WO2023054716A1 - Fluororubber composition and shaped object - Google Patents

Fluororubber composition and shaped object Download PDF

Info

Publication number
WO2023054716A1
WO2023054716A1 PCT/JP2022/036854 JP2022036854W WO2023054716A1 WO 2023054716 A1 WO2023054716 A1 WO 2023054716A1 JP 2022036854 W JP2022036854 W JP 2022036854W WO 2023054716 A1 WO2023054716 A1 WO 2023054716A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluororubber
fluororubber composition
mass
tensile strength
walled
Prior art date
Application number
PCT/JP2022/036854
Other languages
French (fr)
Japanese (ja)
Inventor
真寛 上野
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2023551929A priority Critical patent/JPWO2023054716A1/ja
Publication of WO2023054716A1 publication Critical patent/WO2023054716A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms

Definitions

  • the present invention relates to a composition containing fluororubber and a molded article obtained by molding the composition.
  • Fluorororubber is known to have excellent performance such as chemical resistance, oil resistance, heat resistance, and cold resistance, and is used for various purposes. Conventionally, attempts have been made to add a carbon material to the fluororubber in order to improve the performance of the fluororubber.
  • Patent Document 1 describes a fluororubber composition obtained by adding carbon black as a carbon material to a fluororubber having predetermined properties.
  • the fluororubber composition containing the fluororubber and the carbon black is subjected to a dynamic viscoelasticity test conducted under predetermined conditions.
  • a dynamic viscoelasticity test conducted under predetermined conditions.
  • carbon nanotubes such as single-walled carbon nanotubes (hereinafter sometimes abbreviated as "CNT") have been attracting attention as carbon materials that are excellent in various properties such as electrical conductivity and thermal conductivity.
  • a molded article formed from the fluororubber composition exhibits excellent extensibility in a high-temperature environment (e.g., 200°C or higher). In this respect, there is room for improvement.
  • an object of the present invention is to provide a new technology that can form a molded body that can exhibit excellent extensibility at high temperatures using fluororubber and single-walled CNTs.
  • the inventor of the present invention has diligently studied in order to achieve the above purpose.
  • the present inventor focused on dynamic viscoelasticity of a fluororubber composition obtained by using fluororubber and single-walled CNTs.
  • the ratio of the complex elastic modulus when the dynamic strain is 0.1% to the complex elastic modulus when the dynamic strain is 630% is a predetermined value or more
  • the fluororubber composition can be used to obtain a molded article having excellent extensibility at high temperatures, and the present invention has been completed.
  • an object of the present invention is to advantageously solve the above problems, and according to the present invention, the following fluororubber compositions [1] to [7] and the following [8] molded article is provided.
  • [1] A fluororubber composition containing fluororubber and carbon nanotubes, wherein the carbon nanotubes include single-walled carbon nanotubes, and the measurement frequency is 1 Hz and the measurement temperature is 40°C.
  • a molded article formed using any one of the above-described fluororubber compositions containing a cross-linking agent can exhibit excellent extensibility at high temperatures.
  • a molded article that contains fluororubber and single-walled carbon nanotubes and that can exhibit excellent extensibility at high temperatures, and a fluororubber composition that can form the molded article.
  • the fluorororubber composition of the present invention can be used for forming the molded article of the present invention. And the molded article of the present invention is formed using the fluororubber composition of the present invention.
  • the fluororubber composition of the present invention contains at least fluororubber and single-walled carbon nanotubes, and optionally at least one selected from the group consisting of multi-walled carbon nanotubes, reinforcing fillers, cross-linking agents, and other components. further includes
  • the fluororubber composition of the present invention has a complex elastic modulus of G *
  • L (kPa) and G * H (kPa) is the complex elastic modulus at a dynamic strain of 630%
  • the following formula (I): ⁇ G * G * L /G * H (I) ⁇ G * calculated by is 20 or more. If a fluororubber composition having a ⁇ G * of 20 or more, which is calculated as the ratio of the complex elastic modulus at a dynamic strain of 0.1% to the complex elastic modulus at a dynamic strain of 630%, is used, A molded article having excellent extensibility can be obtained.
  • the reason why the ⁇ G * of the fluororubber composition is equal to or higher than the above-described value can improve the extensibility of the molded article at high temperatures is presumed as follows. First, the extensibility of the molded body at high temperatures is excellent in a network structure composed of single-walled CNTs, multi-walled CNTs, and reinforcing fillers (hereinafter collectively referred to as “single-walled CNTs, etc.”). It is thought that it will be improved by being formed. According to the study of the present inventor, it is possible to use ⁇ G * as a factor that correlates with the degree of formation of this network structure.
  • a network structure composed of single-walled CNTs or the like is maintained when the dynamic strain is small (eg, 0.1%), while the dynamic strain is large (eg, 630 %) in which case it will be destroyed. That is, the complex elastic modulus at a dynamic strain of 0.1% corresponds to the complex elastic modulus when the network structure is maintained, and the complex elastic modulus at a dynamic strain of 630% corresponds to that when the network structure is destroyed. corresponds to the complex elastic modulus in the flattened state. Therefore, if ⁇ G * , which is calculated as the ratio of the complex elastic modulus (dynamic strain: 0.1%) to the complex elastic modulus (dynamic strain: 630%), is 20 or more, the network structure is maintained.
  • the complex elastic modulus (dynamic strain: 0.1%) is sufficiently larger than the complex elastic modulus (dynamic strain: 630%) in the state where the network structure is destroyed, and the single-walled CNT etc. in the fluororubber composition It can be judged that the network structure composed of is well formed. It is believed that the molded article formed from the fluororubber composition can exhibit excellent extensibility at high temperatures due to the favorable network structure of single-walled CNTs and the like.
  • the fluorororubber is not particularly limited, and examples thereof include tetrafluoroethylene-propylene rubber (FEPM), vinylidene fluoride rubber (FKM), tetrafluoroethylene-perfluoromethyl vinyl ether rubber (FFKM), tetrafluoro Ethylene-based rubber (TFE) can be mentioned.
  • FEPM tetrafluoroethylene-propylene rubber
  • FKM vinylidene fluoride rubber
  • FEPM tetrafluoroethylene-propylene rubber
  • FKM tetrafluoroethylene-propylene rubber
  • fluororubber may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the vinylidene fluoride rubber is a fluororubber that has vinylidene fluoride as its main component and is excellent in heat resistance, oil resistance, chemical resistance, solvent resistance, workability, and the like.
  • FKM include, but are not limited to, a binary copolymer of vinylidene fluoride and hexafluoropropylene, a terpolymer of vinylidene fluoride, hexafluoropropylene, and tetrafluoroethylene, and vinylidene fluoride. , hexafluoropropylene, tetrafluoroethylene, and a vulcanization site monomer.
  • FEPM Polytetrafluoroethylene-propylene rubber
  • FEPM is a fluororubber based on an alternating copolymer of tetrafluoroethylene and propylene, and has excellent heat resistance, chemical resistance, polar solvent resistance, and steam resistance.
  • examples of FEPM include, but are not limited to, a binary copolymer consisting of tetrafluoroethylene and propylene, a terpolymer consisting of tetrafluoroethylene, propylene and vinylidene fluoride, and tetrafluoroethylene, propylene and a cross-linking point. a terpolymer consisting of a monomer and the like.
  • Examples of commercially available binary copolymers of tetrafluoroethylene and propylene include “AFRAS (registered trademark) 100" and “AFRAS 150” manufactured by AGC Corporation.
  • Commercially available terpolymers composed of tetrafluoroethylene, propylene and vinylidene fluoride include, for example, "AFRAS 200" manufactured by AGC Corporation.
  • Commercially available terpolymers composed of tetrafluoroethylene, propylene, and cross-linking monomers include, for example, "Afras 300" manufactured by AGC Corporation.
  • the content of the fluororubber in the fluororubber composition is preferably 80% by mass or more, more preferably 85% by mass or more, with the mass of the entire fluororubber composition being 100% by mass. It is more preferably 99% by mass or less, more preferably 98% by mass or less, and even more preferably 97% by mass or less. If the content of the fluororubber in the fluororubber composition is within the range described above, the extensibility of the molded article at high temperatures can be sufficiently improved while ensuring the workability of the fluororubber composition.
  • the fluororubber composition of the present invention contains at least single-walled CNTs as CNTs.
  • the average diameter of single-walled CNTs is preferably 0.5 nm or more, more preferably 1 nm or more, preferably 15 nm or less, more preferably 10 nm or less, and 5 nm or less. is more preferable, and 3.5 nm or less is particularly preferable. If the average diameter (Av) of the single-walled CNTs is within the range described above, it is possible to further improve the extensibility at high temperatures of the molded article formed using the fluororubber composition.
  • single-walled CNTs preferably show an upward convex shape in the t-plot obtained from the adsorption isotherm. Among them, it is more preferable that the single-walled CNTs are not subjected to the opening treatment and that the t-plot exhibits an upwardly convex shape. If single-walled CNTs exhibiting a convex shape in the t-plot obtained from the adsorption isotherm are used, the extensibility at high temperatures of the molded article formed using the fluororubber composition can be further improved. can.
  • adsorption is generally a phenomenon in which gas molecules are removed from the gas phase onto a solid surface, and is classified into physical adsorption and chemisorption according to the cause.
  • the nitrogen gas adsorption method used to obtain the t-plot utilizes physical adsorption. Normally, if the adsorption temperature is constant, the number of nitrogen gas molecules adsorbed on CNT increases as the pressure increases.
  • the relative pressure on the horizontal axis the ratio of the adsorption equilibrium state pressure P and the saturated vapor pressure P0
  • the nitrogen gas adsorption amount on the vertical axis are called “isothermal lines", and nitrogen gas adsorption is performed while increasing the pressure.
  • the case where the amount is measured is called the “adsorption isotherm”
  • the case where the nitrogen gas adsorption amount is measured while decreasing the pressure is called the "desorption isotherm”.
  • the t-plot is obtained by converting the relative pressure to the average thickness t (nm) of the nitrogen gas adsorption layer in the adsorption isotherm measured by the nitrogen gas adsorption method. That is, the average thickness t of the nitrogen gas adsorption layer corresponding to the relative pressure is obtained from a known standard isotherm obtained by plotting the average thickness t of the nitrogen gas adsorption layer against the relative pressure P/P0, and the above conversion is performed. gives a t-plot of CNTs (t-plot method by de Boer et al.).
  • the t-plot showing an upwardly convex shape is located on a straight line passing through the origin in a region where the average thickness t of the nitrogen gas adsorption layer is small, whereas when t becomes large, the plot is on the straight line.
  • position shifted downward from A CNT having such a t-plot shape has a large ratio of the internal specific surface area to the total specific surface area of the CNT, indicating that many openings are formed in the CNT.
  • the t-plot inflection point of the single-walled CNTs used in the present invention preferably falls within a range that satisfies 0.2 ⁇ t (nm) ⁇ 1.5, and 0.45 ⁇ t (nm) ⁇ 1.5. 5, more preferably 0.55 ⁇ t(nm) ⁇ 1.0.
  • the position of the inflection point of the t-plot is within the above range, the properties of the single-walled CNTs are further improved, so that the extensibility at high temperatures of the molded body formed using the fluororubber composition is further improved. can be done.
  • the "position of the inflection point" is the intersection of the approximate straight line A in the process (s-1) described above and the approximate straight line B in the process (s-3) described above in the t-plot. .
  • the ratio (S2/S1) of the internal specific surface area S2 to the total specific surface area S1 obtained from the t-plot is preferably 0.05 or more, and 0.06 or more. It is more preferably 0.08 or more, and preferably 0.30 or less. If S2/S1 is 0.05 or more and 0.30 or less, the properties of the single-walled CNTs can be further improved, so that the extensibility at high temperatures of the molded body formed using the fluororubber composition can be improved. can be further enhanced.
  • the measurement of the adsorption isotherm of CNT, the creation of the t-plot, and the calculation of the total specific surface area S1 and the internal specific surface area S2 based on the analysis of the t-plot can be performed, for example, by using a commercially available measurement device "BELSORP (registered (trademark)-mini” (manufactured by Bell Japan).
  • BELSORP registered (trademark)-mini
  • the ratio (3 ⁇ /Av) of the value (3 ⁇ ) obtained by multiplying the standard deviation ( ⁇ ) of the diameter by 3 to the average diameter (Av) is single It is preferable to use layered CNTs, more preferably to use single-walled CNTs with 3 ⁇ /Av of more than 0.25, even more preferably to use single-walled CNTs with 3 ⁇ /Av of more than 0.40, and 3 ⁇ /Av of It is particularly preferred to use single-walled CNTs greater than 0.50.
  • average diameter of CNT (Av) and “standard deviation of diameter of CNT ( ⁇ : sample standard deviation)” are the diameters of 100 CNTs randomly selected using a transmission electron microscope (outer diameter ) can be obtained by measuring The average diameter (Av) and standard deviation ( ⁇ ) of CNTs may be adjusted by changing the CNT production method or production conditions, or by combining multiple types of CNTs obtained by different production methods.
  • the single-walled CNTs used in the present invention preferably have a BET specific surface area of 600 m 2 /g or more, more preferably 800 m 2 /g or more, preferably 2000 m 2 /g or less, and 1600 m 2 /g or more. 2 /g or less is more preferable.
  • the BET specific surface area of the single-walled CNT is 600 m 2 /g or more, the physical properties of the compact can be further improved.
  • the BET specific surface area of the single-walled CNTs is 2000 m 2 /g or less, the single-walled CNTs can be satisfactorily dispersed in the compact. Therefore, if the BET specific surface area of the single-walled CNTs is within the above range, it is possible to further improve the extensibility at high temperatures of the molded article formed using the fluororubber composition.
  • the average length of the single-walled CNTs used in the present invention is preferably 10 ⁇ m or longer, more preferably 15 ⁇ m or longer, and even more preferably 20 ⁇ m or longer. If the average length of the single-walled CNTs is 10 ⁇ m or more, it is possible to further improve the extensibility at high temperatures of the molded article formed using the fluororubber composition. Although the upper limit of the average length of single-walled CNTs is not particularly limited, it is usually 800 ⁇ m or less.
  • the average length of single-walled CNTs can be obtained by measuring the length of 100 single-walled CNTs and calculating the average value thereof. A scanning electron microscope (SEM) or known image processing can be used for observation of single-walled CNTs.
  • Single-walled CNTs having the properties described above can be produced, for example, by chemical vapor deposition (CVD) by supplying a raw material compound and a carrier gas onto a substrate having a catalyst layer for CNT production on its surface.
  • CVD chemical vapor deposition
  • a method of dramatically improving the catalytic activity of the catalyst layer by allowing a small amount of oxidizing agent (catalyst activating substance) to exist in the system when synthesizing CNTs (super-growth method; International Publication No. 2006/011655 ), the formation of the catalyst layer on the substrate surface by a wet process enables efficient production.
  • the carbon nanotube obtained by the super growth method may be called "SGCNT.”
  • the content of single-walled CNTs in the fluororubber composition is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more, per 100 parts by mass of the fluororubber. It is more preferably 2 parts by mass or more, particularly preferably 2 parts by mass or more, preferably 10 parts by mass or less, more preferably 8 parts by mass or less, and further preferably 6 parts by mass or less. It is preferably 4 parts by mass or less, and particularly preferably 4 parts by mass or less. If the content of the single-walled CNTs in the fluororubber composition is 0.1 parts by mass or more per 100 parts by mass of the fluororubber, the extensibility of the molded article at high temperatures can be further improved.
  • the content of the single-walled CNTs in the fluororubber composition is 10 parts by mass or less per 100 parts by mass of the fluororubber, it is possible to suppress the increase in viscosity of the fluororubber composition and to ensure sufficient workability.
  • CNT aggregates Carbon nanotubes in the form of CNT aggregates may also be used.
  • CNTs in the form of CNT aggregates for example, CNT aggregates satisfying at least one of conditions (1) to (3) described later can be used.
  • the CNT aggregate used when forming the fluororubber composition it is preferable to use a CNT aggregate that satisfies at least one of the following conditions (1) to (3).
  • At least one peak in the two-dimensional spatial frequency spectrum of the electron microscope image of the aggregate of carbon nanotubes exists in the range of 1 ⁇ m ⁇ 1 to 100 ⁇ m ⁇ 1 .
  • the condition (1) is "a carbon nanotube dispersion obtained by dispersing aggregates of carbon nanotubes so that the bundle length is 10 ⁇ m or more.
  • the carbon nanotube dispersion At least one peak based on the plasmon resonance of is present in the wavenumber range of more than 300 cm ⁇ 1 and 2000 cm ⁇ 1 or less.
  • a strong absorption characteristic in the far-infrared region has been widely known as an optical characteristic of CNTs. Such strong absorption properties in the far-infrared region are believed to be due to the diameter and length of CNTs.
  • T.M the above-mentioned T.M.
  • the upper limit for determining the presence or absence of a peak based on plasmon resonance of the CNT dispersion under condition (1) is 2000 -1 cm or less.
  • condition (1) in obtaining a spectrum by Fourier transform infrared spectroscopy, it is necessary to obtain a CNT dispersion by dispersing the CNT aggregates so that the bundle length is 10 ⁇ m or more.
  • a CNT aggregate, water, and a surfactant for example, sodium dodecylbenzenesulfonate
  • a surfactant for example, sodium dodecylbenzenesulfonate
  • the bundle length of the CNT dispersion can be obtained by analyzing it with a wet image analysis type particle size measuring device. Such a measuring device calculates the area of each dispersion from the image obtained by photographing the CNT dispersion, and the diameter of the circle having the calculated area (hereinafter also referred to as the ISO area diameter). ) can be obtained.
  • the bundle length of each dispersion is defined as the value of the ISO circle diameter thus obtained.
  • Condition (2) defines that "the maximum peak in the pore distribution curve is in the range of pore diameters greater than 100 nm and less than 400 nm.”
  • the pore size distribution of the aggregate of carbon nanotubes can be determined based on the Barrett-Joyner-Halenda method (BJH method) from the adsorption isotherm of liquid nitrogen at 77K.
  • BJH method Barrett-Joyner-Halenda method
  • the fact that the peak in the pore distribution curve obtained by measuring the carbon nanotube aggregate is in the range of more than 100 nm means that there are voids of a certain size between the CNTs in the carbon nanotube aggregate, and the CNTs are It means that it is not in an excessively densely agglomerated state.
  • the upper limit of 400 nm is the measurement limit when, for example, BELSORP-mini II is used as a measurement device.
  • Condition (3) stipulates that "at least one peak in the two-dimensional spatial frequency spectrum of the electron microscope image of the aggregate of carbon nanotubes exists in the range of 1 ⁇ m -1 to 100 ⁇ m -1 ".
  • the sufficiency of such conditions can be determined in the following manner. First, the CNT aggregate to be determined is magnified (e.g., 10,000 times) using an electron microscope (e.g., field emission scanning electron microscope), and a plurality of electron microscope images ( For example, 10 sheets) are obtained. A plurality of electron microscope images obtained are subjected to fast Fourier transform (FFT) processing to obtain a two-dimensional spatial frequency spectrum.
  • FFT fast Fourier transform
  • a two-dimensional spatial frequency spectrum obtained for each of a plurality of electron microscope images is binarized to obtain an average value of peak positions appearing on the highest frequency side. If the average value of the obtained peak positions is within the range of 1 ⁇ m ⁇ 1 or more and 100 ⁇ m ⁇ 1 or less, it can be determined that the condition (3) is satisfied.
  • the "peak" used in the above determination a clear peak obtained by executing the isolated point extraction process (that is, the inverse operation of the isolated point removal) is used. Therefore, if a clear peak is not obtained within the range of 1 ⁇ m ⁇ 1 to 100 ⁇ m ⁇ 1 when performing the isolated point extraction process, it can be determined that the condition (3) is not satisfied.
  • the peak of the two-dimensional spatial frequency spectrum exists in the range of 2.6 ⁇ m ⁇ 1 or more and 100 ⁇ m ⁇ 1 or less.
  • the CNT aggregate preferably satisfies at least two of the above conditions (1) to (3), and more preferably satisfies all of the conditions (1) to (3).
  • the CNT aggregate that can be used in producing the fluororubber composition of the present invention preferably has the following properties in addition to the above conditions (1) to (3).
  • the tap bulk density of the CNT aggregate is preferably 0.001 g/cm 3 or more and 0.2 g/cm 3 or less.
  • a CNT aggregate having such a density range does not excessively strengthen the bonds between CNTs, so that it is excellent in dispersibility and can be molded into various shapes. If the tapped bulk density of the CNT aggregate is 0.2 g/cm 3 or less, the bonds between the CNTs become weak, so that when the CNT aggregate is stirred in a solvent or the like, it becomes easy to uniformly disperse it. Further, when the tap bulk density of the CNT aggregate is 0.001 g/cm 3 or more, the integrity of the CNT aggregate is improved and handling is facilitated.
  • the tapped bulk density is the apparent bulk density in a state in which the powdery CNT aggregate is filled in a container, and then the voids between the powder particles are reduced by tapping or vibration, etc., to close-pack.
  • a method for producing a CNT aggregate is not particularly limited, and production conditions can be adjusted according to desired properties.
  • a CNT aggregate that satisfies at least one of the above conditions (1) to (3) can be produced, for example, according to the method described in WO2021/172078.
  • the fluororubber composition of the present invention preferably contains, as CNTs, multi-walled CNTs in addition to the single-walled CNTs described above.
  • a fluororubber composition containing both single-walled CNTs and multi-walled CNTs ensures sufficient processability, and according to the fluororubber composition, it is possible to form a molded article that can exhibit even better extensibility at high temperatures. can be done.
  • the multilayer CNT preferably has a BET specific surface area of 50 m 2 /g or more, more preferably 150 m 2 /g or more, preferably 800 m 2 /g or less, and 500 m 2 /g or less. It is more preferable to have If the BET specific surface area of the multi-layered CNT is within the above range, it is possible to further improve the extensibility at high temperatures of the molded article formed using the fluororubber composition.
  • multilayer CNTs having the properties described above can be produced by known methods.
  • the content of the multilayer CNT in the fluororubber composition is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, and 3 parts by mass or more per 100 parts by mass of the fluororubber. More preferably 4 parts by mass or more, particularly preferably 5 parts by mass or more, preferably 15 parts by mass or less, more preferably 12 parts by mass or less, It is more preferably 8 parts by mass or less, and particularly preferably 6 parts by mass or less. If the content of multi-walled CNTs in the fluororubber composition is 0.5 parts by mass or more per 100 parts by mass of the fluororubber, the extensibility of the molded article at high temperatures can be further improved.
  • the content of multi-walled CNTs in the fluororubber composition is 15 parts by mass or less per 100 parts by mass of the fluororubber, thickening of the fluororubber composition can be suppressed to ensure sufficient workability.
  • the ratio of the multi-walled CNTs to the total CNTs in the fluororubber composition is 40% by mass or more, with the mass of the entire CNTs (that is, the sum of the mass of the single-walled CNTs and the multi-walled CNTs) being 100% by mass. preferably 50% by mass or more, more preferably 60% by mass or more, particularly preferably 70% by mass or more, preferably 95% by mass or less, 91% by mass % or less, more preferably 90 mass % or less, even more preferably 85 mass % or less, and particularly preferably 80 mass % or less. If the proportion of multilayer CNTs in the total CNTs is 40% by mass or more, the extensibility of the molded article at high temperatures can be further improved. On the other hand, if the ratio of multi-walled CNTs to the total CNTs is 95% by mass or less, it is possible to suppress thickening of the fluororubber composition and sufficiently ensure workability.
  • the fluororubber composition of the present invention preferably contains a reinforcing filler from the viewpoint of further improving the extensibility of the molded article at high temperatures.
  • reinforcing fillers examples include carbon black, graphene, graphite, and silica.
  • carbon black and silica are preferable from the viewpoint of further improving the extensibility of the molded article at high temperatures.
  • Carbon black is more preferable from the viewpoint of further improving extensibility of molded articles at high temperatures while sufficiently ensuring workability by suppressing thickening of the fluororubber composition.
  • the reinforcing filler may be used singly or in combination of two or more.
  • carbon black examples include furnace black, acetylene black, thermal black, channel black, and ketjen black.
  • the particle size of carbon black is not particularly limited, and can be within the known particle size range of carbon black.
  • silica examples include colloidal silica, wet silica, amorphous silica, fumed silica, silica sol, and silica gel.
  • the surface of silica may be modified with functional functional groups such as hydrophilicity and hydrophobicity.
  • the particle size of silica is not particularly limited, and can be within the range of known silica particle sizes.
  • the content of the reinforcing filler in the fluororubber composition is preferably 1 part by mass or more, more preferably 2 parts by mass or more, and 6 parts by mass or more per 100 parts by mass of the fluororubber. More preferably 8 parts by mass or more, preferably 40 parts by mass or less, more preferably 35 parts by mass or less, and even more preferably 30 parts by mass or less. If the content of the reinforcing filler in the fluororubber composition is 1 part by mass or more per 100 parts by mass of the fluororubber, the extensibility of the molded article at high temperatures can be further improved.
  • the content of the reinforcing filler in the fluororubber composition is 40 parts by mass or less per 100 parts by mass of the fluororubber, thickening of the fluororubber composition can be suppressed to ensure sufficient workability.
  • the cross-linking agent that the fluororubber composition of the present invention may optionally contain is not particularly limited.
  • a known cross-linking agent capable of cross-linking the fluororubber contained in the fluororubber composition can be used.
  • examples of cross-linking agents include peroxide-based cross-linking agents (2,5-dimethyl-2,5-di(t-butylperoxy)hexane, etc.), triallyl isocyanurate, bisphenol AF (4, 4'-(Hexafluoroisopropylidene)diphenol), bisphenol A and the like can be used.
  • crosslinking agents may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content of the cross-linking agent in the fluororubber composition of the present invention is not particularly limited, but is preferably 1 part by mass or more, more preferably 3 parts by mass or more per 100 parts by mass of the fluororubber. , more preferably 5 parts by mass or more, preferably 15 parts by mass or less, and more preferably 10 parts by mass or less.
  • ⁇ Other ingredients Components other than the fluororubber, single-walled CNTs, multi-walled CNTs, reinforcing fillers, and cross-linking agents (other components) that the fluororubber composition of the present invention may optionally contain include, for example, rubbers other than fluororubbers, Additives are included. Rubber other than fluororubber is not particularly limited.
  • Rubber natural rubber (NR), ethylene-propylene-diene rubber (EPDM), butyl rubber (IIR), and their hydrides (hydrogenated acrylonitrile-butadiene rubber, hydrogenated acrylonitrile-isoprene rubber, hydrogenated acrylonitrile- butadiene-isoprene rubber, hydrogenated styrene-butadiene rubber, hydrogenated butadiene rubber, hydrogenated isoprene rubber, hydrogenated natural rubber, hydrogenated ethylene-propylene-diene rubber, hydrogenated butyl rubber).
  • the content of the rubber other than the fluororubber in the fluororubber composition is not particularly limited, and can be appropriately set according to the use of the fluororubber composition.
  • additives include, but are not limited to, cross-linking aids, acid acceptors, dispersants, antioxidants, heat stabilizers, light stabilizers, ultraviolet absorbers, pigments, colorants, foaming agents, and antistatic agents. , flame retardants, lubricants, softeners, tackifiers, plasticizers, mold release agents, deodorants, perfumes, and other known additives that can be blended in fluororubber compositions can be used.
  • the content of the additive in the fluororubber composition is not particularly limited, and may be the amount normally used in known fluororubber compositions.
  • the fluororubber composition of the present invention may contain a compound A described later as another component.
  • another component may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the fluororubber composition of the present invention has a ⁇ G * calculated as a ratio of a complex elastic modulus (dynamic strain: 0.1%) to a complex elastic modulus (dynamic strain: 630%) of 20 or more. It is preferably 24 or more, more preferably 30 or more, and even more preferably 35 or more. If ⁇ G * is less than 20, it is presumed that the network structure composed of single-walled CNTs and the like is not well formed in the fluororubber composition, and the extensibility of the molded article at high temperatures is reduced. .
  • the upper limit of ⁇ G * is not particularly limited, it can be set to 150 or less, for example.
  • ⁇ G * of the fluororubber composition can be controlled by changing the type and/or content of the fluororubber, single-walled CNTs, multi-walled CNTs, and/or reinforcing filler in the fluororubber composition. can.
  • ⁇ G * of the fluororubber composition can be improved by producing the fluororubber composition using the method described later in the section ⁇ Production method of fluororubber composition>.
  • the fluororubber composition of the present invention contains a reinforcing filler and a cross-linking agent
  • T X (MPa) of the cross-linked rubber sheet X obtained by cross-linking the rubber composition and the carbon A test rubber composition excluding nanotubes and a reinforcing filler (that is, a fluororubber composition containing at least a fluororubber, CNTs, a reinforcing filler, and a cross-linking agent, excluding CNTs and a reinforcing filler.
  • the tensile strength ratio calculated by is preferably 3.0 or more, more preferably 3.5 or more, even more preferably 4.0 or more, especially 4.5 or more preferable.
  • the tensile strength ratio calculated by the above formula (II) is the ratio of the tensile strength of the crosslinked rubber sheet containing CNTs and reinforcing filler to the tensile strength of the crosslinked rubber sheet not containing CNTs and reinforcing filler.
  • the higher the tensile strength ratio the higher the durability of the molded article obtained using the fluororubber composition. In addition, since the durability is improved, it becomes possible to reduce the size of various members composed of the molded article.
  • the upper limit of the tensile strength ratio calculated by the above formula (II) is not particularly limited, it can be, for example, 10.0 or less.
  • the tensile strength ratio of the fluororubber composition can be controlled by changing the types and/or contents of single-walled CNTs, multi-walled CNTs, and/or reinforcing fillers in the fluororubber composition. Further, the tensile strength ratio of the fluororubber composition can be improved by producing the fluororubber composition using the method described later in the section ⁇ Production method of fluororubber composition>.
  • the fluororubber composition of the present invention which contains at least fluororubber and single-walled CNTs and has ⁇ G * equal to or greater than the above-mentioned value, contains, for example, fluororubber and single-walled CNTs, and optionally compound A described later.
  • a step of preparing a masterbatch (masterbatch preparation step), and optionally selected from the group consisting of the masterbatch, multi-walled CNTs, reinforcing fillers, cross-linking agents, and other components (excluding compound A) Through a step of kneading at least one of them (kneading step), it can be produced efficiently.
  • the masterbatch is preferably prepared by the following preparation method (i) or (ii). Since single-walled CNTs have a small outer diameter, they are easily bundled (easily bundled). On the other hand, by using the following preparation method (i) or (ii), the bundle structure of single-walled CNTs can be fibrillated and the single-walled CNTs can be well dispersed in the fluororubber. By dispersing the single-walled CNTs, it is speculated that a network structure such as the above-described single-walled CNTs can be formed satisfactorily.
  • a solvent capable of dissolving the fluororubber and dispersing the single-walled CNTs is preferably used.
  • Methyl ethyl ketone is preferred as such a solvent.
  • a solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the fluororubber and single-walled CNTs are added to the above solvent, and the resulting composition is subjected to dispersion treatment by bead building.
  • the conditions of the dispersion treatment are not particularly limited, and can be appropriately set from the viewpoint of dispersing the single-walled CNTs well in the solvent.
  • the method for removing the solvent from the composition after dispersion treatment is not particularly limited, and known methods such as coagulation, casting, and drying can be used.
  • compound A has a freezing point of 40° C. or lower.
  • the distance R1 of the Hansen solubility parameter between the single-walled CNT and the compound A is 6.0 MPa 1/2 or less, and the distance R2 of the Hansen solubility parameter between the fluororubber and the compound A is larger than R1.
  • a masterbatch in which single-walled CNTs are satisfactorily dispersed can be obtained by setting the freezing point of compound A to the above value or less, and having the above relationship between the single-walled CNTs, the fluororubber, and the Hansen solubility parameter of compound A. .
  • the reason for this is not clear, but is presumed to be as follows. First, compound A has sufficient fluidity because it has a freezing point of 40° C.
  • the compound A since the value of R1 is equal to or less than the predetermined value, the compound A has excellent affinity with the single-walled CNT, and the compound A, which has excellent fluidity, is impregnated inside the bundle structure of the single-walled CNT. Promotes disentanglement of the bundle structure.
  • the value of R2 is larger than the value of R1, compound A can have a better affinity with single-walled CNTs than fluororubber, and the presence of fluororubber causes the above-mentioned compound A to excessively defibrate the bundle structure. It does not interfere with Therefore, it is considered that the bundle structure of single-walled CNTs can be sufficiently fibrillated and the single-walled CNTs can be well dispersed in the fluororubber.
  • the “freezing point” of compound A must be 40° C. or lower as described above, and is preferably 35° C. or lower from the viewpoint of ensuring the fluidity of compound A more sufficiently.
  • the lower limit of the freezing point of compound A is not particularly limited, it can be, for example, 5°C or higher.
  • the "freezing point" of compound A is a value measured by the following method. That is, the sample is sealed in an aluminum cell, the aluminum cell is inserted into a sample holder of a differential scanning calorimeter (manufactured by Hitachi High-Tech Science, product name "DSC7000X”), and the sample holder is heated at 10 ° C. in a nitrogen atmosphere. An endothermic peak is observed while heating up to 150° C./min, and the obtained endothermic peak can be taken as the freezing point of the sample.
  • the distance R1 of the Hansen solubility parameter between compound A and single-walled CNTs must be 6.0 MPa 1/2 or less as described above, preferably 5.5 MPa 1/2 or less. It is more preferably 0 MPa 1/2 or less, further preferably 4.5 MPa 1/2 or less, even more preferably 4.0 MPa 1/2 or less, and 3.5 MPa 1/2 or less. is particularly preferred. It is speculated that if R1 is 6.0 MPa 1/2 or less, the affinity of compound A with single-walled CNTs is improved, and compound A easily impregnates inside the bulk structure of single-walled CNTs. Layer CNTs can be well dispersed in the fluororubber.
  • the lower limit of the value of R1 is not particularly limited, but it is preferably 0.5 MPa 1/2 or more, more preferably 1.0 MPa 1/2 or more.
  • the distance R1 (MPa 1/2 ) of the Hansen solubility parameter between single-walled CNT and compound A can be calculated using the following formula (III).
  • R1 ⁇ 4 ⁇ ( ⁇ d3 ⁇ d2 ) 2 +( ⁇ p3 ⁇ p2 ) 2 +( ⁇ h3 ⁇ h2 ) 2 ⁇ 1/2
  • ⁇ d2 Dispersion term of compound A ⁇ d3 : Dispersion term of single-walled CNT ⁇ p2 : Polarity term of compound A ⁇ p3 : Polarity term of single-walled CNT ⁇ h2 : Hydrogen bond term of compound A ⁇ h3 : Single-walled CNT hydrogen bond term
  • the distance R2 of the Hansen solubility parameter between the compound A and the fluororubber must be larger than R1 as described above. If R2 is R1 or more, compound A does not excessively increase affinity with the fluororubber, and it is presumed that the inside of the CNT bulk structure is easily impregnated. can be well dispersed in
  • R2 is preferably 4.0 MPa 1/2 or more, more preferably 4.5 MPa 1/2 or more, and still more preferably more than 5.5 MPa 1/2 . It is more preferably 0 MPa 1/2 or more, particularly preferably 7.0 MPa 1/2 or more, preferably 16.0 MPa 1/2 or less, and preferably 9.0 MPa 1/2 or less. more preferred. If R2 is within the above range, the single-walled CNTs can be dispersed more favorably in the fluororubber.
  • the distance R2 of the Hansen solubility parameter between the fluororubber and the compound A can be calculated using the following formula (IV).
  • R2 ⁇ 4 ⁇ ( ⁇ d1 ⁇ d2 ) 2 +( ⁇ p1 ⁇ p2 ) 2 +( ⁇ h1 ⁇ h2 ) 2 ⁇ 1/2
  • ⁇ d1 Dispersion term of fluororubber
  • ⁇ d2 Dispersion term of compound A
  • ⁇ p1 Polarity term of fluororubber
  • ⁇ p2 Polarity term of compound A
  • ⁇ h1 Hydrogen bond term of fluororubber ⁇ h2 : Hydrogen bond term of compound A
  • Hansen solubility parameter The definition and calculation method of the Hansen solubility parameter are described in the following document. Charles M. Hansen, "Hansen Solubility Parameters: A Users Handbook", CRC Press, 2007.
  • Hansen solubility parameter can be easily estimated from the chemical structure by using computer software (Hansen Solubility Parameters in Practice (HSPiP)). Specifically, for example, using HSPiP version 3, the values are used for compounds registered in the database, and the estimated values are used for compounds that are not registered.
  • HSPiP Hanesen Solubility Parameters in Practice
  • the compound A is not particularly limited as long as it has a freezing point equal to or lower than the above-described value and satisfies the above-described conditions regarding the distance of the Hansen Solubility Parameter, and any organic compound can be used.
  • an ester compound having a cyclic hydrocarbon (a compound having a cyclic hydrocarbon and an ester group) is preferable, an ester compound having an aromatic ring is more preferable, and an ester compound having a benzene ring is still more preferable. Phenyl ester compounds are more preferred.
  • compounds having cyclic hydrocarbons include methyl p-toluate (methyl 4-methylbenzoate), methyl o-toluate (methyl 2-methylbenzoate), methyl benzoate, and benzoic acid.
  • benzoic acid ester compounds such as benzyl and phenyl benzoate; alkyl 3-phenylpropionates such as methyl 3-phenylpropionate; and ethyl cinnamate.
  • methyl o-toluate is particularly preferred.
  • compound A can be used individually by 1 type or in mixture of 2 or more types.
  • the amount of compound A used is not particularly limited, it should be 0.1 parts by mass or more per 100 parts by mass of the fluororubber used for preparing the masterbatch from the viewpoint of better dispersing the single-walled CNTs in the fluororubber. is preferably 1 part by mass or more, more preferably 5 parts by mass or more, particularly preferably 10 parts by mass or more, preferably 60 parts by mass or less, and 40 parts by mass or less is more preferably 35 parts by mass or less, and particularly preferably 30 parts by mass or less.
  • the mixing of the single-walled CNT and the compound A is not particularly limited. Any mixing method such as application of A or spraying of compound A onto single-walled CNTs can be used. Above all, from the viewpoint of better dispersing the single-walled CNTs in the later-described dispersion treatment, it is preferable to mix the single-walled CNTs with the compound A by impregnating the single-walled CNTs with the compound A.
  • the time for which the compound A is impregnated into the single-walled CNTs can be any time, but from the viewpoint of dispersing the single-walled CNTs even better in the dispersion treatment described later, it is preferably at least 1 hour, and at least 10 hours. more preferred.
  • the temperature at which the single-walled CNTs are impregnated with the compound A is not particularly limited. Impregnation of single-walled CNTs with compound A is not particularly limited, but is usually performed under normal pressure (1 atm).
  • - Distributed processing - A dispersion treatment is applied to a composition containing the mixture obtained by mixing the single-walled CNTs and the compound A as described above and the fluororubber.
  • the composition may optionally contain multi-walled CNTs, reinforcing fillers, cross-linking agents and/or other components (excluding compound A). It is preferably added to a masterbatch.
  • the dispersion treatment is not particularly limited as long as the single-walled CNTs can be dispersed in the fluororubber, and any known dispersion treatment can be used.
  • Such dispersion treatment includes, for example, dispersion treatment by shear stress, dispersion treatment by collision energy, and dispersion treatment by which a cavitation effect is obtained.
  • Apparatuses that can be used for dispersion treatment using shear stress include a two-roll mill, a three-roll mill, a kneader, a rotor/stator type disperser, and the like.
  • Apparatuses that can be used for dispersion treatment by collision energy include bead mills, ball mills, and the like.
  • a jet mill, an ultrasonic disperser, and the like can be used as devices that can be used for the dispersion treatment to obtain the cavitation effect.
  • the conditions for the dispersion processing are not particularly limited, and can be set as appropriate within the range of normal dispersion conditions for the above-described apparatus, for example.
  • the masterbatch obtained in the above masterbatch preparation step may be used as it is as the fluororubber composition of the present invention, but in addition to single-walled CNTs and fluororubber, multi-layered CNTs, a cross-linking agent, and / or other components (
  • a fluororubber may be additionally added to the masterbatch.
  • kneading for example, a mixer, single-screw kneader, twin-screw kneader, roll, Brabender, extruder, or the like can be used. Kneading conditions can be appropriately adjusted.
  • the masterbatch and multi-layer CNT and/or reinforcing filler are first kneaded, and then the resulting mixture and cross-linking agent are mixed. is preferable from the viewpoint that ⁇ G * can be well controlled within the desired range.
  • the molded article of the present invention is formed using the fluororubber composition of the present invention containing the cross-linking agent described above. And since the molded article of the present invention is formed from the fluororubber composition of the present invention, it is excellent in extensibility at high temperatures.
  • the use of the molded article of the present invention is not particularly limited.
  • the molded article of the present invention can be suitably used, for example, as a sealing material for oil gas or as an engine peripheral member. Further, the shape of the molded article of the present invention can be appropriately set according to the application.
  • the molding method for obtaining a molded article by molding the fluororubber composition is not particularly limited, and any molding method such as injection molding, extrusion molding, press molding, roll molding, etc. may be used. can be done.
  • the obtained fluororubber composition was subjected to primary cross-linking at a temperature of 160° C. and a pressure of 10 MPa for 20 minutes. Then, it was heated in a gear oven at 232° C. for 2 hours for secondary crosslinking to obtain a crosslinked rubber sheet X (length: 150 mm, width: 150 mm, thickness: 2 mm). This crosslinked rubber sheet X was punched into a dumbbell test piece (JIS No. 3) to prepare a test piece X.
  • the fluororubber, the crosslinker, and the additive (acid acceptor) are mixed at the same mass ratio as the mass ratio of the fluororubber: crosslinker: additive (acid acceptor) contained in the above-described fluororubber composition. ) to prepare a test rubber composition. That is, the test rubber composition corresponds to a composition obtained by removing the CNTs and the reinforcing filler from the fluororubber composition containing the cross-linking agent. The resulting test rubber composition was subjected to primary cross-linking and secondary cross-linking in the same manner as in the preparation of the cross-linked rubber sheet X to obtain a cross-linked rubber sheet Y.
  • This crosslinked rubber sheet Y was punched into a dumbbell test piece (JIS No. 3) to prepare a test piece Y.
  • the tensile strength of the test piece Y was measured in the same manner as when the tensile strength T X of the test piece X was measured. This tensile strength was defined as T Y (MPa).
  • T Y MPa
  • T X tensile strength
  • T Y tensile strength
  • Example 1 ⁇ Preparation of single-walled CNT> SGCNTs ("ZEONANO SG101" manufactured by Nippon Zeon Co., Ltd.) were prepared as single-walled CNTs. In the measurement of SGCNTs with a Raman spectrophotometer, a radial breathing mode (RBM) spectrum was observed in the low wavenumber region of 100 to 300 cm ⁇ 1 characteristic of single-walled CNTs. Further, the BET specific surface area of SGCNT measured using a BET specific surface area meter (BELSORP (registered trademark)-max, manufactured by Bell Japan Co., Ltd.) was 1325 m 2 /g (unopened).
  • BELSORP registered trademark
  • the diameter and length of 100 randomly selected SGCNTs were measured using a transmission electron microscope, and the average diameter (Av) of the SGCNTs, the standard deviation of the diameter ( ⁇ ) and the average length were obtained.
  • the average diameter (Av) is 3.5 nm
  • the standard deviation ( ⁇ ) multiplied by 3 (3 ⁇ ) is 2.1 nm
  • their ratio (3 ⁇ /Av) is 0.6
  • the average The length was 450 ⁇ m.
  • the t-plot of SGCNT was measured using “BELSORP (registered trademark)-mini” manufactured by Bell Japan Co., Ltd., the t-plot was curved in a convex shape.
  • a masterbatch was prepared as follows by the preparation method (i) described above. To 1900 g of methyl ethyl ketone as a solvent, 100 g of a vinylidene fluoride rubber (FKM, manufactured by Chemours, product name "Viton GBL-600S”) as a fluororubber was added and stirred for 24 hours to dissolve the fluororubber.
  • FKM vinylidene fluoride rubber
  • a masterbatch which is a mixture of fluororubber and SGCNT.
  • a fluororubber composition obtained by excluding single-walled CNTs from a fluororubber composition containing a cross-linking agent vinylidene fluoride-based rubber as a fluororubber, zinc white as an acid acceptor, and triallyl as a cross-linking agent
  • a test rubber composition containing isocyanurate and 2,5-dimethyl-2,5-di(t-butylperoxy)hexane in the same weight ratio as the fluororubber composition containing the cross-linking agent was prepared.
  • the test rubber composition was crosslinked under the conditions described above in the section ⁇ Tensile strength ratio> to prepare a crosslinked rubber sheet Y, and the tensile strength TY was measured. Then, the tensile strength ratio was calculated. Table 1 shows the tensile strength ratio results.
  • the distance R1 of the Hansen solubility parameter between the single-walled CNT (SGCNT) and the compound A (methyl o-toluate) is 6.0 MPa 1/2 or less, and the fluororubber (FKM) and the compound A (methyl o-toluate) ) was greater than the distance R1 of the Hansen solubility parameter.
  • FKM fluororubber
  • a fluororubber composition containing a cross-linking agent was obtained in the same manner as in Example 1 except that the masterbatch obtained above (fluororubber: 100 g, SGCNT: 4 g, the total amount of the masterbatch was adjusted to contain 4 g) was used. rice field.
  • This fluororubber composition was subjected to a dynamic viscoelasticity test to determine ⁇ G * and viscosity. Table 1 shows the results.
  • the crosslinked rubber sheet Y prepared in the same manner as in Example 1 was measured to measure the tensile strength TY . Then, the tensile strength ratio was calculated. Table 1 shows the tensile strength ratio results.
  • Example 3 ⁇ Preparation of single-walled CNT> SGCNTs similar to those in Example 1 were prepared.
  • a fluororubber composition was obtained. This fluororubber composition was subjected to a dynamic viscoelasticity test to determine ⁇ G * and viscosity. Table 1 shows the results.
  • the crosslinked rubber sheet Y prepared in the same manner as in Example 1 was measured to measure the tensile strength TY . Then, the tensile strength ratio was calculated. Table 1 shows the tensile strength ratio results.
  • Example 4 Single-walled CNTs were prepared in the same manner as in Example 3, except that silica (hydrophobic, manufactured by Evonik, product name "Aerosil (registered trademark) R972V”) was used instead of carbon black as the reinforcing filler. A fluororubber composition and a molded article were produced and various evaluations were performed. Table 1 shows the results.
  • Example 5 ⁇ Preparation of single-walled CNT> SGCNTs similar to those in Example 1 were prepared. ⁇ Preparation of fluororubber composition> [Preparation of masterbatch] A masterbatch, which is a mixture of fluororubber and SGCNT, was obtained in the same manner as in Example 1.
  • a fluororubber composition was obtained. This fluororubber composition was subjected to a dynamic viscoelasticity test to determine ⁇ G * and viscosity. Table 1 shows the results.
  • the crosslinked rubber sheet Y prepared in the same manner as in Example 1 was measured to measure the tensile strength TY . Then, the tensile strength ratio was calculated. Table 1 shows the tensile strength ratio results.
  • Example 6 In the same manner as in Example 5, except that 5 g of multi-layered CNT (manufactured by KUMHO, product name “K-nanos 100P”; BET specific surface area: 260 m 2 /g) was used instead of 30 g of carbon black as a reinforcing filler. Single-walled CNTs were prepared, fluororubber compositions and moldings were produced, and various evaluations were performed. Table 1 shows the results.
  • Example 7 ⁇ Preparation of CNT2> CNT2 was produced in the CNT synthesis process by a method of supplying raw material gas while continuously conveying a particulate catalyst support by rotating a screw. Specifically, one manufactured in the same manner as in Example 1 of International Publication No. 2021/172078 was used.
  • a masterbatch was obtained in the same manner as in Example 2 except that the above CNT2 was used as the single-walled CNT, a fluororubber composition and a molded body were produced, and various evaluations were performed. Table 1 shows the results.
  • a fluororubber composition containing a cross-linking agent was obtained in the same manner as in Example 1, except that the masterbatch obtained above was used. This fluororubber composition was subjected to a dynamic viscoelasticity test to determine ⁇ G * and viscosity. Table 1 shows the results.
  • a crosslinked rubber sheet Y prepared in the same manner as in Example 1 was measured, and the tensile strength TY was measured. Then, the tensile strength ratio was calculated. Table 1 shows the tensile strength ratio results.
  • Example 2 Single-walled CNTs were prepared in the same manner as in Example 1 except that the amount of single-walled CNTs was changed from 4 g to 2 g during [preparation of masterbatch], and a fluororubber composition and a molded article were produced, Various evaluations were performed. Table 1 shows the results.
  • This fluororubber composition was subjected to a dynamic viscoelasticity test to determine ⁇ G * and viscosity. Table 1 shows the results.
  • the crosslinked rubber sheet Y prepared in the same manner as in Example 1 was measured to measure the tensile strength TY . Then, the tensile strength ratio was calculated. Table 1 shows the tensile strength ratio results.
  • a molded article that contains fluororubber and single-walled carbon nanotubes and that can exhibit excellent extensibility at high temperatures, and a fluororubber composition that can form the molded article.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The purpose of the present invention is to provide a new technique whereby a shaped object capable of exhibiting excellent stretchability at high temperatures can be formed using a fluororubber and single-layer carbon nanotubes (CNTs). The fluororubber composition according to the present invention comprises a fluororubber and carbon nanotubes. The carbon nanotubes include single-layer CNTs. This fluororubber composition, in a dynamic viscoelasticity test conducted under the measurement conditions of a frequency of 1 Hz and a temperature of 40°C, has a γG* as calculated with the following equation (I) of 20 or greater. Equation (I): γG*=G* L/G* H (wherein G* L (kPa) is the complex modulus at a dynamic strain of 0.1% and G* H (kPa) is the complex modulus at a dynamic strain of 630%).

