WO2023056851A1 - 电压监控方法及装置、电子设备及存储介质 - Google Patents

电压监控方法及装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2023056851A1
WO2023056851A1 PCT/CN2022/121349 CN2022121349W WO2023056851A1 WO 2023056851 A1 WO2023056851 A1 WO 2023056851A1 CN 2022121349 W CN2022121349 W CN 2022121349W WO 2023056851 A1 WO2023056851 A1 WO 2023056851A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
power supply
voltage
voltage value
load
Prior art date
Application number
PCT/CN2022/121349
Other languages
English (en)
French (fr)
Inventor
杨涛
潘权威
毕延帅
张书浩
Original Assignee
北京比特大陆科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京比特大陆科技有限公司 filed Critical 北京比特大陆科技有限公司
Publication of WO2023056851A1 publication Critical patent/WO2023056851A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3058Monitoring arrangements for monitoring environmental properties or parameters of the computing system or of the computing system component, e.g. monitoring of power, currents, temperature, humidity, position, vibrations

Definitions

  • the present disclosure relates to the field of electronic technology, and in particular to a voltage monitoring method and device, electronic equipment and a storage medium.
  • ASIC Application Specific Integrated Circuit
  • the current voltage is obtained by actively controlling the peripheral interface controller (PIC) chip every 10 seconds to monitor the voltage, but the continuous monitoring of the instantaneous voltage is lacking.
  • PIC peripheral interface controller
  • the location cannot be identified in time.
  • the situation of undervoltage is controlled by adjusting the number of bus capacitors, but there is no monitoring solution that can be used for a long time.
  • Embodiments of the present disclosure provide a voltage monitoring method and device, electronic equipment, and a storage medium.
  • the first aspect of the embodiments of the present disclosure provides a voltage monitoring method, including:
  • the second aspect of the embodiments of the present disclosure provides a voltage monitoring device, including:
  • the acquisition unit is configured to acquire the voltage value of the load on the computing power board
  • a determining unit configured to determine whether the voltage value is smaller than a first value
  • the protection unit is configured to perform power supply protection for the power supply according to the voltage value when the voltage value is less than the first value.
  • a third aspect of the embodiments of the present disclosure provides an electronic device, including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the voltage monitoring method provided in the aforementioned first aspect.
  • the fourth aspect of the embodiments of the present disclosure provides a non-transitory computer-readable storage medium.
  • the instructions in the storage medium are executed by the processor of the computer, the computer can execute the voltage monitoring method as provided in the aforementioned first aspect.
  • the technical solution provided in the embodiments of the present disclosure obtains the voltage value of the load on the computing power board; determines whether the voltage value is less than the first value; when the voltage value is less than the first value, according to the voltage value for power supply protection on the power supply.
  • the power supply protection based on the instantaneously acquired voltage value can fully improve the power supply protection flexibility and power supply security when different voltage values represent different voltage fluctuations.
  • Fig. 1 is a schematic flowchart of a voltage monitoring method according to an exemplary embodiment
  • Fig. 2 is a schematic flowchart of a voltage monitoring method according to an exemplary embodiment
  • Fig. 3 is a schematic diagram of the pin structure of a PIC chip according to an exemplary embodiment
  • Fig. 4 is a schematic structural diagram of a voltage dividing circuit shown according to an exemplary embodiment
  • Fig. 5 is a schematic flowchart of a voltage monitoring method according to an exemplary embodiment
  • Fig. 6 is a schematic structural diagram of a voltage monitoring device according to an exemplary embodiment
  • Fig. 7 is a schematic structural diagram of a voltage monitoring system according to an exemplary embodiment
  • Fig. 8 is a schematic flowchart of a voltage monitoring method according to an exemplary embodiment.
  • first, second, third, etc. may use the terms first, second, third, etc. to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the embodiments of the present disclosure, first information may also be called second information, and similarly, second information may also be called first information. Depending on the context, the word “if” as used herein may be interpreted as “at” or "when” or "in response to a determination.”
  • an embodiment of the present disclosure provides a voltage monitoring method, including:
  • S120 Determine whether the voltage value is smaller than a first value
  • the hashboard may be a hashboard for providing computing resources, or a working circuit module for providing processing resources in computer equipment.
  • the load can be computing modules and/or ASIC chips on the hashboard.
  • the power supply can be an external power supply connected to the hashboard to provide the working voltage for the hashboard, for example, it can be a power module or an external power supply.
  • obtaining the voltage value of the load on the computing power board may be obtaining the voltage value on the bus of loads such as ASIC chips.
  • the voltage value of the load can be obtained through a host computer connected to the hashboard to provide control instructions to the hashboard, and/or through a monitoring module, a processing module, etc. located on the hashboard.
  • the monitoring module and the processing module can be the microcontroller (Micro Controller Unit, MCU) on the computing power board.
  • the first value may be a critical value for judging the occurrence of an instantaneous undervoltage in the load, which may be determined according to the power supply voltage, or according to the power supply voltage and load configuration.
  • the first value may be 80% of the power supply voltage, for example, when the power supply voltage is 220V, the first value may be 176V.
  • power supply protection is performed on the power supply according to the voltage value, and different power supply protection strategies may be adopted according to different voltage values. For example, it is possible to stop the power supply to the hashboard, or to adjust working parameters such as the load power of the hashboard, or to start the preset voltage compensation circuit, etc.
  • the power supply protection according to the voltage value can not only realize the intelligent power supply protection in the case of instantaneous undervoltage, without manual debugging of components such as the bus capacitor at the load end, but also provide flexible power supply protection in combination with the specific undervoltage conditions indicated by the voltage value Way.
  • S130 may include:
  • the power supply is stopped to supply power to the load.
  • the first value may be a critical value for judging whether an undervoltage situation occurs
  • the second value which is lower than the first value, may be a threshold value for judging whether a serious undervoltage situation occurs.
  • the first value can be 80% of the power supply voltage
  • the second value can be 70% of the power supply voltage. For example, if the output voltage of the power supply is 220V, the first value is 176V, and the second value is 154V. .
  • the instantaneous undervoltage can be eliminated by adjusting the working parameters of the load, such as reducing the operating frequency of the load, or reallocating the computing power resources of the computing power module, etc., reducing the working power of the load to reduce the power supply of the power supply, so as to ensure the power supply Normal and power supply as well as load equipment safety.
