is anti-CTLA-4 antibody (Leach DR, et al. Science 1996; 271: 1734-1736) .
  • Another example of an antibody to inhibitory receptor is anti-PD-1 antibody (Topalian SL, NEJM 2012; 28: 3167-75) .
  • a therapeutic nucleic acid described herein a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein, or a combination therapy described herein is administered to a subject in need thereof.
  • a lipid-containing composition e.g., lipid nanoparticles
  • a therapeutic nucleic acid described herein, a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein, or a combination therapy described herein is administered to a human subject.
  • a subject administered with a therapeutic nucleic acid described herein, a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising a therapeutic nucleic acid described herein or a combination therapy described herein is an elderly human.
  • a subject administered with a therapeutic nucleic acid described herein, a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein or a combination therapy described herein is a human adult.
  • a subject administered with a therapeutic nucleic acid described herein, a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein or a combination therapy described herein is human child.
  • a subject administered with a therapeutic nucleic acid described herein, a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein or a combination therapy described herein is human toddler.
  • a subject administered with a therapeutic nucleic acid described herein, a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein or a combination therapy described herein is human infant.
  • a subject administered with a therapeutic nucleic acid described herein, a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein or a combination therapy described herein is administered to a non-human mammal.
  • a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein or a combination therapy described herein is administered to a non-human mammal.
  • a subject administered with a therapeutic nucleic acid described herein, a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein, or the combination therapy described herein is administered to a subject exhibiting at least one symptom associated with cancer.
  • the subject receiving administration of a therapeutic nucleic acid described herein, a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein, or a combination therapy described herein exhibits one or more clinically recognized symptoms of cancer.
  • the cancer is breast cancer, melanoma, or colon cancer.
  • the cancer is primary cancer or metastatic cancer.
  • a therapeutic nucleic acid described herein, a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein, or a combination therapy as described herein is administered to a subject that is asymptomatic for cancer.
  • the cancer is breast cancer, melanoma, or colon cancer.
  • a therapeutic nucleic acid described herein, a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein, or a combination therapy described herein is administered to a subject who has been diagnosed positive for the cancer.
  • the subject diagnosed positive for the cancer is asymptomatic for the cancer.
  • the diagnosis is based on clinical symptoms exhibited by the patient.
  • the cancer is breast cancer, melanoma, or colon cancer.
  • a therapeutic nucleic acid described herein, a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein, or a combination therapy described herein is administered to a subject who has not previously received administration of the therapeutic nucleic acid, the pharmaceutical composition, the lipid-containing composition (e.g., lipid nanoparticles) , or the combination therapy.
  • a therapeutic nucleic acid described herein, a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein, or a combination therapy described herein is administered to a subject who has previously received administration of the therapeutic nucleic acid, the pharmaceutical composition, the lipid-containing composition (e.g., lipid nanoparticles) , or the combination therapy.
  • the subject has been previously administered a therapeutic nucleic acid described herein, the pharmaceutical composition comprising the therapeutic nucleic acids described herein, the lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein, or the combination therapy as described herein once, twice, three times or more.
  • a therapeutic nucleic acid described herein the pharmaceutical composition comprising the therapeutic nucleic acids described herein, the lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein, or the combination therapy as described herein once, twice, three times or more.
  • a therapeutic nucleic acid described herein, a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein, or a combination therapy described herein is administered to a subject who has received a therapy prior to administration of the therapeutic nucleic acid, the pharmaceutical composition, the lipid-containing composition (e.g., lipid nanoparticles) , or the combination therapy.
  • the subject administered with a therapeutic nucleic acid described herein, a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein, or a combination therapy described herein experienced adverse side effects to a prior therapy or a prior therapy was discontinued due to unacceptable levels of toxicity to the subject.
  • a therapeutic nucleic acid described herein, a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein, or a combination therapy described herein is administered to a subject who has previously received cancer treatment and is non-responsive or refractory to the previously treatment.
  • a therapeutic nucleic acid described herein, a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein, or a combination therapy described herein is administered to a subject who has previously been treated for cancer, and the cancer has relapsed, or is reoccurring.
  • a lipid-containing composition e.g., lipid nanoparticles
  • IL-12 interleukin-12
  • IL-12B interleukin-12 ⁇ subunit
  • IL-12A interleukin-12 ⁇ subunit
  • nucleic acid of embodiment 1 or 2 comprising a coding region, wherein the coding region comprises one or more open reading frames (ORFs) , and wherein at least one ORF encodes the IL-12 containing fusion protein.
  • ORFs open reading frames
  • nucleic acid of embodiment 3 or 4 wherein the one or more ORFs consist a coding sequence selected from SEQ ID NOS: 5, 7, 9, 11, 64, 66, 68, 70, 25-27, and 29, or a transcribed RNA sequence thereof.
  • nucleic acid of embodiment 8 wherein the 3’ -UTR further comprises a poly-A tail or a polyadenylation signal.
  • nucleic acid of any one of embodiments 1 to 9, comprising one or more functional nucleotide analogs that are selected from pseudouridine and 1-methyl-pseudouridine.
  • nucleic acid of embodiment 10, wherein the functional nucleotide analogs is about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%of the uridines of the nucleic acid.
  • nucleic acid of embodiment 12, wherein the nucleic acid is DNA comprising the sequence selected from SEQ ID NOS: 40, 42, 44, 46, and 48.
  • nucleic acid of embodiment 12, wherein the nucleic acid is mRNA comprising the sequence selected from SEQ ID NOs: 41, 43, 45, 47, and 49.
  • a vector comprising the nucleic acid of any one of embodiments 1 to 14.
  • a cell comprising the nucleic acid of any one of embodiments 1 to 14.
  • a cell comprising the vector of embodiment 15.
  • IL-15R ⁇ IL-15 receptor alpha subunit
  • nucleic acid of embodiment 18 comprising a coding region, wherein the coding region comprises one or more open reading frames (ORFs) , and wherein at least one ORF encodes the IL-15 containing fusion protein.
  • ORFs open reading frames
  • nucleic acid of embodiment 18, wherein the one or more ORFs consist a coding sequence selected from SEQ ID NOS: 13, 15, 72, 74, and 33 or a transcribed RNA sequence thereof.
  • nucleic acid of embodiment 18, wherein the one or more ORFs encodes a peptide or protein selected from SEQ ID NOS: 12, 14, 71, 73, and 32.
  • nucleic acid of embodiment 23, wherein the 3’ -UTR further comprises a poly-A tail or a polyadenylation signal.
  • nucleic acid of embodiment 25, wherein the functional nucleotide analogs is about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%of the uridines of the nucleic acid.
  • nucleic acid of embodiment 27, wherein the nucleic acid is DNA comprising the sequence selected from SEQ ID NO: 52.
  • nucleic acid of embodiment 27, wherein the nucleic acid is mRNA comprising the sequence of SEQ ID NO: 53.
  • IL-12 polypeptide is an IL-12 containing fusion protein comprising an interleukin-12 ⁇ subunit (IL-12B) polypeptide fused to an interleukin-12 ⁇ subunit (IL-12A) polypeptide.
  • IL-12B interleukin-12 ⁇ subunit
  • IL-12A interleukin-12 ⁇ subunit
  • nucleic acid of embodiment 30 or 31, wherein the coding region comprises one or more open reading frames (ORFs) that encodes the IL-12 polypeptide.
  • ORFs open reading frames
  • nucleic acid of embodiment 32, wherein the one or more ORFs encoding the IL-12 polypeptide consist a coding sequence selected from SEQ ID NOS: 5, 7, 9, 11, 64, 66, 68, 70, 25-27, and 29, or a transcribed RNA sequence thereof.
  • nucleic acid of embodiment 33, wherein the IL-12 polypeptide comprises a sequence selected from SEQ ID NOS: 4, 6, 8, 10, 63, 65, 67, 69, 24 and 28.
  • a vector comprising the nucleic acid of any one of embodiments 18 to 34.
  • a cell comprising the nucleic acid of any one of embodiments 18 to 34.
  • a cell comprising the vector of embodiment 35.
  • composition comprising (i) the nucleic acid of any one of embodiments 1 to 14 and (ii) at least one first lipid.
  • composition of embodiment 38, wherein the first lipid is a compound according to Formula 01-I, 01-II, 02-I, 02-II, 03-I, 03-II-A, 03-II-B, 03-II-C, 03-II-D, 04-I, 04-III, 04-IV, and sub-formula thereof.
  • composition of any one of embodiment 3819, wherein the first lipid is a compound listed in any one of Table 01-I, Table 02-I, Table 03-I, and Table 04-I.
  • composition of any one of embodiments 38 to 42 formulated as lipid nanoparticles encapsulating the nucleic acid in a lipid shell.
  • composition of embodiment 45 wherein the composition is a pharmaceutical composition further comprising a pharmaceutically acceptable carrier, diluent or excipient.
  • a composition comprising (i) the nucleic acid of any one of embodiments 18 to 34, and (ii) at least one first lipid.
  • composition of embodiment 47, wherein the first lipid is a compound according to Formula 01-I, 01-II, 02-I, 02-II, 03-I, 03-II-A, 03-II-B, 03-II-C, 03-II-D, 04-I, 04-III, 04-IV, and sub-formula thereof.
  • composition of any one of embodiment 47, wherein the first lipid is a compound listed in any one of Table 01-I, Table 02-I, Table 03-I, and Table 04-I.
  • composition of any one of embodiments 47 to 49 further comprising a least a second lipid.
  • composition of embodiment 50, wherein the second lipid is selected from a neutral lipid, a steroid, a phospholipid and a polymer conjugated lipid.
  • composition of any one of embodiments 47 to 51 formulated as lipid nanoparticles encapsulating the nucleic acid in a lipid shell.
  • a method for managing or treating cancer in a subject in need thereof comprising administering to the subject a therapeutically effective amount of the nucleic acid of any one of embodiments 1 to 14, or the pharmaceutical composition of embodiment 44, wherein the cancer is selected from breast cancer, melanoma, and colon cancer.
  • the method further comprises administering to the subject a therapeutically effective amount of a composition comprising a nucleic acid encoding an antagonist of PD-1 or a therapeutically effective amount of a composition comprising an antagonist of PD-1.
  • nucleic acid encoding the antagonist of PD-1 is the same as the nucleic acid encoding the IL-12 containing fusion protein, wherein the nucleic acid comprises at least two ORFs, and wherein the first ORF encodes the IL-12 containing fusion protein and the second ORF encodes the antagonist of PD-1.
  • IL-15 polypeptide is human IL-15 or mouse IL-15.
  • the method comprises administering the therapeutically effective amount of the composition comprising the nucleic acid encoding the IL-15 polypeptide, wherein the nucleic acid encoding the IL-15 polypeptide is the same as the nucleic acid encoding the IL-12 containing fusion protein, and wherein the nucleic acid comprises at least two ORFs, and wherein the first ORF encodes the IL-12 containing fusion protein and the second ORF encodes the IL-15 polypeptide.
  • the method comprises administering the therapeutically effective amount of the composition comprising the nucleic acid encoding the IL-15 polypeptide, wherein the nucleic acid encoding the IL-15 polypeptide is different from the nucleic acid encoding the IL-12 containing fusion protein.
  • IL-15 polypeptide is an IL-15 containing fusion protein comprising IL-15 receptor alpha subunit (IL-15R ⁇ ) fused to IL-15.
  • IL-15R ⁇ IL-15 receptor alpha subunit
  • IL-15 containing fusion protein comprises the amino acid sequence selected from SEQ ID NO: 12, 14, 71, 73, and 32.
  • nucleic acid encoding the IL-15 polypeptide comprises an ORF comprising the sequence selected from SEQ ID NO: 13, 15, 72, 74, and 33.
  • composition comprising the nucleic acid encoding the IL-15 polypeptide is the pharmaceutical composition of embodiment 53.
  • method comprises administering lipid nanoparticles encapsulating the nucleic acid to the subject, and wherein the lipid nanoparticles are endocytosed by the cells in the subject.
  • TIL tumor-infiltrating lymphocytes
  • TIL comprises CD8 + T cells and/or IFN ⁇ + T.
  • the LNPs were prepared at a total lipid to mRNA weight ratio of approximately 10: 1 to 30: 1 by mixing the ethanolic lipid solution with the aqueous mRNA solution at a volume ratio of 1: 3 using a microfluidic apparatus, total flow rate ranging from 9-30 mL/min. Ethanol was thereby removed and replaced by DPBS using dialysis. Finally, the lipid nanoparticles were filtered through a 0.2 ⁇ m sterile filter.
  • Lipid nanoparticle size were determined by dynamic light scattering using a Malvern Zetasizer Nano ZS (Malvern UK) using a 173o backscatter detection mode.
  • the encapsulation efficiency of lipid nanoparticles was determined using a Quant-it Ribogreen RNA quantification assay kit (Thermo Fisher Scientific, UK) according to the manufacturer’s instructions.
  • lipid nanoparticle formulations were diluted 20-fold in PBS and transferred 1 mL in measurement cuvette.
  • the LNP EE% was determined using a Quant-it RiboGreen RNA assay kit, LNP formulations were diluted to 0.4 ⁇ g/mL in Tris-EDTA and 0.1%Triton respectively.
  • ribogreen reagent were diluted 200-fold with Tris-EDTA buffer and mix at the same volume as diluted LNP formulation. Fluorescence intensity was measured at room temperature in a Molecular Devices Spectramax iD3 spectrometer using excitation and emission wavelengths of 488 nm and 525 nm. EE%was calculated based on the ratio of encapsulated to total RNA fluorescence intensity.
  • hIL-12 human interleukin-12
  • hIL-12 fusion v. 1, hIL-12 fusion v. 2, hIL-12 fusion v. 3 and hIL-12 fusion v. 4 mRNA and their pseudouridine modified versions hIL-12 fusion v. 1- ⁇ , hIL-12 fusion v. 2- ⁇ , hIL-12 fusion v. 3- ⁇ , and hIL-12 fusion v. 4- ⁇ mRNA.
  • the cell supernatant with optimal mRNA transfection was selected to detect the hIL-12 concentration.
  • the supernatant was diluted to different concentrations, and the biological function of IL-12 in the supernatant was detected using IL-12 reporter gene cells (HEK-BLUE TM IL-12 cells) using recombinant human IL-12 protein as the control.
  • IL-12 reporter gene cells HEK-BLUE TM IL-12 cells

Abstract

Provided herein are nucleic acid molecules encoding interleukin-12 (IL-12), or polypeptides comprising IL-12 or functional fragment of IL-12. Also provided herein are compositions, including lipid nanoparticles (LNPs), comprising the nucleic acid molecules, and related therapeutic methods and uses for the management or treatment of cancer in human.