Description

フッ素ゴム組成物及び成形体Fluororubber composition and molded article
 本発明は、フッ素ゴムを含有する組成物、及び当該組成物を成形して得られる成形体に関するものである。 The present invention relates to a composition containing fluororubber and a molded article obtained by molding the composition.
 フッ素ゴムは、耐薬品性、耐油性、耐熱性、耐寒性などの性能に優れることが知られており、様々な用途に用いられている。そして従来、フッ素ゴムの性能を向上するため、フッ素ゴムにカーボン材料を添加する試みがなされている。  Fluororubber is known to have excellent performance such as chemical resistance, oil resistance, heat resistance, and cold resistance, and is used for various purposes. Conventionally, attempts have been made to add a carbon material to the fluororubber in order to improve the performance of the fluororubber.
 例えば特許文献1では、所定の性状を有するフッ素ゴムに、カーボン材料としてのカーボンブラックを添加してなるフッ素ゴム組成物が記載されている。そして特許文献1によれば、上記フッ素ゴム及び上記カーボンブラックを含有するフッ素ゴム組成物について、所定の条件下で行われる動的粘弾性試験における動的歪み1%時のせん断弾性率と、動的歪み100%時のせん断弾性率の差を所定範囲内とすることで、フッ素ゴム組成物を用いて得られる架橋物の高温時における引張物性及び引張疲労特性を向上させることができる。 For example, Patent Document 1 describes a fluororubber composition obtained by adding carbon black as a carbon material to a fluororubber having predetermined properties. According to Patent Document 1, the fluororubber composition containing the fluororubber and the carbon black is subjected to a dynamic viscoelasticity test conducted under predetermined conditions. By setting the difference in shear modulus at 100% strain within a predetermined range, it is possible to improve the tensile physical properties and tensile fatigue properties of the crosslinked product obtained using the fluororubber composition at high temperatures.
特表2015-512954号公報Japanese Patent Publication No. 2015-512954
 ここで近年、導電性や熱伝導性等の諸特性に優れるカーボン材料として単層カーボンナノチューブなどのカーボンナノチューブ(以下、「CNT」と略記する場合がある。)が注目されている。 Here, in recent years, carbon nanotubes such as single-walled carbon nanotubes (hereinafter sometimes abbreviated as "CNT") have been attracting attention as carbon materials that are excellent in various properties such as electrical conductivity and thermal conductivity.
 しかしながら、フッ素ゴムに単層CNTを添加して得られるフッ素ゴム組成物には、当該フッ素ゴム組成物から形成される成形体に、高温環境(例えば200℃以上)において優れた伸張性を発揮させるという点において、改善の余地があった。 However, in a fluororubber composition obtained by adding single-walled CNTs to a fluororubber, a molded article formed from the fluororubber composition exhibits excellent extensibility in a high-temperature environment (e.g., 200°C or higher). In this respect, there is room for improvement.
 そこで、本発明は、フッ素ゴムと単層CNTを用いて、高温下において優れた伸張性を発揮しうる成形体を形成しうる新たな技術の提供を目的とする。 Therefore, an object of the present invention is to provide a new technology that can form a molded body that can exhibit excellent extensibility at high temperatures using fluororubber and single-walled CNTs.
 本発明者は、上記目的を達成するために鋭意検討を行った。そして本発明者は、フッ素ゴムと単層CNTを用いて得られるフッ素ゴム組成物の動的粘弾性に着目した。その上で、当該フッ素ゴム組成物について所定条件下で行われる動的粘弾性試験において、動的歪みが630%時の複素弾性率に対する動的歪みが0.1%時の複素弾性率の比が所定の値以上であれば、当該フッ素ゴム組成物を用いて高温下での伸張性に優れる成形体が得られることを新たに見出し、本発明を完成させた。 The inventor of the present invention has diligently studied in order to achieve the above purpose. The present inventor focused on dynamic viscoelasticity of a fluororubber composition obtained by using fluororubber and single-walled CNTs. In addition, in a dynamic viscoelasticity test conducted under predetermined conditions for the fluororubber composition, the ratio of the complex elastic modulus when the dynamic strain is 0.1% to the complex elastic modulus when the dynamic strain is 630% is a predetermined value or more, the fluororubber composition can be used to obtain a molded article having excellent extensibility at high temperatures, and the present invention has been completed.
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明によれば、下記〔1〕~〔7〕のフッ素ゴム組成物、及び下記〔8〕の成形体が提供される。
〔1〕フッ素ゴムと、カーボンナノチューブとを含有するフッ素ゴム組成物であって、前記カーボンナノチューブは単層カーボンナノチューブを含み、そして、測定周波数:1Hz、測定温度:40℃の条件下で行う動的粘弾性試験において、動的歪みが0.1%時の複素弾性率をG (kPa)、動的歪みが630%時の複素弾性率をG (kPa)とした場合に、下記式(I):
 γG=G /G  ・・・(I)
で算出されるγGが20以上である、フッ素ゴム組成物。
 このように、フッ素ゴムと単層CNTを含有し、γGが上述した値以上であるフッ素ゴム組成物を用いれば、高温下で優れた伸張性を発揮しうる成形体を形成することができる。
 なお、本発明において、複素弾性率G 及び複素弾性率G 、並びにγGは、より詳細には実施例に記載の方法を用いて特定することができる。
That is, an object of the present invention is to advantageously solve the above problems, and according to the present invention, the following fluororubber compositions [1] to [7] and the following [8] molded article is provided.
[1] A fluororubber composition containing fluororubber and carbon nanotubes, wherein the carbon nanotubes include single-walled carbon nanotubes, and the measurement frequency is 1 Hz and the measurement temperature is 40°C. In a dynamic viscoelasticity test, when the complex elastic modulus at a dynamic strain of 0.1% is G * L (kPa) and the complex elastic modulus at a dynamic strain of 630% is G * H (kPa), Formula (I) below:
γG * =G * L /G * H (I)
A fluororubber composition having a γG * of 20 or more, as calculated by
Thus, by using a fluororubber composition containing fluororubber and single-walled CNTs and having γG * equal to or higher than the above-mentioned value, it is possible to form a molded article that can exhibit excellent extensibility at high temperatures. .
In the present invention, the complex elastic modulus G * L , the complex elastic modulus G * H , and γG * can be specified in more detail using the methods described in the examples.
〔2〕前記カーボンナノチューブは更に多層カーボンナノチューブを含む、上記〔1〕に記載のフッ素ゴム組成物。
 単層CNTと多層CNTの双方を含むフッ素ゴム組成物は加工性が十分確保され、また当該フッ素ゴム組成物によれば、高温下で一層優れた伸張性を発揮しうる成形体を形成することができる。
[2] The fluororubber composition according to [1] above, wherein the carbon nanotubes further include multi-walled carbon nanotubes.
A fluororubber composition containing both single-walled CNTs and multi-walled CNTs ensures sufficient processability, and according to the fluororubber composition, it is possible to form a molded article that can exhibit even better extensibility at high temperatures. can be done.
〔3〕前記カーボンナノチューブ以外の補強性フィラーを更に含有する、上記〔1〕又は〔2〕に記載のフッ素ゴム組成物。
 単層CNTに加え補強性フィラーを含むフッ素ゴム組成物を用いれば、高温下で一層優れた伸張性を発揮しうる成形体を形成することができる。
 なお、本発明において、「補強性フィラー」にはカーボンナノチューブは含まれないものとする。
[3] The fluororubber composition according to [1] or [2] above, which further contains a reinforcing filler other than the carbon nanotubes.
By using a fluororubber composition containing a reinforcing filler in addition to single-walled CNTs, it is possible to form a molded article that can exhibit even better extensibility at high temperatures.
In the present invention, the term "reinforcing filler" does not include carbon nanotubes.
〔4〕前記補強性フィラーはカーボンブラックとシリカの少なくとも一方を含む、上記〔3〕に記載のフッ素ゴム組成物。
 上述した補強性フィラーとしてカーボンブラック及び/又はシリカを含むフッ素ゴム組成物を用いれば、高温下でより一層優れた伸張性を発揮しうる成形体を形成することができる。
[4] The fluororubber composition according to [3] above, wherein the reinforcing filler contains at least one of carbon black and silica.
By using a fluororubber composition containing carbon black and/or silica as the above-mentioned reinforcing filler, it is possible to form a molded article that can exhibit even better extensibility at high temperatures.
〔5〕前記単層カーボンナノチューブの含有量が、前記フッ素ゴム100質量部当たり0.1質量部以上10質量部以下である、上記〔1〕~〔4〕の何れかに記載のフッ素ゴム組成物。
 フッ素ゴム100質量部当たりの単層CNTの含有量が上述の範囲内であるフッ素ゴム組成物は加工性に優れ、また当該フッ素ゴム組成物を用いれば、高温下で一層優れた伸張性を発揮しうる成形体を形成することができる。
[5] The fluororubber composition according to any one of [1] to [4] above, wherein the content of the single-walled carbon nanotubes is 0.1 parts by mass or more and 10 parts by mass or less per 100 parts by mass of the fluororubber. thing.
A fluororubber composition in which the content of single-walled CNTs per 100 parts by mass of fluororubber is within the above range is excellent in workability, and when the fluororubber composition is used, it exhibits even better extensibility at high temperatures. A molded body can be formed.
〔6〕架橋剤を更に含む、上記〔1〕~〔5〕の何れかに記載のフッ素ゴム組成物。 [6] The fluororubber composition according to any one of [1] to [5] above, further comprising a cross-linking agent.
〔7〕上記〔3〕又は〔4〕に記載のフッ素ゴム組成物であって、前記フッ素ゴム組成物は架橋剤を更に含み、前記架橋剤を含むフッ素ゴム組成物から形成される架橋ゴムシートXについて、JIS K6251:2010に準拠して、試験温度:200℃、試験湿度:50%、引張速度:500±50mm/分の条件下で測定される引張強度をT(MPa)とし、前記架橋剤を含むフッ素ゴム組成物から前記カーボンナノチューブ及び前記補強性フィラーを除いた試験用ゴム組成物から形成される架橋ゴムシートYについて、JIS K6251:2010に準拠して、試験温度:200℃、試験湿度:50%、引張速度:500±50mm/分の条件下で測定される引張強度をT(MPa)とした場合に、下記式(II):
 引張強度比=T/TY ・・・(II)
で算出される引張強度比が3.0以上である、フッ素ゴム組成物。
 引張強度比が上述した値以上であるフッ素ゴム組成物を用いれば、成形体の耐久性を高めることができる。また耐久性が向上するため、成形体で構成される各種部材の小型化が可能となる。
 なお、本発明において、引張強度T及び引張強度T、並びに引張強度比は、より詳細には実施例に記載の方法を用いて特定することができる。
[7] The fluororubber composition according to [3] or [4] above, wherein the fluororubber composition further contains a cross-linking agent, and a crosslinked rubber sheet formed from the fluororubber composition containing the cross-linking agent Regarding X, according to JIS K6251: 2010, the tensile strength measured under the conditions of test temperature: 200 ° C., test humidity: 50%, tensile speed: 500 ± 50 mm / min is defined as T X (MPa), Regarding the crosslinked rubber sheet Y formed from the test rubber composition obtained by removing the carbon nanotubes and the reinforcing filler from the fluororubber composition containing the crosslinking agent, the test temperature was 200°C in accordance with JIS K6251:2010. When the tensile strength measured under the conditions of test humidity: 50%, tensile speed: 500 ± 50 mm / min is T Y (MPa), the following formula (II):
Tensile strength ratio = T X /T Y (II)
A fluororubber composition having a tensile strength ratio of 3.0 or more.
By using a fluororubber composition having a tensile strength ratio equal to or higher than the above value, the durability of the molded article can be enhanced. In addition, since the durability is improved, it becomes possible to reduce the size of various members composed of the molded body.
In addition, in the present invention, the tensile strength T X , the tensile strength T Y , and the tensile strength ratio can be specified in more detail using the methods described in Examples.
〔8〕上記〔6〕又は〔7〕に記載のフッ素ゴム組成物を用いて形成される、成形体。
 上述した架橋剤を含有するフッ素ゴム組成物の何れかを用いて形成される成形体は、高温下で優れた伸張性を発揮することができる。
[8] A molded article formed using the fluororubber composition described in [6] or [7] above.
A molded article formed using any one of the above-described fluororubber compositions containing a cross-linking agent can exhibit excellent extensibility at high temperatures.
 本発明によれば、フッ素ゴムと単層カーボンナノチューブを含み、高温下で優れた伸張性を発揮しうる成形体、及び当該成形体を形成しうるフッ素ゴム組成物を提供することができる。 According to the present invention, it is possible to provide a molded article that contains fluororubber and single-walled carbon nanotubes and that can exhibit excellent extensibility at high temperatures, and a fluororubber composition that can form the molded article.
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明のフッ素ゴム組成物は、本発明の成形体の形成に用いることができる。そして、本発明の成形体は、本発明のフッ素ゴム組成物を用いて形成される。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail.
Here, the fluororubber composition of the present invention can be used for forming the molded article of the present invention. And the molded article of the present invention is formed using the fluororubber composition of the present invention.
(フッ素ゴム組成物)
 本発明のフッ素ゴム組成物は、フッ素ゴムと、単層カーボンナノチューブとを少なくとも含み、任意に、多層カーボンナノチューブ、補強性フィラー、架橋剤、及びその他の成分からなる群から選択される少なくとも一つを更に含む。
(Fluoro-rubber composition)
The fluororubber composition of the present invention contains at least fluororubber and single-walled carbon nanotubes, and optionally at least one selected from the group consisting of multi-walled carbon nanotubes, reinforcing fillers, cross-linking agents, and other components. further includes
 ここで、本発明のフッ素ゴム組成物は、測定周波数:1Hz、測定温度:40℃の条件下で行う動的粘弾性試験において、動的歪みが0.1%時の複素弾性率をG (kPa)、動的歪みが630%時の複素弾性率をG (kPa)とした場合に、下記式(I):
 γG=G /G  ・・・(I)
で算出されるγGが20以上であることを特徴とする。動的歪みが630%時の複素弾性率に対する動的歪みが0.1%時の複素弾性率の比として算出されるγGが20以上であるフッ素ゴム組成物を用いれば、高温下での伸張性に優れる成形体を得ることができる。
Here, the fluororubber composition of the present invention has a complex elastic modulus of G * When L (kPa) and G * H (kPa) is the complex elastic modulus at a dynamic strain of 630%, the following formula (I):
γG * =G * L /G * H (I)
γG * calculated by is 20 or more. If a fluororubber composition having a γG * of 20 or more, which is calculated as the ratio of the complex elastic modulus at a dynamic strain of 0.1% to the complex elastic modulus at a dynamic strain of 630%, is used, A molded article having excellent extensibility can be obtained.
 なお、フッ素ゴム組成物のγGが上述した値以上であることにより、成形体の高温下での伸張性を高めることができる理由は、以下の通りと推察される。
 まず、成形体の高温下での伸張性は、単層CNT、多層CNT、及び補強性フィラー(以下、これらを纏めて「単層CNT等」と称する。)で構成されるネットワーク構造が良好に形成されることで向上すると考えられる。そして本発明者の検討によれば、このネットワーク構造の形成度合に相関する因子としてγGを使用することが可能である。具体的には、単層CNT等で構成されるネットワーク構造は、動的粘弾性試験において動的歪みが小さい(例えば0.1%)場合では保持される一方、動的歪みが大きい(例えば630%)場合では破壊される。すなわち、動的歪みが0.1%時の複素弾性率は、ネットワーク構造が保持された状態での複素弾性率に対応し、動的歪みが630%時の複素弾性率は、ネットワーク構造が破壊された状態での複素弾性率に対応する。そのため、複素弾性率(動的歪み:630%)に対する複素弾性率(動的歪み:0.1%)の比として算出されるγGが20以上であれば、ネットワーク構造が保持された状態の複素弾性率(動的歪み:0.1%)が、ネットワーク構造が破壊された状態の複素弾性率(動的歪み:630%)に比して十分大きく、フッ素ゴム組成物において単層CNT等で構成されるネットワーク構造が良好に形成されていると判断できる。そして、当該フッ素ゴム組成物から形成される成形体は、単層CNT等による良好なネットワーク構造の寄与により高温下において優れた伸長性を発揮しうると考えられる。
The reason why the γG * of the fluororubber composition is equal to or higher than the above-described value can improve the extensibility of the molded article at high temperatures is presumed as follows.
First, the extensibility of the molded body at high temperatures is excellent in a network structure composed of single-walled CNTs, multi-walled CNTs, and reinforcing fillers (hereinafter collectively referred to as “single-walled CNTs, etc.”). It is thought that it will be improved by being formed. According to the study of the present inventor, it is possible to use γG * as a factor that correlates with the degree of formation of this network structure. Specifically, in a dynamic viscoelasticity test, a network structure composed of single-walled CNTs or the like is maintained when the dynamic strain is small (eg, 0.1%), while the dynamic strain is large (eg, 630 %) in which case it will be destroyed. That is, the complex elastic modulus at a dynamic strain of 0.1% corresponds to the complex elastic modulus when the network structure is maintained, and the complex elastic modulus at a dynamic strain of 630% corresponds to that when the network structure is destroyed. corresponds to the complex elastic modulus in the flattened state. Therefore, if γG * , which is calculated as the ratio of the complex elastic modulus (dynamic strain: 0.1%) to the complex elastic modulus (dynamic strain: 630%), is 20 or more, the network structure is maintained. The complex elastic modulus (dynamic strain: 0.1%) is sufficiently larger than the complex elastic modulus (dynamic strain: 630%) in the state where the network structure is destroyed, and the single-walled CNT etc. in the fluororubber composition It can be judged that the network structure composed of is well formed. It is believed that the molded article formed from the fluororubber composition can exhibit excellent extensibility at high temperatures due to the favorable network structure of single-walled CNTs and the like.
<フッ素ゴム>
 フッ素ゴムとしては、特に限定されず、例えば、四フッ化エチレン-プロピレン系ゴム(FEPM)、フッ化ビニリデン系ゴム(FKM)、四フッ化エチレン-パーフルオロメチルビニルエーテル系ゴム(FFKM)、テトラフルオロエチレン系ゴム(TFE)が挙げられる。そしてこれらの中でも、フッ化ビニリデン系ゴム(FKM)、四フッ化エチレン-プロピレン系ゴム(FEPM)が好ましく、フッ化ビニリデン系ゴム(FKM)がより好ましい。
 なおフッ素ゴムは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
<Fluoro rubber>
The fluororubber is not particularly limited, and examples thereof include tetrafluoroethylene-propylene rubber (FEPM), vinylidene fluoride rubber (FKM), tetrafluoroethylene-perfluoromethyl vinyl ether rubber (FFKM), tetrafluoro Ethylene-based rubber (TFE) can be mentioned. Among these, vinylidene fluoride rubber (FKM) and tetrafluoroethylene-propylene rubber (FEPM) are preferable, and vinylidene fluoride rubber (FKM) is more preferable.
In addition, fluororubber may be used individually by 1 type, and may be used in combination of 2 or more types.
 ここで、フッ化ビニリデン系ゴム(FKM)は、フッ化ビニリデンを主成分とし、耐熱性、耐油性、耐薬品性、耐溶剤性、加工性などに優れるフッ素ゴムである。FKMとしては、特に限定されないが、例えば、フッ化ビニリデンとヘキサフルオロプロピレンとからなる二元共重合体、フッ化ビニリデンとヘキサフルオロプロピレンとテトラフルオロエチレンとからなる三元共重合体、フッ化ビニリデンとヘキサフルオロプロピレンとテトラフルオロエチレンと加硫サイトモノマーとからなる四元共重合体などが挙げられる。市販品としては、例えば、ケマーズ株式会社の「バイトン(Viton、登録商標)」、ダイキン工業株式会社の「ダイエル(登録商標)G」などが挙げられる。中でもフッ化ビニリデンとヘキサフルオロピレンとテトラフルオロエチレンと加硫サイトモノマーとからなる四元共重合体が好ましい。当該四元共重合体は、例えば、市販品「Viton GBL-600S」(ケマーズ株式会社製)として入手可能である。 Here, the vinylidene fluoride rubber (FKM) is a fluororubber that has vinylidene fluoride as its main component and is excellent in heat resistance, oil resistance, chemical resistance, solvent resistance, workability, and the like. Examples of FKM include, but are not limited to, a binary copolymer of vinylidene fluoride and hexafluoropropylene, a terpolymer of vinylidene fluoride, hexafluoropropylene, and tetrafluoroethylene, and vinylidene fluoride. , hexafluoropropylene, tetrafluoroethylene, and a vulcanization site monomer. Commercially available products include, for example, "Viton (registered trademark)" manufactured by Chemours Co., Ltd., and "Dai-El (registered trademark) G" manufactured by Daikin Industries, Ltd. Among them, a quaternary copolymer composed of vinylidene fluoride, hexafluoropyrene, tetrafluoroethylene and a vulcanization site monomer is preferred. The quaternary copolymer is available, for example, as a commercial product "Viton GBL-600S" (manufactured by Chemours Corporation).
 また、四フッ化エチレン-プロピレン系ゴム(FEPM)は、テトラフルオロエチレンとプロピレンとの交互共重合体をベースとし、耐熱性、耐薬品性、耐極性溶剤性、耐スチーム性などに優れるフッ素ゴムである。FEPMとしては、特に限定されないが、例えば、テトラフルオロエチレンとプロピレンとからなる二元共重合体、テトラフルオロエチレンとプロピレンとフッ化ビニリデンからなる三元共重合体、テトラフルオロエチレンとプロピレンと架橋点モノマーとからなる三元共重合体などが挙げられる。テトラフルオロエチレンとプロピレンとからなる二元共重合体の市販品としては、例えば、AGC株式会社の「アフラス(登録商標)100」及び「アフラス150」が挙げられる。テトラフルオロエチレンとプロピレンとフッ化ビニリデンとからなる三元共重合体の市販品としては、例えば、AGC株式会社の「アフラス200」が挙げられる。テトラフルオロエチレンとプロピレンと架橋点モノマーとからなる三元共重合体の市販品としては、例えば、AGC株式会社の「アフラス300」が挙げられる。 Polytetrafluoroethylene-propylene rubber (FEPM) is a fluororubber based on an alternating copolymer of tetrafluoroethylene and propylene, and has excellent heat resistance, chemical resistance, polar solvent resistance, and steam resistance. is. Examples of FEPM include, but are not limited to, a binary copolymer consisting of tetrafluoroethylene and propylene, a terpolymer consisting of tetrafluoroethylene, propylene and vinylidene fluoride, and tetrafluoroethylene, propylene and a cross-linking point. a terpolymer consisting of a monomer and the like. Examples of commercially available binary copolymers of tetrafluoroethylene and propylene include "AFRAS (registered trademark) 100" and "AFRAS 150" manufactured by AGC Corporation. Commercially available terpolymers composed of tetrafluoroethylene, propylene and vinylidene fluoride include, for example, "AFRAS 200" manufactured by AGC Corporation. Commercially available terpolymers composed of tetrafluoroethylene, propylene, and cross-linking monomers include, for example, "Afras 300" manufactured by AGC Corporation.
 そして、フッ素ゴム組成物中のフッ素ゴムの含有割合は、フッ素ゴム組成物全体の質量を100質量%として、80質量%以上であることが好ましく、85質量%以上であることがより好ましく、88質量%以上であることが更に好ましく、99質量%以下であることが好ましく、98質量%以下であることがより好ましく、97質量%以下であることが更に好ましい。フッ素ゴム組成物中のフッ素ゴムの含有割合が上述した範囲内であれば、フッ素ゴム組成物の加工性を確保しつつ、成形体の高温下での伸張性を十分に向上させることができる。 The content of the fluororubber in the fluororubber composition is preferably 80% by mass or more, more preferably 85% by mass or more, with the mass of the entire fluororubber composition being 100% by mass. It is more preferably 99% by mass or less, more preferably 98% by mass or less, and even more preferably 97% by mass or less. If the content of the fluororubber in the fluororubber composition is within the range described above, the extensibility of the molded article at high temperatures can be sufficiently improved while ensuring the workability of the fluororubber composition.
<単層カーボンナノチューブ>
 本発明のフッ素ゴム組成物は、CNTとして少なくとも単層CNTを含む。
 ここで単層CNTの平均直径は、0.5nm以上であることが好ましく、1nm以上であることがより好ましく、15nm以下であることが好ましく、10nm以下であることがより好ましく、5nm以下であることが更に好ましく、3.5nm以下であることが特に好ましい。単層CNTの平均直径(Av)が上述した範囲内であれば、フッ素ゴム組成物を用いて形成される成形体の高温下での伸張性を更に向上させることができる。
<Single-walled carbon nanotube>
The fluororubber composition of the present invention contains at least single-walled CNTs as CNTs.
Here, the average diameter of single-walled CNTs is preferably 0.5 nm or more, more preferably 1 nm or more, preferably 15 nm or less, more preferably 10 nm or less, and 5 nm or less. is more preferable, and 3.5 nm or less is particularly preferable. If the average diameter (Av) of the single-walled CNTs is within the range described above, it is possible to further improve the extensibility at high temperatures of the molded article formed using the fluororubber composition.
 また、単層CNTは、吸着等温線から得られるt-プロットが上に凸な形状を示すことが好ましい。中でも、単層CNTの開口処理が施されておらず、t-プロットが上に凸な形状を示すことがより好ましい。吸着等温線から得られるt-プロットが上に凸な形状を示す単層CNTを使用すれば、フッ素ゴム組成物を用いて形成される成形体の高温下での伸張性を更に向上させることができる。 In addition, single-walled CNTs preferably show an upward convex shape in the t-plot obtained from the adsorption isotherm. Among them, it is more preferable that the single-walled CNTs are not subjected to the opening treatment and that the t-plot exhibits an upwardly convex shape. If single-walled CNTs exhibiting a convex shape in the t-plot obtained from the adsorption isotherm are used, the extensibility at high temperatures of the molded article formed using the fluororubber composition can be further improved. can.
 ここで、一般に、吸着とは、ガス分子が気相から固体表面に取り去られる現象であり、その原因から、物理吸着と化学吸着に分類される。そして、t-プロットの取得に用いられる窒素ガス吸着法では、物理吸着を利用する。なお、通常、吸着温度が一定であれば、CNTに吸着する窒素ガス分子の数は、圧力が大きいほど多くなる。また、横軸に相対圧(吸着平衡状態の圧力Pと飽和蒸気圧P0の比)、縦軸に窒素ガス吸着量をプロットしたものを「等温線」といい、圧力を増加させながら窒素ガス吸着量を測定した場合を「吸着等温線」、圧力を減少させながら窒素ガス吸着量を測定した場合を「脱着等温線」という。 Here, adsorption is generally a phenomenon in which gas molecules are removed from the gas phase onto a solid surface, and is classified into physical adsorption and chemisorption according to the cause. And the nitrogen gas adsorption method used to obtain the t-plot utilizes physical adsorption. Normally, if the adsorption temperature is constant, the number of nitrogen gas molecules adsorbed on CNT increases as the pressure increases. In addition, the relative pressure on the horizontal axis (the ratio of the adsorption equilibrium state pressure P and the saturated vapor pressure P0) and the nitrogen gas adsorption amount on the vertical axis are called "isothermal lines", and nitrogen gas adsorption is performed while increasing the pressure. The case where the amount is measured is called the "adsorption isotherm", and the case where the nitrogen gas adsorption amount is measured while decreasing the pressure is called the "desorption isotherm".
 そして、t-プロットは、窒素ガス吸着法により測定された吸着等温線において、相対圧を窒素ガス吸着層の平均厚みt(nm)に変換することにより得られる。即ち、窒素ガス吸着層の平均厚みtを相対圧P/P0に対してプロットした、既知の標準等温線から、相対圧に対応する窒素ガス吸着層の平均厚みtを求めて上記変換を行うことにより、CNTのt-プロットが得られる(de Boerらによるt-プロット法)。 Then, the t-plot is obtained by converting the relative pressure to the average thickness t (nm) of the nitrogen gas adsorption layer in the adsorption isotherm measured by the nitrogen gas adsorption method. That is, the average thickness t of the nitrogen gas adsorption layer corresponding to the relative pressure is obtained from a known standard isotherm obtained by plotting the average thickness t of the nitrogen gas adsorption layer against the relative pressure P/P0, and the above conversion is performed. gives a t-plot of CNTs (t-plot method by de Boer et al.).
 ここで、表面に細孔を有する試料では、窒素ガス吸着層の成長は、次の(s-1)~(s-3)の過程に分類される。そして、下記の(s-1)~(s-3)の過程によって、t-プロットの傾きに変化が生じる。
(s-1)全表面への窒素分子の単分子吸着層形成過程
(s-2)多分子吸着層形成とそれに伴う細孔内での毛管凝縮充填過程
(s-3)細孔が窒素によって満たされた見かけ上の非多孔性表面への多分子吸着層形成過程