  • reducing the operating frequency of the load may be to reduce the frequency of the central processing unit (CPU) in the hashboard ASIC chip, or to reduce the frequency of other processors and computing modules.
  • CPU central processing unit
  • the current voltage value when the current voltage value is less than the second value, it indicates that the current load circuit is in a serious undervoltage state, and the load of the hash board is immediately powered off to prevent serious damage to the power supply and load.
  • a power control circuit can be set between the power supply and the load, and connected to the host computer or the monitoring module on the power board. When the voltage value is less than the second value, the load is powered off through the power control circuit. .
  • the power board may further include: a voltage compensation circuit connected between the load and the host computer, or connected between the load and the monitoring module on the power board.
  • a voltage compensation circuit connected between the load and the host computer, or connected between the load and the monitoring module on the power board.
  • the specific instantaneous undervoltage situation can be determined, and then the power supply protection strategy can be intelligently adjusted for different instantaneous undervoltage situations. For example, in the case of a small instantaneous undervoltage, it is not necessary to cut off the power, and the undervoltage of the load can be adjusted through operations such as frequency reduction to suppress unnecessary interruption to the normal operation of the load. Based on this, the intelligence and flexibility of the load power supply protection of the hash board can be further improved.
  • S110 may include:
  • S111 Receive the voltage value of the load collected by the microcontroller MCU on the computing power board.
  • the voltage value collected by the microcontroller MCU on the computing power board can be received by the host computer, and the MCU can be a PIC chip on the computing power board, such as a PIC16F1704 chip.
  • the PIC chip can collect the real-time voltage value of the load through the built-in Analog-to-Digital Converter (adc) module.
  • adc Analog-to-Digital Converter
  • the load can be collected at a preset frequency by connecting the load through the analog input pin AN6 of the adc module.
  • the preset frequency is the sampling frequency of the adc module, for example, it may be 10000 Hz, that is, the load voltage value is collected 10000 times per second.
  • VDD and VSS are power connection terminals
  • RA0-RA5 are A-defined I/O ports
  • RC0-RC5 are C-defined I/O ports
  • ICSPDAT is a serial programming data I/O port
  • ICSPCLK is a serial programming Clock port
  • AN6 is the adc analog input port
  • PIC_EN is the digital pin that controls the power on and off of the load.
  • the MCU of the hash board collects the voltage value, it can determine the specific undervoltage situation according to the comparison between the voltage value and the first value and the second value, and then select different power supply protection strategies. It can also be provided to the host computer, and the host computer will perform voltage value comparison and issue power supply protection commands.
  • the MCU may periodically provide the collected voltage value to the host computer according to a certain reporting period, for example, the reporting period may be a preset duration such as 10s or 15s. Taking the reporting period as 10s as an example, the host computer can determine whether there is a voltage value that is less than the first value and greater than or equal to the second value based on the MCU reporting all the voltage values collected within 10 seconds every 10 seconds. If it exists, it indicates that there is an instantaneous undervoltage in the load circuit of the hash board within 10s, then reduce the load operating frequency, or turn on the voltage compensation circuit on the hash board to reduce the power supply required by the power supply to the load.
  • the reporting period may be a preset duration such as 10s or 15s.
  • the host computer can determine whether there is a voltage value that is less than the first value and greater than or equal to the second value based on the MCU reporting all the voltage values collected within 10 seconds every 10 seconds. If it exists, it indicates that there is an instantaneous undervoltage in the load
  • the MCU determines whether the voltage value is less than the second value. If it is less than the second value, it indicates that a serious instantaneous undervoltage occurs, and then stops the power supply from the power supply to the load.
  • the MCU can provide the host computer with the minimum voltage value in the reporting period according to a certain reporting period. For example, when the reporting period is 10s, the MCU can determine the minimum voltage value collected within 10s and send it to the host computer. , the host computer determines whether it is less than the first value and greater than or equal to the second value based on the minimum value. If it is, it indicates that there is an instantaneous undervoltage, then reduce the load operating frequency, or turn on the voltage compensation circuit on the computing power board to reduce The power supply required by the power supply to the load. In addition, based on the voltage value collected in real time, the MCU determines whether the voltage value is less than the second value. If it is less than the second value, it indicates that a serious instantaneous undervoltage occurs, and then stops the power supply from the power supply to the load.
  • a certain reporting period For example, when the reporting period is 10s, the MCU can determine the minimum voltage value collected within 10s and send it to the host computer. , the host computer determines whether
  • performing power supply protection on the power supply according to the voltage value may further include:
  • the backup of the power supply is used together with the power supply to supply power to the load.
  • the backup of the power supply includes: the capacitor on the computing power board, the capacitor is charged or not charged when the power supply is normal, and the power supply is abnormal (for example, when the power supply is undervoltage), the capacitor is powered together with the power supply.
  • the power supply and the backup of the power supply supply power to the load together.
  • the power supply from the power supply to the load may be stopped.
  • the host computer can store the voltage value of the load collected by the MCU to record the voltage change of the load on the hash board.
  • the MCU is connected in parallel with the power supply input end of the load through a voltage divider circuit; the voltage value is collected by the MCU and written into a preset storage area.
  • a voltage divider circuit as shown in FIG. 4 may also be set.
  • the MCU is connected in parallel with the input terminal of the load power supply through a voltage divider circuit.
  • the adc pin of the PIC chip that is, the AN6 pin, is connected to the bus bar of the load through the voltage divider circuit, so as to suppress the load voltage from being directly input to the MCU and cause voltage fluctuations to the MCU. cause damage.
  • R1718, R1719, R25, R28, R29, and R32 are resistors
  • C21 and C22 are capacitors
  • 1nF50V represents a capacitor with a rated withstand voltage of 50V and a capacitance of 1nF.
  • the voltage value is stored in a preset storage area, for example, the voltage value is written into a random access memory (Random Access Memory, RAM).
  • RAM Random Access Memory
  • S111 may include:
  • S111a Receive the minimum value stored in the preset storage area sent by the MCU when the reporting time is reached.
  • the reporting time may be a time when a preset reporting rule instructs the MCU to report the collected voltage value, for example, a reporting time determined according to a certain reporting period.
  • the MCU sends the minimum value stored in the preset storage area, which may be the minimum value among the voltage values written by the MCU into the preset storage area during the period from the last report to the current moment.