Description

POLYNUCLEOTIDES ENCODING INTERLEUKIN-12 (IL-12) AND RELATED COMPOSITION AND METHODS THEREOF
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of priority of PCT/CN2021/122691 filed on October 8, 2021, the content of which is herein incorporated by reference in its entirety.
REFERENCE TO SEQUENCE LISTING SUBMITTED ELECTRONICALLY
This application contains a computer readable Sequence Listing which has been submitted in XML file format with this application, the entire content of which is incorporated by reference herein in its entirety. The Sequence Listing XML file submitted with this application is entitled “14639-027-228_SEQ_LISTING. xml” , was created on September 30, 2022 and is 150, 614 bytes in size.
1. FIELD
The present disclosure generally relates to nucleic acid molecules encoding interleukin-12 (IL-12) , or polypeptides comprising IL-12 or functional fragment of IL-12. The present disclosure also relates to nucleic acid molecules encoding interleukin-15 (IL-15) , or polypeptides comprising IL-15 or functional fragment of IL-12. The present disclosure also relate to compositions, including lipid nanoparticles (LNPs) , comprising the nucleic acid molecules, and related therapeutic methods and uses for the management or treatment of cancer in human.
2. BACKGROUND
Interleukin-12 (IL-12) is a pro-inflammatory cytokine naturally produced by many different immune cells in response to antigenic stimulation (e.g., dendritic cells, macrophages, neutrophils, and human B-lymphoblastoid cells (NC-37) ) . IL-12 plays an important role in innate and adaptive immunity, and has become the focus of various studies in the field of oncology. While IL-12 has been recognized as a possible anti-cancer therapeutic agent, early clinical studies did not yield satisfactory results, due to various factors such as toxicity and poor efficacy.  Hence, there is a need for improved therapeutic methods and compositions for using IL-12 in the treatment of cancer.
3. SUMMARY
In one aspect, provided herein are non-naturally occurring nucleic acid molecules encoding IL-12. In some embodiments, provided herein is a nucleic acid encoding an interleukin-12 (IL-12) containing fusion protein comprising an interleukin-12 β subunit (IL-12B) polypeptide fused to an interleukin-12 α subunit (IL-12A) polypeptide.
In some embodiments, the IL-12A polypeptide is hIL-12A and the IL-12B polypeptide is hIL-12B, or the IL-12A polypeptide is mIL-12A and the IL-12B polypeptide is mIL-12B.
In some embodiments, the nucleic acid encoding an IL-12 containing fusion protein, wherein the nucleic acid comprises a coding region comprising one or more sequence selected from SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, and SEQ ID NO: 29; SEQ ID NO: 77, SEQ ID NO: 78, SEQ ID NO: 79, SEQ ID NO: 80, SEQ ID NO: 81, SEQ ID NO: 82, and SEQ ID NO: 83, or a transcribed RNA sequence thereof. In some embodiments, the coding region comprises a first sequence selected from SEQ ID NO: 77, SEQ ID NO: 78, and SEQ ID NO: 79, or a transcribed RNA sequence thereof, and a second sequence selected from SEQ ID NO: 80 and SEQ ID NO: 81, or a transcribed RNA sequence thereof. In some embodiments, the coding region comprises a first sequence of SEQ ID NO: 82 or a transcribed RNA sequence thereof, and a second sequence of SEQ ID NO: 83 or a transcribed RNA sequence thereof. In some embodiments, the coding region comprises one or more open reading frames (ORFs) , and wherein at least one ORF encodes the IL-12 containing fusion protein.
In some embodiments, the nucleic acid comprises a coding region, wherein the coding region comprises one or more open reading frames (ORFs) , and wherein at least one ORF encodes the IL-12 containing fusion protein. In some embodiments, the one or more ORFs consist a coding sequence as set forth in Tables 1 and 3.
In some embodiments, the one or more ORFs consist a coding sequence selected from SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 64, SEQ ID NO: 66,  SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, and SEQ ID NO: 29, or a transcribed RNA sequence thereof. In some embodiments, the one or more ORFs encodes a peptide or protein selected from SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 24 and SEQ ID NO: 28.
In some embodiments, the nucleic acid further comprises a 5’ untranslated region (5’ -UTR) , wherein the 5’ -UTR comprises the sequence set forth in any one of SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, and SEQ ID NO: 37. In some embodiments, the nucleic acid further comprises a 3’ untranslated region (3’ -UTR) , wherein the 3’ -UTR comprises the sequence set forth in SEQ ID NO: 38 or SEQ ID NO: 39. In some embodiments, the 3’ -UTR further comprises a poly-A tail or a polyadenylation signal.
In some embodiments, the nucleic acid comprises one or more functional nucleotide analogs that are selected from pseudouridine and 1-methyl-pseudouridine. In some embodiments, the functional nucleotide analogs is about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, or about 100%of the uridines of the nucleic acid. In some embodiments, about 100%of the uridines of the nucleic acid is pseudouridine.
In some embodiments, the nucleic acid is DNA or mRNA. In some embodiments, the nucleic acid is DNA comprising the sequence selected from SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, and SEQ ID NO: 48. In some embodiments, the nucleic acid is mRNA comprising the sequence selected from SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, and SEQ ID NO: 49.
In some embodiments, provided herein is a nucleic acid encoding a IL-15 containing fusion protein comprising IL-15 receptor alpha subunit (IL-15Rα) fused to IL-15.
In some embodiments, the nucleic acid comprises a coding region comprising one or more sequence selected from SEQ ID NO: 33, SEQ ID NO: 13, SEQ ID NO: 86, SEQ ID NO: 15, SEQ ID NO: 89, SEQ ID NO: 72, and SEQ ID NO: 74, or a transcribed RNA sequence thereof. In some embodiments, the encoded fusion protein comprises the sequence selected from SEQ ID NO: 32, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 71, and SEQ ID NO: 73. In some  embodiments, the coding region comprises one or more open reading frames (ORFs) , and wherein at least one ORF encodes the IL-15 containing fusion protein.
In some embodiments, the nucleic acid comprises a coding region, wherein the coding region comprises one or more open reading frames (ORFs) , and wherein at least one ORF encodes the IL-15 containing fusion protein. In some embodiments, the one or more ORFs consist a coding sequence selected from SEQ ID NO: 33, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 72, and SEQ ID NO: 74, or a transcribed RNA sequence thereof. In some embodiments, the one or more ORFs encodes a peptide or protein selected from SEQ ID NO: 32, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 71, and SEQ ID NO: 73.
In some embodiments, the nucleic acid further comprises a 5’ untranslated region (5’ -UTR) , wherein the 5’ -UTR comprises the sequence set forth in any one of SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, and SEQ ID NO: 37. In some embodiments, the nucleic acid further comprises a 3’ untranslated region (3’ -UTR) , wherein the 3’ -UTR comprises the sequence set forth in SEQ ID NO: 38 or SEQ ID NO: 39. In some embodiments, the 3’ -UTR further comprises a poly-A tail or a polyadenylation signal.
In some embodiments, the nucleic acid further comprises one or more functional nucleotide analogs that are selected from pseudouridine and 1-methyl-pseudouridine. In some embodiments, the functional nucleotide analogs are about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, or about 100%of the uridines of the nucleic acid. In some embodiments, about 100%of the uridines of the nucleic acid is pseudouridine.
In some embodiments, the nucleic acid is DNA or mRNA. In some embodiments, the nucleic acid is DNA comprising the sequence selected from SEQ ID NO: 52. In some embodiments, the nucleic acid is mRNA comprising the sequence of SEQ ID NO: 53.
In some embodiments, the nucleic acid encoding an IL-15 containing fusion protein of the present disclosure further encodes an IL-12 polypeptide. In some embodiments, the IL-12 polypeptide is an IL-12 containing fusion protein comprising an interleukin-12 β subunit (IL-12B) polypeptide fused to an interleukin-12 α subunit (IL-12A) polypeptide. In some embodiments, the coding region comprises one or more open reading frames (ORFs) that  encodes the IL-12 polypeptide. In some embodiments, the one or more ORFs encoding the IL-12 polypeptide consists a coding sequence selected from SEQ ID NO: 5, SEQ ID NO: 77, SEQ ID NO: 78 SEQ ID NO: 79, SEQ ID NO: 7, SEQ ID NO: 80, SEQ ID NO: 81, SEQ ID NO: 9, SEQ ID NO: 82, SEQ ID NO: 11, SEQ ID NO: 83, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, and SEQ ID NO: 29, or a transcribed RNA sequence thereof. In some embodiments, the IL-12 polypeptide comprises a sequence selected from SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 24 and SEQ ID NO: 28.
In some embodiments, the nucleic acid comprises one or more functional nucleotide analogs that are selected from pseudouridine and 1-methyl-pseudouridine. In some embodiments, the functional nucleotide analogs are about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, or about 100%of the uridines of the nucleic acid. In some embodiments, about 100%of the uridines of the nucleic acid is pseudouridine.
In some embodiments, provided herein are vectors comprising the nucleic acid of the present disclosure. In some embodiments, provided herein are vectors comprising the vectors of the present disclosure. In some embodiments, provided herein are cells comprising the nucleic acid of the present disclosure.
In some embodiments, provided herein is a composition comprising (i) the nucleic acid encoding the IL-12 polypeptide according to the present disclosure and (ii) at least one first lipid. In some embodiments, the composition further comprises (iii) a nucleic acid encoding a IL-15 polypeptide of the present disclosure.
In some embodiments, the first lipid is a compound according to Formula 01-I, 01-II, 02-I, 02-II, 03-I, 03-II-A, 03-II-B, 03-II-C, 03-II-D, 04-I, 04-III, 04-IV, and sub-formula thereof. In some embodiments, the first lipid is a compound listed in any one of Table 01-I, Table 02-I, Table 03-I, and Table 04-I.
In some embodiments, the first lipid is a compound selected from the compounds listed in any one of Table 01-1, Table 02-1, Table 03-1, and Table 04-1. In some embodiments, the first lipid is a compound selected from C1 to C6. In some embodiments, the first lipid is C1.
In some embodiments, the composition further comprises at least a second lipid selected from a neutral lipid, a steroid, a phospholipid and a polymer conjugated lipid.
In some embodiments, the composition comprises:
(a) (i) from about 20 to about 65 mol percent of the first lipid; (ii) from about 5 to about 40 mol percent of a phospholipid; (c) from about 20 to about 50 mol percent of a steroid; and (d) a polymer conjugated lipid;
(b) (i) from about 40 to about 55 mol percent of the first lipid; (ii) from about 5 to about 15 mol percent of a phospholipid; (iii) from about 35 to about 50 mol percent of a steroid; and (iv) from about 2 to about 10 mol percent of a polymer conjugated lipid;
or
(c) (i) from about 45 to about 55 mol percent of the first lipid; (ii) from about 6 to about 10 mol percent of a phospholipid; (iii) from about 40 to about 48 mol percent of a steroid; and (iv) from about 1 to about 2.5 mol percent of a polymer conjugated lipid.
In some embodiments, the composition is formulated as lipid nanoparticles encapsulating the nucleic acid in a lipid shell. In some embodiments, the composition is a pharmaceutical composition further comprising a pharmaceutically acceptable carrier, diluent or excipient.
In some embodiments, provided herein is a method for managing or treating cancer in a subject in need thereof, comprising administering to the subject a therapeutically effective amount of the nucleic acid encoding the IL-12 polypeptide according to the present disclosure or a pharmaceutical composition comprising thereof, wherein the cancer is selected from breast cancer, melanoma, and colon cancer.
In some embodiments, the method further comprises administering to the subject a therapeutically effective amount of a composition comprising a nucleic acid encoding an antagonist of PD-1 or a therapeutically effective amount of a composition comprising an antagonist of PD-1. In some embodiments, nucleic acid encoding the antagonist of PD-1 is the same as the nucleic acid encoding the IL-12 containing fusion protein, wherein the nucleic acid  comprises at least two ORFs, and wherein the first ORF encodes the IL-12 containing fusion protein and the second ORF encodes the antagonist of PD-1. In some embodiments, the antagonist of PD-1 is an anti-PD-1 antibody or antigen-binding fragment thereof that specifically binds to PD-1 and blocks binding of PD-1 to its natural ligands. In some embodiments, the anti-PD-1 antibody is nivolumab or pembrolizumab.
In some embodiments, the method further comprises administering to the subject a therapeutically effective amount of a composition comprising a nucleic acid encoding an IL-15 containing fusion protein or a therapeutically effective amount of a composition comprising an IL-15 containing fusion protein. In some embodiments, the IL-15 containing fusion protein comprises human IL-15 or mouse IL-15. In some embodiments, the method comprises administering the therapeutically effective amount of the composition comprising the nucleic acid encoding the IL-15 containing fusion protein, wherein the nucleic acid encoding the IL-15 polypeptide is the same as the nucleic acid encoding the IL-12 containing fusion protein, and wherein the nucleic acid comprises at least two ORFs, and wherein the first ORF encodes the IL-12 containing fusion protein and the second ORF encodes the IL-15 containing fusion protein. In some embodiments, the method comprises administering the therapeutically effective amount of the composition comprising the nucleic acid encoding the IL-15 containing fusion protein, wherein the nucleic acid encoding the IL-15 containing fusion protein is different from the nucleic acid encoding the IL-12 containing fusion protein. In some embodiments, the IL-15 containing fusion protein comprises IL-15 receptor alpha subunit (IL-15Rα) fused to IL-15.
In some embodiments, the IL-12 containing fusion protein comprises the amino acid sequence selected from SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 24 and SEQ ID NO: 28. In some embodiments, the nucleic acid encoding the IL-12 polypeptide comprises an ORF comprising the sequence selected from SEQ ID NOS: 5, SEQ ID NO: 77, SEQ ID NO: 78 SEQ ID NO: 79, SEQ ID NO: 7, SEQ ID NO: 80, SEQ ID NO: 81, SEQ ID NO: 9, SEQ ID NO: 82, SEQ ID NO: 11, SEQ ID NO: 83, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, and SEQ ID NO: 29, or a transcribed RNA sequence thereof.
In some embodiments, the IL-15 containing fusion protein comprises the amino acid sequence selected from SEQ ID NO: 32, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 71, and SEQ ID NO: 73. In some embodiments, the nucleic acid encoding the IL-15 polypeptide comprises an ORF comprising the sequence selected from SEQ ID NO: 33, SEQ ID NO: 13, SEQ ID NO: 86, SEQ ID NO: 15, SEQ ID NO: 89, SEQ ID NO: 72, and SEQ ID NO: 74, or a transcribed RNA sequence thereof.
In some embodiments, the subject is a human or a non-human mammal. In some embodiments, the cancer is relapsed or metastasis. In some embodiments, the subject has previously received treatment with an antagonist of PD-1, and wherein the cancer is either refectory or irresponsive to the treatment or relapsed from the treatment. In some embodiments, administration of the nucleic acid or pharmaceutical composition comprising the nucleic acid is via intratumoral administration.
In some embodiments, the method comprises administering lipid nanoparticles encapsulating the nucleic acid to the subject, and wherein the lipid nanoparticles are endocytosed by the cells in the subject. In some embodiments, the nucleic acid is expressed by the cells in the subject. In some embodiments, the administering is via intratumoral, intraperitoneal, or subcutaneous route. In some embodiments, the tumor size is reduced by about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%or about 100%.
In some embodiments, the number of tumor-infiltrating lymphocytes (TIL) in the subject is increased. In some embodiments, the TIL comprises CD8 + T cells and/or IFNγ + T. In some embodiments, a ratio between the number of CD8 + T cells and the number Treg cells (CD8 + T/Treg) is increased in the tumor microenvironment in the subject. In some embodiments, PD-L1 expression on the tumor cells is increased in the subject.
4. BRIEF DESCRIPTION OF THE FIGURES
FIG. 1 is a schematic illustration of an mRNA molecule encoding an IL-12 fusion protein according to the present disclosure. In the illustrated embodiment, the mRNA molecule comprises a 5’ -Cap, a 5’ -UTR, a coding region, a 3’ -UTR and a polyA tail. Particularly, the coding region can encode a fusion protein of an IL-12B polypeptide (including the IL-12B signal  peptide) fused to an IL-12A polypeptide via a peptidic linker. In specific embodiments, the IL-12A or IL-12B polypeptide can originate from human or mouse.
FIG. 2 shows ELISA results of expression of hIL-12 containing fusion protein in expi293F cells. X-axis shows the mRNA constructs encoding different versions of the hIL-12 containing fusion proteins that were used to transfected the cells. Y axis shows protein concentration in the cell culture supernatant (ng/ml) .
FIG. 3A shows ELISA results of expression of hIL-12 containing fusion protein in HS578T cells. X-axis shows the mRNA constructs encoding different versions of the hIL-12 containing fusion proteins that were used to transfected the cells, and three negative control groups. Y axis shows protein concentration in the cell culture supernatant (ng/ml) .
FIG. 3B shows ELISA results of expression of hIL-12 containing fusion protein in expi293F cells transfected by mRNA constructs encoding hIL-12 fusion protein version 1 (hIL-12 fusion v. 1) or its pseudouridine -modified version (hIL-12 fusion v. 1-ψ) measured at different time points after transfection. X-axis shows the time point of measurement. Y axis shows protein concentration in the cell culture supernatant (ng/ml) .
FIG. 3C shows ELISA results of expression of hIL-12 containing fusion protein in HS578T cells transfected by mRNA constructs encoding hIL-12 fusion protein version 1 (hIL-12 fusion v. 1) or its pseudouridine -modified version (hIL-12 fusion v. 1-ψ) measured at different time points after transfection. X-axis shows the time point of measurement. Y axis shows protein concentration in the cell culture supernatant (ng/ml) .
FIG. 4A shows measurement of IL-12 activity expressed by expi293T cells transfected with mRNA constructs encoding hIL-12 fusion version 1 (hIL-12 fusion v. 1) and its pseudouridine-modified version (hIL-12 fusion v. 1-ψ) . Recombinant hIL-12 protein was included as a positive control. X-axis shows the Log [concentration of IL-12] ; Y axis shows the IL-12 activity measured as the optical density (OD) value.
FIG. 4B shows measurement of IL-12 activity expressed by HS578T cells transfected with mRNA constructs encoding hIL-12 fusion version 1 (hIL-12 fusion v. 1) and its pseudouridine-modified version (hIL-12 fusion v. 1-ψ) . Recombinant hIL-12 protein was  included as a positive control. X-axis shows the Log [concentration of IL-12] ; Y axis shows the IL-12 activity measured as the optical density (OD) value.
FIG. 5A shows ELISA results of expression of mIL-12 containing fusion protein in EMT-6 cells. X-axis shows the mRNA constructs encoding mIL-12 fusion protein reference molecule (mIL-12 fusion ref. ) and mIL-12 fusion protein version 1 (mIL-12 fusion v. 1) that were used to transfected the cells. Y axis shows protein concentration in the cell culture supernatant (ng/ml) .
FIG. 5B shows measurement of IL-12 activity expressed by EMT-6 cells transfected with mRNA constructs encoding mIL-12 fusion protein reference molecule (mIL-12 fusion ref. ) and mIL-12 fusion protein version 1 (mIL-12 fusion v. 1) . Recombinant mIL-12 protein (Invogen-Mouse IL-12) was included as a positive control. X-axis shows the Log [concentration of IL-12] ; Y axis shows the IL-12 activity measured as the optical density (OD) value.
FIG. 6A shows ELISA results of expression of mIL-12 containing fusion protein in 4T1 cells. X-axis shows the mRNA constructs encoding mIL-12 fusion protein reference molecule (mIL-12 fusion ref. ) and mIL-12 fusion protein version 1 (mIL-12 fusion v. 1) that were used to transfected the cells. Y axis shows protein concentration in the cell culture supernatant (ng/ml) .
FIG. 6B shows measurement of IL-12 activity expressed by 4T1 cells transfected with mRNA constructs encoding mIL-12 fusion protein reference molecule (mIL-12 fusion ref. ) and mIL-12 fusion protein version 1 (mIL-12 fusion v. 1) . Recombinant mIL-12 protein (Invogen-Mouse IL-12) was included as a positive control. X-axis shows the Log [concentration of IL-12] ; Y axis shows the IL-12 activity measured as the optical density (OD) value.
FIG. 7A shows ELISA results of expression of mIL-12 containing fusion protein in HEK293 cells. X-axis shows the mRNA constructs encoding mIL-12 fusion protein reference molecule (mIL-12 fusion ref. ) and mIL-12 fusion protein version 1 (mIL-12 fusion v. 1) that were used to transfected the cells. Y axis shows protein concentration in the cell culture supernatant (ng/ml) .
FIG. 7B shows measurement of IL-12 activity expressed by HEK293 cells transfected with mRNA constructs encoding mIL-12 fusion protein reference molecule (mIL-12  fusion ref. ) and mIL-12 fusion protein version 1 (mIL-12 fusion v. 1) . Recombinant mIL-12 protein (Invivogen-Mouse IL-12) was included as a positive control. X-axis shows the Log [concentration of IL-12] ; Y axis shows the IL-12 activity measured as the optical density (OD) value.
FIG. 8 shows tumor volumes in breast cancer model mice treated with LNP composition containing mRNA encoding mIL-12 containing polypeptide (mIL-12 fusion v. 1-ψ) at different dosages (G3 to G6) . Mice receiving PBS (G1) or LNP composition containing mRNA with no starting codon (G2) were included as negative control. Mice receiving recombinant mIL-12 polypeptide (G7) were included as the positive control.
FIG. 9 shows tumor volumes in breast cancer model mice treated with LNP composition containing mRNA encoding mIL-12 containing polypeptide (mIL-12 fusion v. 1-ψ) at different dosages (G8 to G11) . Mice receiving PBS (G1) or LNP composition containing mRNA with no starting codon (G2) were included as negative control. Mice receiving recombinant mIL-12 polypeptide (G7) were included as the positive control.
FIG. 10 shows tumor volumes in breast cancer model mice treated with LNP composition containing mRNA encoding mIL-12 containing polypeptide (mIL-12 fusion v. 1-ψ) or LNP composition containing mRNA encoding mIL-12 containing polypeptide reference molecule (mIL-12 fusion ref-ψ) . Mice receiving PBS (G1) were included as negative control.
FIGS. 11A to 11L show tumor volumes in individual mice in the treatment groups (G1 to G12) as shown in FIGS. 8 to 10.
FIG. 12 shows body weight of breast cancer model mice treated with LNP composition containing mRNA encoding mIL-12 containing polypeptide (mIL-12 fusion v. 1-ψ) at different dosages (G3 to G6) . Mice receiving PBS (G1) or LNP composition containing mRNA with no starting codon (G2) were included as negative control. Mice receiving recombinant mIL-12 polypeptide (G7) were included as the positive control.
FIG. 13 shows body weight of breast cancer model mice treated with LNP composition containing mRNA encoding mIL-12 containing polypeptide (mIL-12 fusion v. 1-ψ) at different dosages (G8 to G11) . Mice receiving PBS (G1) or LNP composition containing  mRNA with no starting codon (G2) were included as negative control. Mice receiving recombinant mIL-12 polypeptide (G7) were included as the positive control.
FIGS. 14A to 14H show tumor volumes in individual mice that showed complete response (CR) in the treatment groups (G3 to G9) and re-challenged with EMT6 inoculation. A group of healthy mice inoculated with the EMT6 cells were included as the control.
FIG. 15A shows the ratio of CD8+/Treg in tumor tissues in mice treated with LNP containing mRNA encoding IL-12 containing polypeptide alone (mIL-12 fusion v. 1-ψ) , with an anti-PD1 antibody alone (RMP1-14) , or in combination (mIL-12 fusion v. 1-ψ + RMP1-14) . Mice receiving PBS or LNP containing mRNA with no starting codon (NST) were included as negative controls.
FIG. 15B shows the percentage of IFN-Υ+ T cells in lymphocyte in mice treated with LNP containing mRNA encoding IL-12 containing polypeptide alone (mIL-12 fusion v. 1-ψ) , with an anti-PD1 antibody alone (RMP1-14) , or in combination (mIL-12 fusion v. 1-ψ + RMP1-14) . Mice receiving PBS or LNP containing mRNA with no starting codon (NST) were included as negative controls.
FIG. 15C shows the percentage of PD-L1+ cells in tumor tissues in mice treated with LNP containing mRNA encoding IL-12 containing polypeptide alone (mIL-12 fusion v. 1-ψ) , with anti-PD1 antibody alone (RMP1-14) , or in combination (mIL-12 fusion v. 1-ψ + RMP1-14) . Mice receiving PBS or LNP containing mRNA with no starting codon (NST) were included as negative controls.
FIG. 16 shows tumor volumes in breast cancer model mice treated mRNA encoding IL-12 containing polypeptide formulated in LNP containing different cationic lipids (G3 to G14) . Mice treated with PBS or LNP containing mRNA without starting codon (G2) were included as negative controls.
FIG. 17A shows tumor volumes in melanoma model mice treated with LNP composition containing mRNA encoding mIL-12 containing polypeptide (mIL-12 fusion v. 1-ψ) alone, treated with an anti-PD-1 antibody RMP1-14 alone, or in combination (G3 to G11) . Mice receiving PBS (G1) or LNP composition containing mRNA with no starting codon (G2) were included as negative controls. Mice receiving recombinant mIL-12 polypeptide alone (G12) or  in combination with anti-PD-1 antibody RMP1-14 (G13) were included as the positive controls. The tumor volumes were measured from tumors receiving intratumoral administration of the LNP composition.
FIG. 17B shows tumor volumes in melanoma model mice treated with LNP composition containing mRNA encoding mIL-12 containing polypeptide (mIL-12 fusion v. 1-ψ) alone, treated with an anti-PD-1 antibody RMP1-14 alone, or in combination (G3 to G11) . Mice receiving PBS (G1) or LNP composition containing mRNA with no starting codon (G2) were included as negative controls. Mice receiving recombinant mIL-12 polypeptide alone (G12) or in combination with anti-PD-1 antibody RMP1-14 (G13) were included as the positive controls. The LNP compositions were administered intratumorally, and the tumor volumes were measured from tumors on the untreated side of the animal.
FIG. 18 shows the survival of melanoma model mice treated with LNP composition containing mRNA encoding mIL-12 containing polypeptide (mIL-12 fusion v. 1-ψ) alone, treated with an anti-PD-1 antibody RMP1-14 alone, or in combination (G3 to G11) . Mice receiving PBS (G1) or LNP composition containing mRNA with no starting codon (G2) were included as negative controls. Mice receiving recombinant mIL-12 polypeptide alone (G12) or in combination with anti-PD-1 antibody RMP1-14 (G13) were included as the positive controls.
FIG. 19 shows tumor volumes in breast cancer model mice treated with LNP composition containing mRNA encoding mIL-12 containing polypeptide (mIL-12 fusion v. 1-ψ) alone, treated with an anti-PD-1 antibody RMP1-14 alone, or in combination (G3 to G9) . Mice receiving PBS (G1) or LNP composition containing mRNA with no starting codon (G2) were included as negative controls. Mice receiving recombinant mIL-12 polypeptide alone (G120or in combination with anti-PD-1 antibody RMP1-14 (G11) were included as the positive controls.
FIGS. 20A to 20K show tumor volumes in individual mice in the treatment groups (G1 to G11) as shown in FIG. 19.
FIG. 21 shows tumor volumes in colon cancer model mice treated with LNP composition containing mRNA encoding mIL-12 containing polypeptide (mIL-12 fusion v. 1-ψ) alone, treated with an anti-PD-1 antibody RMP1-14 alone, or in combination (G3 to G9) . Mice receiving PBS (G1) or LNP composition containing mRNA with no starting codon (G2) were included as negative controls.
FIGS. 22A to 22I show tumor volumes in individual mice in the treatment groups (G1 to G9) as shown in FIG. 21.
FIG. 23 is a schematic illustration of an mRNA molecule encoding a hIL-15 fusion protein according to the present disclosure. In the illustrated embodiment, the mRNA molecule comprises a 5’ -Cap, a 5’ -UTR, a coding region, a 3’ -UTR and a polyA tail. Particularly, the coding region can encode a fusion protein of the Sushi domain of hIL-15 receptor alpha subunit (hIL-15Rα sushi) polypeptide (including the hIL-15Rα signal peptide) fused to a hIL-15polypeptide via a peptidic linker.
FIG. 24A shows ELISA results of expression of hIL-15 containing fusion protein in expi293F cells by detecting hIL-15. X-axis shows the mRNA constructs encoding different versions of the hIL-15 containing fusion proteins that were used to transfected the cells. Y axis shows protein concentration in the cell culture supernatant (pg/ml) .
FIG. 24B shows ELISA results of expression of hIL-15 containing fusion protein in expi293F cells by detecting hIL-15Rα. X-axis shows the mRNA constructs encoding different versions of the hIL-15 containing fusion proteins that were used to transfected the cells. Y axis shows protein concentration in the cell culture supernatant (pg/ml) .
FIG. 25 shows measurement of IL-15 activity expressed by expi293T cells transfected with mRNA constructs encoding hIL-15 fusion version 1 (hIL-15 fusion v. 1) and its pseudouridine-modified version (hIL-15 fusion v. 1-ψ) , and hIL-15 fusion protein reference molecule (hIL-15 fusion ref. ) and its pseudouridine-modified version (hIL-15 fusion v. 1ref. -ψ) . Recombinant hIL-15 polypeptide was included as a positive control. X-axis shows the Log [concentration of IL-15] ; Y axis shows the IL-15 activity measured as the optical density (OD) value.
FIG. 26 shows injection dose dependent expression of hIL-12 protein in mice receiving intratumoral injection of a LNP composition containing hIL-12 encoding mRNA. Y-axis shows the hIL-12 protein concentration (pg/g) and X-axis shows the sampling time (hours) post injection.
5. DETAILED DESCRIPTION
Provided herein are nucleic acid molecules encoding interleukin-12 (IL-12) , or polypeptides comprising IL-12 or functional fragment of IL-12. Also provided herein are nucleic acid molecules encoding interleukin-15 (IL-15) , or polypeptides comprising IL-15 or functional fragment of IL-15. Also provided herein are compositions, including lipid nanoparticles (LNPs) , comprising the nucleic acid molecules, and related therapeutic methods and uses for the management or treatment of breast cancer, melanoma or colon cancer in human. Additional features of the present disclosure will become apparent to those skilled in the art upon consideration of the following detailed description of particular embodiments.
5.1 General Techniques
Techniques and procedures described or referenced herein include those that are generally well understood and/or commonly employed using conventional methodology by those skilled in the art, such as, for example, the widely utilized methodologies described in Sambrook et al., Molecular Cloning: A Laboratory Manual (3d ed. 2001) ; Current Protocols in Molecular Biology (Ausubel et al. eds., 2003) .
5.2 Terminology
Unless described otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of ordinary skill in the art. For purposes of interpreting this specification, the following description of terms will apply and whenever appropriate, terms used in the singular will also include the plural and vice versa. All patents, applications, published applications, and other publications are incorporated by reference in their entirety. In the event that any description of terms set forth conflicts with any document incorporated herein by reference, the description of term set forth below shall control.
As used herein and unless otherwise specified, the term “lipid” refers to a group of organic compounds that include, but are not limited to, esters of fatty acids and are generally characterized by being poorly soluble in water, but soluble in many nonpolar organic solvents. While lipids generally have poor solubility in water, there are certain categories of lipids (e.g., lipids modified by polar groups, e.g., DMG-PEG2000) that have limited aqueous solubility and can dissolve in water under certain conditions. Known types of lipids include biological  molecules such as fatty acids, waxes, sterols, fat-soluble vitamins, monoglycerides, diglycerides, triglycerides, and phospholipids. Lipids can be divided into at least three classes: (1) “simple lipids, ” which include fats and oils as well as waxes; (2) “compound lipids, ” which include phospholipids and glycolipids (e.g., DMPE-PEG2000) ; and (3) “derived lipids” such as steroids. Further, as used herein, lipids also encompass lipidoid compounds. The term “lipidoid compound, ” also simply “lipidoid” , refers to a lipid-like compound (e.g. an amphiphilic compound with lipid-like physical properties) .
The term “lipid nanoparticle” or “LNP” refers to a particle having at least one dimension on the order of nanometers (nm) (e.g., 1 to 1,000 nm) , which contains one or more types of lipid molecules. The LNP provided herein can further contain at least one non-lipid payload molecule (e.g., one or more nucleic acid molecules) . In some embodiments, the LNP comprises a non-lipid payload molecule either partially or completely encapsulated inside a lipid shell. Particularly, in some embodiments, wherein the payload is a negatively charged molecule (e.g., mRNA encoding a therapeutic protein) , and the lipid components of the LNP comprise at least one cationic lipid. Without being bound by the theory, it is contemplated that the cationic lipids can interact with the negatively charged payload molecules and facilitates incorporation and/or encapsulation of the payload into the LNP during LNP formation. Other lipids that can form part of a LNP as provided herein include but are not limited to neutral lipids and charged lipids, such as steroids, polymer conjugated lipids, and various zwitterionic lipids. In certain embodiments, a LNP according to the present disclosure comprises one or more cationic lipids of Formula 01-I, 01-II, 02-I, 02-II, 03-I, 03-II-A, 03-II-B, 03-II-C, 03-II-D, 04-I, 04-III, 04-IV (and sub-formulas thereof) as described herein.
The term “cationic lipid” refers to a lipid that is either positively charged at any pH value or hydrogen ion activity of its environment, or capable of being positively charged in response to the pH value or hydrogen ion activity of its environment (e.g., the environment of its intended use) . Thus, the term “cationic” encompasses both “permanently cationic” and “cationisable. ” In certain embodiments, the positive charge in a cationic lipid results from the presence of a quaternary nitrogen atom. In certain embodiments, the cationic lipid comprises a zwitterionic lipid that assumes a positive charge in the environment of its intended use (e.g., at physiological pH) . In certain embodiments, the cationic lipid is one or more lipids of Formula  01-I, 01-II, 02-I, 02-II, 03-I, 03-II-A, 03-II-B, 03-II-C, 03-II-D, 04-I, 04-III, 04-IV (and sub-formulas thereof) (and sub-formulas thereof) as described herein.
The term “polymer conjugated lipid” refers to a molecule comprising both a lipid portion and a polymer portion. An example of a polymer conjugated lipid is a pegylated lipid (PEG-lipid) , in which the polymer portion comprises a polyethylene glycol.
The term “neutral lipid” encompasses any lipid molecules existing in uncharged forms or neutral zwitterionic forms at a selected pH value or within a selected pH range. In some embodiments, the selected useful pH value or range corresponds to the pH condition in an environment of the intended uses of the lipids, such as the physiological pH. As non-limiting examples, neutral lipids that can be used in connection with the present disclosure include, but are not limited to, phosphotidylcholines such as 1, 2-distearoyl-sn-glycero-3-phosphocholine (DSPC) , 1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) , 1, 2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) , 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) , 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) , phophatidylethanolamines such as 1, 2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) , 2- ( (2, 3-bis (oleoyloxy) propyl) dimethylammonio) ethyl hydrogen phosphate (DOCP) , sphingomyelins (SM) , ceramides, steroids such as sterols and their derivatives. Neutral lipids as provided herein may be synthetic or derived (isolated or modified) from a natural source or compound.
The term “charged lipid” encompasses any lipid molecules that exist in either positively charged or negatively charged forms at a selected pH or within a selected pH range. In some embodiments, the selected pH value or range corresponds to the pH condition in an environment of the intended uses of the lipids, such as the physiological pH. As non-limiting examples, neutral lipids that can be used in connection with the present disclosure include, but are not limited to, phosphatidylserines, phosphatidic acids, phosphatidylglycerols, phosphatidylinositols, sterol hemisuccinates, dialkyl trimethylarnmonium-propanes, (e.g., DOTAP, DOTMA) , dialkyl dimethylaminopropanes, ethyl phosphocholines, dimethylaminoethane carbamoyl sterols (e.g., DC-Chol) , 1, 2-dioleoyl-sn-glycero-3-phospho-L-serine sodium salt (DOPS-Na) , 1, 2-dioleoyl-sn-glycero-3-phospho- (1'-rac-glycerol) sodium salt (DOPG-Na) , and 1, 2-dioleoyl-sn-glycero-3-phosphate sodium salt (DOPA-Na) . Charged lipids as provided herein may be synthetic or derived (isolated or modified) from a natural source or compound.
As used herein, and unless otherwise specified, the term “alkyl” refers to a straight or branched hydrocarbon chain radical consisting solely of carbon and hydrogen atoms, which is saturated. In one embodiment, the alkyl group has, for example, from one to twenty-four carbon atoms (C 1-C 24 alkyl) , four to twenty carbon atoms (C 4-C 20 alkyl) , six to sixteen carbon atoms (C 6-C 16 alkyl) , six to nine carbon atoms (C 6-C 9 alkyl) , one to fifteen carbon atoms (C 1-C 15 alkyl) , one to twelve carbon atoms (C 1-C 12 alkyl) , one to eight carbon atoms (C 1-C 8 alkyl) or one to six carbon atoms (C 1-C 6 alkyl) and which is attached to the rest of the molecule by a single bond. Examples of alkyl groups include, but are not limited to, methyl, ethyl, n-propyl, 1-methylethyl (isopropyl) , n-butyl, n-pentyl, 1, 1-dimethylethyl (t-butyl) , 3-methylhexyl, 2-methylhexyl, and the like. Unless otherwise specified, an alkyl group is optionally substituted.
As used herein, and unless otherwise specified, the term “alkenyl” refers to a straight or branched hydrocarbon chain radical consisting solely of carbon and hydrogen atoms, which contains one or more carbon-carbon double bonds. The term “alkenyl” also embraces radicals having “cis” and “trans” configurations, or alternatively, “E” and “Z” configurations, as appreciated by those of ordinary skill in the art. In one embodiment, the alkenyl group has, , for example, from two to twenty-four carbon atoms (C 2-C 24 alkenyl) , four to twenty carbon atoms (C 4-C 20 alkenyl) , six to sixteen carbon atoms (C 6-C 16 alkenyl) , six to nine carbon atoms (C 6-C 9 alkenyl) , two to fifteen carbon atoms (C 2-C 15 alkenyl) , two to twelve carbon atoms (C 2-C 12 alkenyl) , two to eight carbon atoms (C 2-C 8 alkenyl) or two to six carbon atoms (C 2-C 6 alkenyl) and which is attached to the rest of the molecule by a single bond. Examples of alkenyl groups include, but are not limited to, ethenyl, prop-1-enyl, but-1-enyl, pent-1-enyl, penta-1, 4-dienyl, and the like. Unless otherwise specified, an alkenyl group is optionally substituted.
As used herein, and unless otherwise specified, the term “alkynyl” refers to a straight or branched hydrocarbon chain radical consisting solely of carbon and hydrogen atoms, which contains one or more carbon-carbon triple bonds. In one embodiment, the alkynyl group has, for example, from two to twenty-four carbon atoms (C 2-C 24 alkynyl) , four to twenty carbon atoms (C 4-C 20 alkynyl) , six to sixteen carbon atoms (C 6-C 16 alkynyl) , six to nine carbon atoms (C 6-C 9 alkynyl) , two to fifteen carbon atoms (C 2-C 15 alkynyl) , two to twelve carbon atoms (C 2-C 12 alkynyl) , two to eight carbon atoms (C 2-C 8 alkynyl) or two to six carbon atoms (C 2-C 6 alkynyl) and which is attached to the rest of the molecule by a single bond. Examples of  alkynyl groups include, but are not limited to, ethynyl, propynyl, butynyl, pentynyl, and the like. Unless otherwise specified, an alkynyl group is optionally substituted.
As used herein, and unless otherwise specified, the term “alkylene” or “alkylene chain” refers to a straight or branched multivalent (e.g., divalent or trivalent) hydrocarbon chain linking the rest of the molecule to a radical group, consisting solely of carbon and hydrogen, which is saturated. In one embodiment, the alkylene has, for example, from one to twenty-four carbon atoms (C 1-C 24 alkylene) , one to fifteen carbon atoms (C 1-C 15 alkylene) , one to twelve carbon atoms (C 1-C 12 alkylene) , one to eight carbon atoms (C 1-C 8 alkylene) , one to six carbon atoms (C 1-C 6 alkylene) , two to four carbon atoms (C 2-C 4 alkylene) , one to two carbon atoms (C 1-C 2 alkylene) . Examples of alkylene groups include, but are not limited to, methylene, ethylene, propylene, n-butylene, and the like. The alkylene chain is attached to the rest of the molecule through a single bond and to the radical group through a single bond. The points of attachment of the alkylene chain to the rest of the molecule and to the radical group can be through one carbon or any two carbons within the chain. Unless otherwise specified, an alkylene chain is optionally substituted.
As used herein, and unless otherwise specified, the term “alkenylene” refers to a straight or branched multivalent (e.g., divalent or trivalent) hydrocarbon chain linking the rest of the molecule to a radical group, consisting solely of carbon and hydrogen, which contains one or more carbon-carbon double bonds. In one embodiment, the alkenylene has, for example, from two to twenty-four carbon atoms (C 2-C 24 alkenylene) , two to fifteen carbon atoms (C 2-C 15 alkenylene) , two to twelve carbon atoms (C 2-C 12 alkenylene) , two to eight carbon atoms (C 2-C 8 alkenylene) , two to six carbon atoms (C 2-C 6 alkenylene) or two to four carbon atoms (C 2-C 4 alkenylene) . Examples of alkenylene include, but are not limited to, ethenylene, propenylene, n-butenylene, and the like. The alkenylene is attached to the rest of the molecule through a single or double bond and to the radical group through a single or double bond. The points of attachment of the alkenylene to the rest of the molecule and to the radical group can be through one carbon or any two carbons within the chain. Unless otherwise specified, an alkenylene is optionally substituted.
As used herein, and unless otherwise specified, the term “cycloalkyl” refers to a non-aromatic monocyclic or polycyclic hydrocarbon radical consisting solely of carbon and hydrogen atoms, and which is saturated. Cycloalkyl group may include fused or bridged ring systems. In  one embodiment, the cycloalkyl has, for example, from 3 to 15 ring carbon atoms (C 3-C 15 cycloalkyl) , from 3 to 10 ring carbon atoms (C 3-C 10 cycloalkyl) , or from 3 to 8 ring carbon atoms (C 3-C 8 cycloalkyl) . The cycloalkyl is attached to the rest of the molecule by a single bond. Examples of monocyclic cycloalkyl radicals include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl. Examples of polycyclic cycloalkyl radicals include, but are not limited to, adamantyl, norbornyl, decalinyl, 7, 7-dimethyl-bicyclo [2.2.1] heptanyl, and the like. Unless otherwise specified, a cycloalkyl group is optionally substituted.
As used herein, and unless otherwise specified, the term “cycloalkylene” is a multivalent (e.g., divalent or trivalent) cycloalkyl group. Unless otherwise specified, a cycloalkylene group is optionally substituted.
As used herein, and unless otherwise specified, the term “cycloalkenyl” refers to a non-aromatic monocyclic or polycyclic hydrocarbon radical consisting solely of carbon and hydrogen atoms, and which includes one or more carbon-carbon double bonds. Cycloalkenyl may include fused or bridged ring systems. In one embodiment, the cycloalkenyl has, for example, from 3 to 15 ring carbon atoms (C 3-C 15 cycloalkenyl) , from 3 to 10 ring carbon atoms (C 3-C 10 cycloalkenyl) , or from 3 to 8 ring carbon atoms (C 3-C 8 cycloalkenyl) . The cycloalkenyl is attached to the rest of the molecule by a single bond. Examples of monocyclic cycloalkenyl radicals include, but are not limited to, cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclooctenyl, and the like. Unless otherwise specified, a cycloalkenyl group is optionally substituted.
As used herein, and unless otherwise specified, the term “cycloalkenylene” is a multivalent (e.g., divalent or trivalent) cycloalkenyl group. Unless otherwise specified, a cycloalkenylene group is optionally substituted.
As used herein, and unless otherwise specified, the term “heterocyclyl” refers to a non-aromatic radical monocyclic or polycyclic moiety that contains one or more (e.g., one, one or two, one to three, or one to four) heteroatoms independently selected from nitrogen, oxygen, phosphorous, and sulfur. The heterocyclyl may be attached to the main structure at any heteroatom or carbon atom. A heterocyclyl group can be a monocyclic, bicyclic, tricyclic, tetracyclic, or other polycyclic ring system, wherein the polycyclic ring systems can be a fused, bridged or spiro ring system. Heterocyclyl polycyclic ring systems can include one or more  heteroatoms in one or more rings. A heterocyclyl group can be saturated or partially unsaturated. Saturated heterocycloalkyl groups can be termed “heterocycloalkyl” . Partially unsaturated heterocycloalkyl groups can be termed “heterocycloalkenyl” if the heterocyclyl contains at least one double bond, or “heterocycloalkynyl” if the heterocyclyl contains at least one triple bond. In one embodiment, the heterocyclyl has, for example, 3 to 18 ring atoms (3-to 18-membered heterocyclyl) , 4 to 18 ring atoms (4-to 18-membered heterocyclyl) , 5 to 18 ring atoms (3-to 18-membered heterocyclyl) , 4 to 8 ring atoms (4-to 8-membered heterocyclyl) , or 5 to 8 ring atoms (5-to 8-membered heterocyclyl) . Whenever it appears herein, a numerical range such as “3 to 18”refers to each integer in the given range; e.g., “3 to 18 ring atoms” means that the heterocyclyl group can consist of 3 ring atoms, 4 ring atoms, 5 ring atoms, 6 ring atoms, 7 ring atoms, 8 ring atoms, 9 ring atoms, 10 ring atoms, etc., up to and including 18 ring atoms. Examples of heterocyclyl groups include, but are not limited to, imidazolyl, imidazolidinyl, oxazolyl, oxazolidinyl, thiazolyl, thiazolidinyl, pyrazolidinyl, pyrazolyl, isoxazolidinyl, isoxazolyl, isothiazolidinyl, isothiazolyl, morpholinyl, pyrrolyl, pyrrolidinyl, furyl, tetrahydrofuryl, thiophenyl, pyridinyl, piperidinyl, quinolyl, and isoquinolyl. Unless otherwise specified, a heterocyclyl group is optionally substituted.
As used herein, and unless otherwise specified, the term “heterocyclylene” is a multivalent (e.g., divalent or trivalent) heterocyclyl group. Unless otherwise specified, a heterocyclylene group is optionally substituted.
As used herein, and unless otherwise specified, the term “aryl” refers to a monocyclic aromatic group and/or multicyclic monovalent aromatic group that contain at least one aromatic hydrocarbon ring. In certain embodiments, the aryl has from 6 to 18 ring carbon atoms (C 6-C 18 aryl) , from 6 to 14 ring carbon atoms (C 6-C 14 aryl) , or from 6 to 10 ring carbon atoms (C 6-C 10 aryl) . Examples of aryl groups include, but are not limited to, phenyl, naphthyl, fluorenyl, azulenyl, anthryl, phenanthryl, pyrenyl, biphenyl, and terphenyl. The term “aryl” also refers to bicyclic, tricyclic, or other multicyclic hydrocarbon rings, where at least one of the rings is aromatic and the others of which may be saturated, partially unsaturated, or aromatic, for example, dihydronaphthyl, indenyl, indanyl, or tetrahydronaphthyl (tetralinyl) . Unless otherwise specified, an aryl group is optionally substituted.
As used herein, and unless otherwise specified, the term “arylene” is a multivalent (e.g., divalent or trivalent) aryl group. Unless otherwise specified, an arylene group is optionally substituted.
As used herein, and unless otherwise specified, the term “heteroaryl” refers to a monocyclic aromatic group and/or multicyclic aromatic group that contains at least one aromatic ring, wherein at least one aromatic ring contains one or more (e.g., one, one or two, one to three, or one to four) heteroatoms independently selected from O, S, and N. The heteroaryl may be attached to the main structure at any heteroatom or carbon atom. In certain embodiments, the heteroaryl has from 5 to 20, from 5 to 15, or from 5 to 10 ring atoms. The term “heteroaryl” also refers to bicyclic, tricyclic, or other multicyclic rings, where at least one of the rings is aromatic and the others of which may be saturated, partially unsaturated, or aromatic, wherein at least one aromatic ring contains one or more heteroatoms independently selected from O, S, and N. Examples of monocyclic heteroaryl groups include, but are not limited to, pyrrolyl, pyrazolyl, pyrazolinyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, thiadiazolyl, isothiazolyl, furanyl, thienyl, oxadiazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, and triazinyl. Examples of bicyclic heteroaryl groups include, but are not limited to, indolyl, benzothiazolyl, benzoxazolyl, benzothienyl, quinolinyl, tetrahydroisoquinolinyl, isoquinolinyl, benzimidazolyl, benzopyranyl, indolizinyl, benzofuranyl, isobenzofuranyl, chromonyl, coumarinyl, cinnolinyl, quinoxalinyl, indazolyl, purinyl, pyrrolopyridinyl, furopyridinyl, thienopyridinyl, dihydroisoindolyl, and tetrahydroquinolinyl. Examples of tricyclic heteroaryl groups include, but are not limited to, carbazolyl, benzindolyl, phenanthrollinyl, acridinyl, phenanthridinyl, and xanthenyl. Unless otherwise specified, a heteroaryl group is optionally substituted.
As used herein, and unless otherwise specified, the term “heteroarylene” is a multivalent (e.g., divalent or trivalent) heteroaryl group. Unless otherwise specified, a heteroarylene group is optionally substituted.
When the groups described herein are said to be “substituted, ” they may be substituted with any appropriate substituent or substituents. Illustrative examples of substituents include, but are not limited to, those found in the exemplary compounds and embodiments provided herein, as well as: a halogen atom such as F, CI, Br, or I; cyano; oxo (=O) ; hydroxyl (-OH) ; alkyl; alkenyl; alkynyl; cycloalkyl; aryl; - (C=O) OR’ ; -O (C=O) R’ ; -C (=O) R’ ; -OR’ ; -S (O)  xR’ ; -S-SR’ ; -C (=O) SR’ ; -SC (=O) R’ ; -NR’ R’ ; -NR’ C (=O) R’ ; -C (=O) NR’ R’ ; - NR’ C (=O) NR’ R’ ; -OC (=O) NR’ R’ ; -NR’ C (=O) OR’ ; -NR’ S (O)  xNR’ R’ ; -NR’S (O)  xR’ ; and -S (O)  xNR’ R’ , wherein: R’ is, at each occurrence, independently H, C 1-C 15 alkyl or cycloalkyl, and x is 0, 1 or 2. In some embodiments the substituent is a C 1-C 12 alkyl group. In other embodiments, the substituent is a cycloalkyl group. In other embodiments, the substituent is a halo group, such as fluoro. In other embodiments, the substituent is an oxo group. In other embodiments, the substituent is a hydroxyl group. In other embodiments, the substituent is an alkoxy group (-OR’ ) . In other embodiments, the substituent is a carboxyl group. In other embodiments, the substituent is an amino group (-NR’ R’ ) .
As used herein, and unless otherwise specified, the term “optional” or “optionally” (e.g., optionally substituted) means that the subsequently described event of circumstances may or may not occur, and that the description includes instances where said event or circumstance occurs and instances in which it does not. For example, “optionally substituted alkyl” means that the alkyl radical may or may not be substituted and that the description includes both substituted alkyl radicals and alkyl radicals having no substitution.
As used herein, and unless otherwise specified, the term “prodrug” of a biologically active compound refers to a compound that may be converted under physiological conditions or by solvolysis to the biologically active compound. In one embodiment, the term “prodrug” refers to a metabolic precursor of the biologically active compound that is pharmaceutically acceptable. A prodrug may be inactive when administered to a subject in need thereof, but is converted in vivo to the biologically active compound. Prodrugs are typically rapidly transformed in vivo to yield the parent biologically active compound, for example, by hydrolysis in blood. The prodrug compound often offers advantages of solubility, tissue compatibility or delayed release in a mammalian organism (see, Bundgard, H., Design of Prodrugs (1985) , pp. 7-9, 21-24 (Elsevier, Amsterdam) ) . A discussion of prodrugs is provided in Higuchi, T., et al., A.C.S. Symposium Series, Vol. 14, and in Bioreversible Carriers in Drug Design, Ed. Edward B. Roche, American Pharmaceutical Association and Pergamon Press, 1987.
In one embodiment, the term “prodrug” is also meant to include any covalently bonded carriers, which release the active compound in vivo when such prodrug is administered to a mammalian subject. Prodrugs of a compound may be prepared by modifying functional groups present in the compound in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to the parent compound. Prodrugs include compounds wherein  a hydroxyl, amino or mercapto group is bonded to any group that, when the prodrug of the compound is administered to a mammalian subject, cleaves to form a free hydroxyl, free amino or free mercapto group, respectively.
Examples of prodrugs include, but are not limited to, acetate, formate and benzoate derivatives of alcohol or amide derivatives of amine functional groups in the compounds provided herein.
As used herein, and unless otherwise specified, the term “pharmaceutically acceptable salt” includes both acid and base addition salts.
Examples of pharmaceutically acceptable acid addition salts include, but are not limited to, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, and organic acids such as, but not limited to, acetic acid, 2, 2-dichloroacetic acid, adipic acid, alginic acid, ascorbic acid, aspartic acid, benzenesulfonic acid, benzoic acid, 4-acetamidobenzoic acid, camphoric acid, camphor-10-sulfonic acid, capric acid, caproic acid, caprylic acid, carbonic acid, cinnamic acid, citric acid, cyclamic acid, dodecylsulfuric acid, ethane-1, 2-disulfonic acid, ethanesulfonic acid, 2-hydroxyethanesulfonic acid, formic acid, fumaric acid, galactaric acid, gentisic acid, glucoheptonic acid, gluconic acid, glucuronic acid, glutamic acid, glutaric acid, 2-oxo-glutaric acid, glycerophosphoric acid, glycolic acid, hippuric acid, isobutyric acid, lactic acid, lactobionic acid, lauric acid, maleic acid, malic acid, malonic acid, mandelic acid, methanesulfonic acid, mucic acid, naphthalene-1, 5-disulfonic acid, naphthalene-2-sulfonic acid, 1-hydroxy-2-naphthoic acid, nicotinic acid, oleic acid, orotic acid, oxalic acid, palmitic acid, pamoic acid, propionic acid, pyroglutamic acid, pyruvic acid, salicylic acid, 4-aminosalicylic acid, sebacic acid, stearic acid, succinic acid, tartaric acid, thiocyanic acid, p-toluenesulfonic acid, trifluoroacetic acid, undecylenic acid, and the like.
Examples of pharmaceutically acceptable base addition salt include, but are not limited to, salts prepared from addition of an inorganic base or an organic base to a free acid compound. Salts derived from inorganic bases include, but are not limited to, the sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like. In one embodiment, the inorganic salts are the ammonium, sodium, potassium, calcium, and magnesium salts. Salts derived from organic bases include, but are not limited to, salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as ammonia,  isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, diethanolamine, ethanolamine, deanol, 2-dimethylaminoethanol, 2-diethylaminoethanol, dicyclohexylamine, lysine, arginine, histidine, caffeine, procaine, hydrabamine, choline, betaine, benethamine, benzathine, ethylenediamine, glucosamine, methylglucamine, theobromine, triethanolamine, tromethamine, purines, piperazine, piperidine, N-ethylpiperidine, polyamine resins and the like. In one embodiment, the organic bases are isopropylamine, diethylamine, ethanolamine, trimethylamine, dicyclohexylamine, choline and caffeine.
A compound provided herein may contain one or more asymmetric centers and may thus give rise to enantiomers, diastereomers, and other stereoisomeric forms that may be defined, in terms of absolute stereochemistry, as (R) -or (S) -or, as (D) -or (L) -for amino acids. Unless otherwise specified, a compound provided herein is meant to include all such possible isomers, as well as their racemic and optically pure forms. Optically active (+) and (-) , (R) -and (S) -, or (D) -and (L) -isomers may be prepared using chiral synthons or chiral reagents, or resolved using conventional techniques, for example, chromatography and fractional crystallization. Conventional techniques for the preparation/isolation of individual enantiomers include chiral synthesis from a suitable optically pure precursor or resolution of the racemate (or the racemate of a salt or derivative) using, for example, chiral high pressure liquid chromatography (HPLC) . When the compounds described herein contain olefinic double bonds or other centers of geometric asymmetry, and unless specified otherwise, it is intended that the compounds include both E and Z geometric isomers. Likewise, all tautomeric forms are also intended to be included.
As used herein, and unless otherwise specified, the term “isomer” refers to different compounds that have the same molecular formula. “Stereoisomers” are isomers that differ only in the way the atoms are arranged in space. “Atropisomers” are stereoisomers from hindered rotation about single bonds. “Enantiomers” are a pair of stereoisomers that are non-superimposable mirror images of each other. A mixture of a pair of enantiomers in any proportion can be known as a “racemic” mixture. “Diastereoisomers” are stereoisomers that have at least two asymmetric atoms, but which are not mirror-images of each other.
“Stereoisomers” can also include E and Z isomers, or a mixture thereof, and cis and trans isomers or a mixture thereof. In certain embodiments, a compound described herein is  isolated as either the E or Z isomer. In other embodiments, a compound described herein is a mixture of the E and Z isomers.
“Tautomers” refers to isomeric forms of a compound that are in equilibrium with each other. The concentrations of the isomeric forms will depend on the environment the compound is found in and may be different depending upon, for example, whether the compound is a solid or is in an organic or aqueous solution.
It should also be noted a compound described herein can contain unnatural proportions of atomic isotopes at one or more of the atoms. For example, the compounds may be radiolabeled with radioactive isotopes, such as for example tritium (3H) , iodine-125 (125I) , sulfur-35 (35S) , or carbon-14 (14C) , or may be isotopically enriched, such as with deuterium (2H) , carbon-13 (13C) , or nitrogen-15 (15N) . As used herein, an “isotopolog” is an isotopically enriched compound. The term “isotopically enriched” refers to an atom having an isotopic composition other than the natural isotopic composition of that atom. “Isotopically enriched” may also refer to a compound containing at least one atom having an isotopic composition other than the natural isotopic composition of that atom. The term “isotopic composition” refers to the amount of each isotope present for a given atom. Radiolabeled and isotopically enriched compounds are useful as therapeutic agents, e.g., cancer therapeutic agents, research reagents, e.g., binding assay reagents, and diagnostic agents, e.g., in vivo imaging agents. All isotopic variations of a compound described herein, whether radioactive or not, are intended to be encompassed within the scope of the embodiments provided herein. In some embodiments, there are provided isotopologs of a compound described herein, for example, the isotopologs are deuterium, carbon-13, and/or nitrogen-15 enriched. As used herein, “deuterated” , means a compound wherein at least one hydrogen (H) has been replaced by deuterium (indicated by D or 2H) , that is, the compound is enriched in deuterium in at least one position.
It should be noted that if there is a discrepancy between a depicted structure and a name for that structure, the depicted structure is to be accorded more weight.
As used herein, and unless otherwise specified, the term “pharmaceutically acceptable carrier, diluent or excipient” includes without limitation any adjuvant, carrier, excipient, glidant, sweetening agent, diluent, preservative, dye/colorant, flavor enhancer, surfactant, wetting agent, dispersing agent, suspending agent, stabilizer, isotonic agent, solvent, or emulsifier which has  been approved by the United States Food and Drug Administration as being acceptable for use in humans or domestic animals.
The term “composition” is intended to encompass a product containing the specified ingredients (e.g., a mRNA molecule provided herein) in, optionally, the specified amounts.
The term “polynucleotide” or “nucleic acid, ” as used interchangeably herein, refers to polymers of nucleotides of any length and includes, e.g., DNA and RNA. The nucleotides can be deoxyribonucleotides, ribonucleotides, modified nucleotides or bases, and/or their analogs, or any substrate that can be incorporated into a polymer by DNA or RNA polymerase or by a synthetic reaction. A polynucleotide may comprise modified nucleotides, such as methylated nucleotides and their analogs. Nucleic acid can be in either single-or double-stranded forms. As used herein and unless otherwise specified, “nucleic acid” also includes nucleic acid mimics such as locked nucleic acids (LNAs) , peptide nucleic acids (PNAs) , and morpholinos. “Oligonucleotide, ” as used herein, refers to short synthetic polynucleotides that are generally, but not necessarily, fewer than about 200 nucleotides in length. The terms “oligonucleotide” and “polynucleotide” are not mutually exclusive. The description above for polynucleotides is equally and fully applicable to oligonucleotides. Unless specified otherwise, the left-hand end of any single-stranded polynucleotide sequence disclosed herein is the 5’ end; the left-hand direction of double-stranded polynucleotide sequences is referred to as the 5’ direction. The direction of 5’ to 3’ addition of nascent RNA transcripts is referred to as the transcription direction; sequence regions on the DNA strand having the same sequence as the RNA transcript that are 5’ to the 5’ end of the RNA transcript are referred to as “upstream sequences” ; sequence regions on the DNA strand having the same sequence as the RNA transcript that are 3’ to the 3’ end of the RNA transcript are referred to as “downstream sequences. ”
An “isolated nucleic acid” is a nucleic acid, for example, an RNA, DNA, or mixed nucleic acids, which is substantially separated from other genome DNA sequences as well as proteins or complexes such as ribosomes and polymerases, which naturally accompany a native sequence. An “isolated” nucleic acid molecule is one which is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid molecule. Moreover, an “isolated” nucleic acid molecule, such as an mRNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized. In a specific  embodiment, one or more nucleic acid molecules encoding an antigen as described herein are isolated or purified. The term embraces nucleic acid sequences that have been removed from their naturally occurring environment, and includes recombinant or cloned DNA or RNA isolates and chemically synthesized analogues or analogues biologically synthesized by heterologous systems. A substantially pure molecule may include isolated forms of the molecule.
The term “encoding nucleic acid” or grammatical equivalents thereof as it is used in reference to nucleic acid molecule encompasses (a) a nucleic acid molecule in its native state or when manipulated by methods well known to those skilled in the art that can be transcribed to produce mRNA which is then translated into a peptide and/or polypeptide, and (b) the mRNA molecule itself. The antisense strand is the complement of such a nucleic acid molecule, and the encoding sequence can be deduced therefrom. The term “coding region” refers to a portion in an encoding nucleic acid sequence that is translated into a peptide or polypeptide. The term “untranslated region” or “UTR” refers to the portion of an encoding nucleic acid that is not translated into a peptide or polypeptide. Depending on the orientation of a UTR with respect to the coding region of a nucleic acid molecule, a UTR is referred to as the 5’ -UTR if located to the 5’-end of a coding region, and a UTR is referred to as the 3’ -UTR if located to the 3’ -end of a coding region.
The term “mRNA” as used herein refers to a message RNA molecule comprising one or more open reading frame (ORF) that can be translated by a cell or an organism provided with the mRNA to produce one or more peptide or protein product. The region containing the one or more ORFs is referred to as the coding region of the mRNA molecule. In certain embodiments, the mRNA molecule further comprises one or more untranslated regions (UTRs) .
In certain embodiments, the mRNA is a monocistronic mRNA that comprises only one ORF. In certain embodiments, the monocistronic mRNA encodes a peptide or protein comprising at least one epitope of a selected antigen (e.g., a pathogenic antigen or a tumor associated antigen) . In other embodiments, the mRNA is a multicistronic mRNA that comprises two or more ORFs. In certain embodiments, the multiecistronic mRNA encodes two or more peptides or proteins that can be the same or different from each other. In certain embodiments, each peptide or protein encoded by a multicistronic mRNA comprises at least one epitope of a selected antigen. In certain embodiments, different peptide or protein encoded by a multicistronic mRNA each comprises at least one epitope of different antigens. In any of the  embodiments described herein, the at least one epitope can be at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, or at least 10 epitopes of an antigen.
The term “nucleobases” encompasses purines and pyrimidines, including natural compounds adenine, thymine, guanine, cytosine, uracil, inosine, and natural or synthetic analogs or derivatives thereof.
The term “functional nucleotide analog” as used herein refers to a modified version of a canonical nucleotide A, G, C, U or T that (a) retains the base-pairing properties of the corresponding canonical nucleotide, and (b) contains at least one chemical modification to (i) the nucleobase, (ii) the sugar group, (iii) the phosphate group, or (iv) any combinations of (i) to (iii) , of the corresponding natural nucleotide. As used herein, base pairing encompasses not only the canonical Watson-Crick adenine-thymine, adenine-uracil, or guanine-cytosine base pairs, but also base pairs formed between canonical nucleotides and functional nucleotide analogs or between a pair of functional nucleotide analogs, wherein the arrangement of hydrogen bond donors and hydrogen bond acceptors permits hydrogen bonding between a modified nucleobase and a canonical nucleobase or between two complementary modified nucleobase structures. For example, a functional analog of guanosine (G) retains the ability to base-pair with cytosine (C) or a functional analog of cytosine. One example of such non-canonical base pairing is the base pairing between the modified nucleotide inosine and adenine, cytosine, or uracil. As described herein, a functional nucleotide analog can be either naturally occurring or non-naturally occurring. Accordingly, a nucleic acid molecule containing a functional nucleotide analog can have at least one modified nucleobase, sugar group and/or internucleoside linkage. Exemplary chemical modifications to the nucleobases, sugar groups, or internucleoside linkages of a nucleic acid molecule are provided herein.
The terms “translational enhancer element, ” “TEE” and “translational enhancers” as used herein refers to an region in a nucleic acid molecule that functions to promotes translation of a coding sequence of the nucleic acid into a protein or peptide product, such as via cap-dependent or cap-independent translation. A TEE typically locates in the UTR region of a nucleic acid molecule (e.g., mRNA) and enhance the translational level of a coding sequence located either upstream or downstream. For example, a TEE in a 5’ -UTR of a nucleic acid molecule can locate between the promoter and the starting codon of the nucleic acid molecule. Various TEE sequences are known in the art (Wellensiek et al. Genome-wide profiling of human  cap-independent translation-enhancing elements, Nature Methods, 2013 Aug; 10 (8) : 747–750; Chappell et al. PNAS June 29, 2004 101 (26) 9590-9594) . Some TEEs are known to be conserved across multiple species (Pánek et al. Nucleic Acids Research, Volume 41,  Issue  16, 1 September 2013, Pages 7625–7634) .
As used herein, the term “stem-loop sequence” refers to a single-stranded polynucleotide sequence having at least two regions that are complementary or substantially complementary to each other when read in opposite directions, and thus capable of base-pairing with each other to form at least one double helix and an unpaired loop. The resulting structure is known as a stem-loop structure, a hairpin, or a hairpin loop, which is a secondary structure found in many RNA molecules.
The term “peptide” as used herein refers to a polymer containing between two and fifty (2-50) amino acid residues linked by one or more covalent peptide bond (s) . The terms apply to naturally occurring amino acid polymers as well as amino acid polymers in which one or more amino acid residues is a non-naturally occurring amino acid (e.g., an amino acid analog or non-natural amino acid) .
The terms “polypeptide” and “protein” are used interchangeably herein to refer to a polymer of amino acid residues linked by covalent peptide bonds. That is, a description directed to a polypeptide applies equally to a description of a protein, and vice versa. The terms apply to naturally occurring amino acid polymers as well as amino acid polymers in which one or more amino acid residues is a non-naturally occurring amino acid (e.g., an amino acid analog) . As used herein, the terms encompass amino acid chains of any length, including full length proteins (e.g., antigens) .
In the context of a peptide or polypeptide, the term “derivative” as used herein refers to a starting peptide or polypeptide that comprises an amino acid sequence of the starting peptide or protein, or a fragment of a starting peptide or protein, which has been altered by the introduction of amino acid residue substitutions, deletions, or additions. The term “derivative” as used herein also refers to a fragment of a starting peptide or protein, which has been chemically modified, e.g., by the covalent attachment of any type of molecule to the starting polypeptide. For example, but not by way of limitation, a starting peptide or protein or a fragment of the starting peptide or protein may be chemically modified, e.g., by glycosylation, acetylation, pegylation, phosphorylation, amidation, derivatization by known protecting/blocking  groups, proteolytic cleavage, chemical cleavage, formulation, metabolic synthesis of tunicamycin, linkage to a cellular ligand or other protein, etc. The derivatives are modified in a manner that is different from the starting peptide or polypeptides, either in the type or location of the molecules attached. Derivatives further include deletion of one or more chemical groups which are naturally present on the starting peptide or protein. Further, a derivative of a starting peptide or protein or a fragment of a starting peptide or protein may contain one or more non-classical amino acids. In specific embodiments, a derivative is a functional derivative of the native or unmodified starting peptide or polypeptide from which it was derived. In some embodiments, the starting peptide or polypeptide is naturally occurring.
The term “functional derivative” refers to a derivative that retains one or more functions or activities of the starting peptide or polypeptide from which it was derived. In some embodiments, the starting peptide or polypeptide is naturally occurring. For example, a functional derivative of an IL-12A protein may retain the ability of associating with IL-12B and/or interacting with an IL-12 receptor to activate IL-12 signaling pathway. A functional derivative of an IL-12B protein may retain the ability of associating with IL-12A and/or interacting with an IL-12 receptor to activate IL-12 signaling pathway. A functional derivative of an IL-15 polypeptide may retain the ability of interaction with an IL-15 receptor and/or activating an IL-15 signaling pathway. A functional derivative of an IL-15 receptor polypeptide may retain the ability of interaction with an IL-15 polypeptide and/or activating an IL-15 signaling pathway. Whether a derivative of a peptide or polypeptide retains a desirable function or activity of the original peptide or polypeptide can be determined by conducting in vitro or in vivo assays to assess whether such function or activity of the original peptide or polypeptide is affected by the modifications in its derivative. Assays and methods for assessing whether a derivative of an IL-12 polypeptide (e.g., IL-12A or IL-12B) , an IL-15 polypeptide, or an IL-15 receptor polypeptide retains function or activity of the original polypeptide are known in the art, including but not limited to those described in the Example section of this application.
The term “identity” refers to a relationship between the sequences of two or more polypeptide molecules or two or more nucleic acid molecules, as determined by aligning and comparing the sequences. “Percent (%) amino acid sequence identity” with respect to a reference polypeptide sequence is defined as the percentage of amino acid residues in a candidate sequence that are identical with the amino acid residues in the reference polypeptide sequence,  after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. Alignment for purposes of determining percent amino acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN, or MEGALIGN (DNAStar, Inc. ) software. Those skilled in the art can determine appropriate parameters for aligning sequences, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared.
A “modification” of an amino acid residue/position refers to a change of a primary amino acid sequence as compared to a starting amino acid sequence, wherein the change results from a sequence alteration involving said amino acid residue/position. For example, typical modifications include substitution of the residue with another amino acid (e.g., a conservative or non-conservative substitution) , insertion of one or more (e.g., generally fewer than 5, 4, or 3) amino acids adjacent to said residue/position, and/or deletion of said residue/position.
In the context of a peptide or polypeptide, the term “fragment” as used herein refers to a peptide or polypeptide that comprises less than the full-length amino acid sequence. Such a fragment may arise, for example, from a truncation at the amino terminus, a truncation at the carboxy terminus, and/or an internal deletion of a residue (s) from the amino acid sequence. Fragments may, for example, result from alternative RNA splicing or from in vivo protease activity. In certain embodiments, fragments refers to polypeptides comprising an amino acid sequence of at least 5 contiguous amino acid residues, at least 10 contiguous amino acid residues, at least 15 contiguous amino acid residues, at least 20 contiguous amino acid residues, at least 25 contiguous amino acid residues, at least 30 contiguous amino acid residues, at least 40 contiguous amino acid residues, at least 50 contiguous amino acid residues, at least 60 contiguous amino residues, at least 70 contiguous amino acid residues, at least 80 contiguous amino acid residues, at least 90 contiguous amino acid residues, at least contiguous 100 amino acid residues, at least 125 contiguous amino acid residues, at least 150 contiguous amino acid residues, at least 175 contiguous amino acid residues, at least 200 contiguous amino acid residues, at least 250, at least 300, at least 350, at least 400, at least 450, at least 500, at least 550, at least 600, at least 650, at least 700, at least 750, at least 800, at least 850, at least 900, or at least 950 contiguous amino acid residues of the amino acid sequence of a polypeptide. In a  specific embodiment, a fragment of a polypeptide retains at least 1, at least 2, at least 3, or more functions of the polypeptide.
The terms “interleukin-12, ” “IL12” or “IL-12” are used exchangeable herein to refer to the heterodimeric cytokine encoded by genes IL-12A and IL-12B. IL-12 consists of two subunits, which are connected by disulphide-bonds (Kobayashi et al. J Exp Med. 1989 Sep 1; 170 (3) : 827-45; Stern et al. Proc Natl Acad Sci U S A. 1990 Sep; 87 (17) : 6808-12. ) . In human, the smaller p35 monomer (35 kDa α-chain referred to herein as ‘IL-12A’ ) is encoded on chromosome 3, whLle the gene for the larger p40 monomer (40 kDa β-chain referred to herein as ‘IL-12B’ ) is located on chromosome 5 (Sieburth et al., Genomics. 1992 Sep; 14 (1) : 59-62) . Co-expression results in the formation of the biologically active p70 heterodimer (Gubler et al. Proc Natl Acad Sci U S A. 1991 May 15; 88 (10) : 4143-7) . GenBank Accession Number NM_000882.4 contains an exemplary amino acid sequence for human IL-12 subunit alpha isoform 1 precursor:
MWPPGSASQPPPSPAAATGLHPAARPVSLQCRLSMCPARSLLLVATLVLLDHLSLARNLPVATPDPGMFPCLHHSQNLLRAVSNMLQKARQTLEFYPCTSEEIDHEDITKDKTSTVEACLPLELTKNESCLNSRETSFITNGSCLASRKTSFMMALCLSSIYEDLKMYQVEFKTMNAKLLMDPKRQIFLDQNMLAVIDELMQALNFNSETVPQKSSLEEPDFYKTKIKLCILLHAFRIRAVTIDRVMSYLNAS (SEQ ID NO: 1) ; and GenBank Accession Number NP_002178.2 contains an exemplary amino acid sequence for human IL-12 subunit beta precursor:
Figure PCTCN2022123722-appb-000001
The terms “interleukin-15, ” “IL15” or “IL-15” are used exchangeable herein to refer to the cytokine encoded by gene IL-15. In human, IL-15 is a 14-15 kDa glycoprotein encoded by the 34 kb region on chromosome 4q31 (Waldmann and Tagya; Annu Rev Immunol. 1999; 17: 19-49.) GenBank Accession Number NP_751915.1 contains an exemplary amino acid sequence for human IL-15:
Figure PCTCN2022123722-appb-000002
Figure PCTCN2022123722-appb-000003
Without being bound by the theory, it is contemplated that IL-15 is a pleiotropic cytokine that plays important roles in both innate and adaptive immunity. IL-15 functions through the trimeric IL-15 receptor (IL-15R) complex, which consists of a high affinity binding α-chain (IL-15Rα) and the common IL-2R β-and γ-chains.
The term “vector” refers to a substance that is used to carry or include a nucleic acid sequence, including for example, a nucleic acid sequence encoding a peptide or protein as described herein, in order to introduce a nucleic acid sequence into a host cell, or serve as a transcription template to carry out in vitro transcription reaction in a cell-free system to produce mRNA. Vectors applicable for use include, for example, expression vectors, plasmids, phage vectors, viral vectors, episomes, and artificial chromosomes, which can include selection sequences or markers operable for stable integration into a host cell’s chromosome. Additionally, the vectors can include one or more selectable marker genes and appropriate transcription or translation control sequences. Selectable marker genes that can be included, for example, provide resistance to antibiotics or toxins, complement auxotrophic deficiencies, or supply critical nutrients not in the culture media. Transcription or translation control sequences can include constitutive and inducible promoters, transcription enhancers, transcription terminators, and the like, which are well known in the art. When two or more nucleic acid molecules are to be co-transcribed or co-translated (e.g., nucleic acid molecules encoding two or more different cytokine peptides or proteins) , both nucleic acid molecules can be inserted, for example, into a single expression vector or in separate expression vectors. For single vector transcription and/or translation, the encoding nucleic acids can be operationally linked to one common transcription or translation control sequence or linked to different transcription or translation control sequences, such as one inducible promoter and one constitutive promoter. The introduction of nucleic acid molecules into a host cell can be confirmed using methods well known in the art. Such methods include, for example, nucleic acid analysis such as Northern blots or polymerase chain reaction (PCR) amplification of mRNA, immunoblotting for expression of gene products, or other suitable analytical methods to test the expression of an introduced nucleic acid sequence or its corresponding gene product. It is understood by those skilled in the art that the nucleic acid molecules are expressed in a sufficient amount to produce a  desired product (e.g., a mRNA transcript of the nucleic acid as described herein) , and it is further understood that expression levels can be optimized to obtain sufficient expression using methods well known in the art.
The term “antibody” is intended to include a polypeptide product of B cells within the immunoglobulin class of polypeptides that is able to bind to a specific molecular antigen and is composed of two identical pairs of polypeptide chains, wherein each pair has one heavy chain (about 50-70 kDa) and one light chain (about 25 kDa) , each amino-terminal portion of each chain includes a variable region of about 100 to about 130 or more amino acids, and each carboxy-terminal portion of each chain includes a constant region. See, e.g., Antibody Engineering (Borrebaeck ed., 2d ed. 1995) ; and Kuby, Immunology (3d ed. 1997) . In specific embodiments, the specific molecular antigen can be bound by an antibody provided herein, including a polypeptide, a fragment or an epitope thereof. Antibodies also include, but are not limited to, synthetic antibodies, recombinantly produced antibodies, camelized antibodies, intrabodies, anti-idiotypic (anti-Id) antibodies, and functional fragments of any of the above, which refers to a portion of an antibody heavy or light chain polypeptide that retains some or all of the binding activity of the antibody from which the fragment was derived. Non-limiting examples of functional fragments include single-chain Fvs (scFv) (e.g., including monospecific, bispecific, etc. ) , Fab fragments, F (ab’ ) fragments, F (ab)  2 fragments, F (ab’ )  2 fragments, disulfide-linked Fvs (dsFv) , Fd fragments, Fv fragments, diabody, triabody, tetrabody, and minibody. In particular, antibodies provided herein include immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, for example, antigen-binding domains or molecules that contain an antigen-binding site (e.g., one or more CDRs of an antibody) . Such antibody fragments can be found in, for example, Harlow and Lane, Antibodies: A Laboratory Manual (1989) ; Mol. Biology and Biotechnology: A Comprehensive Desk Reference (Myers ed., 1995) ; Huston et al., 1993, Cell Biophysics 22: 189-224; Plückthun and Skerra, 1989, Meth. Enzymol. 178: 497-515; and Day, Advanced Immunochemistry (2d ed. 1990) . The antibodies provided herein can be of any class (e.g., IgG, IgE, IgM, IgD, and IgA) or any subclass (e.g., IgG1, IgG2, IgG3, IgG4, IgA1, and IgA2) of immunoglobulin molecule.