Here, in a sample having pores on its surface, the growth of the nitrogen gas adsorption layer is classified into the following processes (s-1) to (s-3). Then, the slope of the t-plot changes due to the following processes (s-1) to (s-3).
(s-1) Process of forming a monomolecular adsorption layer of nitrogen molecules on the entire surface (s-2) Formation of a polymolecular adsorption layer and accompanying capillary condensation filling process within the pores (s-3) Pores are filled with nitrogen Formation process of polymolecular adsorption layer on apparently non-porous filled surface
 そして、上に凸な形状を示すt-プロットは、窒素ガス吸着層の平均厚みtが小さい領域では、原点を通る直線上にプロットが位置するのに対し、tが大きくなると、プロットが当該直線から下にずれた位置となる。かかるt-プロットの形状を有するCNTは、CNTの全比表面積に対する内部比表面積の割合が大きく、CNTに多数の開口が形成されていることを示している。 Then, the t-plot showing an upwardly convex shape is located on a straight line passing through the origin in a region where the average thickness t of the nitrogen gas adsorption layer is small, whereas when t becomes large, the plot is on the straight line. position shifted downward from A CNT having such a t-plot shape has a large ratio of the internal specific surface area to the total specific surface area of the CNT, indicating that many openings are formed in the CNT.
 なお、本発明で用いる単層CNTのt-プロットの屈曲点は、0.2≦t(nm)≦1.5を満たす範囲にあることが好ましく、0.45≦t(nm)≦1.5を満たす範囲にあることがより好ましく、0.55≦t(nm)≦1.0を満たす範囲にあることが更に好ましい。t-プロットの屈曲点の位置が上記範囲内にあると、単層CNTの特性が更に向上するため、フッ素ゴム組成物を用いて形成される成形体の高温下での伸張性を一層高めることができる。
 ここで、「屈曲点の位置」とは、t-プロットにおける、前述した(s-1)の過程の近似直線Aと、前述した(s-3)の過程の近似直線Bとの交点である。
Note that the t-plot inflection point of the single-walled CNTs used in the present invention preferably falls within a range that satisfies 0.2 ≤ t (nm) ≤ 1.5, and 0.45 ≤ t (nm) ≤ 1.5. 5, more preferably 0.55≦t(nm)≦1.0. When the position of the inflection point of the t-plot is within the above range, the properties of the single-walled CNTs are further improved, so that the extensibility at high temperatures of the molded body formed using the fluororubber composition is further improved. can be done.
Here, the "position of the inflection point" is the intersection of the approximate straight line A in the process (s-1) described above and the approximate straight line B in the process (s-3) described above in the t-plot. .
 更に、本発明で用いる単層CNTは、t-プロットから得られる全比表面積S1に対する内部比表面積S2の比(S2/S1)が、0.05以上であることが好ましく、0.06以上であることがより好ましく、0.08以上であることが更に好ましく、0.30以下であることが好ましい。S2/S1が0.05以上0.30以下であれば、単層CNTの特性を更に向上させることができるので、フッ素ゴム組成物を用いて形成される成形体の高温下での伸張性を一層高めることができる。 Furthermore, in the single-walled CNTs used in the present invention, the ratio (S2/S1) of the internal specific surface area S2 to the total specific surface area S1 obtained from the t-plot is preferably 0.05 or more, and 0.06 or more. It is more preferably 0.08 or more, and preferably 0.30 or less. If S2/S1 is 0.05 or more and 0.30 or less, the properties of the single-walled CNTs can be further improved, so that the extensibility at high temperatures of the molded body formed using the fluororubber composition can be improved. can be further enhanced.
 因みに、CNTの吸着等温線の測定、t-プロットの作成、及びt-プロットの解析に基づく全比表面積S1と内部比表面積S2との算出は、例えば、市販の測定装置である「BELSORP(登録商標)-mini」(日本ベル社製)を用いて行うことができる。 By the way, the measurement of the adsorption isotherm of CNT, the creation of the t-plot, and the calculation of the total specific surface area S1 and the internal specific surface area S2 based on the analysis of the t-plot can be performed, for example, by using a commercially available measurement device "BELSORP (registered (trademark)-mini” (manufactured by Bell Japan).
 ここで、単層CNTとしては、平均直径(Av)に対する、直径の標準偏差(σ)に3を乗じた値(3σ)の比(3σ/Av)が0.20超0.80未満の単層CNTを用いることが好ましく、3σ/Avが0.25超の単層CNTを用いることがより好ましく、3σ/Avが0.40超の単層CNTを用いることが更に好ましく、3σ/Avが0.50超の単層CNTを用いることが特に好ましい。3σ/Avが0.20超0.80未満の単層CNTを使用すれば、フッ素ゴム組成物を用いて形成される成形体の高温下での伸張性を更に向上させることができる。
 なお、「CNTの平均直径(Av)」及び「CNTの直径の標準偏差(σ:標本標準偏差)」は、それぞれ、透過型電子顕微鏡を用いて無作為に選択したCNT100本の直径(外径)を測定して求めることができる。そして、CNTの平均直径(Av)及び標準偏差(σ)は、CNTの製造方法や製造条件を変更することにより調整してもよいし、異なる製法で得られたCNTを複数種類組み合わせることにより調整してもよい。
 また、本発明で用いる単層CNTは、BET比表面積が600m/g以上であることが好ましく、800m/g以上であることがより好ましく、2000m/g以下であることが好ましく、1600m/g以下であることがより好ましい。単層CNTのBET比表面積が600m/g以上であると、成形体の物性を更に向上させることができる。また、単層CNTのBET比表面積が2000m/g以下であると、単層CNTを成形体中にて良好に分散配置させることができる。従って、単層CNTのBET比表面積が上述の範囲内であれば、フッ素ゴム組成物を用いて形成される成形体の高温下での伸張性を更に向上させることができる。
Here, as a single-walled CNT, the ratio (3σ/Av) of the value (3σ) obtained by multiplying the standard deviation (σ) of the diameter by 3 to the average diameter (Av) is single It is preferable to use layered CNTs, more preferably to use single-walled CNTs with 3σ/Av of more than 0.25, even more preferably to use single-walled CNTs with 3σ/Av of more than 0.40, and 3σ/Av of It is particularly preferred to use single-walled CNTs greater than 0.50. By using single-walled CNTs with a 3σ/Av of more than 0.20 and less than 0.80, it is possible to further improve the elongation at high temperatures of the molded article formed using the fluororubber composition.
In addition, "average diameter of CNT (Av)" and "standard deviation of diameter of CNT (σ: sample standard deviation)" are the diameters of 100 CNTs randomly selected using a transmission electron microscope (outer diameter ) can be obtained by measuring The average diameter (Av) and standard deviation (σ) of CNTs may be adjusted by changing the CNT production method or production conditions, or by combining multiple types of CNTs obtained by different production methods. You may
The single-walled CNTs used in the present invention preferably have a BET specific surface area of 600 m 2 /g or more, more preferably 800 m 2 /g or more, preferably 2000 m 2 /g or less, and 1600 m 2 /g or more. 2 /g or less is more preferable. When the BET specific surface area of the single-walled CNT is 600 m 2 /g or more, the physical properties of the compact can be further improved. Moreover, when the BET specific surface area of the single-walled CNTs is 2000 m 2 /g or less, the single-walled CNTs can be satisfactorily dispersed in the compact. Therefore, if the BET specific surface area of the single-walled CNTs is within the above range, it is possible to further improve the extensibility at high temperatures of the molded article formed using the fluororubber composition.
 そして、本発明で用いる単層CNTの平均長さは、10μm以上であることが好ましく、15μm以上であることがより好ましく、20μm以上であることが更に好ましい。単層CNTの平均長さが10μm以上であれば、フッ素ゴム組成物を用いて形成される成形体の高温下での伸張性を更に向上させることができる。なお、単層CNTの平均長さの上限は特に限定されないが、通常800μm以下である。
 ここで、単層CNTの平均長さは、100本の単層CNTの長さを測定し、その平均値として求めることができる。そして、単層CNTの観測には、走査型電子顕微鏡(SEM)や既知の画像処理を用いることができる。
 特にフッ素ゴム組成物中に含まれる単層CNTの平均長さは、フッ素ゴム組成物からフッ素ゴム等のゴム成分を除去した後、上述した様に100本の単層CNTの長さを測定し、その平均値として求めることができる。なお、フッ素ゴム組成物からゴム成分を除去する方法は、特に限定されない。例えば、フッ素ゴム組成物中のゴム成分を燃焼させた後、得られた灰分に溶剤を加えて単層CNTを溶出させ、観測用基材の表面に塗布することで、個々の単層CNTを観測可能な状態とすることができる。
The average length of the single-walled CNTs used in the present invention is preferably 10 µm or longer, more preferably 15 µm or longer, and even more preferably 20 µm or longer. If the average length of the single-walled CNTs is 10 μm or more, it is possible to further improve the extensibility at high temperatures of the molded article formed using the fluororubber composition. Although the upper limit of the average length of single-walled CNTs is not particularly limited, it is usually 800 μm or less.
Here, the average length of single-walled CNTs can be obtained by measuring the length of 100 single-walled CNTs and calculating the average value thereof. A scanning electron microscope (SEM) or known image processing can be used for observation of single-walled CNTs.
In particular, the average length of the single-walled CNTs contained in the fluororubber composition is obtained by measuring the length of 100 single-walled CNTs as described above after removing the rubber component such as the fluororubber from the fluororubber composition. , can be obtained as the average value. The method for removing the rubber component from the fluororubber composition is not particularly limited. For example, after burning the rubber component in the fluororubber composition, a solvent is added to the resulting ash to elute the single-walled CNTs, and the individual single-walled CNTs are obtained by coating the surface of the substrate for observation. Observable state.
 そして、上述した性状を有する単層CNTは、例えば、CNT製造用の触媒層を表面に有する基材上に、原料化合物及びキャリアガスを供給して、化学的気相成長法(CVD法)によりCNTを合成する際に、系内に微量の酸化剤(触媒賦活物質)を存在させることで、触媒層の触媒活性を飛躍的に向上させるという方法(スーパーグロース法;国際公開第2006/011655号参照)において、基材表面への触媒層の形成をウェットプロセスにより行うことで、効率的に製造することができる。なお、以下では、スーパーグロース法により得られるカーボンナノチューブを「SGCNT」と称することがある。 Single-walled CNTs having the properties described above can be produced, for example, by chemical vapor deposition (CVD) by supplying a raw material compound and a carrier gas onto a substrate having a catalyst layer for CNT production on its surface. A method of dramatically improving the catalytic activity of the catalyst layer by allowing a small amount of oxidizing agent (catalyst activating substance) to exist in the system when synthesizing CNTs (super-growth method; International Publication No. 2006/011655 ), the formation of the catalyst layer on the substrate surface by a wet process enables efficient production. In addition, below, the carbon nanotube obtained by the super growth method may be called "SGCNT."
 また、フッ素ゴム組成物中における単層CNTの含有量は、フッ素ゴム100質量部当たり、0.1質量部以上であることが好ましく、0.5質量部以上であることがより好ましく、1質量部以上であることが更に好ましく、2質量部以上であることが特に好ましく、10質量部以下であることが好ましく、8質量部以下であることがより好ましく、6質量部以下であることが更に好ましく、4質量部以下であることが特に好ましい。フッ素ゴム組成物における単層CNTの含有量がフッ素ゴム100質量部当たり0.1質量部以上であれば、成形体の高温下における伸張性を更に向上させることができる。一方、フッ素ゴム組成物における単層CNTの含有量がフッ素ゴム100質量部当たり10質量部以下であれば、フッ素ゴム組成物の増粘を抑制して加工性を十分に確保することができる。 In addition, the content of single-walled CNTs in the fluororubber composition is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more, per 100 parts by mass of the fluororubber. It is more preferably 2 parts by mass or more, particularly preferably 2 parts by mass or more, preferably 10 parts by mass or less, more preferably 8 parts by mass or less, and further preferably 6 parts by mass or less. It is preferably 4 parts by mass or less, and particularly preferably 4 parts by mass or less. If the content of the single-walled CNTs in the fluororubber composition is 0.1 parts by mass or more per 100 parts by mass of the fluororubber, the extensibility of the molded article at high temperatures can be further improved. On the other hand, if the content of the single-walled CNTs in the fluororubber composition is 10 parts by mass or less per 100 parts by mass of the fluororubber, it is possible to suppress the increase in viscosity of the fluororubber composition and to ensure sufficient workability.
<<CNT集合体>>
 また、カーボンナノチューブは、CNT集合体の形態のものを用いてもよい。CNT集合体の形態のCNTとしては、例えば、後述する(1)~(3)の少なくとも何れかの条件を満たすCNT集合体を用いることができる。
<<CNT aggregate>>
Carbon nanotubes in the form of CNT aggregates may also be used. As the CNTs in the form of CNT aggregates, for example, CNT aggregates satisfying at least one of conditions (1) to (3) described later can be used.
 ここで、フッ素ゴム組成物を形成する際に用いるCNT集合体としては下記(1)~(3)の条件のうち少なくとも1つを満たすCNT集合体を用いることが好ましい。 Here, as the CNT aggregate used when forming the fluororubber composition, it is preferable to use a CNT aggregate that satisfies at least one of the following conditions (1) to (3).
 (1)カーボンナノチューブ集合体を、バンドル長が10μm以上になるように分散させて得たカーボンナノチューブ分散体について、フーリエ変換赤外分光分析して得たスペクトルにおいて、カーボンナノチューブ分散体のプラズモン共鳴に基づくピークが、波数300cm-1超2000cm-1以下の範囲に、少なくとも1つ存在する。
 (2)カーボンナノチューブ集合体について、液体窒素の77Kでの吸着等温線から、Barrett-Joyner-Halenda法に基づいて得られる、細孔径とLog微分細孔容積との関係を示す細孔分布曲線における最大のピークが、細孔径100nm超400nm未満の範囲にある。
 (3)カーボンナノチューブ集合体の電子顕微鏡画像の二次元空間周波数スペクトルのピークが、1μm-1以上100μm-1以下の範囲に少なくとも1つ存在する。
(1) A spectrum obtained by Fourier transform infrared spectroscopic analysis of a carbon nanotube dispersion obtained by dispersing a carbon nanotube aggregate so that the bundle length is 10 μm or more, the plasmon resonance of the carbon nanotube dispersion There is at least one peak in the wave number range of more than 300 cm −1 to 2000 cm −1 or less.
(2) For carbon nanotube aggregates, from the adsorption isotherm of liquid nitrogen at 77 K, based on the Barrett-Joyner-Halenda method, in the pore distribution curve showing the relationship between the pore diameter and the Log differential pore volume The largest peak is in the range of pore sizes greater than 100 nm and less than 400 nm.
(3) At least one peak in the two-dimensional spatial frequency spectrum of the electron microscope image of the aggregate of carbon nanotubes exists in the range of 1 μm −1 to 100 μm −1 .
 上記条件(1)~(3)について、それぞれ詳述する。 Each of the above conditions (1) to (3) will be described in detail.
[条件(1)]
 条件(1)は、「カーボンナノチューブ集合体を、バンドル長が10μm以上になるように分散させて得たカーボンナノチューブ分散体について、フーリエ変換赤外分光分析して得たスペクトルにおいて、カーボンナノチューブ分散体のプラズモン共鳴に基づくピークが、波数300cm-1超2000cm-1以下の範囲に、少なくとも1つ存在する。」ことを規定する。ここで、従来から、CNTの光学特性として、遠赤外領域における強い吸収特性が広く知られている。かかる遠赤外領域における強い吸収特性は、CNTの直径及び長さに起因ものであると考えられている。なお、遠赤外線領域における吸収特性、より具体的には、CNTのプラズモン共鳴に基づくピークと、CNTの長さとの関係については、非特許文献(T.Morimoto et.al., ”Length-Dependent Plasmon Resonance in Single-Walled Carbon Nanotubes”, pp 9897-9904, Vol.8, No.10, ACS NANO, 2014)にて詳細に検討されている。
[Condition (1)]
The condition (1) is "a carbon nanotube dispersion obtained by dispersing aggregates of carbon nanotubes so that the bundle length is 10 μm or more. In the spectrum obtained by Fourier transform infrared spectroscopic analysis, the carbon nanotube dispersion At least one peak based on the plasmon resonance of is present in the wavenumber range of more than 300 cm −1 and 2000 cm −1 or less.”. Here, a strong absorption characteristic in the far-infrared region has been widely known as an optical characteristic of CNTs. Such strong absorption properties in the far-infrared region are believed to be due to the diameter and length of CNTs. The absorption characteristics in the far-infrared region, more specifically, the relationship between the peak based on plasmon resonance of CNT and the length of CNT, is described in non-patent literature (T. Morimoto et al., "Length-Dependent Plasmon Resonance in Single-Walled Carbon Nanotubes”, pp 9897-9904, Vol.8, No.10, ACS NANO, 2014).
 条件(1)において、CNTのプラズモン共鳴に基づくピークが、波数300cm-1超2000cm-1以下の範囲に存在することが好ましく、波数500cm-1以上2000cm-1以下の範囲に存在することがより好ましく、波数700cm-1以上2000cm-1以下の範囲に存在することが更に好ましい。 In condition (1), the peak based on the plasmon resonance of CNT preferably exists in the wave number range of more than 2000 cm -1 or less, more preferably in the wave number range of 500 cm -1 or more and 2000 cm -1 or less. It is more preferable that the wave number is in the range of 700 cm −1 or more and 2000 cm −1 or less.
 CNT集合体をフーリエ変換赤外分光分析して得られたスペクトルにおいて、CNT分散体のプラズモン共鳴に基づく比較的緩やかなピーク以外に、波数840cm-1付近、1300cm-1付近、及び1700cm-1付近に、鋭いピークが確認されることがある。これらの鋭いピークは、「カーボンナノチューブ分散体のプラズモン共鳴に基づくピーク」には該当せず、それぞれが、官能基由来の赤外吸収に対応している。より具体的には、波数840cm-1付近の鋭いピークは、C-H面外変角振動に起因し;波数1300cm-1付近の鋭いピークは、エポキシ三員環伸縮振動に起因し;波数1700cm-1付近の鋭いピークは、C=O伸縮振動に起因する。なお、波数2000cm-1超の領域では、プラズモン共鳴とは別に、上記したT.Morimotoらによる非特許文献でも言及されているように、S1ピークに類するピークが検出されるため、条件(1)におけるCNT分散体のプラズモン共鳴に基づくピークの有無の判定上限を2000-1cm以下としうる。 In the spectrum obtained by Fourier transform infrared spectroscopic analysis of the CNT aggregate, wavenumbers around 840 cm −1 , 1300 cm −1 , and 1700 cm −1 in addition to relatively gentle peaks based on the plasmon resonance of the CNT dispersion , a sharp peak may be observed. These sharp peaks do not correspond to "peaks based on plasmon resonance of carbon nanotube dispersion", and each corresponds to infrared absorption derived from functional groups. More specifically, the sharp peak near wavenumber 840 cm is attributed to CH out-of-plane bending vibration; the sharp peak near wavenumber 1300 cm is attributed to epoxy three-membered ring stretching vibration; wavenumber 1700 cm. The sharp peak near -1 is attributed to C=O stretching vibration. In addition, in the region of wave numbers exceeding 2000 cm −1 , apart from the plasmon resonance, the above-mentioned T.M. As mentioned in the non-patent literature by Morimoto et al., a peak similar to the S1 peak is detected, so the upper limit for determining the presence or absence of a peak based on plasmon resonance of the CNT dispersion under condition (1) is 2000 -1 cm or less. can be
 ここで、条件(1)において、フーリエ変換赤外分光分析によるスペクトルを取得するにあたり、バンドル長が10μm以上になるように、CNT集合体を分散させることにより、CNT分散体を得る必要がある。ここで、例えば、CNT集合体、水、及び界面活性剤(例えば、ドデシルベンゼンスルホン酸ナトリウム)を適切な比率で配合して、超音波等により所定時間にわたり撹拌処理することで、水中に、バンドル長が10μm以上であるCNT分散体が分散されてなる分散液を得ることができる。 Here, in condition (1), in obtaining a spectrum by Fourier transform infrared spectroscopy, it is necessary to obtain a CNT dispersion by dispersing the CNT aggregates so that the bundle length is 10 μm or more. Here, for example, a CNT aggregate, water, and a surfactant (for example, sodium dodecylbenzenesulfonate) are blended in an appropriate ratio, and stirred for a predetermined period of time using ultrasonic waves or the like to form a bundle in water. A dispersion liquid in which CNT dispersions having a length of 10 μm or more are dispersed can be obtained.
 CNT分散体のバンドル長は、湿式画像解析型の粒度測定装置により解析することで、得ることができる。かかる測定装置は、CNT分散体を撮影して得られた画像から、各分散体の面積を算出して、算出した面積を有する円の直径(以下、ISO円径(ISO area diameter)とも称することがある)を得ることができる。そして、本明細書では、各分散体のバンドル長は、このようにして得られるISO円径の値であるものとして、定義した。 The bundle length of the CNT dispersion can be obtained by analyzing it with a wet image analysis type particle size measuring device. Such a measuring device calculates the area of each dispersion from the image obtained by photographing the CNT dispersion, and the diameter of the circle having the calculated area (hereinafter also referred to as the ISO area diameter). ) can be obtained. In this specification, the bundle length of each dispersion is defined as the value of the ISO circle diameter thus obtained.
[条件(2)]
 条件(2)は、「細孔分布曲線における最大のピークが、細孔径100nm超400nm未満の範囲にある。」ことを規定する。カーボンナノチューブ集合体の細孔分布は、液体窒素の77Kでの吸着等温線から、Barrett-Joyner-Halenda法(BJH法)に基づいて求めることができる。そして、カーボンナノチューブ集合体について測定して得た細孔分布曲線におけるピークが100nm超の範囲にあるということは、カーボンナノチューブ集合体において、CNT間にある程度の大きさの空隙が存在し、CNTが過度に過密に凝集した状態となっていないことを意味する。なお、上限の400nmは、測定装置として例えばBELSORP-mini IIを用いた場合における測定限界である。
[Condition (2)]
Condition (2) defines that "the maximum peak in the pore distribution curve is in the range of pore diameters greater than 100 nm and less than 400 nm." The pore size distribution of the aggregate of carbon nanotubes can be determined based on the Barrett-Joyner-Halenda method (BJH method) from the adsorption isotherm of liquid nitrogen at 77K. The fact that the peak in the pore distribution curve obtained by measuring the carbon nanotube aggregate is in the range of more than 100 nm means that there are voids of a certain size between the CNTs in the carbon nanotube aggregate, and the CNTs are It means that it is not in an excessively densely agglomerated state. Note that the upper limit of 400 nm is the measurement limit when, for example, BELSORP-mini II is used as a measurement device.
[条件(3)]
 条件(3)は、「カーボンナノチューブ集合体の電子顕微鏡画像の二次元空間周波数スペクトルのピークが、1μm-1以上100μm-1以下の範囲に少なくとも1つ存在する。」ことを規定する。かかる条件の充足性は、下記の要領で判定することができる。まず、判定対象であるCNT集合体を、電子顕微鏡(例えば、電解放射走査型電子顕微鏡)を用いて拡大観察(例えば、1万倍)して、1cm四方の視野で電子顕微鏡画像を複数枚(例えば、10枚)取得する。得られた複数枚の電子顕微鏡画像について、高速フーリエ変換(FFT)処理を行い、二次元空間周波数スペクトルを得る。複数枚の電子顕微鏡画像のそれぞれについて得られた二次元空間周波数スペクトルを二値化処理して、最も高周波数側に出るピーク位置の平均値を求める。得られたピーク位置の平均値が1μm-1以上100μm-1以下の範囲内である場合には、条件(3)を満たすとして判定しうる。ここで、上記の判定において用いる「ピーク」としては、孤立点の抽出処理(即ち、孤立点除去の逆操作)を実施して得られた明確なピークを用いるものとする。従って、孤立点の抽出処理を実施した際に1μm-1以上100μm-1以下の範囲内にて明確なピークが得られない場合には、条件(3)は満たさないものとして判定しうる。
[Condition (3)]
Condition (3) stipulates that "at least one peak in the two-dimensional spatial frequency spectrum of the electron microscope image of the aggregate of carbon nanotubes exists in the range of 1 μm -1 to 100 μm -1 ". The sufficiency of such conditions can be determined in the following manner. First, the CNT aggregate to be determined is magnified (e.g., 10,000 times) using an electron microscope (e.g., field emission scanning electron microscope), and a plurality of electron microscope images ( For example, 10 sheets) are obtained. A plurality of electron microscope images obtained are subjected to fast Fourier transform (FFT) processing to obtain a two-dimensional spatial frequency spectrum. A two-dimensional spatial frequency spectrum obtained for each of a plurality of electron microscope images is binarized to obtain an average value of peak positions appearing on the highest frequency side. If the average value of the obtained peak positions is within the range of 1 μm −1 or more and 100 μm −1 or less, it can be determined that the condition (3) is satisfied. Here, as the "peak" used in the above determination, a clear peak obtained by executing the isolated point extraction process (that is, the inverse operation of the isolated point removal) is used. Therefore, if a clear peak is not obtained within the range of 1 μm −1 to 100 μm −1 when performing the isolated point extraction process, it can be determined that the condition (3) is not satisfied.
 ここで、二次元空間周波数スペクトルのピークが、2.6μm-1以上100μm-1以下の範囲に存在することが好ましい。また、CNT集合体は、上記(1)~(3)の条件のうちを少なくとも2つを満たすことが好ましく、(1)~(3)の条件全てを満たすことがより好ましい。 Here, it is preferable that the peak of the two-dimensional spatial frequency spectrum exists in the range of 2.6 μm −1 or more and 100 μm −1 or less. The CNT aggregate preferably satisfies at least two of the above conditions (1) to (3), and more preferably satisfies all of the conditions (1) to (3).
[その他の性状]
 なお、本発明のフッ素ゴム組成物を製造する際に用いることができるCNT集合体は、上記(1)~(3)の条件以外にも、以下の性状を有することが好ましい。
[Other properties]
The CNT aggregate that can be used in producing the fluororubber composition of the present invention preferably has the following properties in addition to the above conditions (1) to (3).
 CNT集合体のタップかさ密度は、0.001g/cm以上0.2g/cm以下であることが好ましい。このような密度範囲にあるCNT集合体は、CNT同士の結びつきが過度に強まらないため、分散性に優れており、様々な形状に成形加工することが可能である。CNT集合体のタップかさ密度が0.2g/cm以下であれば、CNT同士の結びつきが弱くなるので、CNT集合体を溶媒などに撹拌した際に、均質に分散させることが容易になる。また、CNT集合体のタップかさ密度が0.001g/cm以上であれば、CNT集合体の一体性が向上されハンドリングが容易になる。タップかさ密度とは、粉体状のCNT集合体を容器に充填した後、タッピング又は振動等により粉体粒子間の空隙を減少させ、密充填させた状態での見かけかさ密度である。 The tap bulk density of the CNT aggregate is preferably 0.001 g/cm 3 or more and 0.2 g/cm 3 or less. A CNT aggregate having such a density range does not excessively strengthen the bonds between CNTs, so that it is excellent in dispersibility and can be molded into various shapes. If the tapped bulk density of the CNT aggregate is 0.2 g/cm 3 or less, the bonds between the CNTs become weak, so that when the CNT aggregate is stirred in a solvent or the like, it becomes easy to uniformly disperse it. Further, when the tap bulk density of the CNT aggregate is 0.001 g/cm 3 or more, the integrity of the CNT aggregate is improved and handling is facilitated. The tapped bulk density is the apparent bulk density in a state in which the powdery CNT aggregate is filled in a container, and then the voids between the powder particles are reduced by tapping or vibration, etc., to close-pack.
[CNT集合体の製造方法]
 CNT集合体を製造する方法は特に限定されず、所望の性状に応じて製造条件を調整することができる。例えば、上述した(1)~(3)の条件の少なくとも何れかを満たすCNT集合体は、例えば、国際公開第2021/172078号に記載された方法に従って製造されうる。
[Method for producing CNT aggregate]
A method for producing a CNT aggregate is not particularly limited, and production conditions can be adjusted according to desired properties. For example, a CNT aggregate that satisfies at least one of the above conditions (1) to (3) can be produced, for example, according to the method described in WO2021/172078.
<多層カーボンナノチューブ>