  • the MCU determines the minimum value among the voltage values written into the preset storage area within the time period formed from the previous reporting time to the current reporting time, and reports the minimum value to the host computer.
  • the preset storage area may be a flash memory area or the like.
  • the MCU after the MCU reports the collected voltage value or the minimum value of the voltage value to the host computer when the reporting time is reached, the voltage value stored in the preset storage area is cleared for rewriting the newly collected voltage value . In this way, when the next reporting time is reached, the MCU may still determine the minimum value by comparing the voltage values collected before the last reporting time, which may lead to errors in power supply protection.
  • the MCU collects voltage values based on a certain sampling frequency, and each time a voltage value is collected, it is compared with the historical voltage value stored in the preset storage area, and if it is greater than or equal to the historical voltage value in the preset storage area If the voltage value is lower than the historical voltage value in the preset storage area, then the voltage value is written into the preset storage area instead of the historical voltage value. In this way, the MCU updates the voltage value stored in the preset storage area at any time based on the collected voltage value, which can ensure that the minimum value of the voltage value currently collected is stored in the preset storage area.
  • the upper computer can directly receive the value stored in the preset storage area sent by the MCU, which is the minimum value among all the collected voltage values.
  • the MCU can reset the voltage value stored in the preset storage area after each report of the minimum value of the voltage value is completed.
  • the preset value can be the rated voltage value of the power supply. In this way, it can be ensured that the voltage values collected in different reporting stages will not interfere with each other.
  • the upper computer after the upper computer receives the minimum value, it can compare the minimum value with the first value and the second value, and when the minimum value is less than the first value and greater than the second value, the workload of the load is reduced. frequency; and/or, when the minimum value is less than the second value, stop the power supply from supplying power to the load.
  • the upper computer after the upper computer receives the minimum value, it can compare the minimum value with the first value and the second value, and when the minimum value is less than the first value and greater than the second value, the workload of the load is reduced. frequency.
  • the MCU compares the collected voltage value with the second value in real time, and if the voltage value is smaller than the second value, the MCU stops the power supply to the load.
  • the upper computer only needs to obtain a minimum value to complete the power supply protection for the hash board, and prevent the MCU from sending all the collected voltage values to the upper computer, resulting in excessive data transmission and processing, which in turn occupies more data processing resources, affecting work efficiency.
  • the reporting time may include at least one of the following:
  • the moment at which the reporting trigger event is determined is detected.
  • the reporting time is determined according to the reporting period, which may be the time corresponding to the end of the reporting period as the reporting time. For example, when the reporting period is 10s, the minimum value stored in the preset storage area is reported every 10s . In this way, the workload of the upper computer can be reduced, and the transmission and processing burden of continuous real-time acquisition of voltage values on the upper computer can be suppressed.
  • the MCU can determine the minimum value of the voltage value collected within 10s and send it to the host computer, and the host computer determines whether it is less than the first value and greater than or equal to the second value based on the minimum value , if yes, it indicates that there is an instantaneous undervoltage, then reduce the operating frequency of the load, or turn on the voltage compensation circuit on the computing power board, etc., to reduce the power supply required by the power supply to the load.
  • the MCU determines whether the voltage value is less than the second value. If it is less than the second value, it indicates that a serious instantaneous undervoltage occurs, and then stops the power supply from the power supply to the load.
  • the upper computer since the upper computer is only used to detect relatively slight instantaneous undervoltage conditions, and will not cause immediate serious damage to the hash board and power supply, the upper computer can periodically obtain the minimum voltage value collected by the MCU and determine whether Need to adjust the load operating frequency. Based on this, the waste of data processing resources caused by both the upper computer and the MCU needing to collect and process voltage values in real time can be greatly reduced, and the workload can be reduced.
  • the report trigger event when a report trigger event is detected, the corresponding time is used as the report time.
  • the report trigger event may be that the collected voltage value reaches a certain threshold, indicating that a certain degree of instantaneous undervoltage occurs, and the upper computer Reporting data; or, the reporting trigger event can also be detected that the operating parameters such as the operating current and operating voltage of the load have reached a certain threshold, or the operating parameters of the load circuit have been detected to fluctuate to a certain extent, for example, if the change reaches more than 30%, then the The voltage value is reported to the upper computer for the upper computer to determine whether there is a serious instantaneous undervoltage situation.
  • the first value can be:
  • the power supply voltage value determined according to the power supply situation of the power supply determined according to the power supply situation of the power supply
  • the first value used to determine whether an instantaneous undervoltage condition occurs can be determined according to the power supply situation, for example, according to the rated voltage of the power supply, or according to the rated voltage of the power supply and the use of the load of the power board The situation is OK.
  • the rated voltage of the power supply is 220V
  • the first value can be 80% of the rated voltage, that is, 176V; When it is higher, the first value can take a higher value, such as 180V, and when the load usage rate of the hashboard is low, the first value can take a lower value, such as 170V.
  • the first value is determined according to the obtained historical voltage value, which can be determined as the average value of all historical voltage values obtained by the hash board MCU, for example, determine the average value of all historical voltage values obtained, and Determine 90% of the average value as the first value, or, alternatively, determine the first value according to the average value of voltage values lower than the rated voltage of the power supply among all the acquired historical voltage values.
  • the first value can be more in line with the actual operating conditions of the load and power supply of the computing power board, and the flexibility and accuracy of voltage monitoring and power supply protection can be improved.
  • an embodiment of the present disclosure provides a voltage monitoring device, which includes:
  • the acquisition unit 10 is configured to acquire the voltage value of the load on the computing power board
  • the determining unit 20 is configured to determine whether the voltage value is smaller than a first value
  • the protection unit 30 is configured to perform power supply protection for the power supply according to the voltage value when the voltage value is less than a first value.
  • the protection unit 30 is configured to:
  • the operating frequency of the load is reduced to reduce the power supply required by the power supply to the load; wherein the second value is smaller than the first value;
  • the power supply is stopped to supply power to the load.
  • the acquisition unit 10 is configured to:
  • the MCU is connected in parallel with the power supply input end of the load through a voltage divider circuit; the voltage value is collected by the MCU and written into a preset storage area.
  • the acquisition unit 10 is configured to:
  • the minimum value stored in the preset storage area sent by the MCU is received.
  • the reporting time includes at least one of the following:
  • the moment at which the reporting trigger event is determined is detected.