The term “administer” or “administration” refers to the act of injecting or otherwise physically delivering a substance as it exists outside the body (e.g., a lipid nanoparticle composition as described herein) into a patient, such as by mucosal, intradermal, intravenous,  intramuscular delivery, and/or any other method of physical delivery described herein or known in the art. When a disease, disorder, condition, or a symptom thereof, is being treated, administration of the substance typically occurs after the onset of the disease, disorder, condition, or symptoms thereof. When a disease, disorder, condition, or symptoms thereof, are being prevented, administration of the substance typically occurs before the onset of the disease, disorder, condition, or symptoms thereof.
“Chronic” administration refers to administration of the agent (s) in a continuous mode (e.g., for a period of time such as days, weeks, months, or years) as opposed to an acute mode, so as to maintain the initial therapeutic effect (activity) for an extended period of time. “Intermittent” administration is treatment that is not consecutively done without interruption, but rather is cyclic in nature.
The term “targeted delivery” or the verb form “target” as used herein refers to the process that promotes the arrival of a delivered agent (such as a therapeutic payload molecule in a lipid nanoparticle composition as described herein) at a specific organ, tissue, cell and/or intracellular compartment (referred to as the targeted location) more than any other organ, tissue, cell or intracellular compartment (referred to as the non-target location) . Targeted delivery can be detected using methods known in the art, for example, by comparing the concentration of the delivered agent in a targeted cell population with the concentration of the delivered agent at a non-target cell population after systemic administration. In certain embodiments, targeted delivery results in at least 2 fold higher concentration at a targeted location as compared to a non-target location.
An “effective amount” is generally an amount sufficient to reduce the severity and/or frequency of symptoms, eliminate the symptoms and/or underlying cause, prevent the occurrence of symptoms and/or their underlying cause, and/or improve or remediate the damage that results from or is associated with a disease, disorder, or condition, including, for example, infection and neoplasia. In some embodiments, the effective amount is a therapeutically effective amount or a prophylactically effective amount.
The term “therapeutically effective amount” as used herein refers to the amount of an agent (e.g., a lipid nanoparticle composition as described herein) that is sufficient to reduce and/or ameliorate the severity and/or duration of a given disease, disorder, or condition, and/or a symptom related thereto (e.g., an infectious disease such as caused by viral infection, or a  neoplastic disease such as cancer) . A “therapeutically effective amount” of a substance/molecule/agent of the present disclosure (e.g., the lipid nanoparticle composition as described herein) may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of the substance/molecule/agent to elicit a desired response in the individual. A therapeutically effective amount encompasses an amount in which any toxic or detrimental effects of the substance/molecule/agent are outweighed by the therapeutically beneficial effects. In certain embodiments, the term “therapeutically effective amount” refers to an amount of a lipid nanoparticle composition as described herein or a therapeutic or prophylactic agent contained therein (e.g., a therapeutic mRNA) effective to treat a disease, disorder, or condition, in a subject or mammal.
A “prophylactically effective amount” is an amount of a pharmaceutical composition that, when administered to a subject, will have the intended prophylactic effect, e.g., preventing, delaying, or reducing the likelihood of the onset (or reoccurrence) of a disease, disorder, condition, or associated symptom (s) (e.g., an infectious disease such as caused by viral infection, or a neoplastic disease such as cancer) . Typically, but not necessarily, since a prophylactic dose is used in subjects prior to or at an earlier stage of a disease, disorder, or condition, a prophylactically effective amount may be less than a therapeutically effective amount. The full therapeutic or prophylactic effect does not necessarily occur by administration of one dose, and may occur only after administration of a series of doses. Thus, a therapeutically or prophylactically effective amount may be administered in one or more administrations.
The terms “treat, ” “treating, ” and “treatment” refer to an alleviation, in whole or in part, of a disorder, disease or condition, or one or more of the symptoms associated with a disorder, disease, or condition, or slowing or halting of further progression or worsening of those symptoms, or alleviating or eradicating the cause (s) of the disorder, disease, or condition itself.
The terms “manage, ” “managing, ” and “management” refer to the beneficial effects that a subject derives from a therapy (e.g., a prophylactic or therapeutic agent) , which does not result in a cure of the disease. In certain embodiments, a subject is administered one or more therapies (e.g., prophylactic or therapeutic agents, such as a lipid nanoparticle composition as described herein) to “manage” an infectious or neoplastic disease, one or more symptoms thereof, so as to prevent the progression or worsening of the disease.
The terms “prevent, ” “preventing, ” and “prevention” refer to reducing the likelihood of the onset (or recurrence) of a disease, disorder, condition, or associated symptom (s) .
The term “prophylactic agent” refers to any agent that can totally or partially inhibit the development, recurrence, onset, or spread of disease and/or symptom related thereto in a subject.
The term “therapeutic agent” refers to any agent that can be used in treating, preventing, or alleviating a disease, disorder, or condition, including in the treatment, prevention, or alleviation of one or more symptoms of a disease, disorder, or condition and/or a symptom related thereto.
The term “therapy” refers to any protocol, method, and/or agent that can be used in the prevention, management, treatment, and/or amelioration of a disease, disorder, or condition. In certain embodiments, the terms “therapies” and “therapy” refer to a biological therapy, supportive therapy, and/or other therapies useful in the prevention, management, treatment, and/or amelioration of a disease, disorder, or condition, known to one of skill in the art such as medical personnel.
The term “side effects” encompasses unwanted and/or adverse effects of a therapy (e.g., a prophylactic or therapeutic agent) . Unwanted effects are not necessarily adverse. An adverse effect from a therapy (e.g., a prophylactic or therapeutic agent) might be harmful, uncomfortable, or risky. Examples of side effects include, diarrhea, cough, gastroenteritis, wheezing, nausea, vomiting, anorexia, abdominal cramping, fever, pain, loss of body weight, dehydration, alopecia, dyspenea, insomnia, dizziness, mucositis, nerve and muscle effects, fatigue, dry mouth, loss of appetite, rashes or swellings at the site of administration, flu-like symptoms such as fever, chills, and fatigue, digestive tract problems, and allergic reactions. Additional undesired effects experienced by patients are numerous and known in the art. Many are described in Physician’s Desk Reference (68th ed. 2014) .
The terms “subject” and “patient” may be used interchangeably. As used herein, in certain embodiments, a subject is a mammal, such as a non-primate (e.g., cow, pig, horse, cat, dog, rat, etc. ) or a primate (e.g., monkey and human) . In specific embodiments, the subject is a human. In one embodiment, the subject is a mammal (e.g., a human) having an infectious disease or neoplastic disease. In another embodiment, the subject is a mammal (e.g., a human) at risk of developing an infectious disease or neoplastic disease.
The term “elderly human” refers to a human 65 years or older. The term “human adult” refers to a human that is 18 years or older. The term “human child” refers to a human that is 1 year to 18 years old. The term “human toddler” refers to a human that is 1 year to 3 years old. The term “human infant” refers to a newborn to 1 year old year human.
The term “detectable probe” refers to a composition that provides a detectable signal. The term includes, without limitation, any fluorophore, chromophore, radiolabel, enzyme, antibody or antibody fragment, and the like, that provide a detectable signal via its activity.
The term “detectable agent” refers to a substance that can be used to ascertain the existence or presence of a desired molecule, such as an antigen encoded by an mRNA molecule as described herein, in a sample or subject. A detectable agent can be a substance that is capable of being visualized or a substance that is otherwise able to be determined and/or measured (e.g., by quantitation) .
“Substantially all” refers to at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 98%, at least about 99%, or about 100%.
As used herein, and unless otherwise indicated, the term “about” or “approximately” means an acceptable error for a particular value as determined by one of ordinary skill in the art, which depends in part on how the value is measured or determined. In certain embodiments, the term “about” or “approximately” means within 1, 2, 3, or 4 standard deviations. In certain embodiments, the term “about” or “approximately” means within 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.05%, or less of a given value or range. As used herein, when “about” is used in connection with a numerical range, the term “about” is meant to apply to both ends of such range modified by the term “about” (e.g., “about 5 to 10” means “about 5 to about 10”) .
The singular terms “a, ” “an, ” and “the” as used herein include the plural reference unless the context clearly indicates otherwise.
All publications, patent applications, accession numbers, and other references cited in this specification are herein incorporated by reference in their entirety as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference. The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that  the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided can be different from the actual publication dates which can need to be independently confirmed.
A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, the descriptions in the Experimental section and examples are intended to illustrate but not limit the scope of invention described in the claims.
5.3 Therapeutic Nucleic Acids
In one aspect, provided herein are therapeutic nucleic acid molecules for the management, prevention and treatment of breast cancer, melanoma or colon cancer. In some embodiments, the therapeutic nucleic acid encodes a peptide or polypeptide, which upon administration into a subject in need thereof, is expressed by the cells in the subject to produce the encoded peptide or polypeptide. In some embodiments, the therapeutic nucleic acid molecules are DNA molecules. In other embodiments, the therapeutic nucleic acid molecules are RNA molecules. In particular embodiments, the therapeutic nucleic acid molecules are mRNA molecules.
In some embodiments, the mRNA molecule of the present disclosure encodes a peptide or polypeptide of interest, including any naturally occurring polypeptide or functional derivative thereof. A peptide or polypeptide encoded by an mRNA may be of any size and may have any secondary structure or activity. In some embodiments, the polypeptide encoded by an mRNA payload can have a therapeutic effect when expressed in a cell.
In some embodiment, the mRNA molecule of the present disclosure comprises at least one coding region encoding a peptide or polypeptide of interest (e.g., an open reading frame (ORF) ) . In some embodiments, the nucleic acid molecule further comprises at least one untranslated region (UTR) . In particular embodiments, the untranslated region (UTR) is located upstream (to the 5’ -end) of the coding region, and is referred to herein as the 5’ -UTR. In particular embodiments, the untranslated region (UTR) is located downstream (to the 3’ -end) of the coding region, and is referred to herein as the 3’ -UTR. In particular embodiments, the nucleic acid molecule comprises both a 5’ -UTR and a 3’ -UTR. In some embodiments, the 5’ -UTR comprises a 5’ -Cap structure. In some embodiments, the nucleic acid molecule comprises a  Kozak sequence (e.g., in the 5’ -UTR) . In some embodiments, the nucleic acid molecule comprises a poly-A region (e.g., in the 3’ -UTR) . In some embodiments, the nucleic acid molecule comprises a polyadenylation signal (e.g., in the 3’ -UTR) . In some embodiments, the nucleic acid molecule comprises stabilizing region (e.g., in the 3’ -UTR) . In some embodiments, the nucleic acid molecule comprises a secondary structure. In some embodiments, the secondary structure is a stem-loop. In some embodiments, the nucleic acid molecule comprises a stem-loop sequence (e.g., in the 5’ -UTR and/or the 3’ -UTR) . In some embodiments, the nucleic acid molecule comprises one or more intronic regions capable of being excised during splicing. In a specific embodiment, the nucleic acid molecule comprises one or more region selected from a 5’ -UTR, and a coding region. In a specific embodiment, the nucleic acid molecule comprises one or more region selected from a coding region and a 3’ -UTR. In a specific embodiment, the nucleic acid molecule comprises one or more region selected from a 5’ -UTR, a coding region, and a 3’ -UTR.
5.3.1 Coding Region
In some embodiments, the nucleic acid molecule of the present disclosure comprises at least one coding region. In some embodiments, the coding region is an open reading frame (ORF) that encodes for a single peptide or protein. In some embodiments, the coding region comprises at least two ORFs, each encoding a peptide or protein. In those embodiments where the coding region comprises more than one ORFs, the encoded peptides and/or proteins can be the same as or different from each other. In some embodiments, the multiple ORFs in a coding region are separated by non-coding sequences. In specific embodiments, a non-coding sequence separating two ORFs comprises an internal ribosome entry sites (IRES) .
Without being bound by the theory, it is contemplated that an internal ribosome entry sites (IRES) can act as the sole ribosome binding site, or serve as one of multiple ribosome binding sites of an mRNA. An mRNA molecule containing more than one functional ribosome binding site can encode several peptides or proteins that are translated independently by the ribosomes (e.g., multicistronic mRNA) . Accordingly, in some embodiments, the nucleic acid molecule of the present disclosure (e.g., mRNA) comprises one or more internal ribosome entry sites (IRES) . Examples of IRES sequences that can be used in connection with the present disclosure include, without limitation, those from picomaviruses (e.g., FMDV) , pest viruses (CFFV) , polio viruses (PV) , encephalomyocarditis viruses (ECMV) , foot-and-mouth disease  viruses (FMDV) , hepatitis C viruses (HCV) , classical swine fever viruses (CSFV) , murine leukemia virus (MLV) , simian immune deficiency viruses (SIV) or cricket paralysis viruses (CrPV) .
In various embodiments, the nucleic acid molecule of the present disclosure encodes for at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more than 10 peptides or proteins. Peptides and proteins encoded by a nucleic acid molecule can be the same or different. In some embodiments, the nucleic acid molecule of the present disclosure encodes a dipeptide (e.g., camosine and anserine) . In some embodiments, the nucleic acid molecule encodes a tripeptide. In some embodiments, the nucleic acid molecule encodes a tetrapeptide. In some embodiments, the nucleic acid molecule encodes a pentapeptide. In some embodiments, the nucleic acid molecule encodes a hexapeptide. In some embodiments, the nucleic acid molecule encodes a heptapeptide. In some embodiments, the nucleic acid molecule encodes an octapeptide. In some embodiments, the nucleic acid molecule encodes a nonapeptide. In some embodiments, the nucleic acid molecule encodes a decapeptide. In some embodiments, the nucleic acid molecule encodes a peptide or polypeptide that has at least about 15 amino acids. In some embodiments, the nucleic acid molecule encodes a peptide or polypeptide that has at least about 50 amino acids. In some embodiments, the nucleic acid molecule encodes a peptide or polypeptide that has at least about 100 amino acids. In some embodiments, the nucleic acid molecule encodes a peptide or polypeptide that has at least about 150 amino acids. In some embodiments, the nucleic acid molecule encodes a peptide or polypeptide that has at least about 300 amino acids. In some embodiments, the nucleic acid molecule encodes a peptide or polypeptide that has at least about 500 amino acids. In some embodiments, the nucleic acid molecule encodes a peptide or polypeptide that has at least about 1000 amino acids.
In some embodiments, the nucleic acid molecule of the present disclosure is at least about 30 nucleotides (nt) in length. In some embodiments, the nucleic acid molecule is at least about 35 nt in length. In some embodiments, the nucleic acid molecule is at least about 40 nt in length. In some embodiments, the nucleic acid molecule is at least about 45 nt in length. In some embodiments the nucleic acid molecule is at least about 50 nt in length. In some embodiments, the nucleic acid molecule is at least about 55 nt in length. In some embodiments, the nucleic acid molecule is at least about 60 nt in length. In some embodiments, the nucleic acid molecule is at least about 65 nt in length. In some embodiments, the nucleic acid molecule is at least about 70  nt in length. In some embodiments, the nucleic acid molecule is at least about 75 nt in length. In some embodiments, the nucleic acid molecule is at least about 80 nt in length. In some embodiments the nucleic acid molecule is at least about 85 nt in length. In some embodiments, the nucleic acid molecule is at least about 90 nt in length. In some embodiments, the nucleic acid molecule is at least about 95 nt in length. In some embodiments, the nucleic acid molecule is at least about 100 nt in length. In some embodiments, the nucleic acid molecule is at least about 120 nt in length. In some embodiments, the nucleic acid molecule is at least about 140 nt in length. In some embodiments, the nucleic acid molecule is at least about 160 nt in length. In some embodiments, the nucleic acid molecule is at least about 180 nt in length. In some embodiments, the nucleic acid molecule is at least about 200 nt in length. In some embodiments, the nucleic acid molecule is at least about 250 nt in length. In some embodiments, the nucleic acid molecule is at least about 300 nt in length. In some embodiments, the nucleic acid molecule is at least about 400 nt in length. In some embodiments, the nucleic acid molecule is at least about 500 nt in length. In some embodiments, the nucleic acid molecule is at least about 600 nt in length. In some embodiments, the nucleic acid molecule is at least about 700 nt in length. In some embodiments, the nucleic acid molecule is at least about 800 nt in length. In some embodiments, the nucleic acid molecule is at least about 900 nt in length. In some embodiments, the nucleic acid molecule is at least about 1000 nt in length. In some embodiments, the nucleic acid molecule is at least about 1100 nt in length. In some embodiments, the nucleic acid molecule is at least about 1200 nt in length. In some embodiments, the nucleic acid molecule is at least about 1300 nt in length. In some embodiments, the nucleic acid molecule is at least about 1400 nt in length. In some embodiments, the nucleic acid molecule is at least about 1500 nt in length. In some embodiments, the nucleic acid molecule is at least about 1600 nt in length. In some embodiments, the nucleic acid molecule is at least about 1700 nt in length. In some embodiments, the nucleic acid molecule is at least about 1800 nt in length. In some embodiments, the nucleic acid molecule is at least about 1900 nt in length. In some embodiments, the nucleic acid molecule is at least about 2000 nt in length. In some embodiments, the nucleic acid molecule is at least about 2500 nt in length. In some embodiments, the nucleic acid molecule is at least about 3000 nt in length. In some embodiments, the nucleic acid molecule is at least about 3500 nt in length. In some embodiments, the nucleic acid molecule is at least about 4000 nt in length. In some  embodiments, the nucleic acid molecule is at least about 4500 nt in length. In some embodiments, the nucleic acid molecule is at least about 5000 nt in length.
In specific embodiments, the therapeutic nucleic acid of the present disclosure encodes a peptide or protein comprising interleukin-12 (IL-12) or a functional derivative thereof. In specific embodiments, the therapeutic nucleic acid of the present disclosure encodes a peptide or protein comprising a human IL-12 (hIL-12) or a functional derivative thereof. In specific embodiments, the therapeutic nucleic acid of the present disclosure encodes a peptide or protein comprising a mouse IL-12 (mIL-12) or a functional derivative thereof.
In some embodiments, the therapeutic nucleic acid of the present disclosure encodes a single polypeptide comprising IL-12A or a functional derivative thereof. In some embodiments, the therapeutic nucleic acid of the present disclosure encodes a single polypeptide comprising IL-12B or a function fragment or variant thereof. In some embodiments, the therapeutic nucleic acid of the present disclosure comprises at least two ORFs, the first ORF encoding an IL-12A polypeptide or a functional derivative thereof, and the second ORF encoding an IL-12B polypeptide or a functional derivative thereof. In some embodiments, the therapeutic nucleic acid of the present disclosure encodes a single polypeptide comprising IL-12A or a functional derivative thereof fused to IL-12B or a functional derivative thereof. In some embodiments, the therapeutic nucleic acid of the present disclosure encodes a single polypeptide comprising the IL-12A or a functional derivative thereof and IL-12B or a functional derivative thereof fused directly or by a linker. In some embodiments, the therapeutic nucleic acid of the present disclosure comprises at least two nucleic acid molecules, the first nucleic acid molecule encoding IL-12A or a functional derivative thereof, and the second nucleic acid molecule encoding IL-12B or a functional derivative thereof.
In specific embodiments, the therapeutic nucleic acid of the present disclosure encodes a peptide or protein comprising interleukin-15 (IL-15) or a functional derivative thereof. In specific embodiments, the therapeutic nucleic acid of the present disclosure encodes a peptide or protein comprising a human IL-15 (hIL-15) or a functional derivative thereof. In specific embodiments, the therapeutic nucleic acid of the present disclosure encodes a peptide or protein comprising a mouse IL-15 (mIL-15) or a functional derivative thereof.
In some embodiments, the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising IL-15 or functional derivative thereof that is fused to an IL-15 receptor  (IL-15R) polypeptide or functional derivative thereof. In specific embodiments, the IL-15R polypeptide is IL-15R α subunit (IL-15Rα) . In specific embodiments, the IL-15R polypeptide is the Sushi domain of IL-15Rα. In specific embodiments, the fusion between IL-15 or functional derivative thereof and IL-15R polypeptide or functional derivative can be either direct or via a peptidic linker.
Table 1 shows exemplary IL-12 and IL-15 sequences that can be encoded by the nucleic acid molecules of the present disclosure.
Table 1 Exemplary hIL-12 and hIL-15 sequences.
Figure PCTCN2022123722-appb-000004
Figure PCTCN2022123722-appb-000005
Figure PCTCN2022123722-appb-000006
Figure PCTCN2022123722-appb-000007
Figure PCTCN2022123722-appb-000008
Figure PCTCN2022123722-appb-000009
Figure PCTCN2022123722-appb-000010
Figure PCTCN2022123722-appb-000011
In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-12A or a functional derivative thereof. In some embodiments, the encoded polypeptide comprises an amino acid sequence of SEQ ID NO: 4. In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-12A or a functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 5. In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-12A or a functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 5. In particular embodiments, the nucleic acid molecule is an mRNA molecule. In some embodiments, the encoded polypeptide comprises a functional derivative of hIL-12A having an amino acid sequence that has at least about 85%sequence identity with SEQ ID NO: 4. In some embodiments, the encoded polypeptide comprises a functional derivative of hIL-12A having an amino acid sequence that has at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity with SEQ ID NO: 4.
In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-12A or a functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 77. In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-12A or a functional derivative thereof, and wherein the therapeutic nucleic acid  comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 77. In particular embodiments, the nucleic acid molecule is an mRNA molecule.
In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-12A or a functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 78. In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-12A or a functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 78. In particular embodiments, the nucleic acid molecule is an mRNA molecule.
In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-12A or a functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 79. In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-12A or a functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 79. In particular embodiments, the nucleic acid molecule is an mRNA molecule.
In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-12B or a functional derivative thereof. In some embodiments, the encoded polypeptide comprises an amino acid sequence of SEQ ID NO: 6. In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-12B or a functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 7. In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-12B or a functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 7. In particular embodiments, the nucleic acid molecule is an mRNA molecule. In particular embodiments, the nucleic acid molecule is an mRNA molecule. In some embodiments, the encoded polypeptide comprises a functional derivative of hIL-12B having an amino acid sequence that has at least about 85%sequence identity with SEQ ID NO: 6. In some embodiments, the encoded polypeptide comprises a functional derivative of hIL-12B having an amino acid sequence that  has at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity with SEQ ID NO: 6.
In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-12B or a functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 80. In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-12B or a functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 80. In particular embodiments, the nucleic acid molecule is an mRNA molecule.
In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-12B or a functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 81. In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-12B or a functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 81. In particular embodiments, the nucleic acid molecule is an mRNA molecule.
In some embodiments, the therapeutic nucleic acid of the present disclosure comprises at least two ORFs, the first ORF encoding a polypeptide comprising hIL-12A or a functional derivative thereof, and the second ORF encoding a polypeptide comprising hIL-12B or a functional derivative thereof. In some embodiments, the first ORF encodes a polypeptide comprising the amino acid sequence of SEQ ID NO: 4. In some embodiments, the second ORF encodes a polypeptide comprising the amino acid sequence of SEQ ID NO: 6.
In particular embodiments, the therapeutic nucleic acid of the present disclosure comprises at least two ORFs, the first ORF encoding a polypeptide comprising a functional derivative of hIL-12A, and the second ORF encoding a polypeptide comprising a functional derivative of hIL-12B. In some embodiments, the first ORF encodes a polypeptide having an amino acid sequence that has at least about 85%sequence identity with SEQ ID NO: 4, and the second ORF encodes a polypeptide having an amino acid sequence that has at least about 85%sequence identity with SEQ ID NO: 6. In some embodiments, the first ORF encodes a polypeptide having an amino acid sequence that has at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity with SEQ ID NO: 4, and the second  ORF encodes a polypeptide having an amino acid sequence that has at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity with SEQ ID NO: 6.
In some embodiments, the therapeutic nucleic acid of the present disclosure comprises at least two ORFs, the first ORF encoding hIL-12A comprises the DNA coding sequence of SEQ ID NO: 5 or a transcribed RNA sequence thereof, and the second ORF encoding hIL-12B comprises the DNA coding sequence of SEQ ID NO: 7 or a transcribed RNA sequence thereof. In some embodiments, the therapeutic nucleic acid of the present disclosure comprises at least two ORFs, the first ORF encoding hIL-12A comprises the DNA coding sequence of SEQ ID NO: 5 or a transcribed RNA sequence thereof, and the second ORF encoding hIL-12B comprises the DNA coding sequence of SEQ ID NO: 80 or a transcribed RNA sequence thereof. In some embodiments, the therapeutic nucleic acid of the present disclosure comprises at least two ORFs, the first ORF encoding hIL-12A comprises the DNA coding sequence of SEQ ID NO: 5 or a transcribed RNA sequence thereof, and the second ORF encoding hIL-12B comprises the DNA coding sequence of SEQ ID NO: 81 or a transcribed RNA sequence thereof. In particular embodiments, the nucleic acid molecule is an mRNA molecule.
In some embodiments, the therapeutic nucleic acid of the present disclosure comprises at least two ORFs, the first ORF encoding hIL-12A comprises the DNA coding sequence of SEQ ID NO: 77 or a transcribed RNA sequence thereof, and the second ORF encoding hIL-12B comprises the DNA coding sequence of SEQ ID NO: 7 or a transcribed RNA sequence thereof. In some embodiments, the therapeutic nucleic acid of the present disclosure comprises at least two ORFs, the first ORF encoding hIL-12A comprises the DNA coding sequence of SEQ ID NO: 77 or a transcribed RNA sequence thereof, and the second ORF encoding hIL-12B comprises the DNA coding sequence of SEQ ID NO: 80 or a transcribed RNA sequence thereof. In some embodiments, the therapeutic nucleic acid of the present disclosure comprises at least two ORFs, the first ORF encoding hIL-12A comprises the DNA coding sequence of SEQ ID NO: 77 or a transcribed RNA sequence thereof, and the second ORF encoding hIL-12B comprises the DNA coding sequence of SEQ ID NO: 81 or a transcribed RNA sequence thereof. In particular embodiments, the nucleic acid molecule is an mRNA molecule.
In some embodiments, the therapeutic nucleic acid of the present disclosure comprises at least two ORFs, the first ORF encoding hIL-12A comprises the DNA coding sequence of SEQ ID NO: 78 or a transcribed RNA sequence thereof, and the second ORF  encoding hIL-12B comprises the DNA coding sequence of SEQ ID NO: 7 or a transcribed RNA sequence thereof. In some embodiments, the therapeutic nucleic acid of the present disclosure comprises at least two ORFs, the first ORF encoding hIL-12A comprises the DNA coding sequence of SEQ ID NO: 78 or a transcribed RNA sequence thereof, and the second ORF encoding hIL-12B comprises the DNA coding sequence of SEQ ID NO: 80 or a transcribed RNA sequence thereof. In some embodiments, the therapeutic nucleic acid of the present disclosure comprises at least two ORFs, the first ORF encoding hIL-12A comprises the DNA coding sequence of SEQ ID NO: 78 or a transcribed RNA sequence thereof, and the second ORF encoding hIL-12B comprises the DNA coding sequence of SEQ ID NO: 81 or a transcribed RNA sequence thereof. In particular embodiments, the nucleic acid molecule is an mRNA molecule.
In some embodiments, the therapeutic nucleic acid of the present disclosure comprises at least two ORFs, the first ORF encoding hIL-12A comprises the DNA coding sequence of SEQ ID NO: 79 or a transcribed RNA sequence thereof, and the second ORF encoding hIL-12B comprises the DNA coding sequence of SEQ ID NO: 7 or a transcribed RNA sequence thereof. In some embodiments, the therapeutic nucleic acid of the present disclosure comprises at least two ORFs, the first ORF encoding hIL-12A comprises the DNA coding sequence of SEQ ID NO: 79 or a transcribed RNA sequence thereof, and the second ORF encoding hIL-12B comprises the DNA coding sequence of SEQ ID NO: 80 or a transcribed RNA sequence thereof. In some embodiments, the therapeutic nucleic acid of the present disclosure comprises at least two ORFs, the first ORF encoding hIL-12A comprises the DNA coding sequence of SEQ ID NO: 79 or a transcribed RNA sequence thereof, and the second ORF encoding hIL-12B comprises the DNA coding sequence of SEQ ID NO: 81 or a transcribed RNA sequence thereof. In particular embodiments, the nucleic acid molecule is an mRNA molecule.
In some embodiments, the therapeutic nucleic acid of the present disclosure comprises at least two nucleic acid molecules, the first nucleic acid molecule encoding a polypeptide comprising hIL-12A or a functional derivative thereof, and the second nucleic acid molecule encoding a polypeptide comprising hIL-12B or a functional derivative thereof. In some embodiments, the first nucleic acid molecule encodes a polypeptide comprising the amino acid sequence of SEQ ID NO: 4, and the second nucleic acid molecule encodes a polypeptide comprising the amino acid sequence of SEQ ID NO: 6.
In some embodiments, the therapeutic nucleic acid of the present disclosure comprises at least two nucleic acid molecules, the first nucleic acid molecule encoding a polypeptide comprising a functional derivative of hIL-12A, and the second nucleic acid molecule encoding a polypeptide comprising a functional derivative of hIL-12B. In some embodiments, the first nucleic acid molecule encodes a polypeptide comprising an amino acid sequence having at least about 85%sequence identity with SEQ ID NO: 4, and the second nucleic acid molecule encodes a polypeptide comprising an amino acid sequence having at least about 85%sequence identity with SEQ ID NO: 6. In some embodiments, the first nucleic acid molecule encodes a polypeptide comprising an amino acid sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity with SEQ ID NO: 4, and the second nucleic acid molecule encodes a polypeptide comprising an amino acid sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity with SEQ ID NO: 6.
In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising mIL-12A or a functional derivative thereof. In some embodiments, the encoded polypeptide comprises an amino acid sequence of SEQ ID NO: 8. In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising mIL-12A or a functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 9. In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising mIL-12A or a functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 9. In particular embodiments, the nucleic acid molecule is an mRNA molecule. In particular embodiments, the encoded polypeptide comprises a functional derivative of mIL-12A having an amino acid sequence that has at least about 85%sequence identity with SEQ ID NO: 8. In some embodiments, the encoded polypeptide comprises a functional derivative of mIL-12A having an amino acid sequence that has at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity with SEQ ID NO: 8.
In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising mIL-12A or a functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 82. In particular  embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising mIL-12A or a functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 82. In particular embodiments, the nucleic acid molecule is an mRNA molecule.
In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising mIL-12B or a functional derivative thereof. In some embodiments, the encoded polypeptide comprises an amino acid sequence of SEQ ID NO: 10. In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising mIL-12B or a functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 11. In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising mIL-12B or a functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 11. In particular embodiments, the nucleic acid molecule is an mRNA molecule. In particular embodiments, the encoded polypeptide comprises a functional derivative of mIL-12B having an amino acid sequence that has at least about 85%sequence identity with SEQ ID NO: 10. In some embodiments, the encoded polypeptide comprises a functional derivative of mIL-12B having an amino acid sequence that has at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity with SEQ ID NO: 10.
In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising mIL-12B or a functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 83. In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising mIL-12B or a functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 83. In particular embodiments, the nucleic acid molecule is an mRNA molecule.
In some embodiments, the therapeutic nucleic acid of the present disclosure comprises at least two ORFs, the first ORF encoding a polypeptide comprising mIL-12A or a functional derivative thereof, and the second ORF encoding a polypeptide comprising mIL-12B or a functional derivative thereof. In some embodiments, the first ORF encodes a polypeptide  comprising the amino acid sequence of SEQ ID NO: 8. In some embodiments, the second ORF encodes a polypeptide comprising the amino acid sequence of SEQ ID NO: 10.
In particular embodiments, the therapeutic nucleic acid of the present disclosure comprises at least two ORFs, the first ORF encoding a polypeptide comprising a functional derivative of mIL-12A, and the second ORF encoding a polypeptide comprising a functional derivative of mIL-12B. In some embodiments, the first ORF encodes a polypeptide having an amino acid sequence that has at least about 85%sequence identity with SEQ ID NO: 8, and the second ORF encodes a polypeptide having an amino acid sequence that has at least about 85%sequence identity with SEQ ID NO: 10. In some embodiments, the first ORF encodes a polypeptide having an amino acid sequence that has at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity with SEQ ID NO: 8, and the second ORF encodes a polypeptide having an amino acid sequence that has at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity with SEQ ID NO: 10.
In some embodiments, the therapeutic nucleic acid of the present disclosure comprises at least two ORFs, the first ORF encoding mIL-12A polypeptide comprises the DNA coding sequence of SEQ ID NO: 9 or a transcribed RNA sequence thereof, and the second ORF encoding mIL-12B comprises the DNA coding sequence of SEQ ID NO: 11, or a transcribed RNA sequence thereof. In some embodiments, the nucleic acid is a mRNA molecule. In some embodiments, the therapeutic nucleic acid of the present disclosure comprises at least two ORFs, the first ORF encoding mIL-12A polypeptide comprises the DNA coding sequence of SEQ ID NO: 9 or a transcribed RNA sequence thereof, and the second ORF encoding mIL-12B comprises the DNA coding sequence of SEQ ID NO: 83, or a transcribed RNA sequence thereof. In some embodiments, the nucleic acid is a mRNA molecule.
In some embodiments, the therapeutic nucleic acid of the present disclosure comprises at least two ORFs, the first ORF encoding mIL-12A polypeptide comprises the DNA coding sequence of SEQ ID NO: 82 or a transcribed RNA sequence thereof, and the second ORF encoding mIL-12B comprises the DNA coding sequence of SEQ ID NO: 11, or a transcribed RNA sequence thereof. In some embodiments, the nucleic acid is a mRNA molecule. In some embodiments, the therapeutic nucleic acid of the present disclosure comprises at least two ORFs, the first ORF encoding mIL-12A polypeptide comprises the DNA coding sequence of SEQ ID NO: 82 or a transcribed RNA sequence thereof, and the second ORF encoding mIL-12B  comprises the DNA coding sequence of SEQ ID NO: 83, or a transcribed RNA sequence thereof. In some embodiments, the nucleic acid is a mRNA molecule.
In some embodiments, the therapeutic nucleic acid of the present disclosure comprises at least two nucleic acid molecules, the first nucleic acid molecule encoding a polypeptide comprising mIL-12A or a functional derivative thereof, and the second nucleic acid molecule encoding a polypeptide comprising mIL-12B or a functional derivative thereof. In some embodiments, the first nucleic acid molecule encodes a polypeptide comprising the amino acid sequence of SEQ ID NO: 8, and the second nucleic acid molecule encodes a polypeptide comprising the amino acid sequence of SEQ ID NO: 10.
In some embodiments, the therapeutic nucleic acid of the present disclosure comprises at least two nucleic acid molecules, the first nucleic acid molecule encoding a polypeptide comprising a functional derivative of mIL-12A, and the second nucleic acid molecule encoding a polypeptide comprising a functional derivative of mIL-12B. In some embodiments, the first nucleic acid molecule encodes a polypeptide comprising an amino acid sequence having at least about 85%sequence identity with SEQ ID NO: 8, and the second nucleic acid molecule encodes a polypeptide comprising an amino acid sequence having at least about 85%sequence identity with SEQ ID NO: 10. In some embodiments, the first nucleic acid molecule encodes a polypeptide comprising an amino acid sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity with SEQ ID NO: 8, and the second nucleic acid molecule encodes a polypeptide comprising an amino acid sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity with SEQ ID NO: 10.
In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-15 or a functional derivative thereof. In some embodiments, the encoded polypeptide comprises an amino acid sequence of SEQ ID NO: 12. In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-15 or a functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 13. In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-15 or a functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 13. In particular  embodiments, the nucleic acid molecule is an mRNA molecule. In particular embodiments, the encoded polypeptide comprises a functional derivative of hIL-15 having an amino acid sequence that has at least about 85%sequence identity with SEQ ID NO: 12. In some embodiments, the encoded polypeptide comprises a functional derivative of hIL-15 having an amino acid sequence that has at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity with SEQ ID NO: 12.
In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-15 or a functional derivative thereof. In some embodiments, the encoded polypeptide comprises an amino acid sequence of SEQ ID NO: 84. In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-15 or a functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 85. In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-15 or a functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 85. In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-15 or a functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 86. In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-15 or a functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 86. In particular embodiments, the nucleic acid molecule is an mRNA molecule. In particular embodiments, the encoded polypeptide comprises a functional derivative of hIL-15 having an amino acid sequence that has at least about 85%sequence identity with SEQ ID NO: 84. In some embodiments, the encoded polypeptide comprises a functional derivative of hIL-15 having an amino acid sequence that has at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity with SEQ ID NO: 84.
In some embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-15 receptor or functional derivative thereof. In some embodiments, the hIL-15 receptor polypeptide is hIL-15Rα or a functional derivative thereof. In some embodiments, the hIL-15 receptor polypeptide is the Sushi domain of hIL-15Rα or a functional  derivative thereof. In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-15 receptor or functional derivative thereof, and wherein the encoded polypeptide has an amino acid sequence of SEQ ID NO: 14. In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-15 receptor or functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 15. In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-15 receptor or a functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 15. In particular embodiments, the nucleic acid molecule is an mRNA molecule. In particular embodiments, the encoded polypeptide comprises a functional derivative of hIL-15 receptor having an amino acid sequence that has at least about 85%sequence identity with SEQ ID NO: 14. In some embodiments, the encoded polypeptide comprises a functional derivative of hIL-15 receptor having an amino acid sequence that has at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity with SEQ ID NO: 14.
In some embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-15 receptor or functional derivative thereof. In some embodiments, the hIL-15 receptor polypeptide is hIL-15Rα or a functional derivative thereof. In some embodiments, the hIL-15 receptor polypeptide is the Sushi domain of hIL-15Rα or a functional derivative thereof. In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-15 receptor or functional derivative thereof, and wherein the encoded polypeptide has an amino acid sequence of SEQ ID NO: 87. In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-15 receptor or functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 88. In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-15 receptor or a functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 88. In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-15 receptor or functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 89. In particular embodiments, the  therapeutic nucleic acid of the present disclosure encodes a polypeptide comprising hIL-15 receptor or a functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 89. In particular embodiments, the nucleic acid molecule is an mRNA molecule. In particular embodiments, the encoded polypeptide comprises a functional derivative of hIL-15 receptor having an amino acid sequence that has at least about 85%sequence identity with SEQ ID NO: 87. In some embodiments, the encoded polypeptide comprises a functional derivative of hIL-15 receptor having an amino acid sequence that has at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity with SEQ ID NO: 87.
In some embodiments, the therapeutic nucleic acid of the present disclosure encodes a single polypeptide comprising IL-12A or a functional derivative thereof fused to IL-12B or a functional derivative thereof. In some embodiments, the IL-12A polypeptide is fused to the N terminus of the IL-12B polypeptide. In alternative embodiments, the IL-12B polypeptide is fused to the N terminus of the IL-12A polypeptide. In some embodiments of the fusion protein, the IL-12A is hIL-12A or a functional derivative thereof. In specific embodiments of the fusion protein, the hIL-12A or functional derivative thereof comprises a sequence of SEQ ID NO: 4. In specific embodiments, the hIL-12A or functional derivative thereof comprises a sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity with SEQ ID NO: 4. In some embodiments of the fusion protein, the IL-12B is hIL-12B or a functional derivative thereof. In specific embodiments of the fusion protein, the hIL-12B or functional derivative thereof comprises a sequence of SEQ ID NO: 6. In specific embodiments, the hIL-12A or functional derivative thereof comprises a sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity with SEQ ID NO: 6.
In some embodiments of the fusion protein, the nucleic acid comprises the coding sequence for hIL-12A of SEQ ID NO: 5 or a transcribed RNA sequence thereof, and the coding sequence for hIL-12B of SEQ ID NO: 7 or a transcribed RNA sequence thereof. In some embodiments of the fusion protein, the nucleic acid comprises the coding sequence for hIL-12A of SEQ ID NO: 5 or a transcribed RNA sequence thereof, and the coding sequence for hIL-12B of SEQ ID NO: 80 or a transcribed RNA sequence thereof. In some embodiments of the fusion protein, the nucleic acid comprises the coding sequence for hIL-12A of SEQ ID NO: 5 or a  transcribed RNA sequence thereof, and the coding sequence for hIL-12B of SEQ ID NO: 81 or a transcribed RNA sequence thereof. In some embodiments, the nucleic acid is mRNA.
In some embodiments of the fusion protein, the nucleic acid comprises the coding sequence for hIL-12A of SEQ ID NO: 77 or a transcribed RNA sequence thereof, and the coding sequence for hIL-12B of SEQ ID NO: 7 or a transcribed RNA sequence thereof. In some embodiments of the fusion protein, the nucleic acid comprises the coding sequence for hIL-12A of SEQ ID NO: 77 or a transcribed RNA sequence thereof, and the coding sequence for hIL-12B of SEQ ID NO: 80 or a transcribed RNA sequence thereof. In some embodiments of the fusion protein, the nucleic acid comprises the coding sequence for hIL-12A of SEQ ID NO: 77 or a transcribed RNA sequence thereof, and the coding sequence for hIL-12B of SEQ ID NO: 81 or a transcribed RNA sequence thereof. In some embodiments, the nucleic acid is mRNA.
In some embodiments of the fusion protein, the nucleic acid comprises the coding sequence for hIL-12A of SEQ ID NO: 78 or a transcribed RNA sequence thereof, and the coding sequence for hIL-12B of SEQ ID NO: 7 or a transcribed RNA sequence thereof. In some embodiments of the fusion protein, the nucleic acid comprises the coding sequence for hIL-12A of SEQ ID NO: 78 or a transcribed RNA sequence thereof, and the coding sequence for hIL-12B of SEQ ID NO: 80 or a transcribed RNA sequence thereof. In some embodiments of the fusion protein, the nucleic acid comprises the coding sequence for hIL-12A of SEQ ID NO: 78 or a transcribed RNA sequence thereof, and the coding sequence for hIL-12B of SEQ ID NO: 81 or a transcribed RNA sequence thereof. In some embodiments, the nucleic acid is mRNA.
In some embodiments of the fusion protein, the nucleic acid comprises the coding sequence for hIL-12A of SEQ ID NO: 79 or a transcribed RNA sequence thereof, and the coding sequence for hIL-12B of SEQ ID NO: 7 or a transcribed RNA sequence thereof. In some embodiments of the fusion protein, the nucleic acid comprises the coding sequence for hIL-12A of SEQ ID NO: 79 or a transcribed RNA sequence thereof, and the coding sequence for hIL-12B of SEQ ID NO: 80 or a transcribed RNA sequence thereof. In some embodiments of the fusion protein, the nucleic acid comprises the coding sequence for hIL-12A of SEQ ID NO: 79 or a transcribed RNA sequence thereof, and the coding sequence for hIL-12B of SEQ ID NO: 81 or a transcribed RNA sequence thereof. In some embodiments, the nucleic acid is mRNA.
In some embodiments, the therapeutic nucleic acid of the present disclosure encodes a single polypeptide comprising IL-12A or a functional derivative thereof fused to IL-12B or a functional derivative thereof. In some embodiments, the IL-12A polypeptide is fused to the N terminus of the IL-12B polypeptide. In alternative embodiments, the IL-12B polypeptide is fused to the N terminus of the IL-12A polypeptide. In some embodiments of the fusion protein, the IL-12A is mIL-12A or a functional derivative thereof. In specific embodiments, the mIL-12A or functional derivative thereof comprises a sequence of SEQ ID NO: 8. In specific embodiments, the mIL-12A or functional derivative thereof comprises a sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity of SEQ ID NO: 8. In some embodiments of the fusion protein, the IL-12B is mIL-12B or a functional derivative thereof. In specific embodiments of the fusion protein, the mIL-12B or functional derivative thereof comprises a sequence of SEQ ID NO: 10. In specific embodiments, the mIL-12A or functional derivative thereof comprises a sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity with SEQ ID NO: 10.
In some embodiments of the fusion protein, the nucleic acid comprises the coding sequence for mIL-12A of SEQ ID NO: 9 or a transcribed RNA sequence thereof, and the coding sequence for mIL-12B of SEQ ID NO: 11 or a transcribed RNA sequence thereof. In some embodiments of the fusion protein, the nucleic acid comprises the coding sequence for mIL-12A of SEQ ID NO: 9 or a transcribed RNA sequence thereof, and the coding sequence for mIL-12B of SEQ ID NO: 83 or a transcribed RNA sequence thereof. In some embodiments of the fusion protein, the nucleic acid comprises the coding sequence for mIL-12A of SEQ ID NO: 82 or a transcribed RNA sequence thereof, and the coding sequence for mIL-12B of SEQ ID NO: 11 or a transcribed RNA sequence thereof. In some embodiments of the fusion protein, the nucleic acid comprises the coding sequence for mIL-12A of SEQ ID NO: 82 or a transcribed RNA sequence thereof, and the coding sequence for mIL-12B of SEQ ID NO: 83 or a transcribed RNA sequence thereof. In some embodiments, the nucleic acid is mRNA.
In some embodiments of the fusion proteins, the therapeutic nucleic acid of the present disclosure encodes a single polypeptide comprising the IL-12A or a functional derivative thereof and IL-12B or a functional derivative thereof fused directly or by a linker. Various peptidic linkers, for example, having at least 5, 10, 15, 20, 25, 30, or 50 amino acids, can be used  in connection with the IL-12 containing fusion proteins of the present disclosure. Table 2 shows exemplary peptidic linkers that can be used in connection with the present disclosure.
In some embodiments, the therapeutic nucleic acid of the present disclosure encodes a single polypeptide comprising IL-15 or a function derivative thereof fused to an IL-15R polypeptide or a functional derivative thereof. In some embodiments, the IL-15R is IL-15Rα. In specific embodiments, the IL-15R is the Sushi domain of IL-15Rα. In some embodiments, the IL-15 polypeptide is fused to the N terminus of the IL-15R polypeptide. In some embodiments, the IL-15 receptor polypeptide is fused to the N terminus of the IL-15 polypeptide. In some embodiments, the IL-15 is hIL-15 or a functional derivative thereof. In specific embodiments, the hIL-15 or functional derivative thereof comprises a sequence of SEQ ID NO: 12. In specific embodiments, the hIL-15 or functional derivative thereof comprises a sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity of SEQ ID NO: 12. In some embodiments, the IL-15R is hIL-15R or a functional derivative thereof. In specific embodiments, the hIL-15R or functional derivative thereof comprises a sequence of SEQ ID NO: 14. In specific embodiments, the hIL-15R or functional derivative thereof comprises a sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity of SEQ ID NO: 14.
In some embodiments of the fusion protein, the nucleic acid comprises the coding sequence for hIL-15 of SEQ ID NO: 13 or a transcribed RNA sequence thereof, and the coding sequence for hIL-15R of SEQ ID NO: 15 or a transcribed RNA sequence thereof. In some embodiments, the nucleic acid is mRNA.
In some embodiments, the therapeutic nucleic acid of the present disclosure encodes a single polypeptide comprising IL-15 or a function derivative thereof fused to an IL-15R polypeptide or a functional derivative thereof. In some embodiments, the IL-15R is IL-15Rα. In specific embodiments, the IL-15R is the Sushi domain of IL-15Rα. In some embodiments, the IL-15 polypeptide is fused to the N terminus of the IL-15R polypeptide. In some embodiments, the IL-15 receptor polypeptide is fused to the N terminus of the IL-15 polypeptide. In some embodiments, the IL-15 is hIL-15 or a functional derivative thereof. In specific embodiments, the hIL-15 or functional derivative thereof comprises a sequence of SEQ ID NO: 84. In specific embodiments, the hIL-15 or functional derivative thereof comprises a sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity of  SEQ ID NO: 84. In some embodiments, the IL-15R is hIL-15R or a functional derivative thereof. In specific embodiments, the hIL-15R or functional derivative thereof comprises a sequence of SEQ ID NO: 88. In specific embodiments, the hIL-15R or functional derivative thereof comprises a sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity of SEQ ID NO: 88.
In some embodiments of the fusion protein, the nucleic acid comprises the coding sequence for hIL-15 of SEQ ID NO: 85 or a transcribed RNA sequence thereof, and the coding sequence for hIL-15R of SEQ ID NO: 88 or a transcribed RNA sequence thereof. In some embodiments of the fusion protein, the nucleic acid comprises the coding sequence for hIL-15 of SEQ ID NO: 85 or a transcribed RNA sequence thereof, and the coding sequence for hIL-15R of SEQ ID NO: 89 or a transcribed RNA sequence thereof. In some embodiments of the fusion protein, the nucleic acid comprises the coding sequence for hIL-15 of SEQ ID NO: 86 or a transcribed RNA sequence thereof, and the coding sequence for hIL-15R of SEQ ID NO: 88 or a transcribed RNA sequence thereof. In some embodiments of the fusion protein, the nucleic acid comprises the coding sequence for hIL-15 of SEQ ID NO: 86 or a transcribed RNA sequence thereof, and the coding sequence for hIL-15R of SEQ ID NO: 89 or a transcribed RNA sequence thereof. In some embodiments, the nucleic acid is mRNA.
In some embodiments, the IL-15 is mIL-15 or a functional derivative thereof. In some embodiments, the IL-15 is mIL-15R or a functional derivative thereof. In some embodiments, the therapeutic nucleic acid of the present disclosure encodes a single polypeptide comprising the IL-15 or a functional derivative thereof and IL-15R or a functional derivative thereof fused directly or by a linker. Various peptidic linkers, for example, having at least 5, 10, 15, 20, 25, 30, or 50 amino acids, can be used in connection with the IL-15 containing fusion proteins of the present disclosure. Table 2 shows exemplary peptidic linkers (SEQ ID NOS: 16-23) that can be used in connection with the present disclosure.
Table 2 Exemplary sequences of linker peptides.
Figure PCTCN2022123722-appb-000012
Figure PCTCN2022123722-appb-000013
Without being bound by theory, it is contemplated that a signal peptide can mediate transportation of a polypeptide fused thereto to particular locations of a cell. Accordingly, in some embodiments, the therapeutic nucleic acid molecule of the present disclosure encodes a fusion protein comprising an IL-12 peptide or polypeptide fused to a signal peptide. In particular embodiments, the IL-12 polypeptide is one or more selected from (a) hIL-12A or a functional derivative thereof, (b) hIL-12B or a functional derivative thereof, (c) IL-12A from a non-human vertebrate species, such as mIL-12A, or a functional derivative thereof, (d) IL-12B from a non-human vertebrate species, such as mIL-12B or a functional derivative thereof, (e) a fusion protein comprising at least two of (a) to (d) . In particular embodiments, the IL-12 peptide or polypeptide is an IL-12 containing fusion protein comprising IL-12A or a functional derivative thereof fused to IL-12B or a functional derivative thereof. In some embodiments, the fusion  between IL-12A or a functional derivative thereof and the IL-12B or a functional derivative thereof is via a peptidic linker, such as a peptidic linker as described herein. In some embodiments, the IL-12A or a functional derivative thereof is fused directly to the IL-12B or a functional derivative thereof. In some embodiments, the IL-12 containing fusion protein comprises IL-12A or a functional derivative thereof fused to the N terminus of IL-12B or a functional derivative thereof. In some embodiments, the IL-12 containing fusion protein comprises IL-12B or a functional derivative thereof fused to the N terminus of IL-12A or a functional derivative thereof. In some embodiments, the IL-12A in an IL-12 containing fusion peptide is hIL-12A. In specific embodiments, an IL-12 containing fusion protein comprises the sequence of SEQ ID NO: 4. In specific embodiments, an IL-12 containing fusion protein comprises the sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity of SEQ ID NO: 4. In some embodiments, the IL-12B in an IL-12 containing fusion peptide is hIL-12B. In specific embodiments, an IL-12 containing fusion protein comprises the sequence of SEQ ID NO: 6. In specific embodiments, an IL-12 containing fusion protein comprises the sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity of SEQ ID NO: 6. In specific embodiments, an IL-12 containing fusion protein comprises the sequences of SEQ ID NO: 4 and SEQ ID NO: 6. In specific embodiments, an IL-12 containing fusion protein comprises the sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity of SEQ ID NO: 4 and the sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity of SEQ ID NO: 6. In some embodiments, the IL-12A in an IL-12 containing fusion peptide is IL-12A from a non-human vertebrate species, such as mIL-12A. In specific embodiments, an IL-12 containing fusion protein comprises the sequence of SEQ ID NO: 8. In specific embodiments, an IL-12 containing fusion protein comprises the sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity of SEQ ID NO: 8. In some embodiments, the IL-12B in an IL-12 containing fusion peptide is IL-12B from a non-human vertebrate species, such as mIL-12B. In specific embodiments, an IL-12 containing fusion protein comprises the sequence of SEQ ID NO: 10. In specific embodiments, an IL-12 containing fusion protein comprises the sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity of SEQ ID NO: 10. In specific embodiments, an IL-12 containing fusion protein  comprises the sequences of SEQ ID NO: 8 and SEQ ID NO: 10. In specific embodiments, an IL-12 containing fusion protein comprises the sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity of SEQ ID NO: 8 and the sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity of SEQ ID NO: 10. According to the present disclosure, in some embodiments, a signal peptide can fuse to the N terminus of the IL-12 peptide or polypeptide described herein. In alternative embodiments, a signal peptide can fuse to the C terminus of the IL-12 peptide or polypeptide described herein. In specific embodiments, a signal peptide that can be fused to the IL-12 peptide or polypeptide described herein can have a sequence selected from the natural signal peptide of hIL-12A having the sequence of MCPARSLLLVATLVLLDHLSLA (SEQ ID NO: 56) , the natural signal peptide of hIL-12B having the sequence of MCHQQLVISWFSLVFLASPLVA (SEQ ID NO: 57) , the natural signal peptide of mIL-12A having the sequence of MCQSRYLLFLATLALLNHLSLA (SEQ ID NO: 58) , the natural signal peptide of mIL-12B having the sequence of MCPQKLTISWFAIVLLVSPLMA (SEQ ID NO: 59) , the natural signal peptide of hIL-15 having a sequence of MRISKPHLRSISIQCYLCLLLNSHFLTEA (SEQ ID NO: 60) , the natural signal peptide of hIL-15R having the sequence of MAPRRARGCRTLGLPALLLLLLLRPPATRG (SEQ ID NO: 61) , and the natural signal peptide of hIL-10 having the sequence of MHSSALLCCLVLLTGVRA (SEQ ID NO: 62) .
In some embodiments, the therapeutic nucleic acid molecule of the present disclosure encodes a fusion protein comprising an IL-15 peptide or polypeptide fused to a signal peptide. In particular embodiments, the IL-15 polypeptide is one or more selected from (a) hIL-15, (b) IL-15 of a non-human vertebrate species, such as mIL-15, and (c) a functional derivative of any one of (a) and (b) . In some embodiments, the IL-15 peptide or polypeptide is an IL-15 containing fusion protein comprising IL-15 polypeptide or a functional derivative thereof fused to IL-15R or a functional derivative thereof. In some embodiments, the fusion between IL-15 or a functional derivative thereof and the IL-15R or a functional derivative thereof is via a peptidic linker, such as a peptidic linker as described herein. In some embodiments, the IL-15 or a functional derivative thereof is fused directly to the IL-15R or a functional derivative thereof. In some embodiments, the IL-15 containing fusion protein comprises IL-15 or a functional derivative thereof fused to the N terminus of IL-15R or a functional derivative thereof. In some  embodiments, the IL-15 containing fusion protein comprises IL-15R or a functional derivative thereof fused to the N terminus of IL-15 or a functional derivative thereof. In some embodiments, the IL-15 in an IL-15 containing fusion peptide is hIL-15. In specific embodiments, an IL-15 containing fusion protein comprises the sequence of SEQ ID NO: 12. In specific embodiments, an IL-15 containing fusion protein comprises the sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity of SEQ ID NO: 12. In some embodiments, the IL-15R in an IL-15 containing fusion peptide is hIL-15R. In specific embodiments, an IL-15 containing fusion protein comprises the sequence of SEQ ID NO: 14. In specific embodiments, an IL-15 containing fusion protein comprises the sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity of SEQ ID NO: 14. In specific embodiments, an IL-15 containing fusion protein comprises the sequences of SEQ ID NO: 12 and SEQ ID NO: 14. In specific embodiments, an IL-15 containing fusion protein comprises the sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity of SEQ ID NO: 12 and the sequence having at least about 85%, at least about 90%, at least about 95%, or at least about 97%sequence identity of SEQ ID NO: 14. In some embodiments, the IL-15 in an IL-15 containing fusion peptide is originated from a non-human vertebrate species, such as mIL-15. In some embodiments, the IL-15R in an IL-15 containing fusion peptide is IL-15R originated from a non-human vertebrate species, such as mIL-15R. In some embodiments, the IL-15R is IL-15Rα. In specific embodiments, the IL-15R is the Sushi domain of IL-15Rα. According to the present disclosure, in some embodiments, a signal peptide can fuse to the N terminus of the IL-15 peptide or polypeptide described herein. In alternative embodiments, a signal peptide can fuse to the C terminus of the IL-15 peptide or polypeptide described herein. In specific embodiments, a signal peptide that can be fused to the IL-15 peptide or polypeptide described herein can be selected from the natural signal peptide of hIL-12A having the sequence of MCPARSLLLVATLVLLDHLSLA (SEQ ID NO: 56) , the natural signal peptide of hIL-12B having the sequence of MCHQQLVISWFSLVFLASPLVA (SEQ ID NO: 57) , the natural signal peptide of mIL-12A having the sequence of MCQSRYLLFLATLALLNHLSLA (SEQ ID NO: 58) , the natural signal peptide of mIL-12B having the sequence of MCPQKLTISWFAIVLLVSPLMA (SEQ ID NO: 59) , the natural signal peptide of hIL-15 having a sequence of MRISKPHLRSISIQCYLCLLLNSHFLTEA (SEQ ID NO: 60, the natural signal  peptide of hIL-15R having the sequence of MAPRRARGCRTLGLPALLLLLLLRPPATRG (SEQ ID NO: 61) , and the natural signal peptide of hIL-10 having the sequence of MHSSALLCCLVLLTGVRA (SEQ ID NO: 62) .
Table 3 shows exemplary sequences of IL-12 or IL-15 containing fusion proteins according to the present disclosure, with the N-terminal signal peptide and/or an internal linker peptide sequence (s) marked with underlines.
Table 3 Exemplary sequences of fusion proteins.
Figure PCTCN2022123722-appb-000014
Figure PCTCN2022123722-appb-000015
Figure PCTCN2022123722-appb-000016
Figure PCTCN2022123722-appb-000017
Figure PCTCN2022123722-appb-000018
Figure PCTCN2022123722-appb-000019
Figure PCTCN2022123722-appb-000020
Figure PCTCN2022123722-appb-000021
Figure PCTCN2022123722-appb-000022
Figure PCTCN2022123722-appb-000023
In some embodiments, the therapeutic nucleic acid encodes a fusion protein comprising a hIL-12A polypeptide or functional derivative thereof fused to a hIL-12B polypeptide or functional derivative thereof. In some embodiments, the fusion between the hIL-12A polypeptide of functional derivative thereof and the hIL-12B polypeptide or functional derivative thereof is via a peptidic linker. In various embodiments, the peptidic linker can have at least 5, 10, 15, 20, 25, 30, or 50 amino acids. In specific embodiments, the peptidic linker comprises the amino acid sequence selected from SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, and SEQ ID NO: 22. In specific embodiments, the hIL-12A polypeptide or functional derivative thereof comprises the amino acid sequence of SEQ ID NO: 4 or a functional fragment or derivative thereof having at least about 85%, at least about 90%, at least about 95%, at least about 97%sequence identity with SEQ ID NO: 4. In some embodiments, the hIL-12B polypeptide or functional derivative thereof comprises the amino acid sequence of SEQ ID NO: 6 or a functional fragment or derivative thereof having at least about 85%, at least about 90%, at least about 95%, at least about 97%sequence identity with SEQ ID NO: 6.
In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising hIL-12A polypeptide or functional derivative thereof fused via a peptidic linker with hIL-12B polypeptide or functional derivative thereof, wherein the encoded polypeptide comprises an amino acid sequence of SEQ ID NO: 24, or functional fragment or derivative thereof having at least about 85%, at least about 90%, at least about 95%, at least about 97%sequence identity with SEQ ID NO: 24. In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising hIL-12A polypeptide or functional derivative thereof fused via a peptidic linker with hIL-12B polypeptide or functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 25. In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising hIL-12A polypeptide or functional derivative thereof fused via a peptidic linker with hIL-12B polypeptide or functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 25. In particular embodiments, the nucleic acid  molecule is an mRNA molecule. In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising hIL-12A polypeptide or functional derivative thereof fused via a peptidic linker with hIL-12B polypeptide or functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 26. In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising hIL-12A polypeptide or functional derivative thereof fused via a peptidic linker with hIL-12B polypeptide or functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 26. In particular embodiments, the nucleic acid molecule is an mRNA molecule. In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising hIL-12A polypeptide or functional derivative thereof fused via a peptidic linker with hIL-12B polypeptide or functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 27. In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising hIL-12A polypeptide or functional derivative thereof fused via a peptidic linker with hIL-12B polypeptide or functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 27. In particular embodiments, the nucleic acid molecule is an mRNA molecule.
In some embodiments, the therapeutic nucleic acid encodes a fusion protein comprising a mIL-12A polypeptide or functional derivative thereof fused to a mIL-12B polypeptide or functional derivative thereof. In some embodiments, the fusion between the mIL-12A polypeptide of functional derivative thereof and the mIL-12B polypeptide or functional derivative thereof is via a peptidic linker. In various embodiments, the peptidic linker can have at least 5, 10, 15, 20, 25, 30, or 50 amino acids. In specific embodiments, the peptidic linker comprises the amino acid sequence selected from SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, and SEQ ID NO: 22. In specific embodiments, the mIL-12A polypeptide or functional derivative thereof comprises the amino acid sequence of SEQ ID NO: 8 of a functional derivative or fragment thereof having at least about 85%, at least about 90%, at least about 95%, at least about 97%sequence identity with SEQ ID NO: 8. In some embodiments, the mIL-12B polypeptide or functional derivative thereof comprises the amino acid sequence of SEQ ID  NO: 10 or a functional derivative or fragment thereof having at least about 85%, at least about 90%, at least about 95%, at least about 97%sequence identity with SEQ ID NO: 10.
In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising mIL-12A polypeptide or functional derivative thereof fused via a peptidic linker with mIL-12B polypeptide or functional derivative thereof, wherein the encoded polypeptide comprises an amino acid sequence of SEQ ID NO: 28, or functional fragment or derivative thereof having at least about 85%, at least about 90%, at least about 95%, at least about 97%sequence identity with SEQ ID NO: 28. In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising mIL-12A polypeptide or functional derivative thereof fused via a peptidic linker with mIL-12B polypeptide or functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 29. In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising mIL-12A polypeptide or functional derivative thereof fused via a peptidic linker with mIL-12B polypeptide or functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 29. In particular embodiments, the nucleic acid molecule is an mRNA molecule.
In some embodiments, the therapeutic nucleic acid encodes a fusion protein comprising a hIL-15 polypeptide or functional derivative thereof fused to a hIL-15 receptor polypeptide or functional derivative thereof. In some embodiments, the fusion between the hIL-15 polypeptide or functional derivative thereof and the hIL-15 receptor polypeptide or functional derivative thereof is via a peptidic linker. In various embodiments, the peptidic linker can have at least 5, 10, 15, 20, 25, 30, or 50 amino acids. In specific embodiments, the peptidic linker comprises the amino acid sequence selected from SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, and SEQ ID NO: 22. In specific embodiments, the hIL-15 polypeptide or functional derivative thereof comprises the amino acid sequence of SEQ ID NO: 12 of a functional derivative or fragment thereof having at least about 85%, at least about 90%, at least about 95%, at least about 97%sequence identity with SEQ ID NO: 12. In some embodiments, the hIL-15 receptor polypeptide is hIL-15Rα or a functional derivative thereof. In some embodiments, the hIL-15 receptor polypeptide is the Sushi domain of hIL-15Rα or a functional derivative thereof. In some embodiments, the hIL-15 receptor polypeptide or functional derivative thereof  comprises the amino acid sequence of SEQ ID NO: 14 or a functional derivative or fragment thereof having at least about 85%, at least about 90%, at least about 95%, at least about 97%sequence identity with SEQ ID NO: 14.
In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising hIL-15 polypeptide or functional derivative thereof fused via a peptidic linker with hIL-15 receptor polypeptide or functional derivative thereof, wherein the encoded polypeptide comprises an amino acid sequence of SEQ ID NO: 30, or functional fragment or derivative thereof having at least about 85%, at least about 90%, at least about 95%, at least about 97%sequence identity with SEQ ID NO: 30. In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising hIL-15 polypeptide or functional derivative thereof fused via a peptidic linker with hIL-15 receptor polypeptide or functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 31. In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising hIL-15 polypeptide or functional derivative thereof fused via a peptidic linker with hIL-15 receptor polypeptide or functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA sequence transcribed from the DNA coding sequence of SEQ ID NO: 31. In particular embodiments, the nucleic acid molecule is an mRNA molecule.
In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising hIL-15 polypeptide or functional derivative thereof fused via a peptidic linker with hIL-15 receptor polypeptide or functional derivative thereof, wherein the encoded polypeptide comprises an amino acid sequence of SEQ ID NO: 32, or functional fragment or derivative thereof having at least about 85%, at least about 90%, at least about 95%, at least about 97%sequence identity with SEQ ID NO: 32. In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising hIL-15 polypeptide or functional derivative thereof fused via a peptidic linker with hIL-15 receptor polypeptide or functional derivative thereof, wherein the therapeutic nucleic acid comprises a DNA coding sequence of SEQ ID NO: 33. In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising hIL-15 polypeptide or functional derivative thereof fused via a peptidic linker with hIL-15 receptor polypeptide or functional derivative thereof, and wherein the therapeutic nucleic acid comprises a RNA  sequence transcribed from the DNA coding sequence of SEQ ID NO: 33. In particular embodiments, the nucleic acid molecule is an mRNA molecule.
In some embodiments, the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising a polypeptide comprising hIL-12A or a functional derivative thereof fused to a signal peptide. In particular embodiments, the therapeutic nucleic acid encodes a polypeptide comprising the sequence of SEQ ID NO: 63. In particular embodiments, the therapeutic nucleic acid comprises the sequence of SEQ ID NO: 64. In particular embodiments, the therapeutic nucleic acid comprises a RNA sequence transcribed from SEQ ID NO: 64. In particular embodiments, the nucleic acid molecule is an mRNA molecule. In particular embodiments, the therapeutic nucleic acid encodes a polypeptide comprising the sequence having at least about 85%, at least about 90%, at least about 95%, at least about 97%sequence identity with of SEQ ID NO: 63.
In some embodiments, the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising a polypeptide comprising hIL-12B or a functional derivative thereof fused to a signal peptide. In particular embodiments, the therapeutic nucleic acid encodes a polypeptide comprising the sequence of SEQ ID NO: 65. In particular embodiments, the therapeutic nucleic acid comprises the sequence of SEQ ID NO: 66. In particular embodiments, the therapeutic nucleic acid comprises a RNA sequence transcribed from SEQ ID NO: 66. In particular embodiments, the nucleic acid molecule is an mRNA molecule. In particular embodiments, the therapeutic nucleic acid encodes a polypeptide comprising the sequence having at least about 85%, at least about 90%, at least about 95%, at least about 97%sequence identity with of SEQ ID NO: 65.
In some embodiments, the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising a polypeptide comprising mIL-12A or a functional derivative thereof fused to a signal peptide. In particular embodiments, the therapeutic nucleic acid encodes a polypeptide comprising the sequence of SEQ ID NO: 67. In particular embodiments, the therapeutic nucleic acid comprises the sequence of SEQ ID NO: 68. In particular embodiments, the therapeutic nucleic acid comprises a RNA sequence transcribed from SEQ ID NO: 68. In particular embodiments, the nucleic acid molecule is an mRNA molecule. In particular embodiments, the therapeutic nucleic acid encodes a polypeptide comprising the sequence  having at least about 85%, at least about 90%, at least about 95%, at least about 97%sequence identity with of SEQ ID NO: 67.
In some embodiments, the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising a polypeptide comprising mIL-12B or a functional derivative thereof fused to a signal peptide. In particular embodiments, the therapeutic nucleic acid encodes a polypeptide comprising the sequence of SEQ ID NO: 69. In particular embodiments, the therapeutic nucleic acid comprises the sequence of SEQ ID NO: 70. In particular embodiments, the therapeutic nucleic acid comprises a RNA sequence transcribed from SEQ ID NO: 70. In particular embodiments, the nucleic acid molecule is an mRNA molecule. In particular embodiments, the therapeutic nucleic acid encodes a polypeptide comprising the sequence having at least about 85%, at least about 90%, at least about 95%, at least about 97%sequence identity with of SEQ ID NO: 69.
In some embodiments, the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising a polypeptide comprising hIL-15 or a functional derivative thereof fused to a signal peptide. In particular embodiments, the therapeutic nucleic acid encodes a polypeptide comprising the sequence of SEQ ID NO: 71. In particular embodiments, the therapeutic nucleic acid comprises the sequence of SEQ ID NO: 72. In particular embodiments, the therapeutic nucleic acid comprises a RNA sequence transcribed from SEQ ID NO: 72. In particular embodiments, the nucleic acid molecule is an mRNA molecule. In particular embodiments, the therapeutic nucleic acid encodes a polypeptide comprising the sequence having at least about 85%, at least about 90%, at least about 95%, at least about 97%sequence identity with of SEQ ID NO: 71.
In some embodiments, the therapeutic nucleic acid of the present disclosure encodes a fusion protein comprising a polypeptide comprising hIL-15R or a functional derivative thereof fused to a signal peptide. In particular embodiments, the therapeutic nucleic acid encodes a polypeptide comprising the sequence of SEQ ID NO: 73. In particular embodiments, the therapeutic nucleic acid comprises the sequence of SEQ ID NO: 74. In particular embodiments, the therapeutic nucleic acid comprises a RNA sequence transcribed from SEQ ID NO: 74. In particular embodiments, the nucleic acid molecule is an mRNA molecule. In particular embodiments, the therapeutic nucleic acid encodes a polypeptide comprising the sequence  having at least about 85%, at least about 90%, at least about 95%, at least about 97%sequence identity with of SEQ ID NO: 73.
5.3.2 5’ -Cap Structure
Without being bound by the theory, it is contemplated that, a 5’ -cap structure of a polynucleotide is involved in nuclear export and increasing polynucleotide stability and binds the mRNA Cap Binding Protein (CBP) , which is responsible for polynucleotide stability in the cell and translation competency through the association of CBP with poly-A binding protein to form the mature cyclic mRNA species. The 5’ -cap structure further assists the removal of 5’ -proximal introns removal during mRNA splicing. Accordingly, in some embodiments, the nucleic acid molecules of the present disclosure comprise a 5’ -cap structure.
Nucleic acid molecules may be 5’ -end capped by the endogenous transcription machinery of a cell to generate a 5’ -ppp-5’ -triphosphate linkage between a terminal guanosine cap residue and the 5’ -terminal transcribed sense nucleotide of the polynucleotide. This 5’ -guanylate cap may then be methylated to generate an N7-methyl-guanylate residue. The ribose sugars of the terminal and/or anteterminal transcribed nucleotides of the 5’ end of the polynucleotide may optionally also be 2’ -O-methylated. 5’ -decapping through hydrolysis and cleavage of the guanylate cap structure may target a nucleic acid molecule, such as an mRNA molecule, for degradation.
In some embodiments, the nucleic acid molecules of the present disclosure comprise one or more alterations to the natural 5’ -cap structure generated by the endogenous process. Without being bound by the theory, a modification on the 5’ -cap may increase the stability of polynucleotide, increase the half-life of the polynucleotide, and could increase the polynucleotide translational efficiency.
Exemplary alterations to the natural 5’ -Cap structure include generation of a non-hydrolyzable cap structure preventing decapping and thus increasing polynucleotide half-life. In some embodiments, because cap structure hydrolysis requires cleavage of 5’ -ppp-5’ phosphorodiester linkages, in some embodiments, modified nucleotides may be used during the capping reaction. For example, in some embodiments, a Vaccinia Capping Enzyme from New England Biolabs (Ipswich, Mass. ) may be used with α-thio-guanosine nucleotides according to the manufacturer’s instructions to create a phosphorothioate linkage in the 5’ -ppp-5’ cap.  Additional modified guanosine nucleotides may be used, such as α-methyl-phosphonate and seleno-phosphate nucleotides.
Additional exemplary alterations to the natural 5’ -Cap structure also include modification at the 2’ -and/or 3’ -position of a capped guanosine triphosphate (GTP) , a replacement of the sugar ring oxygen (that produced the carbocyclic ring) with a methylene moiety (CH2) , a modification at the triphosphate bridge moiety of the cap structure, or a modification at the nucleobase (G) moiety.
Additional exemplary alterations to the natural 5’ -cap structure include, but are not limited to, 2’ -O-methylation of the ribose sugars of 5’ -terminal and/or 5’ -anteterminal nucleotides of the polynucleotide (as mentioned above) on the 2’ -hydroxy group of the sugar. Multiple distinct 5’ -cap structures can be used to generate the 5’ -cap of a polynucleotide, such as an mRNA molecule. Additional exemplary 5’ -Cap structures that can be used in connection with the present disclosure further include those described in International Patent Publication Nos. WO2008127688, WO 2008016473, and WO 2011015347, the entire contents of each of which are incorporated herein by reference.
In various embodiments, 5’ -terminal caps can include cap analogs. Cap analogs, which herein are also referred to as synthetic cap analogs, chemical caps, chemical cap analogs, or structural or functional cap analogs, differ from natural (i.e., endogenous, wild-type, or physiological) 5’ -caps in their chemical structure, while retaining cap function. Cap analogs may be chemically (i.e., non-enzymatically) or enzymatically synthesized and/linked to a polynucleotide.
For example, the Anti-Reverse Cap Analog (ARCA) cap contains two guanosines linked by a 5’ -5’ -triphosphate group, wherein one guanosine contains an N7-methyl group as well as a 3’ -O-methyl group (i.e., N7, 3’ -O-dimethyl-guanosine-5’ -triphosphate-5’ -guanosine, m7G-3’ mppp-G, which may equivalently be designated 3’ O-Me-m7G (5’ ) ppp (5’ ) G) . The 3’ -O atom of the other, unaltered, guanosine becomes linked to the 5’ -terminal nucleotide of the capped polynucleotide (e.g., an mRNA) . The N7-and 3’ -O-methlyated guanosine provides the terminal moiety of the capped polynucleotide (e.g., mRNA) . Another exemplary cap structure is mCAP, which is similar to ARCA but has a 2’ -O-methyl group on guanosine (i.e., N7, 2’ -O-dimethyl-guanosine-5’ -triphosphate-5’ -guanosine, m7Gm-ppp-G) .
In some embodiments, a cap analog can be a dinucleotide cap analog. As a non-limiting example, the dinucleotide cap analog may be modified at different phosphate positions with a boranophosphate group or a phophoroselenoate group such as the dinucleotide cap analogs described in U.S. Patent No. : 8,519,110, the entire content of which is herein incorporated by reference in its entirety.
In some embodiments, a cap analog can be a N7- (4-chlorophenoxyethyl) substituted dinucleotide cap analog known in the art and/or described herein. Non-limiting examples of N7- (4-chlorophenoxyethyl) substituted dinucleotide cap analogs include a N7- (4-chlorophenoxyethyl) -G (5’ ) ppp (5’ ) G and a N7- (4-chlorophenoxyethyl) -m3’ -OG (5’ ) ppp (5’ ) G cap analog (see, e.g., the various cap analogs and the methods of synthesizing cap analogs described in Kore et al. Bioorganic &Medicinal Chemistry 2013 21: 4570-4574; the entire content of which is herein incorporated by reference) . In other embodiments, a cap analog useful in connection with the nucleic acid molecules of the present disclosure is a 4-chloro/bromophenoxyethyl analog.
In various embodiments, a cap analog can include a guanosine analog. Useful guanosine analogs include but are not limited to inosine, N1-methyl-guanosine, 2’ -fluoro-guanosine, 7-deaza-guanosine, 8-oxo-guanosine, 2-amino-guanosine, LNA-guanosine, and 2-azido-guanosine.
Without being bound by the theory, it is contemplated that while cap analogs allow for the concomitant capping of a polynucleotide in an in vitro transcription reaction, up to 20%of transcripts remain uncapped. This, as well as the structural differences of a cap analog from the natural 5’ -cap structures of polynucleotides produced by the endogenous transcription machinery of a cell, may lead to reduced translational competency and reduced cellular stability.
Accordingly, in some embodiments, a nucleic acid molecule of the present disclosure can also be capped post-transcriptionally, using enzymes, in order to generate more authentic 5’ -cap structures. As used herein, the phrase “more authentic” refers to a feature that closely mirrors or mimics, either structurally or functionally, an endogenous or wild type feature. That is, a “more authentic” feature is better representative of an endogenous, wild-type, natural or physiological cellular function, and/or structure as compared to synthetic features or analogs of the prior art, or which outperforms the corresponding endogenous, wild-type, natural, or physiological feature in one or more respects. Non-limiting examples of more authentic 5’ -cap  structures useful in connection with the nucleic acid molecules of the present disclosure are those which, among other things, have enhanced binding of cap binding proteins, increased half-life, reduced susceptibility to 5’ -endonucleases, and/or reduced 5’ -decapping, as compared to synthetic 5’ -cap structures known in the art (or to a wild-type, natural or physiological 5’ -cap structure) . For example, in some embodiments, recombinant Vaccinia Virus Capping Enzyme and recombinant 2’ -O-methyltransferase enzyme can create a canonical 5’ -5’ -triphosphate linkage between the 5’ -terminal nucleotide of a polynucleotide and a guanosine cap nucleotide wherein the cap guanosine contains an N7-methylation and the 5’ -terminal nucleotide of the polynucleotide contains a 2’ -O-methyl. Such a structure is termed the Cap1 structure. This cap results in a higher translational-competency, cellular stability, and a reduced activation of cellular pro-inflammatory cytokines, as compared, e.g., to other 5’ cap analog structures known in the art. Other exemplary cap structures include 7mG (5’ ) ppp (5’ ) N, pN2p (Cap 0) , 7mG (5’ ) ppp (5’ ) NlmpNp (Cap 1) , 7mG (5’ ) -ppp (5’ ) NlmpN2mp (Cap 2) , and m (7) Gpppm (3) (6, 6, 2’ ) Apm (2’ ) Apm (2’ ) Cpm (2) (3, 2’ ) Up (Cap 4) .
Without being bound by the theory, it is contemplated that the nucleic acid molecules of the present disclosure can be capped post-transcriptionally, and because this process is more efficient, nearly 100%of the nucleic acid molecules may be capped.
5.3.3 Untranslated Regions (UTRs)
In some embodiments, the nucleic acid molecules of the present disclosure comprise one or more untranslated regions (UTRs) . In some embodiments, an UTR is positioned upstream to a coding region in the nucleic acid molecule, and is termed 5’ -UTR. In some embodiments, an UTR is positioned downstream to a coding region in the nucleic acid molecule, and is termed 3’ -UTR. The sequence of an UTR can be homologous or heterologous to the sequence of the coding region found in a nucleic acid molecule. Multiple UTRs can be included in a nucleic acid molecule and can be of the same or different sequences, and/or genetic origin. According to the present disclosure, any portion of UTRs in a nucleic acid molecule (including none) can be codon optimized and any may independently contain one or more different structural or chemical modification, before and/or after codon optimization.
In some embodiments, a nucleic acid molecule of the present disclosure (e.g., mRNA) comprises UTRs and coding regions that are homologous with respect to each other. In other embodiments, a nucleic acid molecule of the present disclosure (e.g., mRNA) comprises UTRs  and coding regions that are heterologous with respect to each other. In some embodiments, to monitor the activity of a UTR sequence, a nucleic acid molecule comprising the UTR and a coding sequence of a detectable probe can be administered in vitro (e.g., cell or tissue culture) or in vivo (e.g., to a subject) , and an effect of the UTR sequence (e.g., modulation on the expression level, cellular localization of the encoded product, or half-life of the encoded product) can be measured using methods known in the art.
In some embodiments, the UTR of a nucleic acid molecule of the present disclosure (e.g., mRNA) comprises at least one translation enhancer element (TEE) that functions to increase the amount of polypeptide or protein produced from the nucleic acid molecule. In some embodiments, the TEE is located in the 5’ -UTR of the nucleic acid molecule. In other embodiments, the TEE is located at the 3’ -UTR of the nucleic acid molecule. In yet other embodiments, at least two TEE are located at the 5’ -UTR and 3’ -UTR of the nucleic acid molecule respectively. In some embodiments, a nucleic acid molecule of the present disclosure (e.g., mRNA) can comprise one or more copies of a TEE sequence or comprise more than one different TEE sequences. In some embodiments, different TEE sequences that are present in a nucleic acid molecule of the present disclosure can be homologues or heterologous with respect to one another.
Various TEE sequences that are known in the art and can be used in connection with the present disclosure. For example, in some embodiments, the TEE can be an internal ribosome entry site (IRES) , HCV-IRES or an IRES element. Chappell et al. Proc. Natl. Acad. Sci. USA 101: 9590-9594, 2004; Zhou et al. Proc. Natl. Acad. Sci. 102: 6273-6278, 2005. Additional internal ribosome entry site (IRES) that can be used in connection with the present disclosure include but are not limited to those described in U.S. Patent No. 7,468,275, U.S. Patent Publication No. 2007/0048776 and U.S.Patent Publication No. 2011/0124100 and International Patent Publication No. WO2007/025008 and International Patent Publication No. WO2001/055369, the content of each of which is enclosed herein by reference in its entirety. In some embodiments, the TEE can be those described in Supplemental Table 1 and in Supplemental Table 2 of Wellensiek et al Genome-wide profiling of human cap-independent translation-enhancing elements, Nature Methods, 2013 Aug; 10 (8) : 747–750; the content of which is incorporated by reference in its entirety.
Additional exemplary TEEs that can be used in connection with the present disclosure include but are not limited to the TEE sequences disclosed in U.S. Patent No. 6,310,197, U.S. Patent No. 6,849,405, U.S. Patent No. 7,456,273, U.S. Patent No. 7,183,395, U.S. Patent Publication No. 2009/0226470, U.S. Patent Publication No. 2013/0177581, U.S. Patent Publication No. 2007/0048776, U.S. Patent Publication No. 2011/0124100, U.S. Patent Publication No. 2009/0093049, International Patent Publication No. WO2009/075886, International Patent Publication No. WO2012/009644, and International Patent Publication No. WO1999/024595, International Patent Publication No. WO2007/025008, International Patent Publication No. WO2001/055371, European Patent No. 2610341, European Patent No. 2610340, the content of each of which is enclosed herein by reference in its entirety.
In various embodiments, a nucleic acid molecule of the present disclosure (e.g., mRNA) comprises at least one UTR that comprises at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18 at least 19, at least 20, at least 21, at least 22, at least 23, at least 24, at least 25, at least 30, at least 35, at least 40, at least 45, at least 50, at least 55 or more than 60 TEE sequences. In some embodiments, the TEE sequences in the UTR of a nucleic acid molecule are copies of the same TEE sequence. In other embodiments, at least two TEE sequences in the UTR of a nucleic acid molecule are of different TEE sequences. In some embodiments, multiple different TEE sequences are arranged in one or more repeating patterns in the UTR region of a nucleic acid molecule. For illustrating purpose only, a repeating pattern can be, for example, ABABAB, AABBAABBAABB, ABCABCABC, or the like, where in these exemplary patterns, each capitalized letter (A, B, or C) represents a different TEE sequence. In some embodiments, at least two TEE sequences are consecutive with one another (i.e., no spacer sequence in between) in a UTR of a nucleic acid molecule. In other embodiments, at least two TEE sequences are separated by a spacer sequence. In some embodiments, a UTR can comprise a TEE sequence-spacer sequence module that is repeated at least once, at least twice, at least 3 times, at least 4 times, at least 5 times, at least 6 times, at least 7 times, at least 8 times, at least 9 times, or more than 9 times in the UTR. In any of the embodiments described in this paragraph, the UTR can be a 5’ -UTR, a 3’ -UTR or both 5’ -UTR and 3’ -UTR of a nucleic acid molecule.
In some embodiments, the UTR of a nucleic acid molecule of the present disclosure (e.g., mRNA) comprises at least one translation suppressing element that functions to decrease the amount of polypeptide or protein produced from the nucleic acid molecule. In some embodiments, the UTR of the nucleic acid molecule comprises one or more miR sequences or fragment thereof (e.g., miR seed sequences) that are recognized by one or more microRNA. In some embodiments, the UTR of the nucleic acid molecule comprises one or more stem-loop structure that downregulates translational activity of the nucleic acid molecule. Other mechanisms for suppressing translational activities associated with a nucleic acid molecule are known in the art. In any of the embodiments described in this paragraph, the UTR can be a 5’ -UTR, a 3’ -UTR or both 5’ -UTR and 3’ -UTR of a nucleic acid molecule.
Table 4 shows exemplary 5’ -UTR and 3’ -UTR sequences that can be used in connection with the present disclosure.
Table 4 Exemplary Untranslated Region (UTR) Sequences.
Figure PCTCN2022123722-appb-000024
Figure PCTCN2022123722-appb-000025
In specific embodiments, the nucleic acid molecule of the present disclosure comprises a 5’ -UTR selected from SEQ ID NOS: 34 to 37. In specific embodiments, the nucleic acid molecule of the present disclosure comprises a 3’ -UTR selected from SEQ ID NOS: 38 and 39. In specific embodiments, the nucleic acid molecule of the present disclosure comprises a 5’ -UTR selected from SEQ ID NOS: 34 to 37 and a 3’ -UTR selected from SEQ ID NOS: 38 and 39. In any of the embodiments described in this paragraph, the nucleic acid molecule may further comprise a coding region having a sequence as described in Section 5.3.1 (Coding Region) such as any of the DNA coding sequences in Tables 1 and 3 or equivalent RNA sequences thereof. In particular embodiments, the nucleic acid molecules described in this paragraph can be RNA molecules in vitro transcribed.
5.3.4 The Polyadenylation (Poly-A) Regions
During natural RNA processing, a long chain of adenosine nucleotides (poly-Aregion) is normally added to messenger RNA (mRNA) molecules to increase the stability of the molecule. Immediately after transcription, the 3’ -end of the transcript is cleaved to free a 3’ -hydroxy. Then poly-A polymerase adds a chain of adenosine nucleotides to the RNA. The process, called polyadenylation, adds a poly-A region that is between 100 and 250 residues long. Without being bound by the theory, it is contemplated that a poly-A region can confer various advantages to the nucleic acid molecule of the present disclosure.
Accordingly, in some embodiments, a nucleic acid molecule of the present disclosure (e.g., an mRNA) comprises a polyadenylation signal. In some embodiments, a nucleic acid molecule of the present disclosure (e.g., an mRNA) comprises one or more polyadenylation (poly-A) regions. In some embodiments, a poly-A region is composed entirely of adenine nucleotides or functional analogs thereof. In some embodiments, the nucleic acid molecule comprises at least one poly-A region at its 3’ -end. In some embodiments, the nucleic acid molecule comprises at least one poly-A region at its 5’ -end. In some embodiments, the nucleic acid molecule comprises at least one poly-A region at its 5’ -end and at least one poly-A region at its 3’ -end.
According to the present disclosure, the poly-A region can have varied lengths in different embodiments. Particularly, in some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 30 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 35 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 40 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 45 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 50 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 55 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 60 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 65 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 70 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 75 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 80 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 85 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 90 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 95 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 100 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 110 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 120 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 130 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 140 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 150 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 160 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 170 nucleotides  in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 180 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 190 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 200 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 225 nucleotides in length. In some embodiments, the poly-Aregion of a nucleic acid molecule of the present disclosure is at least 250 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 275 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 300 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 350 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 400 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 450 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 500 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 600 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 700 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 800 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 900 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 1000 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 1100 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 1200 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 1300 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 1400 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 1500 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 1600 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid  molecule of the present disclosure is at least 1700 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 1800 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 1900 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 2000 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 2250 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 2500 nucleotides in length. In some embodiments, the poly-Aregion of a nucleic acid molecule of the present disclosure is at least 2750 nucleotides in length. In some embodiments, the poly-A region of a nucleic acid molecule of the present disclosure is at least 3000 nucleotides in length.
In some embodiments, length of a poly-A region in a nucleic acid molecule can be selected based on the overall length of the nucleic acid molecule, or a portion thereof (such as the length of the coding region or the length of an open reading frame of the nucleic acid molecule, etc. ) . For example, in some embodiments, the poly-A region accounts for about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%or more of the total length of nucleic acid molecule containing the poly-A region.
Without being bound by the theory, it is contemplated that certain RNA-binding proteins can bind to the poly-A region located at the 3’ -end of an mRNA molecule. These poly-A binding proteins (PABP) can modulate mRNA expression, such as interacting with translation initiation machinery in a cell and/or protecting the 3’ -poly-A tails from degradation. Accordingly, in some embodiments, in some embodiments, the nucleic acid molecule of the present disclosure (e.g., mRNA) comprises at least one binding site for poly-A binding protein (PABP) . In other embodiments, the nucleic acid molecule is conjugated or complex with a PABP before loaded into a delivery vehicle (e.g., lipid nanoparticles) .
In some embodiments, the nucleic acid molecule of the present disclosure (e.g., mRNA) comprises a poly-A-G Quartet. The G-quartet is a cyclic hydrogen bonded array of four guanosine nucleotides that can be formed by G-rich sequences in both DNA and RNA. In this embodiment, the G-quartet is incorporated at the end of the poly-A region. The resultant polynucleotides (e.g., mRNA) may be assayed for stability, protein production and other parameters including half-life at various time points. It has been discovered that the polyA-G  quartet structure results in protein production equivalent to at least 75%of that seen using a poly-A region of 120 nucleotides alone.
In some embodiments, the nucleic acid molecule of the present disclosure (e.g., mRNA) may include a poly-A region and may be stabilized by the addition of a 3’ -stabilizing region. In some embodiments, the 3’ -stabilizing region which may be used to stabilize a nucleic acid molecule (e.g., mRNA) including the poly-A or poly-A-G Quartet structures as described in International Patent Publication No. WO2013/103659, the content of which is incorporated herein by reference in its entirety.
In other embodiments, the 3’ -stabilizing region which may be used in connection with the nucleic acid molecules of the present disclosure include a chain termination nucleoside such as but is not limited to 3’ -deoxyadenosine (cordycepin) , 3’ -deoxyuridine, 3’ -deoxycytosine, 3’ -deoxyguanosine, 3’ -deoxythymine, 2’ , 3’ -dideoxynucleosides, such as 2’ , 3’ -dideoxyadenosine, 2’ , 3’ -dideoxyuridine, 2’ , 3’ -dideoxycytosine, 2’ , 3’ -dideoxyguanosine, 2’ , 3’ -dideoxythymine, a 2’ -deoxynucleoside, or an O-methylnucleoside, 3’ -deoxynucleoside, 2’ , 3’ -dideoxynucleoside 3’ -O-methylnucleosides, 3’ -O-ethylnucleosides, 3’ -arabinosides, and other alternative nucleosides known in the art and/or described herein.
Table 5 shows exemplary full length vector sequences encoding IL-12 polypeptides according to the present disclosure, and corresponding mRNA transcripts containing the 5’ -CAP, 5’ -UTR, 3’ -UTR, and coding sequences.
Table 5 Exemplary full length plasmid and mRNA transcript sequences.
Figure PCTCN2022123722-appb-000026
Figure PCTCN2022123722-appb-000027
Figure PCTCN2022123722-appb-000028
Figure PCTCN2022123722-appb-000029
Figure PCTCN2022123722-appb-000030
Figure PCTCN2022123722-appb-000031
Figure PCTCN2022123722-appb-000032
Figure PCTCN2022123722-appb-000033
Figure PCTCN2022123722-appb-000034
Figure PCTCN2022123722-appb-000035
Figure PCTCN2022123722-appb-000036
Figure PCTCN2022123722-appb-000037
Figure PCTCN2022123722-appb-000038
Figure PCTCN2022123722-appb-000039
Figure PCTCN2022123722-appb-000040
Figure PCTCN2022123722-appb-000041
In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes an IL-12 containing fusion protein. In particular embodiments, the therapeutic nucleic acid is a vector comprising the sequence selected from SEQ ID NOS: 40, 42, 44, 46, and 48. In particular embodiments, the therapeutic nucleic acid comprises a RNA sequence transcribed from the vector sequence selected from SEQ ID NOS: 40, 42, 44, 46, and 48. In particular embodiments, the nucleic acid molecule is an mRNA molecule. In particular embodiments, the nucleic acid molecule is an mRNA molecule comprising the sequence selected from SEQ ID NOS: 41, 43, 45, 47, and 49.
In particular embodiments, the therapeutic nucleic acid of the present disclosure encodes an IL-15 containing fusion protein. In particular embodiments, the therapeutic nucleic acid is a vector comprising the sequence of SEQ ID NO: 52. In particular embodiments, the therapeutic nucleic acid comprises a RNA sequence transcribed from the vector sequence of  SEQ ID NO: 52. In particular embodiments, the nucleic acid molecule is an mRNA molecule. In particular embodiments, the nucleic acid molecule is an mRNA molecule comprising the sequence of SEQ ID NO: 53.
5.3.5 Secondary Structure
Without being bound by the theory, it is contemplated that a stem-loop structure can direct RNA folding, protect structural stability of a nucleic acid molecule (e.g., mRNA) , provide recognition sites for RNA binding proteins, and serve as a substrate for enzymatic reactions. For example, the incorporation of a miR sequence and/or a TEE sequence changes the shape of the stem loop region which may increase and/or decrease translation (Kedde et al. A Pumilio-induced RNA structure switch in p27-3’ UTR controls miR-221 and miR-222 accessibility. Nat Cell Biol., 2010 Oct; 12 (10) : 1014-20, the content of which is herein incorporated by reference in its entirety) .
Accordingly, in some embodiments, the nucleic acid molecules as described herein (e.g., mRNA) or a portion thereof may assume a stem-loop structure, such as but is not limited to a histone stem loop. In some embodiments, the stem-loop structure is formed from a stem-loop sequence that is about 25 or about 26 nucleotides in length such as, but not limited to, those as described in International Patent Publication No. WO2013/103659, the content of which is incorporated herein by reference in its entirety. Additional examples of stem-loop sequences include those described in International Patent Publication No. WO2012/019780 and International Patent Publication No. WO201502667, the contents of which are incorporated herein by reference. In some embodiments, the step-loop sequence comprises a TEE as described herein. In some embodiments, the step-loop sequence comprises a miR sequence as described herein. In specific embodiments, the stem loop sequence may include a miR-122 seed sequence. In specific embodiments, the nucleic acid molecule comprises the stem-loop sequence CAAAGGCTCTTTTCAGAGCCACCA (SEQ ID NO: 75) . In other embodiments, the nucleic acid molecule comprises the stem-loop sequence CAAAGGCUCUUUUCAGAGCCACCA (SEQ ID NO: 76) .
In some embodiments, the nucleic acid molecule of the present disclosure (e.g., mRNA) comprises a stem-loop sequence located upstream (to the 5’ -end) of the coding region in a nucleic acid molecule. In some embodiments, the stem-loop sequence is located within the 5’ - UTR of the nucleic acid molecule. In some embodiments, the nucleic acid molecule of the present disclosure (e.g., mRNA) comprises a stem-loop sequence located downstream (to the 3’ -end) of the coding region in a nucleic acid molecule. In some embodiments, the stem-loop sequence is located within the 3’ -UTR of the nucleic acid molecule. In some cases, a nucleic acid molecule can contain more than one stem-loop sequences. In some embodiment, the nucleic acid molecule comprises at least one stem-loop sequence in the 5’ -UTR, and at least one stem-loop sequence in the 3’ -UTR.
In some embodiments, a nucleic acid molecule comprising a stem-loop structure further comprises a stabilization region. In some embodiment, the stabilization region comprises at least one chain terminating nucleoside that functions to slow down degradation and thus increases the half-life of the nucleic acid molecule. Exemplary chain terminating nucleoside that can be used in connection with the present disclosure include but are not limited to 3’ -deoxyadenosine (cordycepin) , 3’ -deoxyuridine, 3’ -deoxycytosine, 3’ -deoxyguanosine, 3’ -deoxythymine, 2’ , 3’ -dideoxynucleosides, such as 2’ , 3’ -dideoxyadenosine, 2’ , 3’ -dideoxyuridine, 2’ , 3’ -dideoxycytosine, 2’ , 3’ -dideoxyguanosine, 2’ , 3’ -dideoxythymine, a 2’ -deoxynucleoside, or an O-methylnucleoside, 3’ -deoxynucleoside, 2’ , 3’ -dideoxynucleoside 3’ -O-methylnucleosides, 3’ -O-ethylnucleosides, 3’ -arabinosides, and other alternative nucleosides known in the art and/or described herein. In other embodiments, a stem-loop structure may be stabilized by an alteration to the 3’ -region of the polynucleotide that can prevent and/or inhibit the addition of oligio (U) (International Patent Publication No. WO2013/103659, incorporated herein by reference in its entirety) .
In some embodiments, a nucleic acid molecule of the present disclosure comprises at least one stem-loop sequence and a poly-A region or polyadenylation signal. Non-limiting examples of polynucleotide sequences comprising at least one stem-loop sequence and a poly-A region or a polyadenylation signal include those described in International Patent Publication No. WO2013/120497, International Patent Publication No. WO2013/120629, International Patent Publication No. WO2013/120500, International Patent Publication No. WO2013/120627, International Patent Publication No. WO2013/120498, International Patent Publication No. WO2013/120626, International Patent Publication No. WO2013/120499 and International Patent Publication No. WO2013/120628, the content of each of which is incorporated herein by reference in its entirety.
In some embodiments, the nucleic acid molecule comprising a stem-loop sequence and a poly-A region or a polyadenylation signal can encode for a pathogen antigen or fragment thereof such as the polynucleotide sequences described in International Patent Publication No. WO2013/120499 and International Patent Publication No. WO2013/120628, the content of each of which is incorporated herein by reference in its entirety.
In some embodiments, the nucleic acid molecule comprising a stem-loop sequence and a poly-A region or a polyadenylation signal can encode for a therapeutic protein such as the polynucleotide sequences described in International Patent Publication No. WO2013/120497 and International Patent Publication No. WO2013/120629, the content of each of which is incorporated herein by reference in its entirety.
In some embodiments, the nucleic acid molecule comprising a stem-loop sequence and a poly-A region or a polyadenylation signal can encode for a tumor antigen or fragment thereof such as the polynucleotide sequences described in International Patent Publication No. WO2013/120500 and International Patent Publication No. WO2013/120627, the content of each of which is incorporated herein by reference in its entirety.
In some embodiments, the nucleic acid molecule comprising a stem-loop sequence and a poly-A region or a polyadenylation signal can code for an allergenic antigen or an autoimmune self-antigen such as the polynucleotide sequences described in International Patent Publication No. WO2013/120498 and International Patent Publication No. WO2013/120626, the content of each of which is incorporated herein by reference in its entirety.
5.3.6 Functional nucleotide analogs
In some embodiments, a payload nucleic acid molecule described herein contains only canonical nucleotides selected from A (adenosine) , G (guanosine) , C (cytosine) , U (uridine) , and T (thymidine) . Without being bound by the theory, it is contemplated that certain functional nucleotide analogs can confer useful properties to a nucleic acid molecule. Examples of such as useful properties in the context of the present disclosure include but are not limited to increased stability of the nucleic acid molecule, reduced immunogenicity of the nucleic acid molecule in inducing innate immune responses, enhanced production of protein encoded by the nucleic acid molecule, increased intracellular delivery and/or retention of the nucleic acid molecule, and/or reduced cellular toxicity of the nucleic acid molecule, etc.
Accordingly, in some embodiments, a payload nucleic acid molecule comprises at least one functional nucleotide analog as described herein. In some embodiments, the functional nucleotide analog contains at least one chemical modification to the nucleobase, the sugar group and/or the phosphate group. Accordingly, a payload nucleic acid molecule comprising at least one functional nucleotide analog contains at least one chemical modification to the nucleobases, the sugar groups, and/or the internucleoside linkage. Exemplary chemical modifications to the nucleobases, sugar groups, or internucleoside linkages of a nucleic acid molecule are provided herein.
As described herein, ranging from 0%to 100%of all nucleotides in a payload nucleic acid molecule can be functional nucleotide analogs as described herein. For example, in various embodiments, from about 1%to about 20%, from about 1%to about 25%, from about 1%to about 50%, from about 1%to about 60%, from about 1%to about 70%, from about 1%to about 80%, from about 1%to about 90%, from about 1%to about 95%, from about 10%to about 20%, from about 10%to about 25%, from about 10%to about 50%, from about 10%to about 60%, from about 10%to about 70%, from about 10%to about 80%, from about 10%to about 90%, from about 10%to about 95%, from about 10%to about 100%, from about 20%to about 25%, from about 20%to about 50%, from about 20%to about 60%, from about 20%to about 70%, from about 20%to about 80%, from about 20%to about 90%, from about 20%to about 95%, from about 20%to about 100%, from about 50%to about 60%, from about 50%to about 70%, from about 50%to about 80%, from about 50%to about 90%, from about 50%to about 95%, from about 50%to about 100%, from about 70%to about 80%, from about 70%to about 90%, from about 70%to about 95%, from about 70%to about 100%, from about 80%to about 90%, from about 80%to about 95%, from about 80%to about 100%, from about 90%to about 95%, from about 90%to about 100%, or from about 95%to about 100%of all nucleotides in a nucleic acid molecule are functional nucleotide analogs described herein. In any of these embodiments, a functional nucleotide analog can be present at any position (s) of a nucleic acid molecule, including the 5’ -terminus, 3’ -terminus, and/or one or more internal positions. In some embodiments, a single nucleic acid molecule can contain different sugar modifications, different nucleobase modifications, and/or different types internucleoside linkages (e.g., backbone structures) .
As described herein, ranging from 0%to 100%of all nucleotides of a kind (e.g., all purine-containing nucleotides as a kind, or all pyrimidine-containing nucleotides as a kind, or all A, G, C, T or U as a kind) in a payload nucleic acid molecule can be functional nucleotide analogs as described herein. For example, in various embodiments, from about 1%to about 20%, from about 1%to about 25%, from about 1%to about 50%, from about 1%to about 60%, from about 1%to about 70%, from about 1%to about 80%, from about 1%to about 90%, from about 1%to about 95%, from about 10%to about 20%, from about 10%to about 25%, from about 10%to about 50%, from about 10%to about 60%, from about 10%to about 70%, from about 10%to about 80%, from about 10%to about 90%, from about 10%to about 95%, from about 10%to about 100%, from about 20%to about 25%, from about 20%to about 50%, from about 20%to about 60%, from about 20%to about 70%, from about 20%to about 80%, from about 20%to about 90%, from about 20%to about 95%, from about 20%to about 100%, from about 50%to about 60%, from about 50%to about 70%, from about 50%to about 80%, from about 50%to about 90%, from about 50%to about 95%, from about 50%to about 100%, from about 70%to about 80%, from about 70%to about 90%, from about 70%to about 95%, from about 70%to about 100%, from about 80%to about 90%, from about 80%to about 95%, from about 80%to about 100%, from about 90%to about 95%, from about 90%to about 100%, or from about 95%to about 100%of a kind of nucleotides in a nucleic acid molecule are functional nucleotide analogs described herein. In any of these embodiments, a functional nucleotide analog can be present at any position (s) of a nucleic acid molecule, including the 5’ -terminus, 3’ -terminus, and/or one or more internal positions. In some embodiments, a single nucleic acid molecule can contain different sugar modifications, different nucleobase modifications, and/or different types internucleoside linkages (e.g., backbone structures) .
5.3.7 Modification to Nucleobases
In some embodiments, a functional nucleotide analog contains a non-canonical nucleobase. In some embodiments, canonical nucleobases (e.g., adenine, guanine, uracil, thymine, and cytosine) in a nucleotide can be modified or replaced to provide one or more functional analogs of the nucleotide. Exemplary modification to nucleobases include but are not limited to one or more substitutions or modifications including but not limited to alkyl, aryl,  halo, oxo, hydroxyl, alkyloxy, and/or thio substitutions; one or more fused or open rings, oxidation, and/or reduction.
In some embodiments, the non-canonical nucleobase is a modified uracil. In specific embodiments, at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%or 95%of uracil (s) in the present nucleic acid molecule are modified. In specific embodiments, all (100%) of the uracil (s) in the present nucleic acid molecule are modified. Exemplary nucleobases and nucleosides having an modified uracil include pseudouridine (ψ) , pyridin-4-one ribonucleoside, 5-aza-uracil, 6-aza-uracil, 2-thio-5-aza-uracil, 2-thio-uracil (s2U) , 4-thio-uracil (s4U) , 4-thio-pseudouridine, 2-thio-pseudouridine, 5-hydroxy-uracil (ho5U) , 5-aminoallyl-uracil, 5-halo-uracil (e.g., 5-iodo-uracil or 5-bromo-uracil) , 3-methyl-uracil (m3U) , 5-methoxy-uracil (mo5U) , uracil 5-oxyacetic acid (cmo5U) , uracil 5-oxyacetic acid methyl ester (mcmo5U) , 5-carboxymethyl-uracil (cm5U) , 1-carboxymethyl-pseudouridine, 5-carboxyhydroxymethyl-uracil (chm5U) , 5-carboxyhydroxymethyl-uracil methyl ester (mchm5U) , 5-methoxycarbonylmethyl-uracil (mcm5U) , 5-methoxycarbonylmethyl-2-thio-uracil (mcm5s2U) , 5-aminomethyl-2-thio-uracil (nm5s2U) , 5-methylaminomethyl-uracil (mnm5U) , 5-methylaminomethyl-2-thio-uracil (mnm5s2U) , 5-methylaminomethyl-2-seleno-uracil (mnm5se2U) , 5-carbamoylmethyl-uracil (ncm5U) , 5-carboxymethylaminomethyl-uracil (cmnm5U) , 5-carboxymethylaminomethyl-2-thio-uracil (cmnm5s2U) , 5-propynyl-uracil, 1-propynyl-pseudouracil, 5-taurinomethyl-uracil (τm 5U) , 1-taurinomethyl-pseudouridine, 5-taurinomethyl-2-thio-uracil (τm55s2U) , 1-taurinomethyl-4-thio-pseudouridine, 5-methyl-uracil (m5U, i.e., having the nucleobase deoxythymine) , 1-methyl-pseudouridine (m1ψ) , 1-ethyl-pseudouridine (Et1ψ) , 5-methyl-2-thio-uracil (m5s2U) , 1-methyl-4-thio-pseudouridine (m1s4ψ) , 4-thio-1-methyl-pseudouridine, 3-methyl-pseudouridine (m3ψ) , 2-thio-1-methyl-pseudouridine, 1-methyl-1-deaza-pseudouridine, 2-thio-1-methyl-1-deaza-pseudouridine, dihydrouracil (D) , dihydropseudouridine, 5, 6-dihydrouracil, 5-methyl-dihydrouracil (m5D) , 2-thio-dihydrouracil, 2-thio-dihydropseudouridine, 2-methoxy-uracil, 2-methoxy-4-thio-uracil, 4-methoxy-pseudouridine, 4-methoxy-2-thio-pseudouridine, N1-methyl-pseudouridine, 3- (3-amino-3-carboxypropyl) uracil (acp3U) , 1-methyl-3- (3-amino-3-carboxypropyl) pseudouridine (acp3ψ) , 5- (isopentenylaminomethyl) uracil (m5U) , 5- (isopentenylaminomethyl) -2-thio-uracil (m5s2U) , 5, 2’ -O-dimethyl-uridine (m5Um) , 2-thio-2’ -O-methyl-uridine (s2Um) , 5-methoxycarbonylmethyl-2’ -O-methyl-uridine (mcm5Um) , 5-carbamoylmethyl-2’ -O-methyl-uridine (ncm5Um) , 5-carboxymethylaminomethyl-2’ -O-methyl- uridine (cmnm5Um) , 3, 2’ -O-dimethyl-uridine (m3Um) , and 5- (isopentenylaminomethyl) -2’ -O-methyl-uridine (inm5Um) , 1-thio-uracil, deoxythymidine, 5- (2-carbomethoxyvinyl) -uracil, 5- (carbamoylhydroxymethyl) -uracil, 5-carbamoylmethyl-2-thio-uracil, 5-carboxymethyl-2-thio-uracil, 5-cyanomethyl-uracil, 5-methoxy-2-thio-uracil, and 5- [3- (1-E-propenylamino) ] uracil.
In some embodiments, the non-canonical nucleobase is a modified cytosine. In specific embodiments, at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%or 95%of cytosine (s) in the present nucleic acid molecule are modified. In specific embodiments, all (100%) of the cytosine (s) in the present nucleic acid molecule are modified. Exemplary nucleobases and nucleosides having a modified cytosine include 5-aza-cytosine, 6-aza-cytosine, pseudoisocytidine, 3-methyl-cytosine (m3C) , N4-acetyl-cytosine (ac4C) , 5-formyl-cytosine (f5C) , N4-methyl-cytosine (m4C) , 5-methyl-cytosine (m5C) , 5-halo-cytosine (e.g., 5-iodo-cytosine) , 5-hydroxymethyl-cytosine (hm5C) , 1-methyl-pseudoisocytidine, pyrrolo-cytosine, pyrrolo-pseudoisocytidine, 2-thio-cytosine (s2C) , 2-thio-5-methyl-cytosine, 4-thio-pseudoisocytidine, 4-thio-1-methyl-pseudoisocytidine, 4-thio-1-methyl-1-deaza-pseudoisocytidine, 1-methyl-1-deaza-pseudoisocytidine, zebularine, 5-aza-zebularine, 5-methyl-zebularine, 5-aza-2-thio-zebularine, 2-thio-zebularine, 2-methoxy-cytosine, 2-methoxy-5-methyl-cytosine, 4-methoxy-pseudoisocytidine, 4-methoxy-1-methyl-pseudoisocytidine, lysidine (k2C) , 5, 2’ -O-dimethyl-cytidine (m5Cm) , N4-acetyl-2’ -O-methyl-cytidine (ac4Cm) , N4, 2’ -O-dimethyl-cytidine (m4Cm) , 5-formyl-2’ -O-methyl-cytidine (fSCm) , N4, N4, 2’ -O-trimethyl-cytidine (m42Cm) , 1-thio-cytosine, 5-hydroxy-cytosine, 5- (3-azidopropyl) -cytosine, and 5- (2-azidoethyl) -cytosine.
In some embodiments, the non-canonical nucleobase is a modified adenine. In specific embodiments, at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%or 95%of adenine (s) in the present nucleic acid molecule are modified. In specific embodiments, all (100%) of the adenine (s) in the present nucleic acid molecule are modified. Exemplary nucleobases and nucleosides having an alternative adenine include 2-amino-purine, 2, 6-diaminopurine, 2-amino-6-halo-purine (e.g., 2-amino-6-chloro-purine) , 6-halo-purine (e.g., 6-chloro-purine) , 2-amino-6-methyl-purine, 8-azido-adenine, 7-deaza-adenine, 7-deaza-8-aza-adenine, 7-deaza-2-amino-purine, 7-deaza-8-aza-2-amino-purine, 7-deaza-2, 6-diaminopurine, 7-deaza-8-aza-2, 6-diaminopurine, 1-methyl-adenine (m1A) , 2-methyl-adenine (m2A) , N6-methyl-adenine (m6A) , 2-methylthio-N6-methyl-adenine (ms2m6A) , N6-isopentenyl-adenine (i6A) , 2- methylthio-N6-isopentenyl-adenine (ms2i6A) , N6- (cis-hydroxyisopentenyl) adenine (io6A) , 2-methylthio-N6- (cis-hydroxyisopentenyl) adenine (ms2io6A) , N6-glycinylcarbamoyl-adenine (g6A) , N6-threonylcarbamoyl-adenine (t6A) , N6-methyl-N6-threonylcarbamoyl-adenine (m6t6A) , 2-methylthio-N6-threonylcarbamoyl-adenine (ms2g6A) , N6, N6-dimethyl-adenine (m62A) , N6-hydroxynorvalylcarbamoyl-adenine (hn6A) , 2-methylthio-N6-hydroxynorvalylcarbamoyl-adenine (ms2hn6A) , N6-acetyl-adenine (ac6A) , 7-methyl-adenine, 2-methylthio-adenine, 2-methoxy-adenine, N6, 2’ -O-dimethyl-adenosine (m6Am) , N6, N6, 2’ -O-trimethyl-adenosine (m62Am) , 1, 2’ -O-dimethyl-adenosine (m1Am) , 2-amino-N6-methyl-purine, 1-thio-adenine, 8-azido-adenine, N6- (19-amino-pentaoxanonadecyl) -adenine, 2, 8-dimethyl-adenine, N6-formyl-adenine, and N6-hydroxymethyl-adenine.
In some embodiments, the non-canonical nucleobase is a modified guanine. In specific embodiments, at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%or 95%of guanine (s) in the present nucleic acid molecule are modified. In specific embodiments, all (100%) of the guanine (s) in the present nucleic acid molecule are modified. Exemplary nucleobases and nucleosides having a modified guanine include inosine (I) , 1-methyl-inosine (m1I) , wyosine (imG) , methylwyosine (mimG) , 4-demethyl-wyosine (imG-14) , isowyosine (imG2) , wybutosine (yW) , peroxywybutosine (o2yW) , hydroxywybutosine (OHyW) , undermodified hydroxywybutosine (OHyW*) , 7-deaza-guanine, queuosine (Q) , epoxyqueuosine (oQ) , galactosyl-queuosine (galQ) , mannosyl-queuosine (manQ) , 7-cyano-7-deaza-guanine (preQO) , 7-aminomethyl-7-deaza-guanine (preQ1) , archaeosine (G+) , 7-deaza-8-aza-guanine, 6-thio-guanine, 6-thio-7-deaza-guanine, 6-thio-7-deaza-8-aza-guanine, 7-methyl-guanine (m7G) , 6-thio-7-methyl-guanine, 7-methyl-inosine, 6-methoxy-guanine, 1-methyl-guanine (m1G) , N2-methyl-guanine (m2G) , N2, N2-dimethyl-guanine (m22G) , N2, 7-dimethyl-guanine (m2, 7G) , N2, N2, 7-dimethyl-guanine (m2, 2, 7G) , 8-oxo-guanine, 7-methyl-8-oxo-guanine, 1-methyl-6-thio-guanine, N2-methyl-6-thio-guanine, N2, N2-dimethyl-6-thio-guanine, N2-methyl-2’ -O-methyl-guanosine (m2Gm) , N2, N2-dimethyl-2’ -O-methyl-guanosine (m22Gm) , 1-methyl-2’ -O-methyl-guanosine (m1Gm) , N2, 7-dimethyl-2’ -O-methyl-guanosine (m2, 7Gm) , 2’ -O-methyl-inosine (Im) , 1, 2’ -O-dimethyl-inosine (m1Im) , 1-thio-guanine, and O-6-methyl-guanine.
In some embodiments, the non-canonical nucleobase of a functional nucleotide analog can be independently a purine, a pyrimidine, a purine or pyrimidine analog. For example, in some embodiments, the non-canonical nucleobase can be modified adenine, cytosine, guanine,  uracil, or hypoxanthine. In other embodiments, the non-canonical nucleobase can also include, for example, naturally-occurring and synthetic derivatives of a base, including pyrazolo [3, 4-d] pyrimidines, 5-methylcytosine (5-me-C) , 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil) , 4-thiouracil, 8-halo (e.g., 8-bromo) , 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxy and other 8-substituted adenines and guanines, 5-halo particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 8-azaguanine and 8-azaadenine, deazaguanine, 7-deazaguanine, 3-deazaguanine, deazaadenine, 7-deazaadenine, 3-deazaadenine, pyrazolo [3, 4-d] pyrimidine, imidazo [1, 5-a] 1, 3, 5 triazinones, 9-deazapurines, imidazo [4, 5-d] pyrazines, thiazolo [4, 5-d] pyrimidines, pyrazin-2-ones, 1, 2, 4-triazine, pyridazine; or 1, 3, 5 triazine.
In specific embodiments, the present nucleic acid molecule comprises modifications to uracil. In particular embodiments, the present nucleic acid molecule comprises one or more pseudouridine (ψ) . In specific embodiments, at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%or 95%of uridine (s) in the present nucleic acid molecule are replaced by pseudouridine (ψ) . In specific embodiments, all (100%) of the uridine (s) in the present nucleic acid molecule are replaced by pseudouridine (ψ) .
In particular embodiments, the present nucleic acid molecule comprises one or more 1-methyl-pseudouridine (m1ψ) . In specific embodiments, at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%or 95%of uridine (s) in the present nucleic acid molecule are replaced by 1-methyl-pseudouridine (m 1ψ) . In specific embodiments, all (100%) of the uridine (s) in the present nucleic acid molecule are replaced by 1-methyl-pseudouridine (m 1ψ) .
5.3.8 Modification to the Sugar
In some embodiments, a functional nucleotide analog contains a non-canonical sugar group. In various embodiments, the non-canonical sugar group can be a 5-carbon or 6-carbon sugar (such as pentose, ribose, arabinose, xylose, glucose, galactose, or a deoxy derivative thereof) with one or more substitutions, such as a halo group, a hydroxy group, a thiol group, an alkyl group, an alkoxy group, an alkenyloxy group, an alkynyloxy group, an cycloalkyl group, an  aminoalkoxy group, an alkoxyalkoxy group, an hydroxyalkoxy group, an amino group, an azido group, an aryl group, an aminoalkyl group, an aminoalkenyl group, an aminoalkynyl group, etc.
Generally, RNA molecules contains the ribose sugar group, which is a 5-membered ring having an oxygen. Exemplary, non-limiting alternative nucleotides include replacement of the oxygen in ribose (e.g., with S, Se, or alkylene, such as methylene or ethylene) ; addition of a double bond (e.g., to replace ribose with cyclopentenyl or cyclohexenyl) ; ring contraction of ribose (e.g., to form a 4-membered ring of cyclobutane or oxetane) ; ring expansion of ribose (e.g., to form a 6-or 7-membered ring having an additional carbon or heteroatom, such as for anhydrohexitol, altritol, mannitol, cyclohexanyl, cyclohexenyl, and morpholino (that also has a phosphoramidate backbone) ) ; multicyclic forms (e.g., tricyclo and “unlocked” forms, such as glycol nucleic acid (GNA) (e.g., R-GNA or S-GNA, where ribose is replaced by glycol units attached to phosphodiester bonds) , threose nucleic acid (TNA, where ribose is replace with α-L-threofuranosyl- (3’ →2’ ) ) , and peptide nucleic acid (PNA, where 2-amino-ethyl-glycine linkages replace the ribose and phosphodiester backbone) .
In some embodiments, the sugar group contains one or more carbons that possess the opposite stereochemical configuration of the corresponding carbon in ribose. Thus, a nucleic acid molecule can include nucleotides containing, e.g., arabinose or L-ribose, as the sugar. In some embodiments, the nucleic acid molecule includes at least one nucleoside wherein the sugar is L-ribose, 2’ -O-methyl-ribose, 2’ -fluoro-ribose, arabinose, hexitol, an LNA, or a PNA.
5.3.9 Modifications to the Internucleoside Linkage
In some embodiments, the payload nucleic acid molecule of the present disclosure can contain one or more modified internucleoside linkage (e.g., phosphate backbone) . Backbone phosphate groups can be altered by replacing one or more of the oxygen atoms with a different substituent.
In some embodiments, the functional nucleotide analogs can include the replacement of an unaltered phosphate moiety with another internucleoside linkage as described herein. Examples of alternative phosphate groups include, but are not limited to, phosphorothioate, phosphoroselenates, boranophosphates, boranophosphate esters, hydrogen phosphonates, phosphoramidates, phosphorodiamidates, alkyl or aryl phosphonates, and phosphotriesters. Phosphorodithioates have both non-linking oxygens replaced by sulfur. The phosphate linker can  also be altered by the replacement of a linking oxygen with nitrogen (bridged phosphoramidates) , sulfur (bridged phosphorothioates) , and carbon (bridged methylene-phosphonates) .
The alternative nucleosides and nucleotides can include the replacement of one or more of the non-bridging oxygens with a borane moiety (BH3) , sulfur (thio) , methyl, ethyl, and/or methoxy. As a non-limiting example, two non-bridging oxygens at the same position (e.g., the alpha (α) , beta (β) or gamma (γ) position) can be replaced with a sulfur (thio) and a methoxy. The replacement of one or more of the oxygen atoms at the position of the phosphate moiety (e.g., α-thio phosphate) is provided to confer stability (such as against exonucleases and endonucleases) to RNA and DNA through the unnatural phosphorothioate backbone linkages. Phosphorothioate DNA and RNA have increased nuclease resistance and subsequently a longer half-life in a cellular environment.
Other internucleoside linkages that may be employed according to the present disclosure, including internucleoside linkages which do not contain a phosphorous atom, are described herein.
Additional examples of nucleic acid molecules (e.g., mRNA) , compositions, formulations and/or methods associated therewith that can be used in connection with the present disclosure further include those described in WO2002/098443, WO2003/051401, WO2008/052770, WO2009127230, WO2006122828, WO2008/083949, WO2010088927, WO2010/037539, WO2004/004743, WO2005/016376, WO2006/024518, WO2007/095976, WO2008/014979, WO2008/077592, WO2009/030481, WO2009/095226, WO2011069586, WO2011026641, WO2011/144358, WO2012019780, WO2012013326, WO2012089338, WO2012113513, WO2012116811, WO2012116810, WO2013113502, WO2013113501, WO2013113736, WO2013143698, WO2013143699, WO2013143700, WO2013/120626, WO2013120627, WO2013120628, WO2013120629, WO2013174409, WO2014127917, WO2015/024669, WO2015/024668, WO2015/024667, WO2015/024665, WO2015/024666, WO2015/024664, WO2015101415, WO2015101414, WO2015024667, WO2015062738, WO2015101416, the content of each of which is incorporated herein in its entirety.
Therapeutic nucleic acid molecules as described herein can by isolated or synthesized using methods known in the art. In some embodiments, DNA or RNA molecules to be used in connection with the present disclosure are chemically synthesized. In other embodiments, DNA  or RNA molecules to be used in connection with the present disclosure are isolated from a natural source.
In some embodiments, mRNA molecules to be used in connection with the present disclosure are biosynthesized using a host cell. In particular embodiments, an mRNA is produced by transcribing a corresponding DNA sequencing using a host cell. In some embodiments, a DNA sequence encoding an mRNA sequence is incorporated into an expression vector, which vector is then introduced into a host cell (e.g., E. coli) using methods known in the art. The host cell is then cultured under a suitable condition to produce mRNA transcripts. Other methods for producing an mRNA molecule from an encoding DNA are known in the art. For example, in some embodiments, a cell-free (in vitro) transcription system comprising enzymes of the transcription machinery of a host cell can be used to produce mRNA transcripts.
5.4 Nanoparticle Compositions
In one aspect, nucleic acid molecules described herein are formulated for in vitro and in vivo delivery. Particularly, in some embodiments the nucleic acid molecule is formulated into a lipid-containing composition. In some embodiments, the lipid-containing composition forms lipid nanoparticles enclosing the nucleic acid molecule within a lipid shell. In some embodiments, the lipid shells protects the nucleic acid molecules from degradation. In some embodiments, the lipid nanoparticles also facilitate transportation of the enclosed nucleic acid molecules into intracellular compartments and/or machinery to exert an intended therapeutic of prophylactic function. In certain embodiments, nucleic acids, when present in the lipid nanoparticles, are resistant in aqueous solution to degradation with a nuclease. Lipid nanoparticles comprising nucleic acids and their method of preparation are known in the art, such as those disclosed in, e.g., U.S. Patent Publication No. 2004/0142025, U.S. Patent Publication No. 2007/0042031, PCT Publication No. WO 2017/004143, PCT Publication No. WO 2015/199952, PCT Publication No. WO 2013/016058, and PCT Publication No. WO 2013/086373, the full disclosures of each of which are herein incorporated by reference in their entirety for all purposes.
In some embodiments, the largest dimension of a nanoparticle composition provided herein is 1 μm or shorter (e.g., ≤1 μm, ≤900 nm, ≤800 nm, ≤700 nm, ≤600 nm, ≤500 nm, ≤400 nm, ≤300 nm, ≤200 nm, ≤175 nm, ≤150 nm, ≤125 nm, ≤100 nm, ≤75 nm, ≤50 nm, or shorter) ,  such as when measured by dynamic light scattering (DLS) , transmission electron microscopy, scanning electron microscopy, or another method. In one embodiment, the lipid nanoparticle provided herein has at least one dimension that is in the range of from about 40 to about 200 nm. In one embodiment, the at least one dimension is in the range of from about 40 to about 100 nm.
Nanoparticle compositions that can be used in connection with the present disclosure include, for example, lipid nanoparticles (LNPs) , nano liproprotein particles, liposomes, lipid vesicles, and lipoplexes. In some embodiments, nanoparticle compositions are vesicles including one or more lipid bilayers. In some embodiments, a nanoparticle composition includes two or more concentric bilayers separated by aqueous compartments. Lipid bilayers may be functionalized and/or crosslinked to one another. Lipid bilayers may include one or more ligands, proteins, or channels.
In some embodiments, nanoparticle compositions as described comprise a lipid component including at least one cationic lipid, such as a compound according to Formula 01-I, 01-II, 02-I, 02-II, 03-I, 03-II-A, 03-II-B, 03-II-C, 03-II-D, 04-I, 04-III, 04-IV (and sub-formulas thereof) (and sub-formulas thereof) as described herein. For example, in some embodiments, a nanoparticle composition may include a lipid component including one of compounds provided herein. Nanoparticle compositions may also include one or more other lipid or non-lipid components as described below.
5.4.1 Cationic Lipids
In one embodiment, the cationic lipid contained in the compositions provided herein is a cationic lipid described in International Patent Publication No. WO2021204175, the entirety of which is incorporated herein by reference.
In one embodiment, the cationic lipid is a compound of Formula (01-I) :
Figure PCTCN2022123722-appb-000042
or a pharmaceutically acceptable salt, prodrug or stereoisomer thereof, wherein:
G 1 and G 2 are each independently a bond, C 2-C 12 alkylene, or C 2-C 12 alkenylene, wherein one or more -CH 2-in the alkylene or alkenylene is optionally replaced by -O-;
L 1 is –OC (=O) R 1, -C (=O) OR 1, -OC (=O) OR 1, -C (=O) R 1, -OR 1, -S (O)  xR 1, -S-SR 1, -C (=O) SR 1, -SC (=O) R 1, -NR aC (=O) R 1, -C (=O) NR bR c, -NR aC (=O) NR bR c, -OC (=O) NR bR c, -NR aC (=O) OR 1, -SC (=S) R 1, -C (=S) SR 1, -C (=S) R 1, -CH (OH) R 1, -P (=O) (OR b) (OR c) , - (C 6-C 10 arylene) -R 1, - (6-to 10-membered heteroarylene) -R 1, or R 1;
L 2 is –OC (=O) R 2, -C (=O) OR 2, -OC (=O) OR 2, -C (=O) R 2, -OR 2, -S (O)  xR 2, -S-SR 2, -C (=O) SR 2, -SC (=O) R 2, -NR dC (=O) R 2, -C (=O) NR eR f, -NR dC (=O) NR eR f, -OC (=O) NR eR f, -NR dC (=O) OR 2, -SC (=S) R 2, -C (=S) SR 2, -C (=S) R 2, -CH (OH) R 2, -P (=O) (OR e) (OR f) , - (C 6-C 10 arylene) -R 2, - (6-to 10-membered heteroarylene) -R 2, or R 2;
R 1 and R 2 are each independently C 6-C 32 alkyl or C 6-C 32 alkenyl;
R a, R b, R d, and R e are each independently H, C 1-C 24 alkyl, or C 2-C 24 alkenyl;
R c and R f are each independently C 1-C 32 alkyl or C 2-C 32 alkenyl;
G 3 is C 2-C 24 alkylene, C 2-C 24 alkenylene, C 3-C 8 cycloalkylene, or C 3-C 8 cycloalkenylene;
R 3 is -N (R 4) R 5;
R 4 is C 3-C 8 cycloalkyl, C 3-C 8 cycloalkenyl, 4-to 8-membered heterocyclyl, or C 6-C 10 aryl; or R 4, G 3 or part of G 3, together with the nitrogen to which they are attached form a cyclic moiety;
R 5 is C 1-C 12 alkyl or C 3-C 8 cycloalkyl; or R 4, R 5, together with the nitrogen to which they are attached form a cyclic moiety;
x is 0, 1 or 2; and
wherein each alkyl, alkenyl, cycloalkyl, cycloalkenyl, heterocyclyl, aryl, alkylene, alkenylene, cycloalkylene, cycloalkenylene, arylene, heteroarylene, and cyclic moiety is independently optionally substituted.
In one embodiment, the cationic lipid is a compound of Formula (01-II) :
Figure PCTCN2022123722-appb-000043
or a pharmaceutically acceptable salt, prodrug or stereoisomer thereof, wherein:
Figure PCTCN2022123722-appb-000044
is a single bond or a double bond;
G 1 and G 2 are each independently a bond, C 2-C 12 alkylene, or C 2-C 12 alkenylene, wherein one or more -CH 2-in the alkylene or alkenylene is optionally replaced by -O-;
L 1 is –OC (=O) R 1, -C (=O) OR 1, -OC (=O) OR 1, -C (=O) R 1, -OR 1, -S (O)  xR 1, -S-SR 1, -C (=O) SR 1, -SC (=O) R 1, -NR aC (=O) R 1, -C (=O) NR bR c, -NR aC (=O) NR bR c, -OC (=O) NR bR c, -NR aC (=O) OR 1, -SC (=S) R 1, -C (=S) SR 1, -C (=S) R 1, -CH (OH) R 1, -P (=O) (OR b) (OR c) , - (C 6-C 10 arylene) -R 1, - (6-to 10-membered heteroarylene) -R 1, or R 1;
L 2 is –OC (=O) R 2, -C (=O) OR 2, -OC (=O) OR 2, -C (=O) R 2, -OR 2, -S (O)  xR 2, -S-SR 2, -C (=O) SR 2, -SC (=O) R 2, -NR dC (=O) R 2, -C (=O) NR eR f, -NR dC (=O) NR eR f, -OC (=O) NR eR f, -NR dC (=O) OR 2, -SC (=S) R 2, -C (=S) SR 2, -C (=S) R 2, -CH (OH) R 2, -P (=O) (OR e) (OR f) , - (C 6-C 10 arylene) -R 2, - (6-to 10-membered heteroarylene) -R 2, or R 2;
R 1 and R 2 are each independently C 6-C 32 alkyl or C 6-C 32 alkenyl;
R a, R b, R d, and R e are each independently H, C 1-C 24 alkyl, or C 2-C 24 alkenyl;
R c and R f are each independently C 1-C 32 alkyl or C 2-C 32 alkenyl;
G 4 is a bond, C 1-C 23 alkylene, C 2-C 23 alkenylene, C 3-C 8 cycloalkylene, or C 3-C 8 cycloalkenylene;
R 3 is -N (R 4) R 5;
R 4 is C 1-C 12 alkyl, C 3-C 8 cycloalkyl, C 3-C 8 cycloalkenyl, 4-to 8-membered heterocyclyl, or C 6-C 10 aryl; or R 4, G 3 or part of G 3, together with the nitrogen to which they are attached form a cyclic moiety;
R 5 is C 1-C 12 alkyl or C 3-C 8 cycloalkyl; or R 4, R 5, together with the nitrogen to which they are attached form a cyclic moiety;
x is 0, 1 or 2; and
wherein each alkyl, alkenyl, cycloalkyl, cycloalkenyl, heterocyclyl, aryl, alkylene, alkenylene, cycloalkylene, cycloalkenylene, arylene, heteroarylene, and cyclic moiety is independently optionally substituted.
In one embodiment, the compound is a compound of Formula (01-I-B) , (01-I-B’ ) , (01-I-B” ) , (01-I-C) , (01-I-D) , or (01-I-E) :
Figure PCTCN2022123722-appb-000045
or a pharmaceutically acceptable salt, prodrug or stereoisomer thereof.
In one embodiment, G 1 and G 2 are each independently C 3-C 7 alkylene. In one embodiment, G 1 and G 2 are each independently C 5 alkylene. In one embodiment, G 3 is C 2-C 4 alkylene. In one embodiment, G 3 is C 2 alkylene. In one embodiment, G 3 is C 4 alkylene.
In one embodiment, R 3 has one of the following structures:
Figure PCTCN2022123722-appb-000046
In one embodiment, R 1, R 2, R c and R f are each independently branched C 6-C 32 alkyl or branched C 6-C 32 alkenyl. In one embodiment, R 1, R 2, R c and R f are each independently branched C 6-C 24 alkyl or branched C 6-C 24 alkenyl. In one embodiment, R 1, R 2, R c and R f are each independently -R 7-CH (R 8) (R 9) , wherein R 7 is C 0-C 5 alkylene, and R 8 and R 9 are independently C 2-C 10 alkyl. In one embodiment, R 1, R 2, R c and R f are each independently -R 7-CH (R 8) (R 9) , wherein R 7 is C 0-C 1 alkylene, and R 8 and R 9 are independently C 4-C 8 alkyl.
In one embodiment, the compound is a compound in Table 01-1, or a pharmaceutically acceptable salt, prodrug or stereoisomer thereof.
Table 01-1.
Figure PCTCN2022123722-appb-000047
Figure PCTCN2022123722-appb-000048
In one embodiment, the cationic lipid contained in the compositions provided herein is a cationic lipid described in International Patent Application No. PCT/CN2022/072694, the entirety of which is incorporated herein by reference.
In one embodiment, the cationic lipid is a compound of Formula (02-I) :
Figure PCTCN2022123722-appb-000049
or a pharmaceutically acceptable salt, prodrug or stereoisomer thereof, wherein:
G 1 and G 2 are each independently C 2-C 12 alkylene or C 2-C 12 alkenylene, wherein one or more -CH 2-in G 1 and G 2 is optionally replaced by -O-, -C (=O) O-, or -OC (=O) -;
each L 1 is independently –OC (=O) R 1, -C (=O) OR 1, -OC (=O) OR 1, -C (=O) R 1, -OR 1, -S (O)  xR 1, -S-SR 1, -C (=O) SR 1, -SC (=O) R 1, -NR aC (=O) R 1, -C (=O) NR bR c, -NR aC (=O) NR bR c, -OC (=O) NR bR c, -NR aC (=O) OR 1, -SC (=S) R 1, -C (=S) SR 1, -C (=S) R 1, -CH (OH) R 1, -P (=O) (OR b) (OR c) , -NR aP (=O) (OR b) (OR c) ;
each L 2 is independently –OC (=O) R 2, -C (=O) OR 2, -OC (=O) OR 2, -C (=O) R 2, -OR 2, -S (O)  xR 2, -S-SR 2, -C (=O) SR 2, -SC (=O) R 2, -NR dC (=O) R 2, -C (=O) NR eR f, -NR dC (=O) NR eR f, -OC (=O) NR eR f, -NR dC (=O) OR 2, -SC (=S) R 2, -C (=S) SR 2, -C (=S) R 2, -CH (OH) R 2, -P (=O) (OR e) (OR f) , -NR dP (=O) (OR e) (OR f) ;
R 1 and R 2 are each independently C 6-C 24 alkyl or C 6-C 24 alkenyl;
R a, R b, R d, and R e are each independently H, C 1-C 24 alkyl, or C 2-C 24 alkenyl;
R c and R f are each independently C 1-C 24 alkyl or C 2-C 24 alkenyl;
G 3 is C 2-C 12 alkylene or C 2-C 12 alkenylene, wherein part or all of alkylene or alkenylene is optionally replaced by a C 3-C 8 cycloalkylene or C 3-C 8 cycloalkenylene;
R 3 is -N (R 4) R 5, -OR 6, or -SR 6;
R 4 is C 1-C 12 alkyl, C 2-C 12 alkenyl, C 3-C 8 cycloalkyl, C 3-C 8 cycloalkenyl, C 6-C 10 aryl, or 4-to 8-membered heterocycloalkyl;
R 5 is H, C 1-C 12 alkyl, C 3-C 8 cycloalkyl, C 3-C 8 cycloalkenyl, C 6-C 10 aryl, or 4-to 8-membered heterocycloalkyl;
R 6 is hydrogen, C 1-C 12 alkyl, C 3-C 8 cycloalkyl, C 3-C 8 cycloalkenyl, or C 6-C 10 aryl;
x is 0, 1, or 2; and
wherein each alkyl, alkenyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, aryl, alkylene, alkenylene, cycloalkylene, and cycloalkenylene is independently optionally substituted.
In one embodiment, the cationic lipid is a compound of Formula (02-II) :
Figure PCTCN2022123722-appb-000050
or a pharmaceutically acceptable salt, prodrug or stereoisomer thereof, wherein:
G 1 and G 2 are each independently C 2-C 12 alkylene or C 2-C 12 alkenylene, wherein one or more -CH 2-in G 1 and G 2 is optionally replaced by -O-, -C (=O) O-, or -OC (=O) -;
each L 1 is independently –OC (=O) R 1, -C (=O) OR 1, -OC (=O) OR 1, -C (=O) R 1, -OR 1, -S (O)  xR 1, -S-SR 1, -C (=O) SR 1, -SC (=O) R 1, -NR aC (=O) R 1, -C (=O) NR bR c, -NR aC (=O) NR bR c, -OC (=O) NR bR c, -NR aC (=O) OR 1, -SC (=S) R 1, -C (=S) SR 1, -C (=S) R 1, -CH (OH) R 1, -P (=O) (OR b) (OR c) , -NR aP (=O) (OR b) (OR c) ;
each L 2 is independently –OC (=O) R 2, -C (=O) OR 2, -OC (=O) OR 2, -C (=O) R 2, -OR 2, -S (O)  xR 2, -S-SR 2, -C (=O) SR 2, -SC (=O) R 2, -NR dC (=O) R 2, -C (=O) NR eR f, -NR dC (=O) NR eR f, -OC (=O) NR eR f, -NR dC (=O) OR 2, -SC (=S) R 2, -C (=S) SR 2, -C (=S) R 2, -CH (OH) R 2, -P (=O) (OR e) (OR f) , -NR dP (=O) (OR e) (OR f) ;
R 1 and R 2 are each independently C 6-C 24 alkyl or C 6-C 24 alkenyl;
R a, R b, R d, and R e are each independently H, C 1-C 24 alkyl, or C 2-C 24 alkenyl;
R c and R f are each independently C 1-C 24 alkyl or C 2-C 24 alkenyl;
G 3 is C 2-C 12 alkylene or C 2-C 12 alkenylene, wherein part or all of alkylene or alkenylene is optionally replaced by a C 3-C 8 cycloalkylene or C 3-C 8 cycloalkenylene;
R 3 is -N (R 4) R 5, -OR 6, or -SR 6;
R 4 is C 1-C 12 alkyl, C 2-C 12 alkenyl, C 3-C 8 cycloalkyl, C 3-C 8 cycloalkenyl, C 6-C 10 aryl, or 4-to 8-membered heterocycloalkyl;
R 5 is H, C 1-C 12 alkyl, C 3-C 8 cycloalkyl, C 3-C 8 cycloalkenyl, C 6-C 10 aryl, or 4-to 8-membered heterocycloalkyl;
R 6 is hydrogen, C 1-C 12 alkyl, C 3-C 8 cycloalkyl, C 3-C 8 cycloalkenyl, or C 6-C 10 aryl;
x is 0, 1, or 2; and
wherein each alkyl, alkenyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, aryl, alkylene, alkenylene, cycloalkylene, and cycloalkenylene is independently optionally substituted.
In one embodiment, the compound is a compound of Formula (02-V-A) , (02-V-B) , (02-V-C) , (02-V-D) , (02-V-E) , (02-V-F) :
Figure PCTCN2022123722-appb-000051
wherein z is an integer from 2 to 12,
x0 is an integer from 1 to 11;
y0 is an integer from 1 to 11;
x1 is an integer from 0 to 9;
y1 is an integer from 0 to 9;
x2 is an integer from 2 to 5;
x3 is an integer from 1 to 5;
x4 is an integer from 0 to 3;
y2 is an integer from 2 to 5;
y3 is an integer from 1 to 5; and
y4 is an integer from 0 to 3;
or a pharmaceutically acceptable salt, prodrug or stereoisomer thereof.
In one embodiment, z is an integer from 2 to 6. In one embodiment, z is 2, 4, or 5. In one embodiment, x0 and y0 are independently 2 to 6. In one embodiment, x0 and y0 are independently 4 or 5. In one embodiment, x1 and y1 are independently 2 to 6. In one embodiment, x1 and y1 are independently 4 or 5. In one embodiment, x2 and y2 are independently an integer from 2 to 5. In one embodiment, x2 and y2 are independently 3 or 5. In one embodiment, x3 and y3 are both 1. In one embodiment, x4 and y4 are independently 0 or 1.
In one embodiment, each L 1 is independently -OR 1, -OC (=O) R 1 or -C (=O) OR 1, and each L 2 is independently –OR 2, -OC (=O) R 2 or -C (=O) OR 2. In one embodiment, R 1 and R 2 are independently straight C 6-C 10 alkyl, or -R 7-CH (R 8) (R 9) , wherein R 7 is C 0-C 5 alkylene, and R 8 and R 9 are independently C 2-C 10 alkyl or C 2-C 10 alkenyl.
In one embodiment, the compound is a compound of formula (02-VI-A) , (02-VI-B) , (02-VI-C) , (02-VI-D) , (02-VI-E) , or (02-VI-F) :
Figure PCTCN2022123722-appb-000052
wherein z is an integer from 2 to 12;
y is an integer from 2 to 12;
x0 is an integer from 1 to 11;
x1 is an integer from 0 to 9;
x2 is an integer from 2 to 5;
x3 is an integer from 1 to 5; and
x4 is an integer from 0 to 3;
or a pharmaceutically acceptable salt, prodrug or stereoisomer thereof.
In one embodiment, z is an integer from 2 to 6. In one embodiment, z is 2, 4 or 5. In one embodiment, x0 is 4 or 5. In one embodiment, x1 is 4 or 5. In one embodiment, x2 is an integer from 2 to 5. In one embodiment, x2 is 3 or 5. In one embodiment, x3 is 0 or 1. In one embodiment, y is an integer from 2 to 6. In one embodiment, y is 5.
In one embodiment, each L 1 is independently -OR 1, -OC (=O) R 1 or -C (=O) OR 1, and L 2 is -OC (=O) R 2 or -C (=O) OR 2, -NR dC (=O) R 2, or -C (=O) NR eR f. In one embodiment, R 1 is straight C 6-C 10 alkyl or -R 7-CH (R 8) (R 9) , wherein R 7 is C 0-C 5 alkylene, and R 8 and R 9 are independently C 2-C 10 alkyl or C 2-C 10 alkenyl. In one embodiment, R 2 and R f are each independently straight C 6-C 18 alkyl, C 6-C 18 alkenyl, or -R 7-CH (R 8) (R 9) , wherein R 7 is C 0-C 5 alkylene, and R 8 and R 9 are independently C 2-C 10 alkyl or C 2-C 10 alkenyl. In one embodiment, R d and R e are each independently H.
In one embodiment, the compound is a compound in Table 02-1, or a pharmaceutically acceptable salt, prodrug or stereoisomer thereof.
Table 02-1.
Table 02-1.
Figure PCTCN2022123722-appb-000053
Figure PCTCN2022123722-appb-000054
In one embodiment, the cationic lipid contained in the particles or compositions provided herein is a cationic lipid described in International Patent Publication No. WO2022152109, the entirety of which is incorporated herein by reference.
In one embodiment, the cationic lipid is a compound of Formula (03-I) :
Figure PCTCN2022123722-appb-000055
or a pharmaceutically acceptable salt, prodrug or stereoisomer thereof, wherein:
G 1 and G 2 are each independently a bond, C 2-C 12 alkylene, or C 2-C 12 alkenylene, wherein one or more -CH 2-in G 1 and G 2 is optionally replaced by -O-;
each L 1 is independently –OC (=O) R 1, -C (=O) OR 1, -OC (=O) OR 1, -C (=O) R 1, -OR 1, -S (O)  xR 1, -S-SR 1, -C (=O) SR 1, -SC (=O) R 1, -NR aC (=O) R 1, -C (=O) NR bR c, -NR aC (=O) NR bR c, -OC (=O) NR bR c, -NR aC (=O) OR 1, -SC (=S) R 1, -C (=S) SR 1, -C (=S) R 1, -CH (OH) R 1, -P (=O) (OR b) (OR c) , -NR aP (=O) (OR b) (OR c) , - (C 6-C 10 arylene) -R 1, - (6-to 10-membered heteroarylene) -R 1, - (4-to 8-membered heterocyclylene) -R 1, or R 1;
each L 2 is independently –OC (=O) R 2, -C (=O) OR 2, -OC (=O) OR 2, -C (=O) R 2, -OR 2, -S (O)  xR 2, -S-SR 2, -C (=O) SR 2, -SC (=O) R 2, -NR dC (=O) R 2, -C (=O) NR eR f, -NR dC (=O) NR eR f, -OC (=O) NR eR f, -NR dC (=O) OR 2, -SC (=S) R 2, -C (=S) SR 2, -C (=S) R 2, -CH (OH) R 2, -P (=O) (OR e) (OR f) , -NR dP (=O) (OR e) (OR f) , - (C 6-C 10 arylene) -R 2, - (6-to 10-membered heteroarylene) -R 2, - (4-to 8-membered heterocyclylene) -R 2, or R 2;
R 1 and R 2 are each independently C 6-C 24 alkyl or C 6-C 24 alkenyl;
R a, R b, R d, and R e are each independently H, C 1-C 24 alkyl, or C 2-C 24 alkenyl;
R c and R f are each independently C 1-C 24 alkyl or C 2-C 24 alkenyl;
G 3 is C 2-C 12 alkylene or C 2-C 12 alkenylene, wherein part or all of alkylene or alkenylene is optionally replaced by C 3-C 8 cycloalkylene, C 3-C 8 cycloalkenylene, C 3-C 8 cycloalkynylene, 4-to 8-membered heterocyclylene, C 6-C 10 arylene, or 5-to 10-membered heteroarylene;
R 3 is hydrogen, C 1-C 12 alkyl, C 2-C 12 alkenyl, C 2-C 12 alkynyl, C 3-C 8 cycloalkyl, C 3-C 8 cycloalkenyl, C 3-C 8 cycloalkynyl, 4-to 8-membered heterocyclyl, C 6-C 10 aryl, or 5-to 10-membered heteroaryl; or R 3, G 1 or part of G 1, together with the nitrogen to which they are attached form a cyclic moiety; or R 3, G 3 or part of G 3, together with the nitrogen to which they are attached form a cyclic moiety;
R 4 is C 1-C 12 alkyl or C 3-C 8 cycloalkyl;
x is 0, 1, or 2;
n is 1 or 2;
m is 1 or 2; and
wherein each alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, cycloalkynyl, heterocyclyl, aryl, heteroaryl, alkylene, alkenylene, cycloalkylene, cycloalkenylene, cycloalkynylene, heterocyclylene, arylene, heteroarylene, and cyclic moiety is independently optionally substituted.
In one embodiment, the compound is a compound of Formula (03-II-A) :
Figure PCTCN2022123722-appb-000056
or a pharmaceutically acceptable salt, prodrug or stereoisomer thereof.
In one embodiment, the compound is a compound of Formula (03-II-B) :
Figure PCTCN2022123722-appb-000057
or a pharmaceutically acceptable salt, prodrug or stereoisomer thereof.
In one embodiment, the compound is a compound of Formula (03-II-C) :
Figure PCTCN2022123722-appb-000058
or a pharmaceutically acceptable salt, prodrug or stereoisomer thereof.
In one embodiment, the compound is a compound of Formula (03-II-D) :
Figure PCTCN2022123722-appb-000059
or a pharmaceutically acceptable salt, prodrug or stereoisomer thereof.
In one embodiment, G 1 and G 2 are each independently C 2-C 12 alkylene. In one embodiment, G 1 and G 2 are each independently C 5 alkylene. In one embodiment, G 3 is C 2-C 6 alkylene.
In one embodiment, R 3 is C 1-C 12 alkyl, C 2-C 12 alkenyl, or C 3-C 8 cycloalkyl. In one embodiment, R 3 is C 3-C 8 cycloalkyl. In one embodiment, R 3 is unsubstituted. In one embodiment, R 4 is substituted C 1-C 12 alkyl. In one embodiment, R 4 is –CH 2CH 2OH. In one embodiment, R 4 is – (CH 25OH.
In one embodiment, L 1 is –OC (=O) R 1, -C (=O) OR 1, -NR aC (=O) R 1, -OC (=O) NR bR c, or -C (=O) NR bR c; and L 2 is –OC (=O) R 2, -C (=O) OR 2, -NR dC (=O) R 2, -OC (=O) NR eR f, or -C (=O) NR eR f. In one embodiment, R 1, R 2, R c, and R f are each independently straight C 6-C 18 alkyl, straight C 6-C 18 alkenyl, or -R 7-CH (R 8) (R 9) , wherein R 7 is C 0-C 5 alkylene, and R 8 and R 9 are independently C 2-C 10 alkyl or C 2-C 10 alkenyl. In one embodiment, R 1, R 2, R c, and R f are each independently straight C 7-C 15 alkyl, straight C 7-C 15 alkenyl, or -R 7-CH (R 8) (R 9) , wherein R 7 is C 0-C 1 alkylene, and R 8 and R 9 are independently C 4-C 8 alkyl or C 6-C 10 alkenyl. In one embodiment, R a, R b, R d, and R e are each independently H. In one embodiment, R b and R e are each independently straight C 7-C 15 alkyl, straight C 7-C 15 alkenyl.
In one embodiment, the compound is a compound in Table 03-1, or a pharmaceutically acceptable salt, prodrug or stereoisomer thereof.
Table 03-1.
Figure PCTCN2022123722-appb-000060
Figure PCTCN2022123722-appb-000061
In one embodiment, the cationic lipid contained in the particles or compositions provided herein is a cationic lipid described in International Patent Application No. PCT/CN2022/094227, the entirety of which is incorporated herein by reference.
In one embodiment, the cationic lipid is a compound of Formula (04-I) :
Figure PCTCN2022123722-appb-000062
or a pharmaceutically acceptable salt, prodrug or stereoisomer thereof, wherein:
G 1 and G 2 are each independently a bond, C 2-C 12 alkylene, or C 2-C 12 alkenylene;
L 1 is –OC (=O) R 1, -C (=O) OR 1, -OC (=O) OR 1, -C (=O) R 1, -OR 1, -S (O)  xR 1, -S-SR 1, -C (=O) SR 1, -SC (=O) R 1, -NR aC (=O) R 1, -C (=O) NR bR c, -NR aC (=O) NR bR c, -OC (=O) NR bR c, -NR aC (=O) OR 1, -SC (=S) R 1, -C (=S) SR 1, -C (=S) R 1, -CH (OH) R 1, -P (=O) (OR b) (OR c) , - (C 6-C 10 arylene) -R 1, - (6-to 10-membered heteroarylene) -R 1, or R 1;
L 2 is –OC (=O) R 2, -C (=O) OR 2, -OC (=O) OR 2, -C (=O) R 2, -OR 2, -S (O)  xR 2, -S-SR 2, -C (=O) SR 2, -SC (=O) R 2, -NR dC (=O) R 2, -C (=O) NR eR f, -NR dC (=O) NR eR f, -OC (=O) NR eR f, -NR dC (=O) OR 2, -SC (=S) R 2, -C (=S) SR 2, -C (=S) R 2, -CH (OH) R 2, -P (=O) (OR e) (OR f) , - (C 6-C 10 arylene) -R 2, - (6-to 10-membered heteroarylene) -R 2, or R 2;
R 1 and R 2 are each independently C 5-C 32 alkyl or C 5-C 32 alkenyl;
R a, R b, R d, and R e are each independently H, C 1-C 24 alkyl, or C 2-C 24 alkenyl;
R c and R f are each independently C 1-C 32 alkyl or C 2-C 32 alkenyl;
R 0 is C 1-C 12 alkyl, C 2-C 12 alkenyl, C 3-C 8 cycloalkyl, C 3-C 8 cycloalkenyl, C 6-C 10 aryl, or 4-to 8-membered heterocycloalkyl;
G 3 is C 2-C 12 alkylene or C 2-C 12 alkenylene;
R 4 is C 1-C 12 alkyl, C 2-C 12 alkenyl, C 3-C 8 cycloalkyl, C 3-C 8 cycloalkenyl, C 6-C 10 aryl, or 4-to 8-membered heterocycloalkyl;
R 5 is C 1-C 12 alkyl, C 3-C 8 cycloalkyl, C 3-C 8 cycloalkenyl, C 6-C 10 aryl, or 4-to 8-membered heterocycloalkyl;
x is 0, 1, or 2;
s is 0 or 1; and
wherein each alkyl, alkenyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, aryl, alkylene, alkenylene, arylene, and heteroarylene, is independently optionally substituted.
In one embodiment, the cationic lipid is a compound of Formula (04-III) :
Figure PCTCN2022123722-appb-000063
or a pharmaceutically acceptable salt, prodrug or stereoisomer thereof, wherein:
R 1 and R 2 are each independently C 5-C 32 alkyl or C 5-C 32 alkenyl;
R 0 is C 1-C 12 alkyl, C 2-C 12 alkenyl, C 3-C 8 cycloalkyl, C 3-C 8 cycloalkenyl, C 6-C 10 aryl, or 4-to 8-membered heterocycloalkyl;
G 3 is C 2-C 12 alkylene or C 2-C 12 alkenylene;
G 4 is C 2-C 12 alkylene or C 2-C 12 alkenylene;
R 3 is -N (R 4) R 5 or -OR 6;
R 4 is C 1-C 12 alkyl, C 2-C 12 alkenyl, C 3-C 8 cycloalkyl, C 3-C 8 cycloalkenyl, C 6-C 10 aryl, or 4-to 8-membered heterocycloalkyl;
R 5 is C 1-C 12 alkyl, C 3-C 8 cycloalkyl, C 3-C 8 cycloalkenyl, C 6-C 10 aryl, or 4-to 8-membered heterocycloalkyl; or R 4, R 5, together with the nitrogen to which they are attached form a cyclic moiety;
R 6 is hydrogen, C 1-C 12 alkyl, C 3-C 8 cycloalkyl, C 3-C 8 cycloalkenyl, or C 6-C 10 aryl; and wherein each alkyl, alkenyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, aryl, alkylene, alkenylene, and cyclic moiety is independently optionally substituted.
In one embodiment, the compound is a compound of Formula (04-IV) :
Figure PCTCN2022123722-appb-000064
or a pharmaceutically acceptable salt, prodrug or stereoisomer thereof.
In one embodiment, G 3 is C 2-C 4 alkylene. In one embodiment, G 4 is C 2-C 4 alkylene.
In one embodiment, R 0 is C 1-C 6 alkyl. In one embodiment, R 3 is -OH. In one embodiment, R 3 is -N (R 4) R 5. In one embodiment, R 4 is C 3-C 8 cycloalkyl. In one embodiment, R 4 is unsubstituted. In one embodiment, R 5 is –CH 2CH 2OH.
In one embodiment, L 1 is –OC (=O) R 1, -C (=O) OR 1, -C (=O) R 1, -C (=O) NR bR c, or R 1; and L 2 is –OC (=O) R 2, -C (=O) OR 2, -C (=O) R 2, -C (=O) NR eR f, or R 2. In one embodiment, R 1 and R 2 are each independently branched C 6-C 24 alkyl or branched C 6-C 24 alkenyl. In one embodiment, R 1 and R 2 are each independently -R 7-CH (R 8) (R 9) , wherein R 7 is C 1-C 5 alkylene, and R 8 and R 9 are independently C 2-C 10 alkyl or C 2-C 10 alkenyl. In one embodiment, R 1 is straight C 6-C 24 alkyl and R 2 is branched C 6-C 24 alkyl. In one embodiment, R 1 is straight C 6-C 24 alkyl and R 2 is -R 7-CH (R 8) (R 9) , wherein R 7 is C 1-C 5 alkylene, and R 8 and R 9 are independently C 2-C 10 alkyl.
In one embodiment, the compound is a compound in Table 04-1, or a pharmaceutically acceptable salt, prodrug or stereoisomer thereof.
Table 04-1.
Figure PCTCN2022123722-appb-000065
It is understood that any embodiment of the compounds provided herein, as set forth above, and any specific substituent and/or variable in the compound provided herein, as set forth above, may be independently combined with other embodiments and/or substituents and/or variables of the compounds to form embodiments not specifically set forth above. In addition, in  the event that a list of substituents and/or variables is listed for any particular group or variable, it is understood that each individual substituent and/or variable may be deleted from the particular embodiment and/or claim and that the remaining list of substituents and/or variables will be considered to be within the scope of embodiments provided herein.
It is understood that in the present description, combinations of substituents and/or variables of the depicted formulae are permissible only if such contributions result in stable compounds.
5.4.2 Other Ionizable Lipids
As described herein, in some embodiments, a nanoparticle composition provided herein comprises one or more charged or ionizable lipids in addition to a lipid according Formula 01-I, 01-II, 02-I, 02-II, 03-I, 03-II-A, 03-II-B, 03-II-C, 03-II-D, 04-I, 04-III, 04-IV (and sub-formulas thereof) . Without being bound by the theory, it is contemplated that certain charged or zwitterionic lipid components of a nanoparticle composition resembles the lipid component in the cell membrane, thereby can improve cellular uptake of the nanoparticle. Exemplary charged or ionizable lipids that can form part of the present nanoparticle composition include but are not limited to 3- (didodecylamino) -N1, N1, 4-tridodecyl-1-piperazineethanamine (KL10) , N1- [2- (didodecylamino) ethyl] -N1, N4, N4-tridodecyl-1, 4-piperazinediethanamine (KL22) , 14, 25-ditridecyl-15, 18, 21, 24-tetraaza-octatriacontane (KL25) , 1, 2-dilinoleyloxy-N, N-dimethylaminopropane (DLinDMA) , 2, 2-dilinoleyl-4-dimethylaminomethyl- [1, 3] -dioxolane (DLin-K-DMA) , heptatriaconta-6, 9, 28, 31-tetraen-19-yl 4- (dimethylamino) butanoate (DLin-MC3-DMA) , 2, 2-dilinoleyl-4- (2-dimethylaminoethyl) - [1, 3] -dioxolane (DLin-KC2-DMA) , 1, 2-dioleyloxy-N, N-dimethylaminopropane (DODMA) , 2- ( {8- [ (3β) -cholest-5-en-3-yloxy] octyl} oxy) -N, N-dimethyl-3 [ (9Z, 12Z) -octadeca-9, 12-dien-1-yloxy] propan-1-amine (Octyl-CLinDMA) , (2R) -2- ( {8- [ (3β) -cholest-5-en-3-yloxy] octyl} oxy) -N, N-dimethyl-3-[ (9Z, 12Z) --octadeca-9, 12-dien-1-yloxy] propan-1-amine (Octyl-CLinDMA (2R) ) , (2S) -2- ( {8- [ (3β) -cholest-5-en-3-yloxy] octyl} oxy) -N, N-dimethyl-3- [ (9Z-, 12Z) -octadeca-9, 12-dien-1-yloxy] propan-1-amine (Octyl-CLinDMA (2S) ) , (12Z, 15Z) -N, N-dimethyl-2-nonylhenicosa-12, 15-den-1-amine, N, N-dimethyl-1- { (1S, 2R) -2-octylcyclopropyl} heptadecan-8-amine. Additional exemplary charged or ionizable lipids that can form part of the present nanoparticle composition include the lipids (e.g., lipid 5) described in Sabnis et al. “A Novel Amino Lipid Series for mRNA Delivery: Improved Endosomal Escape and Sustained  Pharmacology and Safety in Non-human Primates” , Molecular Therapy Vol. 26 No 6, 2018, the entirety of which is incorporated herein by reference.
In some embodiments, suitable cationic lipids include N- [1- (2, 3-dioleyloxy) propyl] -N, N, N-trimethylammonium chloride (DOTMA) ; N- [1- (2, 3-dioleoyloxy) propyl] -N, N, N-trimethylammonium chloride (DOTAP) ; 1, 2-dioleoyl-sn-glycero-3-ethylphosphocholine (DOEPC) ; 1, 2-dilauroyl-sn-glycero-3-ethylphosphocholine (DLEPC) ; 1, 2-dimyristoyl-sn-glycero-3-ethylphosphocholine (DMEPC) ; 1, 2-dimyristoleoyl-sn-glycero-3-ethylphosphocholine (14: 1) ; N1- [2- ( (1S) -1- [ (3-aminopropyl) amino] -4- [di (3-amino-propyl) amino] butylcarboxamido) ethyl] -3, 4-di [oleyloxy] -benzamide (MVL5) ; dioctadecylamido-glycylspermine (DOGS) ; 3b- [N- (N', N'-dimethylaminoethyl) carbamoyl] cholesterol (DC-Chol) ; dioctadecyldimethylammonium bromide (DDAB) ; SAINT-2, N-methyl-4-(dioleyl) methylpyridinium; 1, 2-dimyristyloxypropyl-3-dimethylhydroxyethylammonium bromide (DMRIE) ; 1, 2-dioleoyl-3-dimethyl-hydroxyethyl ammonium bromide (DORIE) ; 1, 2-dioleoyloxypropyl-3-dimethylhydroxyethyl ammonium chloride (DORI) ; di-alkylated amino acid (DILA2) (e.g., C18: 1-norArg-C16) ; dioleyldimethylammonium chloride (DODAC) ; 1-palmitoyl-2-oleoyl-sn-glycero-3-ethylphosphocholine (POEPC) ; 1, 2-dimyristoleoyl-sn-glycero-3-ethylphosphocholine (MOEPC) ; (R) -5- (dimethylamino) pentane-1, 2-diyl dioleate hydrochloride (DODAPen-Cl) ; (R) -5-guanidinopentane-1, 2-diyl dioleate hydrochloride (DOPen-G) ; and (R) -N, N, N-trimethyl-4, 5-bis (oleoyloxy) pentan-1-aminium chloride (DOTAPen) . Also suitable are cationic lipids with headgroups that are charged at physiological pH, such as primary amines (e.g., DODAG N', N'-dioctadecyl-N-4, 8-diaza-10-aminodecanoylglycine amide) and guanidinium head groups (e.g., bis-guanidinium-spermidine-cholesterol (BGSC) , bis-guanidiniumtren-cholesterol (BGTC) , PONA, and (R) -5-guanidinopentane-1, 2-diyl dioleate hydrochloride (DOPen-G) ) . Yet another suitable cationic lipid is (R) -5- (dimethylamino) pentane-1, 2-diyl dioleate hydrochloride (DODAPen-Cl) . In certain embodiments, the cationic lipid is a particular enantiomer or the racemic form, and includes the various salt forms of a cationic lipid as above (e.g., chloride or sulfate) . For example, in some embodiments, the cationic lipid is N- [1- (2, 3-dioleoyloxy) propyl] -N, N, N-trimethylammonium chloride (DOTAP-Cl) or N- [1- (2, 3-dioleoyloxy) propyl] -N, N, N-trimethylammonium sulfate (DOTAP-Sulfate) . In some embodiments, the cationic lipid is an ionizable cationic lipid such as, e.g., dioctadecyldimethylammonium bromide (DDAB) ; 1, 2-dilinoleyloxy-3-dimethylaminopropane  (DLinDMA) ; 2, 2-dilinoleyl-4- (2dimethylaminoethyl) - [1, 3] -dioxolane (DLin-KC2-DMA) ; heptatriaconta-6, 9, 28, 31-tetraen-19-yl 4- (dimethylamino) butanoate (DLin-MC3-DMA) ; 1, 2-dioleoyloxy-3-dimethylaminopropane (DODAP) ; 1, 2-dioleyloxy-3-dimethylaminopropane (DODMA) ; and morpholinocholesterol (Mo-CHOL) . In certain embodiments, a lipid nanoparticle includes a combination or two or more cationic lipids (e.g., two or more cationic lipids as above) .
Additionally, in some embodiments, the charged or ionizable lipid that can form part of the present nanoparticle composition is a lipid including a cyclic amine group. Additional cationic lipids that are suitable for the formulations and methods disclosed herein include those described in WO2015199952, WO2016176330, and WO2015011633, the entire contents of each of which are hereby incorporated by reference in their entireties. Additionally, in some embodiments, the charged or ionizable lipid that can form part of the present nanoparticle composition is a lipid including a cyclic amine group. Additional cationic lipids that are suitable for the formulations and methods disclosed herein include those described in WO2015199952, WO2016176330, and WO2015011633, the entire contents of each of which are hereby incorporated by reference in their entireties.
5.4.3 Polymer Conjugated Lipids
In some embodiments, the lipid component of a nanoparticle composition can include one or more polymer conjugated lipids, such as PEGylated lipids (PEG lipids) . Without being bound by the theory, it is contemplated that a polymer conjugated lipid component in a nanoparticle composition can improve of colloidal stability and/or reduce protein absorption of the nanoparticles. Exemplary cationic lipids that can be used in connection with the present disclosure include but are not limited to PEG-modified phosphatidylethanolamines, PEG-modified phosphatidic acids, PEG-modified ceramides, PEG-modified dialkylamines, PEG-modified diacylglycerols, PEG-modified dialkylglycerols, and mixtures thereof. For example, a PEG lipid may be PEG-c-DOMG, PEG-DMG, PEG-DLPE, PEG-DMPE, PEG-DPPC, PEG-DSPE, Ceramide-PEG2000, or Chol-PEG2000.
In one embodiment, the polymer conjugated lipid is a pegylated lipid. For example, some embodiments include a pegylated diacylglycerol (PEG-DAG) such as 1- (monomethoxy-polyethyleneglycol) -2, 3-dimyristoylglycerol (PEG-DMG) , a pegylated  phosphatidylethanoloamine (PEG-PE) , a PEG succinate diacylglycerol (PEG-S-DAG) such as 4-O- (2’ , 3’ -di (tetradecanoyloxy) propyl-1-O- (ω-methoxy (polyethoxy) ethyl) butanedioate (PEG-S-DMG) , a pegylated ceramide (PEG-cer) , or a PEG dialkoxypropylcarbamate such as ω-methoxy (polyethoxy) ethyl-N- (2, 3-di (tetradecanoxy) propyl) carbamate or 2, 3-di(tetradecanoxy) propyl-N- (ω-methoxy (polyethoxy) ethyl) carbamate.
In one embodiment, the polymer conjugated lipid is present in a concentration ranging from 1.0 to 2.5 molar percent. In one embodiment, the polymer conjugated lipid is present in a concentration of about 1.7 molar percent. In one embodiment, the polymer conjugated lipid is present in a concentration of about 1.5 molar percent.
In one embodiment, the molar ratio of cationic lipid to the polymer conjugated lipid ranges from about 35: 1 to about 25: 1. In one embodiment, the molar ratio of cationic lipid to polymer conjugated lipid ranges from about 100: 1 to about 20: 1.
In one embodiment, the molar ratio of cationic lipid to the polymer conjugated lipid ranges from about 35: 1 to about 25: 1. In one embodiment, the molar ratio of cationic lipid to polymer conjugated lipid ranges from about 100: 1 to about 20: 1.
In one embodiment, the pegylated lipid has the following Formula:
Figure PCTCN2022123722-appb-000066
or a pharmaceutically acceptable salt, tautomer or stereoisomer thereof, wherein: R 12 and R 13 are each independently a straight or branched, saturated or unsaturated alkyl chain containing from 10 to 30 carbon atoms, wherein the alkyl chain is optionally interrupted by one or more ester bonds; and
w has a mean value ranging from 30 to 60.
In one embodiment, R12 and R13 are each independently straight, saturated alkyl chains containing from 12 to 16 carbon atoms. In other embodiments, the average w ranges from 42 to 55, for example, the average w is 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54 or 55. In some specific embodiments, the average w is about 49.
In one embodiment, the pegylated lipid has the following Formula:
Figure PCTCN2022123722-appb-000067
wherein the average w is about 49.
It is understood that in the present description, combinations of substituents and/or variables of the depicted formulae are permissible only if such contributions result in stable compounds.
5.4.4 Structural Lipids
In some embodiments, the lipid component of a nanoparticle composition can include one or more structural lipids. Without being bound by the theory, it is contemplated that structural lipids can stabilize the amphiphilic structure of a nanoparticle, such as but not limited to the lipid bilayer structure of a nanoparticle. Exemplary structural lipids that can be used in connection with the present disclosure include but are not limited to cholesterol, fecosterol, sitosterol, ergosterol, campesterol, stigmasterol, brassicasterol, tomatidine, tomatine, ursolic acid, alpha-tocopherol, and mixtures thereof. In certain embodiments, the structural lipid is cholesterol. In some embodiments, the structural lipid includes cholesterol and a corticosteroid (such as prednisolone, dexamethasone, prednisone, and hydrocortisone) , or a combination thereof.
In one embodiment, the lipid nanoparticles provided herein comprise a steroid or steroid analogue. In one embodiment, the steroid or steroid analogue is cholesterol. In one embodiment, the steroid is present in a concentration ranging from 39 to 49 molar percent, 40 to 46 molar percent, from 40 to 44 molar percent, from 40 to 42 molar percent, from 42 to 44 molar percent, or from 44 to 46 molar percent. In one embodiment, the steroid is present in a concentration of 40, 41, 42, 43, 44, 45, or 46 molar percent.
In one embodiment, the molar ratio of cationic lipid to the steroid ranges from 1.0: 0.9 to 1.0: 1.2, or from 1.0: 1.0 to 1.0: 1.2. In one embodiment, the molar ratio of cationic lipid to cholesterol ranges from about 5: 1 to 1: 1. In one embodiment, the steroid is present in a concentration ranging from 32 to 40 mol percent of the steroid.
In one embodiment, the molar ratio of cationic lipid to the steroid ranges from 1.0: 0.9 to 1.0: 1.2, or from 1.0: 1.0 to 1.0: 1.2. In one embodiment, the molar ratio of cationic lipid to  cholesterol ranges from about 5: 1 to 1: 1. In one embodiment, the steroid is present in a concentration ranging from 32 to 40 mol percent of the steroid.
5.4.5 Phospholipids
In some embodiments, the lipid component of a nanoparticle composition can include one or more phospholipids, such as one or more (poly) unsaturated lipids. Without being bound by the theory, it is contemplated that phospholipids may assemble into one or more lipid bilayers structures. Exemplary phospholipids that can form part of the present nanoparticle composition include but are not limited to 1, 2-distearoyl-sn-glycero-3-phosphocholine (DSPC) , 1, 2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) , 1, 2-dilinoleoyl-sn-glycero-3-phosphocholine (DLPC) , 1, 2-dimyristoyl-sn-glycero-phosphocholine (DMPC) , 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) , 1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) , 1, 2-diundecanoyl-sn-glycero-phosphocholine (DUPC) , 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) , 1, 2-di-O-octadecenyl-sn-glycero-3-phosphocholine (18: 0 Diether PC) , 1-oleoyl-2-cholesterylhemisuccinoyl-sn-glycero-3-phosphocholine (OChemsPC) , 1-hexadecyl-sn-glycero-3-phosphocholine (C16 Lyso PC) , 1, 2-dilinolenoyl-sn-glycero-3-phosphocholine, 1, 2-diarachidonoyl-sn-glycero-3-phosphocholine, 1, 2-didocosahexaenoyl-sn-glycero-3-phosphocholine, 1, 2-diphytanoyl-sn-glycero-3-phosphoethanolamine (ME 16.0 PE) , 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine, 1, 2-dilinoleoyl-sn-glycero-3-phosphoethanolamine, 1, 2-dilinolenoyl-sn-glycero-3-phosphoethanolamine, 1, 2-diarachidonoyl-sn-glycero-3-phosphoethanolamine, 1, 2-didocosahexaenoyl-sn-glycero-3-phosphoethanolamine, 1, 2-dioleoyl-sn-glycero-3-phospho-rac- (1-glycerol) sodium salt (DOPG) , and sphingomyelin. In certain embodiments, a nanoparticle composition includes DSPC. In certain embodiments, a nanoparticle composition includes DOPE. In some embodiments, a nanoparticle composition includes both DSPC and DOPE.
Additional exemplary neutral lipids include, for example, dipalmitoylphosphatidylglycerol (DPPG) , palmitoyloleoyl-phosphatidylethanolamine (POPE) and dioleoyl-phosphatidylethanolamine 4- (N-maleimidomethyl) -cyclohexane-1carboxylate (DOPE-mal) , dipalmitoyl phosphatidyl ethanolamine (DPPE) , dimyristoylphosphoethanolamine (DMPE) , distearoyl-phosphatidylethanolamine (DSPE) , 16-O-monomethyl PE, 16-O-dimethyl PE, 18-1-trans PE, 1-stearioyl-2-oleoylphosphatidyethanol amine (SOPE) , and 1, 2-dielaidoyl-sn- glycero-3-phophoethanolamine (transDOPE) . In one embodiment, the neutral lipid is 1, 2-distearoyl-sn-glycero-3phosphocholine (DSPC) . In one embodiment, the neutral lipid is selected from DSPC, DPPC, DMPC, DOPC, POPC, DOPE and SM.
In one embodiment, the neutral lipid is phosphatidylcholine (PC) , phosphatidylethanolamine (PE) phosphatidylserine (PS) , phosphatidic acid (PA) , or phosphatidylglycerol (PG) .
Additionally phospholipids that can form part of the present nanoparticle composition also include those described in WO2017/112865, the entire content of which is hereby incorporated by reference in its entirety.
5.4.6 Formulation
According to the present disclosure, nanoparticle compositions described herein can include at least one lipid component and one or more additional components, such as a therapeutic and/or prophylactic agent (e.g., the therapeutic nucleic acid described herein) . A nanoparticle composition may be designed for one or more specific applications or targets. The elements of a nanoparticle composition may be selected based on a particular application or target, and/or based on the efficacy, toxicity, expense, ease of use, availability, or other feature of one or more elements. Similarly, the particular formulation of a nanoparticle composition may be selected for a particular application or target according to, for example, the efficacy and toxicity of particular combinations of elements.
The lipid component of a nanoparticle composition may include, for example, a lipid according to one of Formula 01-I, 01-II, 02-I, 02-II, 03-I, 03-II-A, 03-II-B, 03-II-C, 03-II-D, 04-I, 04-III, 04-IV (and sub-formulas thereof) described herein, a phospholipid (such as an unsaturated lipid, e.g., DOPE or DSPC) , a polymer conjugated lipid (such as a PEG lipid) , and a structural lipid (such as a steroid) . The elements of the lipid component may be provided in specific fractions.
In one embodiment, provided herein is a nanoparticle compositions comprising a cationic or ionizable lipid compound provided herein, a therapeutic agent, and one or more excipients. In one embodiment, cationic or ionizable lipid compound comprises a compound according to one of Formula 01-I, 01-II, 02-I, 02-II, 03-I, 03-II-A, 03-II-B, 03-II-C, 03-II-D, 04-I, 04-III, 04-IV (and sub-formulas thereof) as described herein, and optionally one or more  additional ionizable lipid compounds. In one embodiment, the one or more excipients are selected from neutral lipids, phospholipids, steroids, and polymer conjugated lipids. In one embodiment, the therapeutic agent is encapsulated within or associated with the lipid nanoparticle.
In one embodiment, provided herein is a nanoparticle composition (lipid nanoparticle) comprising:
i) from about 40 to about 50 mol percent of a cationic lipid;
ii) a neutral lipid;
iii) a steroid;
iv) a polymer conjugated lipid; and
v) a therapeutic agent.
In one embodiment, provided herein is a nanoparticle composition (lipid nanoparticle) comprising:
i) from about 20 to about 65 mol percent of a cationic lipid;
ii) from about 5 to about 40 mol percent of a phospholipid;
iii) from about 20 to about 50 mol percent of a steroid;
iv) a polymer conjugated lipid; and
v) a therapeutic agent.
In some embodiment, the nanoparticle composition (lipid nanoparticle) comprising:
i) from about 40 to about 55 mol percent of a cationic lipid;
ii) from about 5 to about 15 mol percent of a phospholipid;
iii) from about 35 to about 50 mol percent of a steroid; and
iv) from about 2 to about 10 mol percent of a polymer conjugated lipid.
In one embodiment, the nanoparticle composition (lipid nanoparticle) comprising:
i) from about 45 to about 55 mol percent of a cationic lipid;
ii) from about 6 to about 10 mol percent of a phospholipid;
iii) from about 40 to about 48 mol percent of a steroid; and
iv) from about 1 to about 2.5 mol percent of a polymer conjugated lipid.
As used herein, “mol percent” refers to a component’s molar percentage relative to total mols of all lipid components in the LNP (i.e., total mols of cationic lipid (s) , the neutral lipid, the steroid and the polymer conjugated lipid) .
In one embodiment, the therapeutic agent is a nucleic acid molecule according to the present disclosure. In some embodiments, the therapeutic agent comprises any one or more nucleic acid sequences described in Section 5.3 (Therapeutic Nucleic Acids) herein.
In one embodiment, the lipid nanoparticle comprises from 40 to 50 mol percent, from 41 to 49 mol percent, from 41 to 48 mol percent, from 42 to 48 mol percent, from 43 to 48 mol percent, from 44 to 48 mol percent, from 45 to 48 mol percent, from 46 to 48 mol percent, or from 47.2 to 47.8 mol percent of the cationic lipid. In one embodiment, the lipid nanoparticle comprises about 47.0, 47.1, 47.2, 47.3, 47.4, 47.5, 47.6, 47.7, 47.8, 47.9, or 48.0 mol percent of the cationic lipid. In one embodiment, the lipid nanoparticle comprises about 50 mol percent of the cationic lipid.
In one embodiment, the neutral lipid is present in a concentration ranging from 5 to 15 mol percent, 7 to 13 mol percent, or 9 to 11 mol percent. In one embodiment, the neutral lipid is present in a concentration of about 9.5, 10 or 10.5 mol percent. In one embodiment, the molar ratio of the cationic lipid to the neutral lipid ranges from about 4.1: 1.0 to about 4.9: 1.0, from about 4.5: 1.0 to about 4.8: 1.0, or from about 4.7: 1.0 to 4.8: 1.0.
In one embodiment, the steroid is present in a concentration ranging from 38 to 49 molar percent, 40 to 46 molar percent, from 40 to 44 molar percent, from 40 to 42 molar percent, from 42 to 44 molar percent, or from 44 to 46 molar percent. In one embodiment, the steroid is present in a concentration of 40, 41, 42, 43, 44, 45, or 46 molar percent. In one embodiment, the steroid is present in a concentration of 38.0, 38.1, 38.2, 38.3, 38.4, 38.5, 38.6, 38.7, 38.8, or 38.9 molar percent. In one embodiment, the molar ratio of cationic lipid to the steroid ranges from 1.0: 0.9 to 1.0: 1.2, or from 1.0: 1.0 to 1.0: 1.2. In one embodiment, the steroid is cholesterol.
In one embodiment, the lipid nanoparticle comprises about 50 mol percent of the cationic lipid, and about 38.5 mol percent of steroid. In some embodiments, the molar ratio of cationic lipid to the steroid is 1.3: 1.0. In one embodiment, the steroid is cholesterol.
In one embodiment, the therapeutic agent to lipid ratio in the LNP (i.e., N/P, were N represents the moles of cationic lipid and P represents the moles of phosphate present as part of the nucleic acid backbone) range from 2: 1 to 30: 1, for example 3: 1 to 22: 1. In one embodiment, N/P ranges from 6: 1 to 20: 1 or 2: 1 to 12: 1. Exemplary N/P ranges include about 3: 1. About 6: 1, about 12: 1 and about 22: 1.
In one embodiment, provided herein is a lipid nanoparticle comprising:
i) a cationic lipid having an effective pKa greater than 6.0; ii) from 5 to 15 mol percent of a neutral lipid;
iii) from 1 to 15 mol percent of an anionic lipid;
iv) from 30 to 45 mol percent of a steroid;
v) a polymer conjugated lipid; and
vi) a therapeutic agent, or a pharmaceutically acceptable salt or prodrug thereof, wherein the mol percent is determined based on total mol of lipid present in the lipid nanoparticle.
In one embodiment, the cationic lipid can be any of a number of lipid species which carry a net positive charge at a selected pH, such as physiological pH. Exemplary cationic lipids are described herein below. In one embodiment, the cationic lipid has a pKa greater than 6.25. In one embodiment, the cationic lipid has a pKa greater than 6.5. In one embodiment, the cationic lipid has a pKa greater than 6.1, greater than 6.2, greater than 6.3, greater than 6.35, greater than 6.4, greater than 6.45, greater than 6.55, greater than 6.6, greater than 6.65, or greater than 6.7.
In one embodiment, the lipid nanoparticle comprises from 40 to 45 mol percent of the cationic lipid. In one embodiment, the lipid nanoparticle comprises from 45 to 50 mole percent of the cationic lipid.
In one embodiment, the molar ratio of the cationic lipid to the neutral lipid ranges from about 2: 1 to about 8: 1. In one embodiment, the lipid nanoparticle comprises from 5 to 10 mol percent of the neutral lipid.
Exemplary anionic lipids include, but are not limited to, phosphatidylglycerol, dioleoylphosphatidylglycerol (DOPG) , dipalmitoylphosphatidylglycerol (DPPG) or 1, 2-distearoyl-sn-glycero-3-phospho- (1'-rac-glycerol) (DSPG) .
In one embodiment, the lipid nanoparticle comprises from 1 to 10 mole percent of the anionic lipid. In one embodiment, the lipid nanoparticle comprises from 1 to 5 mole percent of the anionic lipid. In one embodiment, the lipid nanoparticle comprises from 1 to 9 mole percent, from 1 to 8 mole percent, from 1 to 7 mole percent, or from 1 to 6 mole percent of the anionic lipid. In one embodiment, the mol ratio of anionic lipid to neutral lipid ranges from 1: 1 to 1: 10.
In one embodiment, the steroid cholesterol. In one embodiment, the molar ratio of the cationic lipid to cholesterol ranges from about 5: 1 to 1: 1. In one embodiment, the lipid nanoparticle comprises from 32 to 40 mol percent of the steroid.
In one embodiment, the sum of the mol percent of neutral lipid and mol percent of anionic lipid ranges from 5 to 15 mol percent. In one embodiment, wherein the sum of the mol percent of neutral lipid and mol percent of anionic lipid ranges from 7 to 12 mol percent.
In one embodiment, the mol ratio of anionic lipid to neutral lipid ranges from 1: 1 to 1: 10. In one embodiment, the sum of the mol percent of neutral lipid and mol percent steroid ranges from 35 to 45 mol percent.
In one embodiment, the lipid nanoparticle comprises:
i) from 45 to 55 mol percent of the cationic lipid;
ii) from 5 to 10 mol percent of the neutral lipid;
iii) from 1 to 5 mol percent of the anionic lipid; and
iv) from 32 to 40 mol percent of the steroid.
In one embodiment, the lipid nanoparticle comprises from 1.0 to 2.5 mol percent of the conjugated lipid. In one embodiment, the polymer conjugated lipid is present in a concentration of about 1.5 mol percent.
In one embodiment, the neutral lipid is present in a concentration ranging from 5 to 15 mol percent, 7 to 13 mol percent, or 9 to 11 mol percent. In one embodiment, the neutral lipid is present in a concentration of about 9.5, 10 or 10.5 mol percent. In one embodiment, the molar ratio of the cationic lipid to the neutral lipid ranges from about 4.1: 1.0 to about 4.9: 1.0, from about 4.5: 1.0 to about 4.8: 1.0, or from about 4.7: 1.0 to 4.8: 1.0.
In one embodiment, the steroid is cholesterol. In some embodiments, the steroid is present in a concentration ranging from 39 to 49 molar percent, 40 to 46 molar percent, from 40 to 44 molar percent, from 40 to 42 molar percent, from 42 to 44 molar percent, or from 44 to 46 molar percent. In one embodiment, the steroid is present in a concentration of 40, 41, 42, 43, 44, 45, or 46 molar percent. In certain embodiments, the molar ratio of cationic lipid to the steroid ranges from 1.0: 0.9 to 1.0: 1.2, or from 1.0: 1.0 to 1.0: 1.2.
In one embodiment, the molar ratio of cationic lipid to steroid ranges from 5: 1 to 1: 1.
In one embodiment, the lipid nanoparticle comprises from 1.0 to 2.5 mol percent of the conjugated lipid. In one embodiment, the polymer conjugated lipid is present in a concentration of about 1.5 mol percent.
In one embodiment, the molar ratio of cationic lipid to polymer conjugated lipid ranges from about 100: 1 to about 20: 1. In one embodiment, the molar ratio of cationic lipid to the polymer conjugated lipid ranges from about 35: 1 to about 25: 1.
In one embodiment, the molar ratio of cationic lipid to polymer conjugated lipid ranges from about 100: 1 to about 20: 1. In one embodiment, the molar ratio of cationic lipid to the polymer conjugated lipid ranges from about 35: 1 to about 25: 1.
In one embodiment, the lipid nanoparticle has a mean diameter ranging from 50 nm to 100 nm, or from 60 nm to 85 nm.
In one embodiment, the composition comprises a cationic lipid provided herein, DSPC, cholesterol, and PEG-lipid, and mRNA. In one embodiment, the a cationic lipid provided herein, DSPC, cholesterol, and PEG-lipid are at a molar ratio of about 50: 10: 38.5: 1.5.
Nanoparticle compositions can be designed for one or more specific applications or targets. For example, a nanoparticle composition can be designed to deliver a therapeutic and/or prophylactic agent such as an RNA to a particular cell, tissue, organ, or system or group thereof in a mammal’s body. Physiochemical properties of nanoparticle compositions can be altered in order to increase selectivity for particular bodily targets. For instance, particle sizes can be adjusted based on the fenestration sizes of different organs. The therapeutic and/or prophylactic agent included in a nanoparticle composition can also be selected based on the desired delivery target or targets. For example, a therapeutic and/or prophylactic agent can be selected for a particular indication, condition, disease, or disorder and/or for delivery to a particular cell, tissue, organ, or system or group thereof (e.g., localized or specific delivery) . In certain embodiments, a nanoparticle composition can include an mRNA encoding a polypeptide of interest capable of being translated within a cell to produce the polypeptide of interest. Such a composition can be designed to be specifically delivered to a particular organ. In certain embodiments, a composition can be designed to be specifically delivered to a mammalian liver.
The amount of a therapeutic and/or prophylactic agent in a nanoparticle composition can depend on the size, composition, desired target and/or application, or other properties of the nanoparticle composition as well as on the properties of the therapeutic and/or prophylactic  agent. For example, the amount of an RNA useful in a nanoparticle composition can depend on the size, sequence, and other characteristics of the RNA. The relative amounts of a therapeutic and/or prophylactic agent and other elements (e.g., lipids) in a nanoparticle composition can also vary. In some embodiments, the wt/wt ratio of the lipid component to a therapeutic and/or prophylactic agent in a nanoparticle composition can be from about 5: 1 to about 60: 1, such as about 5: 1, 6: 1, 7: 1, 8: 1, 9: 1, 10: 1, 11: 1, 12: 1, 13: 1, 14: 1, 15: 1, 16: 1, 17: 1, 18: 1, 19: 1, 20: 1, 22: 1, 25: 1, 30: 1, 35: 1, 40: 1, 45: 1, 50: 1, and 60: 1. For example, the wt/wt ratio of the lipid component to a therapeutic and/or prophylactic agent can be from about 10: 1 to about 40: 1. In certain embodiments, the wt/wt ratio is about 20: 1. The amount of a therapeutic and/or prophylactic agent in a nanoparticle composition can, for example, be measured using absorption spectroscopy (e.g., ultraviolet-visible spectroscopy) .
In some embodiments, a nanoparticle composition includes one or more RNAs, and the one or more RNAs, lipids, and amounts thereof can be selected to provide a specific N: P ratio. The N: P ratio of the composition refers to the molar ratio of nitrogen atoms in one or more lipids to the number of phosphate groups in an RNA. In some embodiments, a lower N: P ratio is selected. The one or more RNA, lipids, and amounts thereof can be selected to provide an N: P ratio from about 2: 1 to about 30: 1, such as 2: 1, 3: 1, 4: 1, 5: 1, 6: 1, 7: 1, 8: 1, 9: 1, 10: 1, 12: 1, 14: 1, 16: 1, 18: 1, 20: 1, 22: 1, 24: 1, 26: 1, 28: 1, or 30: 1. In certain embodiments, the N: P ratio can be from about 2: 1 to about 8: 1. In other embodiments, the N: P ratio is from about 5: 1 to about 8: 1. For example, the N: P ratio may be about 5.0: 1, about 5.5: 1, about 5.67: 1, about 6.0: 1, about 6.5: 1, or about 7.0: 1. For example, the N: P ratio may be about 5.67: 1.
The physical properties of a nanoparticle composition can depend on the components thereof. For example, a nanoparticle composition including cholesterol as a structural lipid can have different characteristics compared to a nanoparticle composition that includes a different structural lipid. Similarly, the characteristics of a nanoparticle composition can depend on the absolute or relative amounts of its components. For instance, a nanoparticle composition including a higher molar fraction of a phospholipid may have different characteristics than a nanoparticle composition including a lower molar fraction of a phospholipid. Characteristics may also vary depending on the method and conditions of preparation of the nanoparticle composition.
Nanoparticle compositions may be characterized by a variety of methods. For example, microscopy (e.g., transmission electron microscopy or scanning electron microscopy) may be used to examine the morphology and size distribution of a nanoparticle composition. Dynamic light scattering or potentiometry (e.g., potentiometric titrations) may be used to measure zeta potentials. Dynamic light scattering may also be utilized to determine particle sizes. Instruments such as the Zetasizer Nano ZS (Malvem Instruments Ltd, Malvem, Worcestershire, UK) may also be used to measure multiple characteristics of a nanoparticle composition, such as particle size, polydispersity index, and zeta potential.
In various embodiments, the mean size of a nanoparticle composition can be between 10s of nm and 100s of nm. For example, the mean size can be from about 40 nm to about 150 nm, such as about 40 nm, 45 nm, 50 nm, 55 nm, 60 nm, 65 nm, 70 nm, 75 nm, 80 nm, 85 nm, 90 nm, 95 nm, 100 nm, 105 nm, 110 nm, 115 nm, 120 nm, 125 nm, 130 nm, 135 nm, 140 nm, 145 nm, or 150 nm. In some embodiments, the mean size of a nanoparticle composition can be from about 50 nm to about 100 nm, from about 50 nm to about 90 nm, from about 50 nm to about 80 nm, from about 50 nm to about 70 nm, from about 50 nm to about 60 nm, from about 60 nm to about 100 nm, from about 60 nm to about 90 nm, from about 60 nm to about 80 nm, from about 60 nm to about 70 nm, from about 70 nm to about 100 nm, from about 70 nm to about 90 nm, from about 70 nm to about 80 nm, from about 80 nm to about 100 nm, from about 80 nm to about 90 nm, or from about 90 nm to about 100 nm. In certain embodiments, the mean size of a nanoparticle composition can be from about 70 nm to about 100 nm. In some embodiments, the mean size can be about 80 nm. In other embodiments, the mean size can be about 100 nm.
A nanoparticle composition can be relatively homogenous. A polydispersity index can be used to indicate the homogeneity of a nanoparticle composition, e.g., the particle size distribution of the nanoparticle compositions. A small (e.g., less than 0.3) polydispersity index generally indicates a narrow particle size distribution. A nanoparticle composition can have a polydispersity index from about 0 to about 0.25, such as 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.20, 0.21, 0.22, 0.23, 0.24, or 0.25. In some embodiments, the polydispersity index of a nanoparticle composition can be from about 0.10 to about 0.20.
The zeta potential of a nanoparticle composition can be used to indicate the electrokinetic potential of the composition. For example, the zeta potential can describe the  surface charge of a nanoparticle composition. Nanoparticle compositions with relatively low charges, positive or negative, are generally desirable, as more highly charged species can interact undesirably with cells, tissues, and other elements in the body. In some embodiments, the zeta potential of a nanoparticle composition can be from about -10 mV to about +20 mV, from about -10 mV to about +15 mV, from about -10 mV to about +10 mV, from about -10 mV to about +5 mV, from about -10 mV to about 0 mV, from about -10 mV to about -5 mV, from about -5 mV to about +20 mV, from about -5 mV to about +15 mV, from about -5 mV to about +10 mV, from about -5 mV to about +5 mV, from about -5 mV to about 0 mV, from about 0 mV to about +20 mV, from about 0 mV to about +15 mV, from about 0 mV to about +10 mV, from about 0 mV to about +5 mV, from about +5 mV to about +20 mV, from about +5 mV to about +15 mV, or from about +5 mV to about +10 mV.
The efficiency of encapsulation of a therapeutic and/or prophylactic agent describes the amount of therapeutic and/or prophylactic agent that is encapsulated or otherwise associated with a nanoparticle composition after preparation, relative to the initial amount provided. The encapsulation efficiency is desirably high (e.g., close to 100%) . The encapsulation efficiency can be measured, for example, by comparing the amount of therapeutic and/or prophylactic agent in a solution containing the nanoparticle composition before and after breaking up the nanoparticle composition with one or more organic solvents or detergents. Fluorescence can be used to measure the amount of free therapeutic and/or prophylactic agent (e.g., RNA) in a solution. For the nanoparticle compositions described herein, the encapsulation efficiency of a therapeutic and/or prophylactic agent can be at least 50%, for example 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%. In some embodiments, the encapsulation efficiency can be at least 80%. In certain embodiments, the encapsulation efficiency can be at least 90%.
A nanoparticle composition can optionally comprise one or more coatings. For example, a nanoparticle composition can be formulated in a capsule, film, or tablet having a coating. A capsule, film, or tablet including a composition described herein can have any useful size, tensile strength, hardness, or density.
5.4.7 Pharmaceutical Compositions
According to the present disclosure, nanoparticle compositions can be formulated in whole or in part as pharmaceutical compositions. Pharmaceutical compositions can include one  or more nanoparticle compositions. For example, a pharmaceutical composition can include one or more nanoparticle compositions including one or more different therapeutic and/or prophylactic agents. Pharmaceutical compositions can further include one or more pharmaceutically acceptable excipients or accessory ingredients such as those described herein. General guidelines for the formulation and manufacture of pharmaceutical compositions and agents are available, for example, in Remington’s The Science and Practice of Pharmacy, 21 st Edition, A. R. Gennaro; Lippincott, Williams &Wilkins, Baltimore, Md., 2006. Conventional excipients and accessory ingredients can be used in any pharmaceutical composition, except insofar as any conventional excipient or accessory ingredient can be incompatible with one or more components of a nanoparticle composition. An excipient or accessory ingredient can be incompatible with a component of a nanoparticle composition if its combination with the component can result in any undesirable biological effect or otherwise deleterious effect.
In some embodiments, one or more excipients or accessory ingredients can make up greater than 50%of the total mass or volume of a pharmaceutical composition including a nanoparticle composition. For example, the one or more excipients or accessory ingredients can make up 50%, 60%, 70%, 80%, 90%, or more of a pharmaceutical convention. In some embodiments, a pharmaceutically acceptable excipient is at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%pure. In some embodiments, an excipient is approved for use in humans and for veterinary use. In some embodiments, an excipient is approved by United States Food and Drug Administration. In some embodiments, an excipient is pharmaceutical grade. In some embodiments, an excipient meets the standards of the United States Pharmacopoeia (USP) , the European Pharmacopoeia (EP) , the British Pharmacopoeia, and/or the International Pharmacopoeia.
Relative amounts of the one or more nanoparticle compositions, the one or more pharmaceutically acceptable excipients, and/or any additional ingredients in a pharmaceutical composition in accordance with the present disclosure will vary, depending upon the identity, size, and/or condition of the subject treated and further depending upon the route by which the composition is to be administered. By way of example, a pharmaceutical composition can comprise between 0.1%and 100% (wt/wt) of one or more nanoparticle compositions.
In certain embodiments, the nanoparticle compositions and/or pharmaceutical compositions of the disclosure are refrigerated or frozen for storage and/or shipment (e.g., being  stored at a temperature of 4 ℃. or lower, such as a temperature between about -150 ℃ and about 0 ℃ or between about -80 ℃ and about -20 ℃ (e.g., about -5 ℃, -10 ℃, -15 ℃, -20 ℃, -25 ℃, -30 ℃, -40 ℃, -50 ℃, -60 ℃, -70 ℃, -80 ℃, -90 ℃, -130 ℃ or -150 ℃) . For example, the pharmaceutical composition comprising a compound of any of Formula 01-I, 01-II, 02-I, 02-II, 03-I, 03-II-A, 03-II-B, 03-II-C, 03-II-D, 04-I, 04-III, 04-IV (and sub-formulas thereof) is a solution that is refrigerated for storage and/or shipment at, for example, about -20 ℃, -30 ℃, -40 ℃, -50 ℃, -60 ℃, -70 ℃, or -80 ℃ In certain embodiments, the disclosure also relates to a method of increasing stability of the nanoparticle compositions and/or pharmaceutical compositions comprising a compound of any of Formula 01-I, 01-II, 02-I, 02-II, 03-I, 03-II-A, 03-II-B, 03-II-C, 03-II-D, 04-I, 04-III, 04-IV (and sub-formulas thereof) by storing the nanoparticle compositions and/or pharmaceutical compositions at a temperature of 4 ℃ or lower, such as a temperature between about -150 ℃ and about 0 ℃ or between about -80 ℃ and about -20 ℃, e.g., about -5 ℃, -10 ℃, -15 ℃, -20 ℃, -25 ℃, -30 ℃, -40 ℃, -50 ℃, -60 ℃, -70 ℃, -80 ℃, -90 ℃, -130 ℃ or -150 ℃) . For example, the nanoparticle compositions and/or pharmaceutical compositions disclosed herein are stable for about at least 1 week, at least 2 weeks, at least 3 weeks, at least 4 weeks, at least 5 weeks, at least 6 weeks, at least 1 month, at least 2 months, at least 4 months, at least 6 months, at least 8 months, at least 10 months, at least 12 months, at least 14 months, at least 16 months, at least 18 months, at least 20 months, at least 22 months, or at least 24 months, e.g., at a temperature of 4 ℃ or lower (e.g., between about 4 ℃ and -20 ℃) . In one embodiment, the formulation is stabilized for at least 4 weeks at about 4 ℃ In certain embodiments, the pharmaceutical composition of the disclosure comprises a nanoparticle composition disclosed herein and a pharmaceutically acceptable carrier selected from one or more of Tris, an acetate (e.g., sodium acetate) , an citrate (e.g., sodium citrate) , saline, PBS, and sucrose. In certain embodiments, the pharmaceutical composition of the disclosure has a pH value between about 7 and 8 (e.g., 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9 or 8.0, or between 7.5 and 8 or between 7 and 7.8) . For example, a pharmaceutical composition of the disclosure comprises a nanoparticle composition disclosed herein, Tris, saline and sucrose, and has a pH of about 7.5-8, which is suitable for storage and/or shipment at, for example, about -20 ℃ For example, a pharmaceutical composition of the disclosure comprises a nanoparticle composition disclosed herein and PBS and has a pH of about 7-7.8, suitable for storage and/or shipment at, for example, about 4 ℃ or lower. “Stability, ” “stabilized, ” and  “stable” in the context of the present disclosure refers to the resistance of nanoparticle compositions and/or pharmaceutical compositions disclosed herein to chemical or physical changes (e.g., degradation, particle size change, aggregation, change in encapsulation, etc. ) under given manufacturing, preparation, transportation, storage and/or in-use conditions, e.g., when stress is applied such as shear force, freeze/thaw stress, etc.
Nanoparticle compositions and/or pharmaceutical compositions including one or more nanoparticle compositions can be administered to any patient or subject, including those patients or subjects that can benefit from a therapeutic effect provided by the delivery of a therapeutic and/or prophylactic agent to one or more particular cells, tissues, organs, or systems or groups thereof, such as the renal system. Although the descriptions provided herein of nanoparticle compositions and pharmaceutical compositions including nanoparticle compositions are principally directed to compositions which are suitable for administration to humans, it will be understood by the skilled artisan that such compositions are generally suitable for administration to any other mammal. Modification of compositions suitable for administration to humans in order to render the compositions suitable for administration to various animals is well understood, and the ordinarily skilled veterinary pharmacologist can design and/or perform such modification with merely ordinary, if any, experimentation. Subjects to which administration of the compositions is contemplated include, but are not limited to, humans, other primates, and other mammals, including commercially relevant mammals such as cattle, pigs, hoses, sheep, cats, dogs, mice, and/or rats.
A pharmaceutical composition including one or more nanoparticle compositions can be prepared by any method known or hereafter developed in the art of pharmacology. In general, such preparatory methods include bringing the active ingredient into association with an excipient and/or one or more other accessory ingredients, and then, if desirable or necessary, dividing, shaping, and/or packaging the product into a desired single-or multi-dose unit.
A pharmaceutical composition in accordance with the present disclosure can be prepared, packaged, and/or sold in bulk, as a single unit dose, and/or as a plurality of single unit doses. As used herein, a “unit dose” is discrete amount of the pharmaceutical composition comprising a predetermined amount of the active ingredient (e.g., nanoparticle composition) . The amount of the active ingredient is generally equal to the dosage of the active ingredient  which would be administered to a subject and/or a convenient fraction of such a dosage such as, for example, one-half or one-third of such a dosage.
Pharmaceutical compositions can be prepared in a variety of forms suitable for a variety of routes and methods of administration. For example, pharmaceutical compositions can be prepared in liquid dosage forms (e.g., emulsions, microemulsions, nanoemulsions, solutions, suspensions, syrups, and elixirs) , injectable forms, solid dosage forms (e.g., capsules, tablets, pills, powders, and granules) , dosage forms for topical and/or transdermal administration (e.g., ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants, and patches) , suspensions, powders, and other forms.
Liquid dosage forms for oral and parenteral administration include, but are not limited to, pharmaceutically acceptable emulsions, microemulsions, nanoemulsions, solutions, suspensions, syrups, and/or elixirs. In addition to active ingredients, liquid dosage forms can comprise inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1, 3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils) , glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof. Besides inert diluents, oral compositions can include additional therapeutic and/or prophylactic agents, additional agents such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and/or perfuming agents. In certain embodiments for parenteral administration, compositions are mixed with solubilizing agents such as CremophorTM, alcohols, oils, modified oils, glycols, polysorbates, cyclodextrins, polymers, and/or combinations thereof.
Injectable preparations, for example, sterile injectable aqueous or oleaginous suspensions can be formulated according to the known art using suitable dispersing agents, wetting agents, and/or suspending agents. Sterile injectable preparations can be sterile injectable solutions, suspensions, and/or emulsions in nontoxic parenterally acceptable diluents and/or solvents, for example, as a solution in 1, 3-butanediol. Among the acceptable vehicles and solvents that can be employed are water, Ringer’s solution, U.S.P., and isotonic sodium chloride solution. Sterile, fixed oils are conventionally employed as a solvent or suspending medium. For  this purpose any bland fixed oil can be employed including synthetic mono-or diglycerides. Fatty acids such as oleic acid can be used in the preparation of injectables.
Injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter, and/or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium prior to use.
The disclosure features methods of delivering a therapeutic and/or prophylactic agent to a mammalian cell or organ, producing a polypeptide of interest in a mammalian cell, and treating a disease or disorder in a mammal in need thereof comprising administering to a mammal and/or contacting a mammalian cell with a nanoparticle composition including a therapeutic and/or prophylactic agent.
5.5 Methods
In one aspect, provided herein are also methods for managing or treating cancer in a subject using the therapeutic nucleic acids and/or pharmaceutical composition described herein. Specific cancers that can be treated in accordance with the methods described herein include breast cancer, melanoma, and colon cancer. In some embodiments, the breast cancer is triple negative breast cancer.
In some embodiments, the method for managing or treating cancer comprises administering to the subject a therapeutically effective amount of a nucleic acid encoding an IL-12 containing polypeptide. In some embodiments, the method for managing or treating cancer comprises administering to the subject a therapeutically effective amount of a nucleic acid encoding an IL-15 containing polypeptide. In some embodiments, the method for managing or treating cancer comprises administering to the subject a therapeutically effective amount of both a nucleic acid encoding an IL-12 containing polypeptide and a nucleic acid encoding an IL-15 containing polypeptide. In some embodiments, the nucleic acid encoding an IL-12 containing polypeptide and the nucleic acid encoding an IL-15 containing polypeptide are separate nucleic acid molecules. In some embodiments, the nucleic acid encoding an IL-12 containing polypeptide and the nucleic acid encoding an IL-15 containing polypeptide form part of the same nucleic acid molecule. In some embodiment, the administered nucleic acid is a therapeutic  nucleic acid according to the present disclosure as described in Section 5.3 (Therapeutic Nucleic Acids) , such as the nucleic acid sequences disclosed in Tables 1, 3 and 5.
In some embodiments, the method for managing or treating cancer comprises administering to the subject a therapeutically effective amount of a pharmaceutical composition comprising the nucleic acid encoding an IL-12 containing polypeptide, either alone or in combination with a therapeutically effective amount of a pharmaceutical composition comprising the nucleic acid encoding an IL-15 containing polypeptide. In some embodiments, the administration of the pharmaceutical composition comprising the IL-12 containing polypeptide and the pharmaceutical composition comprising the IL-15 containing polypeptide are simultaneous or sequential with one another. In some embodiments, the administered pharmaceutical composition is a lipid-containing composition according to the present disclosure as described in Section 5.4 (Nanoparticle Composition) .
In some embodiments, the method for managing or treating cancer comprises administering to the subject a therapeutically effective amount of a pharmaceutical composition comprising both a nucleic acid encoding an IL-12 containing polypeptide, and a nucleic acid encoding an IL-15 containing polypeptide. In some embodiments, the nucleic acid encoding the IL-12 containing polypeptide and the nucleic acid encoding the IL-15 containing polypeptide are separate nucleic acid molecules contained in the pharmaceutical composition. In some embodiments, the nucleic acid encoding the IL-12 containing polypeptide and the nucleic acid encoding the IL-15 containing polypeptide form part of the same nucleic acid molecule contained in the pharmaceutical composition. In some embodiments, the administered pharmaceutical composition is a lipid-containing composition according to the present disclosure as described in Section 5.4 (Nanoparticle Composition) .
In some embodiments, the method for managing or treating cancer comprises administering to the subject a therapeutically effective amount of a nucleic acid encoding an IL-12 containing polypeptide in combination with an antagonist of PD1 or a nucleic acid encoding the antagonist of PD-1. In some embodiments, the method for managing or treating cancer comprises administering to the subject a therapeutically effective amount of a pharmaceutical composition comprising a nucleic acid encoding an IL-12 containing polypeptide in combination with a pharmaceutical composition comprising the antagonist of PD-1 or nucleic acid encoding the antagonist of PD-1. In various embodiments, the administration of the nucleic  acid encoding the IL-12 containing polypeptide or pharmaceutical composition thereof can be simultaneously or sequentially with the nucleic acid encoding the antagonist of PD-1 or the pharmaceutical composition thereof.
In some embodiments, the antagonist of PD-1 is an antibody or antigen binding fragment thereof that specifically binds to PD-1 and blocks binding of PD-1 to its natural ligands. In some embodiments, the natural ligand of PD-1 is PD-L1. In some embodiments, the natural ligand of PD-1 is PD-L2.
In one embodiment, the anti-PD-1 antibody (or an antigen-binding portion thereof) useful for the disclosure is pembrolizumab. Pembrolizumab (also known as “
Figure PCTCN2022123722-appb-000068
” , lambrolizumab, and MK-3475) is a humanized monoclonal IgG4 antibody directed against human cell surface receptor PD-1 (programmed death-1 or programmed cell death-1) . Pembrolizumab is described, for example, in U.S. Patent No. 8, 900, 587; see also http: //www. cancer. gov/drugdictionary? cdrid=695789 (last accessed: December 14, 2014) . Pembrolizumab has been approved by the FDA for the treatment of relapsed or refractory melanoma and advanced NSCLC.
In another embodiment, the anti-PD-1 antibody useful for the disclosure is nivolumab. Nivolumab (also known as “
Figure PCTCN2022123722-appb-000069
” ; formerly designated 5C4, BMS-936558, MDX-1106, or ONO-4538) is a fully human IgG4 (S228P) PD-1 immune checkpoint inhibitor antibody that selectively prevents interaction with PD-1 ligands (PD-L1 and PD-L2) , thereby blocking the down-regulation of antitumor T-cell functions (U.S. Patent No. 8,008,449; Wang et al, 2014 Cancer Immunol Res. 2 (9) : 846-56) . Nivolumab has shown activity in a variety of advanced solid tumors including renal cell carcinoma (renal adenocarcinoma, or hypernephroma) , melanoma, and non-small cell lung cancer (NSCLC) (Topalian et al., 2012a; Topalian et al., 2014; Drake et al., 2013; WO 2013/173223.
In other embodiments, the anti-PD-1 antibody is MEDI0680 (formerly AMP-514) , which is a monoclonal antibody against the PD-1 receptor. MEDI0680 is described, for example, in U.S. Patent No. 8,609,089B2 or in http: //www. cancer. gov/drugdictionary? cdrid=756047 (last accessed December 14, 2014) .
In certain embodiments, the anti-PD-1 antibody is BGB-A317, which is a humanized monoclonal antibody. BGB-A317 is described in U.S. Publ. No. 2015/0079109.
In certain embodiments, a PD-1 antagonist is AMP-224, which is a B7-DC Fc fusion protein. AMP-224 is discussed in U.S. Publ. No. 2013/0017199 or in http: //www. cancer. gov/publications/dictionaries/cancer-drug? cdrid=700595 (last accessed July 8, 2015) .
Additional antagonistic PD-1 antibody known in the art can be used in connection with the present disclosure, including but not limited to cemiplimab, atezolizumab, dostarlimab, durvalumab, avelumab, and toripalimab.
In some embodiments, the method for managing or treating cancer comprises administering to the subject a therapeutically effective amount of a nucleic acid encoding an IL-12 containing polypeptide or a pharmaceutical composition thereof in combination with an antagonist of PD-1 or a pharmaceutical composition thereof. In various embodiments, the administration of the nucleic acid encoding the IL-12 containing polypeptide or pharmaceutical composition thereof can be simultaneously or sequentially with the nucleic acid encoding the antagonist of PD-1 or the pharmaceutical composition thereof. In some embodiments, the pharmaceutical composition containing the nucleic acid encoding the IL-12 containing polypeptide and/or the nucleic acid encoding the antagonist of PD-1 is a lipid-containing composition according to the present disclosure as described in Section 5.4 (Nanoparticle Composition) .
In some embodiments, the method for managing or treating cancer comprises administering to the subject a therapeutically effective amount of a nucleic acid encoding an IL-12 containing polypeptide or a pharmaceutical composition thereof in combination with a nucleic acid encoding the antagonist of PD-1 or a pharmaceutical composition thereof.
In some embodiments, the nucleic acid encoding an IL-12 containing polypeptide and the nucleic acid encoding the antagonist of PD-1 are separate nucleic acid molecules. In some embodiments, the nucleic acid encoding an IL-12 containing polypeptide and the nucleic acid encoding the antagonist of PD-1 form part of the same nucleic acid molecule. In some embodiments, the nucleic acid encoding the IL-12 containing polypeptide and the nucleic acid encoding the antagonist of PD-1 are formulated in separate pharmaceutical compositions for simultaneous or sequential administration to the subject. In some embodiments, the nucleic acid encoding the IL-12 containing polypeptide and the nucleic acid encoding the antagonist of PD-1 are formulated in the same pharmaceutical composition. In some embodiments, the  pharmaceutical composition containing the nucleic acid encoding the IL-12 containing polypeptide and/or the nucleic acid encoding the antagonist of PD-1 is a lipid-containing composition according to the present disclosure as described in Section 5.4 (Nanoparticle Composition) .
In some embodiments, the nucleic acid encoding the IL-12 containing polypeptide is a therapeutic nucleic acid according to the present disclosure as described in Section 5.3 (Therapeutic Nucleic Acids) such as the nucleic acid sequences disclosed in Tables 1, 3 and 5. In some embodiments, the nucleic acid encoding the antagonist of PD-1 encodes an anti-PD-1 antibody or antigen binding fragment thereof.
Nucleic acids encoding antibodies or antigen binding fragments of antibodies can be obtained using standard molecular biology techniques. For antibodies expressed by hybridomas (e.g., hybridomas prepared from transgenic mice carrying human immunoglobulin genes as described further below) , cDNAs encoding the light and heavy chains of the antibody made by the hybridoma can be obtained by standard PCR amplification or cDNA cloning techniques. For antibodies obtained from an immunoglobulin gene library (e.g., using phage display techniques) , nucleic acid encoding the antibody can be recovered from the library.
Once DNA fragments encoding VH and VL segments are obtained, these DNA fragments can be further manipulated by standard recombinant DNA techniques, for example to convert the variable region genes to full-length antibody chain genes, to Fab fragment genes or to a scFv gene. In these manipulations, a VL-or VH-encoding DNA fragment is operatively linked to another DNA fragment encoding another protein, such as an antibody constant region or a flexible linker. The term “operatively linked” , as used in this context, is intended to mean that the two DNA fragments are joined such that the amino acid sequences encoded by the two DNA fragments remain in-frame.
The isolated DNA encoding the VH region can be converted to a full-length heavy chain gene by operatively linking the VH-encoding DNA to another DNA molecule encoding heavy chain constant regions (CH1, CH2 and CH3) . The sequences of human heavy chain constant region genes are known in the art (see e.g., Kabat, E. A., et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242) and DNA fragments encompassing these regions can be obtained by standard PCR amplification. The heavy chain constant region can be an IgG1, IgG2,  IgG3, IgG4, IgA, IgE, IgM or IgD constant region, but most preferably is an IgG1 or IgG4 constant region. For a Fab fragment heavy chain gene, the VH-encoding DNA can be operatively linked to another DNA molecule encoding only the heavy chain CH1 constant region.
The isolated DNA encoding the VL region can be converted to a full-length light chain gene (as well as a Fab light chain gene) by operatively linking the VL-encoding DNA to another DNA molecule encoding the light chain constant region, CL. The sequences of human light chain constant region genes are known in the art (see e.g., Kabat, E. A., et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242) and DNA fragments encompassing these regions can be obtained by standard PCR amplification. The light chain constant region can be a kappa or lambda constant region, but most preferably is a kappa constant region.
To create a scFv gene, the VH-and VL-encoding DNA fragments are operatively linked to another fragment encoding a flexible linker, e.g., encoding the amino acid sequence (Gly4-Ser) 3, such that the VH and VL sequences can be expressed as a contiguous single-chain protein, with the VL and VH regions joined by the flexible linker (see e.g., Bird et al. (1988) Science 242: 423-426; Huston et al. (1988) Proc. Natl. Acad. Sci. USA 85: 5879-5883; McCafferty et al., (1990) Nature 348: 552-554) .
In some embodiments, the method for managing or treating cancer comprises administering to the subject a therapeutically effective amount of (a) a nucleic acid encoding an IL-12 containing polypeptide, (b) a nucleic acid encoding an IL-15 containing polypeptide, and (c) a nucleic acid encoding an antagonist of PD-1. In some embodiments, the nucleic acids encoding the IL-12 containing polypeptide, the nucleic acid encoding the IL-15 containing polypeptide, and the nucleic acid encoding the antagonist of PD-1 can be separate nucleic molecules. In some embodiments, at least two the nucleic acids encoding the IL-12 containing polypeptide, the nucleic acid encoding the IL-15 containing polypeptide, and the nucleic acid encoding the antagonist of PD-1 form part of the same nucleic molecule. In some embodiments, the nucleic acid encoding the IL-12 containing polypeptide and/or the nucleic acid encoding the IL-15 containing polypeptide is a therapeutic nucleic acid according to the present disclosure as described in Section 5.3 (Therapeutic Nucleic Acids) , such as the nucleic acid sequences disclosed in Tables 1, 3 and 5. In some embodiments, the nucleic acids encoding the IL-12 containing polypeptide, the nucleic acid encoding the IL-15 containing polypeptide, and the  nucleic acid encoding the antagonist of PD-1 can each be formulated in a separate pharmaceutical composition for simultaneous or sequential administration to the subject. In other embodiments, at least two the nucleic acids encoding the IL-12 containing polypeptide, the nucleic acid encoding the IL-15 containing polypeptide, and the nucleic acid encoding the antagonist of PD-1 are formulated in the same pharmaceutical composition. In some embodiments, the pharmaceutical composition is a lipid-containing composition according to the present disclosure as described in Section 5.4 (Nanoparticle Composition) .
In some embodiments, the method for managing or treating cancer comprises administering to the subject a therapeutically effective amount of (a) a nucleic acid encoding an IL-12 containing polypeptide, (b) a nucleic acid encoding an IL-15 containing polypeptide, and (c) an antagonist of PD-1. In some embodiments, the nucleic acids encoding the IL-12 containing polypeptide, and the nucleic acid encoding the IL-15 containing polypeptide can be separate nucleic molecules. In some embodiments, the nucleic acids encoding the IL-12 containing polypeptide and the nucleic acid encoding the IL-15 containing polypeptide form part of the same nucleic molecule. In some embodiments, the nucleic acid encoding the IL-12 containing polypeptide and/or the nucleic acid encoding the IL-15 containing polypeptide is a therapeutic nucleic acid according to the present disclosure as described in Section 5.3 (Therapeutic Nucleic Acids) , such as the nucleic acid sequences disclosed in Tables 1, 3 and 5. In some embodiments, the nucleic acids encoding the IL-12 containing polypeptide and the nucleic acid encoding the IL-15 containing polypeptide, and the antagonist of PD-1 can each be formulated in a separate pharmaceutical composition for simultaneous or sequential administration to the subject. In other embodiments the nucleic acids encoding the IL-12 containing polypeptide and the nucleic acid encoding the IL-15 containing polypeptide are formulated in the same pharmaceutical composition. In some embodiments, the pharmaceutical composition is a lipid-containing composition according to the present disclosure as described in Section 5.4 (Nanoparticle Composition) .
In further embodiments, administration of the therapeutic nucleic acid described herein, a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein, or a combination therapy described herein results in an enhanced immune response in the subject. In some embodiments, the enhanced immune response comprises an  increase in the number of tumor-infiltrating lymphocytes (TIL) in the subject. In some embodiments, the TIL comprises CD8+ T cells. In other embodiments, the TIL comprises IFNγ+ T cells. In some embodiments, the TIL comprises CD8+ T cells and IFNγ+ T cells.
In some embodiments, administration of the therapeutic nucleic acid described herein, a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein, or a combination therapy described herein results in an increase in the ratio between the number of CD8+ T cells and the number Treg cells (CD8+ T/Treg) in the tumor microenvironment of the subject.
In some embodiments, administration of the therapeutic nucleic acid described herein, a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein, or a combination therapy described herein results in upregulation of PD-L1 expression on the tumor cells in the subject.
In some embodiments, administration of the therapeutic nucleic acid described herein, a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein, or a combination therapy described herein results in a reduction of the tumor size in the subject. In some embodiments, the tumor size is reduced by about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%or 100%following the administration. In some embodiments, the cancer patient shows complete remission following the administration.
5.5.1 Additional Therapeutic Agents
In some embodiments, the composition of the present disclosure can further comprise one or more additional therapeutic agents. In some embodiments, the additional therapeutic agent and the therapeutic nucleic acid of the present disclosure can be co-formulated in one composition. For example, the additional therapeutic agent can be formulated as part of the composition comprising the therapeutic nucleic acid of the present disclosure. Alternatively, in some embodiments, the additional therapeutic agent and therapeutic nucleic acid of the present disclosure can be formulated as separate compositions or dose units for co-administration either sequentially or simultaneously to a subject.
In particular embodiments, the therapeutic nucleic acid of the present disclosure is formulated as part of a lipid-containing composition as described in Section 5.4 (Nanoparticle Compositions) , and the additional therapeutic agent is formulated as a separate composition. In particular embodiments, the therapeutic nucleic acid of the present disclosure is formulated as part of a lipid-containing composition as described in Section 5.4 (Nanoparticle Compositions) , wherein the additional therapeutic agent is also formulated as part of the lipid-containing composition.
In particular embodiments, the therapeutic nucleic acid of the present disclosure is formulated so that the therapeutic nucleic acid is encapsulated in a lipid shell of a lipid nanoparticle as described in Section 5.4 (Nanoparticle Compositions) , and the additional therapeutic agent is formulated as a separate composition. In particular embodiments, the therapeutic nucleic acid of the present disclosure is formulated so that the therapeutic nucleic acid is encapsulated in a lipid shell of a lipid nanoparticle as described in Section 5.4 (Nanoparticle Compositions) , wherein the lipid nanoparticles also enclose the additional therapeutic agent molecule or a nucleic acid encoding the additional therapeutic agent molecule. In particular embodiments, the therapeutic nucleic acid of the present disclosure is formulated so that the therapeutic nucleic acid is encapsulated in a lipid shell of a lipid nanoparticle as described in Section 5.4 (Nanoparticle Compositions) , wherein the lipid nanoparticles and the additional therapeutic agent are formulated into a single composition.
Various immune cell stimulatory agents are known to one of skill in the art and can be used in connection with the present disclosure. In certain embodiments, the agonist of a co-stimulatory signal is an agonist of a co-stimulatory molecule (e.g., co-stimulatory receptor) found on immune cells, such as, T-lymphocytes (e.g., CD4+ or CD8+ T-lymphocytes) , NK cells and/or antigen-presenting cells (e.g., dendritic cells or macrophages) . Specific examples of co-stimulatory molecules include glucocorticoid-induced tumor necrosis factor receptor (GITR) , Inducible T-cell costimulator (ICOS or CD278) , OX40 (CD134) , CD27, CD28, 4-IBB (CD137) , CD40, lymphotoxin alpha (LT alpha) , LIGHT (lymphotoxin-like, exhibits inducible expression, and competes with herpes simplex virus glycoprotein D for HVEM, a receptor expressed by T lymphocytes) , CD226, cytotoxic and regulatory T cell molecule (CRT AM) , death receptor 3 (DR3) , lymphotoxin-beta receptor (LTBR) , transmembrane activator and CAML interactor (TACI) , B cell-activating factor receptor (BAFFR) , and B cell maturation protein (BCMA) .
In specific embodiments, the agonist of a co-stimulatory receptor is an antibody or antigen-binding fragment thereof that specifically binds to the co-stimulatory receptor. Specific examples of co-stimulatory receptors include GITR, ICOS, OX40, CD27, CD28, 4-1BB, CD40, LT alpha, LIGHT, CD226, CRT AM, DR3, LTBR, TACI, BAFFR, and BCMA. In certain specific embodiments, the antibody is a monoclonal antibody. In other specific embodiments, the antibody is an sc-Fv. In a specific embodiment, the antibody is a bispecific antibody that binds to two receptors on an immune cell. In other embodiments, the bispecific antibody binds to a receptor on an immune cell and to another receptor on a virus infected diseased cell. In specific embodiments, the antibody is a human or humanized antibody.
In another embodiment, the agonist of a co-stimulatory receptor is a ligand of the co-stimulatory receptor or a functional derivative thereof. In certain embodiments, the ligand is fragment of a native ligand. Specific examples of native ligands include ICOSL, B7RP1, CD137L, OX40L, CD70, herpes virus entry mediator (HVEM) , CD80, and CD86. The nucleotide sequences encoding native ligands as well as the amino acid sequences of native ligands are known in the art.
In specific embodiments, the antagonist is an antagonist of an inhibitory molecule (e.g., inhibitory receptor) found on immune cells, such as, e.g., T-lymphocytes (e.g., CD4+ or CD8+ T-lymphocytes) , NK cells and/or antigen-presenting cells (e.g., dendritic cells or macrophages) . Specific examples of inhibitory molecules include cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4 or CD52) , programmed cell death protein 1 (PD1 or CD279) , B and T-lymphocyte attenuator (BTLA) , killer cell immunoglobulin-like receptor (KIR) , lymphocyte activation gene 3 (LAG3) , T-cell membrane protein 3 (TIM3) , CD 160, adenosine A2a receptor (A2aR) , T cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT) , leukocyte-associated immunoglobulin-like receptor 1 (LAIR1) , and CD 160.
In another embodiment, the antagonist of an inhibitory receptor is an antibody (or an antigen-binding fragment) that specifically binds to the native ligand for the inhibitory receptor and blocks the native ligand from binding to the inhibitory receptor and transducing an inhibitory signal (s) . In certain specific embodiments, the antibody is a monoclonal antibody. In other specific embodiments, the antibody is an sc-Fv. In a specific embodiment, the antibody is a bispecific antibody that binds to two receptors on an immune cell. In other embodiments, the  bispecific antibody binds to a receptor on an immune cell and to another receptor on a virus infected diseased cell. In specific embodiments, the antibody is a human or humanized antibody.
In another embodiments, the antagonist of an inhibitory receptor is a soluble receptor or a functional derivative thereof that specifically binds to the native ligand for the inhibitory receptor and blocks the native ligand from binding to the inhibitory receptor and transducing an inhibitory signal (s) . Specific examples of native ligands for inhibitory receptors include PDL-1, PDL-2, B7-H3, B7-H4, HVEM, Gal9 and adenosine. Specific examples of inhibitory receptors that bind to a native ligand include CTLA-4, PD-1, BTLA, KIR, LAG3, TIM3, and A2aR.
In another embodiment, the antagonist of an inhibitory receptor is an antibody (or an antigen-binding fragment) or ligand that binds to the inhibitory receptor, but does not transduce an inhibitory signal (s) . Specific examples of inhibitory receptors include CTLA-4, PD1, BTLA, KIR, LAG3, TIM3, and A2aR. In certain specific embodiments, the antibody is a monoclonal antibody. In other specific embodiments, the antibody is an scFv. In particular embodiments, the antibody is a human or humanized antibody. A specific example of an antibody to inhibitory receptor is anti-CTLA-4 antibody (Leach DR, et al. Science 1996; 271: 1734-1736) . Another example of an antibody to inhibitory receptor is anti-PD-1 antibody (Topalian SL, NEJM 2012; 28: 3167-75) .
5.5.2 Patient population
In some embodiments, a therapeutic nucleic acid described herein, a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein, or a combination therapy described herein is administered to a subject in need thereof.
In some embodiments, a therapeutic nucleic acid described herein, a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein, or a combination therapy described herein is administered to a human subject. In some embodiments, a subject administered with a therapeutic nucleic acid described herein, a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising a therapeutic nucleic acid described herein or a combination therapy described herein is an elderly human. In some embodiments, a subject administered with a therapeutic nucleic acid described herein, a pharmaceutical  composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein or a combination therapy described herein is a human adult. In some embodiments, a subject administered with a therapeutic nucleic acid described herein, a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein or a combination therapy described herein is human child. In some embodiments, a subject administered with a therapeutic nucleic acid described herein, a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein or a combination therapy described herein is human toddler. In some embodiments, a subject administered with a therapeutic nucleic acid described herein, a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein or a combination therapy described herein is human infant.
In some embodiments, a subject administered with a therapeutic nucleic acid described herein, a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein or a combination therapy described herein is administered to a non-human mammal.
In some embodiments, a subject administered with a therapeutic nucleic acid described herein, a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein, or the combination therapy described herein is administered to a subject exhibiting at least one symptom associated with cancer. In some embodiments, the subject receiving administration of a therapeutic nucleic acid described herein, a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein, or a combination therapy described herein exhibits one or more clinically recognized symptoms of cancer. In some embodiments, the cancer is breast cancer, melanoma, or colon cancer. In some embodiments, the cancer is primary cancer or metastatic cancer.
In some embodiments, a therapeutic nucleic acid described herein, a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein, or a combination therapy as described herein is administered to a subject that is asymptomatic for cancer. In some embodiments, the cancer is breast cancer, melanoma, or colon cancer.
In some embodiments, a therapeutic nucleic acid described herein, a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein, or a combination therapy described herein is administered to a subject who has been diagnosed positive for the cancer. In some embodiments, the subject diagnosed positive for the cancer is asymptomatic for the cancer. In some embodiments, the diagnosis is based on clinical symptoms exhibited by the patient. In some embodiments, the cancer is breast cancer, melanoma, or colon cancer.
In some embodiments, a therapeutic nucleic acid described herein, a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein, or a combination therapy described herein is administered to a subject who has not previously received administration of the therapeutic nucleic acid, the pharmaceutical composition, the lipid-containing composition (e.g., lipid nanoparticles) , or the combination therapy.
In some embodiments, a therapeutic nucleic acid described herein, a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein, or a combination therapy described herein is administered to a subject who has previously received administration of the therapeutic nucleic acid, the pharmaceutical composition, the lipid-containing composition (e.g., lipid nanoparticles) , or the combination therapy. In specific embodiments, the subject has been previously administered a therapeutic nucleic acid described herein, the pharmaceutical composition comprising the therapeutic nucleic acids described herein, the lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein, or the combination therapy as described herein once, twice, three times or more.
In some embodiments, a therapeutic nucleic acid described herein, a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein, or a combination therapy described herein is administered to a subject who has received a therapy prior to administration of the therapeutic nucleic acid, the pharmaceutical composition, the lipid-containing composition (e.g., lipid nanoparticles) , or the combination therapy. In some embodiments, the subject administered with a therapeutic nucleic acid described herein, a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein, or a combination therapy described herein experienced adverse side effects to a prior therapy or a prior therapy was discontinued due to unacceptable levels of toxicity to the subject.
In some embodiments, a therapeutic nucleic acid described herein, a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein, or a combination therapy described herein is administered to a subject who has previously received cancer treatment and is non-responsive or refractory to the previously treatment.
In some embodiments, a therapeutic nucleic acid described herein, a pharmaceutical composition comprising the therapeutic nucleic acids described herein, a lipid-containing composition (e.g., lipid nanoparticles) comprising the therapeutic nucleic acids described herein, or a combination therapy described herein is administered to a subject who has previously been treated for cancer, and the cancer has relapsed, or is reoccurring.
Embodiments:
1. A nucleic acid encoding an interleukin-12 (IL-12) containing fusion protein comprising an interleukin-12 β subunit (IL-12B) polypeptide fused to an interleukin-12 α subunit (IL-12A) polypeptide.
2. The nucleic acid of embodiment 1, wherein the IL-12A polypeptide is hIL-12A and the IL-12B polypeptide is hIL-12B, or the IL-12A polypeptide is mIL-12A and the IL-12B polypeptide is mIL-12B.
3. The nucleic acid of  embodiment  1 or 2 comprising a coding region, wherein the coding region comprises one or more open reading frames (ORFs) , and wherein at least one ORF encodes the IL-12 containing fusion protein.
4. The nucleic acid of any one of embodiment 3, wherein the one or more ORFs consist a coding sequence as set forth in Tables 1 and 3.
5. The nucleic acid of  embodiment  3 or 4, wherein the one or more ORFs consist a coding sequence selected from SEQ ID NOS: 5, 7, 9, 11, 64, 66, 68, 70, 25-27, and 29, or a transcribed RNA sequence thereof.
6. The nucleic acid of any one of embodiments 3 to 5, wherein the one or more ORFs encodes a peptide or protein selected from SEQ ID NOS: 4, 6, 8, 10, 63, 65, 67, 69, 24 and 28.
7. The nucleic acid of any one of embodiments 1 to 6, further comprising a 5’ untranslated region (5’ -UTR) , wherein the 5’ -UTR comprises the sequence set forth in any one of SEQ ID NOS: 34-37.
8. The nucleic acid of any one of embodiments 1 to 7, further comprising a 3’ untranslated region (3’ -UTR) , wherein the 3’ -UTR comprises the sequence set forth in SEQ ID NO: 38 or 39.
9. The nucleic acid of embodiment 8, wherein the 3’ -UTR further comprises a poly-A tail or a polyadenylation signal.
10. The nucleic acid of any one of embodiments 1 to 9, comprising one or more functional nucleotide analogs that are selected from pseudouridine and 1-methyl-pseudouridine.
11. The nucleic acid of embodiment 10, wherein the functional nucleotide analogs is about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%of the uridines of the nucleic acid.
12. The nucleic acid of any one of embodiments 1 to 11, wherein the nucleic acid is DNA or mRNA.
13. The nucleic acid of embodiment 12, wherein the nucleic acid is DNA comprising the sequence selected from SEQ ID NOS: 40, 42, 44, 46, and 48.
14. The nucleic acid of embodiment 12, wherein the nucleic acid is mRNA comprising the sequence selected from SEQ ID NOs: 41, 43, 45, 47, and 49.
15. A vector comprising the nucleic acid of any one of embodiments 1 to 14.
16. A cell comprising the nucleic acid of any one of embodiments 1 to 14.
17. A cell comprising the vector of embodiment 15.
18. A nucleic acid encoding a IL-15 containing fusion protein comprising IL-15 receptor alpha subunit (IL-15Rα) fused to IL-15.
19. The nucleic acid of embodiment 18 comprising a coding region, wherein the coding region comprises one or more open reading frames (ORFs) , and wherein at least one ORF encodes the IL-15 containing fusion protein.
20. The nucleic acid of embodiment 18, wherein the one or more ORFs consist a coding sequence selected from SEQ ID NOS: 13, 15, 72, 74, and 33 or a transcribed RNA sequence thereof.
21. The nucleic acid of embodiment 18, wherein the one or more ORFs encodes a peptide or protein selected from SEQ ID NOS: 12, 14, 71, 73, and 32.
22. The nucleic acid of any one of embodiments 18 to 21, further comprising a 5’ untranslated region (5’ -UTR) , wherein the 5’ -UTR comprises the sequence set forth in any one of SEQ ID NOS: 34-37.
23. The nucleic acid of any one of embodiments 18 to 22, further comprising a 3’ untranslated region (3’ -UTR) , wherein the 3’ -UTR comprises the sequence set forth in SEQ ID NO: 38 or 39.
24. The nucleic acid of embodiment 23, wherein the 3’ -UTR further comprises a poly-A tail or a polyadenylation signal.
25. The nucleic acid of any one of embodiments 18 to 24, comprising one or more functional nucleotide analogs that are selected from pseudouridine and 1-methyl-pseudouridine.
26. The nucleic acid of embodiment 25, wherein the functional nucleotide analogs is about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%of the uridines of the nucleic acid.
27. The nucleic acid of any one of embodiments 18 to 26, wherein the nucleic acid is DNA or mRNA.
28. The nucleic acid of embodiment 27, wherein the nucleic acid is DNA comprising the sequence selected from SEQ ID NO: 52.
29. The nucleic acid of embodiment 27, wherein the nucleic acid is mRNA comprising the sequence of SEQ ID NO: 53.
30. The nucleic acid of any one of embodiments 18 to 29, further encoding an IL-12 polypeptide.
31. The nucleic acid of embodiment 30, wherein the IL-12 polypeptide is an IL-12 containing fusion protein comprising an interleukin-12 β subunit (IL-12B) polypeptide fused to an interleukin-12 α subunit (IL-12A) polypeptide.
32. The nucleic acid of embodiment 30 or 31, wherein the coding region comprises one or more open reading frames (ORFs) that encodes the IL-12 polypeptide.
33. The nucleic acid of embodiment 32, wherein the one or more ORFs encoding the IL-12 polypeptide consist a coding sequence selected from SEQ ID NOS: 5, 7, 9, 11, 64, 66, 68, 70, 25-27, and 29, or a transcribed RNA sequence thereof.
34. The nucleic acid of embodiment 33, wherein the IL-12 polypeptide comprises a sequence selected from SEQ ID NOS: 4, 6, 8, 10, 63, 65, 67, 69, 24 and 28.
35. A vector comprising the nucleic acid of any one of embodiments 18 to 34.
36. A cell comprising the nucleic acid of any one of embodiments 18 to 34.
37. A cell comprising the vector of embodiment 35.
38. A composition comprising (i) the nucleic acid of any one of embodiments 1 to 14 and (ii) at least one first lipid.
39. The composition of embodiment 38, wherein the first lipid is a compound according to Formula 01-I, 01-II, 02-I, 02-II, 03-I, 03-II-A, 03-II-B, 03-II-C, 03-II-D, 04-I, 04-III, 04-IV, and sub-formula thereof.
40. The composition of any one of embodiment 3819, wherein the first lipid is a compound listed in any one of Table 01-I, Table 02-I, Table 03-I, and Table 04-I.
41. The composition of any one of embodiments 38 to 40, further comprising a least a second lipid.
42. The composition of embodiment 41, wherein the second lipid is selected form a neutral lipid, a steroid, a phospholipid and a polymer conjugated lipid.
43. The composition of any one of embodiments 38 to 42 formulated as lipid nanoparticles encapsulating the nucleic acid in a lipid shell.
44. The composition of any one of embodiments 38 to 43, wherein the composition is a pharmaceutical composition further comprising a pharmaceutically acceptable carrier, diluent or excipient.
45. The composition of any one of embodiments 38 to 43, further comprising (iii) the nucleic acid of any one of embodiments 18 to 29.
46. The composition of embodiment 45, wherein the composition is a pharmaceutical composition further comprising a pharmaceutically acceptable carrier, diluent or excipient.
47. A composition comprising (i) the nucleic acid of any one of embodiments 18 to 34, and (ii) at least one first lipid.
48. The composition of embodiment 47, wherein the first lipid is a compound according to Formula 01-I, 01-II, 02-I, 02-II, 03-I, 03-II-A, 03-II-B, 03-II-C, 03-II-D, 04-I, 04-III, 04-IV, and sub-formula thereof.
49. The composition of any one of embodiment 47, wherein the first lipid is a compound listed in any one of Table 01-I, Table 02-I, Table 03-I, and Table 04-I.
50. The composition of any one of embodiments 47 to 49 further comprising a least a second lipid.
51. The composition of embodiment 50, wherein the second lipid is selected from a neutral lipid, a steroid, a phospholipid and a polymer conjugated lipid.
52. The composition of any one of embodiments 47 to 51 formulated as lipid nanoparticles encapsulating the nucleic acid in a lipid shell.
53. The composition of any one of embodiments 47 to 52, wherein the composition is a pharmaceutical composition further comprising a pharmaceutically acceptable carrier, diluent or excipient.
54. A method for managing or treating cancer in a subject in need thereof, comprising administering to the subject a therapeutically effective amount of the nucleic acid of any one of embodiments 1 to 14, or the pharmaceutical composition of embodiment 44, wherein the cancer is selected from breast cancer, melanoma, and colon cancer.
55. The method of embodiment 54, wherein the method further comprises administering to the subject a therapeutically effective amount of a composition comprising a nucleic acid encoding an antagonist of PD-1 or a therapeutically effective amount of a composition comprising an antagonist of PD-1.
56. The method of embodiment 55, wherein nucleic acid encoding the antagonist of PD-1 is the same as the nucleic acid encoding the IL-12 containing fusion protein, wherein the nucleic acid comprises at least two ORFs, and wherein the first ORF encodes the IL-12 containing fusion protein and the second ORF encodes the antagonist of PD-1.
57. The method of embodiment 55 or 56, wherein the antagonist of PD-1 is an anti-PD-1 antibody or antigen-binding fragment thereof that specifically binds to PD-1 and blocks binding of PD-1 to its natural ligands.
58. The method of embodiment 57, wherein the anti-PD-1 antibody is nivolumab or pembrolizumab.
59. The method of any one of embodiments 54 to 58, wherein the method further comprises administering to the subject a therapeutically effective amount of a composition comprising a nucleic acid encoding an IL-15 polypeptide or a therapeutically effective amount of a composition comprising an IL-15 polypeptide.
60. The method of embodiment 59, wherein the IL-15 polypeptide is human IL-15 or mouse IL-15.
61. The method of embodiment 59, wherein the method comprises administering the therapeutically effective amount of the composition comprising the nucleic acid encoding the IL-15 polypeptide, wherein the nucleic acid encoding the IL-15 polypeptide is the same as the nucleic acid encoding the IL-12 containing fusion protein, and wherein the nucleic acid comprises at least two ORFs, and wherein the first ORF encodes the IL-12 containing fusion protein and the second ORF encodes the IL-15 polypeptide.
62. The method of embodiment 59, wherein the method comprises administering the therapeutically effective amount of the composition comprising the nucleic acid encoding the IL-15 polypeptide, wherein the nucleic acid encoding the IL-15 polypeptide is different from the nucleic acid encoding the IL-12 containing fusion protein.
63. The method of any one of embodiments 59 to 62, wherein the IL-15 polypeptide is an IL-15 containing fusion protein comprising IL-15 receptor alpha subunit (IL-15Rα) fused to IL-15.
64. The method of embodiment 63, wherein the IL-15 containing fusion protein comprises the amino acid sequence selected from SEQ ID NO: 12, 14, 71, 73, and 32.
65. The method of embodiment 63, wherein the nucleic acid encoding the IL-15 polypeptide comprises an ORF comprising the sequence selected from SEQ ID NO: 13, 15, 72, 74, and 33.
66. The method of embodiment 62, wherein the composition comprising the nucleic acid encoding the IL-15 polypeptide is the pharmaceutical composition of embodiment 53.
67. The method of any one of embodiments 54 to 66, wherein the subject is a human or a non-human mammal.
68. The method of any one of embodiments 54 to 67 wherein the cancer is relapsed or metastasis.
69. The method of any one of embodiments 54 to 68, wherein the subject has previously received treatment with an antagonist of PD-1, and wherein the cancer is either refectory or irresponsive to the treatment or relapsed from the treatment.
70. The method of any one of embodiments 54 to 69, wherein administration of the nucleic acid or pharmaceutical composition comprising the nucleic acid is via intratumoral administration.
71. The method of any one of embodiments 54 to 70, wherein method comprises administering lipid nanoparticles encapsulating the nucleic acid to the subject, and wherein the lipid nanoparticles are endocytosed by the cells in the subject.
72. The method of any one of embodiments 54 to 71, wherein the nucleic acid is expressed by the cells in the subject.
73. The method of any one of embodiments 54 to 72, wherein the administering is via intratumoral, intraperitoneal, or subcutaneous route.
74. The method of any one of embodiments 54 to 73 wherein the tumor size is reduced by about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%or 100%.
75. The method of any one of embodiments 54 to 74, wherein the number of tumor-infiltrating lymphocytes (TIL) in the subject is increased.
76. The method of embodiment 75, wherein the TIL comprises CD8 + T cells and/or IFNγ + T.
77. The method of any one of embodiments 54 to 76, wherein a ratio between the number of CD8 + T cells and the number Treg cells (CD8 + T/Treg) is increased in the tumor microenvironment in the subject.
78. The method of any one of embodiments 54 to 77, wherein PD-L1 expression on the tumor cells is increased in the subject.
6. EXAMPLES
The examples in this section (i.e., Section 6) are offered by way of illustration, and not by way of limitation.
Abbreviations used in this section and corresponding full terms are shown in the Table below.
Abbreviations
Abbreviation Full Term
i.t. intratumoral
i.p. intraperitoneal
s.c. subcutaneous
QW weekly
BIW twice weekly
IACUC Institutional Animal Care and Use Committee
AAALAC Association for Assessment and Accreditation of Laboratory Animal Care
BW body weight
BWL body weight loss
PBS phosphate buffer solution
FBS fetal bovine serum
TV tumor volume
TGI tumor growth inhibition
SD standard deviation
SEM standard error of the mean
N/A not applicable
TBD to be determined
LNP lipid nanoparticle
ψ pseudouridine
CR complete response
NST no start codon
RT room temperature
FACS fluorescence activated cell sorting
RPMI Roswell Park Memorial Institute
FMO fluorescence minus one
MFI mean fluorescent intensity
TIL tumor infiltrating leukocyte
mpk mg/kg
mOS Medium overall survival
CDI coefficient of drug interaction
General Methods for Preparation and Characterization of Lipid Nanoparticle  Formulations. Briefly, i) between about 45 to about 55 mol percent of a cationic lipid; ii) between about 5 to about 15 mol percent of a phospholipid; iii) between about 35 to about 50 mol percent of a steroid; and iv) between about 2 to about 10 mol percent of a polymer conjugated lipid were solubilized in ethanol at the pre-determined molar ratios. The mRNA were diluted in 10 to 50 mM citrate buffer, pH = 4. The LNPs were prepared at a total lipid to mRNA weight ratio of approximately 10: 1 to 30: 1 by mixing the ethanolic lipid solution with the aqueous mRNA solution at a volume ratio of 1: 3 using a microfluidic apparatus, total flow rate ranging from 9-30 mL/min. Ethanol was thereby removed and replaced by DPBS using dialysis. Finally, the lipid nanoparticles were filtered through a 0.2 μm sterile filter. 
Lipid nanoparticle size were determined by dynamic light scattering using a Malvern Zetasizer Nano ZS (Malvern UK) using a 173o backscatter detection mode. The encapsulation efficiency of lipid nanoparticles was determined using a Quant-it Ribogreen RNA quantification assay kit (Thermo Fisher Scientific, UK) according to the manufacturer’s instructions. 
To measure the size and PDI of lipid nanoparticle, formulations were diluted 20-fold in PBS and transferred 1 mL in measurement cuvette. The LNP EE%was determined using a Quant-it RiboGreen RNA assay kit, LNP formulations were diluted to 0.4 μg/mL in Tris-EDTA and 0.1%Triton respectively. In order to determine free RNA and total RNA fluorescence intensity, ribogreen reagent were diluted 200-fold with Tris-EDTA buffer and mix at the same volume as diluted LNP formulation. Fluorescence intensity was measured at room temperature in a Molecular Devices Spectramax iD3 spectrometer using excitation and emission wavelengths of 488 nm and 525 nm. EE%was calculated based on the ratio of encapsulated to total RNA fluorescence intensity.
6.1 Example 1 In vitro expression and function validation of Human Interleukin-12 (hIL-12)
The following study was performed to screen the expression and function of various human interleukin-12 (hIL-12) mRNA molecules designed according to the present disclosure, including hIL-12 fusion v. 1, hIL-12 fusion v. 2, hIL-12 fusion v. 3 and hIL-12 fusion v. 4 mRNA, and their pseudouridine modified versions hIL-12 fusion v. 1-ψ, hIL-12 fusion v. 2-ψ, hIL-12 fusion v. 3-ψ, and hIL-12 fusion v. 4-ψ mRNA.
6.1.1 Materials and Methods
In vitro transfection. 8 kinds of mRNAs were transfected into expi293F cells respectively with different mass gradients and using Lipo 2000 reagent, to detect the expression of hIL-12. mRNA with the optimal expression of hIL-12 was selected, to repeat the transfection experiment in human triple negative breast cancer cells (HS578T) , and validate the expression.
In vitro expression detection. The transfected cell supernatant was collected, to detect the expression of hIL-12 in the supernatant by enzyme-linked immunosorbent assay (ELISA) .
In vitro function validation. The cell supernatant with optimal mRNA transfection was selected to detect the hIL-12 concentration. The supernatant was diluted to different concentrations, and the biological function of IL-12 in the supernatant was detected using IL-12 reporter gene cells (HEK-BLUE TM IL-12 cells) using recombinant human IL-12 protein as the control.
The information of main reagents or materials used in this experiment is shown in the table below:
Table mRNA Information
Figure PCTCN2022123722-appb-000070
hIL-12 mRNA transfection in expi293F cells:
1) In a biological safety cabinet, the cells were transferred to 50 mL centrifuge tubes, centrifuged, and resuspended in an appropriate amount of cell medium. To a 1.5 mL EP tube, 20 μL of the resuspended cells were added, and then an equivalent volume of trypan blue solution was added. The cells were counted using a fluorescent cell analyzer to provide the cell density of 1.07×10 6 cells/mL and the survival rate of 98.19%, and were adjusted with a culture medium to the cell density of 2×10 5 cells/mL for later use.
2) In the biological safety cabinet, 500 μL of the resuspended cells were added to corresponding wells of a 24-well cell culture plate with 1×10 5 viable cells per well, and were kept in a shaking incubator with 8%CO 2 at 37℃ for later use.
3) In an ultra-clean bench, 1.5 mL EP tubes were marked with the information of each sample respectively, 2 x final mass of the corresponding mRNA was added to each tube, and the mixture in each tube was balanced to 60 μL with Opti-MEM medium. The blank sample was supplemented with the corresponding volume of Opti-MEM medium, and the mixture was fully mixed.
4) In the ultra-clean bench, diluted Lipo2000+ Opti-MEM was formulated according to the table below, and fully mixed for later use.
Figure PCTCN2022123722-appb-000071
5) In the ultra-clean bench, 1.5 mL EP tubes were marked with the information of each sample respectively, 40 uL of diluted mRNA was transferred to additional 1.5 mL EP tubes respectively, and 40 μL of diluted Lipo2000+ Opti-MEM was added to each tube. The mixture was fully mixed, and the cells were incubated at room temperature for 5 min. After the incubation was completed, 60 μL/well of the mixture was added to corresponding cell culture plates, and fully mixed. The cells were cultured in a shaking incubator with 8%CO2 at 37℃ for 16 h or other duration, using green fluorescent protein mRNA (GFP mRNA) as the control. 6) After the incubation was completed, in the ultra-clean bench, 1.5 mL EP tubes were marked with the information of each sample respectively. The transfected cell  supernatant was collected to detect the expression of hIL-12 protein by ELISA, or was stored at -80℃ if the expression cannot be detected in time
Transfection of hIL-12 fusion v. 1 and hIL-12 fusion v. 1-ψ mRNA in HS578T  cells:
1) The cell growth status was observed under a microscope. Cells in a good status were 1) The cell growth status was observed under a microscope. Cells in a good status were selected, dissociated with trypsin in a biological safety cabinet, transferred to 50 mL centrifuge tubes, centrifuged, and resuspended in an appropriate amount of cell medium. To a 1.5 mL EP tube, 20 μL of the resuspended cells were added, and then an equivalent volume of trypan blue solution was added. The cells were counted using a fluorescent cell analyzer to provide the cell density of 4.42×10 5 cells/mL and the survival rate of 78.11%, and were adjusted with a culture medium to the cell density of 2×10 5 cells/mL for later use.
2) In the biological safety cabinet, 500 μL of the resuspended cells were added to corresponding wells of a 24-well cell culture plate with 1×10 5 viable cells per well, and were kept in a cell incubator with 5%CO 2 at 37℃ overnight for later use.
3) In an ultra-clean bench, 1.5 mL EP tubes were marked with the information of each sample respectively, 2 x final mass of the corresponding mRNA was added to each tube, and the mixture in each tube was balanced to 60 μL with Opti-MEM medium. The blank sample was supplemented with the corresponding volume of Opti-MEM medium, and the mixture was fully mixed.
4) In the ultra-clean bench, diluted Lipo2000+ Opti-MEM was formulated according to the table below, and fully mixed for later use.
Figure PCTCN2022123722-appb-000072
5) In the ultra-clean bench, 1.5 mL EP tubes were marked with the information of each sample respectively, 40 uL of diluted mRNA was transferred to additional 1.5 mL EP tubes respectively, and 40 μL of diluted Lipo2000+ Opti-MEM was added to each tube. The mixture was fully mixed, and the cells were incubated at room  temperature for 5 min. After the incubation was completed, 60 μL/well of the mixture was added to corresponding cell culture plates, and fully mixed. The cells were cultured in a shaking incubator with 5%CO2 at 37℃ for 16 h or other duration.
6) After the incubation was completed, in the ultra-clean bench, 1.5 mL EP tubes were marked with the information of each sample respectively. The transfected cell supernatant was collected to detect the expression of hIL-12 protein by ELISA, or was stored at -80℃ if the expression cannot be detected in time.
hIL-12 protein detection by ELISA. The hIL-12 protein level was detected by ELISA using a commercial hIL-12 kit, including the steps as follows:
1) adding 100 μL of an antigen-coated solution to each well, and incubating at room temperature overnight.
2) washing with a washing solution 3 times, adding 300 μL of a blocking solution to each well, and incubating at room temperature for at least 1 hour.
3) washing 3 times, adding 100 μL of diluted standard or sample to each well, and incubating at room temperature for 2 h.
4) washing 3 times, adding 100 μL of a to-be-detected diluted solution to each well, and incubating at room temperature for 2 h.
5) washing 3 times, adding 100 μL of horseradish peroxidase-labeled streptomycin to each well, and incubating away from light at room temperature for 20 min.
6) washing 3 times, adding 100 μL of a chromogenic substrate to each well, and incubating away from light at room temperature for 20 min.
7) adding 50 μL of a stop solution to each well, and fully mixing.
8) determining the optical density value with a microplate reader at a wavelength of 450 nm.
IL-12 biological function validation. IL-12 function was analyzed based on HEK-BLUE TM IL-12 cells, including the steps as follows:
1) rhIL-12 protein and the transfected cell supernatant were diluted to the same concentration respectively, and expi293F transfected supernatant and the rhIL-12 protein were diluted 3 times from 100 ng/mL with 9 concentration gradients.  HS578T transfected supernatant and rhIL-12 protein were diluted 3 times from 150 ng/mL with 10 concentration gradients.
2) HEK-BLUE TM cells in a good status were collected, centrifuged, resuspended in a culture medium, counted using a fluorescent cell analyzer to provide the cell density of 5.14×10 6 cells/mL and the survival rate of 95.24%, and adjusted to the cell density of 5×10 5 cells/mL for later use.
3) 100 μL of the diluted recombinant rIL-12 protein and supernatant sample at the same concentration were added to a sterile 96-well plate. Then, 100 μL of the resuspended cells were added, the mixture was fully mixed, and the final cell count was 5×10 4 cells/well. The well plate was placed in a cell incubator for incubation for 24 h.
4) A QUANTI-BLUE TM 6olution was formulated. 150 μL of the resulting QUANTI-BLUE TM Solution was added to each well of an additional 96-well plate. The 96-well plate after incubation for 24 h was taken out from the cell incubator, and 50 μL/well of the cell supernatant was pipetted to 150 μL of the corresponding QUANTI-BLUE TM Solution. The mixture was fully mixed, and the well plate was placed in a cell incubator for incubation for 3 h.
5) After the incubation was completed, the 96-well plate was taken out to determine the optical density value with a microplate reader at a wavelength of 620 nm.
6.1.2 Experimental Results
ELISA Results. 16 h after transfection, 8 kinds of mRNAs exhibited obvious hIL-12 expression in expi293F cells. Compared with hIL-12 fusion v. 2, hIL-12 fusion v. 3 and hIL-12 fusion v. 4, hIL-12 fusion v. 1 had highest hIL-12 expression in expi293F cells, and there was a dose correlation between the expression level of hIL-12 and the mass of mRNA. Based on the above results, hIL-12 fusion v. 1 was selected for subsequent experiments.
hIL-12 fusion v. 1 and hIL-12 fusion v. 1-ψ mRNA were selected for validation in human triple negative breast cancer HS578T cells. 16 h after transfection, hIL-12 fusion v. 1 and hIL-12 fusion v. 1-ψ mRNA exhibited obvious IL-12 expression in HS578T compared with the control group.
48 h and 72 h after transfection, the hIL-12 expressions of hIL-12 fusion v. 1 and hIL-12 fusion v. 1-ψ in expi293F and HS578T cells were obviously higher than the IL-12 expression in 16 h after transfection.
In vitro function validation of hIL-12. hIL-12 fusion v. 1 mRNA and hIL-12 fusion v. 1-ψ mRNA expressed equivalent hIL-12 activity in the two cells, and had lower EC 50 values than rhIL-12 protein (as shown in the table below) , i.e., exhibited stronger activity
EC 50 results of IL-12 expressed by hIL-12 and hIL-12-ψ
Figure PCTCN2022123722-appb-000073
ELISA results showed that 8 kinds of mRNAs were successfully transfected into cells and successfully expressed hIL-12 protein. hIL-12 fusion v. 1 mRNA had optimal hIL-12 expression. After extending the transfection time, the IL-12 expression increased, suggesting that mRNA can continuously express hIL-12 in cells, which can last up to 48 h. The biological function results showed that IL-12 expressed by hIL-12 fusion v. 1 and hIL-12 fusion v. 1-ψ mRNA had better biological activity than rhIL-12 protein, and IL-12 expressed by pseudouracil-modified mRNA exhibited comparable in vitro biological activity than IL-12 expressed by unmodified mRNA.
Human interleukin 12 (hIL-12) mRNA designed according to the present disclosure, including hIL-12 fusion v. 1, hIL-12 fusion v. 2, hIL-12 fusion v. 3 and hIL-12 fusion v. 4 mRNA, and pseudouridine modified mRNA can successfully express interleukin IL-12 in vitro, where hIL-12 fusion v. 1 mRNA had optimal IL-12 expression, and hIL-12 expressed by hIL-12 fusion v. 1 and hIL-12 fusion v. 1-ψ had better biological functions than rhIL-12 protein
6.2 Example 2: In vitro expression and function validation of mouse Interleukin-12 (mIL-12)
The following study was performed to evaluate expression of mRNA molecules encoding mouse interleukin-12 (mIL-12) in EMT-6 cells, 4T-1 cells and HEK293F cells, and to evaluate biological activity of the expressed mIL-12 proteins.
6.2.1 Methods and Materials
mRNA transfectionHEK293F cells: The cell growth status was observed under a microscope. Suspended cells were transferred to 15 mL centrifuge tubes in a biological safety cabinet, centrifuged at 200 X g for 5 min, and, after discarding the supernatant, resuspended in 5 mL of Opti-MEMTM I Reduced Serum Medium. To a 1.5 mL EP tube, 20 μL of the resuspended cells were added, and then a trypan blue solution diluted 2 times was added. The cells were counted using a Countstar cell counter, and adjusted to a cell density of 2E5 cells/mL for later use. In the biological safety cabinet, 500 μL of the resuspended cells were added to corresponding wells of a 24-well cell culture plate with 1E5 viable cells per well, and were kept in an incubator with 5%CO2 at 37℃ for later use. A 1.5 mL EP tube was marked with: Lipo2000+ Opti-MEM MIX. The volume of a to-be-formulated solution was computed based on the number of control samples and the number of to-be-tested samples. In an ultra-clean bench, 60 μL of Opti-MEM and 2 μg of corresponding mRNA were added to 1.5 mL EP tubes respectively. The blank sample was supplemented with the corresponding volume of Opti-MEM medium, and the mixture was fully mixed. To 1.5 mL EP tubes, 40 uL of diluted mRNA, and 40 μL of Lipo2000+ Opti-MEM MIX were added respectively. The mixture was fully mixed, and incubated at room temperature for 5 min. After the incubation was completed, 60 μL/well of the mixture was added to corresponding cell culture plates, and fully mixed. The cells were cultured in an incubator with 5%CO2 at 37℃ for 18 h. After the incubation was completed, in the ultra-clean bench, to the 1.5 mL EP tubes, the transfected cells were transferred with a 1 mL pipette, and centrifuged at 200xg for 5 min. The protein expression in the centrifuged supernatant was detected by ELISA, or the supernatant was stored at -20℃ if the expression cannot be detected in time.
EMT-6 cells: The cell growth status was observed under a microscope. Cell transfection was performed when the cells grew to cover more than 80%of the bottom of the culture flask. In the biological safety cabinet, the original culture medium in the culture flask was removed by pipetting, the cells were rinsed with 8 mL of DPBS, and the DPBS was discarded after rinsing the cells. 2 mL of 0.25%Trypsin-EDTA solution was pipetted. The culture flask was gently shaken to fully contact the cells at the bottom of the culture flask with the 0.25%Trypsin-EDTA solution, and placed in a thermostat incubator at 37℃ for incubation for about 1  min. If the cells had fallen off the bottom of the culture flask, 8 mL of a complete medium containing 10%FBS was added to the culture flask to stop dissociation. The culture medium in the culture flask was pipetted, and the bottom of the culture flask was repeatedly blown, so that the cells completely fell off and were uniformly dispersed. The cell suspension was transferred to suitable centrifuge tubes, and centrifuged at 200 X g for 5 min. The supernatant was discarded, and 8 mL of a complete medium containing 10%FBS was pipetted to resuspend the cell pellet. To a 1.5 mL EP tube, 20 μL of the resuspended cells were added, and then a trypan blue solution diluted 2 times was added. The mixture was gently and fully mixed. 20 μL of the mixture was pipetted to a cell counting plate to count the cells using a Countstar cell counter, and was adjusted to a cell density of 3E5 cells/mL for later use. In the biological safety cabinet, 500 μL of the resuspended cells were added to corresponding wells of a 24-well cell culture plate with 1.5E5 viable cells per well, and were kept in an incubator with 5%CO 2 at 37℃ for later use. A 1.5 mL EP tube was marked with Lipo2000+ Opti-MEM MIX. The volume of a to-be-formulated solution was computed based on the number of control samples and the number of to-be-tested samples. In an ultra-clean bench, 60 μL of Opti-MEM and 2 μg of corresponding mRNA were added to 1.5 mL EP tubes respectively. The blank sample was supplemented with the corresponding volume of Opti-MEM medium, and the mixture was fully mixed. To 1.5 mL EP tubes, 40 uL of diluted mRNA was transferred and 40 μL of Lipo2000+ Opti-MEM MIX was added to each tube. The mixture was fully mixed, and the cells were incubated at room temperature for 5 min. After the incubation was completed, 60 μL/well of the mixture was added to corresponding cell culture plates, and fully mixed. The cells were cultured in an incubator with 5%CO 2 at 37℃ for 18 h. After the incubation was completed, in the ultra-clean bench, to the 1.5 mL EP tubes, the transfected cells were transferred with a 1 mL pipette, and centrifuged at 200xg for 5 min. The protein expression in the centrifuged supernatant was detected by ELISA, or the supernatant was stored at -20℃ if the expression cannot be detected in time.
4T-1 cells: The cell growth status was observed under a microscope. Cell transfection was performed when the cells grew to cover more than 80%of the bottom of the culture. In the biological safety cabinet, the original culture medium in the culture flask was removed by pipetting, the cells were rinsed with 8 mL of DPBS, and the DPBS was discarded after rinsing the cells. 2 mL of 0.25%Trypsin-EDTA solution was pipetted. The culture flask was gently shaken to fully contact the cells at the bottom of the culture flask with the 0.25%Trypsin-EDTA  solution, and placed in a thermostat incubator at 37℃ for incubation for about 1 min. If the cells had fallen off the bottom of the culture flask, 8 mL of a complete medium containing 10%FBS was added to the culture flask to stop dissociation. The culture medium in the culture flask was pipetted, and the bottom of the culture flask was repeatedly blown, so that the cells completely fell off and were uniformly dispersed. The cell suspension was transferred to suitable centrifuge tubes, and centrifuged at 200 X g for 5 min. The supernatant was discarded, and 8 mL of a complete medium containing 10%FBS was pipetted to resuspend the cell pellet. To a 1.5 mL EP tube, 20 μL of the resuspended cells were added, and then a trypan blue solution diluted 2 times was added. The mixture was gently and fully mixed. 20 μL of the mixture was pipetted to a cell counting plate to count the cells using a Countstar cell counter, and was adjusted to a cell density of 2E5 cells/mL for later use. In the biological safety cabinet, 500 μL of the resuspended cells were added to corresponding wells of a 24-well cell culture plate with 1E5 viable cells per well, and were kept in an incubator with 5%CO2 at 37℃ for later use. A 1.5 mL EP tube was marked with: Lipo2000+ Opti-MEM MIX. The volume of a to-be-formulated solution was computed based on the number of control samples and the number of to-be-tested samples. In an ultra-clean bench, 60 μL of Opti-MEM and 2 μg of corresponding mRNA were added to 1.5 mL EP tubes respectively. The blank sample was supplemented with the corresponding volume of Opti-MEM medium, and the mixture was fully mixed. To 1.5 mL EP tubes, 40 uL of diluted mRNA was transferred, and 40 μL of Lipo2000+ Opti-MEM MIX was added, respectively. The mixture was fully mixed, and the cells were incubated at room temperature for 5 min. After the incubation was completed, 60 μL/well of the mixture was added to corresponding cell culture plates, and fully mixed. The cells were cultured in an incubator with 5%CO2 at 37℃ for 18 h. After the incubation was completed, in the ultra-clean bench, to 1.5 mL EP tubes, the transfected cells were transferred with a 1 mL pipette respectively, and centrifuged at 200xg for 5 min. The protein expression in the centrifuged supernatant was detected by ELISA, or the supernatant was stored at -20℃ if the expression cannot be detected in time.
Detection by ELISA:
a) all samples and reagents were restored to room temperature immediately prior to use;
b) 100 μL of a Capture Antibody-coated stock solution was added to an ELISA plate, and the plate was sealed with a closure plate membrane for incubation at room temperature overnight;
c) the liquid in the wells was discarded, and the plate was washed with a washing buffer (300 μL/well) 3 times (immersed for 1 min each time) ;
d) 200 μL/well of a blocking solution was added, and the plate was sealed with the closure plate membrane for incubation at room temperature for 1 hour;
e) the liquid in the wells was discarded, and the plate was washed with a washing buffer (300 μL/well) 3 times (immersed for 1 min each time) ;
f) 100 μL of a diluted to-be-tested sample and standard were added to the ELISA plate as per double wells, and the plate was sealed with the closure plate membrane for incubation at room temperature for 2 h;
g) the liquid in the wells was discarded, and the plate was washed with a washing buffer (300 μL/well) 3 times (immersed for 1 min each time) ;
h) 100 μL of a Detetction Antibody stock solution was added to each well of the plate, and the plate was covered with the closure plate membrane for incubation at room temperature for 2 h;
i) the liquid in the wells was discarded, and the plate was washed with a washing buffer (300 μL/well) 3 times (immersed for 1 min each time) ;
j) 100 μL of a Streptavidin-HRP stock solution was added to each well of the plate, and the plate was covered with the closure plate membrane for incubation at room temperature for 20 min;
k) the liquid in the wells was discarded, and the plate was washed with a washing buffer (300 μL/well) 3 times (immersed for 1 min each time) ;
l) 100 μL of a Substrate Solution was added to each microwell, and the plate was covered with the closure plate membrane for incubation away from light at room temperature for 20 min; and
m) 50 μL of a Stop Solution was added to each microwell, and the mixture in the microplate was ensured to be gently and fully mixed.
Result determination. The standard curve and samples were arranged by setting the multifunctional microplate reader at the detection wavelengths of 450 nm and 570 nm, setting  "Curve Fit/4-parameter regression" in the Standard Curve (the template may be set before the commencement of the reading) , setting Dilution Factors of the to-be-tested sample as 20, 100, and 500, and determining the absorption values thereof.
Result computation. Automatic computation using software: a regression equation: 
Figure PCTCN2022123722-appb-000074
was obtained by 4-parameter regression of the protein concentrations (X) of standard protein with respect to corresponding fluorescence values (Y) thereof, to obtain the protein concentrations in the samples (Unk-dilution/AdjResult) .
Detection of biological activity of expressed protein. Functional analysis of HEK-Blue TM IL-12 cells: Recombinant Human/mouse IL-12 protein and samples were diluted to 100 μg/mL in a biological safety cabinet. In a 96-well Clear Round Bottom Microplate (Corning: 3799) , 327.4 μL/well of a culture medium for experimental detection was add to the second column (B2 to G2) , and 220 μL/well of the culture medium for experimental detection was added to the third to the eleventh columns (columns B3 to B11) . 2.6 μL of protein recombinant human/mouse IL-12 was added to each well of B2 to D2 to a final concentration of 800 ng/mL. 2.6 μL of diluted expression supernatant was added to each well of E2 to G2 to a final concentration of 800 ng/mL. A multi-channel pipette was adjusted to 110 μL to gently and repeatedly blow and pipette the liquid in wells B2 to G2 6 to 8 times to fully mix the liquid, then 110 μL of the liquid was pipetted to wells B3 to G3 to gently and repeatedly blow and pipette the liquid 6 to 8 times to fully mix the liquid, and then 110 μL of the liquid was pipetted to wells B4 to G4, and so on, until wells B10 to G10. The cell growth status was observed under a microscope. When the cell growth confluence was about 80%, cell passage was carried out. After the initial culture medium in the culture flask was removed by pipetting, 8 mL of a DPBS solution was added to wash the cells, and then discarded. 8 mL of the DPBS solution was added, and the culture flask was gently shaken to fully contact the cells at the bottom of the culture flask with the DPBS solution. The suspension was scraped gently with a cell scraper, and gently and fully mixed with a pipette. The cell suspension was transferred to suitable centrifuge tubes, and centrifuged at 200 X g for 5 min. The supernatant was discarded (the supernatant was poured into a to-be-processed container) . 9 mL of a culture medium for experimental detection was pipetted to resuspend the cell pellet. 100 μL of the cell suspension and 100 μL of a trypan blue solution were fully mixed. The cells were counted using a Countstar cell counter. The cell  viability was greater than 90%. The cell density was adjusted to 5E5 cells/mL based on the density of viable cells. In the biological safety cabinet, diluted protein Recombinant Human/mouse IL-12 and diluted samples were added into corresponding wells (100 μL/well) of 
Figure PCTCN2022123722-appb-000075
96-well Clear Flat Bottom Microplates (Corning: 3599) . The density-adjusted cell suspension was added into a corresponding cell culture plate with 100 μL of resuspended cells per well, the final cell count was 5E4 cells/well, and the cell culture plate was placed in an incubator with 5%CO 2 at 37℃. 200 μL/well of DPBS was supplemented to peripheral wells of the 96-well plate. The 96-well plate was gently shaken all around to fully disperse the cells in the wells, and the cells were incubated in a thermostat incubator with 5%CO2 at 37 ℃ for 24 h. After incubation for 24 h, a QUANTI-Blue TM solution was prepared in the biological safety cabinet. 1 mL of a QB reagent and 1 mL of a QB buffer were added to 98 mL of sterile H2O, and the mixture was fully mixed. The 96-well plate was taken out. The multi-channel pipette was adjusted to 150 μL to pipette 150 μL/well of the QUANTI-Blue TM solution into the 96-well plate. Then, the 96-well plate after incubation for 24 h was taken out from the cell incubator. The multi-channel pipette was adjusted to 50 μL to pipette 50 μL/well of induced HEK-Blue TM IL-12 cell suspension into the corresponding 150 μL/well QUANTI-Blue TM Solution, and gently and repeatedly blow and pipette the solution 6 to 8 times. The 96-well plate was placed in a thermostat incubator with 5%CO2 at 37 ℃ for incubation for 2 to 3 h. After incubation for 2-3 h, the 96-well plate was taken out from the cell incubator, and the SEAP level was determined with a spectrophotometer at 620 to 655 nm.
Result determination. The standard curve and samples were arranged by setting the multifunctional microplate reader at the detection wavelengths of 620 nm and 655 nm, setting "Curve Fit/4-parameter regression" in the Standard Curve (the template may be set before the commencement of the reading) , and determining the absorption values thereof.
Result computation. Automatic computation using software: a regression equation: 
Figure PCTCN2022123722-appb-000076
was obtained by 4-parameter regression of the protein concentrations (X) of standard protein with respect to corresponding OD values (Y) thereof, to obtain the protein concentrations in the samples (Unk-dilution/Adj-Result) .
Experimental results. As shown in FIG. 5A to FIG. 7B, the positive control and the negative control were normal. Transfection of HEK293, 4T1 and EMT-6 cells with Mouse IL-12  mRNA produced a biologically active mouse IL-12 P70 protein. The biological activity of the protein was equivalent to that of the protein expressed by CHO cells.
6.3 Example 3; Evaluation of tumor inhibiting effects of LNP composition containing IL-12 encoding mRNA in triple negative breast cancer model (EMT6)
The following study was performed to evaluate tumor inhibition effects of lipid nanoparticles (LNP) composition containing an IL-12 encoding mRNA molecule in triple negative breast cancer EMT6 disease model. The mRNA molecule was pseudouridine modified mIL-12 fusion v. 1-ψ.
6.3.1 Study Design
420 mice were inoculated with EMT6 in situ at breast pads with 5×10 5 cells per mouse and the inoculation volume of 0.2 mL. When the average tumor volume of mice reached 50 to 100 mm 3, 88 mice were selected for grouping. The number of animals in each group and the detailed dosing regimen are shown in the table below.
Group Design
Figure PCTCN2022123722-appb-000077
Figure PCTCN2022123722-appb-000078
One month after complete regression (CR) of the tumors in mice of the dosing group, all CR mice were inoculated with EMT6 cells (Rechallenge) at contralateral breast pads to observe whether the tumors can grow normally. At the same time, 10 normal Balb/c mice were inoculated at the same position as the control.
6.3.2 Material and Methods
Cell culture. EMT6 cells (purchased from ATCC) were cultured in Waymouth's MB 752/1 medium containing 15%fetal bovine serum. EMT6 cells in an exponential growth phase were collected, and resuspended in 1×PBS to a cell density of 2.5×10 6 cells/mL for in situ tumor inoculation.
Animal inoculation. Mice were inoculated with 5×10 5 EMT6 cells (0.2 mL/mouse) at the third pair of mammary glands. The cells were resuspended in 1×PBS, i.e., the cell suspension had a concentration of 2.5×10 6 cells/mL. The tumor growth status was regularly observed. When the tumor grew to an average volume of 50 to 100 mm 3, 88 mice were randomly grouped based on their tumor sizes and body weights (totaling 11 groups, with 8 mice in each group) , and dosed. The day of grouping and dosing was defined as day 0. See Section 1.2.1. Study Design for detailed grouping and dosing design.
Random grouping. Before the commencement of the dosing, all animals were weighed to provide their body weights, and measured with a vernier caliper to provide their tumor volumes. In view of the fact that the tumor volume would affect the efficacy of treatment, the mice were grouped based on tumor volumes thereof using a random grouping design method, to ensure that the tumor volume between different groups was similar.
Dosing. On the day of grouping, dosing was commenced according to the group design (Table) . See Section 6.3.1. (Study Design) for detailed dosing method, doses, and dosing route.
Experimental observation and data collection. After tumor cell inoculation, routine monitoring includes the impacts of tumor growth and treatment on the normal behaviors of animals, specifically including the activity, eating and water drinking, body weight gain or loss,  eyes, fur, and other abnormal conditions of the experimental animals. All clinical symptoms observed during the experiments were recorded in the raw data.
After the commencement of dosing, the body weights and tumor sizes of the mice were measured twice a week. The computing equation of the tumor volume: tumor volume (mm 3) =1/2× (a×b 2) (where a represents a long diameter, and b represents a short diameter) .
The antitumor growth effect of a drug was evaluated based on the tumor growth inhibition (TGI) , TGI (%) = [1- (T i-T 0) / (V i-V 0) ] ×100%, where T i denotes the average tumor volume of the dosing group on day i after grouping and dosing, V i denotes the average tumor volume of the control group on day i after grouping and dosing, T 0 denotes the average tumor volume of the dosing group on the day of grouping and dosing, and V 0 denotes the average tumor volume of the control group on the day of grouping and dosing.
All processes, such as dosing, tumor measurement and body weighing, were carried out in a biological safety cabinet or ultra-clean bench.
End point of experiment. No sample would be accepted if the tumor volume of a single animal was more than 3000 mm 3 or the average tumor volume of a group of animals was more than 2000 mm 3.
Statistical analysis. All experimental results were expressed as mean tumor volume ±SEM (standard error of mean) . Best drug treatment time points were selected for statistical analysis among different groups。
6.3.3 Experimental results and conclusions
Tumor volume changes in pharmacodynamic experiments. Since all mice in the G1 group (PBS group) survived on day 24 after grouping and dosing, the tumor volume data on day 24 after the dosing was completed was used for the analysis of the antitumor effect. On day 24 after grouping and dosing, the tumor volumes of mice in the G1 group were 2850.60±139.49 mm 3; the tumor volumes of mice in the G2 group (mIL-12 fusion v. 1-NST-ψ, 1 μg/mice, QW) were 2579.18±281.62 mm 3 with the TGI of 9.73%; the tumor volumes of mice in the G3 group (mIL-12 fusion v. 1-ψ, 1 μg/mice, QW) were 6.92±6.92 mm 3 with the TGI of 102.54%; the tumor volumes in the G4 group (mIL-12 fusion v. 1-ψ, 0.3 μg/mice, QW) were 45.81±30.57 mm 3 with the tumor growth inhibition (TGI) of 101.14%; the tumor volumes in the G5 group (mIL-12 fusion v. 1-ψ, 0.1 μg/mice, QW) were 260.40±152.01 mm 3 with the tumor growth inhibition  (TGI) of 93.34%; the tumor volumes in the G6 group (mIL-12 fusion v. 1-ψ, 0.03 μg/mice, QW) were 976.64±404.15 mm 3 with the TGI of 67.52%; the tumor volumes in the G7 group (rmIL-12, 1 μg/mice, QW) were 517.20±239.46 mm 3 with the TGI of 84.10%; the tumor volumes in the G8 group (mIL-12 fusion v. 1-ψ, 1 μg/mice, Single dose) were 137.88±81.62 mm 3 with the TGI of 97.77%; the tumor volumes in the G9 group (mIL-12 fusion v. 1-ψ, 0.3 μg/mice, Single dose) were 192.62±111.56 mm 3 with the TGI of 95.87%; the tumor volumes in the G10 group (mIL-12 fusion v. 1-ψ, 0.1 μg/mice, Single dose) were 1029.55±206.9 mm 3 with the TGI of 65.68%; and the tumor volumes in the G11 group (mIL-12 fusion v. 1-ψ, 0.03 μg/mice, Single dose) were 1295.66±363.15 mm 3 with the TGI of 56.12%. On day 45 after grouping and dosing, except for the G1, G2, G10 and G11 groups, the mice in other groups showed complete regression (CR) of the tumors.
Compared with the G1 group (PBS group) , 4 doses of mIL-12 fusion v. 1-ψ at two dosing frequencies (weekly and single dose) showed significant tumor inhibition effects, and showed certain dose-dependency at the same dosing frequencies; mIL-12 fusion v. 1-NST-ψ showed no tumor inhibition effects; and rmIL-12 also showed significant tumor inhibition effects, but had weaker tumor inhibition effects than mIL-12 fusion v. 1-ψ at the same dosing frequencies and doses.
At the same doses, the tumor inhibition effects of the mIL-12 fusion v. 1-ψ QW dose group were stronger than those of the single dose group, and the number of CR mice was more than that of the single dose group.
The tumor growth status of mice in each group is shown in the table below, FIG. 8, FIG. 9, FIG. 10, and FIG. 11.
Summary table of tumor growth of mice in each group
Figure PCTCN2022123722-appb-000079
Figure PCTCN2022123722-appb-000080
Body weight changes. During the experiment, the body weights of mice in each group gradually increased, and their water drinking, eating and activity status were normal, suggesting that the mice had good tolerance to the tested drugs. The body weight changes of each group are shown in the table below, FIG. 12, and FIG. 13.
Summary table of body weight changes of mice in each group
Figure PCTCN2022123722-appb-000081
Tumor volume changes of CR mice after Re-challenge. On day 31 after first observation of CR mice (day 45 after grouping and dosing) , all CR mice were inoculated with the same number of EMT6 cells at contralateral breast pads, to perform the Re-challenge experiment. At the same time, 10 normal Balb/c mice were inoculated with the same number of EMT6 cells at the same position as the control. On day 21 after Re-challenge, no tumor was found in the mice except that a tumor was observed in one mouse in the G3 group (mIL-12 fusion v. 1-ψ, 1 μg/mice, QW) . The experimental results are shown in FIG. 14.
During the experiment, the body weight of each mouse gradually increased without occurrence of body weight loss, and their water drinking, eating and activity status were normal, suggesting that the animals had good tolerance to the tested drugs.
mIL-12 fusion v. 1-ψ showed significant tumor inhibition effects and certain dose-dependency at different dosing frequencies. The tumor inhibition effects of mIL-12 fusion v. 1-ψ and the number of CR mice at QW dosing frequency were better than those at the dosing frequency of single dose. mIL-12 fusion v. 1-NST-ψ had no obvious tumor inhibition effects.  rmIL-12 had tumor inhibition effects, but had weaker tumor inhibition effects than mIL-12 fusion v. 1-ψ at the same doses and dosing frequencies.
After Re-challenge of the CR mice, no tumor recurrence phenomenon was found in other CR mice except that a tumor was observed in one mouse in the G3 group (mIL-12 fusion v. 1-ψ, 1 μg/mice, QW) , suggesting that mIL-12 fusion v. 1-ψ had prolonged tumor inhibition effects.
6.4 Example 4 Phenotype analysis of tumor-infiltrated leukocytes (TIL) in EMT6 murine breast cancer model
Without being bound by the theory, it is contemplated that IL-12 activates T and NK cells for IFNγ secretion, which effect contributes to tumor killing immune response in subjects administered with IL-12. The following study was performed to evaluate immunomodulatory effects of lipid nanoparticles (LNP) composition containing an IL-12 encoding mRNA molecule in triple negative breast cancer EMT6 disease model. The mRNA molecule tested was pseudouridine modified mIL-12 fusion v. 1-ψ.
6.4.1 Study Design.
Five groups of EMT-6 mouse subjects (G1 to G5) received administration of test articles as follows: G1 (PBS, Single dose, 10 μl/mice) , G2 (mIL-12 fusion v. 1-NST-ψ, 0.03μg/mice, Single dose, 10μl/mice) , G3 (mIL-12 fusion v. 1-ψ, 0.03μg/mice, Single dose, 10μl/mice) , G4 (RMP1-14, 10mpk, BIW) , G5 (mIL-12 fusion v. 1-ψ 0.03μg/mice, Single dose and RMP1-14 10mpk, BIW) . 5 mice from each group were sacrificed on 7 days post administration, tumors were taken and weighed, and subjected to FACS to analyze phenotype of TILs and PD-L1 expression of tumors.
Tested Group of Animals
Figure PCTCN2022123722-appb-000082
6.4.2 Methods and Materials
Preparation of single cell suspension. 2.5 ml of Liberase TM was added to a gentleMACS C tube; and tumor masses were taken down from the mice. Non-tumor tissues, including blood vessels, fat, calcification tissues, etc., were removed, tumor tissues were cut into small pieces of a size of 2 to 4 mm 3, and the tumor tissues to be dissociated were weighed. The tumor tissues were transferred to a gentleMACS C tube with a mixed enzyme solution. The C tube was tightened, inverted, and installed into a cannula of a gentleMACS tissue processor. A gentleMACS Octo tissue processor with a heating module was used to run program 37C_m_TDK_1. After the program was completed, the C tube was taken down from the gentleMACS tissue processor and shortly centrifuged at 300Xg to sink sample tissues to the bottom of the test tube. The samples were resuspended in RMPI 1640, and filtered with a 70 μm filter membrane. The cell suspension was collected in 50 mL centrifuge tubes. The filter was rinsed with 10 mL of RPMI 1640; and the cell suspension was centrifuged at 300Xg for 5 min.  The supernatant was completely discarded. The cells were resuspended in an appropriate volume of PBS, counted using a cell counter, and adjusted to a cell density of 5×10 7 cells/mL.
Stimulating culture. GolgiPlug TM was quickly unfrozen in a water bath at 37 ℃. 2 μL of GolgiPlug TM was added to each 1 mL of a cell culture solution. The mixture was fully mixed, and then transferred to a 6-well culture plate. 5 mL of a mixed stimulating culture solution was added to each well. A single cell suspension containing 5×10 6 viable cells was transferred to a 6-well culture plate with the mixed stimulating culture solution, the mixture was fully mixed, and the cells were cultured in an incubator at 37 ℃ for 5 h. After the culture was completed, the cells were washed and stained.
FACS staining. The cells in the culture plate were transferred to a test tube, and 1 μg/ml Fc-Block was added for incubation away from light at 4 ℃ for 15 min.
Cell surface staining. a) All antibodies except for mIFN-γ and mFoxp3 were formulated into a mixture according to the recommended doses (Table 4) , and the mixture was fully mixed. The antibody mixture was added to a test tube with a sample, and the mixture was gently blown to fully mix the antibody with the cells, and the cells were incubated away from light at 4℃ for 30 min; b) 2 mL of a FACS buffer was added to the test tube to resuspend the cells, the suspension was centrifuged at 300Xg for 5 min, and the supernatant was discarded; and c) the step b) was repeated once.
Intracellular staining. a) Fixation/Permeabilization Concentrate and eBioscience TM Fixation/Perm Diluent reagent were diluted to 1×Fixation/Permeabilization buffer at 1: 3; b) 200 μL of 1×Fixation/Permeabilization buffer was added to resuspend the cells, and the cells were incubated away from light at room temperature for 30 min; c) 2 mL of 1×Permeabilization Buffer (prepared by diluting 10×Permeabilization Buffer with distilled water) was added to a test tube. The mixture was fully mixed and centrifuged at 300×g for 5 min. The supernatant was discarded; d) the step c was repeated once, and the supernatant was discarded; e) mIFN-γ, mFoxp3 antibody, and 1×Permeabilization Buffer were formulated into a mixture according to the recommended doses (Table 4) , and fully mixed. 100 μL of the mixture was added to a test tube with a sample, and the mixture was gently blown to fully mix the antibody with the cells. The cells were incubated away from light at room temperature for 30 min. f) 2 mL of the FACS buffer was added. The mixture was fully mixed, and centrifuged at 300Xg for 5 min. The  supernatant was discarded; g) the step f) was repeated once; and g) 300 μL of PBS was added to resuspend the cells, and the sample preparation was completed.
FACS analysis. After the sample staining was completed, the sample was detected on a flow cytometer. Data generated by detecting all samples with the flow cytometer was processed using Kaluza 2.1 software to analyze the phenotype and molecular expression of TILs, and further perform statistical analysis.
In order to compare the TILs of different treatment groups, Bartlett test was first used to validate the homoscedasticity assumption among all groups. When p≥0.05 was obtained from the Bartlett test, one-way analysis of variance would be used to test whether means of all group were equal. When p<0.05 was obtained from the one-way analysis of variance, Tukey HSD test would be used for pairwise comparison between all groups, or Dunnett’s test would be used for pairwise comparison between each treatment group and the control group. When p<0.05 was obtained from the Bartlett test, Kruskal Wallis test would be used to test whether the medians of all groups were equal. When p<0.05 was obtained from the Kruskal Wallis test, Conover test would be used for pairwise comparison between all groups or pairwise comparisons between each treatment group and the control group, and corresponding p value correction was performed based on the number of multiple test groups.
All statistical analysis and graph plotting were performed in R language environment. Unless otherwise specified, all tests were two-tailed tests, and p<0.05 was considered statistically significant.
6.4.3 FA CS detection results
FACS analysis of solid tumor samples submitted for detection on Day 7 showed that: 1) Compared with the G2 control group, both the G3 group and the G5 group can significantly increase the ratio of CD8 + T cells/Treg cells; and compared with the G4 group, the G5 group can significantly increase the ratio of CD8 + T cells/Treg cells (FIG. 15A) . 2) Compared with the G1 group, the G5 group can significantly increase the proportion of IFN-γ +CD8 + T cell infiltration (FIG. 15B) . 3) Compared with the G1 group, in the mouse tumor samples of the G5 group, the PD-L1 expression on the surface of the tumor cells was significantly increased (FIG. 15C) 。
6.5 Example 5 Evaluation of Tumor Inhibiting Effects in Triple Negative Breast Cancer Model (EMT6) of LNP Compositions Containing Different Cationic Lipids and IL-12 encoding mRNA.
To evaluate the impact of cationic lipid on the antitumor effects of the present lipid nanoparticle (LNP) compositions containing an IL-12 encoding mRNA molecule, six different lipid compounds C1 to C6 were each used to form LNP containing mIL-12 fusion v. 1. Structures of the six cationic lipids are shown below:
Figure PCTCN2022123722-appb-000083
Figure PCTCN2022123722-appb-000084
6.5.1 Study Design.
250 6-7-week-old female Balb/c mice were inoculated with EMT6 cells in situ at breast pads with 5×10 5 cells per mouse and with the inoculation volume of 0.2 mL. When the average tumor volume of mice reached 50 to 80 mm 3, 112 mice were selected for grouping. The number of animals in each group and the detailed dosing regimen are shown in the table below。
Experimental Groups
Figure PCTCN2022123722-appb-000085
6.5.2 Methods and Materials
Cell culture. EMT6 cells (purchased from ATCC, Cat#CRL-2755 TM, batch No. 70019056, thawed generation P4) were cultured in Waymouth's MB 752/1 medium containing 15%fetal bovine serum. EMT6 cells in an exponential growth phase were collected, and resuspended in 1×PBS to a cell density of 2.5×10 6 cells/mL for in situ tumor inoculation.
Animal inoculation. Mice were inoculated with 5×10 5 EMT6 cells (0.2 mL/mouse) at the third pair of mammary glands. The cells were resuspended in 1×PBS, i.e., the cell suspension had a concentration of 2.5×10 6 cells/mL. The tumor growth status was regularly observed. When the tumor grew to an average volume of 50 to 80 mm 3, 112 mice were randomly grouped based  on their tumor sizes and body weights (totaling 14 groups, with 8 mice in each group) , and dosed. The day of grouping and dosing was defined as day 0. See the above experimental design for detailed grouping and dosing design.
Random grouping. Before the commencement of the dosing, all animals were weighed to provide their body weights, and measured with a vernier caliper to provide their tumor volumes. In view of the fact that the tumor volume would affect the efficacy of treatment, the mice were grouped based on tumor volumes thereof using a random grouping design method, to ensure that the tumor volume between different groups was similar.
Dosing. On the day of grouping, dosing was commenced according to the experimental design. Detailed dosing method, dose, and dosing route are provided in the above table. The dosing volume was constant, i.e., 10 μL/mouse.
Experimental observation and data collection. After tumor cell inoculation, routine monitoring includes the impacts of tumor growth and treatment on the normal behaviors of animals, specifically including the activity, eating and water drinking, body weight gain or loss, eyes, fur, and other abnormal conditions of the experimental animals. All clinical symptoms observed during the experiments were recorded in the raw data.
After the commencement of dosing, the body weights and tumor sizes of the mice were measured twice a week. The computing equation of the tumor volume: tumor volume (mm 3) =1/2× (a×b 2) (where a represents a long diameter, and b represents a short diameter) .
The antitumor growth effect of a drug was evaluated based on the tumor growth inhibition (TGI) , TGI (%) = [1- (T i-T 0) / (V i-V 0) ] ×100%, where T i denotes the average tumor volume of the dosing group on day i after grouping and dosing, V i denotes the average tumor volume of the control group on day i after grouping and dosing, T 0 denotes the average tumor volume of the dosing group on the day of grouping and dosing, and V 0 denotes the average tumor volume of the control group on the day of grouping and dosing. All processes, such as dosing, tumor measurement and body weighing, were carried out in a biological safety cabinet or ultra-clean bench.
Statistical analysis. GraphPad Prism 8.4.0 software was used for statistical analysis of all data, and Student’s T-test was used for comparison among groups. All experimental results were expressed as mean tumor volume ± SEM (standard error of mean) . Best drug treatment time points were selected for statistical analysis among different groups (data on day 20 after  grouping and dosing was selected for this experiment) . All p values <0.05 denote significant differences: *p < 0.05, **p ≤ 0.01, and ***p≤ 0.001.
6.5.3 Experimental results and conclusions
Tumor volume changes of mice in each group in the dosing period. On day 20 after grouping and dosing, the tumor volumes of mice in the G1 group (1×PBS group) were1919.62±73.10 mm 3; the tumor volumes of mice in the G2 group (mIL-12 fusion v. 1-NST/C1, 0.03 μg/mouse) were 1688.54±123.36 mm 3 with the TGI of 12.62%; the tumor volumes of mice in the G3 group (mIL-12 fusion v. 1/C1, 0.03 μg/mouse) were 1491.22±200.71 mm 3 with the TGI of 23.19%; the tumor volumes in the G4 group (mIL-12 fusion v. 1/C1, 0.01 μg/mouse) were 1524.80±88.83 mm 3 with the TGI of 21.41%; the tumor volumes in the G5 group (mIL-12 fusion v. 1/C2, 0.03 μg/mouse) were 1215.62±227.10 mm 3 with the tumor growth inhibition (TGI) of 38.25%; the tumor volumes in the G6 group (mIL-12 fusion v. 1/C2, 0.01 μg/mouse) were 1494.61±105.37 mm 3 with the TGI of 23.06%; the tumor volumes in the G7 group (mIL-12 fusion v. 1/C3, 0.03 μg/mouse) were 666.93±181.05 mm 3 with the TGI of 67.91%; the tumor volumes in the G8 group (mIL-12 fusion v. 1/C3, 0.01 μg/mouse) were 1317.08±168.64 mm 3 with the TGI of 32.70%; the tumor volumes in the G9 group (mIL-12 fusion v. 1/C4, 0.03 μg/mouse) were 827.92±214.41 mm 3 with the TGI of 59.19%; the tumor volumes in the G10 group (mIL-12 fusion v. 1/C4, 0.01 μg/mouse) were 1357.73±214.55 mm 3 with the TGI of 30.48%; the tumor volumes in the G11 group (mIL-12 fusion v. 1/C5, 0.03 μg/mouse) were 869.95±164.9 mm 3 with the TGI of 56.93%; the tumor volumes in the G12 group (mIL-12 fusion v. 1/C5, 0.01 μg/mouse) were 1378.42±183.09 mm 3 with the TGI of 3029.33%; the tumor volumes in the G13 group (mIL-12 fusion v. 1/C6, 0.03 μg/mouse) were 1297.18±158.18 mm 3 with the TGI of 33.73%; and the tumor volumes in the G14 group (mIL-12 fusion v. 1/C6, 0.01 μg/mouse) were 1500.64±135.94 mm 3 with the TGI of 22.71%.
Compared with the G1 group (1×PBS group) , high-dose mIL-12 fusion v. 1 showed very significant tumor inhibition effects in the LNP of the G7 group (p=0.008) , showed significant tumor inhibition effects in the G9 and G11 groups (p value was 0.038 and 0.041 respectively) , and presented certain dose-dependency; mIL-12 fusion v. 1 showed weaker tumor inhibition effects in the 3 LNPs of the G3, G5, and G13 groups; and the tumor inhibition effects  of 6 different LNP-encapsulated tested drugs at a high dose of 0.03 μg/mouse in descending order were: C3>C4>C5>C2>C6>C1.
The tumor growth status of mice in each group is shown in the table below and FIG. 16.
Summary table of tumor growth of mice in each group
Figure PCTCN2022123722-appb-000086
*p < 0.05, **p ≤ 0.01, ***p ≤ 0.001
Body weight changes of mice in each group in the dosing period. During the experiment, the body weights of mice in each group gradually increased, and their water drinking, eating and activity status were normal, suggesting that the mice had good tolerance to the tested drugs. The body weight changes of each group are shown in the Table below.
Summary table of body weight changes of mice in each group
Figure PCTCN2022123722-appb-000087
Conclusions. During the experiment, the body weight of each mouse gradually increased without occurrence of body weight loss, and their water drinking, eating and activity status were normal, suggesting that the animals had good tolerance to the tested drugs.
mIL-12 fusion v. 1/C3, mIL-12 fusion v. 1/C4, and mIL-12 fusion v. 1/C5 showed significant tumor inhibition effects at a dose of 0.03 μg/mouse, and the same tested drugs presented certain dose-dependency. At a dose of 0.03 μg/mouse, the tumor inhibition effects of 6 different LNP-encapsulated mIL-12 fusion v. 1 in descending order were: mIL-12 fusion v. 1/C3>mIL-12 fusion v. 1/C4> mIL-12 fusion v. 1/C5>mIL-12 fusion v. 1/C2>mIL-12 fusion v. 1/C6> mIL-12 fusion v. 1/C1
6.6 Example 6 Evaluation of tumor inhibiting effects of a combination therapy of LNP composition containing IL-12 encoding mRNA and anti-PD-1 antibody in a melanoma model (B16F10)
The following study was performed to evaluate tumor inhibition effects of a combination therapy of (a) a lipid nanoparticles (LNP) composition containing an IL-12 encoding mRNA molecule and (b) anti-mouse PD-1 antibody in a melanoma disease model. The mRNA molecule was pseudouridine modified mIL-12 fusion v. 1-ψ, and the anti-mPD-1 antibody was monoclonal antibody RMPI-14.
6.6.1 Study Design.
155 female C57BL/6 mice were subcutaneously inoculated with B16F10 on both sides, where each mouse was inoculated with 5×10 5 cells on the right side with an inoculation volume of 0.2 mL, and each mouse was inoculated with 2×10 5 cells on the left side with an inoculation volume of 0.2 mL. When the average tumor volume on the right side of the mice reached 50 to 80 mm 3, 104 mice were selected for grouping. The number of animals in each group and the detailed dosing regimen are shown in the table below.
Experimental Groups
Figure PCTCN2022123722-appb-000088
Figure PCTCN2022123722-appb-000089
6.6.2 Methods and Materials
Cell culture. B16F10 cells (purchased from ATCC, Cat#CRL-6475 TM, batch No. 70017905) were cultured in a DMEM culture solution containing 10%fetal bovine serum and 1%Pen Strep. B16F10 cells in an exponential growth phase were collected, and resuspended in 1×PBS to a cell density of 2.5×10 6 cells/mL and 1×10 6 cells/mL for bilateral subcutaneous tumor inoculation.
Animal inoculation. Mice were subcutaneously inoculated with 5×10 5 B16F10 cells (0.2 mL/mouse) on the right side. The cells were resuspended in 1×PBS, i.e., the cell suspension had a concentration of 2.5×10 6 cells/mL. Mice were subcutaneously inoculated with 2×10 5 B16F10 cells (0.2 mL/mouse) on the left side. The cells were resuspended in 1×PBS, i.e., the cell suspension had a concentration of 1×10 6 cells/mL. The tumor growth status was regularly observed. When the subcutaneous tumor on the right side grew to an average volume of 50 to 80 mm 3, 104 mice were randomly grouped based on their tumor sizes and body weights (totaling 13 groups, with 8 mice in each group) , and dosed. The day of grouping and dosing was defined as day 0. See the above experimental design for detailed grouping and dosing design.
Random grouping. Before the commencement of the dosing, all animals were weighed to provide their body weights, and measured with a vernier caliper to provide their tumor volumes. In view of the fact that the tumor volume would affect the efficacy of treatment, the mice were grouped based on tumor volumes thereof using a random grouping design method, to ensure that the tumor volume between different groups was similar.
Dosing. On the day of grouping, dosing was commenced according to the experimental design. Detailed dosing method, dose, and dosing route are provided in the above table. The dosing volume was constant, i.e., 10 μL/mouse of LNP or 10 μL/g body weight of RMP1-14.
Experimental observation and data collection. After tumor cell inoculation, routine monitoring includes the impacts of tumor growth and treatment on the normal behaviors of animals, specifically including the activity, eating and water drinking, body weight gain or loss, eyes, fur, and other abnormal conditions of the experimental animals. All clinical symptoms observed during the experiments were recorded in the raw data.
After the commencement of dosing, the body weights and tumor sizes of the mice were measured twice a week. The computing equation of the tumor volume: tumor volume (mm 3) =1/2× (a×b2) (where a represents a long diameter, and b represents a short diameter) .
The antitumor growth effect of a drug was evaluated based on the tumor growth inhibition (TGI) , TGI (%) = [1- (Ti-T0) / (Vi-V0) ] ×100%, where Ti denotes the average tumor volume of the dosing group on day i after grouping and dosing, Vi denotes the average tumor volume of the control group on day i after grouping and dosing, T0 denotes the average tumor volume of the dosing group on the day of grouping and dosing, and V0 denotes the average tumor volume of the control group on the day of grouping and dosing. All processes, such as dosing, tumor measurement and body weighing, were carried out in a biological safety cabinet or ultra-clean bench.
Statistical analysis. GraphPad Prism 8.4.0 software was used for statistical analysis of all data, and Student’s T-test was used for comparison among groups. All experimental results were expressed as mean tumor volume ± SEM (standard error of mean) . Best drug treatment time points were selected for statistical analysis among different groups (data on day 14 after grouping and dosing was selected for this experiment) . All p values <0.05 denote significant differences: *p < 0.05, **p ≤ 0.01, and ***p≤ 0.001.
The nature of interaction between two drugs was evaluated by computing based on the tumor volume, and using the coefficient of drug interaction (CDI) . The CDI was computed according to the following equation: CDI=AB/A×B, where AB is a ratio of the tumor volume of a combination therapy group of two drugs to the tumor volume of the control group, and A or B is a ratio of the tumor volume of each monotherapy group to the tumor volume of the control group on the same day. When CDI<1, the two drugs had synergistic effects; and when CDI<0.7, the synergistic effects were very significant. At the same time, T-test was performed; and when CDI=1, two drugs had additive effects。
6.6.3 Experimental results and discussion
Tumor volume changes. Due to very rapid tumor growth, on day 10 after grouping and dosing, the tumor volume of each mouse in the G1 group (1×PBS group) was more than 3000 mm 3, and all mice were euthanized. The data on day 10 was used in subsequent statistical analysis. On day 14 after dosing, the tested drug had best effects, and most of the mice did not reach the requirements for euthanasia, such that the data on day 14 was used for the analysis of the antitumor effects. On day 14 after grouping and dosing, the tumor volumes on the dosed side of each group were as follows: G1 group (1×PBS group) : 4169.14±438.58 mm 3; G2 group (mIL-12 fusion v. 1-NST-ψ, 0.03 μg/mouse) : 3575.95±233.63 mm 3, TGI 14.57%; G3 group (RMP1-14, 10mg/kg) : 3422.20±425.31 mm 3, TGI 18.27%; G4 group (mIL-12 fusion v. 1-ψ, 1 μg/mouse) : 847.02±141.24 mm 3, TGI 81.46%; G5 group (mIL-12 fusion v. 1-ψ, 0.3 μg/mouse) : 1619.04±566.88 mm 3, TGI 62.50%; G6 group (mIL-12 fusion v. 1-ψ, 0.1 μg/mouse) : 1497.89±520.49 mm 3, TGI 65.46%; G7 group (mIL-12 fusion v. 1-ψ, 0.03 μg/mouse) : 2764.22±977.30 mm 3, TGI 34.44%; G8 group (mIL-12 fusion v. 1-ψ, 1μg/mouse; RMP1-14, 10 mg/kg) : 584.67±206.71 mm 3, TGI 87.88%; G9 group (mIL-12 fusion v. 1-ψ, 0.3 μg/mouse; RMP1-14, 10 mg/kg) : 772.73±273.20 mm 3, TGI 83.28%; G10 group (mIL-12 fusion v. 1-ψ, 0.1 μg/mouse; RMP1-14, 10 mg/kg) : 1479.11±522.94 mm 3, TGI 65.90%; G11 group (mIL-12 fusion v. 1-ψ, 0.03 μg/mouse; RMP1-14, 10 mg/kg) : 2146.41±758.87 mm 3, TGI 49.55%; G12 group (rmIL-12, 1 μg/mouse) : 1967.14±695.49 mm 3, TGI 53.93%; and G13 group (rmIL-12, 1 μg/mouse; RMP1-14, 10 mg/kg) : 2449.30±865.96 mm 3, TGI 42.15%.
Compared with the G1 group (1×PBS group) , the high-dose G4 (mIL-12 fusion v. 1-ψ) monotherapy group showed significant tumor inhibition effects (p=0.003) , and the G5 and G6 monotherapy groups also showed certain tumor inhibition effects without significant differences; while the G2, G3 (RMP1-14) and G12 (rmIL-12) monotherapy groups did not show obvious tumor inhibition effects, and had lower tumor growth inhibition than the G4 (mIL-12 fusion v. 1-ψ) group at the same dosing frequencies and doses.
Compared with the monotherapy group, the combination therapy showed enhanced tumor growth inhibition effects, where the combination therapy of the G8, G9 and G10 groups had significant tumor inhibition effects (p values <0.001, 0.002, and 0.035, respectively) , the G11 group also had certain tumor inhibition effects without significant differences; and the combination therapy showed synergistic tumor inhibition effects, where the G8, G9 and G10  groups showed synergistic effects (CDI was 0.84, 0.58, and 0.95, respectively) . The tumor growth status on the dosed side of mice in each group is shown in the table below and FIG. 17A.
Summary table of tumor growth on dosed side of mice in each group
Figure PCTCN2022123722-appb-000090
*p < 0.05, **p ≤ 0.01, ***p ≤ 0.001
On day 14 after grouping and dosing, compared with the G1 group (1×PBS group) , the mIL-12 fusion v. 1-ψ monotherapy group had inhibition effects on the tumor on the non-dosed side with certain dose-dependency, but without significant differences; after combination therapy with RMP1-14, the inhibition effects on the tumor on the non-dosed side were enhanced, where the G8 and G9 combination therapy groups showed significant tumor inhibition effects (p was 0.033 and 0.025, respectively) , and neither of the G10 and G13 combination therapy groups  showed significant tumor inhibition effects; and the G8, G9, and G10 combination therapy groups also showed synergistic tumor inhibition effects on the tumor treatment on the non-dosed side (CDI was 0.74, 0.49, and 0.64, respectively) . The tumor growth status on the non-dosed side of mice in each group is shown in the table below and FIG. 17B.
Summary table of tumor growth on non-dosed side of mice in each group
Figure PCTCN2022123722-appb-000091
*p < 0.05, **p ≤ 0.01, ***p ≤ 0.001
Body weight changes. During the experiment, the body weights of mice in each group gradually increased, and their water drinking, eating and activity status were normal, suggesting that the mice had good tolerance to the tested drugs. The body weight changes of each group are shown in the table below.
Summary table of body weight changes of mice in each group
Figure PCTCN2022123722-appb-000092
Survival curve. The survival status of the mice was tracked for 24 days. Analysis of the survival curve showed that compared with the G1 group (1×PBS group) , both the monotherapy and combination therapy of mIL-12 fusion v. 1-ψ significantly prolonged the survival of mice (mOS: 14 to 21 days) ; and the combination therapy of mIL-12 fusion v. 1-ψ at  the dose of 1 μg/mouse and 0.3 μg/mouse with RMP1-14 further improved the survival of mice. There were significant differences between the combination therapy at the dose of 0.3 μg/mouse and the monotherapy group at the same dose (p=0.013) . The survival curve of each group is shown in the Table below and FIG. 18.
Summary table of median overall survival (mOS) of mice in each group
Figure PCTCN2022123722-appb-000093
*p < 0.05, **p ≤ 0.01, ***p ≤ 0.001 vs G1
Conclusions. During the experiment, the body weight of each mouse gradually increased without occurrence of body weight loss, and their water drinking, eating and activity status were normal, suggesting that the animals had good tolerance to the tested drugs.
The monotherapy of mIL-12 fusion v. 1-ψ showed dose-dependent tumor inhibition effects, showed significant inhibition effects on the tumor on the non-dosed side, and significantly prolonged the survival of mice. The combination therapy of mIL-12 fusion v. 1-ψ and RMP1-14 improved the inhibition effects on tumors, showed better synergistic effects, and further improved the survival of mice. Both the monotherapy of mIL-12 fusion v. 1-ψ and the combination therapy with RMP1-14 had stronger tumor inhibition effects than rmIL-12 at the same doses.
6.7 Example 7 Evaluation of tumor inhibiting effects of a combination therapy of LNP composition containing IL-12 encoding mRNA and anti-PD1 antibody in a triple negative breast cancer model (EMT6) 
The following study was performed to evaluate tumor inhibition effects of a combination therapy of (a) a lipid nanoparticles (LNP) composition containing an IL-12 encoding mRNA molecule and (b) anti-mouse PD-1 antibody in a breast cancer disease model. The mRNA molecule was pseudouridine modified mIL-12 fusion v. 1-ψ, and the anti-mPD-1 antibody was monoclonal antibody RMPI-14.
EMT6 cells (purchased from ATCC, Cat#CRL-2755 TM) were cultured in Waymouth's MB 752/1 medium containing 15%fetal bovine serum. EMT6 cells in an exponential growth phase were collected, and resuspended in 1×PBS to a cell density of 2.5×10 6 cells/mL for in situ mammary gland inoculation.
Each of 140 6-7-week-old female Balb/c mice was inoculated with 5×10 5 EMT6 cells (0.2 mL/mouse) at the third pair of mammary glands. The cells were resuspended in 1×PBS, i.e., the cell suspension had a concentration of 2.5×10 6 cells/mL. The tumor growth status was regularly observed. When the tumor grew to an average volume of 50 to 80 mm 3, 88 mice were randomly grouped based on the tumor size and body weight (totaling 11 groups, with 8 mice in each group) , and dosed. The dose was:
Table. Dose, route, and period
Figure PCTCN2022123722-appb-000094
Figure PCTCN2022123722-appb-000095
After the commencement of dosing, the body weights and tumor sizes of the mice were measured twice a week. The computing equation of the tumor volume: tumor volume (mm 3) =1/2× (a×b 2) (where a represents a long diameter, and b represents a short diameter) .
The antitumor growth effect of a drug was evaluated based on the tumor growth inhibition (TGI) , TGI (%) = [1- (T i-T 0) / (V i-V 0) ] ×100%, where T i denotes the average tumor volume of the dosing group on day i after grouping and dosing, V i denotes the average tumor volume of the control group on day i after grouping and dosing, T 0 denotes the average tumor volume of the dosing group on the day of grouping and dosing, and V 0 denotes the average tumor volume of the control group on the day of grouping and dosing.
GraphPad Prism 8.4.0 software was used for statistical analysis of all data, and Student’s T-test was used for comparison among groups. All experimental results were expressed as mean tumor volume ± SEM (standard error of mean) . Best drug treatment time points were selected for statistical analysis among different groups (data on day 21 after grouping and dosing was selected for this experiment) . All p values ≤0.05 denote significant differences: *p ≤ 0.05, **p < 0.01, and ***p <0.001.
The tumor growth status of mice in each group is shown in the table below, FIG. 19, and FIG. 20A to FIG. 20K。
Table. Summary table of tumor growth of mice in each group
Figure PCTCN2022123722-appb-000096
*p ≤ 0.05, **p < 0.01, ***p <0.001。
Conclusions. Compared with the G1 group (1×PBS group) , the G4 (mIL-12 fusion v. 1-ψ, 1 μg/mouse) and G5 (mIL-12 fusion v. 1-ψ, 0.3 μg/mouse) monotherapy groups had significant tumor inhibition effects (p<0.01) ; neither of the G2 (mIL-12 fusion v. 1-NST-ψ) and G3 (RMP1-14) monotherapy groups showed tumor growth inhibition effects, and the G10 (rmIL-12) group showed weaker tumor inhibition effects.
The G7, G8 and G9 (mIL-12 fusion v. 1-ψ+ RMP1-14) combination therapy groups showed significant tumor inhibition effects; compared with the monotherapy group, the G9 combination therapy group showed enhanced tumor growth inhibition effects, and the combination of two drugs showed synergistic effects; and the G11 (rmIL-12+RMP1-14) group showed weaker tumor inhibition effects.
On day 49 after dosing, the monotherapy group improved the complete remission (CR) rate of mice, and the combination thereby group achieved a higher CR rate。
6.8 Example 8 Evaluation of tumor inhibiting effects of a combination therapy of LNP composition containing IL-12 encoding mRNA and anti-PD-1 antibody in a colon cancer model (MC38)
The following study was performed to evaluate tumor inhibition effects of a combination therapy of (a) a lipid nanoparticles (LNP) composition containing an IL-12 encoding mRNA molecule and (b) anti-mouse PD-1 antibody in a colon cancer disease model. The mRNA molecule was pseudouridine modified mIL-12 fusion v. 1-ψ, and the anti-mPD-1 antibody was monoclonal antibody RMPI-14.
MC38 cells (purchased from Xiehe Cell Bank of Chinese Academy of Sciences, thawed generation P5) were cultured in RPMI-1640 medium containing 10%fetal bovine serum. MC38 cells in an exponential growth phase were collected, and resuspended in 1×PBS to a cell density of 5×10 6 cells/mL for inoculation at the fat pad of the right rear leg.
200 female C57BL/6 mice were inoculated with 1×10 6 MC38 cells (0.2 mL/mouse) at the fat pad of the right rear leg. The cells were resuspended in 1×PBS, i.e., the cell suspension had a concentration of 5×10 6 cells/mL. The tumor growth status was regularly observed. When the tumor grew to an average volume of 50 to 80 mm 3, 72 mice were randomly grouped based on their tumor sizes and body weights (totaling 9 groups, with 8 mice in each group) , and dosed. The dose was:
Table. Dose, route, and period
Figure PCTCN2022123722-appb-000097
Figure PCTCN2022123722-appb-000098
After the commencement of dosing, the body weights and tumor sizes of the mice were measured twice a week. The computing equation of the tumor volume: tumor volume (mm 3) =1/2× (a×b 2) (where a represents a long diameter, and b represents a short diameter) .
The antitumor growth effect of a drug was evaluated based on the tumor growth inhibition (TGI) , TGI (%) = [1- (T i-T 0) / (V i-V 0) ] ×100%, where T i denotes the average tumor volume of the dosing group on day i after grouping and dosing, V i denotes the average tumor volume of the control group on day i after grouping and dosing, T 0 denotes the average tumor volume of the dosing group on the day of grouping and dosing, and V 0 denotes the average tumor volume of the control group on the day of grouping and dosing.
GraphPad Prism 8.4.0 software was used for statistical analysis of all data, and Student’s T-test was used for comparison among groups. All experimental results were expressed as mean tumor volume ± SEM (standard error of mean) . Best drug treatment time points were selected for statistical analysis among different groups (data on day 35 after grouping and dosing was selected for this experiment) . All p values ≤0.05 denote significant differences: *p ≤ 0.05, **p < 0.01, and ***p <0.001.
The tumor growth status of mice in each group is shown in the table below, FIG. 21, and FIG. 22A to FIG. 22I.
Table. Summary table of tumor growth of mice in each group
Figure PCTCN2022123722-appb-000099
*p ≤ 0.05, **p < 0.01, ***p <0.001。
Conclusions. Compared with the G1 group (1×PBS group) , the G4, G5, and G6 (mIL-12 fusion v. 1-ψ) monotherapy groups had significant tumor inhibition effects (p<0.01) ; and neither of the G2 (mIL-12 fusion v. 1-NST-ψ) and G3 (RMP1-14) monotherapy groups showed obvious tumor inhibition effects.
Compared with the corresponding monotherapy group, the G7, G8, and G9 (mIL-12 fusion v. 1-ψ+ RMP1-14) combination therapy groups showed enhanced tumor growth inhibition effects; both showed significant differences (p=0.033) at the dose of 0.3 μg/mouse, and there was no significant difference between the two at the dose of 1 μg/mouse and 0.1 μg/mouse.
On day 35 after dosing, the monotherapy group significantly improved the complete remission (CR) rate of mice, and the combination thereby group achieved a higher CR rate.
6.9 Example 9. In vitro expression and function validation of Human interleukin-15 (hIL-15)
The following study was performed to evaluate expression in expi293F cells of mRNA molecules encoding a fusion protein having human interleukin-15 (hIL-15) fused to the Sushi domain of IL-15 receptor α subunit (IL-15Rα) , and to evaluate biological activity of the  expressed fusion proteins. Procedures for mRNA transfection, expression and ELISA evaluation of the protein expression level were as described above. The mRNA constructs encoding the IL-15 containing polypeptides are summarized in the Table below.
Table mRNA Information
Figure PCTCN2022123722-appb-000100
In vitro expression of hIL-15 containing polypeptide. As shown in FIGS. 24A and 24B, 16 hours after transfection, the 4 mRNA constructs encoding hIL-15 containing polypeptide exhibited obvious expression in expi293F cells.
In vitro validation of hIL-15 activity. Mo7e cells were cultured with increasing concentrations of recombinant hIL15 protein or hIL-15 fusion protein encoded by 4 tested mRNAs (hIL-15 fusion ref., hIL-15 fusion ref. -ψ, hIL-15 fusion v. 1, and hIL-15 fusion v. 1-ψ) . Mo7e proliferation was evaluated by Cell Counting Kit-8 (CCK-8) , and IL-15 activity was measured as opticial density (OD) values.
As shown in FIG. 25, all 4 tested mRNAs potently induced Mo7e cell proliferation. efficacy. The EC 50 values of the tested groups are shown in the table below.
Figure PCTCN2022123722-appb-000101
6.10 Example 10. In vivo expression of Human interleukin-12 (hIL-12) fusion protein following intratumoral administration.
The following study was performed to evaluate in vivo expression of mRNA encoding hIL-12 fusion protein delivered in a lipid nanoparticle (LNP) composition comprising the mRNA and cationic lipid in the Table below.
Table LNP Information
mRNA Modification Cationic Lipid
hIL-12 fusion v. 1 ψ C1
To construct a human triple-negative breast cancer disease model, immunodeficient mice were inoculated subcutaneously with MDA-MB-231 cells. The tumor growth status was regularly observed. When the subcutaneous tumor grew to an average volume of 50 to 80 mm 3, mice were randomly grouped based on their tumor sizes and body weights, and received intratumoral injection of a lipid nanoparticles (LNP) composition containing an IL-12 encoding mRNA molecule at dosage of 1μg/mouse, 0.3μg/mouse, or 0.1μg/mouse, saline solution (NST control) , or blank LNP without the mRNA (blank control) . The mRNA molecule was pseudouridine modified hIL-12 fusion v. 1-ψ.
Mice were sacrificed at various time points up to 168 hours post injection, the tumors were removed, the tumor tissue was grounded with a tissue processor and added with a cell lysate solution to lyse the cells, and the supernatant of the lysate was collected. The amount of the expressed hIL-12 protein in the tumor samples was analyzed with ELISA, and the results were plotted in FIG. 26. As shown, after intratumoral injection of 0.1, 0.3 or 1 μg LNP composition containing the hIL-12 fusion v. 1-ψ mRNA, hIL-12 protein can be expressed in MDA-MB-231 tumors in a dose-dependent manner.
6.11 Example 11: Exemplary Synthesis
General preparative HPLC method: HPLC purification is carried out on a Waters 2767 equipped with a diode array detector (DAD) on an Inertsil Pre-C8 OBD column, generally with water containing 0.1%TFA as solvent A and acetonitrile as solvent B.
General LCMS method: LCMS analysis is conducted on a Shimadzu (LC-MS2020) System. Chromatography is performed on a SunFire C18, generally with water containing 0.1%formic acid as solvent A and acetonitrile containing 0.1%formic acid as solvent B.
6.11.1 Preparation of Compound 02-1 (i.e. Compound 1 in the following scheme) .
Figure PCTCN2022123722-appb-000102
Compound 02-1:  1H NMR (400 MHz, CDCl 3) δ: 0.86-0.90 (m, 12H) , 1.27-1.63 (m, 53H) , 1.97-2.01 (m, 2H) , 2.28-2.64 (m, 14H) , 3.52-3.58 (m, 2H) , 4.00-4.10 (m, 8H) . LCMS: Rt: 1.080 min; MS m/z (ESI) : 826.0 [M+H]  +.
The following compounds were prepared in analogous fashion as Compound 02-1, using corresponding starting material.
Figure PCTCN2022123722-appb-000103
6.11.2 Preparation of Compound 02-2 (i.e. Compound 2 in the following scheme) .
Figure PCTCN2022123722-appb-000104
Compound 02-2:  1H NMR (400 MHz, CDCl 3) δ: 0.86-0.90 (m, 12H) , 1.28-1.67 (m, 54H) , 1.88-2.01 (m, 7H) , 2.28-2.56 (m, 18H) , 3.16-3.20 (m, 1H) , 3.52-3.54 (m, 2H) , 4.00-4.10 (m, 8H) . LCMS: Rt: 1.060 min; MS m/z (ESI) : 923.0 [M+H]  +.
6.11.3 Preparation of Compound 02-4 (i.e. Compound 4 in the following scheme) .
Figure PCTCN2022123722-appb-000105
Compound 02-4:  1H NMR (400 MHz, CDCl 3) δ: 0.86-0.90 (m, 9H) , 1.26-1.32 (m, 34H) , 1.41-1.49 (m, 4H) , 1.61-1.66 (m, 15H) , 2.00-2.03 (m, 1H) , 2.21-2.38 (m, 8H) , 2.43-2.47 (m, 4H) , 2.56-2.60 (m, 2H) , 3.50-3.54 (m, 2H) , 4.03-4.14 (m, 8H) . LCMS: Rt: 1.030 min; MS m/z (ESI) : 798.0 [M+H]  +.
6.11.4 Preparation of Compound 02-9 (i.e. Compound 9 in the following scheme) .
Figure PCTCN2022123722-appb-000106
Compound 02-9:  1H NMR (400 MHz, CDCl 3) δ: 0.86-0.90 (m, 12H) , 1.28-1.30 (m, 33H) , 1.58-2.01 (m, 18H) , 2.30-2.54 (m, 18H) , 3.10-3.19 (m, 1H) , 3.52-3.68 (m, 8H) , 4.09-4.20 (m, 8H) . LCMS: Rt: 1.677 min; MS m/z (ESI) : 927.7 [M+H]  +.
The following compounds were prepared in analogous fashion as Compound 02-9, using corresponding starting material.
Figure PCTCN2022123722-appb-000107
Figure PCTCN2022123722-appb-000108
6.11.5 Preparation of Compound 02-10 (i.e. Compound 10 in the following scheme) .
Figure PCTCN2022123722-appb-000109
Compound 02-10:  1H NMR (400 MHz, CDCl 3) δ: 0.86-0.90 (m, 12H) , 1.26-1.41 (m, 48H) , 1.51-1.72 (m, 11H) , 1.94-2.03 (m, 1H) , 2.29-2.32 (m, 6H) , 2.41-2.91 (m, 5H) , 3.51-3.76 (m, 2H) , 3.96-4.10 (m, 6H) . LCMS: Rt: 1.327 min; MS m/z (ESI) : 782.6 [M+H]  +.
The following compounds were prepared in analogous fashion as Compound 02-10, using corresponding starting material.
Figure PCTCN2022123722-appb-000110
6.11.6 Preparation of Compound 02-12 (i.e. Compound 12 in the following scheme) .
Figure PCTCN2022123722-appb-000111
Compound 02-12:  1H NMR (400 MHz, CDCl 3) δ: 0.86-0.89 (m, 18H) , 1.25-1.35 (m, 53H) , 1.41-1.48 (m, 8H) , 1.56-1.61 (m, 20H) , 1.95-2.01 (m, 2H) , 2.28-2.35 (m, 6H) , 2.43-2.46 (m, 4H) , 2.56-2.58 (m, 2H) , 3.51-3.54 (m, 2H) , 4.00-4.10 (m, 8H) . LCMS: Rt: 0.080 min; MS m/z (ESI) : 1050.8 [M+H]  +.
6.11.7 Preparation of Compound 02-20 (i.e. Compound 20 in the following scheme) .
Figure PCTCN2022123722-appb-000112
Compound 02-20:  1H NMR (400 MHz, CDCl3) δ: 0.86-0.90 (m, 9H) , 1.25-1.36 (m, 48H) , 1.41-1.48 (m, 5H) , 1.60-1.62 (m, 8H) , 1.97-2.00 (m, 1H) , 2.27-2.32 (m, 6H) , 2.43-2.46 (m, 4H) , 2.56-2.59 (m, 2H) , 3.52-3.54 (m, 2H) , 4.01-4.10 (m, 6H) . LCMS: Rt: 0.093 min; MS m/z (ESI) : 782.6 [M+H]  +.

Claims (39)

  1. A nucleic acid encoding an interleukin-12 (IL-12) containing fusion protein, wherein the nucleic acid comprises a coding region comprising one or more sequence selected from SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, and SEQ ID NO: 29; SEQ ID NO: 77, SEQ ID NO: 78, SEQ ID NO: 79, SEQ ID NO: 80, SEQ ID NO: 81, SEQ ID NO: 82, and SEQ ID NO: 83, or a transcribed RNA sequence thereof.
  2. The nucleic acid of claim 1, wherein the coding region comprises a first sequence selected from SEQ ID NO: 77, SEQ ID NO: 78, and SEQ ID NO: 79, or a transcribed RNA sequence thereof, and a second sequence selected from SEQ ID NO: 80 and SEQ ID NO: 81, or a transcribed RNA sequence thereof.
  3. The nucleic acid of claim 1, wherein the coding region comprises a first sequence of SEQ ID NO: 82 or a transcribed RNA sequence thereof, and a second sequence of SEQ ID NO: 83 or a transcribed RNA sequence thereof.
  4. The nucleic acid of any one of claims 1 to 3, wherein the coding region comprises one or more open reading frames (ORFs) , and wherein at least one ORF encodes the IL-12 containing fusion protein.
  5. The nucleic acid of any one of claims 1 to 4, wherein the nucleic acid further comprises
    (a) a 5’ untranslated region (5’-UTR) , wherein the 5’-UTR comprises the sequence set forth in any one of SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36 and SEQ ID NO: 37;
    and/or
    (b) 3’ untranslated region (3’-UTR) , wherein the 3’-UTR comprises the sequence set forth in SEQ ID NO: 38 or SEQ ID NO: 39; optionally wherein the 3’-UTR further comprises a poly-A tail or a polyadenylation signal.
  6. The nucleic acid of any one of claims 1 to 5,
    (a) wherein the nucleic acid is DNA, optionally wherein the DNA comprises the sequence selected from SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, and SEQ ID NO: 48;
    or
    (b) wherein the nucleic acid is mRNA, optionally wherein the mRNA comprising the sequence selected from SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, and SEQ ID NO: 49.
  7. A nucleic acid encoding an interleukin-15 (IL-15) containing fusion protein, wherein the nucleic acid comprises a coding region comprising one or more sequence selected from SEQ ID NO: 33, SEQ ID NO: 13, SEQ ID NO: 86, SEQ ID NO: 15, SEQ ID NO: 89, SEQ ID NO: 72, and SEQ ID NO: 74, or a transcribed RNA sequence thereof.
  8. The nucleic acid of claim 7, wherein the encoded fusion protein comprises the sequence selected from SEQ ID NO: 32, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 71, and SEQ ID NO: 73.
  9. The nucleic acid of claim 7 or 8, wherein the coding region comprises one or more open reading frames (ORFs) , and wherein at least one ORF encodes the IL-15 containing fusion protein.
  10. The nucleic acid of any one of claims 7 to 9, further comprising
    (a) a 5’ untranslated region (5’-UTR) , wherein the 5’-UTR comprises the sequence set forth in any one of SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, and SEQ ID NO: 37;
    and/or
    (b) 3’ untranslated region (3’-UTR) , wherein the 3’-UTR comprises the sequence set forth in SEQ ID NO: 38 or SEQ ID NO: 39; optionally wherein 3’-UTR further comprises a poly-A tail or a polyadenylation signal.
  11. The nucleic acid of any one of claims 7 to 10,
    (a) wherein the nucleic acid is DNA, optionally wherein the DNA comprises the sequence of SEQ ID NO: 52;
    or
    (b) wherein the nucleic acid is mRNA, optionally wherein the mRNA comprises the sequence of SEQ ID NO: 53.
  12. The nucleic acid of any one of claims 7 to 11, further encoding an IL-12 polypeptide.
  13. The nucleic acid of claim 12, wherein the IL-12 polypeptide is an IL-12 containing fusion protein comprising an interleukin-12 β subunit (IL-12B) polypeptide fused to an interleukin-12 α subunit (IL-12A) polypeptide.
  14. The nucleic acid of claim 12 or 13, wherein the coding region comprises one or more open reading frames (ORFs) that encodes the IL-12 polypeptide.
  15. The nucleic acid of claim 14,
    (a) wherein the one or more ORFs encoding the IL-12 polypeptide comprises a coding sequence selected from SEQ ID NOS: 5, SEQ ID NO: 77, SEQ ID NO: 78 SEQ ID NO: 79, SEQ ID NO: 7, SEQ ID NO: 80, SEQ ID NO: 81, SEQ ID NO: 9, SEQ ID NO: 82, SEQ ID NO: 11, SEQ ID NO: 83, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, and SEQ ID NO: 29, or a transcribed RNA sequence thereof;
    or
    (b) wherein the IL-12 polypeptide comprises a sequence selected from SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 24 and SEQ ID NO: 28.
  16. The nucleic acid of any one of claims 1 to 15, comprising one or more functional nucleotide analogs that are selected from pseudouridine and 1-methyl-pseudouridine;  wherein optionally the functional nucleotide analogs are about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, or about 100%of the uridines of the nucleic acid; optionally wherein about 100%of the uridines of the nucleic acid is pseudouridine.
  17. A vector comprising the nucleic acid of any one of claims 1 to 16.
  18. A cell comprising the nucleic acid of any one of claims 1 to 16, or the vector of claim 17.
  19. A composition comprising (i) one or more nucleic acid of any one of claims 1 to 16 and (ii) at least one first lipid.
  20. The composition of any one of claims 19,
    (a) wherein the one or more nucleic acid encodes the IL-12 containing fusion protein; optionally wherein the one or more nucleic acid is the nucleic acid according to any one of claims 1 to 6;
    (b) wherein the one or more nucleic acid encodes the IL-15 containing fusion protein; optionally wherein the one or more nucleic acid is the nucleic acid according to any one of claims 7 to 11;
    (c) wherein the one or more nucleic acid comprises at least two ORFs encoding the IL-12 containing fusion protein and the IL15 containing fusion protein, respectively; optionally wherein the one or more nucleic acid is the nucleic acid according to any one of claims 12 to 15;
    or
    (d) wherein the one or more nucleic acids comprise at least two nucleic acid molecules encoding the IL-12 containing fusion protein and the IL15 containing fusion protein, respectively; optionally wherein the nucleic acid molecule encoding the IL-12 containing fusion protein is the nucleic acid according to any one of claims 1 to 6; optionally wherein the nucleic acid molecule encoding the  IL-15 containing fusion protein is the nucleic acid according to any one of claims 7 to 11.
  21. The composition of claim 20, wherein the one or more nucleic acid comprises one or more functional nucleotide analogs that are selected from pseudouridine and 1-methyl-pseudouridine; optionally wherein optionally the functional nucleotide analogs are about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, or about 100%of the uridines of the nucleic acid.
  22. The composition of any one of claims 19 to 21, further comprising a second nucleic acid molecule encoding an antagonist of PD-1.
  23. The composition of claims 19 to 21, wherein the one or more nucleic acid molecule further encodes an antagonist of PD-1; wherein
    (a) the one or more nucleic acid encoding the IL-12 containing fusion protein further encodes the antagonist of PD-1;
    (b) the one or more nucleic acid encoding the IL-15 containing fusion protein further encodes the antagonist of PD-1;
    or
    (c) the one or more nucleic acid comprises at least three ORFs encoding the IL-12 containing fusion protein, the IL15 containing fusion protein, and the antagonist of PD-1, respectively.
  24. The method of claim 22 or 23, wherein the antagonist of PD-1 is an anti-PD-1 antibody or antigen-binding fragment thereof that specifically binds to PD-1 and blocks binding of PD-1 to its natural ligands; optionally wherein the anti-PD-1 antibody is nivolumab or pembrolizumab.
  25. The composition of any one of claims 19 to 24,
    (a) wherein the first lipid is a compound according to any one of Formula 01-I, 01-II, 02-I, 02-II, 03-I, 03-II-A, 03-II-B, 03-II-C, 03-II-D, 04-I, 04-III, 04-IV, and sub-formula thereof;
    (b) wherein the first lipid is a compound selected from the compounds listed in any one of Table 01-1, Table 02-1, Table 03-1, and Table 04-1;
    (c) wherein the first lipid is a compound selected from C1 to C6;
    or
    (d) wherein the first lipid is C1.
  26. The composition of any one of claims 19 to 25, further comprising at least one second lipid selected from a neutral lipid, a steroid, a phospholipid and a polymer conjugated lipid.
  27. The composition of claim 25, wherein the composition comprises:
    (a) (i) from about 20 to about 65 mol percent of the first lipid; (ii) from about 5 to about 40 mol percent of a phospholipid; (c) from about 20 to about 50 mol percent of a steroid; and (d) a polymer conjugated lipid;
    (b) (i) from about 40 to about 55 mol percent of the first lipid; (ii) from about 5 to about 15 mol percent of a phospholipid; (iii) from about 35 to about 50 mol percent of a steroid; and (iv) from about 2 to about 10 mol percent of a polymer conjugated lipid;
    or
    (c) (i) from about 45 to about 55 mol percent of the first lipid; (ii) from about 6 to about 10 mol percent of a phospholipid; (iii) from about 40 to about 48 mol percent of a steroid; and (iv) from about 1 to about 2.5 mol percent of a polymer conjugated lipid.
  28. The composition of any one of claims 19 to 27 formulated as lipid nanoparticles encapsulating the nucleic acid in a lipid shell.
  29. The composition of any one of claims 19 to 28, wherein the composition is a pharmaceutical composition further comprising a pharmaceutically acceptable carrier, diluent or excipient.
  30. A method for managing or treating cancer in a subject in need thereof, comprising administering a therapeutically effective amount of the nucleic acid of any one of claims 1 to 16, or the composition of any one of claims 19 to 29 to the subject, wherein the cancer is selected from breast cancer, melanoma, and colon cancer.
  31. The method of claim 30, wherein the method further comprises administering to the subject a therapeutically effective amount of a composition comprising an antagonist of PD-1.
  32. The method of claim 31, wherein the antagonist of PD-1 is an anti-PD-1 antibody or antigen-binding fragment thereof that specifically binds to PD-1 and blocks binding of PD-1 to its natural ligands; optionally wherein the anti-PD-1 antibody is nivolumab or pembrolizumab.
  33. The method of any one of claims 30 to 32, wherein the subject is a human or a non-human mammal.
  34. The method of any one of claims 30 to 33 wherein the cancer is relapsed or metastasis.
  35. The method of any one of claims 30 to 34, wherein the subject has previously received treatment with an antagonist of PD-1, and wherein the cancer is either refectory or irresponsive to the treatment or relapsed from the treatment.
  36. The method of any one of claims 30 to 35, wherein the administering of the nucleic acid or pharmaceutical composition comprising the nucleic acid is via intratumoral, intraperitoneal, or subcutaneous administration.
  37. The method of any one of claims 30 to 36, wherein method comprises administering lipid nanoparticles encapsulating the nucleic acid to the subject, and wherein the lipid nanoparticles are endocytosed by the cells in the subject.
  38. The method of any one of claims 30 to 37, wherein the nucleic acid is expressed by the cells in the subject.
  39. The method of any one of claims 30 to 38,
    (a) wherein the tumor size is reduced by about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%or about 100%;
    (b) wherein the number of tumor-infiltrating lymphocytes (TIL) in the subject is increased; optionally the TIL comprises CD8 + T cells and/or IFNγ + T cells;
    (c) wherein a ratio between the number of CD8 + T cells and the number Treg cells (CD8 + T/Treg) is increased in the tumor microenvironment in the subject; or
    (d) wherein PD-L1 expression on the tumor cells is increased in the subject.
    .
PCT/CN2022/123722 2021-10-08 2022-10-07 Polynucleotides encoding interleukin-12 (il-12) and related composition and methods thereof WO2023056915A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280006934.9A CN116829578A (en) 2021-10-08 2022-10-07 Polynucleotides encoding interleukin-12 (IL-12) and compositions and methods related thereto

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2021/122691 2021-10-08
CN2021122691 2021-10-08

Publications (1)

Publication Number Publication Date
WO2023056915A1 true WO2023056915A1 (en) 2023-04-13

Family

ID=85803176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123722 WO2023056915A1 (en) 2021-10-08 2022-10-07 Polynucleotides encoding interleukin-12 (il-12) and related composition and methods thereof

Country Status (2)

Country Link
CN (1) CN116829578A (en)
WO (1) WO2023056915A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023196988A1 (en) * 2022-04-07 2023-10-12 Modernatx, Inc. Methods of use of mrnas encoding il-12

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101360827A (en) * 2005-10-20 2009-02-04 国立医学与健康研究所 IL-15Ralpha sushi domain as a selective and potent enhancer of IL-15 action through IL-15rbeta/gamma, and hyperagonist (IL15Ralpha sushi -IL15) fusion proteins
CN106755107A (en) * 2016-11-22 2017-05-31 上海健信生物医药科技有限公司 A kind of CAR recruits and its application in oncotherapy
CN109195621A (en) * 2016-05-18 2019-01-11 莫得纳特斯公司 The polynucleotides and application thereof of encoding Interleukin 12 (IL12)
CN110337305A (en) * 2017-02-28 2019-10-15 赛诺菲 Therapeutic RNA
CN110964121A (en) * 2019-12-20 2020-04-07 山东省齐鲁细胞治疗工程技术有限公司 CD19-CAR-T cell secreting IL-7 and IL-15 factors and application thereof
WO2020113403A1 (en) * 2018-12-04 2020-06-11 Beijing Percans Oncology Co. Ltd. Cytokine fusion proteins

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101360827A (en) * 2005-10-20 2009-02-04 国立医学与健康研究所 IL-15Ralpha sushi domain as a selective and potent enhancer of IL-15 action through IL-15rbeta/gamma, and hyperagonist (IL15Ralpha sushi -IL15) fusion proteins
CN109195621A (en) * 2016-05-18 2019-01-11 莫得纳特斯公司 The polynucleotides and application thereof of encoding Interleukin 12 (IL12)
CN106755107A (en) * 2016-11-22 2017-05-31 上海健信生物医药科技有限公司 A kind of CAR recruits and its application in oncotherapy
CN110337305A (en) * 2017-02-28 2019-10-15 赛诺菲 Therapeutic RNA
WO2020113403A1 (en) * 2018-12-04 2020-06-11 Beijing Percans Oncology Co. Ltd. Cytokine fusion proteins
CN110964121A (en) * 2019-12-20 2020-04-07 山东省齐鲁细胞治疗工程技术有限公司 CD19-CAR-T cell secreting IL-7 and IL-15 factors and application thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LEVI OFRI, ARAVA YOAV S: "Pseudouridine-mediated translation control of mRNA by methionine aminoacyl tRNA synthetase", NUCLEIC ACIDS RESEARCH, OXFORD UNIVERSITY PRESS, GB, vol. 49, no. 1, 11 January 2021 (2021-01-11), GB , pages 432 - 443, XP093055848, ISSN: 0305-1048, DOI: 10.1093/nar/gkaa1178 *
SONG JINGHUI, PENG JINYING, YI CHENGQI: "Chemical modifications in eukaryotic mRNA regulate gene expression", SCIENCE CHINA: CHINESE BULLETIN OF LIFE SCIENCE = SCIENTIA SINICA VITAE, vol. 51, no. 5, 8 January 2021 (2021-01-08), pages 479 - 495, XP009547061, ISSN: 1674-7232, DOI: 10.1360/SSV-2020-0159 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023196988A1 (en) * 2022-04-07 2023-10-12 Modernatx, Inc. Methods of use of mrnas encoding il-12

Also Published As

Publication number Publication date
CN116829578A (en) 2023-09-29

Similar Documents

Publication Publication Date Title
US11510977B2 (en) Nucleic acid vaccines for coronavirus
AU2017268399B2 (en) mRNA combination therapy for the treatment of cancer
KR20190020299A (en) Combinations of mRNAs Encoding Immunomodulating Polypeptides and Their Uses
WO2022037652A1 (en) Lipid compounds and lipid nanoparticle compositions
WO2022152141A2 (en) Polymer conjugated lipid compounds and lipid nanoparticle compositions
WO2023056915A1 (en) Polynucleotides encoding interleukin-12 (il-12) and related composition and methods thereof
WO2023098842A1 (en) NUCLEIC ACID VACCINES FOR CORONAVIRUS BASED ON SEQUENCES DERIVED FROM SARS-CoV-2 OMICRON STRAIN
WO2023151570A1 (en) Nucleic acid vaccines for rabies
WO2023056911A1 (en) MULTIVALENT NUCLEIC ACID VACCINES FOR CORONAVIRUS BASED ON SEQUENCES DERIVED FROM SARS-CoV-2 BETA AND DELTA STRAINS
WO2023125889A1 (en) Quadrivalent mrna vaccines for influenza viruses
WO2023138611A1 (en) Lipid compounds and lipid nanoparticle compositions
WO2023056917A1 (en) Lipid compounds and lipid nanoparticle compositions
WO2023006062A1 (en) Nucleic acid vaccines for mutant coronavirus
WO2023056912A1 (en) Nucleic acid vaccines for vzv
WO2024067861A1 (en) MULTIVALENT NUCLEIC ACID VACCINES FOR CORONAVIRUS BASED ON SEQUENCES DERIVED FROM SARS-CoV-2 DELTA AND OMICRON STRAINS
WO2023056913A1 (en) NUCLEIC ACID VACCINES FOR CORONAVIRUS BASED ON SEQUENCES DERIVED FROM SARS-CoV-2 DELTA STRAIN
CN116064598B (en) Nucleic acid vaccine for coronavirus
WO2024037578A1 (en) Composition of lipid nanoparticles
EP4164753A1 (en) Lipid compounds and lipid nanoparticle compositions

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280006934.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22877932

Country of ref document: EP

Kind code of ref document: A1