 本発明のフッ素ゴム組成物は、CNTとして、上述した単層CNTに加えて多層CNTを含むことが好ましい。単層CNTと多層CNTの双方を含むフッ素ゴム組成物は加工性が十分確保され、また当該フッ素ゴム組成物によれば、高温下で一層優れた伸張性を発揮しうる成形体を形成することができる。
<Multi-walled carbon nanotube>
The fluororubber composition of the present invention preferably contains, as CNTs, multi-walled CNTs in addition to the single-walled CNTs described above. A fluororubber composition containing both single-walled CNTs and multi-walled CNTs ensures sufficient processability, and according to the fluororubber composition, it is possible to form a molded article that can exhibit even better extensibility at high temperatures. can be done.
 ここで多層CNTは、BET比表面積が50m/g以上であることが好ましく、150m/g以上であることがより好ましく、800m/g以下であることが好ましく、500m/g以下であることがより好ましい。多層CNTのBET比表面積が上述の範囲内であれば、フッ素ゴム組成物を用いて形成される成形体の高温下での伸張性を更に向上させることができる。 Here, the multilayer CNT preferably has a BET specific surface area of 50 m 2 /g or more, more preferably 150 m 2 /g or more, preferably 800 m 2 /g or less, and 500 m 2 /g or less. It is more preferable to have If the BET specific surface area of the multi-layered CNT is within the above range, it is possible to further improve the extensibility at high temperatures of the molded article formed using the fluororubber composition.
 そして、上述した性状を有する多層CNTは既知の方法で製造することができる。 Then, multilayer CNTs having the properties described above can be produced by known methods.
 ここで、フッ素ゴム組成物中における多層CNTの含有量は、フッ素ゴム100質量部当たり、0.5質量部以上であることが好ましく、1質量部以上であることがより好ましく、3質量部以上であることが更に好ましく、4質量部以上であることが一層好ましく、5質量部以上であることが特に好ましく、15質量部以下であることが好ましく、12質量部以下であることがより好ましく、8質量部以下であることが更に好ましく、6質量部以下であることが特に好ましい。フッ素ゴム組成物における多層CNTの含有量がフッ素ゴム100質量部当たり0.5質量部以上であれば、成形体の高温下での伸張性を更に向上させることができる。一方、フッ素ゴム組成物における多層CNTの含有量がフッ素ゴム100質量部当たり15質量部以下であれば、フッ素ゴム組成物の増粘を抑制して加工性を十分に確保することができる。 Here, the content of the multilayer CNT in the fluororubber composition is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, and 3 parts by mass or more per 100 parts by mass of the fluororubber. more preferably 4 parts by mass or more, particularly preferably 5 parts by mass or more, preferably 15 parts by mass or less, more preferably 12 parts by mass or less, It is more preferably 8 parts by mass or less, and particularly preferably 6 parts by mass or less. If the content of multi-walled CNTs in the fluororubber composition is 0.5 parts by mass or more per 100 parts by mass of the fluororubber, the extensibility of the molded article at high temperatures can be further improved. On the other hand, if the content of multi-walled CNTs in the fluororubber composition is 15 parts by mass or less per 100 parts by mass of the fluororubber, thickening of the fluororubber composition can be suppressed to ensure sufficient workability.
 また、フッ素ゴム組成物中における多層CNTがCNT全体に占める割合は、CNT全体の質量(即ち、単層CNTの質量と多層CNTの質量との合計)を100質量%として、40質量%以上であることが好ましく、50質量%以上であることがより好ましく、60質量%以上であることが更に好ましく、70質量%以上であることが特に好ましく、95質量%以下であることが好ましく、91質量%以下であることがより好ましく、90質量%以下であることが更に好ましく、85質量%以下であることが一層好ましく、80質量%以下であることが特に好ましい。CNT全体に占める多層CNTの割合が40質量%以上であれば、成形体の高温下での伸張性を更に向上させることができる。一方、CNT全体に占める多層CNTの割合が95質量%以下であれば、フッ素ゴム組成物の増粘を抑制して加工性を十分に確保することができる。 In addition, the ratio of the multi-walled CNTs to the total CNTs in the fluororubber composition is 40% by mass or more, with the mass of the entire CNTs (that is, the sum of the mass of the single-walled CNTs and the multi-walled CNTs) being 100% by mass. preferably 50% by mass or more, more preferably 60% by mass or more, particularly preferably 70% by mass or more, preferably 95% by mass or less, 91% by mass % or less, more preferably 90 mass % or less, even more preferably 85 mass % or less, and particularly preferably 80 mass % or less. If the proportion of multilayer CNTs in the total CNTs is 40% by mass or more, the extensibility of the molded article at high temperatures can be further improved. On the other hand, if the ratio of multi-walled CNTs to the total CNTs is 95% by mass or less, it is possible to suppress thickening of the fluororubber composition and sufficiently ensure workability.
<補強性フィラー>
 本発明のフッ素ゴム組成物は、成形体の高温下での伸張性を更に向上させる観点から、補強性フィラーを含むことが好ましい。
<Reinforcing filler>
The fluororubber composition of the present invention preferably contains a reinforcing filler from the viewpoint of further improving the extensibility of the molded article at high temperatures.
 ここで、補強性フィラーとしては、例えば、カーボンブラック、グラフェン、グラファイト、シリカが挙げられる。これらの中でも、成形体の高温下での伸張性をより一層向上させる観点から、カーボンブラック及びシリカが好ましい。そして、フッ素ゴム組成物の増粘を抑制して加工性を十分に確保しつつ、成形体の高温下での伸張性をより一層向上させる観点から、カーボンブラックがより好ましい。
 なお、補強性フィラーは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Examples of reinforcing fillers include carbon black, graphene, graphite, and silica. Among these, carbon black and silica are preferable from the viewpoint of further improving the extensibility of the molded article at high temperatures. Carbon black is more preferable from the viewpoint of further improving extensibility of molded articles at high temperatures while sufficiently ensuring workability by suppressing thickening of the fluororubber composition.
The reinforcing filler may be used singly or in combination of two or more.
 カーボンブラックとしては、例えば、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、ケッチェンブラックが挙げられる。なお、カーボンブラックの粒子径は特に限定されず、既知のカーボンブラックの粒子径の範囲内とすることができる。 Examples of carbon black include furnace black, acetylene black, thermal black, channel black, and ketjen black. The particle size of carbon black is not particularly limited, and can be within the known particle size range of carbon black.
 シリカとしては、例えば、コロイダルシリカ、湿式シリカ、無定形シリカ、ヒュームドシリカ、シリカゾル、シリカゲルが挙げられる。シリカの表面は、親水性、疎水性などの機能性官能基で修飾されていてもよい。また、シリカの粒子径は特に限定されず、既知のシリカの粒子径の範囲内とすることができる。 Examples of silica include colloidal silica, wet silica, amorphous silica, fumed silica, silica sol, and silica gel. The surface of silica may be modified with functional functional groups such as hydrophilicity and hydrophobicity. In addition, the particle size of silica is not particularly limited, and can be within the range of known silica particle sizes.
 ここで、フッ素ゴム組成物中における補強性フィラーの含有量は、フッ素ゴム100質量部当たり、1質量部以上であることが好ましく、2質量部以上であることがより好ましく、6質量部以上であることが更に好ましく、8質量部以上であることが特に好ましく、40質量部以下であることが好ましく、35質量部以下であることがより好ましく、30質量部以下であることが更に好ましい。フッ素ゴム組成物における補強性フィラーの含有量がフッ素ゴム100質量部当たり1質量部以上であれば、成形体の高温下での伸張性を更に向上させることができる。一方、フッ素ゴム組成物における補強性フィラーの含有量がフッ素ゴム100質量部当たり40質量部以下であれば、フッ素ゴム組成物の増粘を抑制して加工性を十分に確保することができる。 Here, the content of the reinforcing filler in the fluororubber composition is preferably 1 part by mass or more, more preferably 2 parts by mass or more, and 6 parts by mass or more per 100 parts by mass of the fluororubber. more preferably 8 parts by mass or more, preferably 40 parts by mass or less, more preferably 35 parts by mass or less, and even more preferably 30 parts by mass or less. If the content of the reinforcing filler in the fluororubber composition is 1 part by mass or more per 100 parts by mass of the fluororubber, the extensibility of the molded article at high temperatures can be further improved. On the other hand, if the content of the reinforcing filler in the fluororubber composition is 40 parts by mass or less per 100 parts by mass of the fluororubber, thickening of the fluororubber composition can be suppressed to ensure sufficient workability.
<架橋剤>
 本発明のフッ素ゴム組成物が任意に含み得る架橋剤は、特に限定されない。具体的には、架橋剤としては、フッ素ゴム組成物に含まれているフッ素ゴムを架橋可能な既知の架橋剤を用いることができる。より具体的には、架橋剤としては、例えば、パーオキサイド系架橋剤(2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサンなど)、トリアリルイソシアヌレート、ビスフェノールAF(4,4’-(ヘキサフルオロイソプロピリデン)ジフェノール)、ビスフェノールAなどを用いることができる。
 なお、これらの架橋剤は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、本発明のフッ素ゴム組成物中の架橋剤の含有量は、特に限定されないが、フッ素ゴム100質量部当たり、1質量部以上であることが好ましく、3質量部以上であることがより好ましく、5質量部以上であることが更に好ましく、15質量部以下であることが好ましく、10質量部以下であることがより好ましい。
<Crosslinking agent>
The cross-linking agent that the fluororubber composition of the present invention may optionally contain is not particularly limited. Specifically, as the cross-linking agent, a known cross-linking agent capable of cross-linking the fluororubber contained in the fluororubber composition can be used. More specifically, examples of cross-linking agents include peroxide-based cross-linking agents (2,5-dimethyl-2,5-di(t-butylperoxy)hexane, etc.), triallyl isocyanurate, bisphenol AF (4, 4'-(Hexafluoroisopropylidene)diphenol), bisphenol A and the like can be used.
In addition, these crosslinking agents may be used individually by 1 type, and may be used in combination of 2 or more type. The content of the cross-linking agent in the fluororubber composition of the present invention is not particularly limited, but is preferably 1 part by mass or more, more preferably 3 parts by mass or more per 100 parts by mass of the fluororubber. , more preferably 5 parts by mass or more, preferably 15 parts by mass or less, and more preferably 10 parts by mass or less.
<その他の成分>
 本発明のフッ素ゴム組成物が任意に含むことができるフッ素ゴム、単層CNT、多層CNT、補強性フィラー、及び架橋剤以外の成分(その他の成分)としては、例えば、フッ素ゴム以外のゴム、添加剤が挙げられる。
 フッ素ゴム以外のゴムとしては、特に限定されないが、例えば、アクリロニトリル-ブタジエンゴム(NBR)、アクリロニトリル-イソプレンゴム、アクリロニトリル-ブタジエン-イソプレンゴム、スチレン-ブタジエンゴム(SBR)、ブタジエンゴム(BR)、イソプレンゴム(IR)、天然ゴム(NR)、エチレン-プロピレン-ジエンゴム(EPDM)、ブチルゴム(IIR)、そして、これらの水素化物(水素化アクリロニトリル-ブタジエンゴム、水素化アクリロニトリル-イソプレンゴム、水素化アクリロニトリル-ブタジエン-イソプレンゴム、水素化スチレン-ブタジエンゴム、水素化ブタジエンゴム、水素化イソプレンゴム、水素化天然ゴム、水素化エチレン-プロピレン-ジエンゴム、水素化ブチルゴム)が挙げられる。フッ素ゴム組成物中におけるフッ素ゴム以外のゴムの含有量は、特に限定されず、フッ素ゴム組成物の用途等に応じて適宜設定することができる。
 添加剤としては、特に限定されないが、例えば、架橋助剤、受酸剤、分散剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、顔料、着色剤、発泡剤、帯電防止剤、難燃剤、滑剤、軟化剤、粘着付与剤、可塑剤、離型剤、防臭剤、香料などフッ素ゴム組成物に配合しうる既知の添加剤を用いることができる。フッ素ゴム組成物中における添加剤の含有量は、特に限定されず、既知のフッ素ゴム組成物中において通常使用する量とすることができる。
 また本発明のフッ素ゴム組成物は、その他の成分として、後述する化合物Aを含有していてもよい。
 なお、その他の成分は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
<Other ingredients>
Components other than the fluororubber, single-walled CNTs, multi-walled CNTs, reinforcing fillers, and cross-linking agents (other components) that the fluororubber composition of the present invention may optionally contain include, for example, rubbers other than fluororubbers, Additives are included.
Rubber other than fluororubber is not particularly limited. Rubber (IR), natural rubber (NR), ethylene-propylene-diene rubber (EPDM), butyl rubber (IIR), and their hydrides (hydrogenated acrylonitrile-butadiene rubber, hydrogenated acrylonitrile-isoprene rubber, hydrogenated acrylonitrile- butadiene-isoprene rubber, hydrogenated styrene-butadiene rubber, hydrogenated butadiene rubber, hydrogenated isoprene rubber, hydrogenated natural rubber, hydrogenated ethylene-propylene-diene rubber, hydrogenated butyl rubber). The content of the rubber other than the fluororubber in the fluororubber composition is not particularly limited, and can be appropriately set according to the use of the fluororubber composition.
Examples of additives include, but are not limited to, cross-linking aids, acid acceptors, dispersants, antioxidants, heat stabilizers, light stabilizers, ultraviolet absorbers, pigments, colorants, foaming agents, and antistatic agents. , flame retardants, lubricants, softeners, tackifiers, plasticizers, mold release agents, deodorants, perfumes, and other known additives that can be blended in fluororubber compositions can be used. The content of the additive in the fluororubber composition is not particularly limited, and may be the amount normally used in known fluororubber compositions.
Moreover, the fluororubber composition of the present invention may contain a compound A described later as another component.
In addition, another component may be used individually by 1 type, and may be used in combination of 2 or more type.
<γG
 本発明のフッ素ゴム組成物は、上述した通り、複素弾性率(動的歪み:630%)に対する複素弾性率(動的歪み:0.1%)の比として算出されるγGが、20以上であることが必要であり、24以上であることが好ましく、30以上であることがより好ましく、35以上であることが更に好ましい。γGが20未満であると、フッ素ゴム組成物中において単層CNT等で構成されるネットワーク構造が良好に形成されていないためと推察されるが、成形体の高温下における伸張性が低下する。なお、γGの上限値は特に限定されないが、例えば150以下とすることができる。
 ここで、フッ素ゴム組成物のγGは、フッ素ゴム組成物中のフッ素ゴム、単層CNT、多層CNT、及び/又は補強性フィラーの種類及び/又は含有量を変更することにより制御することができる。また、フッ素ゴム組成物のγGは、<フッ素ゴム組成物の製造方法>の項で後述する方法を用いて当該フッ素ゴム組成物を製造することで、向上させることができる。
<γG * >
As described above, the fluororubber composition of the present invention has a γG * calculated as a ratio of a complex elastic modulus (dynamic strain: 0.1%) to a complex elastic modulus (dynamic strain: 630%) of 20 or more. It is preferably 24 or more, more preferably 30 or more, and even more preferably 35 or more. If γG * is less than 20, it is presumed that the network structure composed of single-walled CNTs and the like is not well formed in the fluororubber composition, and the extensibility of the molded article at high temperatures is reduced. . Although the upper limit of γG * is not particularly limited, it can be set to 150 or less, for example.
Here, γG * of the fluororubber composition can be controlled by changing the type and/or content of the fluororubber, single-walled CNTs, multi-walled CNTs, and/or reinforcing filler in the fluororubber composition. can. In addition, γG * of the fluororubber composition can be improved by producing the fluororubber composition using the method described later in the section <Production method of fluororubber composition>.
<引張強度比>
 また、本発明のフッ素ゴム組成物が補強性フィラー及び架橋剤を含む場合、当該ゴム組成物を架橋して得られる架橋ゴムシートXの引張強度T(MPa)と、当該ゴム組成物からカーボンナノチューブ及び補強性フィラーを除いてなる試験用ゴム組成物(即ち、フッ素ゴムと、CNTと、補強性フィラーと、架橋剤とを少なくとも含むフッ素ゴム組成物から、CNT及び補強性フィラーを除いた組成物に相当)を架橋して得られる架橋ゴムシートYの引張強度T(MPa)の比として、下記式(II):
 引張強度比=T/TY ・・・(II)
で算出される引張強度比が、3.0以上であることが好ましく、3.5以上であることがより好ましく、4.0以上であることが更に好ましく、4.5以上であることが特に好ましい。上記式(II)で算出される引張強度比は、上述の通り、CNT及び補強性フィラーを含有しない架橋ゴムシートの引張強度に対する、CNT及び補強性フィラーを含有する架橋ゴムシートの引張強度の比に相当し、この引張強度比が大きいほどフッ素ゴム組成物を用いて得られる成形体の耐久性を高めることができる。また耐久性が向上するため、成形体で構成される各種部材の小型化が可能となる。
 なお、上記式(II)で算出される引張強度比の上限値は特に限定されないが、例えば10.0以下とすることができる。
 ここで、フッ素ゴム組成物の引張強度比は、フッ素ゴム組成物中の単層CNT、多層CNT、及び/又は補強性フィラーの種類及び/又は含有量を変更することにより制御することができる。また、フッ素ゴム組成物の引張強度比は、<フッ素ゴム組成物の製造方法>の項で後述する方法を用いて当該フッ素ゴム組成物を製造することで、向上させることができる。
<Tensile strength ratio>
Further, when the fluororubber composition of the present invention contains a reinforcing filler and a cross-linking agent, the tensile strength T X (MPa) of the cross-linked rubber sheet X obtained by cross-linking the rubber composition, and the carbon A test rubber composition excluding nanotubes and a reinforcing filler (that is, a fluororubber composition containing at least a fluororubber, CNTs, a reinforcing filler, and a cross-linking agent, excluding CNTs and a reinforcing filler. The ratio of the tensile strength T Y (MPa) of the crosslinked rubber sheet Y obtained by crosslinking the material) is expressed by the following formula (II):
Tensile strength ratio = T X /T Y (II)
The tensile strength ratio calculated by is preferably 3.0 or more, more preferably 3.5 or more, even more preferably 4.0 or more, especially 4.5 or more preferable. As described above, the tensile strength ratio calculated by the above formula (II) is the ratio of the tensile strength of the crosslinked rubber sheet containing CNTs and reinforcing filler to the tensile strength of the crosslinked rubber sheet not containing CNTs and reinforcing filler. The higher the tensile strength ratio, the higher the durability of the molded article obtained using the fluororubber composition. In addition, since the durability is improved, it becomes possible to reduce the size of various members composed of the molded article.
Although the upper limit of the tensile strength ratio calculated by the above formula (II) is not particularly limited, it can be, for example, 10.0 or less.
Here, the tensile strength ratio of the fluororubber composition can be controlled by changing the types and/or contents of single-walled CNTs, multi-walled CNTs, and/or reinforcing fillers in the fluororubber composition. Further, the tensile strength ratio of the fluororubber composition can be improved by producing the fluororubber composition using the method described later in the section <Production method of fluororubber composition>.
<フッ素ゴム組成物の製造方法>
 少なくともフッ素ゴムと単層CNTを含有し、そしてγGが上述した値以上である本発明のフッ素ゴム組成物は、例えば、フッ素ゴムと単層CNTとを含み、任意に後述の化合物Aを含むマスターバッチを調製する工程(マスターバッチ調製工程)と、必要に応じて、マスターバッチと、多層CNT、補強性フィラー、架橋剤、及びその他の成分(化合物Aを除く)からなる群から選択される少なくとも一種とを混練する工程(混練工程)とを経て、効率良く製造することができる。
<Method for producing fluororubber composition>
The fluororubber composition of the present invention, which contains at least fluororubber and single-walled CNTs and has γG * equal to or greater than the above-mentioned value, contains, for example, fluororubber and single-walled CNTs, and optionally compound A described later. A step of preparing a masterbatch (masterbatch preparation step), and optionally selected from the group consisting of the masterbatch, multi-walled CNTs, reinforcing fillers, cross-linking agents, and other components (excluding compound A) Through a step of kneading at least one of them (kneading step), it can be produced efficiently.
<<マスターバッチ調製工程>>
 マスターバッチは、以下の(i)又は(ii)の調製方法で調製することが好ましい。単層CNTは外径が小さいため、バンドル化し易い(束になり易い)。これに対し、以下の(i)又は(ii)の調製方法を用いることで、単層CNTのバンドル構造体を解繊し、フッ素ゴム中に単層CNTを良好に分散させることができる。そして単層CNTを分散させることにより、上述した単層CNT等のネットワーク構造が良好に形成されうると推察される。
(i)フッ素ゴム、単層CNT及び溶媒を含む組成物に対してビーズミルを用いて分散処理を施し、分散処理後の組成物から溶媒を除去する方法。
(ii)単層CNTと化合物Aとを混合し、得られた混合物とフッ素ゴムとを含む組成物に対して分散処理を施す方法。
 ここで、化合物Aは、単層CNTとのハンセン溶解度パラメータの距離R1が6.0MPa1/2以下であり、フッ素ゴムとのハンセン溶解度パラメータの距離R2がR1よりも大きく、そして凝固点が40℃以下である有機化合物である。
<<Master batch preparation process>>
The masterbatch is preferably prepared by the following preparation method (i) or (ii). Since single-walled CNTs have a small outer diameter, they are easily bundled (easily bundled). On the other hand, by using the following preparation method (i) or (ii), the bundle structure of single-walled CNTs can be fibrillated and the single-walled CNTs can be well dispersed in the fluororubber. By dispersing the single-walled CNTs, it is speculated that a network structure such as the above-described single-walled CNTs can be formed satisfactorily.
(i) A method of subjecting a composition containing fluororubber, single-walled CNTs and a solvent to dispersion treatment using a bead mill and removing the solvent from the composition after dispersion treatment.
(ii) A method of mixing single-walled CNTs with compound A and subjecting a composition containing the resulting mixture and fluororubber to dispersion treatment.
Here, compound A has a Hansen Solubility Parameter distance R1 of 6.0 MPa 1/2 or less from single-walled CNT, a Hansen Solubility Parameter distance R2 of fluororubber greater than R1, and a freezing point of 40°C. The following are organic compounds.
[マスターバッチの調製方法(i)]
 調製方法(i)では、上述した通り、フッ素ゴム、単層CNT及び溶媒を含む組成物に対してビーズミルを用いて分散処理を施し、分散処理後の組成物から分散媒を除去することでマスターバッチを得る。
 なお、フッ素ゴム、単層CNT及び溶媒を含む組成物を得るに際しては、任意に、多層CNT、補強性フィラー、架橋剤及び/又はその他の成分(化合物Aを除く)をフッ素ゴム、単層CNT及び溶媒に混合して組成物に含有させてもよいが、これらは後述の混練工程で、マスターバッチに添加することが好ましい。
[Masterbatch preparation method (i)]
In preparation method (i), as described above, a composition containing fluororubber, single-walled CNTs and a solvent is subjected to dispersion treatment using a bead mill, and the dispersion medium is removed from the composition after dispersion treatment to obtain a master. get a batch.
When obtaining a composition containing fluororubber, single-walled CNTs and a solvent, the multi-walled CNTs, reinforcing filler, cross-linking agent and/or other components (excluding compound A) may optionally be added to the fluororubber and single-walled CNTs. and a solvent to be contained in the composition, but these are preferably added to the masterbatch in the kneading step described later.
 調製方法(i)において用いる溶媒としては、フッ素ゴムを溶解しうり且つ単層CNTを分散させうる溶媒が好ましく用いられる。このような溶媒としては、メチルエチルケトンが好ましい。なお溶媒は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As the solvent used in the preparation method (i), a solvent capable of dissolving the fluororubber and dispersing the single-walled CNTs is preferably used. Methyl ethyl ketone is preferred as such a solvent. In addition, a solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
 上述した溶媒にフッ素ゴム及び単層CNTを加え、得られた組成物に対してビーズビルにより分散処理を施す。分散処理の条件(パス回数、用いる分散メディアの性状など)は、特に限定されず溶媒中に単層CNTを良好に分散させる観点で適宜設定させることができる。
 なお、フッ素ゴム、単層CNT及び溶媒を含む組成物の調製に際しては、フッ素ゴムを溶媒に溶解させてフッ素ゴム溶液を調製してから、フッ素ゴム溶液に単層CNTを添加することが好ましい。
The fluororubber and single-walled CNTs are added to the above solvent, and the resulting composition is subjected to dispersion treatment by bead building. The conditions of the dispersion treatment (the number of passes, the properties of the dispersion media to be used, etc.) are not particularly limited, and can be appropriately set from the viewpoint of dispersing the single-walled CNTs well in the solvent.
When preparing a composition containing fluororubber, single-walled CNTs, and a solvent, it is preferable to dissolve the fluororubber in a solvent to prepare a fluororubber solution, and then add the single-walled CNTs to the fluororubber solution.
 分散処理後の組成物から溶媒を除去する方法としては、特に限定されず、凝固法、キャスト法または乾燥法などの既知の方法を用いることができる。 The method for removing the solvent from the composition after dispersion treatment is not particularly limited, and known methods such as coagulation, casting, and drying can be used.
[マスターバッチの調製方法(ii)]
 調製方法(ii)では、上述した通り、単層CNTと、化合物Aとを混合して混合物を調製し、得られた混合物とフッ素ゴムとを含む組成物に対して分散処理を施してマスターバッチを得る。
[Masterbatch preparation method (ii)]
In the preparation method (ii), as described above, the single-walled CNTs and the compound A are mixed to prepare a mixture, and the composition containing the obtained mixture and the fluororubber is subjected to a dispersion treatment to prepare a masterbatch. get
 ここで化合物Aは、凝固点が40℃以下である。また、単層CNTと化合物Aのハンセン溶解度パラメータの距離R1が6.0MPa1/2以下であり、且つフッ素ゴムと化合物Aのハンセン溶解度パラメータの距離R2がR1よりも大きい。化合物Aの凝固点が上記値以下であり、且つ単層CNT、フッ素ゴム、及び化合物Aのハンセン溶解度パラメータが上記の関係を有することで、単層CNTが良好に分散したマスターバッチを得ることができる。この理由は明らかではないが、以下の通りであると推察される。
 まず化合物Aは、凝固点が40℃以下であるため十分な流動性を有する。そして、R1の値が上記所定の値以下であるため化合物Aが単層CNTとの親和性に優れ、十分な流動性に優れる化合物Aが単層CNTのバンドル構造体の内部に含浸することで当該バンドル構造体の解繊を促進する。その上、R2の値がR1の値よりも大きいため化合物Aはフッ素ゴムよりも単層CNTと良好に親和し得り、フッ素ゴムの存在が上述した化合物Aによるバンドル構造体の解繊を過度に阻害することもない。そのため、単層CNTのバンドル構造体を十分に解繊して、フッ素ゴム中に単層CNTを良好に分散させることができると考えられる。
Here, compound A has a freezing point of 40° C. or lower. Further, the distance R1 of the Hansen solubility parameter between the single-walled CNT and the compound A is 6.0 MPa 1/2 or less, and the distance R2 of the Hansen solubility parameter between the fluororubber and the compound A is larger than R1. A masterbatch in which single-walled CNTs are satisfactorily dispersed can be obtained by setting the freezing point of compound A to the above value or less, and having the above relationship between the single-walled CNTs, the fluororubber, and the Hansen solubility parameter of compound A. . The reason for this is not clear, but is presumed to be as follows.
First, compound A has sufficient fluidity because it has a freezing point of 40° C. or lower. Then, since the value of R1 is equal to or less than the predetermined value, the compound A has excellent affinity with the single-walled CNT, and the compound A, which has excellent fluidity, is impregnated inside the bundle structure of the single-walled CNT. Promotes disentanglement of the bundle structure. In addition, since the value of R2 is larger than the value of R1, compound A can have a better affinity with single-walled CNTs than fluororubber, and the presence of fluororubber causes the above-mentioned compound A to excessively defibrate the bundle structure. It does not interfere with Therefore, it is considered that the bundle structure of single-walled CNTs can be sufficiently fibrillated and the single-walled CNTs can be well dispersed in the fluororubber.