  • the first value is:
  • the power supply voltage value determined according to the power supply situation of the power supply determined according to the power supply situation of the power supply
  • the embodiment of the present disclosure monitors the voltage in real time at a frequency of 10,000 Hz through the adc built into the PIC16F1704 chip on the hashboard side MCU, and records the highest and/or lowest voltage within 20s on the PIC side for the host computer read by the control software. In this way, real-time monitoring of the terminal voltage of the hashboard can be realized by updating the firmware of the PIC chip of the hashboard.
  • the host computer can effectively locate the bad power supply through the voltage data in the PIC chip, which reduces the difficulty and workload of operation and maintenance; at the same time, when the load is running, the host computer can use the voltage data in the MCU to find out When the voltage is undervoltage, a warning is issued and corresponding remedial measures are taken to prevent equipment from being damaged due to abnormal power supply.
  • the upper computer sets a maximum and minimum allowable working voltage value to the PIC chip; if the PIC chip finds that the voltage is not within this range, it will directly power off the load through the control circuit to ensure the real-time performance of the protection work.
  • An embodiment of the present disclosure provides an electronic device, including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the voltage monitoring method provided by any of the foregoing technical solutions.
  • the processor may include various types of storage media, which are non-transitory computer storage media, and can continue to memorize and store information thereon after the electronic device is powered off.
  • the processor can be connected to the memory through a bus or the like, and is used to read the executable program stored on the memory, for example, to be able to execute the methods described in one or more of the foregoing technical solutions.
  • An embodiment of the present disclosure shows a structure of an electronic device.
  • Electronic devices include processing components, which further include one or more processors, and memory resources, represented by memory, for storing instructions, such as application programs, executable by the processing components.
  • An application program stored in memory may include one or more modules each corresponding to a set of instructions.
  • the processing component is configured to execute instructions to execute any method in which the above method is applied to the electronic device, for example, the methods described in one or more of the foregoing technical solutions.
  • the electronic device may also include a power module configured to perform power management of the electronic device, a wired or wireless network interface configured to connect the electronic device to a network, and an input-output (I/O) interface.
  • the electronic device can operate based on an operating system stored in memory, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or similar.
  • An embodiment of the present disclosure provides a non-transitory computer-readable storage medium.
  • the computer can execute the voltage monitoring method described in one or more of the foregoing technical solutions.