-凝固点-
 化合物Aの「凝固点」は、上述した通り40℃以下であることが必要であり、化合物Aの流動性を一層十分に確保する観点から、35℃以下であることが好ましい。
 ここで、化合物Aの凝固点の下限値は特に限定されないが、例えば5℃以上とすることができる。
 なお、化合物Aの「凝固点」は、下記の方法で測定される値である。
 即ち、試料をアルミニウムセルの中に密閉し、当該アルミニウムセルを示差走査熱量計(日立ハイテクサイエンス社製、製品名「DSC7000X」)のサンプルホルダーに挿入した後、当該サンプルホルダーを窒素雰囲気下10℃/分で150℃まで加熱しながら吸熱ピークを観察し、得られた吸熱ピークを試料の凝固点とすることができる。
-freezing point-
The “freezing point” of compound A must be 40° C. or lower as described above, and is preferably 35° C. or lower from the viewpoint of ensuring the fluidity of compound A more sufficiently.
Although the lower limit of the freezing point of compound A is not particularly limited, it can be, for example, 5°C or higher.
In addition, the "freezing point" of compound A is a value measured by the following method.
That is, the sample is sealed in an aluminum cell, the aluminum cell is inserted into a sample holder of a differential scanning calorimeter (manufactured by Hitachi High-Tech Science, product name "DSC7000X"), and the sample holder is heated at 10 ° C. in a nitrogen atmosphere. An endothermic peak is observed while heating up to 150° C./min, and the obtained endothermic peak can be taken as the freezing point of the sample.
-ハンセン溶解度パラメータの距離R1-
 化合物Aと、単層CNTとは、ハンセン溶解度パラメータの距離R1が、上述した通り6.0MPa1/2以下であることが必要であり、5.5MPa1/2以下であることが好ましく、5.0MPa1/2以下であることがより好ましく、4.5MPa1/2以下であることが更に好ましく、4.0MPa1/2以下であることが一層好ましく、3.5MPa1/2以下であることが特に好ましい。R1が6.0MPa1/2以下であれば、化合物Aの単層CNTとの親和性が向上して化合物Aが単層CNTのバルク構造体内部に含浸し易くなるため推察されるが、単層CNTをフッ素ゴム中に良好に分散させることができる。
 また、R1の値の下限は、特に限定されないが、0.5MPa1/2以上であることが好ましく、1.0MPa1/2以上であることがより好ましい。
-Distance R1 of Hansen Solubility Parameter-
The distance R1 of the Hansen solubility parameter between compound A and single-walled CNTs must be 6.0 MPa 1/2 or less as described above, preferably 5.5 MPa 1/2 or less. It is more preferably 0 MPa 1/2 or less, further preferably 4.5 MPa 1/2 or less, even more preferably 4.0 MPa 1/2 or less, and 3.5 MPa 1/2 or less. is particularly preferred. It is speculated that if R1 is 6.0 MPa 1/2 or less, the affinity of compound A with single-walled CNTs is improved, and compound A easily impregnates inside the bulk structure of single-walled CNTs. Layer CNTs can be well dispersed in the fluororubber.
The lower limit of the value of R1 is not particularly limited, but it is preferably 0.5 MPa 1/2 or more, more preferably 1.0 MPa 1/2 or more.
 なお、単層CNTと化合物Aとのハンセン溶解度パラメータの距離R1(MPa1/2)は、下記式(III)を用いて算出することができる。
R1={4×(δd3-δd2+(δp3-δp2+(δh3-δh21/2 ・・・(III)
 δd2:化合物Aの分散項
 δd3:単層CNTの分散項
 δp2:化合物Aの極性項
 δp3:単層CNTの極性項
 δh2:化合物Aの水素結合項
 δh3:単層CNTの水素結合項
The distance R1 (MPa 1/2 ) of the Hansen solubility parameter between single-walled CNT and compound A can be calculated using the following formula (III).
R1={4×(δ d3 −δ d2 ) 2 +(δ p3 −δ p2 ) 2 +(δ h3 −δ h2 ) 2 } 1/2 (III)
δ d2 : Dispersion term of compound A δ d3 : Dispersion term of single-walled CNT δ p2 : Polarity term of compound A δ p3 : Polarity term of single-walled CNT δ h2 : Hydrogen bond term of compound A δ h3 : Single-walled CNT hydrogen bond term
-ハンセン溶解度パラメータの距離R2-
 また、化合物Aとフッ素ゴムのハンセン溶解度パラメータの距離R2は、上述した通りR1より大きいことが必要である。R2がR1以上であれば、化合物Aは、フッ素ゴムとの親和性が過度に高まることもなく、CNTのバルク構造体内部に含浸し易くなるためと推察されるが、単層CNTをフッ素ゴム中に良好に分散させることができる。
-Distance R2 of Hansen Solubility Parameter-
Moreover, the distance R2 of the Hansen solubility parameter between the compound A and the fluororubber must be larger than R1 as described above. If R2 is R1 or more, compound A does not excessively increase affinity with the fluororubber, and it is presumed that the inside of the CNT bulk structure is easily impregnated. can be well dispersed in
 具体的に、R2は、4.0MPa1/2以上であることが好ましく、4.5MPa1/2以上であることがより好ましく、5.5MPa1/2超であることが更に好ましく、6.0MPa1/2以上であることが一層好ましく、7.0MPa1/2以上であることが特に好ましく、16.0MPa1/2以下であることが好ましく、9.0MPa1/2以下であることがより好ましい。R2が上記範囲内であれば、単層CNTをフッ素ゴム中により一層良好に分散させることができる。 Specifically, R2 is preferably 4.0 MPa 1/2 or more, more preferably 4.5 MPa 1/2 or more, and still more preferably more than 5.5 MPa 1/2 . It is more preferably 0 MPa 1/2 or more, particularly preferably 7.0 MPa 1/2 or more, preferably 16.0 MPa 1/2 or less, and preferably 9.0 MPa 1/2 or less. more preferred. If R2 is within the above range, the single-walled CNTs can be dispersed more favorably in the fluororubber.
 なお、フッ素ゴムと化合物Aとのハンセン溶解度パラメータの距離R2は、下記式(IV)を用いて算出することができる。
R2={4×(δd1-δd2+(δp1-δp2+(δh1-δh21/2 ・・・(IV)
 δd1:フッ素ゴムの分散項
 δd2:化合物Aの分散項
 δp1:フッ素ゴムの極性項
 δp2:化合物Aの極性項
 δh1:フッ素ゴムの水素結合項
 δh2:化合物Aの水素結合項
The distance R2 of the Hansen solubility parameter between the fluororubber and the compound A can be calculated using the following formula (IV).
R2={4×(δ d1 −δ d2 ) 2 +(δ p1 −δ p2 ) 2 +(δ h1 −δ h2 ) 2 } 1/2 (IV)
δ d1 : Dispersion term of fluororubber δ d2 : Dispersion term of compound A δ p1 : Polarity term of fluororubber δ p2 : Polarity term of compound A δ h1 : Hydrogen bond term of fluororubber δ h2 : Hydrogen bond term of compound A
 なお、ハンセン溶解度パラメータの定義及び計算方法は、下記の文献に記載されている。Charles M. Hansen著、「Hansen Solubility Parameters: A Users Handbook」、CRCプレス、2007年。 The definition and calculation method of the Hansen solubility parameter are described in the following document. Charles M. Hansen, "Hansen Solubility Parameters: A Users Handbook", CRC Press, 2007.
 また、ハンセン溶解度パラメータの文献値が未知の物質については、コンピュータソフトウェア(Hansen Solubility Parameters in Practice(HSPiP))を用いることによって、その化学構造から簡便にハンセン溶解度パラメータを推算することができる。
 具体的には、例えば、HSPiPバージョン3を用い、データベースに登録されている化合物についてはその値を用い、登録されていない化合物については推算値を用いればよい。
For substances whose literature value of Hansen solubility parameter is unknown, the Hansen solubility parameter can be easily estimated from the chemical structure by using computer software (Hansen Solubility Parameters in Practice (HSPiP)).
Specifically, for example, using HSPiP version 3, the values are used for compounds registered in the database, and the estimated values are used for compounds that are not registered.
-化合物Aの具体例-
 ここで、化合物Aは、凝固点が上述した値以下であり、且つ上述したハンセン溶解度パラメータの距離に関する条件を満たせば特に限定されず、任意の有機化合物を用いることができる。化合物Aとしては、例えば、環式炭化水素を有するエステル化合物(環式炭化水素及びエステル基を有する化合物)が好ましく、芳香環を有するエステル化合物がより好ましく、ベンゼン環を有するエステル化合物が更に好ましく、フェニルエステル化合物が一層好ましい。
 ここで、環式炭化水素を有する化合物の具体例としては、p-トルイル酸メチル(4-メチル安息香酸メチル)、o-トルイル酸メチル(2-メチル安息香酸メチル)、安息香酸メチル、安息香酸ベンジル、安息香酸フェニル等の安息香酸エステル化合物;3-フェニルプロピオン酸メチル等の3-フェニルプロピオン酸アルキル;けい皮酸エチル;を挙げることができる。
 これらの中でも、o-トルイル酸メチルが特に好ましい。
 なお、化合物Aは、1種単独で、又は、2種以上を混合して用いることができる。
-Specific examples of compound A-
Here, the compound A is not particularly limited as long as it has a freezing point equal to or lower than the above-described value and satisfies the above-described conditions regarding the distance of the Hansen Solubility Parameter, and any organic compound can be used. As the compound A, for example, an ester compound having a cyclic hydrocarbon (a compound having a cyclic hydrocarbon and an ester group) is preferable, an ester compound having an aromatic ring is more preferable, and an ester compound having a benzene ring is still more preferable. Phenyl ester compounds are more preferred.
Specific examples of compounds having cyclic hydrocarbons include methyl p-toluate (methyl 4-methylbenzoate), methyl o-toluate (methyl 2-methylbenzoate), methyl benzoate, and benzoic acid. benzoic acid ester compounds such as benzyl and phenyl benzoate; alkyl 3-phenylpropionates such as methyl 3-phenylpropionate; and ethyl cinnamate.
Among these, methyl o-toluate is particularly preferred.
In addition, compound A can be used individually by 1 type or in mixture of 2 or more types.
-化合物Aの使用量-
 なお、化合物Aの使用量は特に限定されないが、フッ素ゴム中で単層CNTを一層良好に分散させる観点から、マスターバッチの調製に用いるフッ素ゴム100質量部当たり0.1質量部以上であることが好ましく、1質量部以上であることがより好ましく、5質量部以上であることが更に好ましく、10質量部以上であることが特に好ましく、60質量部以下であることが好ましく、40質量部以下であることがより好ましく、35質量部以下であることが更に好ましく、30質量部以下であることが特に好ましい。
- Amount of compound A used -
Although the amount of compound A used is not particularly limited, it should be 0.1 parts by mass or more per 100 parts by mass of the fluororubber used for preparing the masterbatch from the viewpoint of better dispersing the single-walled CNTs in the fluororubber. is preferably 1 part by mass or more, more preferably 5 parts by mass or more, particularly preferably 10 parts by mass or more, preferably 60 parts by mass or less, and 40 parts by mass or less is more preferably 35 parts by mass or less, and particularly preferably 30 parts by mass or less.
-単層CNTと化合物Aの混合-
 単層CNTと化合物Aとを混合して混合物を得るに際しては、任意に、多層CNT、補強性フィラー、架橋剤及び/又はその他の成分(化合物Aを除く)を単層CNT及び化合物Aに混合して混合物に含有させてもよいが、これらは後述の混練工程で、マスターバッチに添加することが好ましい。
 また、単層CNTと化合物Aとの混合は、通常、フッ素ゴムの不存在下で行われる。
- Mixture of single-walled CNT and compound A -
When mixing single-walled CNTs and compound A to obtain a mixture, optionally, multi-walled CNTs, reinforcing fillers, cross-linking agents and/or other components (excluding compound A) are mixed with single-walled CNTs and compound A. These may be added to the mixture as a mixture, but it is preferable to add them to the masterbatch in the kneading step described later.
In addition, single-walled CNTs and compound A are usually mixed in the absence of fluororubber.
 ここで、単層CNTと化合物Aとの混合は、特に限定されることなく、例えば、化合物A中への単層CNTの浸漬、化合物Aの単層CNTへの含浸、単層CNTへの化合物Aの塗布、単層CNTへの化合物Aのスプレー噴霧などの任意の混合方法を用いて行うことができる。中でも、後述の分散処理において単層CNTを更に良好に分散させる観点からは、化合物Aを単層CNTに含浸させることにより単層CNTと化合物Aとを混合することが好ましい。 Here, the mixing of the single-walled CNT and the compound A is not particularly limited. Any mixing method such as application of A or spraying of compound A onto single-walled CNTs can be used. Above all, from the viewpoint of better dispersing the single-walled CNTs in the later-described dispersion treatment, it is preferable to mix the single-walled CNTs with the compound A by impregnating the single-walled CNTs with the compound A.
 化合物Aを単層CNTに含浸させる時間は、任意の時間とすることができるが、後述の分散処理において単層CNTを更に良好に分散させる観点からは、少なくとも1時間が好ましく、少なくとも10時間がより好ましい。
 また、化合物Aを単層CNTに含浸させる際の温度は、特に限定されることなく、例えば、化合物Aの凝固点以上沸点未満の温度とすることができる。
 そして、化合物Aの単層CNTへの含浸は、特に限定されないが、通常は常圧(1atm)下で行われる。
The time for which the compound A is impregnated into the single-walled CNTs can be any time, but from the viewpoint of dispersing the single-walled CNTs even better in the dispersion treatment described later, it is preferably at least 1 hour, and at least 10 hours. more preferred.
Moreover, the temperature at which the single-walled CNTs are impregnated with the compound A is not particularly limited.
Impregnation of single-walled CNTs with compound A is not particularly limited, but is usually performed under normal pressure (1 atm).
-分散処理-
 上述のように単層CNTと化合物Aとを混合して得た混合物と、フッ素ゴムとを含む組成物に分散処理を施す。
 なお、分散処理では、任意に、多層CNT、補強性フィラー、架橋剤及び/又はその他の成分(化合物Aを除く)を組成物に含有させてもよいが、これらは後述の混錬工程で、マスターバッチに添加することが好ましい。
- Distributed processing -
A dispersion treatment is applied to a composition containing the mixture obtained by mixing the single-walled CNTs and the compound A as described above and the fluororubber.
In the dispersion treatment, the composition may optionally contain multi-walled CNTs, reinforcing fillers, cross-linking agents and/or other components (excluding compound A). It is preferably added to a masterbatch.
 分散処理としては、フッ素ゴム中に単層CNTを分散させることができれば特に限定されず、既知の分散処理を用いることができる。このような分散処理としては、例えば、ずり応力による分散処理、衝突エネルギーによる分散処理、キャビテーション効果が得られる分散処理が挙げられる。 The dispersion treatment is not particularly limited as long as the single-walled CNTs can be dispersed in the fluororubber, and any known dispersion treatment can be used. Such dispersion treatment includes, for example, dispersion treatment by shear stress, dispersion treatment by collision energy, and dispersion treatment by which a cavitation effect is obtained.
 ずり応力による分散処理に使用し得る装置としては、2本ロールミルや3本ロールミル、ニーダー、ローター/ステーター型分散機等が挙げられる。
 衝突エネルギーによる分散処理に使用し得る装置としては、ビーズミル、ボールミル等が挙げられる。
 キャビテーション効果が得られる分散処理に使用し得る装置としては、ジェットミル、超音波分散機等が挙げられる。
Apparatuses that can be used for dispersion treatment using shear stress include a two-roll mill, a three-roll mill, a kneader, a rotor/stator type disperser, and the like.
Apparatuses that can be used for dispersion treatment by collision energy include bead mills, ball mills, and the like.
A jet mill, an ultrasonic disperser, and the like can be used as devices that can be used for the dispersion treatment to obtain the cavitation effect.
 上記分散処理の条件は特に限定されず、例えば上述した装置における通常の分散条件の範囲内で適宜設定することができる。 The conditions for the dispersion processing are not particularly limited, and can be set as appropriate within the range of normal dispersion conditions for the above-described apparatus, for example.
<<混練工程>>
 上記マスターバッチ調製工程で得られたマスターバッチをそのまま本発明のフッ素ゴム組成物として用いてもよいが、単層CNTとフッ素ゴムに加え、更に多層CNT、架橋剤、及び/又はその他の成分(上述した化合物Aを除く)を含むフッ素ゴム組成物を調製する場合は、これらの成分と、上述のようにして得られたマスターバッチとを混練することが好ましい。また混練工程では、マスターバッチに追加でフッ素ゴムを添加してもよい。
 混練には、例えば、ミキサー、一軸混練機、二軸混練機、ロール、ブラベンダー、押出機などを用いることができる。混練条件は、適宜調節することができる。
 なお、混練工程において、多層CNT及び/又は補強性フィラーと、架橋剤とを用いる場合は、まずはマスターバッチと多層CNT及び/又は補強性フィラーとを混練し、次いで得られた混合物と架橋剤とを混練することが、γGを所期の範囲内に良好に制御しうる観点から好ましい。
<< Kneading process >>
The masterbatch obtained in the above masterbatch preparation step may be used as it is as the fluororubber composition of the present invention, but in addition to single-walled CNTs and fluororubber, multi-layered CNTs, a cross-linking agent, and / or other components ( When preparing a fluororubber composition containing the above-described compound A), it is preferable to knead these components with the masterbatch obtained as described above. Further, in the kneading step, a fluororubber may be additionally added to the masterbatch.
For kneading, for example, a mixer, single-screw kneader, twin-screw kneader, roll, Brabender, extruder, or the like can be used. Kneading conditions can be appropriately adjusted.
In the kneading step, when multi-layer CNT and/or reinforcing filler and a cross-linking agent are used, the masterbatch and multi-layer CNT and/or reinforcing filler are first kneaded, and then the resulting mixture and cross-linking agent are mixed. is preferable from the viewpoint that γG * can be well controlled within the desired range.
(成形体)
 本発明の成形体は、上述した架橋剤を含む本発明のフッ素ゴム組成物を用いて形成される。そして本発明の成形体は、本発明のフッ素ゴム組成物により形成されているため、高温下での伸張性に優れる。
 ここで、本発明の成形体の用途は、特に限定されない。本発明の成形体は、例えば、オイルガス用等のシール材、エンジン周辺部材として好適に用いることができる。また本発明の成形体の形状は、用途に応じて適宜設定することができる。
(Molded body)
The molded article of the present invention is formed using the fluororubber composition of the present invention containing the cross-linking agent described above. And since the molded article of the present invention is formed from the fluororubber composition of the present invention, it is excellent in extensibility at high temperatures.
Here, the use of the molded article of the present invention is not particularly limited. The molded article of the present invention can be suitably used, for example, as a sealing material for oil gas or as an engine peripheral member. Further, the shape of the molded article of the present invention can be appropriately set according to the application.
 なお、フッ素ゴム組成物を成形して成形体を得る成形方法としては、特に限定されることなく、例えば、射出成形、押出成形、プレス成形、ロール成形などの任意の成形方法を用いて行うことができる。 The molding method for obtaining a molded article by molding the fluororubber composition is not particularly limited, and any molding method such as injection molding, extrusion molding, press molding, roll molding, etc. may be used. can be done.
 以下、本発明について実施例を用いて更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
 なお、実施例及び比較例において、各種測定及び評価は以下のように行った。
EXAMPLES The present invention will be described in more detail below using examples, but the present invention is not limited to these examples.
In the examples and comparative examples, various measurements and evaluations were performed as follows.
<γG
 得られたフッ素ゴム組成物について、動的粘弾性測定装置「ラバープロセスアナライザ」(アルファテクノロジー社製、型式:Premier RPA)を用いて、測定周波数:1Hz、測定温度:40℃の条件下で動的粘弾性試験を行った。そして動的歪みが0.1%時の複素弾性率G (kPa)、動的歪みが630%時の複素弾性率G (kPa)を測定した。
 得られたG とG を用い、下記式(I)
 γG=G /G  ・・・(I)
でγGを算出した。
<引張強度比>
 得られたフッ素ゴム組成物を、温度160℃、圧力10MPaで20分間一次架橋した。次いで、232℃のギヤーオーブンで2時間加熱し、二次架橋を行うことにより架橋ゴムシートX(長さ:150mm、幅:150mm、厚さ:2mm)を得た。
 この架橋ゴムシートXを、ダンベル試験片状(JIS3号)に打ち抜き、試験片Xを作製した。引張試験機(ストログラフVG、東洋精機社製)を用い、JIS K6251:2010に準拠して、試験温度:200℃、試験湿度:50%、引張速度:500±50mm/分の条件で引張試験を行い、引張強度(試験片を切断するまで引っ張ったときに記録される最大の引張力(N)を試験片の初期断面積(m)で除した値)を測定した。この引張強度をT(MPa)とした。
 別途、上述したフッ素ゴム組成物中に含まれる、フッ素ゴム:架橋剤:添加剤(受酸剤)の質量比と同じ質量比で、当該フッ素ゴムと当該架橋剤と当該添加剤(受酸剤)とを混合して試験用ゴム組成物を調製した。すなわち、試験用ゴム組成物は、架橋剤を含むフッ素ゴム組成物から、CNT及び補強性フィラーを除いた組成物に相当する。
 得られた試験用ゴム組成物を、架橋ゴムシートXを調製した際と同様にして一次架橋及び二次架橋を行い、架橋ゴムシートYを得た。
 この架橋ゴムシートYをダンベル試験片状(JIS3号)に打ち抜き、試験片Yを作製した。試験片Xの引張強度Tを測定した際と同様にして、試験片Yの引張強度を測定した。この引張強度をT(MPa)とした。
 得られた引張強度T、引張強度Tを用い、下記式(II):
 引張強度比=T/T・・・(II)
で引張強度比を算出した。
<高温下での伸張性(引張強度)>
 上述した「引張強度比」における引張強度Tにより評価した。引張強度Tの値が大きいほど、フッ素ゴム組成物を用いて形成される成形体が高温下での伸張性に優れることを示す。
<加工性(粘度)>
 上述したγGの導出に際し得られた、動的歪みが0.1%時の複素弾性率G (kPa)における複素粘性率を粘度(kPa・s)として評価した。粘度の値が小さいほど、フッ素ゴム組成物が加工性に優れることを示す。
<γG * >
The obtained fluororubber composition was measured using a dynamic viscoelasticity measuring device "Rubber Process Analyzer" (manufactured by Alpha Technology, model: Premier RPA) under the conditions of measurement frequency: 1 Hz and measurement temperature: 40 ° C. A viscoelasticity test was performed. Then, the complex elastic modulus G * L (kPa) at a dynamic strain of 0.1% and the complex elastic modulus G * H (kPa) at a dynamic strain of 630% were measured.
Using the obtained G * L and G * H , the following formula (I)
γG * =G * L /G * H (I)
to calculate γG * .
<Tensile strength ratio>
The obtained fluororubber composition was subjected to primary cross-linking at a temperature of 160° C. and a pressure of 10 MPa for 20 minutes. Then, it was heated in a gear oven at 232° C. for 2 hours for secondary crosslinking to obtain a crosslinked rubber sheet X (length: 150 mm, width: 150 mm, thickness: 2 mm).
This crosslinked rubber sheet X was punched into a dumbbell test piece (JIS No. 3) to prepare a test piece X. Using a tensile tester (Strograph VG, manufactured by Toyo Seiki Co., Ltd.), in accordance with JIS K6251: 2010, test temperature: 200 ° C., test humidity: 50%, tensile speed: 500 ± 50 mm / min Tensile test. and measured the tensile strength (value obtained by dividing the maximum tensile force (N) recorded when the test piece was pulled to break by the initial cross-sectional area (m 2 ) of the test piece). This tensile strength was defined as T X (MPa).
Separately, the fluororubber, the crosslinker, and the additive (acid acceptor) are mixed at the same mass ratio as the mass ratio of the fluororubber: crosslinker: additive (acid acceptor) contained in the above-described fluororubber composition. ) to prepare a test rubber composition. That is, the test rubber composition corresponds to a composition obtained by removing the CNTs and the reinforcing filler from the fluororubber composition containing the cross-linking agent.
The resulting test rubber composition was subjected to primary cross-linking and secondary cross-linking in the same manner as in the preparation of the cross-linked rubber sheet X to obtain a cross-linked rubber sheet Y.
This crosslinked rubber sheet Y was punched into a dumbbell test piece (JIS No. 3) to prepare a test piece Y. The tensile strength of the test piece Y was measured in the same manner as when the tensile strength T X of the test piece X was measured. This tensile strength was defined as T Y (MPa).
Using the obtained tensile strength T X and tensile strength T Y , the following formula (II):
Tensile strength ratio = T X /T Y (II)
to calculate the tensile strength ratio.
<Extensibility at high temperature (tensile strength)>
It was evaluated by the tensile strength T X in the "tensile strength ratio" described above. The larger the value of the tensile strength TX , the more excellent the extensibility at high temperatures of the molded article formed using the fluororubber composition.
<Workability (viscosity)>
The complex viscosity at the complex elastic modulus G * L (kPa) at a dynamic strain of 0.1% obtained in deriving γG * was evaluated as viscosity (kPa·s). The smaller the viscosity value, the more excellent the processability of the fluororubber composition.
(実施例1)
<単層CNTの準備>
 単層CNTとして、SGCNT(日本ゼオン社製、「ZEONANO SG101」)を準備した。
 SGCNTのラマン分光光度計での測定において、単層CNTに特徴的な100~300cm-1の低波数領域にラジアルブリージングモード(RBM)のスペクトルが観察された。また、BET比表面積計(日本ベル株式会社製、BELSORP(登録商標)-max)を用いて測定したSGCNTのBET比表面積は1325m/g(未開口)であった。更に、透過型電子顕微鏡を用いて無作為に選択した100本のSGCNTの直径及び長さを測定し、SGCNTの平均直径(Av)、直径の標準偏差(σ)及び平均長さを求めたところ、平均直径(Av)は3.5nmであり、標準偏差(σ)に3を乗じた値(3σ)は2.1nmであり、それらの比(3σ/Av)は0.6であり、平均長さは450μmであった。更に、日本ベル株式会社製の「BELSORP(登録商標)-mini」を用いてSGCNTのt-プロットを測定したところ、t-プロットは、上に凸な形状で屈曲していた。そして、S2/S1は0.09であり、屈曲点の位置tは0.6nmであった。
<フッ素ゴム組成物の調製>
[マスターバッチの調製]
 上述した調製方法(i)で、以下のようにマスターバッチを調製した。
 溶媒としてのメチルエチルケトン1900gに、フッ素ゴムとしてのフッ化ビニリデン系ゴム(FKM、ケマーズ社製、製品名「Viton GBL-600S」)100gを加え、24時間撹拌してフッ素ゴムを溶解させた。
 次に、得られたフッ素ゴム溶液に対し、上記SGCNTを4g加え、撹拌機(PRIMIX社製、製品名「ラボ・リューション(登録商標)」)を用いて15分間撹拌した。更に、ビーズミル(淺田鉄工社製、製品名「ナノミル(登録商標) NM-G1.4L」)、分散メディアとしてジルコニアビーズ(ビッカース硬さ:1250、分散メディアの充填率:52%、分散メディアの平均直径:0.5mm)を用いて、周速12m/s、吐出量65g/分の条件で、SGCNTを加えたフッ素ゴム溶液を温度45℃で6パス分散処理した。その後、得られた分散処理液を風乾させ、黒色固体を得た。そして、得られた黒色固体を60℃で12時間減圧乾燥し、フッ素ゴムとSGCNTとの混合物であるマスターバッチを得た。
[混練]
 その後、20℃のオープンロールを用いて、上記で得られたマスターバッチ104g(フッ素ゴム:100g、SGCNT:4g)と、受酸剤としての亜鉛華(亜鉛華二種)3gと、架橋剤としてのトリアリルイソシアヌレート3g(三菱ケミカル株式会社製、「TAIC(登録商標)」)及び2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン(日本油脂社製、商品名「パーヘキサ25B40」)2gとを混練し、ロール間隔を2mmに調整した後、ゴム混練物をロールに巻き付け、左右切り返しを各3回実施後、シート出しを行うことで、架橋剤を含むフッ素ゴム組成物を得た。このフッ素ゴム組成物について動的粘弾性試験を行いγG及び粘度を特定した。結果を表1に示す。
<成形体(架橋ゴムシート)の調製>
 得られた架橋剤を含むフッ素ゴム組成物を<引張強度比>の項で上述した条件で架橋して成形体である架橋ゴムシートXを作製し、引張強度Tを測定した。引張強度Tの結果を表1に示す。
 また別途、架橋剤を含むフッ素ゴム組成物から単層CNTを除いたフッ素ゴム組成物として、フッ素ゴムとしてのフッ化ビニリデン系ゴムと、受酸剤としての亜鉛華と、架橋剤としてのトリアリルイソシアヌレート及び2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサンとを、架橋剤を含むフッ素ゴム組成物と同じ質量比で含む試験用ゴム組成物を準備した。試験用ゴム組成物を<引張強度比>の項で上述した条件で架橋して架橋ゴムシートYを作製し、引張強度Tを測定した。そして引張強度比を算出した。引張強度比の結果を表1に示す。
(Example 1)
<Preparation of single-walled CNT>
SGCNTs ("ZEONANO SG101" manufactured by Nippon Zeon Co., Ltd.) were prepared as single-walled CNTs.
In the measurement of SGCNTs with a Raman spectrophotometer, a radial breathing mode (RBM) spectrum was observed in the low wavenumber region of 100 to 300 cm −1 characteristic of single-walled CNTs. Further, the BET specific surface area of SGCNT measured using a BET specific surface area meter (BELSORP (registered trademark)-max, manufactured by Bell Japan Co., Ltd.) was 1325 m 2 /g (unopened). Furthermore, the diameter and length of 100 randomly selected SGCNTs were measured using a transmission electron microscope, and the average diameter (Av) of the SGCNTs, the standard deviation of the diameter (σ) and the average length were obtained. , the average diameter (Av) is 3.5 nm, the standard deviation (σ) multiplied by 3 (3σ) is 2.1 nm, their ratio (3σ/Av) is 0.6, and the average The length was 450 μm. Furthermore, when the t-plot of SGCNT was measured using “BELSORP (registered trademark)-mini” manufactured by Bell Japan Co., Ltd., the t-plot was curved in a convex shape. S2/S1 was 0.09, and the bending point position t was 0.6 nm.
<Preparation of fluororubber composition>
[Preparation of masterbatch]
A masterbatch was prepared as follows by the preparation method (i) described above.
To 1900 g of methyl ethyl ketone as a solvent, 100 g of a vinylidene fluoride rubber (FKM, manufactured by Chemours, product name "Viton GBL-600S") as a fluororubber was added and stirred for 24 hours to dissolve the fluororubber.