  • the integrated modules described in the embodiments of the present disclosure are implemented in the form of software function modules and sold or used as independent products, they may also be stored in a computer-readable storage medium. Based on such understanding, those skilled in the art should understand that the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present disclosure can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects.
  • the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media having computer-usable program code embodied therein, including but not limited to USB flash drives, removable hard drives, read-only memories (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), disk storage, CD-ROM, optical storage, etc.
  • computer-usable storage media having computer-usable program code embodied therein, including but not limited to USB flash drives, removable hard drives, read-only memories (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Sources (AREA)

Abstract

本公开实施例提供一种电压监控方法及装置、电子设备及存储介质,其中,电压监控方法包括:获取算力板上负载的电压值;确定所述电压值是否小于第一取值;当所述电压值小于所述第一取值时,根据所述电压值对电源进行供电保护。

Description

电压监控方法及装置、电子设备及存储介质
相关申请的交叉引用
本申请基于申请号为202111174265.X、申请日为2021年10月09日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及电子技术领域,尤其涉及一种电压监控方法及装置、电子设备及存储介质。
背景技术
目前的计算机设备往往需要极高的功耗比,因而设备的算力板中的专用集成电路(Application Specific Integrated Circuit,ASIC)芯片对供电电压十分敏感。若由于长时间大功率输出导致线路或元器件老化,或者由于电网抖动等原因,出现偶发瞬时欠压,将导致ASIC芯片异常。即使后续欠压消失,算力板也无法正常工作。
现有的产品中,是通过每10秒主动控制外围接口控制器(Peripheral Interface Controller,PIC)芯片获取一次当前电压,以进行电压的监控,但是缺少对瞬时电压的持续监控。如果遇到瞬时欠压或过压,并不能及时地识别定位。目前针对欠压的情况是通过调整母线电容数目来控制的,但是并没有一种可以长期使用的监控方案。
发明内容
本公开实施例提供一种电压监控方法及装置、电子设备及存储介质。
本公开实施例第一方面提供一种电压监控方法,包括:
获取算力板上负载的电压值;
确定所述电压值是否小于第一取值;
当所述电压值小于所述第一取值时,根据所述电压值对电源进行供电保护。
本公开实施例第二方面提供一种电压监控装置,包括:
获取单元,被配置为获取算力板上负载的电压值;
确定单元,被配置为确定所述电压值是否小于第一取值;
保护单元,被配置为当所述电压值小于所述第一取值时,根据所述电压值对电源进行供电保护。
本公开实施例第三方面提供一种电子设备,包括:
用于存储处理器可执行指令的存储器;
处理器,与所述存储器连接;
其中,所述处理器被配置为执行如前述第一方面提供的电压监控方法。
本公开实施例第四方面提供一种非临时性计算机可读存储介质,当所述存储介质中的指令由计算机的处理器执行时,使得计算机能够执行如前述第一方面提供的电压监控方法。
本公开实施例中提供的技术方案,获取算力板上负载的电压值;确定所述电压值是否小于第一取值;当所述电压值小于所述第一取值时,根据所述电压值对电源进行供电保护。通过电压值的获取,以及与第一取值的比对,可确定算力板负载是否存在瞬时欠压,从而减少相关技术中电压值获取周期较长导致对瞬时电压监控的即时性较差的现象。根据即时获取的电压值进行供电保护,可以充分提高不同电压值表征不同电压波动情况下的供电保护灵活性和供电安全性。
本公开实施例提供的技术方案,应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开实施例。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种电压监控方法的流程示意图;
图2是根据一示例性实施例示出的一种电压监控方法的流程示意图;
图3是根据一示例性实施例示出的一种PIC芯片的引脚结构示意图;
图4是根据一示例性实施例示出的一种分压电路的结构示意图;
图5是根据一示例性实施例示出的一种电压监控方法的流程示意图;
图6是根据一示例性实施例示出的一种电压监控装置的结构示意图;
图7是根据一示例性实施例示出的一种电压监控系统的结构示意图;
图8是根据一示例性实施例示出的一种电压监控方法的流程示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明实施例相一致的所有实施方式。相反,它们仅是本发明实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
如图1所示,本公开实施例提供一种电压监控方法,包括:
S110:获取算力板上负载的电压值;
S120:确定所述电压值是否小于第一取值;
S130:当所述电压值小于第一取值时,根据所述电压值对电源进行供电保护。
在本公开实施例中,算力板可以为用于提供算力资源的算力板,或者计算机设备中用于提供处理资源的工作电路模组等。负载可以为算力板上的运算模组和/或ASIC芯片等。电源可以为与算力板连接,用于为算力板提供工作电压的外部电源,例如可以为电源模组,也可以为外部的电源等。
在一个实施例中,获取算力板上负载的电压值,可以为获取ASIC芯片等负载的母线上的电压值。这里,可以通过与算力板连接用于向算力板提供控制指令的上位机,和/或,通过位于算力板上的监控模块、处理模块等获取负载的电压值。这里,监控模块、处理模块可以为算力板上的微控制器(Micro Controller Unit,MCU)。
在一个实施例中,第一取值可以为判断负载中发生瞬时欠压的临界值,可以根据电源电压,或者,根据电源电压和负载配置情况进行确定。示例性的,第一取值可以为电源电压的80%,比如在电源电压为220V时,第一取值可以为176V。
在一个实施例中,根据电压值对电源进行供电保护,可以为根据电压值大小不同,分别采取不同的供电保护策略。例如,可以停止电源向算力板供电,或者,也可以调整算力板负载功率等工作参数,或者,启动预设的电压补偿电路等。
如此,不再仅限于按一定周期采集算力板负载的电压值,可以有效提高算力板电压监控的实时性,抑制采集周期较长时导致对瞬时电压异常难以及时定位识别。另外,根据电压值进行供电保护,既可以实现在出现瞬时欠压情况下的智能供电保护,无需人工调试负载端母线电容等器件,又可以结合电压值指示的具体欠压情况,灵活提供供电保护方式。
在一些实施例中,S130可包括:
当电压值小于第一取值且大于第二取值时,降低负载的工作频率以减少电源所需向负载提供的供电功率;其中,第二取值小于第一取值;
和/或,
当电压值小于第二取值时,停止电源向负载供电。
在本公开实施例中,第一取值可以为判断是否出现欠压情况的临界值,第二取值低于第一取值, 可以为判断是否出现严重欠压情况的阈值。示例性的,第一取值可以为电源电压的80%,第二取值可以为电源电压的70%,比如电源的输出电压为220V,则第一取值为176V,第二取值为154V。
在一个实施例中,当前电压值小于第一取值且大于或等于第二取值时,表明当前负载电路出现了瞬时欠压,但并未达到严重欠压,即不会对电源、算力板负载或电路产生较大的瞬时危害。因此,可以通过调整负载的工作参数来消除瞬时欠压,例如可以降低负载工作频率、或者重新分配算力模块的算力资源等,降低负载的工作功率,以减少电源的供电功率,从而保证供电正常与电源以及负载设备的安全。
在一个实施例中,降低负载工作频率,可以为对算力板ASIC芯片中的中央处理器(central processing unit,CPU)进行降频,或者对其他处理器、运算模块等进行降频。
在一个实施例中,当前电压值小于第二取值时,表明当前负载电路处于严重欠压状态,则立即将算力板负载下电,以抑制对电源、负载造成严重损害。
在一个实施例中,可以在电源和负载之间设置电源控制电路,且与上位机或算力板上的监控模块连接,在电压值小于第二取值时,通过电源控制电路将负载下电。
在一个实施例中,算力板还可以包括:电压补偿电路,连接在负载和上位机之间,或者,连接在负载和算力板上监控模块之间。在检测到电压值小于第一取值且大于等于第二取值,或者,检测到电压值小于第二取值时,均可以通过开启电压补偿电路,来消除瞬时欠压情况。如此,可以无需对负载的当前工作状态进行调整改变,从而可以抑制对算力板正常工作进程的影响。
如此,基于电压值和第一取值、第二取值的比对情况,确定具体的瞬时欠压情况,进而针对不同的瞬时欠压情况,可以实现智能调整供电保护策略。例如对于瞬时欠压较小的情况,可以无需断电,通过降频等操作调整负载的欠压情况,抑制对负载正常工作的不必要中断。基于此,可以进一步提高算力板负载供电保护的智能性和灵活性。
在一些实施例中,如图2所示,S110,可包括:
S111:接收算力板上微控制器MCU采集的负载的电压值。
在本公开实施例中,可以通过上位机接收算力板上的微控制器MCU采集的电压值,MCU可以为算力板上的PIC芯片,例如PIC16F1704芯片等。PIC芯片可以通过内置的数模转换(Analog-to-Digital Converter,adc)模块采集负载的实时电压值。例如,如图3所示,通过adc模块的模拟输入引脚AN6连接负载,可以以预设频率采集负载的电压值。这里,预设频率为adc模块的采样频率,例如可以为10000Hz,即每秒采集10000次负载电压值。这里,VDD、VSS为电源连接端,RA0-RA5均为A定义I/O端口,RC0-RC5均为C定义I/O端口,ICSPDAT为串行编程数据I/O端口,ICSPCLK为串行编程时钟端口,AN6为adc模拟输入端口,PIC_EN为控制负载通断电的数字量引脚。
在一个实施例中,算力板的MCU采集电压值后,可以根据电压值和第一取值、第二取值的比对情况,确定具体的欠压情况,进而选择不同的供电保护策略,也可以提供给上位机,由上位机执 行电压值比对以及供电保护指令的下发。
在一个实施例中,MCU可以按一定上报周期,周期性地向上位机提供采集的电压值,例如,上报周期可以为10s或15s等预设时长。以上报周期为10s为例,上位机可以基于MCU每隔10s上报一次10s内采集的所有电压值,确定其中是否存在小于第一取值且大于等于第二取值的电压值。若存在,表明10s内算力板负载电路存在瞬时欠压,则降低负载工作频率,或者,开启算力板上的电压补偿电路等,以减少电源所需向负载提供的供电功率。MCU基于实时采集的电压值,确定电压值是否小于第二取值,若小于第二取值,表明当前出现严重的瞬时欠压,则停止电源向负载的供电。
在一个实施例中,MCU可以按一定上报周期,向上位机提供本上报周期内的最小电压值,例如上报周期为10s时,MCU可以确定10s内采集的电压值最小值,并发送给上位机,上位机基于最小值确定是否小于第一取值且大于等于第二取值,若是,表明存在瞬时欠压,则降低负载工作频率,或者,开启算力板上的电压补偿电路等,以减少电源所需向负载提供的供电功率。另外,MCU基于实时采集的电压值,确定电压值是否小于第二取值,若小于第二取值,表明当前出现严重的瞬时欠压,则停止电源向负载的供电。
在一个实施例中,当电压值小于第一取值时,根据电压值对电源进行供电保护,还可包括:
当电压值小于第一取值时,使用电源的备份与电源一起对负载进行供电。电源的备份包括:算力板上电容,电容在电源供电正常时充电或者不充电,电源供电不正常(例如,供电欠压时),该电容与电源一起供电。
电源的备份与电源一起供电需要满足供电条件,该供电条件包括但不限于:电源的备份的剩余电量不低于预设值等。
即,电源值小于第一取值且电源的备份满足供电条件,则电源和电源的备份一起向负载供电。
若电压值小于第一取值且电源的备份不满足供电条件,则可以停止电源向负载的供电。
在一个实施例中,上位机可以存储MCU采集的负载的电压值,以记录算力板负载的电压变化情况。
在一些实施例中,MCU通过分压电路与负载的供电输入端并联;电压值被MCU采集之后写入预设存储区域。
在一个实施例中,负载和MCU之间,或者,负载和上位机之间,还可以设置图4所示的分压电路。MCU通过分压电路与负载供电输入端并联,例如,可以为PIC芯片的adc引脚即AN6引脚,通过分压电路与负载的母线连接,从而抑制负载电压直接输入MCU导致电压波动时对MCU造成损害。这里,R1718、R1719、R25、R28、R29、R32均为电阻,C21、C22均为电容,1nF50V代表耐压定值50V,电容量为1nF的电容。
在一个实施例中,MCU通过数模转换adc模块采集实时电压值后,将电压值存储在预设存储区域,例如,将电压值写入算力板上的随机存取存储器(Random Access Memory,RAM)中。如此,可以有效记录MCU采集的电压值,便于上位机获取采集的电压值。
在一些实施例中,如图5所示,S111可包括:
S111a:在达到上报时刻时,接收所述MCU发送的所述预设存储区域内存储的最小值。
在本公开实施例中,上报时刻可以为预设的上报规则指示MCU上报采集的电压值的时刻,例如,按一定上报周期确定的上报时刻等。
在一个实施例中,MCU发送预设存储区域内存储的最小值,可以为确定从上一次上报到当前时刻期间,MCU写入到预设存储区域内的电压值中的最小值。示例性的,达到上报时刻时,MCU确定从上一个上报时刻到当前上报时刻形成的时间段内,写入预设存储区域的电压值中最小值,并将该最小值上报给上位机。该预设存储区域可为闪存区域等。
在一个实施例中,MCU在达到上报时刻,向上位机上报采集的电压值或电压值中的最小值后,清空预设存储区域内存储的电压值,以供重新写入新采集的电压值。如此,可以抑制MCU在达到下一个上报时刻时,仍会通过上一上报时刻前采集的电压值比较确定最小值,导致供电保护出现错误。
在一个实施例中,MCU基于一定的采样频率采集电压值,每采集到一个电压值,与预设存储区域内已存储的历史电压值进行比对,若大于或等于预设存储区域内的历史电压值,则不存储该电压值;若电压值小于预设存储区域内的历史电压值,则将该电压值取代历史电压值写入预设存储区域。如此,MCU基于采集的电压值随时更新预设存储区域内存储的电压值,可以保证预设存储区域内存储的为当前采集的电压值最小值。
如此,在达到上报时刻时,上位机可以直接接收MCU发送的预设存储区域内存储的数值,该数值即为所有采集到的电压值中的最小值。
可以理解的是,MCU还可以在基于采集的电压值随时更新预设存储区域内存储的电压值基础上,每完成一次电压值最小值的上报后,将预设存储区域内存储的电压值重置为预设值,例如预设值可以为电源额定电压值。如此,可以保证不同上报阶段采集的电压值不会相互干扰。
在一个实施例中,上位机接收到最小值后,可以将最小值与第一取值和第二取值比较,当最小值小于第一取值且大于第二取值时,降低负载的工作频率;和/或,当最小值小于第二取值时,停止电源向负载供电。
在一个实施例中,上位机接收到最小值后,可以将最小值与第一取值和第二取值比较,当最小值小于第一取值且大于第二取值时,降低负载的工作频率。MCU实时比对采集的电压值和第二取值,若电压值小于第二取值,MCU停止电源向负载供电。
如此,上位机仅需获取一个最小值即可完成对算力板的供电保护,抑制MCU将采集的全部电压值发送上位机,导致数据传输量和处理量过大,进而占据较多的数据处理资源,影响工作效率。
在一些实施例中,上报时刻可包括以下至少之一:
根据上报周期确定的时刻;
检测到上报触发事件确定的时刻。