Next, 4 g of the above SGCNT was added to the obtained fluororubber solution, and the mixture was stirred for 15 minutes using a stirrer (manufactured by PRIMIX, product name “Labo Solution (registered trademark)”). Furthermore, a bead mill (manufactured by Asada Iron Works, product name “Nanomill (registered trademark) NM-G1.4L”), zirconia beads as dispersion media (Vickers hardness: 1250, filling rate of dispersion media: 52%, average of dispersion media SGCNT-added fluororubber solution was dispersed at a temperature of 45° C. for 6 passes under conditions of a peripheral speed of 12 m/s and a discharge amount of 65 g/min. After that, the resulting dispersed liquid was air-dried to obtain a black solid. The resulting black solid was dried under reduced pressure at 60° C. for 12 hours to obtain a masterbatch, which is a mixture of fluororubber and SGCNT.
[Kneading]
After that, using an open roll at 20 ° C., 104 g of the masterbatch obtained above (fluororubber: 100 g, SGCNT: 4 g), 3 g of zinc white (two types of zinc white) as an acid acceptor, and 3 g of triallyl isocyanurate (manufactured by Mitsubishi Chemical Corporation, "TAIC (registered trademark)") and 2,5-dimethyl-2,5-di(t-butylperoxy)hexane (manufactured by NOF Corporation, trade name "Perhexa 25B40") 2 g, and after adjusting the roll interval to 2 mm, the rubber kneaded product is wound around a roll, and after performing left and right turning three times each, sheeting is performed to obtain a fluororubber composition containing a cross-linking agent. got This fluororubber composition was subjected to a dynamic viscoelasticity test to determine γG * and viscosity. Table 1 shows the results.
<Preparation of molding (crosslinked rubber sheet)>
The resulting fluororubber composition containing a cross-linking agent was cross-linked under the conditions described above in the <Tensile strength ratio> section to prepare a cross-linked rubber sheet X as a molded article, and the tensile strength TX was measured. Table 1 shows the results of tensile strength TX .
Separately, as a fluororubber composition obtained by excluding single-walled CNTs from a fluororubber composition containing a cross-linking agent, vinylidene fluoride-based rubber as a fluororubber, zinc white as an acid acceptor, and triallyl as a cross-linking agent A test rubber composition containing isocyanurate and 2,5-dimethyl-2,5-di(t-butylperoxy)hexane in the same weight ratio as the fluororubber composition containing the cross-linking agent was prepared. The test rubber composition was crosslinked under the conditions described above in the section <Tensile strength ratio> to prepare a crosslinked rubber sheet Y, and the tensile strength TY was measured. Then, the tensile strength ratio was calculated. Table 1 shows the tensile strength ratio results.
(実施例2)
<単層CNTの準備>
 実施例1と同様のSGCNT(ハンセン溶解度パラメータ:δd3=19.4、δp3=6.0、δh3=4.5)を準備した。
<フッ素ゴム組成物の調製>
[マスターバッチの調製]
 上述した調製方法(ii)で、以下のようにマスターバッチを調製した。
 ガラス瓶に、単層CNTを26.4g(後述のフッ素ゴム660gを100質量部として、4質量部)計量後、化合物Aとしてのo-トルイル酸メチル(凝固点:-50℃以下)を158.4g滴下した。次いで、40℃のオーブンに12時間静置し、単層CNTにo-トルイル酸メチルを含浸させて単層CNTとo-トルイル酸メチルを含む混合物を得た。
 次いで、フッ素ゴムとしてのフッ化ビニリデン系ゴム(FKM、ケマーズ社製、製品名「Viton GBL-600S」、ハンセン溶解度パラメータ:δd1=14.7、δp1=9.0、δh1=2.7))660gと、ジャケット温度を25℃に設定したワンダーニーダー(登録商標)に上述の単層CNTとo-トルイル酸メチルを含む混合物を添加し、60分間混錬(分散処理)を行い、フッ素ゴムと単層CNTとo-トルイル酸メチルとが複合した複合物を得た。得られた複合物を1cm角に細断した後、150℃の真空乾燥機で一晩乾燥させることで、マスターバッチを得た。
 なお、単層CNT(SGCNT)と化合物A(o-トルイル酸メチル)のハンセン溶解度パラメータの距離R1は6.0MPa1/2以下であり、フッ素ゴム(FKM)と化合物A(o-トルイル酸メチル)のハンセン溶解度パラメータの距離R2は距離R1より大きかった。
[混練]
 上記で得られたマスターバッチ(フッ素ゴム:100g、SGCNT:4gを含むようマスターバッチの全体量を調整)を用いた以外は実施例1と同様にして、架橋剤を含むフッ素ゴム組成物を得た。このフッ素ゴム組成物について動的粘弾性試験を行いγG及び粘度を特定した。結果を表1に示す。
<成形体(架橋ゴムシート)の調製>
 得られた架橋剤を含むフッ素ゴム組成物を実施例1と同様にして架橋して成形体である架橋ゴムシートXを作製し、引張強度Tを測定した。引張強度Tの結果を表1に示す。
 また別途、実施例1と同様にして準備した架橋ゴムシートYを測定し、引張強度Tを測定した。そして引張強度比を算出した。引張強度比の結果を表1に示す。
(Example 2)
<Preparation of single-walled CNT>
SGCNTs (Hansen solubility parameters: δ d3 =19.4, δ p3 =6.0, δ h3 =4.5) similar to those in Example 1 were prepared.
<Preparation of fluororubber composition>
[Preparation of masterbatch]
A masterbatch was prepared as follows by the preparation method (ii) described above.
After weighing 26.4 g of single-walled CNTs (4 parts by mass when 660 g of fluororubber described later is taken as 100 parts by mass) in a glass bottle, 158.4 g of methyl o-toluate (freezing point: −50° C. or less) as compound A. Dripped. Then, the single-walled CNTs were allowed to stand in an oven at 40° C. for 12 hours, and the single-walled CNTs were impregnated with o-methyl toluate to obtain a mixture containing the single-walled CNTs and methyl o-toluate.
Next, vinylidene fluoride rubber (FKM, manufactured by Chemours, product name “Viton GBL-600S”, Hansen solubility parameters: δ d1 =14.7, δ p1 =9.0, δ h1 =2. 7)) Add 660 g of the mixture containing the single-walled CNTs and methyl o-toluate to Wonder Kneader (registered trademark) whose jacket temperature is set to 25 ° C., knead (disperse) for 60 minutes, A composite of fluororubber, single-walled CNT and methyl o-toluate was obtained. The resulting composite was cut into pieces of 1 cm square and then dried in a vacuum dryer at 150° C. overnight to obtain a masterbatch.
Note that the distance R1 of the Hansen solubility parameter between the single-walled CNT (SGCNT) and the compound A (methyl o-toluate) is 6.0 MPa 1/2 or less, and the fluororubber (FKM) and the compound A (methyl o-toluate) ) was greater than the distance R1 of the Hansen solubility parameter.
[Kneading]
A fluororubber composition containing a cross-linking agent was obtained in the same manner as in Example 1 except that the masterbatch obtained above (fluororubber: 100 g, SGCNT: 4 g, the total amount of the masterbatch was adjusted to contain 4 g) was used. rice field. This fluororubber composition was subjected to a dynamic viscoelasticity test to determine γG * and viscosity. Table 1 shows the results.
<Preparation of molding (crosslinked rubber sheet)>
The obtained fluororubber composition containing the cross-linking agent was cross-linked in the same manner as in Example 1 to prepare a cross-linked rubber sheet X as a molded article, and the tensile strength TX was measured. Table 1 shows the results of tensile strength TX .
Separately, the crosslinked rubber sheet Y prepared in the same manner as in Example 1 was measured to measure the tensile strength TY . Then, the tensile strength ratio was calculated. Table 1 shows the tensile strength ratio results.
(実施例3)
<単層CNTの準備>
 実施例1と同様のSGCNTを準備した。
<フッ素ゴム組成物の調製>
[マスターバッチの調製]
 実施例1と同様の方法で、フッ素ゴムとSGCNTの混合物であるマスターバッチを得た。
[混練]
 その後、20℃のオープンロールを用いて、上記で得られたマスターバッチ104g(フッ素ゴム:100g、SGCNT:4g)と、補強性フィラーとしてのカーボンブラック(Cancarb社製、製品名「サーマックス(登録商標)MT」)30gとを混練し、ロール間隔を2mmに調整した後、ゴム混練物をロールに巻き付け、左右切り返しを各3回実施後、シート出しを行った。さらに、20℃のオープンロールを用いて、上記で得られたシート134g(フッ素ゴム:100g、SGCNT:4g、カーボンブラック:30g)と、受酸剤としての亜鉛華(亜鉛華二種)3gと、架橋剤としてのトリアリルイソシアヌレート3g(三菱ケミカル株式会社製、「TAIC(登録商標)」)及び2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン(日本油脂社製、商品名「パーヘキサ25B40」)2gとを混練し、ロール間隔を2mmに調整した後、ゴム混練物をロールに巻き付け、左右切り返しを各3回実施後、シート出しを行うことで、架橋剤を含むフッ素ゴム組成物を得た。このフッ素ゴム組成物について動的粘弾性試験を行いγG及び粘度を特定した。結果を表1に示す。
<成形体(架橋ゴムシート)の調製>
 得られた架橋剤を含むフッ素ゴム組成物を実施例1と同様にして架橋して成形体である架橋ゴムシートXを作製し、引張強度Tを測定した。引張強度Tの結果を表1に示す。
 また別途、実施例1と同様にして準備した架橋ゴムシートYを測定し、引張強度Tを測定した。そして引張強度比を算出した。引張強度比の結果を表1に示す。
(Example 3)
<Preparation of single-walled CNT>
SGCNTs similar to those in Example 1 were prepared.
<Preparation of fluororubber composition>
[Preparation of masterbatch]
A masterbatch, which is a mixture of fluororubber and SGCNT, was obtained in the same manner as in Example 1.
[Kneading]
Then, using an open roll at 20 ° C., 104 g of the master batch obtained above (fluororubber: 100 g, SGCNT: 4 g) and carbon black as a reinforcing filler (manufactured by Cancarb, product name "Thermax (registered Trademark) MT”) 30 g was kneaded, and the roll interval was adjusted to 2 mm. Furthermore, using an open roll at 20 ° C., 134 g of the sheet obtained above (fluororubber: 100 g, SGCNT: 4 g, carbon black: 30 g) and zinc white (two types of zinc white) as an acid acceptor 3 g , 3 g of triallyl isocyanurate as a cross-linking agent (manufactured by Mitsubishi Chemical Corporation, "TAIC (registered trademark)") and 2,5-dimethyl-2,5-di(t-butylperoxy)hexane (manufactured by NOF Corporation, (trade name “Perhexa 25B40”)), and after adjusting the roll interval to 2 mm, the rubber kneaded product is wound around a roll, and after turning left and right three times each, the sheet is taken out to contain a cross-linking agent. A fluororubber composition was obtained. This fluororubber composition was subjected to a dynamic viscoelasticity test to determine γG * and viscosity. Table 1 shows the results.
<Preparation of molding (crosslinked rubber sheet)>
The obtained fluororubber composition containing the cross-linking agent was cross-linked in the same manner as in Example 1 to prepare a cross-linked rubber sheet X as a molded article, and the tensile strength TX was measured. Table 1 shows the results of tensile strength TX .
Separately, the crosslinked rubber sheet Y prepared in the same manner as in Example 1 was measured to measure the tensile strength TY . Then, the tensile strength ratio was calculated. Table 1 shows the tensile strength ratio results.
(実施例4)
 補強性フィラーとしてのカーボンブラックに代えてシリカ(疎水性、Evonik社製、製品名「アエロジル(登録商標)R972V」)を用いた以外は、実施例3と同様にして単層CNTを準備し、フッ素ゴム組成物及び成形体を作製し、各種評価を行った。結果を表1に示す。
(Example 4)
Single-walled CNTs were prepared in the same manner as in Example 3, except that silica (hydrophobic, manufactured by Evonik, product name "Aerosil (registered trademark) R972V") was used instead of carbon black as the reinforcing filler. A fluororubber composition and a molded article were produced and various evaluations were performed. Table 1 shows the results.
(実施例5)
<単層CNTの準備>
 実施例1と同様のSGCNTを準備した。
<フッ素ゴム組成物の調製>
[マスターバッチの調製]
 実施例1と同様の方法で、フッ素ゴムとSGCNTの混合物であるマスターバッチを得た。
[混練]
 その後、20℃のオープンロールを用いて、上記で得られたマスターバッチ52g(フッ素ゴム:50g、SGCNT:2g)と、補強性フィラーとしてのカーボンブラック(Cancarb社製、製品名「サーマックス(登録商標)MT」)30gと、フッ素ゴムとしてのフッ化ビニリデン系ゴム(FKM、ケマーズ社製、製品名「Viton GBL-600S」)50gとを混練し、ロール間隔を2mmに調整した後、ゴム混練物をロールに巻き付け、左右切り返しを各3回実施後、シート出しを行った。さらに、20℃のオープンロールを用いて、上記で得られたシート132g(フッ素ゴム:100g、SGCNT:2g、カーボンブラック:30g)と、受酸剤としての亜鉛華(亜鉛華二種)3gと、架橋剤としてのトリアリルイソシアヌレート3g(三菱ケミカル株式会社製、「TAIC(登録商標)」)及び2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン(日本油脂社製、商品名「パーヘキサ25B40」)2gとを混練し、ロール間隔を2mmに調整した後、ゴム混練物をロールに巻き付け、左右切り返しを各3回実施後、シート出しを行うことで、架橋剤を含むフッ素ゴム組成物を得た。このフッ素ゴム組成物について動的粘弾性試験を行いγG及び粘度を特定した。結果を表1に示す。
<成形体(架橋ゴムシート)の調製>
 得られた架橋剤を含むフッ素ゴム組成物を実施例1と同様にして架橋して成形体である架橋ゴムシートXを作製し、引張強度Tを測定した。引張強度Tの結果を表1に示す。
 また別途、実施例1と同様にして準備した架橋ゴムシートYを測定し、引張強度Tを測定した。そして引張強度比を算出した。引張強度比の結果を表1に示す。
(Example 5)
<Preparation of single-walled CNT>
SGCNTs similar to those in Example 1 were prepared.
<Preparation of fluororubber composition>
[Preparation of masterbatch]
A masterbatch, which is a mixture of fluororubber and SGCNT, was obtained in the same manner as in Example 1.
[Kneading]
Then, using an open roll at 20 ° C., 52 g of the master batch obtained above (fluororubber: 50 g, SGCNT: 2 g) and carbon black as a reinforcing filler (manufactured by Cancarb, product name "Thermax (registered Trademark) MT”) and 50 g of vinylidene fluoride rubber (FKM, manufactured by Chemours, product name “Viton GBL-600S”) as a fluororubber are kneaded, and after adjusting the roll interval to 2 mm, the rubber is kneaded. The material was wound around a roll, and the sheet was taken out after the right and left turnover was performed three times each. Furthermore, using an open roll at 20 ° C., 132 g of the sheet obtained above (fluororubber: 100 g, SGCNT: 2 g, carbon black: 30 g) and 3 g of zinc white (two types of zinc white) as an acid acceptor , 3 g of triallyl isocyanurate as a cross-linking agent (manufactured by Mitsubishi Chemical Corporation, "TAIC (registered trademark)") and 2,5-dimethyl-2,5-di(t-butylperoxy)hexane (manufactured by NOF Corporation, (trade name “Perhexa 25B40”)), and after adjusting the roll interval to 2 mm, the rubber kneaded product is wound around a roll, and after turning left and right three times each, the sheet is taken out to contain a cross-linking agent. A fluororubber composition was obtained. This fluororubber composition was subjected to a dynamic viscoelasticity test to determine γG * and viscosity. Table 1 shows the results.
<Preparation of molding (crosslinked rubber sheet)>
The obtained fluororubber composition containing the cross-linking agent was cross-linked in the same manner as in Example 1 to prepare a cross-linked rubber sheet X as a molded article, and the tensile strength TX was measured. Table 1 shows the results of tensile strength TX .
Separately, the crosslinked rubber sheet Y prepared in the same manner as in Example 1 was measured to measure the tensile strength TY . Then, the tensile strength ratio was calculated. Table 1 shows the tensile strength ratio results.
(実施例6)
 補強性フィラーとしてのカーボンブラック30gに代えて多層CNT(KUMHO社製、製品名「K-nanos 100P」。BET比表面積:260m/g)5gを用いた以外は、実施例5と同様にして単層CNTを準備し、フッ素ゴム組成物及び成形体を作製し、各種評価を行った。結果を表1に示す。
(Example 6)
In the same manner as in Example 5, except that 5 g of multi-layered CNT (manufactured by KUMHO, product name “K-nanos 100P”; BET specific surface area: 260 m 2 /g) was used instead of 30 g of carbon black as a reinforcing filler. Single-walled CNTs were prepared, fluororubber compositions and moldings were produced, and various evaluations were performed. Table 1 shows the results.
(実施例7)
<CNT2の準備>
 CNT2は、CNT合成工程において、粒子状の触媒担持体をスクリュー回転によって連続的に搬送しながら原料ガスを供給する方法にて作製した。具体的には、国際公開第2021/172078号の実施例1と同様にして製造したものを用いた。
 製造されたCNT2は、単層CNTを含み、その特性は、タップかさ密度:0.01g/cm、CNT平均長さ:200μm、BET比表面積:800m/g、平均外径:4.0nm、炭素純度99.6%、ハンセン溶解度パラメータ(δd3=18.7、δp3=4.9、δh3=3.1)であった。
 得られたCNTの集合体について、国際公開第2021/172078号の実施例1と同様にして評価したところ、
(1)バンドル長が10μm以上になるように分散させて得たカーボンナノチューブ分散体について、フーリエ変換赤外分光分析して得たスペクトルにおいて、カーボンナノチューブ分散体のプラズモン共鳴に基づくピークが、波数830cm-1に観測され、
(2)カーボンナノチューブについて、液体窒素の77Kでの吸着等温線から、Barrett-Joyner-Halenda法に基づいて得られる、細孔径とLog微分細孔容積との関係を示す細孔分布曲線における最大のピークが細孔径100nm超400nm未満の範囲内に存在し、
(3)カーボンナノチューブの電子顕微鏡画像の二次元空間周波数スペクトルのピークが3.0μm-1の位置に存在した。
(Example 7)
<Preparation of CNT2>
CNT2 was produced in the CNT synthesis process by a method of supplying raw material gas while continuously conveying a particulate catalyst support by rotating a screw. Specifically, one manufactured in the same manner as in Example 1 of International Publication No. 2021/172078 was used.
The produced CNT2 includes single-walled CNT, and its characteristics are tap bulk density: 0.01 g/cm 3 , CNT average length: 200 μm, BET specific surface area: 800 m 2 /g, average outer diameter: 4.0 nm. , carbon purity of 99.6%, and Hansen solubility parameters (δ d3 =18.7, δ p3 =4.9, δ h3 =3.1).
When the obtained CNT aggregate was evaluated in the same manner as in Example 1 of WO 2021/172078,
(1) In the spectrum obtained by Fourier transform infrared spectroscopic analysis of the carbon nanotube dispersion obtained by dispersing it so that the bundle length is 10 μm or more, the peak based on the plasmon resonance of the carbon nanotube dispersion is at a wavenumber of 830 cm. observed at -1 ,
(2) For carbon nanotubes, the maximum maximum in the pore distribution curve showing the relationship between the pore diameter and the Log differential pore volume obtained from the adsorption isotherm of liquid nitrogen at 77 K based on the Barrett-Joyner-Halenda method A peak exists within a pore diameter range of more than 100 nm and less than 400 nm,
(3) The peak of the two-dimensional spatial frequency spectrum of the electron microscope image of the carbon nanotube was present at the position of 3.0 μm −1 .
 単層CNTとして、上記CNT2を用いた以外は実施例2と同様にして、マスターバッチを得て、フッ素ゴム組成物及び成形体を作製し、各種評価を行った。結果を表1に示す。 A masterbatch was obtained in the same manner as in Example 2 except that the above CNT2 was used as the single-walled CNT, a fluororubber composition and a molded body were produced, and various evaluations were performed. Table 1 shows the results.
(比較例1)
<単層CNTの準備>
 実施例1と同様の単層CNTを準備した。
<フッ素ゴム組成物の調製>
[マスターバッチの調製]
 水冷のオープンロールにフッ素ゴムとしてのフッ化ビニリデン系ゴム(FKM、ケマーズ社製、製品名「Viton GBL-600S」)100質量部を巻き付け、上述した単層CNT4質量部を混練(分散処理)し、マスターバッチを得た。
[混練]
 上記で得られたマスターバッチを用いた以外は実施例1と同様にして、架橋剤を含むフッ素ゴム組成物を得た。このフッ素ゴム組成物について動的粘弾性試験を行いγG及び粘度を特定した。結果を表1に示す。
<成形体(架橋ゴムシート)の調製>
 得られた架橋剤を含むフッ素ゴム組成物を実施例1と同様にして架橋して成形体である架橋ゴムシートXを作製し、引張強度Tを測定した。引張強度Tの結果を表1に示す。
 また別途、実施例1と同様にして準備したし架橋ゴムシートYを測定し、引張強度Tを測定した。そして引張強度比を算出した。引張強度比の結果を表1に示す。
(Comparative example 1)
<Preparation of single-walled CNT>
Single-walled CNTs similar to those in Example 1 were prepared.
<Preparation of fluororubber composition>
[Preparation of masterbatch]
100 parts by mass of vinylidene fluoride rubber (FKM, manufactured by Chemours, product name “Viton GBL-600S”) as a fluororubber is wound around a water-cooled open roll, and 4 parts by mass of the above-described single-walled CNTs are kneaded (dispersed). , got the masterbatch.
[Kneading]
A fluororubber composition containing a cross-linking agent was obtained in the same manner as in Example 1, except that the masterbatch obtained above was used. This fluororubber composition was subjected to a dynamic viscoelasticity test to determine γG * and viscosity. Table 1 shows the results.
<Preparation of molding (crosslinked rubber sheet)>
The obtained fluororubber composition containing the cross-linking agent was cross-linked in the same manner as in Example 1 to prepare a cross-linked rubber sheet X as a molded article, and the tensile strength TX was measured. Table 1 shows the results of tensile strength TX .
Separately, a crosslinked rubber sheet Y prepared in the same manner as in Example 1 was measured, and the tensile strength TY was measured. Then, the tensile strength ratio was calculated. Table 1 shows the tensile strength ratio results.
(比較例2)
 [マスターバッチの調製]の際に、単層CNTの量を4gから2gに変更した以外は、実施例1と同様にして単層CNTを準備し、フッ素ゴム組成物及び成形体を作製し、各種評価を行った。結果を表1に示す。
(Comparative example 2)
Single-walled CNTs were prepared in the same manner as in Example 1 except that the amount of single-walled CNTs was changed from 4 g to 2 g during [preparation of masterbatch], and a fluororubber composition and a molded article were produced, Various evaluations were performed. Table 1 shows the results.
(比較例3)
<フッ素ゴム組成物の調製>
 20℃のオープンロールを用いて、フッ化ビニリデン系ゴム(ケマーズ社製、Viton GBL-600S)100gと、受酸剤としての亜鉛華(亜鉛華二種)3gと、架橋剤としてのトリアリルイソシアヌレート3g(三菱ケミカル社製、「TAIC(登録商標)」)及び2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン(日本油脂社製、商品名「パーヘキサ25B40」)2gと、補強性フィラーとしてのカーボンブラック(Cancarb社製、製品名「サーマックス(登録商標)MT」)45gとを混練し、ロール間隔を2mmに調整した後、ゴム混練物をロールに巻き付け、左右切り返しを各3回実施後、シート出しを行うことで、架橋剤を含むフッ素ゴム組成物を得た。このフッ素ゴム組成物について動的粘弾性試験を行いγG及び粘度を特定した。結果を表1に示す。
<成形体(架橋ゴムシート)の調製>
 得られた架橋剤を含むフッ素ゴム組成物を実施例1と同様にして架橋して成形体である架橋ゴムシートXを作製し、引張強度Tを測定した。引張強度Tの結果を表1に示す。
 また別途、実施例1と同様にして準備した架橋ゴムシートYを測定し、引張強度Tを測定した。そして引張強度比を算出した。引張強度比の結果を表1に示す。
(Comparative Example 3)
<Preparation of fluororubber composition>
Using an open roll at 20° C., 100 g of vinylidene fluoride rubber (Viton GBL-600S, manufactured by Chemours), 3 g of zinc oxide (zinc oxide) as an acid acceptor, and triallyl isocyanate as a cross-linking agent. 3 g of Nurate (manufactured by Mitsubishi Chemical Corporation, "TAIC (registered trademark)") and 2 g of 2,5-dimethyl-2,5-di(t-butylperoxy)hexane (manufactured by NOF Corporation, trade name "Perhexa 25B40") , 45 g of carbon black (manufactured by Cancarb, product name "Thermax (registered trademark) MT") as a reinforcing filler, and after adjusting the roll interval to 2 mm, the rubber kneaded product is wound around the roll and turned left and right. 3 times, the sheet was taken out to obtain a fluororubber composition containing a cross-linking agent. This fluororubber composition was subjected to a dynamic viscoelasticity test to determine γG * and viscosity. Table 1 shows the results.
<Preparation of molding (crosslinked rubber sheet)>
The obtained fluororubber composition containing the cross-linking agent was cross-linked in the same manner as in Example 1 to prepare a cross-linked rubber sheet X as a molded article, and the tensile strength TX was measured. Table 1 shows the results of tensile strength TX .
Separately, the crosslinked rubber sheet Y prepared in the same manner as in Example 1 was measured to measure the tensile strength TY . Then, the tensile strength ratio was calculated. Table 1 shows the tensile strength ratio results.
(比較例4)
<フッ素ゴム組成物の調製>
 20℃のオープンロールを用いて、フッ化ビニリデン系ゴム(ケマーズ社製、Viton GBL-600S)100gと、受酸剤としての亜鉛華(亜鉛華二種)3gと、架橋剤としてのトリアリルイソシアヌレート3g(三菱ケミカル社製、「TAIC(登録商標)」)及び2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン(日本油脂社製、商品名「パーヘキサ25B40」)2gとを混練し、ロール間隔を2mmに調整した後、ゴム混練物をロールに巻き付け、左右切り返しを各3回実施後、シート出しを行うことで、架橋剤を含むフッ素ゴム組成物を得た。このフッ素ゴム組成物について動的粘弾性試験を行いγG及び粘度を特定した。結果を表1に示す。
<成形体(架橋ゴムシート)の調製>
 得られた架橋剤を含むフッ素ゴム組成物を実施例1と同様にして架橋して成形体である架橋ゴムシートXを作製し、引張強度Tを測定した。引張強度Tの結果を表1に示す。
(Comparative Example 4)
<Preparation of fluororubber composition>
Using an open roll at 20° C., 100 g of vinylidene fluoride rubber (Viton GBL-600S, manufactured by Chemours), 3 g of zinc oxide (zinc oxide) as an acid acceptor, and triallyl isocyanate as a cross-linking agent. 3 g of Nurate (manufactured by Mitsubishi Chemical Corporation, "TAIC (registered trademark)") and 2 g of 2,5-dimethyl-2,5-di(t-butylperoxy)hexane (manufactured by NOF Corporation, trade name "Perhexa 25B40") After kneading and adjusting the roll interval to 2 mm, the rubber kneaded product was wound around a roll, and after performing left and right turning 3 times each, sheeting was performed to obtain a fluororubber composition containing a cross-linking agent. This fluororubber composition was subjected to a dynamic viscoelasticity test to determine γG * and viscosity. Table 1 shows the results.
<Preparation of molding (crosslinked rubber sheet)>
The obtained fluororubber composition containing the cross-linking agent was cross-linked in the same manner as in Example 1 to prepare a cross-linked rubber sheet X as a molded article, and the tensile strength TX was measured. Table 1 shows the results of tensile strength TX .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、フッ素ゴムと単層CNTを含み、γGが所定の値以上であるフッ素ゴム組成物を用いた実施例1~7では、高温下で優れた伸張性を発揮しうる成形体を作製できていることが分かる。
 一方、表1より、フッ素ゴムと単層CNTを含むがγGが所定の値未満であるフッ素ゴム組成物を用いた比較例1及び2、フッ素ゴムを含み且つγGが所定の値以上であるが単層CNTを含まないフッ素ゴム組成物を用いた比較例3、並びに、フッ素ゴムを含むが単層CNTを含まず且つγGが所定の値未満であるフッ素ゴム組成物を用いた比較例4では、得られる成形体の高温下での伸張性が低下していることが分かる。
From Table 1, in Examples 1 to 7 using a fluororubber composition containing fluororubber and single-walled CNTs and having a γG * of a predetermined value or more, a molded body capable of exhibiting excellent extensibility at high temperatures was obtained. It can be seen that it has been produced.
On the other hand, from Table 1, Comparative Examples 1 and 2 using a fluororubber composition containing fluororubber and single-walled CNT but having γG* less than a predetermined value, Comparative Example 3 using a fluororubber composition containing no single-walled CNTs, and a comparison using a fluororubber composition containing fluororubbers but not containing single-walled CNTs and having γG * less than a predetermined value In Example 4, it can be seen that the extensibility of the molded article obtained at high temperatures is low.
 本発明によれば、フッ素ゴムと単層カーボンナノチューブを含み、高温下で優れた伸張性を発揮しうる成形体、及び当該成形体を形成しうるフッ素ゴム組成物を提供することができる。 According to the present invention, it is possible to provide a molded article that contains fluororubber and single-walled carbon nanotubes and that can exhibit excellent extensibility at high temperatures, and a fluororubber composition that can form the molded article.

Claims (8)

  1.  フッ素ゴムと、カーボンナノチューブとを含有するフッ素ゴム組成物であって、
     前記カーボンナノチューブは単層カーボンナノチューブを含み、そして、
     測定周波数:1Hz、測定温度:40℃の条件下で行う動的粘弾性試験において、動的歪みが0.1%時の複素弾性率をG (kPa)、動的歪みが630%時の複素弾性率をG (kPa)とした場合に、下記式(I):
     γG=G /G  ・・・(I)
    で算出されるγGが20以上である、フッ素ゴム組成物。
    A fluororubber composition containing a fluororubber and a carbon nanotube,
    the carbon nanotubes comprise single-walled carbon nanotubes, and
    In a dynamic viscoelasticity test performed under the conditions of measurement frequency: 1 Hz, measurement temperature: 40 ° C., the complex elastic modulus when the dynamic strain is 0.1% is G * L (kPa), and the dynamic strain is 630%. When the complex elastic modulus of is G * H (kPa), the following formula (I):
    γG * =G * L /G * H (I)
    A fluororubber composition having a γG * of 20 or more, as calculated by
  2.  前記カーボンナノチューブは更に多層カーボンナノチューブを含む、請求項1に記載のフッ素ゴム組成物。 The fluororubber composition according to claim 1, wherein the carbon nanotubes further include multi-walled carbon nanotubes.
  3.  前記カーボンナノチューブ以外の補強性フィラーを更に含有する、請求項1に記載のフッ素ゴム組成物。 The fluororubber composition according to claim 1, further comprising a reinforcing filler other than the carbon nanotubes.
  4.  前記補強性フィラーはカーボンブラックとシリカの少なくとも一方を含む、請求項3に記載のフッ素ゴム組成物。 The fluororubber composition according to claim 3, wherein the reinforcing filler contains at least one of carbon black and silica.
  5.  前記単層カーボンナノチューブの含有量が、前記フッ素ゴム100質量部当たり0.1質量部以上10質量部以下である、請求項1に記載のフッ素ゴム組成物。 The fluororubber composition according to claim 1, wherein the content of the single-walled carbon nanotubes is 0.1 parts by mass or more and 10 parts by mass or less per 100 parts by mass of the fluororubber.
  6.  架橋剤を更に含む、請求項1に記載のフッ素ゴム組成物。 The fluororubber composition according to claim 1, further comprising a cross-linking agent.
  7.  請求項3に記載のフッ素ゴム組成物であって、
     前記フッ素ゴム組成物は架橋剤を更に含み、
     前記架橋剤を含むフッ素ゴム組成物から形成される架橋ゴムシートXについて、JIS K6251:2010に準拠して、試験温度:200℃、試験湿度:50%、引張速度:500±50mm/分の条件下で測定される引張強度をT(MPa)とし、
     前記架橋剤を含むフッ素ゴム組成物から前記カーボンナノチューブ及び前記補強性フィラーを除いた試験用ゴム組成物から形成される架橋ゴムシートYについて、JIS K6251:2010に準拠して、試験温度:200℃、試験湿度:50%、引張速度:500±50mm/分の条件下で測定される引張強度をT(MPa)とした場合に、下記式(II):
     引張強度比=T/T ・・・(II)
    で算出される引張強度比が3.0以上である、フッ素ゴム組成物。
    The fluororubber composition according to claim 3,
    The fluororubber composition further comprises a cross-linking agent,
    Regarding the crosslinked rubber sheet X formed from the fluororubber composition containing the crosslinking agent, test temperature: 200 ° C., test humidity: 50%, tensile speed: 500 ± 50 mm / min in accordance with JIS K6251: 2010 Let T X (MPa) be the tensile strength measured under
    Regarding the crosslinked rubber sheet Y formed from the test rubber composition obtained by removing the carbon nanotubes and the reinforcing filler from the fluororubber composition containing the crosslinking agent, the test temperature was 200°C in accordance with JIS K6251:2010. , test humidity: 50%, tensile speed: 500 ± 50 mm / min. When the tensile strength measured under the conditions is T Y (MPa), the following formula (II):
    Tensile strength ratio = T X /T Y (II)
    A fluororubber composition having a tensile strength ratio of 3.0 or more.
  8.  請求項6又は7に記載のフッ素ゴム組成物を用いて形成される、成形体。 A molded article formed using the fluororubber composition according to claim 6 or 7.
PCT/JP2022/036854 2021-09-30 2022-09-30 Fluororubber composition and shaped object WO2023054716A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023551929A JPWO2023054716A1 (en) 2021-09-30 2022-09-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021161692 2021-09-30
JP2021-161692 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023054716A1 true WO2023054716A1 (en) 2023-04-06

Family

ID=85780822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036854 WO2023054716A1 (en) 2021-09-30 2022-09-30 Fluororubber composition and shaped object

Country Status (2)

Country Link
JP (1) JPWO2023054716A1 (en)
WO (1) WO2023054716A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016108476A (en) * 2014-12-08 2016-06-20 日信工業株式会社 Carbon fiber composite material
WO2017175807A1 (en) * 2016-04-07 2017-10-12 日本ゼオン株式会社 Fluorinated elastomer composition and molded article
WO2018225789A1 (en) * 2017-06-06 2018-12-13 日本ゼオン株式会社 Rubber crosslinked product and method for manufacturing for same
JP2019189702A (en) * 2018-04-20 2019-10-31 Agc株式会社 Fluorine rubber composition, crosslinked article and hose thereof
JP2019199584A (en) * 2018-05-18 2019-11-21 国立大学法人広島大学 Method for producing composite material and method for producing crosslinked product
WO2020175331A1 (en) * 2019-02-28 2020-09-03 日本ゼオン株式会社 Fluorine-containing elastomer composition, fluorine rubber molded article, method for producing fluorine-containing elastomer solution, and method for producing fluorine-containing elastomer composition
WO2020195799A1 (en) * 2019-03-28 2020-10-01 日本ゼオン株式会社 Elastomer composition and molded body
WO2021172555A1 (en) * 2020-02-26 2021-09-02 日本ゼオン株式会社 Elastomer composition, method for producing same, crosslinked substance, and molded body

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016108476A (en) * 2014-12-08 2016-06-20 日信工業株式会社 Carbon fiber composite material
WO2017175807A1 (en) * 2016-04-07 2017-10-12 日本ゼオン株式会社 Fluorinated elastomer composition and molded article
WO2018225789A1 (en) * 2017-06-06 2018-12-13 日本ゼオン株式会社 Rubber crosslinked product and method for manufacturing for same
JP2019189702A (en) * 2018-04-20 2019-10-31 Agc株式会社 Fluorine rubber composition, crosslinked article and hose thereof
JP2019199584A (en) * 2018-05-18 2019-11-21 国立大学法人広島大学 Method for producing composite material and method for producing crosslinked product
WO2020175331A1 (en) * 2019-02-28 2020-09-03 日本ゼオン株式会社 Fluorine-containing elastomer composition, fluorine rubber molded article, method for producing fluorine-containing elastomer solution, and method for producing fluorine-containing elastomer composition
WO2020195799A1 (en) * 2019-03-28 2020-10-01 日本ゼオン株式会社 Elastomer composition and molded body
WO2021172555A1 (en) * 2020-02-26 2021-09-02 日本ゼオン株式会社 Elastomer composition, method for producing same, crosslinked substance, and molded body

Also Published As

Publication number Publication date
JPWO2023054716A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
CN108884288B (en) Fluorine-containing elastomer composition and molded article
US10494492B2 (en) Carbon nanotube-elastomer composite material, seal material and sealing material each produced using same, and method for producing carbon nanotube-elastomer composite material
JP6683190B2 (en) Silicone rubber composition and vulcanizate
JP7559747B2 (en) Elastomer composition and molded article
WO2022210974A1 (en) Elastomer composition, method for producing same, crosslinked product, and molded body
JP7173003B2 (en) Cross-linked rubber and method for producing the same
JP2017186476A (en) Manufacturing method of fluorine-containing elastomer composition and manufacturing method of oil seal member
TWI816861B (en) Sealing material
JP7505480B2 (en) Fluorine-containing elastomer composition, fluororubber molded product, method for producing fluorine-containing elastomer solution, and method for producing fluorine-containing elastomer composition
JP2022086825A (en) Elastomer composition and method for producing elastomer composition
WO2021172555A1 (en) Elastomer composition, method for producing same, crosslinked substance, and molded body
JP7173023B2 (en) rubber composition
WO2022181193A1 (en) Composite material and vulcanized rubber molded body
WO2023054716A1 (en) Fluororubber composition and shaped object
JP7155567B2 (en) molding
WO2022070780A1 (en) Elastomer composition, method for producing elastomer composition, crosslinked product, and molded body
WO2019188051A1 (en) Uncrosslinked elastomer composition and crosslinked product of same
WO2023162783A1 (en) Elastomer composition
JP2021070767A (en) Elastomer molding
JP2022086911A (en) Carbon nanotube dispersion, and method of producing elastomer composition
JP7468062B2 (en) Method for producing an elastomer composition
JP2023124728A (en) Elastomer composition, crosslinked product and molding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876578

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551929

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22876578

Country of ref document: EP

Kind code of ref document: A1