在本公开实施例中,根据上报周期确定上报时刻,可以为将上报周期结束时对应的时刻作为上报时刻,例如,上报周期为10s时,则每10s上报一次预设存储区域内存储的最小值。如此,可以 降低上位机的工作负荷,抑制持续实时获取电压值对上位机的传输和处理负担。
在一个实施例中,当上报周期为10s时,MCU可以确定10s内采集的电压值最小值,并发送给上位机,上位机基于最小值确定是否小于第一取值且大于等于第二取值,若是,表明存在瞬时欠压,则降低负载工作频率,或者,开启算力板上的电压补偿电路等,以减少电源所需向负载提供的供电功率。另外,MCU基于实时采集的电压值,确定电压值是否小于第二取值,若小于第二取值,表明当前出现严重的瞬时欠压,则停止电源向负载的供电。如此,由于上位机仅用于检测较为轻微的瞬时欠压情况,不会对算力板和电源产生即时的严重损害,因此上位机可以周期性地获取MCU采集的电压值最小值,并确定是否需要调整负载工作频率。基于此,可以大大降低上位机和MCU均需实时采集处理电压值造成的数据处理资源浪费,减轻工作负荷。
在一个实施例中,检测到上报触发事件时,对应的时刻作为上报时刻,例如,上报触发事件可以为,采集的电压值达到一定阈值,表明出现了一定程度的瞬时欠压,则向上位机上报数据;或者,上报触发事件也可以为检测到负载的工作电流、工作电压等工作参数达到一定阈值,或者检测到负载电路的工作参数出现一定程度的波动,例如变化达到30%以上,则将电压值上报给上位机,供上位机确定是否出现严重的瞬时欠压情况。
在一些实施例中,第一取值可以为:
根据电源的供电情况确定的供电电压值;
或者,根据获取的历史电压值确定的。
在本公开实施例中,用于确定是否出现瞬时欠压情况的第一取值,可以根据电源供电情况确定,例如,根据电源额定电压确定,或者,根据电源额定电压和算力板负载的使用情况确定。示例性的,若电源额定电压为220V,则第一取值可以为额定电压的80%,即176V;或者,若根据额定电压220V和算力板负载的使用情况,当算力板负载使用率较高时,第一取值可以取较高的值,例如180V,当算力板负载使用率较低时,第一取值可以取较低的值,例如170V。
在一个实施例中,根据获取的历史电压值确定第一取值,可以为算力板MCU获取过的所有历史电压值的平均值确定,例如,确定获取的所有历史电压值的平均值,并确定该平均值的90%为第一取值,或者,也可以根据获取的所有历史电压值中低于电源额定电压的电压值平均值,确定第一取值。如此,可以使第一取值更加贴合所在算力板的负载与电源的实际运行情况,提高电压监控和供电保护的灵活性和准确性。
如图6所示,本公开实施例提供一种电压监控装置,装置包括:
获取单元10,被配置为获取算力板上负载的电压值;
确定单元20,被配置为确定电压值是否小于第一取值;
保护单元30,被配置为当电压值小于第一取值时,根据电压值对电源进行供电保护。
在一些实施例中,保护单元30,被配置为:
当电压值小于第一取值且大于第二取值时,降低负载的工作频率以减少电源所需向负载提供的 供电功率;其中,第二取值小于第一取值;
和/或,
当电压值小于第二取值时,停止电源向负载供电。
在一些实施例中,获取单元10,被配置为:
接收算力板上微控制器MCU采集的负载的电压值。
在一些实施例中,MCU通过分压电路与负载的供电输入端并联;电压值被MCU采集之后写入预设存储区域。
在一些实施例中,获取单元10,被配置为:
在达到上报时刻时,接收MCU发送的预设存储区域内存储的最小值。
在一些实施例中,上报时刻包括以下至少之一:
根据上报周期确定的时刻;
检测到上报触发事件确定的时刻。
在一些实施例中,第一取值为:
根据电源的供电情况确定的供电电压值;
或者,
根据获取的历史电压值确定的。
以下结合上述任一实施例提供一个具体示例:
如图7所示,本公开实施例通过算力板端MCU即PIC16F1704芯片内置的adc,以10000Hz的频率实时监控电压,并在PIC端记录20s内的最高和/或最低电压,以供上位机的控制软件读取。这样通过更新算力板的PIC芯片固件,可以实现对算力板端电压的实时监控。负载异常时,上位机可以通过PIC芯片内的电压数据,有效定位出电源不良,减少了运维工作的难度和工作量;同时,负载运行时,上位机可以通过MCU内的电压数据,在发现电压欠压时,提出警告,并做相应补救措施,防止设备因为供电异常而损坏。
在一个实施例中,如图8所示:
1.硬件设计上:将算力板负载的母线电压经过分压电阻后,给到PIC芯片的adc引脚上。
2.PIC芯片固件上:通过PIC中adc的连续采集中断功能,保证PIC以10000Hz以上的频率做电压采集工作,并将数据存储下来,待上位机获取。
3.上位机软件上:每10s从PIC芯片端获取一次历史电压数据,发现电压比预期低一定值后,及时通过降频等操作,降低负载功率,保证供电正常与电源以及负载设备的安全。
4.上位机向PIC芯片设置一个最高与最低允许工作电压值;PIC芯片如果发现电压不在这个范围内,直接通过控制电路,将负载下电,以保证保护工作的实时性。
本公开实施例提供一种电子设备,包括:
用于存储处理器可执行指令的存储器;
处理器,与存储器连接;
其中,处理器被配置为执行前述任意技术方案提供的电压监控方法。
处理器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在电子设备掉电之后能够继续记忆存储其上的信息。
处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序,例如,能够执行前述一个或多个技术方案所述方法。
本公开一实施例示出一种电子设备的结构。电子设备包括处理组件,其进一步包括一个或多个处理器,以及由存储器所代表的存储器资源,用于存储可由处理组件的执行的指令,例如应用程序。存储器中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件被配置为执行指令,以执行上述方法应用在所述电子设备的任意方法,例如,前述一个或多个技术方案所述方法。
电子设备还可以包括一个电源组件被配置为执行电子设备的电源管理,一个有线或无线网络接口被配置为将电子设备连接到网络,和一个输入输出(I/O)接口。电子设备可以操作基于存储在存储器的操作系统,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本公开实施例提供一种非临时性计算机可读存储介质,当存储介质中的指令由计算机的处理器执行时,使得计算机能够执行前述一个或多个技术方案所述的电压监控方法。
本公开实施例所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质上实施的计算机程序产品的形式,所述存储介质包括但不限于U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁盘存储器、CD-ROM、光学存储器等。
本公开是根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本公开的部分实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (15)

  1. 一种电压监控方法,其中,所述方法包括:
    获取算力板上负载的电压值;
    确定所述电压值是否小于第一取值;
    当所述电压值小于所述第一取值时,根据所述电压值对电源进行供电保护。
  2. 根据权利要求1所述的方法,其中,所述当所述电压值小于第一取值时,根据所述电压值对电源进行供电保护,包括:
    当所述电压值小于第一取值且大于第二取值时,降低所述负载的工作频率以减少电源所需向所述负载提供的供电功率;其中,所述第二取值小于所述第一取值;
    和/或,
    当所述电压值小于所述第二取值时,停止所述电源向所述负载供电。
  3. 根据权利要求1所述的方法,其中,所述获取算力板上负载的电压值,包括:
    接收算力板上微控制器MCU采集的负载的电压值。
  4. 根据权利要求3所述的方法,其中,所述MCU通过分压电路与所述负载的供电输入端并联;所述电压值被所述MCU采集之后写入预设存储区域。
  5. 根据权利要求4所述的方法,其中,所述接收算力板上微控制器MCU采集的负载的电压值,包括:
    在达到上报时刻时,接收所述MCU发送的所述预设存储区域内存储的最小值。
  6. 根据权利要求5所述的方法,其中,所述上报时刻包括以下至少之一:
    根据上报周期确定的时刻;
    检测到上报触发事件确定的时刻。
  7. 根据权利要求1所述的方法,其中,所述第一取值为:
    根据所述电源的供电情况确定的供电电压值;
    或者,
    根据获取的历史电压值确定的。
  8. 一种电压监控装置,其中,所述装置包括:
    获取单元,被配置为获取算力板上负载的电压值;
    确定单元,被配置为确定所述电压值是否小于第一取值;
    保护单元,被配置为当所述电压值小于所述第一取值时,根据所述电压值对电源进行供电保护。
  9. 根据权利要求8所述的装置,其中,所述保护单元,被配置为:
    当所述电压值小于第一取值且大于第二取值时,降低所述负载的工作频率以减少电源所需向所述负载提供的供电功率;其中,所述第二取值小于所述第一取值;
    和/或,
    当所述电压值小于所述第二取值时,停止所述电源向所述负载供电。
  10. 根据权利要求8所述的装置,其中,所述获取单元,被配置为:
    接收算力板上微控制器MCU采集的负载的电压值。
  11. 根据权利要求10所述的装置,其中,所述MCU通过分压电路与所述负载的供电输入端并联;所述电压值被所述MCU采集之后写入预设存储区域。
  12. 根据权利要求11所述的装置,其中,所述获取单元,被配置为:
    在达到上报时刻时,接收所述MCU发送的所述预设存储区域内存储的最小值。
  13. 根据权利要求8所述的装置,其中,所述第一取值为:
    根据所述电源的供电情况确定的供电电压值;
    或者,
    根据获取的历史电压值确定的。
  14. 一种电子设备,包括:
    用于存储处理器可执行指令的存储器;
    处理器,与所述存储器连接;
    其中,所述处理器被配置为执行如权利要求1至7中任一项提供的电压监控方法。
  15. 一种非临时性计算机可读存储介质,当所述存储介质中的指令由计算机的处理器执行时,使得计算机能够执行如权利要求1至7中任一项提供的电压监控方法。
PCT/CN2022/121349 2021-10-09 2022-09-26 电压监控方法及装置、电子设备及存储介质 WO2023056851A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111174265.XA CN114116371A (zh) 2021-10-09 2021-10-09 电压监控方法及装置、电子设备及存储介质
CN202111174265.X 2021-10-09

Publications (1)

Publication Number Publication Date
WO2023056851A1 true WO2023056851A1 (zh) 2023-04-13

Family

ID=80441810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121349 WO2023056851A1 (zh) 2021-10-09 2022-09-26 电压监控方法及装置、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN114116371A (zh)
WO (1) WO2023056851A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114116371A (zh) * 2021-10-09 2022-03-01 北京比特大陆科技有限公司 电压监控方法及装置、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104682341A (zh) * 2013-11-28 2015-06-03 海洋王(东莞)照明科技有限公司 过压欠压保护电路
CN109407356A (zh) * 2017-08-17 2019-03-01 上海帆声图像科技有限公司 显示屏上电稳压供电系统及显示屏上电稳压供电方法
CN110045807A (zh) * 2019-04-28 2019-07-23 维沃移动通信有限公司 一种电压控制方法及终端
CN114116371A (zh) * 2021-10-09 2022-03-01 北京比特大陆科技有限公司 电压监控方法及装置、电子设备及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104682341A (zh) * 2013-11-28 2015-06-03 海洋王(东莞)照明科技有限公司 过压欠压保护电路
CN109407356A (zh) * 2017-08-17 2019-03-01 上海帆声图像科技有限公司 显示屏上电稳压供电系统及显示屏上电稳压供电方法
CN110045807A (zh) * 2019-04-28 2019-07-23 维沃移动通信有限公司 一种电压控制方法及终端
CN114116371A (zh) * 2021-10-09 2022-03-01 北京比特大陆科技有限公司 电压监控方法及装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN114116371A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
CN110196767B (zh) 服务资源控制方法、装置、设备和存储介质
WO2023056851A1 (zh) 电压监控方法及装置、电子设备及存储介质
DE19620160A1 (de) Steuersystem und Steuerverfahren für eine nicht unterbrechbare Leistungszuführung
CN106371540B (zh) 系统电源管理方法、芯片及电子设备
CN205354006U (zh) 一种自检计算机系统
CN105739668A (zh) 一种笔记本电脑的电源管理方法及电源管理系统
WO2021012510A1 (zh) Cpu使用率自适应调整方法、装置、终端及存储介质
WO2012039049A1 (ja) 無停電電源装置及び電子計算機システム
US10903759B2 (en) Power conversion device and power conversion device system
CN107218702B (zh) 空调器及空调器频率调节方法和计算机可读存储介质
US11262829B2 (en) Power supply having a threshold indicator to perform a shutdown operation based on voltage of a bulk capacitor
CN117331425B (zh) 功耗管理系统、功耗管理方法、存储介质及电子设备
CN112732064A (zh) 一种功耗调节系统、方法及介质
CN116755542B (zh) 一种整机功耗降低方法、系统、基板管理控制器及服务器
CN117674389A (zh) 一种基于双电源的电力分配控制方法
CN112104508A (zh) 网络数据采集设备的故障智能监测及自修复方法、存储介质和计算机设备
CN110671350A (zh) 一种存储双控风扇调速的方法和系统
CN110597684A (zh) 一种降低系统过载风险的psu及降低系统过载风险方法
WO2022242164A1 (zh) 空调电压波动控制系统及控制方法、电子设备和储存介质
CN113933738B (zh) 一种开关电源的监测方法及装置
CN114415053A (zh) 电池监测方法、装置、车辆及计算机可读存储介质
CN114610562A (zh) 服务器功耗管控方法、系统、终端及存储介质
CN113885689A (zh) 整机柜服务器供电控制方法、系统、终端及存储介质
CN104202180A (zh) 一种管理服务器集群的方法和服务器
CN111857319A (zh) 一种服务器功耗智能优化方法与系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22877870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE