WO2023054701A1 - Curable composition - Google Patents

Curable composition Download PDF

Info

Publication number
WO2023054701A1
WO2023054701A1 PCT/JP2022/036817 JP2022036817W WO2023054701A1 WO 2023054701 A1 WO2023054701 A1 WO 2023054701A1 JP 2022036817 W JP2022036817 W JP 2022036817W WO 2023054701 A1 WO2023054701 A1 WO 2023054701A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
reactive silicon
polymer
groups
weight
Prior art date
Application number
PCT/JP2022/036817
Other languages
French (fr)
Japanese (ja)
Inventor
寛 安藤
新太郎 幸光
リュック ピータース,
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2023054701A1 publication Critical patent/WO2023054701A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/057Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/19Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides

Definitions

  • the present invention relates to a curable composition containing a reactive silicon group-containing polyoxyalkylene polymer.
  • Polymers with reactive silicon groups are known as moisture-reactive polymers, are included in many industrial products such as adhesives, sealants, coating materials, paints, and adhesives, and are used in a wide range of fields. there is
  • Polymer components of such reactive silicon group-containing polymers include various polymers such as polyoxyalkylene-based polymers, saturated hydrocarbon-based polymers, and (meth)acrylic acid ester-based copolymers.
  • polyoxyalkylene polymers have relatively low viscosity at room temperature and are easy to handle, and the cured product obtained after the reaction exhibits good elasticity.
  • Tin catalysts are often used as curing catalysts, but there are cases where catalysts other than tin catalysts are required.
  • a titanium catalyst has been developed as one of the catalysts other than tin (see Patent Documents 1 and 2).
  • An object of the present invention is to provide a curable composition with improved breaking strength and breaking elongation after curing without using a tin catalyst.
  • the inventors of the present invention completed the following invention as a result of intensive studies to solve the above problems.
  • the present invention has a reactive silicon group of general formula (1), a terminal structure has the reactive silicon group, a terminal olefin group and/or an internal olefin group, and the Containing a reactive silicon group-containing polyoxyalkylene polymer (A) in which the total number of reactive silicon groups, the terminal olefin groups and the internal olefin groups is more than 1.0 on average per terminal structure death, —Si(R 1 ) 3-a X a (1)
  • R 1 each independently represents a hydrocarbon group having 1 to 20 carbon atoms, and the hydrocarbon group may have a hetero-containing group.
  • Each X is independently a hydroxyl group or a hydrolyzable group.
  • a is 1, 2, or 3.
  • a titanium compound (B) represented by general formula (2), and (R 2 —O) n Ti—A 4-n (2) (R 2 is a substituted or unsubstituted hydrocarbon group having 1 to 10 carbon atoms; n is an integer of 1 to 4; A is a ⁇ -diketone group.) It relates to a curable composition containing ammonium hydroxide (C) or containing a reaction product of said titanium compound (B) and said ammonium hydroxide (C).
  • the present invention can provide a curable composition with improved breaking strength and breaking elongation after curing without using a tin catalyst.
  • the curable composition according to the present disclosure contains a polyoxyalkylene polymer (A) having a reactive silicon group represented by general formula (1) (hereinafter also referred to as polymer (A)).
  • the terminal structure of the polymer (A) has the reactive silicon group, the terminal olefin group and/or the internal olefin group, and the reactive silicon group, the terminal olefin group and the internal olefin group in the terminal structure
  • the total number of groups is on average greater than 1.0 per said terminal structure.
  • the reactive silicon group-containing polyoxyalkylene-based polymer (A) has a polymer skeleton composed of repeating units of oxyalkylene and a terminal structure bonded to the end of the polymer skeleton.
  • the polymer skeleton of the reactive silicon group-containing polyoxyalkylene-based polymer (A) may be linear or branched.
  • the skeleton is preferable in that the cured product of the curable composition has high elongation and high tear strength.
  • a linear polymer backbone can be formed by using an initiator with two hydroxyl groups per molecule in the polymerization process to form the polymer backbone, and a branched polymer backbone can be formed by: It can be formed by using an initiator having 3 or more hydroxyl groups in one molecule.
  • terminal structure refers to a site that does not contain a repeating unit that constitutes the polymer backbone and that is bonded to the end of the polymer backbone.
  • the polymer skeleton is linear, one or two terminal structures are present per polymer molecule, and when the polymer skeleton is branched, three or more terminal structures are present per polymer molecule. do.
  • the polymer backbone is a mixture of linear and branched chains, the average number of terminal structures per polymer molecule can be between 2 and 3.
  • the terminal structure is preferably bonded to an oxyalkylene unit positioned at the end of the polymer skeleton via an oxygen atom.
  • the reactive silicon group possessed by the reactive silicon group-containing polyoxyalkylene polymer (A) is preferably contained in the terminal structure.
  • each terminal structure may contain a reactive silicon group, or a terminal structure containing a reactive silicon group and a terminal structure not containing a reactive silicon group may coexist.
  • the reactive silicon group-containing polyoxyalkylene polymer (A) has a terminal structure having a reactive silicon group and either one or both of a terminal olefin group and an internal olefin group.
  • a terminal structure having a reactive silicon group and a terminal olefin group and/or an internal olefin group means that all the individual terminal structures contained in the polymer have a reactive silicon group, a terminal olefin group and/or an internal olefin group. group, and the terminal structure has a reactive silicon group and a terminal olefin group and/or an internal olefin group in the totality of the polymer (A) containing a large number of polymer molecules.
  • the terminal structure in one molecule contained in the polymer (A) may have only a reactive silicon group and not have a terminal olefin group or an internal olefin group, or may have a terminal olefin It may have either one or both of groups and internal olefin groups, but may not have reactive silicon groups.
  • the total number of reactive silicon groups, terminal olefin groups and internal olefin groups in the terminal structure is 1.0 on average per terminal structure. is more than. In this way, by using a reactive silicon group-containing polyoxyalkylene polymer having a large total number of specific groups per terminal structure in combination with a curing catalyst described later, the breaking strength and breaking elongation after curing are improved. be able to.
  • the total number is preferably 1.2 or more, more preferably 1.4 or more.
  • the upper limit of the total number is not particularly limited, it is preferably 4.0 or less, more preferably 3.0 or less, and particularly preferably 2.0 or less.
  • the average number of reactive silicon groups per terminal structure of the reactive silicon group-containing polyoxyalkylene polymer (A) is preferably 0.5 or more, preferably 0.8 or more. It is more preferably 1.0 or more, and most preferably 1.2 or more.
  • the upper limit of the number of reactive silicon groups per terminal structure of the polymer (A) is not particularly limited, but is preferably 4.0 or less, more preferably 3.0 or less, 2.0 or less is particularly preferred.
  • the average number of reactive silicon groups contained in one molecule of the reactive silicon group-containing polyoxyalkylene polymer (A) is preferably 0.5 to 8.0, more preferably 1.0 to 6.0. It is more preferably 0, more preferably 1.5 to 5.0.
  • the reactive silicon group-containing polyoxyalkylene polymer (A) has the general formula (1): —Si(R 1 ) 3-a X a (1)
  • R 1 each independently represents a hydrocarbon group having 1 to 20 carbon atoms, and the hydrocarbon group may have a hetero-containing group.
  • X each independently represents a hydroxyl group or a hydrolyzable represents a group, and a is 1, 2, or 3.
  • It has a reactive silicon group represented by
  • R 1 is a hydrocarbon group having 1 to 20 carbon atoms.
  • the number of carbon atoms in the hydrocarbon group for R 1 is preferably 1-12, more preferably 1-6, and particularly preferably 1-4.
  • the hydrocarbon group may be an unsubstituted hydrocarbon group or a hydrocarbon group having a substituent.
  • the hetero-containing group which the hydrocarbon group as R 1 may have as a substituent is a group containing a hetero atom.
  • atoms other than carbon atoms and hydrogen atoms are heteroatoms.
  • heteroatoms include N, O, S, P, Si, and halogen atoms.
  • the total number of carbon atoms and heteroatoms is preferably 1-10, more preferably 1-6, even more preferably 1-4.
  • mercapto groups halogen atoms such as Cl, Br, I, and F; nitro groups; cyano groups; methoxy, ethoxy, n-propyloxy, and isopropyloxy groups.
  • alkoxy groups such as; alkylthio groups such as methylthio, ethylthio, n-propylthio, and isopropylthio; acyl groups such as acetyl, propionyl, and butanoyl; acetyloxy, propionyloxy, and butanoyl.
  • Acyloxy group such as oxy group; substituted or unsubstituted amino group such as amino group, methylamino group, ethylamino group, dimethylamino group and diethylamino group; aminocarbonyl group, methylaminocarbonyl group, ethylaminocarbonyl group, dimethyl substituted or unsubstituted aminocarbonyl groups such as an aminocarbonyl group and a diethylaminocarbonyl group; and a cyano group.
  • R 1 is a hydrocarbon group substituted with a hetero-containing group
  • the total number of carbon atoms and hetero atoms in R 1 is preferably from 2 to 30, more preferably from 2 to 18, and further from 2 to 10. 2 to 6 are particularly preferred.
  • hydrocarbon groups having 1 to 20 carbon atoms as R 1 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group and tert-butyl.
  • n-pentyl group n-hexyl group, n-heptyl group, n-octyl group, 2-ethyl-n-hexyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group , n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-octadecyl group, n-nonadecyl group, and n-icosyl group; vinyl group, 2-propenyl group, 3 alkenyl groups such as -butenyl group and 4-pentenyl group; cycloalkyl groups such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, 2-
  • R 1 include alkyl groups such as methyl group and ethyl group; alkyl groups having hetero-containing groups such as chloromethyl group and methoxymethyl group; cycloalkyl groups such as cyclohexyl group; aryl groups such as; aralkyl groups such as benzyl group; and the like.
  • R 1 is preferably a methyl group, a methoxymethyl group and a chloromethyl group, more preferably a methyl group and a methoxymethyl group, and still more preferably a methyl group.
  • Examples of X include hydroxyl group, halogen, alkoxy group, acyloxy group, ketoximate group, amino group, amide group, acid amide group, aminooxy group, mercapto group, and alkenyloxy group.
  • an alkoxy group is more preferable, a methoxy group and an ethoxy group are more preferable, and a methoxy group is particularly preferable, since they are moderately hydrolyzable and easy to handle.
  • a is 1, 2, or 3; As a, 2 or 3 is preferable, and 3 is more preferable because curability is improved and high strength is obtained.
  • reactive silicon groups include a trimethoxysilyl group, a triethoxysilyl group, a tris(2-propenyloxy)silyl group, a triacetoxysilyl group, a dimethoxymethylsilyl group, a diethoxymethylsilyl group and a dimethoxyethylsilyl group.
  • trimethoxysilyl group a (chloromethyl)dimethoxysilyl group, and a (methoxymethyl)dimethoxysilyl group are more preferable, and a trimethoxysilyl group is particularly preferable because it improves curability.
  • the internal olefin group refers to a carbon-carbon double bond that does not have a methylidene group, and is a group that can be generated by, for example, a transfer reaction of the terminal olefin group during production of the polymer (A).
  • Specific examples include a 1-propenyl group and the like.
  • a typical example of the terminal structure is the terminal structure represented by the following general formula (3).
  • the general formula (3) shows a terminal structure having a reactive silicon group but not having a terminal olefin group and an internal olefin group.
  • R 1 , X and a are the same as above.
  • R 3 and R 5 are each independently a divalent C 1-6 linking group which may contain a heteroatom.
  • R 4 and R 6 are each independently hydrogen or a hydrocarbon group having 1 to 10 carbon atoms.
  • n is an integer of 1-10.
  • R 3 is a divalent C 1-6 bonding group which may contain a heteroatom, and the bonding group is preferably a hydrocarbon group or a hydrocarbon group containing an oxygen atom. .
  • the number of carbon atoms is preferably 1-4, more preferably 1-3, even more preferably 1-2.
  • CH 2 OCH 2 , CH 2 O and CH 2 are preferred, and CH 2 OCH 2 is more preferred.
  • R 4 is preferably hydrogen or a hydrocarbon group having 1 to 10 carbon atoms, more preferably hydrogen or a hydrocarbon group having 1 to 3 carbon atoms, and hydrogen or 1 to 2 carbon atoms. is more preferred.
  • a hydrogen atom and a methyl group are particularly preferred, and a hydrogen atom is most preferred.
  • R 5 is a divalent C 1-6 bonding group which may contain a heteroatom, and the bonding group is preferably a hydrocarbon group or a hydrocarbon group containing a heteroatom. , a hydrocarbon group having 1 to 2 carbon atoms is more preferred.
  • the heteroatoms are preferably oxygen atoms and/or nitrogen atoms.
  • the bonding group is preferably a methylene group, an ethylene group, a propylene group, a butylene group, or C(O)NH 2 CH 2 , and particularly preferably a methylene group.
  • R 6 is preferably hydrogen or a hydrocarbon group having 1 to 10 carbon atoms, more preferably hydrogen or a hydrocarbon group having 1 to 3 carbon atoms, and hydrogen or 1 to 2 carbon atoms. is more preferred.
  • a hydrogen atom and a methyl group are particularly preferred, and a hydrogen atom is most preferred.
  • the terminal structure represented by general formula (3) represents one terminal structure bonded to one terminal of the polymer skeleton. Although two or more reactive silicon groups are shown in formula (3), formula (3) does not indicate two or more terminals, but rather two or more reactive silicon groups in one terminal structure. This indicates the presence of silicon groups. Moreover, except for oxygen on the left end, the formula (3) does not include a polymer skeleton composed of repeating units such as oxyalkylene units. In other words, n structures in parentheses in formula (3) do not correspond to repeating units in the polymer skeleton.
  • the main chain structure of the reactive silicon group-containing polyoxyalkylene polymer (A) may be linear or branched, but is preferably linear.
  • the main chain of the reactive silicon group-containing polyoxyalkylene polymer (A) is represented by —R 7 —O— (wherein R 7 is a linear or branched alkylene group having 1 to 14 carbon atoms). R 7 is more preferably a linear or branched alkylene group having 2 to 4 carbon atoms. Specific examples of the repeating unit represented by -R 7 -O- include -CH 2 O-, -CH 2 CH 2 O-, -CH 2 CH(CH 3 )O-, and -CH 2 C(CH 3 ).
  • the number average molecular weight of the reactive silicon group-containing polyoxyalkylene polymer (A) is not particularly limited, but the polystyrene equivalent molecular weight in GPC is preferably 5,000 to 100,000, and 10,000 to 40,000. More preferably, 12,000 to 25,000 is particularly preferred, and 13,000 to 20,000 is most preferred.
  • the introduction amount of the reactive silicon group is moderate, so that the production cost is kept within a moderate range, and the reactive silicon group-containing polyoxyalkylene polymer having high strength is obtained. Coalescence (A) is easily obtained.
  • the polymer precursor before introduction of the reactive silicon group was measured by the hydroxyl value measurement method of JIS K 1557 and Terminal group equivalent molecular weight obtained by directly measuring the terminal group concentration by titration analysis based on the principle of the iodine value measurement method and considering the polymer structure (branching degree determined by the polymerization initiator used) can also be shown as
  • the terminal group-equivalent molecular weight of the polymer (A) is obtained by preparing a calibration curve of the number average molecular weight obtained by general GPC measurement of the polymer precursor and the above-mentioned terminal group-equivalent molecular weight, and performing GPC of the reactive silicon group-containing polymer. It is also possible to obtain by converting the number average molecular weight obtained by the method into a terminal group equivalent molecular weight.
  • the molecular weight distribution (Mw/Mn) of the reactive silicon group-containing polyoxyalkylene polymer (A) is not particularly limited, it is preferably narrow. Specifically, it is preferably 1.6 or less, more preferably 1.4 or less, still more preferably 1.3 or less, and particularly preferably 1.2 or less.
  • the molecular weight distribution of the reactive silicon group-containing polyoxyalkylene polymer (A) can be determined from the number average molecular weight and weight average molecular weight obtained by GPC measurement.
  • the reactive silicon group-containing polyoxyalkylene polymer (A) is obtained by introducing an olefin group into the hydroxyl-terminated polyoxyalkylene polymer (a1) by utilizing the reactivity of the hydroxyl group, and then combining with the olefin group.
  • a method of introducing a reactive silicon group by reacting a reactive silicon group-containing compound having reactivity is preferred.
  • the polymer skeleton of the polyoxyalkylene-based polymer can be formed by polymerizing an epoxy compound with an initiator having a hydroxyl group by a conventionally known method, whereby a hydroxyl-terminated polyoxyalkylene-based polymer (a1) is obtained. is obtained.
  • a hydroxyl-terminated polyoxyalkylene-based polymer (a1) is obtained.
  • Mw/Mn small molecular weight distribution
  • a polymerization method using a double metal cyanide complex catalyst such as a zinc hexacyanocobaltate glyme complex is used. is preferred.
  • hydroxyl-containing initiators include, but are not limited to, ethylene glycol, propylene glycol, glycerin, pentaerythritol, low molecular weight polyoxypropylene glycol, low molecular weight polyoxypropylene triol, allyl alcohol, methanol, ethanol, propanol, Examples include organic compounds having one or more hydroxyl groups, such as butanol, pentanol, hexanol, low-molecular-weight polyoxypropylene monoallyl ether, and low-molecular-weight polyoxypropylene monoalkyl ether.
  • the epoxy compound is not particularly limited, examples thereof include alkylene oxides such as ethylene oxide and propylene oxide, and glycidyl ethers such as methyl glycidyl ether and butyl glycidyl ether. Propylene oxide is preferred.
  • reaction with alkali metal salt In introducing an olefin group into the hydroxyl group-terminated polyoxyalkylene polymer (a1), first, an alkali metal salt is allowed to act on the hydroxyl group-terminated polyoxyalkylene polymer (a1) to convert the terminal hydroxyl group to a metaloxy group. is preferably converted to A double metal cyanide complex catalyst can also be used instead of the alkali metal salt. As described above, the metaloxy group-terminated polyoxyalkylene polymer (a2) is formed.
  • the alkali metal salt is not particularly limited, examples thereof include sodium hydroxide, sodium alkoxide, potassium hydroxide, potassium alkoxide, lithium hydroxide, lithium alkoxide, cesium hydroxide, and cesium alkoxide.
  • Sodium hydroxide, sodium methoxide, sodium ethoxide, sodium tert-butoxide, potassium hydroxide, potassium methoxide, potassium ethoxide, and potassium tert-butoxide are preferred from the viewpoint of ease of handling and solubility, and sodium methoxide and sodium tert. -butoxide is more preferred. From the standpoint of availability, sodium methoxide is particularly preferred, and from the standpoint of reactivity, sodium tert-butoxide is particularly preferred.
  • the alkali metal salt may be dissolved in a solvent before being subjected to the reaction.
  • the amount of the alkali metal salt to be used is not particularly limited. 7 or more is more preferable, and 0.8 or more is even more preferable.
  • the molar ratio is preferably 1.2 or less, more preferably 1.1 or less.
  • the temperature at which the alkali metal salt is allowed to act can be appropriately set by those skilled in the art, but is preferably 50°C or higher and 150°C or lower, more preferably 110°C or higher and 145°C or lower.
  • the time for which the alkali metal salt is allowed to act is preferably 10 minutes or more and 5 hours or less, more preferably 30 minutes or more and 3 hours or less.
  • reaction with electrophile (a3) By reacting the metaloxy group-terminated polyoxyalkylene polymer (a2) obtained as described above with an electrophilic agent (a3) having an olefin group, the metaloxy group is converted to a structure containing an olefin group can be converted to As a result, a polyoxyalkylene polymer (a4) having an olefin group in the terminal structure is formed.
  • the electrophilic agent (a3) having an olefin group is particularly limited as long as it is a compound capable of reacting with the metaloxy group possessed by the polyoxyalkylene polymer (a2) and introducing an olefin group into the polyoxyalkylene polymer.
  • Examples include an epoxy compound (a3-1) having an olefin group and an organic halide (a3-2) having an olefin group.
  • the epoxy compound (a3-1) having an olefin group which is one embodiment of the electrophile (a3), reacts with the metaloxy group through a ring-opening addition reaction of the epoxy group to form an ether bond to form a poly
  • a structure containing an olefin group and a hydroxyl group can be introduced as the terminal structure of the oxyalkylene polymer.
  • one or more epoxy compounds (a3- 1) can be added.
  • the epoxy compound (a3-1) having an olefin group is, but not limited to, the following general formula (4):
  • R 3 and R 4 are the same groups as R 3 and R 4 described above for general formula (3), respectively.
  • epoxy compound (a3-1) having an olefin group are not particularly limited, but allyl glycidyl ether, methallyl glycidyl ether, glycidyl acrylate, glycidyl methacrylate and butadiene monoxide are preferable from the viewpoint of reaction activity, and allyl glycidyl Ethers are particularly preferred.
  • the amount of the epoxy compound (a3-1) having an olefin group to be added can be any amount in consideration of the introduction amount and reactivity of the olefin group to the polymer.
  • the molar ratio of the epoxy compound (a3-1) to the hydroxyl groups of the polyoxyalkylene polymer (a1) is preferably 0.2 or more, more preferably 0.5 or more.
  • the molar ratio is preferably 5.0 or less, more preferably 2.0 or less.
  • the reaction temperature for the ring-opening addition reaction of the epoxy compound (a3-1) having an olefin group to the metaloxy group-terminated polyoxyalkylene polymer (a2) is 60° C. or higher and 160° C. or lower. , and more preferably 110°C or higher and 150°C or lower.
  • the epoxy compound (a3-1) having an olefin group is allowed to act on the metaloxy group-terminated polyoxyalkylene polymer (a2), a new metaloxy group is generated by ring-opening of the epoxy group. Therefore, after the epoxy compound (a3-1) is allowed to act, the organic halide having an olefin group (a3-2) can be allowed to act continuously. This method is preferable because the amount of olefin groups introduced into the polymer and the amount of reactive silicon groups introduced can be increased.
  • the organic halide (a3-2) having an olefin group reacts with the metaloxy group through a halogen substitution reaction to form an ether bond, and has a structure containing an olefin group as a terminal structure of the polyoxyalkylene polymer.
  • organic halide having an olefin group (a3-2) are not particularly limited, but vinyl chloride, allyl chloride, methallyl chloride, propargyl chloride, vinyl bromide, allyl bromide, methallyl bromide, and propargyl bromide. , vinyl iodide, allyl iodide, methallyl iodide, propargyl iodide and the like. Allyl chloride and methallyl chloride are preferred for ease of handling.
  • the addition amount of the organic halide (a3-2) having an olefin group is not particularly limited, but the molar ratio of the organic halide (a3-2) to the hydroxyl group of the polyoxyalkylene polymer (a1) is 0. 0.7 or more is preferable, and 1.0 or more is more preferable. Moreover, the molar ratio is preferably 5.0 or less, more preferably 2.0 or less.
  • the temperature at which the metaloxy group-terminated polyoxyalkylene polymer (a2) is reacted with the organic halide (a3-2) having an olefin group is preferably 50° C. or higher and 150° C. or lower, and 110° C. or higher and 140° C. °C or less is more preferable.
  • the reaction time is preferably 10 minutes to 5 hours, more preferably 30 minutes to 3 hours.
  • the terminal structure represented by the general formula (3) can be formed by introducing a reactive silicon group as described below.
  • the polyoxyalkylene polymer (a4) having an olefin group in the terminal structure obtained above is subjected to a hydrosilylation reaction with a hydrosilane compound (a5) having a reactive silicon group to give the polymer a reactive silicon groups can be introduced.
  • a reactive silicon group-containing polyoxyalkylene polymer (A) having a polyoxyalkylene polymer main chain is produced.
  • the hydrosilylation reaction has the advantage that it can be easily carried out, the introduction amount of the reactive silicon group can be easily adjusted, and the physical properties of the obtained polymer are stable.
  • hydrosilane compound (a5) having a reactive silicon group include trichlorosilane, dichloromethylsilane, chlorodimethylsilane, dichlorophenylsilane, (chloromethyl)dichlorosilane, (dichloromethyl)dichlorosilane, bis(chloromethyl) ) chlorosilane, (methoxymethyl)dichlorosilane, (dimethoxymethyl)dichlorosilane, bis(methoxymethyl)chlorosilane and other halosilanes; trimethoxysilane, triethoxysilane, dimethoxymethylsilane, diethoxymethylsilane, dimethoxyphenylsilane, ethyl dimethoxysilane, methoxydimethylsilane, ethoxydimethylsilane, (chloromethyl)methylmethoxysilane, (chloromethyl)dimethoxysilane,
  • the amount of the hydrosilane compound (a5) having a reactive silicon group to be used may be appropriately set in consideration of the amount of olefin groups possessed by the polyoxyalkylene polymer (a4).
  • the molar ratio of the hydrosilane compound (a5) to the olefin group of the polyoxyalkylene polymer (a4) is preferably 0.05 or more and 10 or less, more preferably 0.3 or more and 3 or less, from the viewpoint of reactivity. more preferred.
  • the molar ratio is more preferably 0.5 or more, particularly preferably 0.7 or more, in that the modulus value of the cured product can be increased.
  • the molar ratio is more preferably 2.5 or less, and particularly preferably 2 or less.
  • the hydrosilylation reaction is preferably carried out in the presence of a hydrosilylation catalyst in order to promote the reaction.
  • a hydrosilylation catalyst metals such as cobalt, nickel, iridium, platinum, palladium, rhodium, ruthenium, and complexes thereof are known, and these can be used.
  • platinum-phosphine complexes [eg Ph(PPh 3 ) 4 , Pt(PBu 3 ) 4 ]; platinum-phosphite complexes [eg Pt ⁇ P(OPh) 3 ⁇ 4 ]; be done.
  • platinum catalysts such as chloroplatinic acid and platinum-vinylsiloxane complexes are preferred.
  • the temperature conditions for the hydrosilylation reaction are not particularly limited and can be appropriately set by those skilled in the art. However, in order to reduce the viscosity of the reaction system and improve the reactivity, the reaction is preferably performed under heating conditions. , the reaction at 50°C to 150°C is more preferred, and the reaction at 70°C to 120°C is even more preferred.
  • the reaction time may also be appropriately set, but it is preferable to adjust the reaction time together with the temperature conditions so that an unintended condensation reaction between polymers does not proceed. Specifically, the reaction time is preferably 30 minutes or more and 5 hours or less, more preferably 3 hours or less.
  • a curable composition according to an aspect of the present disclosure can contain a titanium compound (B) represented by general formula (2).
  • (R 2 —O) n Ti—A 4-n (2) R 2 is a substituted or unsubstituted hydrocarbon group having 1 to 10 carbon atoms; n is an integer of 1 to 4; A is a ⁇ -diketone group
  • the substituted or unsubstituted hydrocarbon group represented by R 2 is preferably a substituted or unsubstituted aliphatic or aromatic hydrocarbon group, more preferably an aliphatic hydrocarbon group.
  • Aliphatic hydrocarbon groups include saturated or unsaturated hydrocarbon groups. A linear or branched alkyl group is preferred as the saturated hydrocarbon group.
  • the number of carbon atoms in the hydrocarbon group is 1-10, preferably 1-6, more preferably 1-4.
  • Hydrocarbon groups include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, heptyl, octyl, 2-ethylhexyl, nonyl, decyl.
  • Examples of the substituent that the hydrocarbon group may have include a methoxy group, an ethoxy group, a hydroxyl group, an acetoxy group, and the like. When there are multiple R2 's, they may be the same or different.
  • the ⁇ -diketone group represented by A is not particularly limited as long as it is a ⁇ -diketone group that can be blended with titanium.
  • 1-aryl-1,3-butanedione such as ,6,6-tetramethyl-3,5-heptanedione, 1-phenyl-1,3-butanedione, 1-(4-methoxyphenyl)-1,3-butanedione , 1,3-diphenyl-1,3-propanedione, 1,3-bis(2-pyridyl)-1,3-propanedione, 1,3-bis(4-methoxyphenyl)-1,3-propanedione diketones such as 1,3-diaryl-1,3-propanedione such as 3-benzyl-2,4-pentanedione, methyl acetoacetate, ethyl acetoacetate, butyl acetoacetate, t-butyl
  • malonic acid esters and malonic acid amides such as N,N,N',N'-tetramethylmalonamide and N,N,N',N'-tetraethylmalonamide.
  • diketones and ketoamides are preferred, and diketones are more preferred.
  • 2,4-pentanedione, 1-aryl-1,3-butanedione, 1,3-diaryl-1,3-propanedione, methylacetoacetate and ethylacetoacetate are preferred, and methylacetoacetate and ethylacetoacetate are preferred.
  • Acetate is particularly preferred. When there are multiple A's, they may be the same or different.
  • n represents an integer of 1 to 4. n preferably represents 2, 3 or 4, particularly preferably 4, so that better curability can be achieved.
  • titanium compound represented by the general formula (2) examples include tetramethoxytitanium, trimethoxyethoxytitanium, trimethoxyisopropoxytitanium, trimethoxybutoxytitanium, dimethoxydiethoxytitanium, dimethoxydiisopropoxytitanium, dimethoxy Dibutoxytitanium, methoxytriethoxytitanium, methoxytriisopropoxytitanium, methoxytributoxytitanium, tetraethoxytitanium, triethoxyisopropoxytitanium, triethoxybutoxytitanium, diethoxydiisopropoxytitanium, diethoxydibutoxytitanium, ethoxytri isopropoxytitanium, ethoxytributoxytitanium, tetraisopropoxytitanium, triisopropoxybutoxytitanium, diisopropoxyd
  • the above titanium compound (B) may be used alone or in combination of two or more.
  • the amount of the titanium compound (B) used is, when the titanium compound (B) and the ammonium hydroxide (C) are used without being reacted in advance, relative to 100 parts by weight of the polymer (A) having a reactive silicon group. 0.1 to 20 parts by weight is preferable, 0.5 to 10 parts by weight is more preferable, and 1 to 5 parts by weight is particularly preferable.
  • a curable composition according to one aspect of the present disclosure may comprise ammonium hydroxide (C).
  • Ammonium hydroxide (C) is preferably represented by the following general formula (6).
  • R 8 , R 9 , R 10 and R 11 are the same or different and represent a substituted or unsubstituted hydrocarbon group having 1 to 8 carbon atoms.
  • Y represents a hydroxyl group.
  • the substituted or unsubstituted hydrocarbon group represented by R 8 , R 9 , R 10 and R 11 is preferably a substituted or unsubstituted aliphatic or aromatic hydrocarbon group, and an aliphatic hydrocarbon group is more preferred.
  • a linear or branched alkyl group is preferable as the aliphatic hydrocarbon group.
  • the number of carbon atoms in the hydrocarbon group is 1-8, preferably 1-6, more preferably 1-4.
  • aliphatic hydrocarbon groups include saturated hydrocarbon groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group and octyl group; group, allyl group, prenyl group, crotyl group, cyclopentadienyl group, and other unsaturated hydrocarbon groups, preferably methyl group, ethyl group, and butyl group.
  • saturated hydrocarbon groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group and octyl group
  • aromatic hydrocarbon group examples include phenyl group, tolyl group, and benzyl group.
  • Examples of the substituent that the hydrocarbon group may have include a methoxy group, an ethoxy group, a hydroxy group, and an acetoxy group.
  • Examples of substituted hydrocarbon groups include alkoxyalkyl groups such as methoxymethyl group, methoxyethyl group, ethoxymethyl group and ethoxyethyl group; hydroxyalkyl groups such as hydroxymethyl group, hydroxyethyl group and 3-hydroxypropyl group; 2-acetoxyethyl group and the like.
  • ammonium hydroxide represented by the general formula (6) examples include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetraalkylammonium hydroxide such as tetrabutylammonium hydroxide, trimethylbenzyl ammonium hydroxide, benzyltriethylammonium hydroxide, trimethylphenylammonium hydroxide, tris(2-hydroxyethyl)methylammonium hydroxide and the like.
  • tetraalkylammonium hydroxide is preferred, and tetrabutylammonium hydroxide is preferred.
  • ammonium hydroxide (C) when the titanium compound (B) and the ammonium hydroxide (C) are used without being reacted in advance, 100 parts by weight of the polymer (A) having a reactive silicon group On the other hand, 0.1 to 20 parts by weight is preferable, 0.5 to 10 parts by weight is more preferable, and 1 to 5 parts by weight is particularly preferable.
  • the content ratio (B/C) of the titanium compound (B) and the ammonium hydroxide (C) is in the range of 0.1/1 to 10/1 in terms of molar ratio, from the viewpoint of obtaining good curability. is preferably from 1/1 to 10/1, more preferably from 2/1 to 5/1.
  • the curable composition according to the present disclosure may contain the titanium compound (B) and the ammonium hydroxide (C), respectively, or may react the titanium compound (B) and the ammonium hydroxide (C). It may contain a reaction product obtained by the reaction. In either embodiment, the breaking strength and breaking elongation after curing can be improved, but from the viewpoint of improving the strength and elongation, the embodiment using the reaction product is preferable.
  • the reaction product can be obtained by reacting a mixture of both at, for example, 40 to 100°C. Specifically, this temperature is preferably 40 to 100°C.
  • the molar ratio of titanium compound (B) to ammonium hydroxide (C) in the mixture may be, for example, 0.1-100, more preferably 0.2-10.
  • the amount of the reaction product of the titanium compound (B) and ammonium hydroxide (C) used is preferably 0.1 to 30 parts by weight with respect to 100 parts by weight of the polymer (A) having a reactive silicon group. , more preferably 0.5 to 20 parts by weight, particularly preferably 1 to 10 parts by weight.
  • the curable composition according to the present disclosure may further contain a (meth)acrylate polymer (D) having a reactive silicon group (hereinafter also referred to as polymer (D)). Weather resistance and adhesiveness can be improved by containing the polymer (D).
  • the (meth)acrylic acid ester-based monomer constituting the main chain of the (meth)acrylic acid ester-based polymer (D) having a reactive silicon group is not particularly limited, and various types can be used. Specifically, methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, and isobutyl (meth)acrylate.
  • tert-butyl (meth)acrylate n-pentyl (meth)acrylate, n-hexyl (meth)acrylate, cyclohexyl (meth)acrylate, n-heptyl (meth)acrylate, n-(meth)acrylate -octyl, 2-ethylhexyl (meth)acrylate, nonyl (meth)acrylate, decyl (meth)acrylate, dodecyl (meth)acrylate, phenyl (meth)acrylate, toluyl (meth)acrylate, (meth)acrylate Benzyl acrylate, 2-methoxyethyl (meth)acrylate, 3-methoxybutyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, stearyl (meth)acrylate , glycidyl (meth)acrylate, (3
  • Examples of monomer units other than the above include acrylic acid such as acrylic acid and methacrylic acid; amide groups such as N-methylol acrylamide and N-methylol methacrylamide; epoxy groups such as glycidyl acrylate and glycidyl methacrylate; , diethylaminoethyl methacrylate, and the like.
  • the (meth)acrylate polymer (D) may be a polymer obtained by copolymerizing a (meth)acrylate monomer and a vinyl monomer copolymerizable therewith.
  • the vinyl-based monomer is not particularly limited, and examples thereof include styrene-based monomers such as styrene, vinyltoluene, ⁇ -methylstyrene, chlorostyrene, styrenesulfonic acid and salts thereof; perfluoroethylene, perfluoropropylene, vinylidene fluoride, and the like.
  • Fluorine-containing vinyl monomers Silicon-containing vinyl monomers such as vinyltrimethoxysilane and vinyltriethoxysilane; Maleic anhydride, maleic acid, maleic acid monoalkyl esters and dialkyl esters; Fumaric acid, fumaric acid monoalkyl esters and dialkyl esters; maleimide-based monomers such as maleimide, methylmaleimide, ethylmaleimide, propylmaleimide, butylmaleimide, hexylmaleimide, octylmaleimide, dodecylmaleimide, stearylmaleimide, phenylmaleimide, cyclohexylmaleimide; nitrile groups such as acrylonitrile and methacrylonitrile Containing vinyl-based monomers; amide group-containing vinyl-based monomers such as acrylamide and methacrylamide; vinyl ester-based monomers such as vinyl acetate, vinyl propionate, vinyl pivalate, vinyl
  • a copolymer composed of a styrene monomer and a (meth)acrylic acid monomer is preferable because of its excellent physical properties.
  • a (meth)acrylic ester-based polymer composed of an acid ester monomer is more preferable, and an acrylic ester-based polymer composed of an acrylic ester monomer is particularly preferable.
  • the average number of reactive silicon groups in the polymer (D) is preferably 1.0 to 5.0 per molecule, and from the viewpoint of mechanical properties during curing of the curable composition, 1.27 or more. is more preferable, and from the viewpoint of the stability of the polymer (D), 3.0 or less is more preferable.
  • the method for introducing a reactive silicon group into the (meth)acrylic acid ester polymer is not particularly limited, and for example, the following method can be used.
  • V group a reactive functional group
  • a method of reacting the hydroxyl group with an isocyanate silane having a reactive silicon-containing group, or after copolymerizing glycidyl acrylate, the epoxy group and the reactive Examples include a method of reacting an aminosilane compound having a silicon-containing group.
  • Examples of the silicon compound that can be used to introduce the reactive silicon group of the (meth)acrylic acid ester polymer (D) using the above method include the following compounds.
  • Compounds having a polymerizable unsaturated group and a reactive silicon group used in method (i) include 3-(trimethoxysilyl)propyl (meth)acrylate and 3-(dimethoxymethylsilyl)propyl (meth)acrylate.
  • trimethoxysilylpropyl (meth)acrylate and (dimethoxymethylsilyl)propyl (meth)acrylate are particularly preferred.
  • Mercaptosilane compounds with reactive silicon-containing groups used in method (ii) include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyldimethoxymethylsilane, 3-mercaptopropyltriethoxysilane, mercaptomethyltrimethoxysilane, (mercaptomethyl)dimethoxymethylsilane, mercaptomethyltriethoxysilane and the like.
  • Compounds having a reactive silicon group and a functional group reactive with the V group used in method (iii) include 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropyldimethoxymethylsilane, 3-isocyanatopropyltriethoxysilane, isocyanate isocyanatosilane compounds such as methyltrimethoxysilane, isocyanatomethyltriethoxysilane, isocyanatomethyldimethoxymethylsilane, isocyanatomethyldiethoxymethylsilane; 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3 - epoxysilane compounds such as glycidoxypropyldimethoxymethylsilane, glycidoxymethyltrimethoxysilane, glycidoxymethyltriethoxysilane, glycidoxymethyldimethoxymethylsilane, glycid
  • the reactive silicon group of polymer (D) has the general formula (7): —SiR 12 3-b Z b (7)
  • R 12 each independently represents a hydrocarbon group having 1 to 20 carbon atoms, and the hydrocarbon group may have a hetero-containing group.
  • Z each independently represents a hydroxyl group or a hydrolyzable represents a group, and b is 1, 2, or 3.
  • b is 1, 2, or 3.
  • R 12 is a hydrocarbon group having 1 to 20 carbon atoms.
  • the number of carbon atoms in the hydrocarbon group for R 12 is preferably 1-12, more preferably 1-6, and particularly preferably 1-4.
  • the hydrocarbon group may be an unsubstituted hydrocarbon group or a hydrocarbon group having a substituent.
  • R 12 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, 2-ethyl-n-hexyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n - alkyl groups such as pentadecyl, n-hexadecyl, n-octadecyl, n-nonadecyl, and n-icosyl groups; alkenyl groups such as vinyl, 2-propenyl, 3-butenyl groups,
  • R 12 examples include, for example, alkyl groups such as methyl group and ethyl group; alkyl groups having hetero-containing groups such as chloromethyl group and methoxymethyl group; cycloalkyl groups such as cyclohexyl group; aryl groups such as; aralkyl groups such as benzyl group; and the like.
  • R 12 is preferably a methyl group, a methoxymethyl group and a chloromethyl group, more preferably a methyl group and a methoxymethyl group, and still more preferably a methyl group.
  • Z examples include a hydroxyl group, a halogen, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an acid amide group, an aminooxy group, a mercapto group, and an alkenyloxy group.
  • alkoxy groups such as methoxy and ethoxy are more preferable, methoxy and ethoxy are more preferable, and methoxy is particularly preferable, because they are moderately hydrolyzable and easy to handle.
  • b is 1, 2, or 3; b is preferably 2 or 3.
  • reactive silicon groups include a trimethoxysilyl group, a triethoxysilyl group, a tris(2-propenyloxy)silyl group, a triacetoxysilyl group, a dimethoxymethylsilyl group, a diethoxymethylsilyl group and a dimethoxyethylsilyl group.
  • the number average molecular weight of the polymer (D) is not particularly limited, but the polystyrene equivalent molecular weight measured by GPC is preferably 500 to 100,000, more preferably 500 to 50,000, and particularly preferably 1,000 to 30,000. .
  • the method of blending the polymer (A) and the polymer (D) having a reactive silicon group is disclosed in JP-A-59-122541, JP-A-63-112642, JP-A-6-172631, JP-A-11- No. 116763, etc., have proposed this.
  • a method of polymerizing a (meth)acrylic acid ester-based monomer in the presence of a polyoxypropylene-based polymer having a reactive silicon group can be used. This manufacturing method is specifically disclosed in each publication such as JP-A-59-78223, JP-A-60-228516 and JP-A-60-228517.
  • Polymer (A) and polymer (D) can also be blended by similar methods, but are not limited thereto.
  • the mixing ratio of polymer (A) and polymer (D) is not particularly limited, but (A):(D) is preferably 95:5 to 5:95 (parts by weight), and 80:20 to 20:80 (parts by weight). Parts by weight) is more preferred, and 70:30 to 30:70 (parts by weight) is particularly preferred.
  • the polymer (A) and the polymer (D) may be used alone or in combination of two or more.
  • the curable composition according to the present disclosure includes additives such as other silanol condensation catalysts and fillers. , Adhesion imparting agents, plasticizers, solvents, diluents, anti-sagging agents, antioxidants, light stabilizers, ultraviolet absorbers, physical property modifiers, tackifying resins, compounds containing epoxy groups, photocurable substances, Oxygen-curable substances, epoxy resins, and other resins may be added.
  • additives may be added to the curable composition according to the present disclosure as necessary for the purpose of adjusting various physical properties of the curable composition or cured product.
  • additives examples include surface property modifiers, foaming agents, curability modifiers, flame retardants, silicates, radical inhibitors, metal deactivators, antiozonants, phosphorus peroxides, Examples include decomposing agents, lubricants, pigments, and antifungal agents.
  • silanol condensation catalyst for hydrolyzing and condensing the reactive silicon groups of the polymer (A) having reactive silicon groups, a titanium compound (B) and ammonium hydroxide (C), or reaction products thereof is used, but other silanol condensation catalysts may also be used.
  • silanol condensation catalysts include, for example, organic tin compounds, carboxylic acid metal salts, amine compounds, carboxylic acids, and alkoxy metals.
  • organic tin compounds include dibutyltin dilaurate, dibutyltin dioctanoate, dibutyltin bis(butyl maleate), dibutyltin diacetate, dibutyltin oxide, dibutyltin bis(acetylacetonate), dioctyltin bis(acetylacetonate), phosphate), dioctyltin dilaurate, dioctyltin distearate, dioctyltin diacetate, dioctyltin oxide, reaction products of dibutyltin oxide and silicate compounds, reaction products of dioctyltin oxide and silicate compounds, dibutyltin oxide and phthalates and the like.
  • carboxylate metal salts include tin carboxylate, bismuth carboxylate, titanium carboxylate, zirconium carboxylate, iron carboxylate, potassium carboxylate, and calcium carboxylate.
  • carboxylic acid group the following carboxylic acid and various metals can be combined.
  • iron 2-ethylhexanoate (bivalent), iron 2-ethylhexanoate (trivalent), titanium 2-ethylhexanoate (tetravalent), vanadium 2-ethylhexanoate (3 valence), calcium 2-ethylhexanoate (divalent), potassium 2-ethylhexanoate (monovalent), barium 2-ethylhexanoate (divalent), manganese 2-ethylhexanoate (divalent) , Nickel 2-ethylhexanoate (divalent), Cobalt 2-ethylhexanoate (divalent), Zirconium 2-ethylhexanoate (tetravalent), Iron neodecanoate (divalent), Iron neodecanoate (3 valence), titanium neodecanoate (tetravalent), vanadium neodecanoate (trivalent), calcium neo
  • amine compounds include amines such as octylamine, 2-ethylhexylamine, laurylamine, stearylamine; pyridine, 1,8-diazabicyclo[5,4,0]undecene-7 (DBU), 1, Nitrogen-containing heterocyclic compounds such as 5-diazabicyclo[4,3,0]nonene-5 (DBN); guanidines such as guanidine, phenylguanidine and diphenylguanidine; biguanides such as phenyl biguanide; amino group-containing silane coupling agents; ketimine compounds;
  • carboxylic acids include acetic acid, propionic acid, butyric acid, 2-ethylhexanoic acid, lauric acid, stearic acid, oleic acid, linoleic acid, neodecanoic acid, and versatic acid.
  • alkoxy metals include aluminum compounds such as aluminum tris (acetylacetonate) and diisopropoxyaluminum ethylacetoacetate, and zirconium compounds such as zirconium tetrakis (acetylacetonate).
  • fluorine anion-containing compounds As other silanol condensation catalysts, fluorine anion-containing compounds, photoacid generators, and photobase generators can also be used.
  • Two or more different silanol condensation catalysts may be used in combination.
  • the amount of the silanol condensation catalyst used is preferably 0.001 to 20 parts by weight, more preferably 0.01 to 15 parts by weight, relative to 100 parts by weight of the polymer (A) having a reactive silicon group. 0.01 to 10 parts by weight are particularly preferred.
  • Fillers include ground calcium carbonate, colloidal calcium carbonate, magnesium carbonate, diatomaceous earth, clay, talc, titanium oxide, fumed silica, precipitated silica, crystalline silica, fused silica, anhydrous silicic acid, hydrous silicic acid, carbon black, ferric oxide, fine aluminum powder, zinc oxide, active zinc white, PVC powder, PMMA powder, glass fiber and filament, and the like.
  • the amount of filler used is preferably 1 to 600 parts by weight, particularly preferably 50 to 400 parts by weight, per 100 parts by weight of the polymer (A) having a reactive silicon group.
  • Organic balloons and inorganic balloons may be added for the purpose of weight reduction (lower specific gravity) of the composition.
  • the balloon is hollow inside with a spherical filler, and is made of inorganic materials such as glass, shirasu, and silica, and organic materials such as phenolic resin, urea resin, polystyrene, and saran.
  • the amount of the balloon used is preferably 0.1 to 100 parts by weight, particularly preferably 1 to 20 parts by weight, per 100 parts by weight of the polymer (A) having a reactive silicon group.
  • Adhesion imparting agents can be added to the curable composition according to the present disclosure.
  • a silane coupling agent or a reactant of the silane coupling agent can be added as an adhesion imparting agent.
  • silane coupling agents include ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropylmethyldimethoxysilane, N- ⁇ -aminoethyl- ⁇ -aminopropyltrimethoxysilane, N- ⁇ -aminoethyl- ⁇ - Amino group-containing silanes such as aminopropylmethyldimethoxysilane, N-phenyl- ⁇ -aminopropyltrimethoxysilane, (2-aminoethyl)aminomethyltrimethoxysilane; ⁇ -isocyanatopropyltrimethoxysilane, ⁇ -isocyanatopropyltrimethoxysilane; isocyanate group-containing silanes such as ethoxysilane, ⁇ -isocyanatopropylmethyldimethoxysilane, ⁇ -isocyanatomethyltrimethoxysilane, ⁇ -isocyan
  • Condensates of various silane coupling agents such as condensates of aminosilane, condensates of aminosilane and other alkoxysilanes; reaction products of aminosilane and epoxysilane; reaction products of aminosilane and (meth)acrylic group-containing silane; A reaction product of various silane coupling agents such as can also be used.
  • Specific examples include Dynasylan 1146 and Dynasylan 1124 (manufactured by EVONIK).
  • the adhesiveness-imparting agent may be used alone or in combination of two or more.
  • the amount of the silane coupling agent used is preferably 0.1 to 20 parts by weight, particularly preferably 0.5 to 10 parts by weight, per 100 parts by weight of the polymer (A) having a reactive silicon group.
  • plasticizer can be added to the curable composition according to the present disclosure.
  • plasticizers include dibutyl phthalate, diisononyl phthalate (DINP), diheptyl phthalate, di(2-ethylhexyl) phthalate, diisodecyl phthalate (DIDP), phthalate compounds such as butylbenzyl phthalate; bis(2-ethylhexyl )-terephthalate compounds such as 1,4-benzenedicarboxylate; non-phthalate compounds such as 1,2-cyclohexanedicarboxylic acid diisononyl ester (specifically, trade name: Hexamoll DINCH (manufactured by BASF)); Aliphatic polyvalent carboxylic acid ester compounds such as dioctyl adipate, dioctyl sebacate, dibutyl sebacate, diisodecyl succinate and tributyl ace
  • polymer plasticizer can be used.
  • polymeric plasticizers include vinyl polymers; polyester plasticizers; polyether polyols such as polyethylene glycol and polypropylene glycol having a number average molecular weight of 500 or more; polyethers such as derivatives converted to polystyrenes; polybutadiene, polybutene, polyisobutylene, butadiene-acrylonitrile, polychloroprene and the like.
  • the amount of the plasticizer used is preferably 5 to 200 parts by weight, more preferably 10 to 150 parts by weight, and particularly preferably 20 to 120 parts by weight, relative to 100 parts by weight of the polymer (A) having a reactive silicon group. . If it is less than 5 parts by weight, the effect as a plasticizer will not be exhibited, and if it exceeds 200 parts by weight, the mechanical strength of the cured product will be insufficient.
  • a plasticizer may be used individually and may use 2 or more types together.
  • Solvents or diluents may be added to the curable compositions of the present disclosure.
  • Solvents and diluents that can be used include, but are not limited to, aliphatic hydrocarbons, aromatic hydrocarbons, alicyclic hydrocarbons, halogenated hydrocarbons, alcohols, esters, ketones, and ethers.
  • the boiling point of the solvent is preferably 150° C. or higher, more preferably 200° C. or higher, and particularly preferably 250° C. or higher, because of the problem of air pollution when the composition is used indoors. .
  • the above solvents or diluents may be used alone or in combination of two or more.
  • An anti-sagging agent may be added to the curable composition according to the present disclosure as necessary to prevent sagging and improve workability.
  • the anti-sagging agent is not particularly limited, but examples thereof include polyamide waxes; hydrogenated castor oil derivatives; metal soaps such as calcium stearate, aluminum stearate and barium stearate. These anti-sagging agents may be used alone or in combination of two or more.
  • the amount of anti-sagging agent used is preferably 0.1 to 20 parts by weight with respect to 100 parts by weight of the polymer (A) having a reactive silicon group.
  • An antioxidant can be used in the curable composition according to the present disclosure.
  • the use of an antioxidant can enhance the weather resistance of the cured product.
  • antioxidants include hindered phenols, monophenols, bisphenols, and polyphenols.
  • Examples include BHT, Irganox 245, Irganox 1010, Irganox 1035, Irganox 1076, Irganox 1135, Irganox 1330, Irganox 1520, and SONGNOX 1076.
  • Tinuvin 622LD, Tinuvin 144, Tinuvin 292; CHIMASSORB944LD, CHIMASSORB119FL (all of which are manufactured by BASF); Sanol LS-2626, Sanol LS-1114, Sanol LS-744 (all of these are manufactured by Sankyo Lifetech Co., Ltd.); Hindered amines shown in Nocrack CD (manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.) System light stabilizers can also be used.
  • antioxidants such as SONGNOX4120, NOUGARD 445, and OKABEST CLX050 can also be used.
  • antioxidants are also described in JP-A-4-283259 and JP-A-9-194731.
  • the amount of antioxidant used is preferably 0.1 to 10 parts by weight, particularly preferably 0.2 to 5 parts by weight, per 100 parts by weight of the polymer (A) having a reactive silicon group.
  • a light stabilizer can be used in the curable compositions according to the present disclosure.
  • the use of a light stabilizer can prevent photo-oxidative deterioration of the cured product.
  • Benzotriazole-based, hindered amine-based, and benzoate-based compounds can be exemplified as light stabilizers, and hindered amine-based compounds are particularly preferred.
  • Hindered amine light stabilizers include Tinuvin 123, Tinuvin 144, Tinuvin 249, Tinuvin 292, Tinuvin 312, Tinuvin 622LD, Tinuvin 765, Tinuvin 770, Tinuvin 880, Tinuvin 5866, Tinuvin B97; ADEKA STAB LA-57, LA-62, LA-63, LA-67, LA-68 (both of which are manufactured by ADEKA Co., Ltd.); Sanol LS-292, LS-2626, LS-765, LS-744, LS- 1114 (both of which are manufactured by Sankyo Lifetech Co., Ltd.); lights such as SABOSTAB UV91, SABOSTAB UV119, SONGSORB CS5100, SONGSORB CS622, SONGSORB CS944 (both of which are manufactured by SONGWON), and Nocrac CD (manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.) Stabilizers can be exe
  • the amount of light stabilizer used is preferably 0.1 to 10 parts by weight, particularly preferably 0.2 to 5 parts by weight, per 100 parts by weight of the polymer (A) having a reactive silicon group.
  • a UV absorber can be used in the curable composition according to the present disclosure.
  • the use of an ultraviolet absorber can enhance the surface weather resistance of the cured product.
  • Benzophenone-based, benzotriazole-based, salicylate-based, triazine-based, substituted acrylonitrile-based and metal chelate-based compounds can be exemplified as UV absorbers, and benzotriazole-based compounds are particularly preferred.
  • triazine-based compounds include Tinuvin 400, Tinuvin 405, Tinuvin 477, Tinuvin 1577ED (all of which are manufactured by BASF); SONGSORB CS400 and SONGSORB1577 (manufactured by SONGWON).
  • benzophenone compounds include SONGSORB8100 (manufactured by SONGWON).
  • the amount of the ultraviolet absorber used is preferably 0.1 to 10 parts by weight, particularly preferably 0.2 to 5 parts by weight, per 100 parts by weight of the polymer (A) having a reactive silicon group.
  • Addworks IBC760 (manufactured by Clariant) can also be used as a product in which antioxidants, light stabilizers, and ultraviolet absorbers are mixed.
  • the curable composition according to the present disclosure may optionally contain a physical property modifier for adjusting the tensile properties of the resulting cured product.
  • a physical property modifier for adjusting the tensile properties of the resulting cured product.
  • the physical property modifier is not particularly limited, for example, alkylalkoxysilanes such as phenoxytrimethylsilane, methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, and n-propyltrimethoxysilane; diphenyldimethoxysilane, phenyltrimethoxysilane.
  • arylalkoxysilanes such as; alkylisopropenoxysilanes such as dimethyldiisopropenoxysilane, methyltriisopropenoxysilane, ⁇ -glycidoxypropylmethyldiisopropenoxysilane; trialkylsilylborates such as silyl)borate; silicone varnishes; polysiloxanes;
  • the physical property modifiers may be used alone or in combination of two or more.
  • a compound that produces a compound having a monovalent silanol group in the molecule by hydrolysis has the effect of lowering the modulus of the cured product without worsening the surface stickiness of the cured product.
  • Compounds that generate trimethylsilanol are particularly preferred.
  • examples of compounds that generate a compound having a monovalent silanol group in the molecule by hydrolysis include alcohol derivatives such as hexanol, octanol, phenol, trimethylolpropane, glycerin, pentaerythritol, and sorbitol, which are hydrolyzed into silane monovalent groups.
  • Mention may be made of silicon compounds that produce ols. Specific examples include phenoxytrimethylsilane and tris((trimethylsiloxy)methyl)propane.
  • the amount of the physical property modifier used is preferably 0.1 to 10 parts by weight, particularly preferably 0.5 to 5 parts by weight, per 100 parts by weight of the polymer (A) having a reactive silicon group.
  • a tackifying resin can be added for the purpose of enhancing the adhesiveness or adhesion to the substrate, or for other purposes.
  • the tackifying resin there is no particular limitation, and those commonly used can be used.
  • terpene-based resins aromatic modified terpene resins, hydrogenated terpene resins, terpene-phenolic resins, phenolic resins, modified phenolic resins, xylene-phenolic resins, cyclopentadiene-phenolic resins, coumarone-indene resins, rosin-based Resins, rosin ester resins, hydrogenated rosin ester resins, xylene resins, low molecular weight polystyrene resins, styrene copolymer resins, styrene block copolymers and hydrogenated products thereof, petroleum resins (e.g., C5 hydrocarbon resins, C9 hydrocarbon resins, C5C9 hydrocarbon copolymer resins, etc.), hydrogenated petroleum resins, DCPD resins, and the like. These may be used alone or in combination of two or more.
  • petroleum resins e.g., C5 hydrocarbon resins, C9 hydrocarbon resins, C
  • the amount of the tackifier resin used is preferably 2 to 100 parts by weight, more preferably 5 to 50 parts by weight, more preferably 5 to 30 parts by weight, based on 100 parts by weight of the polymer (A) having a reactive silicon group. is more preferred. If the amount is less than 2 parts by weight, it is difficult to obtain adhesion and adhesion effects to the substrate, and if the amount exceeds 100 parts by weight, the viscosity of the composition becomes too high and handling may become difficult.
  • Compounds containing epoxy groups can be used in the curable compositions of the present disclosure.
  • the use of a compound having an epoxy group can enhance the restorability of the cured product.
  • Examples of compounds having an epoxy group include epoxidized unsaturated fats and oils, epoxidized unsaturated fatty acid esters, alicyclic epoxy compounds, epichlorohydrin derivatives, and mixtures thereof.
  • epoxidized soybean oil epoxidized linseed oil, bis(2-ethylhexyl)-4,5-epoxycyclohexane-1,2-dicarboxylate (E-PS), epoxyoctyl stearate , epoxy butyl stearate and the like.
  • the epoxy compound is preferably used in an amount of 0.5 to 50 parts by weight per 100 parts by weight of the polymer (A) having a reactive silicon group.
  • Photocurable materials can be used in the curable compositions of the present disclosure.
  • a photocurable substance When a photocurable substance is used, a film of the photocurable substance is formed on the surface of the cured product, and the stickiness of the cured product and the weather resistance of the cured product can be improved.
  • Many compounds such as organic monomers, oligomers, resins, or compositions containing them are known as this type of compound. Unsaturated acrylic compounds, polyvinyl cinnamates, azide resins, etc., which are monomers, oligomers, or mixtures thereof can be used.
  • the photocurable substance is preferably used in an amount of 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight, per 100 parts by weight of the polymer (A) having a reactive silicon group. If it is less than 1 part by weight, there is no effect of improving the weather resistance, and if it is more than 20 parts by weight, the cured product becomes too hard and tends to crack.
  • Oxygen-curable materials can be used in the curable compositions of the present disclosure.
  • oxygen-curable substances include unsaturated compounds that can react with oxygen in the air, and react with oxygen in the air to form a hardened film near the surface of the cured product, which causes the surface to become sticky and dust on the surface of the cured product. and prevent the adhesion of dust.
  • Specific examples of oxygen-curable substances include drying oils such as paulownia oil and linseed oil, various alkyd resins obtained by modifying these compounds; acrylic polymers modified with drying oils, and epoxy resins.
  • silicone resins obtained by polymerizing or copolymerizing diene compounds such as butadiene, chloroprene, isoprene, 1,3-pentadiene, 1,4-polybutadiene, C5-C8 diene polymers, etc.
  • diene compounds such as butadiene, chloroprene, isoprene, 1,3-pentadiene, 1,4-polybutadiene, C5-C8 diene polymers, etc.
  • liquid polymers These may be used alone or in combination of two or more.
  • the amount of the oxygen-curable substance used is preferably in the range of 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, per 100 parts by weight of the polymer (A) having a reactive silicon group. weight part. If the amount used is less than 0.1 part by weight, the improvement in staining resistance will not be sufficient, and if it exceeds 20 parts by weight, the tensile properties of the cured product will tend to be impaired. As described in JP-A-3-160053, oxygen-curable substances are preferably used in combination with photo-curable substances.
  • Epoxy resin can be used in combination with the curable composition according to the present disclosure.
  • a composition containing an epoxy resin is particularly preferred as an adhesive, especially an adhesive for exterior wall tiles.
  • epoxy resins include bisphenol A type epoxy resins and novolac type epoxy resins.
  • the ratio of (A)/epoxy resin is less than 1/100, it becomes difficult to obtain the effect of improving the impact strength and toughness of the cured epoxy resin, and the ratio of (A)/epoxy resin exceeds 100/1. and the strength of the cured polymer becomes insufficient.
  • a curing agent that cures the epoxy resin can be used in combination with the curable composition according to the present disclosure.
  • the epoxy resin curing agent that can be used is not particularly limited, and generally used epoxy resin curing agents can be used.
  • the amount used is in the range of 0.1 to 300 parts by weight with respect to 100 parts by weight of the epoxy resin.
  • the curable composition according to the present disclosure can also be prepared as a one-component type in which all the ingredients are preformed and sealed and cured by moisture in the air after application, and a curing catalyst and filling are separately used as curing agents. It can also be prepared as a two-component type in which components such as the material, plasticizer, and water are blended and the blending materials and the organic polymer composition are mixed before use. From the viewpoint of workability, the one-component type is preferred.
  • the ingredients containing water are preliminarily dehydrated and dried before use, or dehydrated by decompression or the like during blending and kneading. is preferred.
  • n-propyltrimethoxysilane, vinyltrimethoxysilane, phenyltrimethoxysilane, vinylmethyldimethoxysilane, ⁇ -mercaptopropylmethyldimethoxysilane, ⁇ -mercaptopropylmethyldiethoxysilane, ⁇ -glycol Addition of an alkoxysilane compound such as sidoxypropyltrimethoxysilane further improves storage stability.
  • the amount of the dehydrating agent, particularly the silicon compound capable of reacting with water such as vinyltrimethoxysilane, is preferably 0.1 to 20 parts by weight per 100 parts by weight of the polymer (A) having a reactive silicon group. is 0.5 to 10 parts by weight.
  • the curable composition according to the present disclosure includes adhesives, sealing materials for buildings, ships, automobiles, roads, etc., adhesives, waterproofing materials, coating film waterproofing materials, molding agents, vibration-proof materials, vibration-damping materials, and soundproofing materials. It can be used for materials, foam materials, paints, spray materials, etc.
  • a cured product obtained by curing the curable composition according to the present disclosure is excellent in flexibility and adhesiveness, and therefore, among these, it is more preferably used as a sealant or an adhesive.
  • electrical and electronic component materials such as solar cell back sealing materials, electrical and electronic component materials such as insulating coating materials for electric wires and cables, electrical insulating materials for equipment, acoustic insulating materials, elastic adhesives, binders, contact type Adhesives, spray-type sealing materials, crack repair materials, tiling adhesives, asphalt waterproofing adhesives, powder coatings, casting materials, medical rubber materials, medical adhesives, medical adhesive sheets, medical equipment Sealing materials, dental impression materials, food packaging materials, joint sealing materials for exterior materials such as sizing boards, coating materials, anti-slip coating materials, cushioning materials, primers, conductive materials for shielding electromagnetic waves, thermal conductive materials, hot-melt materials , electric and electronic potting agents, films, gaskets, concrete reinforcing materials, adhesives for temporary fixing, various molding materials, rust-proof and waterproof sealing materials for wire glass and laminated glass edges (cut parts), automobile parts , trucks, buses and other large vehicle parts, train vehicle parts, aircraft parts, ship parts, electrical parts, various machine parts,
  • the curable compositions of the present disclosure are also used in interior panel adhesives, exterior panel adhesives, tiling adhesives, masonry adhesives, ceiling finish adhesives, floor finish adhesives, wall finish adhesives, adhesives for automobiles, adhesives for vehicle panels, adhesives for assembling electrical, electronic and precision equipment, adhesives for bonding leather, textiles, fabrics, paper, boards and rubber, reactive post-crosslinking pressure-sensitive adhesives, It can also be used as a sealing material for direct glazing, a sealing material for double glazing, a sealing material for SSG construction method, a sealing material for working joints of buildings, a material for civil engineering, and a bridge material. Furthermore, it can be used as an adhesive material such as an adhesive tape and an adhesive sheet.
  • [Item 1] having a reactive silicon group of general formula (1), a terminal structure having the reactive silicon group and a terminal olefin group and/or an internal olefin group, the reactive silicon group in the terminal structure; containing a reactive silicon group-containing polyoxyalkylene polymer (A) in which the total number of the terminal olefin groups and the internal olefin groups is more than 1.0 on average per terminal structure; —Si(R 1 ) 3-a X a (1) (R 1 each independently represents a hydrocarbon group having 1 to 20 carbon atoms, and the hydrocarbon group may have a hetero-containing group.
  • Each X is independently a hydroxyl group or a hydrolyzable group.
  • a is 1, 2, or 3.
  • R 2 is a substituted or unsubstituted hydrocarbon group having 1 to 10 carbon atoms; n is an integer of 1 to 4; A is a ⁇ -diketone group.
  • the number average molecular weight in the examples is the GPC molecular weight measured under the following conditions.
  • Liquid delivery system Tosoh HLC-8220GPC Column: TSKgel SuperH series manufactured by Tosoh Solvent: THF Molecular weight: Polystyrene equivalent Measurement temperature: 40°C
  • Average number of reactive silicon groups per terminal structure of the polymer shown in Examples average number of reactive silicon groups per molecule, reactive silicon group per terminal structure, terminal olefin The average total number of groups and internal olefinic groups was calculated from the structure of the polymer and the results of NMR measurements.
  • the unpurified polyoxypropylene thus obtained was mixed with n-hexane and water, and then the water was removed by centrifugation. Removed. As a result, polyoxypropylene (Q-1) having a plurality of carbon-carbon unsaturated bonds at the ends was obtained.
  • Polymer (A-1) has an average total number of reactive silicon groups, terminal olefin groups and internal olefin groups per terminal structure of 2.0 per terminal structure, and 1 trimethoxysilyl group. It was found that each terminal structure has an average of 1.7 and one molecule has an average of 3.4.
  • polystyrene resin To 500 g of this polymer (Q-2) was added 50 ⁇ l of a platinum divinyldisiloxane complex solution (isopropanol solution of 3% by weight in terms of platinum), and 7.5 g of trimethoxysilane was slowly added dropwise while stirring. After the mixed solution was reacted at 90° C. for 2 hours, unreacted trimethoxysilane was distilled off under reduced pressure to give a polyoxypropylene (A′-1 ).
  • the polymer (A'-1) has an average total number of reactive silicon groups, terminal olefin groups and internal olefin groups per terminal structure of 1.0 per terminal structure, and has a trimethoxysilyl group. It was found that one terminal structure has an average of 0.8 and one molecule has an average of 1.6.
  • Example 1 For 100 parts by weight of the polymer (A-1) obtained in Synthesis Example 1, 100 parts by weight of DINP (manufactured by J-Plus Co., Ltd., diinonyl phthalate), Imerseal 36S (manufactured by Imerys: ground calcium carbonate ) 100 parts by weight, Hakuenka CCR S10 (manufactured by Shiraishi Calcium Co., Ltd.: colloidal calcium carbonate) 200 parts by weight, Tinuvin 326 (manufactured by BASF: 2-(5-chloro-2H-benzotriazol-2-yl)-4-methyl- 6-tert-butylphenol) 1 part by weight, Tinuvin 770 (manufactured by BASF: bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate) 1 part by weight, Irganox 245 (manufactured by BASF: hindered phenolic antioxidant agent) was mixed and uniformly dispersed.
  • DINP manufactured by J
  • Dynasylan VTMO manufactured by EVONIK: vinyltrimethoxysilane
  • Dynasylan AMMO manufactured by EVONIK: 3-aminopropyltrimethoxysilane
  • the catalyst (B-1) obtained in Synthesis Example 3 3.5 parts by weight was added and uniformly mixed and defoamed using a rotation/revolution mixer.
  • the composition was filled in a mold and cured at 23° C. and 50% RH for 3 days and further at 50° C. for 4 days to prepare a sheet-like cured product having a thickness of about 3 mm.
  • the sheet-shaped cured product was punched into a No.
  • Example 2 Evaluation was carried out in the same manner as in Example 1, except that 4.5 parts by weight of catalyst (B-1) was added. Table 1 shows the results.
  • Example 2 Evaluation was carried out in the same manner as in Example 1 except that the polymer (A-1) was changed to the polymer (A'-1) and 4.5 parts by weight of the catalyst (B-1) was added. Table 1 shows the results.
  • Example 3 Evaluation was carried out in the same manner as in Example 1 except that the catalyst (B-1) was changed to 0.3 parts by weight of TIB KAT 223 (dioctyltin dicetylacetonate manufactured by TIB Chemical). Table 1 shows the results.
  • Example 4 Evaluation was carried out in the same manner as in Example 1 except that the polymer (A-1) was changed to the polymer (A'-1) and the catalyst (B-1) was changed to 0.3 parts by weight of TIB KAT 223. . Table 1 shows the results.
  • Examples 1 and 2 containing a reactive silicon group-containing polyoxyalkylene polymer (A) and a reaction product of a titanium compound (B) and ammonium hydroxide (C) are comparative examples that do not contain either Compared to 1 to 4, the breaking strength and breaking elongation in the dumbbell tensile test are improved.

Abstract

A curable composition containing: a reactive silicon group-containing polyoxyalkylene polymer (A) having a reactive silicon group, wherein a terminal structure comprises the reactive silicon group and a terminal olefin group and/or an internal olefin group, and the total number of the reactive silicon group, the terminal olefin group and the internal olefin group in the terminal structure is greater than 1.0, on average, per single terminal structure; and a titanium compound (B) and ammonium hydroxide (C), or a reaction product resulting from a reaction between the titanium compound (B) and ammonium hydroxide (C).

Description

硬化性組成物Curable composition
 本発明は、反応性ケイ素基含有ポリオキシアルキレン系重合体を含む硬化性組成物に関する。 The present invention relates to a curable composition containing a reactive silicon group-containing polyoxyalkylene polymer.
 反応性ケイ素基を有する重合体は、湿分反応性ポリマーとして知られており、接着剤、シーリング材、コーティング材、塗料、粘着剤等の多くの工業製品に含まれ、幅広い分野で利用されている。 Polymers with reactive silicon groups are known as moisture-reactive polymers, are included in many industrial products such as adhesives, sealants, coating materials, paints, and adhesives, and are used in a wide range of fields. there is
 このような反応性ケイ素基含有重合体の重合体成分としては、主鎖骨格がポリオキシアルキレン系重合体、飽和炭化水素系重合体や(メタ)アクリル酸エステル系共重合体などの各種重合体が知られているが、中でもポリオキシアルキレン系重合体は、室温において比較的低粘度で取扱い易く、また反応後に得られる硬化物も良好な弾性を示すなどの特徴から、その適用範囲は広い。 Polymer components of such reactive silicon group-containing polymers include various polymers such as polyoxyalkylene-based polymers, saturated hydrocarbon-based polymers, and (meth)acrylic acid ester-based copolymers. Among them, polyoxyalkylene polymers have relatively low viscosity at room temperature and are easy to handle, and the cured product obtained after the reaction exhibits good elasticity.
 反応性ケイ素基を有する重合体は、硬化触媒がない状況下では水分と共存してもケイ素基が反応せず長期的に安定であり、硬化触媒を混合するとその時点から硬化反応が進む。硬化触媒として錫触媒が多く使用されているが、錫触媒以外の触媒が求められる場合がある。 Polymers with reactive silicon groups are stable for a long period of time because the silicon groups do not react even if they coexist with moisture in the absence of a curing catalyst. Tin catalysts are often used as curing catalysts, but there are cases where catalysts other than tin catalysts are required.
 例えば、錫以外の触媒の一つとして、チタン触媒が開発されている(特許文献1,2を参照)。 For example, a titanium catalyst has been developed as one of the catalysts other than tin (see Patent Documents 1 and 2).
 また、反応性ケイ素基を有するポリオキシアルキレン系重合体として、1つの末端に複数のシリル基を有する重合体も開発されている(特許文献3を参照)。 In addition, as a polyoxyalkylene polymer having a reactive silicon group, a polymer having a plurality of silyl groups at one end has also been developed (see Patent Document 3).
国際公開第2021/106942号WO2021/106942 国際公開第2021/106943号WO2021/106943 国際公開第2013/180203号WO2013/180203
 本発明は、錫触媒を用いることなく、硬化後の破断強度と破断伸びを向上させた硬化性組成物を提供することを目的とする。 An object of the present invention is to provide a curable composition with improved breaking strength and breaking elongation after curing without using a tin catalyst.
 本発明者らは、上記問題を解決するために鋭意検討した結果、以下の発明を完成させた。 The inventors of the present invention completed the following invention as a result of intensive studies to solve the above problems.
 すなわち本発明は、一般式(1)の反応性ケイ素基を有し、末端構造が、前記反応性ケイ素基と、末端オレフィン基及び/又は内部オレフィン基とを有し、前記末端構造中の前記反応性ケイ素基、前記末端オレフィン基及び前記内部オレフィン基の合計数が、前記末端構造1個あたり平均して1.0より多い、反応性ケイ素基含有ポリオキシアルキレン系重合体(A)を含有し、
-Si(R3-a   (1)
(Rはそれぞれ独立に炭素数1~20の炭化水素基を表し、前記炭化水素基はヘテロ含有基を有していても良い。Xはそれぞれ独立に水酸基または加水分解性基である。aは1,2,または3である。)
 さらに、一般式(2)で表されるチタン化合物(B)、及び
(R-O)Ti-A4-n   (2)
(Rは炭素数1~10の置換又は非置換の炭化水素基である。nは1~4の整数である。Aはβジケトン基である。)
 アンモニウムヒドロキシド(C)を含有するか、又は、前記チタン化合物(B)と前記アンモニウムヒドロキシド(C)との反応生成物を含有する、硬化性組成物に関する。
That is, the present invention has a reactive silicon group of general formula (1), a terminal structure has the reactive silicon group, a terminal olefin group and/or an internal olefin group, and the Containing a reactive silicon group-containing polyoxyalkylene polymer (A) in which the total number of reactive silicon groups, the terminal olefin groups and the internal olefin groups is more than 1.0 on average per terminal structure death,
—Si(R 1 ) 3-a X a (1)
(R 1 each independently represents a hydrocarbon group having 1 to 20 carbon atoms, and the hydrocarbon group may have a hetero-containing group. Each X is independently a hydroxyl group or a hydrolyzable group. a is 1, 2, or 3.)
Furthermore, a titanium compound (B) represented by general formula (2), and (R 2 —O) n Ti—A 4-n (2)
(R 2 is a substituted or unsubstituted hydrocarbon group having 1 to 10 carbon atoms; n is an integer of 1 to 4; A is a β-diketone group.)
It relates to a curable composition containing ammonium hydroxide (C) or containing a reaction product of said titanium compound (B) and said ammonium hydroxide (C).
 本発明は、錫触媒を用いることなく、硬化後の破断強度と破断伸びを向上させた硬化性組成物を提供することができる。 The present invention can provide a curable composition with improved breaking strength and breaking elongation after curing without using a tin catalyst.
 以下に本発明の実施形態を説明する。
 <<反応性ケイ素基含有ポリオキシアルキレン系重合体(A)>>
 本開示に係る硬化性組成物は、一般式(1)の反応性ケイ素基を有するポリオキシアルキレン系重合体(A)(以下、重合体(A)ともいう)を含有する。重合体(A)の末端構造は、前記反応性ケイ素基と、末端オレフィン基及び/又は内部オレフィン基とを有し、前記末端構造中の前記反応性ケイ素基、前記末端オレフィン基及び前記内部オレフィン基の合計数が、前記末端構造1個あたり平均して1.0より多い。
-Si(R3-a  (1)
Embodiments of the present invention are described below.
<<Reactive Silicon Group-Containing Polyoxyalkylene Polymer (A)>>
The curable composition according to the present disclosure contains a polyoxyalkylene polymer (A) having a reactive silicon group represented by general formula (1) (hereinafter also referred to as polymer (A)). The terminal structure of the polymer (A) has the reactive silicon group, the terminal olefin group and/or the internal olefin group, and the reactive silicon group, the terminal olefin group and the internal olefin group in the terminal structure The total number of groups is on average greater than 1.0 per said terminal structure.
—Si(R 1 ) 3-a X a (1)
 反応性ケイ素基含ポリオキシアルキレン系有重合体(A)は、オキシアルキレンの繰り返し単位から構成される重合体骨格と、該重合体骨格の末端に結合した末端構造を有する。反応性ケイ素基含有ポリオキシアルキレン系重合体(A)の重合体骨格は、直鎖状のものであってもよいし、分岐鎖状のものであってもよいが、直鎖状の重合体骨格は、硬化性組成物の硬化物の伸びと引裂き強度が高い点で好ましい。直鎖状の重合体骨格は、重合体骨格を形成するための重合方法において、1分子中に2個の水酸基を有する開始剤を使用することによって形成でき、分岐鎖状の重合体骨格は、1分子中に3個又はそれ以上の水酸基を有する開始剤を使用することによって形成できる。 The reactive silicon group-containing polyoxyalkylene-based polymer (A) has a polymer skeleton composed of repeating units of oxyalkylene and a terminal structure bonded to the end of the polymer skeleton. The polymer skeleton of the reactive silicon group-containing polyoxyalkylene-based polymer (A) may be linear or branched. The skeleton is preferable in that the cured product of the curable composition has high elongation and high tear strength. A linear polymer backbone can be formed by using an initiator with two hydroxyl groups per molecule in the polymerization process to form the polymer backbone, and a branched polymer backbone can be formed by: It can be formed by using an initiator having 3 or more hydroxyl groups in one molecule.
 前記末端構造とは、重合体骨格を構成する繰り返し単位を含まない部位であって、前記重合体骨格の末端に結合した部位を指す。重合体骨格が直鎖状の場合、前記末端構造は重合体1分子あたり1個又は2個存在し、重合体骨格が分岐鎖状の場合、前記末端構造は重合体1分子あたり3個以上存在する。また、重合体骨格が直鎖状と分岐鎖状の混合物である場合には、重合体1分子あたりの末端構造の数は平均して2~3の間の数値になり得る。 The term "terminal structure" refers to a site that does not contain a repeating unit that constitutes the polymer backbone and that is bonded to the end of the polymer backbone. When the polymer skeleton is linear, one or two terminal structures are present per polymer molecule, and when the polymer skeleton is branched, three or more terminal structures are present per polymer molecule. do. Also, when the polymer backbone is a mixture of linear and branched chains, the average number of terminal structures per polymer molecule can be between 2 and 3.
 前記末端構造は、酸素原子を介して、前記重合体骨格の端に位置するオキシアルキレン単位に結合していることが好ましい。また、反応性ケイ素基含有ポリオキシアルキレン系重合体(A)が有する反応性ケイ素基は、末端構造中に含まれていることが好ましい。この時、各末端構造がそれぞれ反応性ケイ素基を含むものであってもよいし、反応性ケイ素基を含む末端構造と、反応性ケイ素基を含まない末端構造が併存してもよい。 The terminal structure is preferably bonded to an oxyalkylene unit positioned at the end of the polymer skeleton via an oxygen atom. In addition, the reactive silicon group possessed by the reactive silicon group-containing polyoxyalkylene polymer (A) is preferably contained in the terminal structure. At this time, each terminal structure may contain a reactive silicon group, or a terminal structure containing a reactive silicon group and a terminal structure not containing a reactive silicon group may coexist.
 反応性ケイ素基含有ポリオキシアルキレン系重合体(A)は、反応性ケイ素基と、末端オレフィン基及び内部オレフィン基のいずれか一方又は双方とを有する末端構造を持つ。末端構造が反応性ケイ素基と、末端オレフィン基及び/又は内部オレフィン基とを有するとは、重合体に含まれる個々の末端構造が全て、反応性ケイ素基と、末端オレフィン基及び/又は内部オレフィン基とを有することを意味するのではなく、多数の重合体分子を含む重合体(A)の総体において、末端構造が反応性ケイ素基と、末端オレフィン基及び/又は内部オレフィン基とを有していればよいことを意味する。即ち、重合体(A)に含まれるある1分子中の末端構造は、反応性ケイ素基のみを有し、末端オレフィン基又は内部オレフィン基を有しないものであってもよいし、また、末端オレフィン基と内部オレフィン基のいずれか一方又は双方を有するが、反応性ケイ素基を有しないものであってもよい。 The reactive silicon group-containing polyoxyalkylene polymer (A) has a terminal structure having a reactive silicon group and either one or both of a terminal olefin group and an internal olefin group. A terminal structure having a reactive silicon group and a terminal olefin group and/or an internal olefin group means that all the individual terminal structures contained in the polymer have a reactive silicon group, a terminal olefin group and/or an internal olefin group. group, and the terminal structure has a reactive silicon group and a terminal olefin group and/or an internal olefin group in the totality of the polymer (A) containing a large number of polymer molecules. It means that it is good to have That is, the terminal structure in one molecule contained in the polymer (A) may have only a reactive silicon group and not have a terminal olefin group or an internal olefin group, or may have a terminal olefin It may have either one or both of groups and internal olefin groups, but may not have reactive silicon groups.
 反応性ケイ素基含有ポリオキシアルキレン系重合体(A)は、前記末端構造中の反応性ケイ素基、末端オレフィン基及び内部オレフィン基の合計数が、前記末端構造1個あたり平均して1.0より多い。このように末端構造1個あたりの特定基の合計数が多い反応性ケイ素基含有ポリオキシアルキレン系重合体を、後述する硬化触媒と併用することで、硬化後の破断強度と破断伸びを向上させることができる。前記合計数は、1.2以上が好ましく、1.4以上がより好ましい。前記合計数の上限値は特に限定されないが、4.0以下であることが好ましく、3.0以下であることがより好ましく、2.0以下であることが特に好ましい。 In the reactive silicon group-containing polyoxyalkylene polymer (A), the total number of reactive silicon groups, terminal olefin groups and internal olefin groups in the terminal structure is 1.0 on average per terminal structure. is more than. In this way, by using a reactive silicon group-containing polyoxyalkylene polymer having a large total number of specific groups per terminal structure in combination with a curing catalyst described later, the breaking strength and breaking elongation after curing are improved. be able to. The total number is preferably 1.2 or more, more preferably 1.4 or more. Although the upper limit of the total number is not particularly limited, it is preferably 4.0 or less, more preferably 3.0 or less, and particularly preferably 2.0 or less.
 反応性ケイ素基含有ポリオキシアルキレン系重合体(A)の末端構造1個あたりの反応性ケイ素基の数は、平均して0.5以上であることが好ましく、0.8以上であることがより好ましく、1.0以上であることがさらに好ましく、1.2以上であることが最も好ましい。また、重合体(A)の末端構造1個あたりの反応性ケイ素基の数の上限値は特に限定されないが、4.0以下であることが好ましく、3.0以下であることがより好ましく、2.0以下であることが特に好ましい。 The average number of reactive silicon groups per terminal structure of the reactive silicon group-containing polyoxyalkylene polymer (A) is preferably 0.5 or more, preferably 0.8 or more. It is more preferably 1.0 or more, and most preferably 1.2 or more. The upper limit of the number of reactive silicon groups per terminal structure of the polymer (A) is not particularly limited, but is preferably 4.0 or less, more preferably 3.0 or less, 2.0 or less is particularly preferred.
 反応性ケイ素基含有ポリオキシアルキレン系重合体(A)1分子中に含まれる反応性ケイ素基の数は、平均して0.5~8.0であることが好ましく、1.0~6.0であることがより好ましく、1.5~5.0であることがさらに好ましい。 The average number of reactive silicon groups contained in one molecule of the reactive silicon group-containing polyoxyalkylene polymer (A) is preferably 0.5 to 8.0, more preferably 1.0 to 6.0. It is more preferably 0, more preferably 1.5 to 5.0.
 <反応性ケイ素基>
 反応性ケイ素基含有ポリオキシアルキレン系重合体(A)は、一般式(1):
-Si(R3-a  (1)
(Rは、それぞれ独立に、炭素原子数1~20の炭化水素基を表し、前記炭化水素基は、ヘテロ含有基を有してもよい。Xは、それぞれ独立に、水酸基または加水分解性基を表す。aは1、2、または3である。)
で表される反応性ケイ素基を有する。
<Reactive silicon group>
The reactive silicon group-containing polyoxyalkylene polymer (A) has the general formula (1):
—Si(R 1 ) 3-a X a (1)
(R 1 each independently represents a hydrocarbon group having 1 to 20 carbon atoms, and the hydrocarbon group may have a hetero-containing group. X each independently represents a hydroxyl group or a hydrolyzable represents a group, and a is 1, 2, or 3.)
It has a reactive silicon group represented by
 Rは、炭素原子数1~20の炭化水素基である。Rとしての炭化水素基の炭素原子数としては、1~12が好ましく、1~6がより好ましく、1~4が特に好ましい。該炭化水素基は、無置換の炭化水素基であってもよいし、置換基を有する炭化水素基であってもよい。 R 1 is a hydrocarbon group having 1 to 20 carbon atoms. The number of carbon atoms in the hydrocarbon group for R 1 is preferably 1-12, more preferably 1-6, and particularly preferably 1-4. The hydrocarbon group may be an unsubstituted hydrocarbon group or a hydrocarbon group having a substituent.
 Rとしての炭化水素基が置換基として有してもよいヘテロ含有基は、ヘテロ原子を含む基である。ここで、炭素原子および水素原子以外の原子をヘテロ原子とする。 The hetero-containing group which the hydrocarbon group as R 1 may have as a substituent is a group containing a hetero atom. Here, atoms other than carbon atoms and hydrogen atoms are heteroatoms.
 ヘテロ原子の好適な例としては、N、O、S、P、Si、およびハロゲン原子が挙げられる。ヘテロ含有基について、炭素原子数とヘテロ原子数との合計は、1~10が好ましく、1~6がより好ましく、1~4がさらに好ましい。 Suitable examples of heteroatoms include N, O, S, P, Si, and halogen atoms. For the hetero-containing group, the total number of carbon atoms and heteroatoms is preferably 1-10, more preferably 1-6, even more preferably 1-4.
 ヘテロ含有基の好適な例としては、水酸基;メルカプト基;Cl、Br、I、およびFなどのハロゲン原子;ニトロ基;シアノ基;メトキシ基、エトキシ基、n-プロピルオキシ基、およびイソプロピルオキシ基などのアルコキシ基;メチルチオ基、エチルチオ基、n-プロピルチオ基、およびイソプロピルチオ基などのアルキルチオ基;アセチル基、プロピオニル基、およびブタノイル基などのアシル基;アセチルオキシ基、プロピオニルオキシ基、およびブタノイルオキシ基などのアシルオキシ基;アミノ基、メチルアミノ基、エチルアミノ基、ジメチルアミノ基、およびジエチルアミノ基などの置換または非置換のアミノ基;アミノカルボニル基、メチルアミノカルボニル基、エチルアミノカルボニル基、ジメチルアミノカルボニル基、およびジエチルアミノカルボニル基などの置換または非置換のアミノカルボニル基;シアノ基などが挙げられる。 mercapto groups; halogen atoms such as Cl, Br, I, and F; nitro groups; cyano groups; methoxy, ethoxy, n-propyloxy, and isopropyloxy groups. alkoxy groups such as; alkylthio groups such as methylthio, ethylthio, n-propylthio, and isopropylthio; acyl groups such as acetyl, propionyl, and butanoyl; acetyloxy, propionyloxy, and butanoyl. Acyloxy group such as oxy group; substituted or unsubstituted amino group such as amino group, methylamino group, ethylamino group, dimethylamino group and diethylamino group; aminocarbonyl group, methylaminocarbonyl group, ethylaminocarbonyl group, dimethyl substituted or unsubstituted aminocarbonyl groups such as an aminocarbonyl group and a diethylaminocarbonyl group; and a cyano group.
 Rがヘテロ含有基で置換された炭化水素基である場合、Rにおける炭素原子数とヘテロ原子数との合計は、2~30が好ましく、2~18がより好ましく、2~10がさらに好ましく、2~6が特に好ましい。 When R 1 is a hydrocarbon group substituted with a hetero-containing group, the total number of carbon atoms and hetero atoms in R 1 is preferably from 2 to 30, more preferably from 2 to 18, and further from 2 to 10. 2 to 6 are particularly preferred.
 Rとしての炭素原子数1~20の炭化水素基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、2-エチル-n-ヘキシル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-オクタデシル基、n-ノナデシル基、およびn-イコシル基などのアルキル基;ビニル基、2-プロペニル基、3-ブテニル基、および4-ペンテニル基などのアルケニル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、およびシクロオクチル基などのシクロアルキル基;フェニル基、ナフタレン-1-イル基、ナフタレン-2-イル基、o-フェニルフェニル基、m-フェニルフェニル基、およびp-フェニルフェニル基などのアリール基;ベンジル基、フェネチル基、ナフタレン-1-イルメチル基、およびナフタレン-2-イルメチル基などのアラルキル基が挙げられる。 Specific examples of hydrocarbon groups having 1 to 20 carbon atoms as R 1 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group and tert-butyl. group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, 2-ethyl-n-hexyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group , n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-octadecyl group, n-nonadecyl group, and n-icosyl group; vinyl group, 2-propenyl group, 3 alkenyl groups such as -butenyl group and 4-pentenyl group; cycloalkyl groups such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, and cyclooctyl group; phenyl group, naphthalene-1-yl group aryl groups such as , naphthalen-2-yl, o-phenylphenyl, m-phenylphenyl, and p-phenylphenyl groups; benzyl, phenethyl, naphthalen-1-ylmethyl, and naphthalen-2-ylmethyl and aralkyl groups such as groups.
 これらの炭化水素基が、前述のヘテロ含有基で置換された基も、Rとして好ましい。 Groups in which these hydrocarbon groups are substituted with the aforementioned hetero-containing groups are also preferred as R 1 .
 Rの好適な例としては、例えば、メチル基、およびエチル基などのアルキル基;クロロメチル基、およびメトキシメチル基などのヘテロ含有基を有するアルキル基;シクロヘキシル基などのシクロアルキル基;フェニル基などのアリール基;ベンジル基などのアラルキル基;などを挙げることができる。Rとしては、メチル基、メトキシメチル基、およびクロロメチル基が好ましく、メチル基、およびメトキシメチル基がより好ましく、メチル基がさらに好ましい。 Preferable examples of R 1 include alkyl groups such as methyl group and ethyl group; alkyl groups having hetero-containing groups such as chloromethyl group and methoxymethyl group; cycloalkyl groups such as cyclohexyl group; aryl groups such as; aralkyl groups such as benzyl group; and the like. R 1 is preferably a methyl group, a methoxymethyl group and a chloromethyl group, more preferably a methyl group and a methoxymethyl group, and still more preferably a methyl group.
 Xとしては、例えば、水酸基、ハロゲン、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカプト基、およびアルケニルオキシ基などが挙げられる。これらの中では、加水分解性が穏やかで取扱いやすいことから、アルコキシ基がより好ましく、メトキシ基、エトキシ基がさらに好ましく、メトキシ基が特に好ましい。 Examples of X include hydroxyl group, halogen, alkoxy group, acyloxy group, ketoximate group, amino group, amide group, acid amide group, aminooxy group, mercapto group, and alkenyloxy group. Among these, an alkoxy group is more preferable, a methoxy group and an ethoxy group are more preferable, and a methoxy group is particularly preferable, since they are moderately hydrolyzable and easy to handle.
 aは1、2、または3である。aとしては、2または3が好ましく、硬化性が向上し、高強度となるため、3がより好ましい。 a is 1, 2, or 3; As a, 2 or 3 is preferable, and 3 is more preferable because curability is improved and high strength is obtained.
 反応性ケイ素基の具体例としては、トリメトキシシリル基、トリエトキシシリル基、トリス(2-プロペニルオキシ)シリル基、トリアセトキシシリル基、ジメトキシメチルシリル基、ジエトキシメチルシリル基、ジメトキシエチルシリル基、(クロロメチル)ジメトキシシリル基、(クロロメチル)ジエトキシシリル基、(メトキシメチル)ジメトキシシリル基、(メトキシメチル)ジエトキシシリル基、(N,N-ジエチルアミノメチル)ジメトキシシリル基、および(N,N-ジエチルアミノメチル)ジエトキシシリル基などが挙げられるが、これらに限定されない。これらの中では、ジメトキシメチルシリル基、トリメトキシシリル基、トリエトキシシリル基、および(メトキシメチル)ジメトキシシリル基が良好な機械物性を有する硬化物が得られるため好ましい。活性の観点から、トリメトキシシリル基、(クロロメチル)ジメトキシシリル基、および(メトキシメチル)ジメトキシシリル基がより好ましく、硬化性が向上するためトリメトキシシリル基が特に好ましい。 Specific examples of reactive silicon groups include a trimethoxysilyl group, a triethoxysilyl group, a tris(2-propenyloxy)silyl group, a triacetoxysilyl group, a dimethoxymethylsilyl group, a diethoxymethylsilyl group and a dimethoxyethylsilyl group. , (chloromethyl)dimethoxysilyl group, (chloromethyl)diethoxysilyl group, (methoxymethyl)dimethoxysilyl group, (methoxymethyl)diethoxysilyl group, (N,N-diethylaminomethyl)dimethoxysilyl group, and (N , N-diethylaminomethyl)diethoxysilyl groups and the like, but are not limited thereto. Among these, a dimethoxymethylsilyl group, a trimethoxysilyl group, a triethoxysilyl group, and a (methoxymethyl)dimethoxysilyl group are preferable because a cured product having good mechanical properties can be obtained. From the viewpoint of activity, a trimethoxysilyl group, a (chloromethyl)dimethoxysilyl group, and a (methoxymethyl)dimethoxysilyl group are more preferable, and a trimethoxysilyl group is particularly preferable because it improves curability.
 <末端構造>
 反応性ケイ素基含有ポリオキシアルキレン系重合体(A)において、反応性ケイ素基を有する末端構造は特に限定されないが、反応性ケイ素基以外に、末端オレフィン基、及び/又は、内部オレフィン基を含んでいても良い。
 末端オレフィン基は、メチリデン基(HC=)を有する炭素-炭素二重結合のことを指し、反応性ケイ素基含有ポリオキシアルキレン系重合体(A)を製造するための原料(例えば、後述するオレフィン基を有する求電子剤(a3))に含まれ得る基である。具体例としては、アリル基等が挙げられる。
 内部オレフィン基は、メチリデン基を有しない炭素-炭素二重結合のことを指し、重合体(A)を製造する際に前記末端オレフィン基の転移反応などによって生成し得る基である。具体例としては、1-プロペニル基等が挙げられる。
<Terminal structure>
In the reactive silicon group-containing polyoxyalkylene polymer (A), the terminal structure having a reactive silicon group is not particularly limited. You can stay
A terminal olefin group refers to a carbon-carbon double bond having a methylidene group (H 2 C=), and is a raw material for producing a reactive silicon group-containing polyoxyalkylene polymer (A) (for example, It is a group that can be included in the electrophilic agent (a3)) having an olefin group that Specific examples thereof include an allyl group and the like.
The internal olefin group refers to a carbon-carbon double bond that does not have a methylidene group, and is a group that can be generated by, for example, a transfer reaction of the terminal olefin group during production of the polymer (A). Specific examples include a 1-propenyl group and the like.
 末端構造の代表的なものとして、次のような一般式(3)で表される末端構造が挙げられる。尚、一般式(3)は、反応性ケイ素基を有するが、末端オレフィン基と内部オレフィン基を有しない末端構造を示している。 A typical example of the terminal structure is the terminal structure represented by the following general formula (3). In addition, the general formula (3) shows a terminal structure having a reactive silicon group but not having a terminal olefin group and an internal olefin group.
Figure JPOXMLDOC01-appb-C000002
 
Figure JPOXMLDOC01-appb-C000002
 
 式中、R、X、aは上記と同じである。R,Rはそれぞれ独立にヘテロ原子を含んでも良い2価の炭素数1~6の結合基である。R,Rはそれぞれ独立に水素、または炭素数1~10の炭化水素基である。nは1~10の整数である。 In the formula, R 1 , X and a are the same as above. R 3 and R 5 are each independently a divalent C 1-6 linking group which may contain a heteroatom. R 4 and R 6 are each independently hydrogen or a hydrocarbon group having 1 to 10 carbon atoms. n is an integer of 1-10.
 Rとしては、ヘテロ原子を含んでも良い2価の炭素原子数1~6の結合基であるが、該結合基は、炭化水素基、又は、酸素原子を含む炭化水素基であることが好ましい。前記炭素原子数は1~4が好ましく、1~3がより好ましく、1~2がさらに好ましい。好ましくは、CHOCH、CHO、CHであり、より好ましくは、CHOCHである。 R 3 is a divalent C 1-6 bonding group which may contain a heteroatom, and the bonding group is preferably a hydrocarbon group or a hydrocarbon group containing an oxygen atom. . The number of carbon atoms is preferably 1-4, more preferably 1-3, even more preferably 1-2. CH 2 OCH 2 , CH 2 O and CH 2 are preferred, and CH 2 OCH 2 is more preferred.
 Rとしては、水素、または炭素原子数1~10の炭化水素基であることが好ましく、水素、または炭素原子数1~3の炭化水素基がより好ましく、水素、または炭素原子数1~2の炭化水素基がさらに好ましい。特に好ましくは、水素原子、メチル基であり、最も好ましくは水素原子である。 R 4 is preferably hydrogen or a hydrocarbon group having 1 to 10 carbon atoms, more preferably hydrogen or a hydrocarbon group having 1 to 3 carbon atoms, and hydrogen or 1 to 2 carbon atoms. is more preferred. A hydrogen atom and a methyl group are particularly preferred, and a hydrogen atom is most preferred.
 Rとしては、ヘテロ原子を含んでも良い2価の炭素原子数1~6の結合基であるが、該結合基は、炭化水素基、又は、ヘテロ原子を含む炭化水素基であることが好ましく、炭素原子数1~2の炭化水素基がより好ましい。ヘテロ原子としては、酸素原子、および/または、窒素原子であることが好ましい。該結合基としては、メチレン基、エチレン基、プロピレン基、ブチレン基、C(O)NHCH、であることが好ましく、メチレン基が特に好ましい。 R 5 is a divalent C 1-6 bonding group which may contain a heteroatom, and the bonding group is preferably a hydrocarbon group or a hydrocarbon group containing a heteroatom. , a hydrocarbon group having 1 to 2 carbon atoms is more preferred. The heteroatoms are preferably oxygen atoms and/or nitrogen atoms. The bonding group is preferably a methylene group, an ethylene group, a propylene group, a butylene group, or C(O)NH 2 CH 2 , and particularly preferably a methylene group.
 Rとしては、水素、または炭素原子数1~10の炭化水素基であることが好ましく、水素、または炭素原子数1~3の炭化水素基がより好ましく、水素、または炭素原子数1~2の炭化水素基がさらに好ましい。特に好ましくは、水素原子、メチル基であり、最も好ましくは水素原子である。 R 6 is preferably hydrogen or a hydrocarbon group having 1 to 10 carbon atoms, more preferably hydrogen or a hydrocarbon group having 1 to 3 carbon atoms, and hydrogen or 1 to 2 carbon atoms. is more preferred. A hydrogen atom and a methyl group are particularly preferred, and a hydrogen atom is most preferred.
 一般式(3)で表される末端構造は、重合体骨格の1つの末端に結合した1つの末端構造を表すものである。式(3)中には2以上の反応性ケイ素基が示されているが、式(3)は、2以上の末端を示すものではなく、1つの末端構造の中に、2以上の反応性ケイ素基が存在していることを示すものである。また、式(3)中には、左端の酸素を除いて、オキシアルキレン単位等の繰り返し単位から構成される重合体骨格は含まれていない。つまり、式(3)中にn個存在するカッコ内の構造は、重合体骨格中の繰り返し単位に該当するものではない。 The terminal structure represented by general formula (3) represents one terminal structure bonded to one terminal of the polymer skeleton. Although two or more reactive silicon groups are shown in formula (3), formula (3) does not indicate two or more terminals, but rather two or more reactive silicon groups in one terminal structure. This indicates the presence of silicon groups. Moreover, except for oxygen on the left end, the formula (3) does not include a polymer skeleton composed of repeating units such as oxyalkylene units. In other words, n structures in parentheses in formula (3) do not correspond to repeating units in the polymer skeleton.
 <主鎖構造>
 反応性ケイ素基含有ポリオキシアルキレン系重合体(A)の主鎖構造は、直鎖状であってもよいし、分岐鎖状であってもよいが、直鎖状であることが好ましい。
<Main chain structure>
The main chain structure of the reactive silicon group-containing polyoxyalkylene polymer (A) may be linear or branched, but is preferably linear.
 反応性ケイ素基含有ポリオキシアルキレン系重合体(A)の主鎖は、-R-O-(式中、Rは炭素数1~14の直鎖状もしくは分岐アルキレン基である)で示される繰り返し単位を有する重合体であり、Rは炭素数2~4の直鎖状もしくは分岐鎖状アルキレン基がより好ましい。-R-O-で示される繰り返し単位の具体例としては、-CHO-、-CHCHO-、-CHCH(CH)O-、-CHC(CH)(CH)O-、-CHCHCHCHO-などが挙げられるが、-CHCHO-、-CHCH(CH)O-が好ましく、-CHCH(CH)O-がより好ましい。 The main chain of the reactive silicon group-containing polyoxyalkylene polymer (A) is represented by —R 7 —O— (wherein R 7 is a linear or branched alkylene group having 1 to 14 carbon atoms). R 7 is more preferably a linear or branched alkylene group having 2 to 4 carbon atoms. Specific examples of the repeating unit represented by -R 7 -O- include -CH 2 O-, -CH 2 CH 2 O-, -CH 2 CH(CH 3 )O-, and -CH 2 C(CH 3 ). (CH 3 )O—, —CH 2 CH 2 CH 2 CH 2 O— and the like, but —CH 2 CH 2 O— and —CH 2 CH(CH 3 )O— are preferred, and —CH 2 CH( CH 3 )O— is more preferred.
 反応性ケイ素基含有ポリオキシアルキレン系重合体(A)の数平均分子量は、特に限定されないが、GPCにおけるポリスチレン換算分子量として、5,000~100,000が好ましく、10,000~40,000がより好ましく、12,000~25,000が特に好ましく、13,000~20,000が最も好ましい。数平均分子量が上記の範囲内であると、反応性ケイ素基の導入量が適度であることにより、製造コストを適度な範囲内に抑えつつ、強度の高い反応性ケイ素基含有ポリオキシアルキレン系重合体(A)を得やすい。 The number average molecular weight of the reactive silicon group-containing polyoxyalkylene polymer (A) is not particularly limited, but the polystyrene equivalent molecular weight in GPC is preferably 5,000 to 100,000, and 10,000 to 40,000. More preferably, 12,000 to 25,000 is particularly preferred, and 13,000 to 20,000 is most preferred. When the number average molecular weight is within the above range, the introduction amount of the reactive silicon group is moderate, so that the production cost is kept within a moderate range, and the reactive silicon group-containing polyoxyalkylene polymer having high strength is obtained. Coalescence (A) is easily obtained.
 反応性ケイ素基含有ポリオキシアルキレン系重合体(A)の分子量としては、反応性ケイ素基導入前の重合体前駆体を、JIS K 1557の水酸基価の測定方法と、JIS K 0070に規定されたよう素価の測定方法の原理に基づいた滴定分析により、直接的に末端基濃度を測定し、重合体の構造(使用した重合開始剤によって定まる分岐度)を考慮して求めた末端基換算分子量で示すことも出来る。重合体(A)の末端基換算分子量は、重合体前駆体の一般的なGPC測定により求めた数平均分子量と上記末端基換算分子量の検量線を作成し、反応性ケイ素基含有重合体のGPCにより求めた数平均分子量を末端基換算分子量に換算して求めることも可能である。 As the molecular weight of the reactive silicon group-containing polyoxyalkylene polymer (A), the polymer precursor before introduction of the reactive silicon group was measured by the hydroxyl value measurement method of JIS K 1557 and Terminal group equivalent molecular weight obtained by directly measuring the terminal group concentration by titration analysis based on the principle of the iodine value measurement method and considering the polymer structure (branching degree determined by the polymerization initiator used) can also be shown as The terminal group-equivalent molecular weight of the polymer (A) is obtained by preparing a calibration curve of the number average molecular weight obtained by general GPC measurement of the polymer precursor and the above-mentioned terminal group-equivalent molecular weight, and performing GPC of the reactive silicon group-containing polymer. It is also possible to obtain by converting the number average molecular weight obtained by the method into a terminal group equivalent molecular weight.
 反応性ケイ素基含有ポリオキシアルキレン系重合体(A)の分子量分布(Mw/Mn)は特に限定されないが、狭いことが好ましい。具体的には1.6以下が好ましく、1.4以下がより好ましく、1.3以下がさらに好ましく、1.2以下が特に好ましい。反応性ケイ素基含有ポリオキシアルキレン系重合体(A)の分子量分布はGPC測定により得られる数平均分子量と重量平均分子量から求めることが出来る。 Although the molecular weight distribution (Mw/Mn) of the reactive silicon group-containing polyoxyalkylene polymer (A) is not particularly limited, it is preferably narrow. Specifically, it is preferably 1.6 or less, more preferably 1.4 or less, still more preferably 1.3 or less, and particularly preferably 1.2 or less. The molecular weight distribution of the reactive silicon group-containing polyoxyalkylene polymer (A) can be determined from the number average molecular weight and weight average molecular weight obtained by GPC measurement.
 <反応性ケイ素基含有ポリオキシアルキレン系重合体(A)の製造方法>
 次に反応性ケイ素基含有ポリオキシアルキレン系重合体(A)を製造する方法について説明する。反応性ケイ素基含有ポリオキシアルキレン系重合体(A)は、水酸基末端ポリオキシアルキレン系重合体(a1)に対し、水酸基の反応性を利用してオレフィン基を導入した後、該オレフィン基との反応性を有する反応性ケイ素基含有化合物を反応させて反応性ケイ素基を導入する方法が好ましい。
<Method for Producing Reactive Silicon Group-Containing Polyoxyalkylene Polymer (A)>
Next, a method for producing the reactive silicon group-containing polyoxyalkylene polymer (A) will be described. The reactive silicon group-containing polyoxyalkylene polymer (A) is obtained by introducing an olefin group into the hydroxyl-terminated polyoxyalkylene polymer (a1) by utilizing the reactivity of the hydroxyl group, and then combining with the olefin group. A method of introducing a reactive silicon group by reacting a reactive silicon group-containing compound having reactivity is preferred.
 (重合)
 ポリオキシアルキレン系重合体の重合体骨格は、従来公知の方法によって、水酸基を有する開始剤にエポキシ化合物を重合させることで形成することができ、これによって水酸基末端ポリオキシアルキレン系重合体(a1)が得られる。具体的な重合方法としては特に限定されないが、分子量分布(Mw/Mn)の小さい水酸基末端重合体が得られることから、亜鉛ヘキサシアノコバルテートグライム錯体等の複合金属シアン化物錯体触媒を用いた重合方法が好ましい。
(polymerization)
The polymer skeleton of the polyoxyalkylene-based polymer can be formed by polymerizing an epoxy compound with an initiator having a hydroxyl group by a conventionally known method, whereby a hydroxyl-terminated polyoxyalkylene-based polymer (a1) is obtained. is obtained. Although the specific polymerization method is not particularly limited, since a hydroxyl group-terminated polymer with a small molecular weight distribution (Mw/Mn) can be obtained, a polymerization method using a double metal cyanide complex catalyst such as a zinc hexacyanocobaltate glyme complex is used. is preferred.
 水酸基を有する開始剤としては特に限定されないが、例えば、エチレングリコール、プロピレングリコール、グリセリン、ペンタエリスリトール、低分子量のポリオキシプロピレングリコール、低分子量のポリオキシプロピレントリオール、アリルアルコール、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、低分子量のポリオキシプロピレンモノアリルエーテル、低分子量のポリオキシプロピレンモノアルキルエーテル等の、水酸基を1個以上有する有機化合物が挙げられる。 Examples of hydroxyl-containing initiators include, but are not limited to, ethylene glycol, propylene glycol, glycerin, pentaerythritol, low molecular weight polyoxypropylene glycol, low molecular weight polyoxypropylene triol, allyl alcohol, methanol, ethanol, propanol, Examples include organic compounds having one or more hydroxyl groups, such as butanol, pentanol, hexanol, low-molecular-weight polyoxypropylene monoallyl ether, and low-molecular-weight polyoxypropylene monoalkyl ether.
 前記エポキシ化合物としては特に限定されないが、例えば、エチレンオキサイド、プロピレンオキサイド等のアルキレンオキサイド類、メチルグリシジルエーテル、ブチルグリシジルエーテル等のグリシジルエーテル類等が挙げられる。好ましくはプロピレンオキサイドである。 Although the epoxy compound is not particularly limited, examples thereof include alkylene oxides such as ethylene oxide and propylene oxide, and glycidyl ethers such as methyl glycidyl ether and butyl glycidyl ether. Propylene oxide is preferred.
 (アルカリ金属塩との反応)
 水酸基末端ポリオキシアルキレン系重合体(a1)に対しオレフィン基を導入するにあたっては、まず、水酸基末端ポリオキシアルキレン系重合体(a1)に対しアルカリ金属塩を作用させて末端の水酸基をメタルオキシ基に変換することが好ましい。また、アルカリ金属塩の代わりに、複合金属シアン化物錯体触媒を用いることもできる。以上によって、メタルオキシ基末端ポリオキシアルキレン系重合体(a2)が形成される。
(Reaction with alkali metal salt)
In introducing an olefin group into the hydroxyl group-terminated polyoxyalkylene polymer (a1), first, an alkali metal salt is allowed to act on the hydroxyl group-terminated polyoxyalkylene polymer (a1) to convert the terminal hydroxyl group to a metaloxy group. is preferably converted to A double metal cyanide complex catalyst can also be used instead of the alkali metal salt. As described above, the metaloxy group-terminated polyoxyalkylene polymer (a2) is formed.
 前記アルカリ金属塩としては特に限定されないが、例えば、水酸化ナトリウム、ナトリウムアルコキシド、水酸化カリウム、カリウムアルコキシド、水酸化リチウム、リチウムアルコキシド、水酸化セシウム、セシウムアルコキシド等が挙げられる。取り扱いの容易さと溶解性から、水酸化ナトリウム、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムtert-ブトキシド、水酸化カリウム、カリウムメトキシド、カリウムエトキシド、カリウムtert-ブトキシドが好ましく、ナトリウムメトキシド、ナトリウムtert-ブトキシドがより好ましい。入手性の点で、ナトリウムメトキシドが、反応性の点で、ナトリウムtert-ブトキシドが、それぞれ特に好ましい。アルカリ金属塩は溶剤に溶解した状態で反応に供してもよい。 Although the alkali metal salt is not particularly limited, examples thereof include sodium hydroxide, sodium alkoxide, potassium hydroxide, potassium alkoxide, lithium hydroxide, lithium alkoxide, cesium hydroxide, and cesium alkoxide. Sodium hydroxide, sodium methoxide, sodium ethoxide, sodium tert-butoxide, potassium hydroxide, potassium methoxide, potassium ethoxide, and potassium tert-butoxide are preferred from the viewpoint of ease of handling and solubility, and sodium methoxide and sodium tert. -butoxide is more preferred. From the standpoint of availability, sodium methoxide is particularly preferred, and from the standpoint of reactivity, sodium tert-butoxide is particularly preferred. The alkali metal salt may be dissolved in a solvent before being subjected to the reaction.
 前記アルカリ金属塩の使用量は、特に限定されないが、水酸基末端ポリオキシアルキレン系重合体(a1)が有する水酸基に対するモル比として、0.5以上が好ましく、0.6以上がより好ましく、0.7以上がさらに好ましく、0.8以上がより更に好ましい。前記モル比は1.2以下が好ましく、1.1以下がより好ましい。 The amount of the alkali metal salt to be used is not particularly limited. 7 or more is more preferable, and 0.8 or more is even more preferable. The molar ratio is preferably 1.2 or less, more preferably 1.1 or less.
 アルカリ金属塩を作用させる際の温度は、当業者が適宜設定できるが、50℃以上150℃以下が好ましく、110℃以上145℃以下がより好ましい。アルカリ金属塩を作用させる際の時間としては、10分以上5時間以下が好ましく、30分以上3時間以下がより好ましい。 The temperature at which the alkali metal salt is allowed to act can be appropriately set by those skilled in the art, but is preferably 50°C or higher and 150°C or lower, more preferably 110°C or higher and 145°C or lower. The time for which the alkali metal salt is allowed to act is preferably 10 minutes or more and 5 hours or less, more preferably 30 minutes or more and 3 hours or less.
 (求電子剤(a3)との反応)
 以上のようにして得られたメタルオキシ基末端ポリオキシアルキレン系重合体(a2)に対し、オレフィン基を有する求電子剤(a3)を作用させることで、メタルオキシ基を、オレフィン基を含む構造に変換することができる。これにより、末端構造中にオレフィン基を有するポリオキシアルキレン系重合体(a4)が形成される。
(Reaction with electrophile (a3))
By reacting the metaloxy group-terminated polyoxyalkylene polymer (a2) obtained as described above with an electrophilic agent (a3) having an olefin group, the metaloxy group is converted to a structure containing an olefin group can be converted to As a result, a polyoxyalkylene polymer (a4) having an olefin group in the terminal structure is formed.
 オレフィン基を有する求電子剤(a3)としては、ポリオキシアルキレン系重合体(a2)が有する前記メタルオキシ基と反応し、ポリオキシアルキレン系重合体にオレフィン基を導入できる化合物であれば特に限定されないが、例えば、オレフィン基を有するエポキシ化合物(a3-1)や、オレフィン基を有する有機ハロゲン化物(a3-2)等が挙げられる。 The electrophilic agent (a3) having an olefin group is particularly limited as long as it is a compound capable of reacting with the metaloxy group possessed by the polyoxyalkylene polymer (a2) and introducing an olefin group into the polyoxyalkylene polymer. Examples include an epoxy compound (a3-1) having an olefin group and an organic halide (a3-2) having an olefin group.
 求電子剤(a3)の一態様である、前記オレフィン基を有するエポキシ化合物(a3-1)は、エポキシ基の開環付加反応によって前記メタルオキシ基と反応してエーテル結合を形成して、ポリオキシアルキレン系重合体の末端構造としてオレフィン基と水酸基を含む構造を導入することができる。前記開環付加反応においては、前記メタルオキシ基に対するエポキシ化合物(a3-1)の使用量や反応条件を調節することで、1つのメタルオキシ基に対して、単数又は複数のエポキシ化合物(a3-1)を付加させることができる。 The epoxy compound (a3-1) having an olefin group, which is one embodiment of the electrophile (a3), reacts with the metaloxy group through a ring-opening addition reaction of the epoxy group to form an ether bond to form a poly A structure containing an olefin group and a hydroxyl group can be introduced as the terminal structure of the oxyalkylene polymer. In the ring-opening addition reaction, one or more epoxy compounds (a3- 1) can be added.
 前記オレフィン基を有するエポキシ化合物(a3-1)は、限定されるものではないが、下記一般式(4): The epoxy compound (a3-1) having an olefin group is, but not limited to, the following general formula (4):
Figure JPOXMLDOC01-appb-C000003
 
Figure JPOXMLDOC01-appb-C000003
 
で表すことができる。式中、R及びRは、それぞれ、一般式(3)について上述したR及びRと同じ基である。 can be expressed as In the formula, R 3 and R 4 are the same groups as R 3 and R 4 described above for general formula (3), respectively.
 オレフィン基を有するエポキシ化合物(a3-1)の具体例としては、特に限定されないが、アリルグリシジルエーテル、メタリルグリシジルエーテル、グリシジルアクリレート、グリシジルメタクリレート、ブタジエンモノオキサイドが反応活性の点から好ましく、アリルグリシジルエーテルが特に好ましい。 Specific examples of the epoxy compound (a3-1) having an olefin group are not particularly limited, but allyl glycidyl ether, methallyl glycidyl ether, glycidyl acrylate, glycidyl methacrylate and butadiene monoxide are preferable from the viewpoint of reaction activity, and allyl glycidyl Ethers are particularly preferred.
 オレフィン基を有するエポキシ化合物(a3-1)の添加量は、重合体に対するオレフィン基の導入量や反応性を考慮して任意の量を使用できる。特に、ポリオキシアルキレン系重合体(a1)が有する水酸基に対するエポキシ化合物(a3-1)のモル比は、0.2以上が好ましく、0.5以上がより好ましい。また、当該モル比は、5.0以下が好ましく、2.0以下がより好ましい。 The amount of the epoxy compound (a3-1) having an olefin group to be added can be any amount in consideration of the introduction amount and reactivity of the olefin group to the polymer. In particular, the molar ratio of the epoxy compound (a3-1) to the hydroxyl groups of the polyoxyalkylene polymer (a1) is preferably 0.2 or more, more preferably 0.5 or more. Moreover, the molar ratio is preferably 5.0 or less, more preferably 2.0 or less.
 メタルオキシ基末端ポリオキシアルキレン系重合体(a2)に対し、オレフィン基を有するエポキシ化合物(a3-1)を開環付加反応させる際の反応温度は、反応温度は60℃以上160℃以下であることが好ましく、110℃以上150℃以下であることがより好ましい。 The reaction temperature for the ring-opening addition reaction of the epoxy compound (a3-1) having an olefin group to the metaloxy group-terminated polyoxyalkylene polymer (a2) is 60° C. or higher and 160° C. or lower. , and more preferably 110°C or higher and 150°C or lower.
 以上のようにメタルオキシ基末端ポリオキシアルキレン系重合体(a2)に対しオレフィン基を有するエポキシ化合物(a3-1)を作用させると、エポキシ基の開環によって新たにメタルオキシ基が生成する。そのため、該エポキシ化合物(a3-1)を作用させた後、連続的に、オレフィン基を有する有機ハロゲン化物(a3-2)を作用させることもできる。この方法は、重合体へのオレフィン基の導入量、および反応性ケイ素基の導入量をより高めることができるため好ましい。 As described above, when the epoxy compound (a3-1) having an olefin group is allowed to act on the metaloxy group-terminated polyoxyalkylene polymer (a2), a new metaloxy group is generated by ring-opening of the epoxy group. Therefore, after the epoxy compound (a3-1) is allowed to act, the organic halide having an olefin group (a3-2) can be allowed to act continuously. This method is preferable because the amount of olefin groups introduced into the polymer and the amount of reactive silicon groups introduced can be increased.
 前記オレフィン基を有する有機ハロゲン化物(a3-2)は、ハロゲンの置換反応によって前記メタルオキシ基と反応してエーテル結合を形成して、ポリオキシアルキレン系重合体の末端構造としてオレフィン基を含む構造を導入することができる。オレフィン基を有する有機ハロゲン化物(a3-2)は、限定されるものではないが、下記一般式(5):
 Z-R-C(R)=CH   (5)
で表すことができる。式中、R及びRは、それぞれ、一般式(3)について上述したR及びRと同じ基である。Zは、ハロゲン原子を表す。
The organic halide (a3-2) having an olefin group reacts with the metaloxy group through a halogen substitution reaction to form an ether bond, and has a structure containing an olefin group as a terminal structure of the polyoxyalkylene polymer. can be introduced. The organic halide (a3-2) having an olefin group is, but not limited to, the following general formula (5):
Z—R 5 —C(R 6 )=CH 2 (5)
can be expressed as In the formula, R 5 and R 6 are the same groups as R 5 and R 6 described above for general formula (3), respectively. Z represents a halogen atom.
 オレフィン基を有する有機ハロゲン化物(a3-2)の具体例としては、特に限定されないが、塩化ビニル、塩化アリル、塩化メタリル、塩化プロパルギル、臭化ビニル、臭化アリル、臭化メタリル、臭化プロパルギル、ヨウ化ビニル、ヨウ化アリル、ヨウ化メタリル、ヨウ化プロパルギル等が挙げられる。取り扱いの容易さから、塩化アリル、塩化メタリルが好ましい。 Specific examples of the organic halide having an olefin group (a3-2) are not particularly limited, but vinyl chloride, allyl chloride, methallyl chloride, propargyl chloride, vinyl bromide, allyl bromide, methallyl bromide, and propargyl bromide. , vinyl iodide, allyl iodide, methallyl iodide, propargyl iodide and the like. Allyl chloride and methallyl chloride are preferred for ease of handling.
 オレフィン基を有する有機ハロゲン化物(a3-2)の添加量は、特に制限はないが、ポリオキシアルキレン系重合体(a1)が有する水酸基に対する有機ハロゲン化物(a3-2)のモル比は、0.7以上が好ましく、1.0以上がより好ましい。また、当該モル比は、5.0以下が好ましく、2.0以下がより好ましい。 The addition amount of the organic halide (a3-2) having an olefin group is not particularly limited, but the molar ratio of the organic halide (a3-2) to the hydroxyl group of the polyoxyalkylene polymer (a1) is 0. 0.7 or more is preferable, and 1.0 or more is more preferable. Moreover, the molar ratio is preferably 5.0 or less, more preferably 2.0 or less.
 メタルオキシ基末端ポリオキシアルキレン系重合体(a2)に対し、オレフィン基を有する有機ハロゲン化物(a3-2)を反応させる際の温度としては、50℃以上150℃以下が好ましく、110℃以上140℃以下がより好ましい。反応時間としては、10分以上5時間以が好ましく、30分以上3時間以下がより好ましい。 The temperature at which the metaloxy group-terminated polyoxyalkylene polymer (a2) is reacted with the organic halide (a3-2) having an olefin group is preferably 50° C. or higher and 150° C. or lower, and 110° C. or higher and 140° C. °C or less is more preferable. The reaction time is preferably 10 minutes to 5 hours, more preferably 30 minutes to 3 hours.
 以上で述べたエポキシ化合物(a3-1)と有機ハロゲン化物(a3-2)を併用する方法により得られた、末端構造中にオレフィン基を有するポリオキシアルキレン系重合体(a4)に対して、次に説明する反応性ケイ素基の導入を行うと、前記一般式(3)で表される末端構造が形成され得る。 For the polyoxyalkylene polymer (a4) having an olefin group in the terminal structure obtained by the method of using the epoxy compound (a3-1) and the organic halide (a3-2) in combination, The terminal structure represented by the general formula (3) can be formed by introducing a reactive silicon group as described below.
 (反応性ケイ素基の導入)
 以上によって得られた末端構造中にオレフィン基を有するポリオキシアルキレン系重合体(a4)に対し、反応性ケイ素基を有するヒドロシラン化合物(a5)をヒドロシリル化反応させることで、重合体に反応性ケイ素基を導入することができる。これにより、主鎖がポリオキシアルキレン系重合体である反応性ケイ素基含有ポリオキシアルキレン系重合体(A)が製造される。ヒドロシリル化反応には、簡便に実施できることに加え、反応性ケイ素基の導入量の調整が容易であり、また、得られる重合体の物性が安定している利点がある。
(Introduction of reactive silicon group)
The polyoxyalkylene polymer (a4) having an olefin group in the terminal structure obtained above is subjected to a hydrosilylation reaction with a hydrosilane compound (a5) having a reactive silicon group to give the polymer a reactive silicon groups can be introduced. As a result, a reactive silicon group-containing polyoxyalkylene polymer (A) having a polyoxyalkylene polymer main chain is produced. The hydrosilylation reaction has the advantage that it can be easily carried out, the introduction amount of the reactive silicon group can be easily adjusted, and the physical properties of the obtained polymer are stable.
 前記反応性ケイ素基を有するヒドロシラン化合物(a5)の具体例としては、トリクロロシラン、ジクロロメチルシラン、クロロジメチルシラン、ジクロロフェニルシラン、(クロロメチル)ジクロロシラン、(ジクロロメチル)ジクロロシラン、ビス(クロロメチル)クロロシラン、(メトキシメチル)ジクロロシラン、(ジメトキシメチル)ジクロロシラン、ビス(メトキシメチル)クロロシランなどのハロシラン類;トリメトキシシラン、トリエトキシシラン、ジメトキシメチルシラン、ジエトキシメチルシラン、ジメトキシフェニルシラン、エチルジメトキシシラン、メトキシジメチルシラン、エトキシジメチルシラン、(クロロメチル)メチルメトキシシラン、(クロロメチル)ジメトキシシラン、(クロロメチル)ジエトキシシラン、ビス(クロロメチル)メトキシシラン、(メトキシメチル)メチルメトキシシラン、(メトキシメチル)ジメトキシシラン、ビス(メトキシメチル)メトキシシラン、(メトキシメチル)ジエトキシシラン、(エトキシメチル)ジエトキシシラン、(3,3,3-トリフルオロプロピル)ジメトキシシラン、(N,N-ジエチルアミノメチル)ジメトキシシラン、(N,N-ジエチルアミノメチル)ジエトキシシラン、[(クロロメチル)ジメトキシシリルオキシ]ジメチルシラン、[(クロロメチル)ジエトキシシリルオキシ]ジメチルシラン、[(メトキシメチル)ジメトキシシリルオキシ]ジメチルシラン、[(メトキシメチル)ジエメトキシシリルオキシ]ジメチルシラン、[(ジエチルアミノメチル)ジメトキシシリルオキシ]ジメチルシラン、[(3,3,3-トリフルオロプロピル)ジメトキシシリルオキシ]ジメチルシラン、1-[1-(トリメトキシシリル)エチル]-1,1,3,3-テトラメチルジシロキサン、1-[2-(トリメトキシシリル)エチル]-1,1,3,3-テトラメチルジシロキサン等のアルコキシシラン類;ジアセトキシメチルシラン、ジアセトキシフェニルシラン等のアシロキシシラン類;ビス(ジメチルケトキシメート)メチルシラン、ビス(シクロヘキシルケトキシメート)メチルシランなどのケトキシメートシラン類、トリイソプロペニロキシシラン、(クロロメチル)ジイソプロペニロキシシラン、(メトキシメチル)ジイソプロペニロキシシラン等のイソプロペニロキシシラン類等が挙げられる。 Specific examples of the hydrosilane compound (a5) having a reactive silicon group include trichlorosilane, dichloromethylsilane, chlorodimethylsilane, dichlorophenylsilane, (chloromethyl)dichlorosilane, (dichloromethyl)dichlorosilane, bis(chloromethyl) ) chlorosilane, (methoxymethyl)dichlorosilane, (dimethoxymethyl)dichlorosilane, bis(methoxymethyl)chlorosilane and other halosilanes; trimethoxysilane, triethoxysilane, dimethoxymethylsilane, diethoxymethylsilane, dimethoxyphenylsilane, ethyl dimethoxysilane, methoxydimethylsilane, ethoxydimethylsilane, (chloromethyl)methylmethoxysilane, (chloromethyl)dimethoxysilane, (chloromethyl)diethoxysilane, bis(chloromethyl)methoxysilane, (methoxymethyl)methylmethoxysilane, (Methoxymethyl)dimethoxysilane, bis(methoxymethyl)methoxysilane, (methoxymethyl)diethoxysilane, (ethoxymethyl)diethoxysilane, (3,3,3-trifluoropropyl)dimethoxysilane, (N,N- diethylaminomethyl)dimethoxysilane, (N,N-diethylaminomethyl)diethoxysilane, [(chloromethyl)dimethoxysilyloxy]dimethylsilane, [(chloromethyl)diethoxysilyloxy]dimethylsilane, [(methoxymethyl)dimethoxysilyl oxy]dimethylsilane, [(methoxymethyl)diemethoxysilyloxy]dimethylsilane, [(diethylaminomethyl)dimethoxysilyloxy]dimethylsilane, [(3,3,3-trifluoropropyl)dimethoxysilyloxy]dimethylsilane, 1 -[1-(trimethoxysilyl)ethyl]-1,1,3,3-tetramethyldisiloxane, 1-[2-(trimethoxysilyl)ethyl]-1,1,3,3-tetramethyldisiloxane alkoxysilanes such as diacetoxymethylsilane and diacetoxyphenylsilane; acyloxysilanes such as bis(dimethylketoximate)methylsilane and bis(cyclohexylketoximate)methylsilane; and isopropenyloxysilanes such as roxysilane, (chloromethyl)diisopropenyloxysilane, and (methoxymethyl)diisopropenyloxysilane.
 前記反応性ケイ素基を有するヒドロシラン化合物(a5)の使用量は、ポリオキシアルキレン系重合体(a4)が有するオレフィン基の量を考慮して適宜設定すればよい。具体的には、ポリオキシアルキレン系重合体(a4)が有するオレフィン基に対するヒドロシラン化合物(a5)のモル比は、反応性の観点から0.05以上10以下が好ましく、0.3以上3以下がより好ましい。硬化物のモジュラス値を高められる点で、前記モル比は0.5以上がさらに好ましく、0.7以上が特に好ましい。一方で、経済性の観点から、前記モル比は2.5以下がさらに好ましく、2以下が特に好ましい。 The amount of the hydrosilane compound (a5) having a reactive silicon group to be used may be appropriately set in consideration of the amount of olefin groups possessed by the polyoxyalkylene polymer (a4). Specifically, the molar ratio of the hydrosilane compound (a5) to the olefin group of the polyoxyalkylene polymer (a4) is preferably 0.05 or more and 10 or less, more preferably 0.3 or more and 3 or less, from the viewpoint of reactivity. more preferred. The molar ratio is more preferably 0.5 or more, particularly preferably 0.7 or more, in that the modulus value of the cured product can be increased. On the other hand, from the viewpoint of economy, the molar ratio is more preferably 2.5 or less, and particularly preferably 2 or less.
 ヒドロシリル化反応は、反応促進のため、ヒドロシリル化触媒の存在下で実施することが好ましい。ヒドロシリル化触媒としては、コバルト、ニッケル、イリジウム、白金、パラジウム、ロジウム、ルテニウム等の金属や、その錯体等が知られており、これらを用いることができる。具体的には、アルミナ、シリカ、カーボンブラック等の担体に白金を担持させたもの、塩化白金酸;塩化白金酸とアルコールやアルデヒドやケトン等とからなる塩化白金酸錯体;白金-オレフィン錯体[例えばPt(CH=CH(PPh)、Pt(CH=CHCl];白金-ビニルシロキサン錯体[例えばPt{(vinyl)MeSiOSiMe(vinyl)}、Pt{Me(vinyl)SiO}];白金-ホスフィン錯体[例えばPh(PPh、Pt(PBu];白金-ホスファイト錯体[例えばPt{P(OPh)]等が挙げられる。反応効率の点から、塩化白金酸、白金ビニルシロキサン錯体等の白金触媒が好ましい。 The hydrosilylation reaction is preferably carried out in the presence of a hydrosilylation catalyst in order to promote the reaction. As hydrosilylation catalysts, metals such as cobalt, nickel, iridium, platinum, palladium, rhodium, ruthenium, and complexes thereof are known, and these can be used. Specifically, platinum is supported on a carrier such as alumina, silica, carbon black, chloroplatinic acid; chloroplatinic acid complexes composed of chloroplatinic acid and alcohols, aldehydes, ketones, etc.; platinum-olefin complexes [for example, Pt( CH2 = CH2 ) 2 ( PPh3 ), Pt( CH2 = CH2 ) 2Cl2 ] ; platinum-vinylsiloxane complexes [e.g. Pt {(vinyl) Me2SiOSiMe2 (vinyl)}, Pt{ Me(vinyl)SiO} 4 ]; platinum-phosphine complexes [eg Ph(PPh 3 ) 4 , Pt(PBu 3 ) 4 ]; platinum-phosphite complexes [eg Pt{P(OPh) 3 } 4 ]; be done. From the viewpoint of reaction efficiency, platinum catalysts such as chloroplatinic acid and platinum-vinylsiloxane complexes are preferred.
 ヒドロシリル化反応の温度条件は、特に限定されず、当業者が適宜設定できるが、反応系の粘度を下げたり、反応性を向上させる目的で、加熱条件下での反応が好ましく、具体的には、50℃~150℃での反応がより好ましく、70℃~120℃での反応がさらに好ましい。反応時間も適宜設定すればよいが、意図しない重合体間の縮合反応が進行しないように、温度条件とともに反応時間を調整することが好ましい。具体的には、反応時間は、30分以上5時間以下が好ましく、3時間以下がより好ましい。 The temperature conditions for the hydrosilylation reaction are not particularly limited and can be appropriately set by those skilled in the art. However, in order to reduce the viscosity of the reaction system and improve the reactivity, the reaction is preferably performed under heating conditions. , the reaction at 50°C to 150°C is more preferred, and the reaction at 70°C to 120°C is even more preferred. The reaction time may also be appropriately set, but it is preferable to adjust the reaction time together with the temperature conditions so that an unintended condensation reaction between polymers does not proceed. Specifically, the reaction time is preferably 30 minutes or more and 5 hours or less, more preferably 3 hours or less.
 <<チタン化合物(B)>>
 本開示の一態様に係る硬化性組成物は、一般式(2)で表されるチタン化合物(B)を含むことができる。
(R-O)Ti-A4-n   (2)
(Rは炭素数1~10の置換又は非置換の炭化水素基である。nは1~4の整数である。Aはβジケトン基である)
 Rで示される置換又は非置換の炭化水素基は、置換又は非置換の、脂肪族又は芳香族の炭化水素基であることが好ましく、脂肪族炭化水素基がより好ましい。脂肪族炭化水素基としては、飽和又は不飽和炭化水素基が挙げられる。飽和炭化水素基としては、直鎖又は分岐アルキル基が好ましい。炭化水素基の炭素数は、1~10であり、1~6が好ましく、1~4がさらに好ましい。炭化水素基としては、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、2-エチルヘキシル、ノニル、デシルが挙げられる。前記炭化水素基が有していてもよい置換基としては、メトキシ基、エトキシ基、水酸基、アセトキシ基などが挙げられる。Rが複数存在する場合、それらは互いに同一であってもよいし、異なっていてもよい。
<<Titanium compound (B)>>
A curable composition according to an aspect of the present disclosure can contain a titanium compound (B) represented by general formula (2).
(R 2 —O) n Ti—A 4-n (2)
(R 2 is a substituted or unsubstituted hydrocarbon group having 1 to 10 carbon atoms; n is an integer of 1 to 4; A is a β-diketone group)
The substituted or unsubstituted hydrocarbon group represented by R 2 is preferably a substituted or unsubstituted aliphatic or aromatic hydrocarbon group, more preferably an aliphatic hydrocarbon group. Aliphatic hydrocarbon groups include saturated or unsaturated hydrocarbon groups. A linear or branched alkyl group is preferred as the saturated hydrocarbon group. The number of carbon atoms in the hydrocarbon group is 1-10, preferably 1-6, more preferably 1-4. Hydrocarbon groups include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, heptyl, octyl, 2-ethylhexyl, nonyl, decyl. Examples of the substituent that the hydrocarbon group may have include a methoxy group, an ethoxy group, a hydroxyl group, an acetoxy group, and the like. When there are multiple R2 's, they may be the same or different.
 Aで示されるβジケトン基としては、チタンに配合できるβジケトンである限り特に限定されないが、例えば、2,4-ペンタンジオン、2,4-ヘキサンジオン、2,4-ペンタデカンジオン、2,2,6,6-テトラメチル-3,5-ヘプタンジオン、1-フェニル-1,3-ブタンジオン、1-(4-メトキシフェニル)-1,3-ブタンジオン等の1-アリール-1,3-ブタンジオン、1,3-ジフェニル-1,3-プロパンジオン、1,3-ビス(2-ピリジル)-1,3-プロパンジオン、1,3-ビス(4-メトキシフェニル)-1,3-プロパンジオン等の1,3-ジアリール-1,3-プロパンジオン、3-ベンジル-2,4-ペンタンジオン等のジケトン類、メチルアセトアセテート、エチルアセトアセテート、ブチルアセトアセテート、t-ブチルアセトアセテート、エチル3-オキソヘキサノエート等のケトエステル類、N,N-ジメチルアセトアセタミド、N,N-ジエチルアセトアセタミド、アセトアセトアニリド等のケトアミド類、ジメチルマロネート、ジエチルマロネート、ジフェニルマロネート等のマロン酸エステル類、N,N,N’,N’-テトラメチルマロンアミド、N,N,N’,N’-テトラエチルマロンアミド等のマロン酸アミド類が挙げられる。中でも、ジケトン類、ケトアミド類が好ましく、ジケトン類がより好ましい。具体的には2,4-ペンタンジオン、1-アリール-1,3-ブタンジオン、1,3-ジアリール-1,3-プロパンジオン、メチルアセトアセテート、エチルアセトアセテートが好ましく、メチルアセトアセテート、エチルアセトアセテートが特に好ましい。Aが複数存在する場合、それらは互いに同一であってもよいし、異なっていてもよい。 The β-diketone group represented by A is not particularly limited as long as it is a β-diketone group that can be blended with titanium. 1-aryl-1,3-butanedione such as ,6,6-tetramethyl-3,5-heptanedione, 1-phenyl-1,3-butanedione, 1-(4-methoxyphenyl)-1,3-butanedione , 1,3-diphenyl-1,3-propanedione, 1,3-bis(2-pyridyl)-1,3-propanedione, 1,3-bis(4-methoxyphenyl)-1,3-propanedione diketones such as 1,3-diaryl-1,3-propanedione such as 3-benzyl-2,4-pentanedione, methyl acetoacetate, ethyl acetoacetate, butyl acetoacetate, t-butyl acetoacetate, ethyl 3 - ketoesters such as oxohexanoate, ketoamides such as N,N-dimethylacetoacetamide, N,N-diethylacetoacetamide, and acetoacetanilide, dimethylmalonate, diethylmalonate, diphenylmalonate, etc. Examples include malonic acid esters and malonic acid amides such as N,N,N',N'-tetramethylmalonamide and N,N,N',N'-tetraethylmalonamide. Among them, diketones and ketoamides are preferred, and diketones are more preferred. Specifically, 2,4-pentanedione, 1-aryl-1,3-butanedione, 1,3-diaryl-1,3-propanedione, methylacetoacetate and ethylacetoacetate are preferred, and methylacetoacetate and ethylacetoacetate are preferred. Acetate is particularly preferred. When there are multiple A's, they may be the same or different.
 nは、1~4の整数を示す。より良好な硬化性を達成し得るため、nは、2、3、又は4を示すことが好ましく、4を示すことが特に好ましい。  n represents an integer of 1 to 4. n preferably represents 2, 3 or 4, particularly preferably 4, so that better curability can be achieved.
 一般式(2)で表されるチタン化合物の具体例としては、テトラメトキシチタン、トリメトキシエトキシシチタン、トリメトキシイソプロポキシチタン、トリメトキシブトキシチタン、ジメトキシジエトキシチタン、ジメトキシジイソプロポキシチタン、ジメトキシジブトキシチタン、メトキシトリエトキシチタン、メトキシトリイソプロポキシチタン、メトキシトリブトキシチタン、テトラエトキシチタン、トリエトキシイソプロポキシチタン、トリエトキシブトキシチタン、ジエトキシジイソプロポキシチタン、ジエトキシジブトキシチタン、エトキシトリイソプロポキシチタン、エトキシトリブトキシチタン、テトライソプロポキシチタン、トリイソプロポキシブトキシチタン、ジイソプロポキシジブトキシチタン、テトラブトキシチタン、テトラ(tert-ブトキシ)チタン、テトラ(sec-ブトキシ)チタン、ジイソプロポキシチタンビス(アセチルアセトナート)、ジイソプロポキシチタンビス(エチルアセトアセテート)、ジイソブトキシチタンビス(アセチルアセトナート)、ジイソブトキシチタンビス(エチルアセトアセテート)などが挙げられる。触媒活性、化合物の安定性、取扱い性の点から、ジイソプロポキシチタンビス(アセチルアセトナート)、ジイソプロポキシチタンビス(エチルアセトアセテート)、ジイソブトキシチタンビス(アセチルアセトナート)、ジイソブトキシチタンビス(エチルアセトアセテート)、テトライソプロポキシチタン、テトラブトキシチタン、テトラ(tert-ブトキシ)チタン、テトラ(sec-ブトキシ)チタンが好ましく、ジイソプロポキシチタンビス(エチルアセトアセテート)、ジイソブトキシチタンビス(エチルアセトアセテート)、テトライソプロポキシチタン、テトラ(tert-ブトキシ)チタンが特に好ましい。 Specific examples of the titanium compound represented by the general formula (2) include tetramethoxytitanium, trimethoxyethoxytitanium, trimethoxyisopropoxytitanium, trimethoxybutoxytitanium, dimethoxydiethoxytitanium, dimethoxydiisopropoxytitanium, dimethoxy Dibutoxytitanium, methoxytriethoxytitanium, methoxytriisopropoxytitanium, methoxytributoxytitanium, tetraethoxytitanium, triethoxyisopropoxytitanium, triethoxybutoxytitanium, diethoxydiisopropoxytitanium, diethoxydibutoxytitanium, ethoxytri isopropoxytitanium, ethoxytributoxytitanium, tetraisopropoxytitanium, triisopropoxybutoxytitanium, diisopropoxydibutoxytitanium, tetrabutoxytitanium, tetra(tert-butoxy)titanium, tetra(sec-butoxy)titanium, diisopropoxy Titanium bis(acetylacetonate), diisopropoxytitanium bis(ethylacetoacetate), diisobutoxytitanium bis(acetylacetonate), diisobutoxytitanium bis(ethylacetoacetate) and the like. In terms of catalytic activity, compound stability, and handling, diisopropoxytitanium bis(acetylacetonate), diisopropoxytitanium bis(ethylacetoacetate), diisobutoxytitanium bis(acetylacetonate), diisobutoxytitanium bis(ethylacetoacetate) ), tetraisopropoxytitanium, tetrabutoxytitanium, tetra(tert-butoxy)titanium, tetra(sec-butoxy)titanium are preferred, diisopropoxytitanium bis(ethylacetoacetate), diisobutoxytitanium bis(ethylacetoacetate), tetraiso Propoxytitanium and tetra(tert-butoxy)titanium are particularly preferred.
 上記のチタン化合物(B)は、単独で使用してもよいし、2種以上を併用してもよい。 The above titanium compound (B) may be used alone or in combination of two or more.
 チタン化合物(B)の使用量としては、チタン化合物(B)とアンモニウムヒドロキシド(C)を予め反応させることなく使用する場合は、反応性ケイ素基を有する重合体(A)100重量部に対して、0.1~20重量部が好ましく、更には0.5~10重量部がより好ましく、1~5重量部が特に好ましい。 The amount of the titanium compound (B) used is, when the titanium compound (B) and the ammonium hydroxide (C) are used without being reacted in advance, relative to 100 parts by weight of the polymer (A) having a reactive silicon group. 0.1 to 20 parts by weight is preferable, 0.5 to 10 parts by weight is more preferable, and 1 to 5 parts by weight is particularly preferable.
 <<アンモニウムヒドロキシド(C)>>
 本開示の一態様に係る硬化性組成物は、アンモニウムヒドロキシド(C)を含むことができる。アンモニウムヒドロキシド(C)は、下記一般式(6)で表されることが好ましい。
<<Ammonium hydroxide (C)>>
A curable composition according to one aspect of the present disclosure may comprise ammonium hydroxide (C). Ammonium hydroxide (C) is preferably represented by the following general formula (6).
Figure JPOXMLDOC01-appb-C000004
 
Figure JPOXMLDOC01-appb-C000004
 
(式中、R、R、R10、R11は、相互に同一または異なって、炭素原子数1~8の置換又は非置換の炭化水素基を表す。Yは、水酸基を表す。)
 R、R、R10、R11で示される置換又は非置換の炭化水素基は、置換又は非置換の、脂肪族又は芳香族の炭化水素基であることが好ましく、脂肪族炭化水素基がより好ましい。脂肪族炭化水素基としては、直鎖又は分岐アルキル基が好ましい。炭化水素基の炭素数は、1~8であり、1~6が好ましく、1~4がさらに好ましい。脂肪族炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基などの飽和炭化水素基、ビニル基、アリル基、プレニル基、クロチル基、シクロペンタジエニル基などの不飽和炭化水素基が挙げられ、メチル基、エチル基、ブチル基が好ましい。
(In the formula, R 8 , R 9 , R 10 and R 11 are the same or different and represent a substituted or unsubstituted hydrocarbon group having 1 to 8 carbon atoms. Y represents a hydroxyl group.)
The substituted or unsubstituted hydrocarbon group represented by R 8 , R 9 , R 10 and R 11 is preferably a substituted or unsubstituted aliphatic or aromatic hydrocarbon group, and an aliphatic hydrocarbon group is more preferred. A linear or branched alkyl group is preferable as the aliphatic hydrocarbon group. The number of carbon atoms in the hydrocarbon group is 1-8, preferably 1-6, more preferably 1-4. Examples of aliphatic hydrocarbon groups include saturated hydrocarbon groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group and octyl group; group, allyl group, prenyl group, crotyl group, cyclopentadienyl group, and other unsaturated hydrocarbon groups, preferably methyl group, ethyl group, and butyl group.
 前記芳香族炭化水素基としては、例えば、フェニル基、トリル基、ベンジル基などが挙げられる。 Examples of the aromatic hydrocarbon group include phenyl group, tolyl group, and benzyl group.
 前記炭化水素基が有してもよい置換基としては、メトキシ基、エトキシ基、ヒドロキシ基、アセトキシ基などが挙げられる。置換されている炭化水素基としては、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基などのアルコキシアルキル基、ヒドロキシメチル基、ヒドロキシエチル基、3-ヒドロキシプロピル基などのヒドロキシアルキル基、2-アセトキシエチル基などが挙げられる。 Examples of the substituent that the hydrocarbon group may have include a methoxy group, an ethoxy group, a hydroxy group, and an acetoxy group. Examples of substituted hydrocarbon groups include alkoxyalkyl groups such as methoxymethyl group, methoxyethyl group, ethoxymethyl group and ethoxyethyl group; hydroxyalkyl groups such as hydroxymethyl group, hydroxyethyl group and 3-hydroxypropyl group; 2-acetoxyethyl group and the like.
 一般式(6)で表されるアンモニウムヒドロキシドの具体例としては、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド等のテトラアルキルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、ベンジルトリエチルアンモニウムヒドロキシド、トリメチルフェニルアンモニウムヒドロキシド、トリス(2-ヒドロキシエチル)メチルアンモニウムヒドロキシドなどが挙げられる。特に、テトラアルキルアンモニウムヒドロキシドが好ましく、テトラブチルアンモニウムヒドロキシドが好ましい。 Specific examples of the ammonium hydroxide represented by the general formula (6) include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetraalkylammonium hydroxide such as tetrabutylammonium hydroxide, trimethylbenzyl ammonium hydroxide, benzyltriethylammonium hydroxide, trimethylphenylammonium hydroxide, tris(2-hydroxyethyl)methylammonium hydroxide and the like. In particular, tetraalkylammonium hydroxide is preferred, and tetrabutylammonium hydroxide is preferred.
 アンモニウムヒドロキシド(C)の使用量としては、チタン化合物(B)とアンモニウムヒドロキシド(C)を予め反応させることなく使用する場合は、反応性ケイ素基を有する重合体(A)100重量部に対して、0.1~20重量部が好ましく、更には0.5~10重量部がより好ましく、1~5重量部が特に好ましい。 As the amount of ammonium hydroxide (C) used, when the titanium compound (B) and the ammonium hydroxide (C) are used without being reacted in advance, 100 parts by weight of the polymer (A) having a reactive silicon group On the other hand, 0.1 to 20 parts by weight is preferable, 0.5 to 10 parts by weight is more preferable, and 1 to 5 parts by weight is particularly preferable.
 前記チタン化合物(B)と前記アンモニウムヒドロキシド(C)との含有割合(B/C)は、モル比で、0.1/1~10/1の範囲であり、良好な硬化性を得る観点から1/1~10/1が好ましく、2/1~5/1が更に好ましい。 The content ratio (B/C) of the titanium compound (B) and the ammonium hydroxide (C) is in the range of 0.1/1 to 10/1 in terms of molar ratio, from the viewpoint of obtaining good curability. is preferably from 1/1 to 10/1, more preferably from 2/1 to 5/1.
 <チタン化合物(B)とアンモニウムヒドロキシド(C)との反応生成物>
 本開示に係る硬化性組成物は、チタン化合物(B)とアンモニウムヒドロキシド(C)それぞれを含有するものであってもよいし、また、チタン化合物(B)とアンモニウムヒドロキシド(C)を反応させて得た反応生成物を含有するものであっても良い。いずれの態様であっても、硬化後の破断強度と破断伸びを向上させることができるが、強度及び伸び向上の観点から、前記反応生成物を用いる態様が好ましい。
<Reaction product of titanium compound (B) and ammonium hydroxide (C)>
The curable composition according to the present disclosure may contain the titanium compound (B) and the ammonium hydroxide (C), respectively, or may react the titanium compound (B) and the ammonium hydroxide (C). It may contain a reaction product obtained by the reaction. In either embodiment, the breaking strength and breaking elongation after curing can be improved, but from the viewpoint of improving the strength and elongation, the embodiment using the reaction product is preferable.
 前記反応生成物は、両者の混合物を例えば40~100℃で反応させることによって得ることができる。この温度は、具体的には40~100℃が好ましい。混合物中での、アンモニウムヒドロキシド(C)に対するチタン化合物(B)のモル比は、例えば0.1~100であってよく、0.2~10がより好ましい。 The reaction product can be obtained by reacting a mixture of both at, for example, 40 to 100°C. Specifically, this temperature is preferably 40 to 100°C. The molar ratio of titanium compound (B) to ammonium hydroxide (C) in the mixture may be, for example, 0.1-100, more preferably 0.2-10.
 チタン化合物(B)とアンモニウムヒドロキシド(C)との反応生成物の使用量としては、反応性ケイ素基を有する重合体(A)100重量部に対して、0.1~30重量部が好ましく、更には0.5~20重量部がより好ましく、1~10重量部が特に好ましい。 The amount of the reaction product of the titanium compound (B) and ammonium hydroxide (C) used is preferably 0.1 to 30 parts by weight with respect to 100 parts by weight of the polymer (A) having a reactive silicon group. , more preferably 0.5 to 20 parts by weight, particularly preferably 1 to 10 parts by weight.
 <<反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体(D)>>
 本開示に係る硬化性組成物は、反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体(D)(以下、重合体(D)ともいう)をさらに含有しても良い。重合体(D)を含有することにより、耐候性、接着性が向上し得る。
<<(Meth)acrylic acid ester polymer (D) having a reactive silicon group>>
The curable composition according to the present disclosure may further contain a (meth)acrylate polymer (D) having a reactive silicon group (hereinafter also referred to as polymer (D)). Weather resistance and adhesiveness can be improved by containing the polymer (D).
 反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体(D)の主鎖を構成する(メタ)アクリル酸エステル系モノマーとしては特に限定されず、各種のものを用いることができる。具体的には、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸n-ペンチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸n-ヘプチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸3-メトキシブチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸(3-トリメトキシシリル)プロピル、(メタ)アクリル酸(3-ジメトキシメチルシリル)プロピル、(メタ)アクリル酸(2-トリメトキシシリル)エチル、(メタ)アクリル酸(2-ジメトキシメチルシリル)エチル、(メタ)アクリル酸トリメトキシシリルメチル、(メタ)アクリル酸(ジメトキシメチルシリル)メチル、(メタ)アクリル酸のエチレンオキサイド付加物、(メタ)アクリル酸トリフルオロメチルメチル、(メタ)アクリル酸2-トリフルオロメチルエチル、(メタ)アクリル酸2-パーフルオロエチルエチル、(メタ)アクリル酸2-パーフルオロエチル-2-パーフルオロブチルエチル、(メタ)アクリル酸パーフルオロエチル、(メタ)アクリル酸トリフルオロメチル、(メタ)アクリル酸ビス(トリフルオロメチル)メチル、(メタ)アクリル酸2-トリフルオロメチル-2-パーフルオロエチルエチル、(メタ)アクリル酸2-パーフルオロヘキシルエチル、(メタ)アクリル酸2-パーフルオロデシルエチル、(メタ)アクリル酸2-パーフルオロヘキサデシルエチル等の(メタ)アクリル酸系モノマーが挙げられる。 The (meth)acrylic acid ester-based monomer constituting the main chain of the (meth)acrylic acid ester-based polymer (D) having a reactive silicon group is not particularly limited, and various types can be used. Specifically, methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, and isobutyl (meth)acrylate. , tert-butyl (meth)acrylate, n-pentyl (meth)acrylate, n-hexyl (meth)acrylate, cyclohexyl (meth)acrylate, n-heptyl (meth)acrylate, n-(meth)acrylate -octyl, 2-ethylhexyl (meth)acrylate, nonyl (meth)acrylate, decyl (meth)acrylate, dodecyl (meth)acrylate, phenyl (meth)acrylate, toluyl (meth)acrylate, (meth)acrylate Benzyl acrylate, 2-methoxyethyl (meth)acrylate, 3-methoxybutyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, stearyl (meth)acrylate , glycidyl (meth)acrylate, (3-trimethoxysilyl)propyl (meth)acrylate, (3-dimethoxymethylsilyl)propyl (meth)acrylate, (2-trimethoxysilyl)ethyl (meth)acrylate, (2-dimethoxymethylsilyl)ethyl (meth)acrylate, trimethoxysilylmethyl (meth)acrylate, (dimethoxymethylsilyl)methyl (meth)acrylate, ethylene oxide adduct of (meth)acrylic acid, (meth)acrylate Trifluoromethylmethyl acrylate, 2-trifluoromethylethyl (meth)acrylate, 2-perfluoroethylethyl (meth)acrylate, 2-perfluoroethyl-2-perfluorobutylethyl (meth)acrylate, ( Meth) perfluoroethyl acrylate, trifluoromethyl (meth) acrylate, bis (trifluoromethyl) methyl (meth) acrylate, 2-trifluoromethyl-2-perfluoroethyl ethyl (meth) acrylate, (meth) ) (meth)acrylic acid-based monomers such as 2-perfluorohexylethyl acrylate, 2-perfluorodecylethyl (meth)acrylate, and 2-perfluorohexadecylethyl (meth)acrylate.
 上記以外の単量体単位としては、たとえば、アクリル酸、メタクリル酸等のアクリル酸;N-メチロールアクリルアミド、N-メチロールメタクリルアミド等のアミド基、グリシジルアクリレート、グリシジルメタクリレート等のエポキシ基、ジエチルアミノエチルアクリレート、ジエチルアミノエチルメタクリレート、等の窒素含有基を含む単量体が挙げられる。 Examples of monomer units other than the above include acrylic acid such as acrylic acid and methacrylic acid; amide groups such as N-methylol acrylamide and N-methylol methacrylamide; epoxy groups such as glycidyl acrylate and glycidyl methacrylate; , diethylaminoethyl methacrylate, and the like.
 (メタ)アクリル酸エステル系重合体(D)は、(メタ)アクリル酸エステル系モノマーと、これと共重合可能なビニル系モノマーを共重合して得られる重合体を使用することもできる。ビニル系モノマーとしては、特に限定されず、例えば、スチレン、ビニルトルエン、α-メチルスチレン、クロルスチレン、スチレンスルホン酸及びその塩などのスチレン系モノマー;パーフルオロエチレン、パーフルオロプロピレン、フッ化ビニリデンなどのフッ素含有ビニル系モノマー;ビニルトリメトキシシラン、ビニルトリエトキシシランなどのケイ素含有ビニル系モノマー;無水マレイン酸、マレイン酸、マレイン酸のモノアルキルエステル及びジアルキルエステル;フマル酸、フマル酸のモノアルキルエステル及びジアルキルエステル;マレイミド、メチルマレイミド、エチルマレイミド、プロピルマレイミド、ブチルマレイミド、ヘキシルマレイミド、オクチルマレイミド、ドデシルマレイミド、ステアリルマレイミド、フェニルマレイミド、シクロヘキシルマレイミド などのマレイミド系モノマー;アクリロニトリル、メタクリロニトリルなどのニトリル基含有ビニル系モノマー;アクリルアミド、メタクリルアミドなどのアミド基含有ビニル系モノマー;酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、安息香酸ビニル、桂皮酸ビニルなどのビニルエステル系モノマー;エチレン、プロピレンなどのアルケニル系モノマー;ブタジエン、イソプレンなどの共役ジエン系モノマー;塩化ビニル、塩化ビニリデン、塩化アリル、アリルアルコールなどがあげられ、これらは、複数を共重合成分として使用することも可能である。 The (meth)acrylate polymer (D) may be a polymer obtained by copolymerizing a (meth)acrylate monomer and a vinyl monomer copolymerizable therewith. The vinyl-based monomer is not particularly limited, and examples thereof include styrene-based monomers such as styrene, vinyltoluene, α-methylstyrene, chlorostyrene, styrenesulfonic acid and salts thereof; perfluoroethylene, perfluoropropylene, vinylidene fluoride, and the like. Fluorine-containing vinyl monomers; Silicon-containing vinyl monomers such as vinyltrimethoxysilane and vinyltriethoxysilane; Maleic anhydride, maleic acid, maleic acid monoalkyl esters and dialkyl esters; Fumaric acid, fumaric acid monoalkyl esters and dialkyl esters; maleimide-based monomers such as maleimide, methylmaleimide, ethylmaleimide, propylmaleimide, butylmaleimide, hexylmaleimide, octylmaleimide, dodecylmaleimide, stearylmaleimide, phenylmaleimide, cyclohexylmaleimide; nitrile groups such as acrylonitrile and methacrylonitrile Containing vinyl-based monomers; amide group-containing vinyl-based monomers such as acrylamide and methacrylamide; vinyl ester-based monomers such as vinyl acetate, vinyl propionate, vinyl pivalate, vinyl benzoate and vinyl cinnamate; alkenyl-based monomers such as ethylene and propylene Monomers; conjugated diene-based monomers such as butadiene and isoprene; vinyl chloride, vinylidene chloride, allyl chloride, allyl alcohol, etc., and a plurality of these may be used as copolymerization components.
 前記モノマー類から得られる(メタ)アクリル酸エステル系重合体のなかでも、スチレン系モノマー及び(メタ)アクリル酸系モノマーからなる共重合体が、物性が優れることから好ましく、アクリル酸エステルモノマー及びメタクリル酸エステルモノマーからなる(メタ)アクリル酸エステル系重合体がより好ましく、アクリル酸エステルモノマーからなるアクリル酸エステル系重合体が特に好ましい。 Among the (meth)acrylic acid ester polymers obtained from the above monomers, a copolymer composed of a styrene monomer and a (meth)acrylic acid monomer is preferable because of its excellent physical properties. A (meth)acrylic ester-based polymer composed of an acid ester monomer is more preferable, and an acrylic ester-based polymer composed of an acrylic ester monomer is particularly preferable.
 重合体(D)の反応性ケイ素基の数は1分子あたり平均して、1.0~5.0個が好ましく、硬化性組成物の硬化時の機械物性の観点から、1.27個以上がより好ましく、重合体(D)の安定性の観点から、3.0個以下がより好ましい。 The average number of reactive silicon groups in the polymer (D) is preferably 1.0 to 5.0 per molecule, and from the viewpoint of mechanical properties during curing of the curable composition, 1.27 or more. is more preferable, and from the viewpoint of the stability of the polymer (D), 3.0 or less is more preferable.
 (メタ)アクリル酸エステル系重合体に反応性ケイ素基を導入する方法は特に限定されず、たとえば、以下の方法を用いることができる。(i)重合性不飽和基と反応性ケイ素含有基を有する化合物を、上述のモノマーとともに共重合する方法。この方法を用いると反応性ケイ素基は重合体の主鎖中にランダムに導入される傾向がある。(ii)連鎖移動剤として、反応性ケイ素含有基を有するメルカプトシラン化合物を使用して(メタ)アクリル酸エステル系重合体を重合する方法。この方法を用いると、反応性ケイ素基を重合体末端に導入することができる。(iii)重合性不飽和基と反応性官能基(V基)を有する化合物を、共重合した後、反応性ケイ素基とV基に反応する官能基を有する化合物を反応させる方法。具体的には、アクリル酸2-ヒドロキシエチルを共重合した後、この水酸基と反応性ケイ素含有基を有するイソシアネートシランを反応させる方法や、アクリル酸グリシジルを共重合した後、このエポキシ基と反応性ケイ素含有基を有するアミノシラン化合物を反応させる方法などが例示できる。 The method for introducing a reactive silicon group into the (meth)acrylic acid ester polymer is not particularly limited, and for example, the following method can be used. (i) A method of copolymerizing a compound having a polymerizable unsaturated group and a reactive silicon-containing group together with the aforementioned monomers. Using this method, reactive silicon groups tend to be randomly introduced into the backbone of the polymer. (ii) A method of polymerizing a (meth)acrylate polymer using a mercaptosilane compound having a reactive silicon-containing group as a chain transfer agent. Using this method, reactive silicon groups can be introduced at the polymer termini. (iii) A method of copolymerizing a compound having a polymerizable unsaturated group and a reactive functional group (V group) and then reacting the compound having a reactive silicon group and a functional group reactive with the V group. Specifically, after copolymerizing 2-hydroxyethyl acrylate, a method of reacting the hydroxyl group with an isocyanate silane having a reactive silicon-containing group, or after copolymerizing glycidyl acrylate, the epoxy group and the reactive Examples include a method of reacting an aminosilane compound having a silicon-containing group.
 上記の方法を用いて(メタ)アクリル酸エステル系重合体(D)の反応性ケイ素基を導入するために使用できるケイ素化合物としては、以下の化合物が例示できる。方法(i)で使用する重合性不飽和基と反応性ケイ素基を有する化合物としては、(メタ)アクリル酸3-(トリメトキシシリル)プロピル、(メタ)アクリル酸3-(ジメトキシメチルシリル)プロピル、(メタ)アクリル酸3-(トリエトキシシリル)プロピル、(メタ)アクリル酸(トリメトキシシリル)メチル、(メタ)アクリル酸(ジメトキシメチルシリル)メチル、(メタ)アクリル酸(トリエトキシシリル)メチル、(メタ)アクリル酸(ジエトキシメチルシリル)メチル、(メタ)アクリル酸3-((メトキシメチル)ジメトキシシリル)プロピルなどが挙げられる。入手性の観点から、(メタ)アクリル酸トリメトキシシリルプロピル、(メタ)アクリル酸(ジメトキシメチルシリル)プロピルが特に好ましい。 Examples of the silicon compound that can be used to introduce the reactive silicon group of the (meth)acrylic acid ester polymer (D) using the above method include the following compounds. Compounds having a polymerizable unsaturated group and a reactive silicon group used in method (i) include 3-(trimethoxysilyl)propyl (meth)acrylate and 3-(dimethoxymethylsilyl)propyl (meth)acrylate. , 3-(triethoxysilyl)propyl (meth)acrylate, (trimethoxysilyl)methyl (meth)acrylate, (dimethoxymethylsilyl)methyl (meth)acrylate, (triethoxysilyl)methyl (meth)acrylate , (diethoxymethylsilyl)methyl (meth)acrylate, 3-((methoxymethyl)dimethoxysilyl)propyl (meth)acrylate, and the like. From the standpoint of availability, trimethoxysilylpropyl (meth)acrylate and (dimethoxymethylsilyl)propyl (meth)acrylate are particularly preferred.
 方法(ii)で使用する反応性ケイ素含有基を有するメルカプトシラン化合物としては、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルジメトキシメチルシラン、3-メルカプトプロピルトリエトキシシラン、メルカプトメチルトリメトキシシラン、(メルカプトメチル)ジメトキシメチルシラン、メルカプトメチルトリエトキシシランなどが挙げられる。 Mercaptosilane compounds with reactive silicon-containing groups used in method (ii) include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyldimethoxymethylsilane, 3-mercaptopropyltriethoxysilane, mercaptomethyltrimethoxysilane, (mercaptomethyl)dimethoxymethylsilane, mercaptomethyltriethoxysilane and the like.
 方法(iii)で使用する反応性ケイ素基とV基に反応する官能基を有する化合物としては、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルジメトキシメチルシラン、3-イソシアネートプロピルトリエトキシシラン、イソシアネートメチルトリメトキシシラン、イソシアネートメチルトリエトキシシラン、イソシアネートメチルジメトキシメチルシラン、イソシアネートメチルジエトキシメチルシランなどのイソシアネートシラン化合物;3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルジメトキシメチルシラン、グリシドキシメチルトリメトキシシラン、グリシドキシメチルトリエトキシシラン、グリシドキシメチルジメトキシメチルシラン、グリシドキシメチルジエトキシメチルシランなどのエポキシシラン化合物;3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルジメトキシメチルシラン、アミノメチルトリメトキシシラン、アミノメチルトリエトキシシラン、アミノメチルジメトキシメチルシラン、N-シクロヘキシルアミノメチルトリエトキシシラン、N-シクロヘキシルアミノメチルジエトキシメチルシラン、N-フェニルアミノメチルトリメトキシシラン、(2-アミノエチル)アミノメチルトリメトキシシランンなどのアミノシラン化合物などが挙げられる。 Compounds having a reactive silicon group and a functional group reactive with the V group used in method (iii) include 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropyldimethoxymethylsilane, 3-isocyanatopropyltriethoxysilane, isocyanate isocyanatosilane compounds such as methyltrimethoxysilane, isocyanatomethyltriethoxysilane, isocyanatomethyldimethoxymethylsilane, isocyanatomethyldiethoxymethylsilane; 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3 - epoxysilane compounds such as glycidoxypropyldimethoxymethylsilane, glycidoxymethyltrimethoxysilane, glycidoxymethyltriethoxysilane, glycidoxymethyldimethoxymethylsilane, glycidoxymethyldiethoxymethylsilane; 3-amino propyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldimethoxymethylsilane, aminomethyltrimethoxysilane, aminomethyltriethoxysilane, aminomethyldimethoxymethylsilane, N-cyclohexylaminomethyltriethoxysilane, N- Aminosilane compounds such as cyclohexylaminomethyldiethoxymethylsilane, N-phenylaminomethyltrimethoxysilane, (2-aminoethyl)aminomethyltrimethoxysilane, and the like are included.
 なお、これらの方法は任意に組合せて用いてもよい。例えば方法(iii)と方法(ii)を組合わせると、分子鎖末端および/または側鎖の両方に反応性ケイ素基を有する重合体(D)を得ることができる。 These methods may be used in any combination. For example, by combining method (iii) and method (ii), it is possible to obtain a polymer (D) having reactive silicon groups at both molecular chain terminals and/or side chains.
 重合体(D)の反応性ケイ素基は一般式(7):
-SiR12 3-b     (7)
(R12は、それぞれ独立に、炭素原子数1~20の炭化水素基を表し、前記炭化水素基は、ヘテロ含有基を有してもよい。Zは、それぞれ独立に、水酸基または加水分解性基を表す。bは1、2、または3である。)
で表される。
The reactive silicon group of polymer (D) has the general formula (7):
—SiR 12 3-b Z b (7)
(R 12 each independently represents a hydrocarbon group having 1 to 20 carbon atoms, and the hydrocarbon group may have a hetero-containing group. Z each independently represents a hydroxyl group or a hydrolyzable represents a group, and b is 1, 2, or 3.)
is represented by
 R12は、炭素原子数1~20の炭化水素基である。R12としての炭化水素基の炭素原子数としては、1~12が好ましく、1~6がより好ましく、1~4が特に好ましい。該炭化水素基は、無置換の炭化水素基であってもよいし、置換基を有する炭化水素基であってもよい。 R 12 is a hydrocarbon group having 1 to 20 carbon atoms. The number of carbon atoms in the hydrocarbon group for R 12 is preferably 1-12, more preferably 1-6, and particularly preferably 1-4. The hydrocarbon group may be an unsubstituted hydrocarbon group or a hydrocarbon group having a substituent.
 R12の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、2-エチル-n-ヘキシル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-オクタデシル基、n-ノナデシル基、およびn-イコシル基などのアルキル基;ビニル基、2-プロペニル基、3-ブテニル基、および4-ペンテニル基などのアルケニル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、およびシクロオクチル基などのシクロアルキル基;フェニル基、ナフタレン-1-イル基、ナフタレン-2-イル基、o-フェニルフェニル基、m-フェニルフェニル基、およびp-フェニルフェニル基などのアリール基;ベンジル基、フェネチル基、ナフタレン-1-イルメチル基、およびナフタレン-2-イルメチル基などのアラルキル基が挙げられる。 Specific examples of R 12 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, 2-ethyl-n-hexyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n - alkyl groups such as pentadecyl, n-hexadecyl, n-octadecyl, n-nonadecyl, and n-icosyl groups; alkenyl groups such as vinyl, 2-propenyl, 3-butenyl, and 4-pentenyl groups Group; cycloalkyl group such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, and cyclooctyl group; phenyl group, naphthalene-1-yl group, naphthalene-2-yl group, o-phenylphenyl aryl groups such as, m-phenylphenyl, and p-phenylphenyl groups; aralkyl groups such as benzyl, phenethyl, naphthalen-1-ylmethyl, and naphthalen-2-ylmethyl groups.
 R12の好適な例としては、例えば、メチル基、およびエチル基などのアルキル基;クロロメチル基、およびメトキシメチル基などのヘテロ含有基を有するアルキル基;シクロヘキシル基などのシクロアルキル基;フェニル基などのアリール基;ベンジル基などのアラルキル基;などを挙げることができる。R12としては、メチル基、メトキシメチル基、およびクロロメチル基が好ましく、メチル基、およびメトキシメチル基がより好ましく、メチル基がさらに好ましい。 Suitable examples of R 12 include, for example, alkyl groups such as methyl group and ethyl group; alkyl groups having hetero-containing groups such as chloromethyl group and methoxymethyl group; cycloalkyl groups such as cyclohexyl group; aryl groups such as; aralkyl groups such as benzyl group; and the like. R 12 is preferably a methyl group, a methoxymethyl group and a chloromethyl group, more preferably a methyl group and a methoxymethyl group, and still more preferably a methyl group.
 Zとしては、例えば、水酸基、ハロゲン、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカプト基、およびアルケニルオキシ基などが挙げられる。これらの中では、加水分解性が穏やかで取扱いやすいことからメトキシ基、およびエトキシ基などのアルコキシ基がより好ましく、メトキシ基、エトキシ基がさらに好ましく、メトキシ基が特に好ましい。 Examples of Z include a hydroxyl group, a halogen, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an acid amide group, an aminooxy group, a mercapto group, and an alkenyloxy group. Among these, alkoxy groups such as methoxy and ethoxy are more preferable, methoxy and ethoxy are more preferable, and methoxy is particularly preferable, because they are moderately hydrolyzable and easy to handle.
 bは1、2、または3である。bとしては、2または3が好ましい。 b is 1, 2, or 3; b is preferably 2 or 3.
 反応性ケイ素基の具体例としては、トリメトキシシリル基、トリエトキシシリル基、トリス(2-プロペニルオキシ)シリル基、トリアセトキシシリル基、ジメトキシメチルシリル基、ジエトキシメチルシリル基、ジメトキシエチルシリル基、(クロロメチル)ジメトキシシリル基、(クロロメチル)ジエトキシシリル基、(メトキシメチル)ジメトキシシリル基、(メトキシメチル)ジエトキシシリル基、(N,N-ジエチルアミノメチル)ジメトキシシリル基、および(N,N-ジエチルアミノメチル)ジエトキシシリル基などが挙げられるが、これらに限定されない。これらの中では、ジメトキシメチルシリル基、トリメトキシシリル基、トリエトキシシリル基、および(メトキシメチル)ジメトキシシリル基が良好な機械物性を有する硬化物が得られるため好ましい。活性の観点から、トリメトキシシリル基、ジメトキシメチルシリル基が好ましく、トリメトキシシリル基がより好ましい。 Specific examples of reactive silicon groups include a trimethoxysilyl group, a triethoxysilyl group, a tris(2-propenyloxy)silyl group, a triacetoxysilyl group, a dimethoxymethylsilyl group, a diethoxymethylsilyl group and a dimethoxyethylsilyl group. , (chloromethyl)dimethoxysilyl group, (chloromethyl)diethoxysilyl group, (methoxymethyl)dimethoxysilyl group, (methoxymethyl)diethoxysilyl group, (N,N-diethylaminomethyl)dimethoxysilyl group, and (N , N-diethylaminomethyl)diethoxysilyl groups and the like, but are not limited thereto. Among these, a dimethoxymethylsilyl group, a trimethoxysilyl group, a triethoxysilyl group, and a (methoxymethyl)dimethoxysilyl group are preferable because a cured product having good mechanical properties can be obtained. From the viewpoint of activity, a trimethoxysilyl group and a dimethoxymethylsilyl group are preferred, and a trimethoxysilyl group is more preferred.
 重合体(D)の数平均分子量は特に限定されないが、GPC測定によるポリスチレン換算分子量で、500~100,000が好ましく、500~50,000がより好ましく、1,000~30,000が特に好ましい。 The number average molecular weight of the polymer (D) is not particularly limited, but the polystyrene equivalent molecular weight measured by GPC is preferably 500 to 100,000, more preferably 500 to 50,000, and particularly preferably 1,000 to 30,000. .
 重合体(A)と反応性ケイ素基を有する重合体(D)をブレンドする方法は、特開昭59-122541号、特開昭63-112642号、特開平6-172631号、特開平11-116763号公報等に提案されている。他にも、反応性ケイ素基を有するポリオキシプロピレン系重合体の存在下で(メタ)アクリル酸エステル系単量体の重合を行う方法が利用できる。この製造方法は、特開昭59-78223号、特開昭60-228516号、特開昭60-228517号等の各公報に具体的に開示されている。重合体(A)と重合体(D)も同様の方法によってブレンドできるが、これらに限定されるものではない。 The method of blending the polymer (A) and the polymer (D) having a reactive silicon group is disclosed in JP-A-59-122541, JP-A-63-112642, JP-A-6-172631, JP-A-11- No. 116763, etc., have proposed this. Alternatively, a method of polymerizing a (meth)acrylic acid ester-based monomer in the presence of a polyoxypropylene-based polymer having a reactive silicon group can be used. This manufacturing method is specifically disclosed in each publication such as JP-A-59-78223, JP-A-60-228516 and JP-A-60-228517. Polymer (A) and polymer (D) can also be blended by similar methods, but are not limited thereto.
 重合体(A)と重合体(D)の混合割合は特に限定されないが、(A):(D)=95:5~5:95(重量部)が好ましく、80:20~20:80(重量部)がより好ましく、70:30~30:70(重量部)が特に好ましい。なお、重合体(A)および重合体(D)はそれぞれ1種のみで使用してもよく、2種以上を併用して使用してもかまわない。 The mixing ratio of polymer (A) and polymer (D) is not particularly limited, but (A):(D) is preferably 95:5 to 5:95 (parts by weight), and 80:20 to 20:80 (parts by weight). Parts by weight) is more preferred, and 70:30 to 30:70 (parts by weight) is particularly preferred. The polymer (A) and the polymer (D) may be used alone or in combination of two or more.
 <<硬化性組成物>>
 本開示に係る硬化性組成物には、反応性ケイ素基を有する重合体(A)、チタン化合物(B)、アンモニウムヒドロキシド(C)の他に添加剤として、その他のシラノール縮合触媒、充填剤、接着性付与剤、可塑剤、溶剤、希釈剤、タレ防止剤、酸化防止剤、光安定剤、紫外線吸収剤、物性調整剤、粘着付与樹脂、エポキシ基を含有する化合物、光硬化性物質、酸素硬化性物質、エポキシ樹脂、その他の樹脂、を添加しても良い。また、本開示に係る硬化性組成物には、硬化性組成物又は硬化物の諸物性の調整を目的として、必要に応じて各種添加剤を添加してもよい。このような添加物の例としては、たとえば、表面性改良剤、発泡剤、硬化性調整剤、難燃剤、シリケート、ラジカル禁止剤、金属不活性化剤、オゾン劣化防止剤、リン系過酸化物分解剤、滑剤、顔料、防かび剤などが挙げられる。
<<Curable Composition>>
In addition to the polymer (A) having a reactive silicon group, the titanium compound (B), and the ammonium hydroxide (C), the curable composition according to the present disclosure includes additives such as other silanol condensation catalysts and fillers. , Adhesion imparting agents, plasticizers, solvents, diluents, anti-sagging agents, antioxidants, light stabilizers, ultraviolet absorbers, physical property modifiers, tackifying resins, compounds containing epoxy groups, photocurable substances, Oxygen-curable substances, epoxy resins, and other resins may be added. In addition, various additives may be added to the curable composition according to the present disclosure as necessary for the purpose of adjusting various physical properties of the curable composition or cured product. Examples of such additives include surface property modifiers, foaming agents, curability modifiers, flame retardants, silicates, radical inhibitors, metal deactivators, antiozonants, phosphorus peroxides, Examples include decomposing agents, lubricants, pigments, and antifungal agents.
 <シラノール縮合触媒>
 本発明では、反応性ケイ素基を有する重合体(A)の反応性ケイ素基を加水分解・縮合させるシラノール縮合触媒として、チタン化合物(B)とアンモニウムヒドロキシド(C)、又はそれらの反応生成物を使用するが、他のシラノール縮合触媒を使用しても良い。
<Silanol condensation catalyst>
In the present invention, as a silanol condensation catalyst for hydrolyzing and condensing the reactive silicon groups of the polymer (A) having reactive silicon groups, a titanium compound (B) and ammonium hydroxide (C), or reaction products thereof is used, but other silanol condensation catalysts may also be used.
 他のシラノール縮合触媒としては、例えば有機錫化合物、カルボン酸金属塩、アミン化合物、カルボン酸、アルコキシ金属、などが挙げられる。 Other silanol condensation catalysts include, for example, organic tin compounds, carboxylic acid metal salts, amine compounds, carboxylic acids, and alkoxy metals.
 有機錫化合物の具体例としては、ジブチル錫ジラウレート、ジブチル錫ジオクタノエート、ジブチル錫ビス(ブチルマレエート)、ジブチル錫ジアセテート、ジブチル錫オキサイド、ジブチル錫ビス(アセチルアセトナート)、ジオクチル錫ビス(アセチルアセトナート)、ジオクチル錫ジラウレート、ジオクチル錫ジステアレート、ジオクチル錫ジアセテート、ジオクチル錫オキサイド、ジブチル錫オキサイドとシリケート化合物との反応物、ジオクチル錫オキサイドとシリケート化合物との反応物、ジブチル錫オキサイドとフタル酸エステルとの反応物などが挙げられる。 Specific examples of organic tin compounds include dibutyltin dilaurate, dibutyltin dioctanoate, dibutyltin bis(butyl maleate), dibutyltin diacetate, dibutyltin oxide, dibutyltin bis(acetylacetonate), dioctyltin bis(acetylacetonate), phosphate), dioctyltin dilaurate, dioctyltin distearate, dioctyltin diacetate, dioctyltin oxide, reaction products of dibutyltin oxide and silicate compounds, reaction products of dioctyltin oxide and silicate compounds, dibutyltin oxide and phthalates and the like.
 カルボン酸金属塩の具体例としては、カルボン酸錫、カルボン酸ビスマス、カルボン酸チタン、カルボン酸ジルコニウム、カルボン酸鉄、カルボン酸カリウム、カルボン酸カルシウムなどが挙げられる。カルボン酸基としては下記のカルボン酸と各種金属を組み合わせることができる。具体的には、2-エチルへキサン酸鉄(2価)、2-エチルへキサン酸鉄(3価)、2-エチルへキサン酸チタニウム(4価)、2-エチルへキサン酸バナジウム(3価)、2-エチルへキサン酸カルシウム(2価)、2-エチルへキサン酸カリウム(1価)、2-エチルへキサン酸バリウム(2価)、2-エチルへキサン酸マンガン(2価)、2-エチルへキサン酸ニッケル(2価)、2-エチルへキサン酸コバルト(2価)、2-エチルへキサン酸ジルコニウム(4価)、ネオデカン酸鉄(2価)、ネオデカン酸鉄(3価)、ネオデカン酸チタニウム(4価)、ネオデカン酸バナジウム(3価)、ネオデカン酸カルシウム(2価)、ネオデカン酸カリウム(1価)、ネオデカン酸バリウム(2価)、ネオデカン酸ジルコニウム(4価)、オレイン酸鉄(2価)、オレイン酸鉄(3価)、オレイン酸チタニウム(4価)、オレイン酸バナジウム(3価)、オレイン酸カルシウム(2価)、オレイン酸カリウム(1価)、オレイン酸バリウム(2価)、オレイン酸マンガン(2価)、オレイン酸二ッケル(2価)、オレイン酸コバルト(2価)、オレイン酸ジルコニウム(4価)、ナフテン酸鉄(2価)、ナフテン酸鉄(3価)、ナフテン酸チタ二ウム(4価)、ナフテン酸バナジウム(3価)、ナフテン酸カルシウム(2価)、ナフテン酸カリウム(1価)、ナフテン酸バリウム(2価)、ナフテン酸マンガン(2価)、ナフテン酸ニッケル(2価)、ナフテン酸コバルト(2価)、ナフテン酸ジルコニウム(4価)、等が挙げられる。 Specific examples of carboxylate metal salts include tin carboxylate, bismuth carboxylate, titanium carboxylate, zirconium carboxylate, iron carboxylate, potassium carboxylate, and calcium carboxylate. As the carboxylic acid group, the following carboxylic acid and various metals can be combined. Specifically, iron 2-ethylhexanoate (bivalent), iron 2-ethylhexanoate (trivalent), titanium 2-ethylhexanoate (tetravalent), vanadium 2-ethylhexanoate (3 valence), calcium 2-ethylhexanoate (divalent), potassium 2-ethylhexanoate (monovalent), barium 2-ethylhexanoate (divalent), manganese 2-ethylhexanoate (divalent) , Nickel 2-ethylhexanoate (divalent), Cobalt 2-ethylhexanoate (divalent), Zirconium 2-ethylhexanoate (tetravalent), Iron neodecanoate (divalent), Iron neodecanoate (3 valence), titanium neodecanoate (tetravalent), vanadium neodecanoate (trivalent), calcium neodecanoate (divalent), potassium neodecanoate (monovalent), barium neodecanoate (divalent), zirconium neodecanoate (tetravalent) , iron oleate (divalent), iron oleate (trivalent), titanium oleate (tetravalent), vanadium oleate (trivalent), calcium oleate (divalent), potassium oleate (monovalent), olein Barium acid (divalent), manganese oleate (divalent), nickel oleate (divalent), cobalt oleate (divalent), zirconium oleate (tetravalent), iron naphthenate (divalent), naphthenic acid Iron (trivalent), titanium naphthenate (tetravalent), vanadium naphthenate (trivalent), calcium naphthenate (divalent), potassium naphthenate (monovalent), barium naphthenate (divalent), naphthenic acid manganese (divalent), nickel naphthenate (divalent), cobalt naphthenate (divalent), zirconium naphthenate (tetravalent), and the like.
 アミン化合物の具体例としては、オクチルアミン、2-エチルヘキシルアミン、ラウリルアミン、ステアリルアミン、などのアミン類;ピリジン、1,8-ジアザビシクロ[5,4,0]ウンデセン-7(DBU)、1,5-ジアザビシクロ[4,3,0]ノネン-5(DBN)、などの含窒素複素環式化合物;グアニジン、フェニルグアニジン、ジフェニルグアニジンなどのグアニジン類;ブチルビグアニド、1-o-トリルビグアニドや1-フェニルビグアニドなどのビグアニド類;アミノ基含有シランカップリング剤;ケチミン化合物などが挙げられる。 Specific examples of amine compounds include amines such as octylamine, 2-ethylhexylamine, laurylamine, stearylamine; pyridine, 1,8-diazabicyclo[5,4,0]undecene-7 (DBU), 1, Nitrogen-containing heterocyclic compounds such as 5-diazabicyclo[4,3,0]nonene-5 (DBN); guanidines such as guanidine, phenylguanidine and diphenylguanidine; biguanides such as phenyl biguanide; amino group-containing silane coupling agents; ketimine compounds;
 カルボン酸の具体例としては、酢酸、プロピオン酸、酪酸、2-エチルヘキサン酸、ラウリン酸、ステアリン酸、オレイン酸、リノール酸、ネオデカン酸、バーサチック酸などが挙げられる。 Specific examples of carboxylic acids include acetic acid, propionic acid, butyric acid, 2-ethylhexanoic acid, lauric acid, stearic acid, oleic acid, linoleic acid, neodecanoic acid, and versatic acid.
 アルコキシ金属の具体例としては、アルミニウムトリス(アセチルアセトナート)、ジイソプロポキシアルミニウムエチルアセトアセテートなどのアルミニウム化合物類、ジルコニウムテトラキス(アセチルアセトナート)などのジルコニウム化合物類が挙げられる。 Specific examples of alkoxy metals include aluminum compounds such as aluminum tris (acetylacetonate) and diisopropoxyaluminum ethylacetoacetate, and zirconium compounds such as zirconium tetrakis (acetylacetonate).
 その他のシラノール縮合触媒として、フッ素アニオン含有化合物、光酸発生剤や光塩基発生剤も使用できる。 As other silanol condensation catalysts, fluorine anion-containing compounds, photoacid generators, and photobase generators can also be used.
 シラノール縮合触媒は、異なる2種類以上の触媒を併用して使用してもよい。 Two or more different silanol condensation catalysts may be used in combination.
 シラノール縮合触媒の使用量としては、反応性ケイ素基を有する重合体(A)100重量部に対して、0.001~20重量部が好ましく、更には0.01~15重量部がより好ましく、0.01~10重量部が特に好ましい。 The amount of the silanol condensation catalyst used is preferably 0.001 to 20 parts by weight, more preferably 0.01 to 15 parts by weight, relative to 100 parts by weight of the polymer (A) having a reactive silicon group. 0.01 to 10 parts by weight are particularly preferred.
 <充填剤>
 本開示に係る硬化性組成物には、種々の充填剤を配合することができる。充填剤としては、重質炭酸カルシウム、膠質炭酸カルシウム、炭酸マグネシウム、ケイソウ土、クレー、タルク、酸化チタン、ヒュームドシリカ、沈降性シリカ、結晶性シリカ、溶融シリカ、無水ケイ酸、含水ケイ酸、カーボンブラック、酸化第二鉄、アルミニウム微粉末、酸化亜鉛、活性亜鉛華、PVC粉末、PMMA粉末、ガラス繊維およびフィラメント等が挙げられる。
<Filler>
Various fillers can be incorporated into the curable compositions of the present disclosure. Fillers include ground calcium carbonate, colloidal calcium carbonate, magnesium carbonate, diatomaceous earth, clay, talc, titanium oxide, fumed silica, precipitated silica, crystalline silica, fused silica, anhydrous silicic acid, hydrous silicic acid, carbon black, ferric oxide, fine aluminum powder, zinc oxide, active zinc white, PVC powder, PMMA powder, glass fiber and filament, and the like.
 充填剤の使用量は、反応性ケイ素基を有する重合体(A)100重量部に対して、1~600重量部が好ましく、特に50~400重量部が好ましい。 The amount of filler used is preferably 1 to 600 parts by weight, particularly preferably 50 to 400 parts by weight, per 100 parts by weight of the polymer (A) having a reactive silicon group.
 組成物の軽量化(低比重化)の目的で、有機バルーン、無機バルーンを添加してもよい。バルーンは、球状体充填剤で内部が中空のものであり、このバルーンの材料としては、ガラス、シラス、シリカなどの無機系の材料、および、フェノール樹脂、尿素樹脂、ポリスチレン、サランなどの有機系の材料があげられる
 バルーンの使用量は、反応性ケイ素基を有する重合体(A)100重量部に対して、0.1~100重量部が好ましく、特に1~20重量部が好ましい。
Organic balloons and inorganic balloons may be added for the purpose of weight reduction (lower specific gravity) of the composition. The balloon is hollow inside with a spherical filler, and is made of inorganic materials such as glass, shirasu, and silica, and organic materials such as phenolic resin, urea resin, polystyrene, and saran. The amount of the balloon used is preferably 0.1 to 100 parts by weight, particularly preferably 1 to 20 parts by weight, per 100 parts by weight of the polymer (A) having a reactive silicon group.
 <接着性付与剤>
 本開示に係る硬化性組成物には、接着性付与剤を添加することができる。
<Adhesion imparting agent>
Adhesion imparting agents can be added to the curable composition according to the present disclosure.
 接着性付与剤としては、シランカップリング剤、シランカップリング剤の反応物を添加することができる。 A silane coupling agent or a reactant of the silane coupling agent can be added as an adhesion imparting agent.
 シランカップリング剤の具体例としては、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルメチルジメトキシシラン、N-β-アミノエチル-γ-アミノプロピルトリメトキシシラン、N-β-アミノエチル-γ-アミノプロピルメチルジメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、(2-アミノエチル)アミノメチルトリメトキシシランなどのアミノ基含有シラン類;γ-イソシアネートプロピルトリメトキシシラン、γ-イソシアネートプロピルトリエトキシシラン、γ-イソシアネートプロピルメチルジメトキシシラン、α-イソシアネートメチルトリメトキシシラン、α-イソシアネートメチルジメトキシメチルシラン等のイソシアネート基含有シラン類;γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン等のメルカプト基含有シラン類;γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ基含有シラン類、が挙げられる。 Specific examples of silane coupling agents include γ-aminopropyltrimethoxysilane, γ-aminopropylmethyldimethoxysilane, N-β-aminoethyl-γ-aminopropyltrimethoxysilane, N-β-aminoethyl-γ- Amino group-containing silanes such as aminopropylmethyldimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, (2-aminoethyl)aminomethyltrimethoxysilane; γ-isocyanatopropyltrimethoxysilane, γ-isocyanatopropyltrimethoxysilane; isocyanate group-containing silanes such as ethoxysilane, γ-isocyanatopropylmethyldimethoxysilane, α-isocyanatomethyltrimethoxysilane, α-isocyanatomethyldimethoxymethylsilane; γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, mercapto group-containing silanes such as γ-mercaptopropylmethyldimethoxysilane; epoxy group-containing silanes such as γ-glycidoxypropyltrimethoxysilane and β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane; .
 また、アミノシランの縮合物、アミノシランと他のアルコキシシランとの縮合物、等の各種シランカップリング剤の縮合物;アミノシランとエポキシシランの反応物、アミノシランと(メタ)アクリル基含有シランの反応物、等の各種シランカップリング剤の反応物も使用できる。具体的には、Dynasylan1146、Dynasylan1124(EVONIK社製)が挙げられる。 Condensates of various silane coupling agents such as condensates of aminosilane, condensates of aminosilane and other alkoxysilanes; reaction products of aminosilane and epoxysilane; reaction products of aminosilane and (meth)acrylic group-containing silane; A reaction product of various silane coupling agents such as can also be used. Specific examples include Dynasylan 1146 and Dynasylan 1124 (manufactured by EVONIK).
 上記接着性付与剤は1種類のみで使用しても良いし、2種類以上混合使用しても良い。 The adhesiveness-imparting agent may be used alone or in combination of two or more.
 シランカップリング剤の使用量は、反応性ケイ素基を有する重合体(A)100重量部に対して、0.1~20重量部が好ましく、特に0.5~10重量部が好ましい。 The amount of the silane coupling agent used is preferably 0.1 to 20 parts by weight, particularly preferably 0.5 to 10 parts by weight, per 100 parts by weight of the polymer (A) having a reactive silicon group.
 <可塑剤>
 本開示に係る硬化性組成物には、可塑剤を添加することができる。可塑剤の具体例としては、ジブチルフタレート、ジイソノニルフタレート(DINP)、ジヘプチルフタレート、ジ(2-エチルヘキシル)フタレート、ジイソデシルフタレート(DIDP)、ブチルベンジルフタレートなどのフタル酸エステル化合物;ビス(2-エチルヘキシル)-1,4-ベンゼンジカルボキシレートなどのテレフタル酸エステル化合物;1,2-シクロヘキサンジカルボン酸ジイソノニルエステル(具体的には、商品名:Hexamoll DINCH(BASF製))などの非フタル酸エステル化合物;アジピン酸ジオクチル、セバシン酸ジオクチル、セバシン酸ジブチル、コハク酸ジイソデシル、アセチルクエン酸トリブチルなどの脂肪族多価カルボン酸エステル化合物;オレイン酸ブチル、アセチルリシノール酸メチルなどの不飽和脂肪酸エステル化合物;アルキルスルホン酸フェニルエステル(具体的には、商品名:Mesamoll(LANXESS製));リン酸エステル化合物;トリメリット酸エステル化合物;塩素化パラフィン;アルキルジフェニル、部分水添ターフェニルなどの炭化水素系油;プロセスオイル;エポキシ化大豆油、エポキシステアリン酸ベンジルなどのエポキシ可塑剤、などをあげることができる。
<Plasticizer>
A plasticizer can be added to the curable composition according to the present disclosure. Specific examples of plasticizers include dibutyl phthalate, diisononyl phthalate (DINP), diheptyl phthalate, di(2-ethylhexyl) phthalate, diisodecyl phthalate (DIDP), phthalate compounds such as butylbenzyl phthalate; bis(2-ethylhexyl )-terephthalate compounds such as 1,4-benzenedicarboxylate; non-phthalate compounds such as 1,2-cyclohexanedicarboxylic acid diisononyl ester (specifically, trade name: Hexamoll DINCH (manufactured by BASF)); Aliphatic polyvalent carboxylic acid ester compounds such as dioctyl adipate, dioctyl sebacate, dibutyl sebacate, diisodecyl succinate and tributyl acetylcitrate; unsaturated fatty acid ester compounds such as butyl oleate and methyl acetylricinoleate; alkyl sulfonic acid Phenyl ester (specifically, trade name: Mesamoll (manufactured by LANXESS)); phosphate ester compound; trimellitate ester compound; chlorinated paraffin; hydrocarbon oil such as alkyldiphenyl and partially hydrogenated terphenyl; process oil epoxidized soybean oil, epoxy plasticizers such as benzyl epoxy stearate, and the like.
 また、高分子可塑剤を使用することができる。高分子可塑剤の具体例としては、ビニル系重合体;ポリエステル系可塑剤;数平均分子量500以上のポリエチレングリコール、ポリプロピレングリコール等のポリエーテルポリオール、これらポリエーテルポリオールのヒドロキシ基をエステル基、エーテル基などに変換した誘導体等のポリエーテル類;ポリスチレン類;ポリブタジエン、ポリブテン、ポリイソブチレン、ブタジエン-アクリロニトリル、ポリクロロプレン等があげられる。 In addition, a polymer plasticizer can be used. Specific examples of polymeric plasticizers include vinyl polymers; polyester plasticizers; polyether polyols such as polyethylene glycol and polypropylene glycol having a number average molecular weight of 500 or more; polyethers such as derivatives converted to polystyrenes; polybutadiene, polybutene, polyisobutylene, butadiene-acrylonitrile, polychloroprene and the like.
 可塑剤の使用量は、反応性ケイ素基を有する重合体(A)100重量部に対して、5~200重量部が好ましく、10~150重量部がより好ましく、特に20~120重量部が好ましい。5重量部未満では可塑剤としての効果が発現しなくなり、200重量部を超えると硬化物の機械強度が不足する。可塑剤は、単独で使用してもよく、2種以上を併用してもよい。 The amount of the plasticizer used is preferably 5 to 200 parts by weight, more preferably 10 to 150 parts by weight, and particularly preferably 20 to 120 parts by weight, relative to 100 parts by weight of the polymer (A) having a reactive silicon group. . If it is less than 5 parts by weight, the effect as a plasticizer will not be exhibited, and if it exceeds 200 parts by weight, the mechanical strength of the cured product will be insufficient. A plasticizer may be used individually and may use 2 or more types together.
 <溶剤、希釈剤>
 本開示に係る硬化性組成物には溶剤または希釈剤を添加することができる。溶剤及び希釈剤としては、特に限定されないが、脂肪族炭化水素、芳香族炭化水素、脂環族炭化水素、ハロゲン化炭化水素、アルコール、エステル、ケトン、エーテルなどを使用することができる。溶剤または希釈剤を使用する場合、組成物を屋内で使用した時の空気への汚染の問題から、溶剤の沸点は、150℃以上が好ましく、200℃以上がより好ましく、250℃以上が特に好ましい。上記溶剤または希釈剤は単独で用いてもよく、2種以上併用してもよい。
<Solvent, diluent>
Solvents or diluents may be added to the curable compositions of the present disclosure. Solvents and diluents that can be used include, but are not limited to, aliphatic hydrocarbons, aromatic hydrocarbons, alicyclic hydrocarbons, halogenated hydrocarbons, alcohols, esters, ketones, and ethers. When a solvent or diluent is used, the boiling point of the solvent is preferably 150° C. or higher, more preferably 200° C. or higher, and particularly preferably 250° C. or higher, because of the problem of air pollution when the composition is used indoors. . The above solvents or diluents may be used alone or in combination of two or more.
 <タレ防止剤>
 本開示に係る硬化性組成物には、必要に応じてタレを防止し、作業性を良くするためにタレ防止剤を添加しても良い。また、タレ防止剤としては特に限定されないが、例えば、ポリアミドワックス類;水添ヒマシ油誘導体類;ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸バリウム等の金属石鹸類等が挙げられる。これらタレ防止剤は単独で用いてもよく、2種以上併用してもよい。
<Anti-sagging agent>
An anti-sagging agent may be added to the curable composition according to the present disclosure as necessary to prevent sagging and improve workability. The anti-sagging agent is not particularly limited, but examples thereof include polyamide waxes; hydrogenated castor oil derivatives; metal soaps such as calcium stearate, aluminum stearate and barium stearate. These anti-sagging agents may be used alone or in combination of two or more.
 タレ防止剤の使用量は、反応性ケイ素基を有する重合体(A)100重量部に対して、0.1~20重量部が好ましい。 The amount of anti-sagging agent used is preferably 0.1 to 20 parts by weight with respect to 100 parts by weight of the polymer (A) having a reactive silicon group.
 <酸化防止剤>
 本開示に係る硬化性組成物には、酸化防止剤(老化防止剤)を使用することができる。酸化防止剤を使用すると硬化物の耐候性を高めることができる。酸化防止剤としてはヒンダードフェノール系、モノフェノール系、ビスフェノール系、ポリフェノール系が例示できる。
<Antioxidant>
An antioxidant (antiaging agent) can be used in the curable composition according to the present disclosure. The use of an antioxidant can enhance the weather resistance of the cured product. Examples of antioxidants include hindered phenols, monophenols, bisphenols, and polyphenols.
 例えば、BHT,イルガノックス245,イルガノックス1010,イルガノックス1035,イルガノックス1076,イルガノックス1135,イルガノックス1330,イルガノックス1520,SONGNOX1076が挙げられる。同様に、チヌビン622LD,チヌビン144,チヌビン292;CHIMASSORB944LD,CHIMASSORB119FL(以上いずれもBASF製);アデカスタブLA-57,アデカスタブLA-62,アデカスタブLA-67,アデカスタブLA-63,アデカスタブLA-68(以上いずれも株式会社ADEKA製);サノールLS-2626,サノールLS-1114,サノールLS-744(以上いずれも三共ライフテック株式会社製);ノクラックCD(大内新興化学工業株式会社製)に示されたヒンダードアミン系光安定剤を使用することもできる。他にSONGNOX4120,ナウガード445,OKABEST CLX050などの酸化防止剤も使用できる。 Examples include BHT, Irganox 245, Irganox 1010, Irganox 1035, Irganox 1076, Irganox 1135, Irganox 1330, Irganox 1520, and SONGNOX 1076. Similarly, Tinuvin 622LD, Tinuvin 144, Tinuvin 292; CHIMASSORB944LD, CHIMASSORB119FL (all of which are manufactured by BASF); Sanol LS-2626, Sanol LS-1114, Sanol LS-744 (all of these are manufactured by Sankyo Lifetech Co., Ltd.); Hindered amines shown in Nocrack CD (manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.) System light stabilizers can also be used. In addition, antioxidants such as SONGNOX4120, NOUGARD 445, and OKABEST CLX050 can also be used.
 酸化防止剤の具体例は特開平4-283259号公報や特開平9-194731号公報にも記載されている。 Specific examples of antioxidants are also described in JP-A-4-283259 and JP-A-9-194731.
 酸化防止剤の使用量は、反応性ケイ素基を有する重合体(A)100重量部に対して、0.1~10重量部が好ましく、特に0.2~5重量部が好ましい。 The amount of antioxidant used is preferably 0.1 to 10 parts by weight, particularly preferably 0.2 to 5 parts by weight, per 100 parts by weight of the polymer (A) having a reactive silicon group.
 <光安定剤>
 本開示に係る硬化性組成物には、光安定剤を使用することができる。光安定剤を使用すると硬化物の光酸化劣化を防止できる。光安定剤としてベンゾトリアゾール系、ヒンダードアミン系、ベンゾエート系化合物等が例示できるが、特にヒンダードアミン系が好ましい。
<Light stabilizer>
A light stabilizer can be used in the curable compositions according to the present disclosure. The use of a light stabilizer can prevent photo-oxidative deterioration of the cured product. Benzotriazole-based, hindered amine-based, and benzoate-based compounds can be exemplified as light stabilizers, and hindered amine-based compounds are particularly preferred.
 ヒンダードアミン系光安定剤としてはチヌビン123,チヌビン144,チヌビン249,チヌビン292,チヌビン312,チヌビン622LD,チヌビン765,チヌビン770,チヌビン880,チヌビン5866,チヌビンB97;CHIMASSORB119FL,CHIMASSORB944LD(以上いずれもBASF製);アデカスタブLA-57,LA-62,LA-63,LA-67,LA-68(以上いずれも株式会社ADEKA製);サノールLS-292,LS-2626,LS-765,LS-744,LS-1114(以上いずれも三共ライフテック株式会社製);SABOSTAB UV91,SABOSTAB UV119,SONGSORB CS5100,SONGSORB CS622,SONGSORB CS944(以上いずれもSONGWON製),ノクラックCD(大内新興化学工業株式会社製)などの光安定剤が例示できる。 Hindered amine light stabilizers include Tinuvin 123, Tinuvin 144, Tinuvin 249, Tinuvin 292, Tinuvin 312, Tinuvin 622LD, Tinuvin 765, Tinuvin 770, Tinuvin 880, Tinuvin 5866, Tinuvin B97; ADEKA STAB LA-57, LA-62, LA-63, LA-67, LA-68 (both of which are manufactured by ADEKA Co., Ltd.); Sanol LS-292, LS-2626, LS-765, LS-744, LS- 1114 (both of which are manufactured by Sankyo Lifetech Co., Ltd.); lights such as SABOSTAB UV91, SABOSTAB UV119, SONGSORB CS5100, SONGSORB CS622, SONGSORB CS944 (both of which are manufactured by SONGWON), and Nocrac CD (manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.) Stabilizers can be exemplified.
 光安定剤の使用量は、反応性ケイ素基を有する重合体(A)100重量部に対して、0.1~10重量部が好ましく、特に0.2~5重量部が好ましい。 The amount of light stabilizer used is preferably 0.1 to 10 parts by weight, particularly preferably 0.2 to 5 parts by weight, per 100 parts by weight of the polymer (A) having a reactive silicon group.
 <紫外線吸収剤>
 本開示に係る硬化性組成物には、紫外線吸収剤を使用することができる。紫外線吸収剤を使用すると硬化物の表面耐候性を高めることができる。紫外線吸収剤としてはベンゾフェノン系、ベンゾトリアゾール系、サリチレート系、トリアジン系、置換アクリロニトリル系及び金属キレート系化合物等が例示できるが、特にベンゾトリアゾール系が好ましい。例えば、チヌビン234,チヌビン326,チヌビン327,チヌビン328,チヌビン329,チヌビン350,チヌビン571,チヌビン900,チヌビン928,チヌビン1130,チヌビン1600(以上いずれもBASF製);SONGSORB3290(SONGWON製)が挙げられる。また、トリアジン系化合物として、チヌビン400,チヌビン405,チヌビン477,チヌビン1577ED(以上いずれもBASF製);SONGSORB CS400,SONGSORB1577(SONGWON製)などが挙げられる。ベンゾフェノン系化合物としてSONGSORB8100(SONGWON製)などが挙げられる。
<Ultraviolet absorber>
A UV absorber can be used in the curable composition according to the present disclosure. The use of an ultraviolet absorber can enhance the surface weather resistance of the cured product. Benzophenone-based, benzotriazole-based, salicylate-based, triazine-based, substituted acrylonitrile-based and metal chelate-based compounds can be exemplified as UV absorbers, and benzotriazole-based compounds are particularly preferred. For example, Tinuvin 234, Tinuvin 326, Tinuvin 327, Tinuvin 328, Tinuvin 329, Tinuvin 350, Tinuvin 571, Tinuvin 900, Tinuvin 928, Tinuvin 1130, Tinuvin 1600 (all of which are manufactured by BASF); . Examples of triazine-based compounds include Tinuvin 400, Tinuvin 405, Tinuvin 477, Tinuvin 1577ED (all of which are manufactured by BASF); SONGSORB CS400 and SONGSORB1577 (manufactured by SONGWON). Examples of benzophenone compounds include SONGSORB8100 (manufactured by SONGWON).
 紫外線吸収剤の使用量は、反応性ケイ素基を有する重合体(A)100重量部に対して、0.1~10重量部が好ましく、特に0.2~5重量部が好ましい。 The amount of the ultraviolet absorber used is preferably 0.1 to 10 parts by weight, particularly preferably 0.2 to 5 parts by weight, per 100 parts by weight of the polymer (A) having a reactive silicon group.
 なお、酸化防止剤、光安定剤、紫外線吸収剤を混合した製品として、AddworksIBC760(Clariant製)も使用できる。 Addworks IBC760 (manufactured by Clariant) can also be used as a product in which antioxidants, light stabilizers, and ultraviolet absorbers are mixed.
 <物性調整剤>
 本開示に係る硬化性組成物には、必要に応じて生成する硬化物の引張特性を調整する物性調整剤を添加しても良い。物性調整剤としては特に限定されないが、例えば、フェノキシトリメチルシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、n-プロピルトリメトキシシラン等のアルキルアルコキシシラン類;ジフェニルジメトキシシラン、フェニルトリメトキシシランなどのアリールアルコキシシラン類;ジメチルジイソプロペノキシシラン、メチルトリイソプロペノキシシラン、γ-グリシドキシプロピルメチルジイソプロペノキシシラン等のアルキルイソプロペノキシシラン;トリス(トリメチルシリル)ボレート、トリス(トリエチルシリル)ボレートなどのトリアルキルシリルボレート類;シリコーンワニス類;ポリシロキサン類等が挙げられる。前記物性調整剤を用いることにより、本開示に係る硬化性組成物を硬化させた時の硬度を上げたり、逆に硬度を下げ、破断伸びを出したりし得る。上記物性調整剤は単独で用いてもよく、2種以上併用してもよい。
<Physical property modifier>
The curable composition according to the present disclosure may optionally contain a physical property modifier for adjusting the tensile properties of the resulting cured product. Although the physical property modifier is not particularly limited, for example, alkylalkoxysilanes such as phenoxytrimethylsilane, methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, and n-propyltrimethoxysilane; diphenyldimethoxysilane, phenyltrimethoxysilane. arylalkoxysilanes such as; alkylisopropenoxysilanes such as dimethyldiisopropenoxysilane, methyltriisopropenoxysilane, γ-glycidoxypropylmethyldiisopropenoxysilane; trialkylsilylborates such as silyl)borate; silicone varnishes; polysiloxanes; By using the physical property modifier, when the curable composition according to the present disclosure is cured, the hardness can be increased, or conversely, the hardness can be decreased and elongation at break can be obtained. The physical property modifiers may be used alone or in combination of two or more.
 特に、加水分解により分子内に1価のシラノール基を有する化合物を生成する化合物は硬化物の表面のべたつきを悪化させずに硬化物のモジュラスを低下させる作用を有する。特にトリメチルシラノールを生成する化合物が好ましい。加水分解により分子内に1価のシラノール基を有する化合物を生成する化合物としては、ヘキサノール、オクタノール、フェノール、トリメチロールプロパン、グリセリン、ペンタエリスリトール、ソルビトールなどのアルコールの誘導体であって加水分解によりシランモノオールを生成するシリコン化合物を挙げることができる。具体的には、フェノキシトリメチルシラン、トリス((トリメチルシロキシ)メチル)プロパン等が挙げられる。 In particular, a compound that produces a compound having a monovalent silanol group in the molecule by hydrolysis has the effect of lowering the modulus of the cured product without worsening the surface stickiness of the cured product. Compounds that generate trimethylsilanol are particularly preferred. Examples of compounds that generate a compound having a monovalent silanol group in the molecule by hydrolysis include alcohol derivatives such as hexanol, octanol, phenol, trimethylolpropane, glycerin, pentaerythritol, and sorbitol, which are hydrolyzed into silane monovalent groups. Mention may be made of silicon compounds that produce ols. Specific examples include phenoxytrimethylsilane and tris((trimethylsiloxy)methyl)propane.
 物性調整剤の使用量は、反応性ケイ素基を有する重合体(A)100重量部に対して、0.1~10重量部が好ましく、特に0.5~5重量部が好ましい。 The amount of the physical property modifier used is preferably 0.1 to 10 parts by weight, particularly preferably 0.5 to 5 parts by weight, per 100 parts by weight of the polymer (A) having a reactive silicon group.
 <粘着付与樹脂>
 本発明には、基材への接着性や密着性を高める目的、あるいはその他必要に応じて粘着付与樹脂を添加できる。粘着付与樹脂としては、特に制限はなく通常使用されているものを使うことが出来る。
<Tackifying resin>
In the present invention, a tackifying resin can be added for the purpose of enhancing the adhesiveness or adhesion to the substrate, or for other purposes. As the tackifying resin, there is no particular limitation, and those commonly used can be used.
 具体例としては、テルペン系樹脂、芳香族変性テルペン樹脂、水素添加テルペン樹脂、テルペン-フェノール樹脂、フェノール樹脂、変性フェノール樹脂、キシレン-フェノール樹脂、シクロペンタジエン-フェノール樹脂、クマロンインデン樹脂、ロジン系樹脂、ロジンエステル樹脂、水添ロジンエステル樹脂、キシレン樹脂、低分子量ポリスチレン系樹脂、スチレン共重合体樹脂、スチレン系ブロック共重合体及びその水素添加物、石油樹脂(例えば、C5炭化水素樹脂、C9炭化水素樹脂、C5C9炭化水素共重合樹脂等)、水添石油樹脂、DCPD樹脂等が挙げられる。これらは単独で用いても良く、2種以上を併用しても良い。 Specific examples include terpene-based resins, aromatic modified terpene resins, hydrogenated terpene resins, terpene-phenolic resins, phenolic resins, modified phenolic resins, xylene-phenolic resins, cyclopentadiene-phenolic resins, coumarone-indene resins, rosin-based Resins, rosin ester resins, hydrogenated rosin ester resins, xylene resins, low molecular weight polystyrene resins, styrene copolymer resins, styrene block copolymers and hydrogenated products thereof, petroleum resins (e.g., C5 hydrocarbon resins, C9 hydrocarbon resins, C5C9 hydrocarbon copolymer resins, etc.), hydrogenated petroleum resins, DCPD resins, and the like. These may be used alone or in combination of two or more.
 粘着付与樹脂の使用量は反応性ケイ素基を有する重合体(A)100重量部に対して2~100重量部が好ましく、5~50重量部であることがより好ましく、5~30部であることがさらに好ましい。2重量部より少ないと基材への接着、密着効果が得られにくく、また100重量部を超えると組成物の粘度が高くなりすぎ取扱いが困難となる場合がある。 The amount of the tackifier resin used is preferably 2 to 100 parts by weight, more preferably 5 to 50 parts by weight, more preferably 5 to 30 parts by weight, based on 100 parts by weight of the polymer (A) having a reactive silicon group. is more preferred. If the amount is less than 2 parts by weight, it is difficult to obtain adhesion and adhesion effects to the substrate, and if the amount exceeds 100 parts by weight, the viscosity of the composition becomes too high and handling may become difficult.
 <エポキシ基を含有する化合物>
 本開示に係る硬化性組成物においてはエポキシ基を含有する化合物を使用できる。エポキシ基を有する化合物を使用すると硬化物の復元性を高めることができる。エポキシ基を有する化合物としてはエポキシ化不飽和油脂類、エポキシ化不飽和脂肪酸エステル類、脂環族エポキシ化合物類、エピクロルヒドリン誘導体に示す化合物及びそれらの混合物等が例示できる。具体的には、エポキシ化大豆油、エポキシ化あまに油、ビス(2-エチルヘキシル)-4,5-エポキシシクロヘキサン-1,2-ジカーボキシレート(E-PS)、エポキシオクチルステアレ-ト、エポキシブチルステアレ-ト等があげられる。エポキシ化合物は反応性ケイ素基を有する重合体(A)100重量部に対して0.5~50重量部の範囲で使用するのがよい。
<Compound containing an epoxy group>
Compounds containing epoxy groups can be used in the curable compositions of the present disclosure. The use of a compound having an epoxy group can enhance the restorability of the cured product. Examples of compounds having an epoxy group include epoxidized unsaturated fats and oils, epoxidized unsaturated fatty acid esters, alicyclic epoxy compounds, epichlorohydrin derivatives, and mixtures thereof. Specifically, epoxidized soybean oil, epoxidized linseed oil, bis(2-ethylhexyl)-4,5-epoxycyclohexane-1,2-dicarboxylate (E-PS), epoxyoctyl stearate , epoxy butyl stearate and the like. The epoxy compound is preferably used in an amount of 0.5 to 50 parts by weight per 100 parts by weight of the polymer (A) having a reactive silicon group.
 <光硬化性物質>
 本開示に係る硬化性組成物には光硬化性物質を使用できる。光硬化性物資を使用すると硬化物表面に光硬化性物質の皮膜が形成され、硬化物のべたつきや硬化物の耐候性を改善できる。この種の化合物には有機単量体、オリゴマー、樹脂或いはそれらを含む組成物等多くのものが知られており、代表的なものとしては、アクリル系又はメタクリル系不飽和基を1ないし数個有するモノマー、オリゴマー或いはそれ等の混合物である不飽和アクリル系化合物、ポリケイ皮酸ビニル類あるいはアジド化樹脂等が使用できる。
<Photocurable substance>
Photocurable materials can be used in the curable compositions of the present disclosure. When a photocurable substance is used, a film of the photocurable substance is formed on the surface of the cured product, and the stickiness of the cured product and the weather resistance of the cured product can be improved. Many compounds such as organic monomers, oligomers, resins, or compositions containing them are known as this type of compound. Unsaturated acrylic compounds, polyvinyl cinnamates, azide resins, etc., which are monomers, oligomers, or mixtures thereof can be used.
 光硬化性物質は反応性ケイ素基を有する重合体(A)100重量部に対して0.1~20重量部、好ましくは0.5~10重量部の範囲で使用するのがよく、0.1重量部以下では耐候性を高める効果はなく、20重量部以上では硬化物が硬くなりすぎて、ヒビ割れを生じる傾向がある。 The photocurable substance is preferably used in an amount of 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight, per 100 parts by weight of the polymer (A) having a reactive silicon group. If it is less than 1 part by weight, there is no effect of improving the weather resistance, and if it is more than 20 parts by weight, the cured product becomes too hard and tends to crack.
 <酸素硬化性物質>
 本開示に係る硬化性組成物には酸素硬化性物質を使用することができる。酸素硬化性物質には空気中の酸素と反応し得る不飽和化合物を例示でき、空気中の酸素と反応して硬化物の表面付近に硬化皮膜を形成し表面のべたつきや硬化物表面へのゴミやホコリの付着を防止するなどの作用をする。酸素硬化性物質の具体例には、キリ油、アマニ油などで代表される乾性油や、該化合物を変性してえられる各種アルキッド樹脂;乾性油により変性されたアクリル系重合体、エポキシ系樹脂、シリコン樹脂;ブタジエン、クロロプレン、イソプレン、1,3-ペンタジエンなどのジエン系化合物を重合または共重合させてえられる1,2-ポリブタジエン、1,4-ポリブタジエン、C5~C8ジエンの重合体などの液状重合体などが挙げられる。これらは単独で用いてもよく、2種以上併用してもよい。
<Oxygen Curable Substance>
Oxygen-curable materials can be used in the curable compositions of the present disclosure. Examples of oxygen-curable substances include unsaturated compounds that can react with oxygen in the air, and react with oxygen in the air to form a hardened film near the surface of the cured product, which causes the surface to become sticky and dust on the surface of the cured product. and prevent the adhesion of dust. Specific examples of oxygen-curable substances include drying oils such as paulownia oil and linseed oil, various alkyd resins obtained by modifying these compounds; acrylic polymers modified with drying oils, and epoxy resins. , silicone resins; 1,2-polybutadiene obtained by polymerizing or copolymerizing diene compounds such as butadiene, chloroprene, isoprene, 1,3-pentadiene, 1,4-polybutadiene, C5-C8 diene polymers, etc. Examples include liquid polymers. These may be used alone or in combination of two or more.
 酸素硬化性物質の使用量は、反応性ケイ素基を有する重合体(A)100重量部に対して0.1~20重量部の範囲で使用するのがよく、さらに好ましくは0.5~10重量部である。前記使用量が0.1重量部未満になると汚染性の改善が充分でなくなり、20重量部をこえると硬化物の引張り特性などが損なわれる傾向が生ずる。特開平3-160053号公報に記載されているように酸素硬化性物質は光硬化性物質と併用して使用するのがよい。 The amount of the oxygen-curable substance used is preferably in the range of 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, per 100 parts by weight of the polymer (A) having a reactive silicon group. weight part. If the amount used is less than 0.1 part by weight, the improvement in staining resistance will not be sufficient, and if it exceeds 20 parts by weight, the tensile properties of the cured product will tend to be impaired. As described in JP-A-3-160053, oxygen-curable substances are preferably used in combination with photo-curable substances.
 <エポキシ樹脂>
 本開示に係る硬化性組成物にはエポキシ樹脂を併用することができる。エポキシ樹脂を添加した組成物は特に接着剤、殊に外壁タイル用接着剤として好ましい。エポキシ樹脂としてはビスフェノールA型エポキシ樹脂類またはノボラック型エポキシ樹脂などが挙げられる。
<Epoxy resin>
An epoxy resin can be used in combination with the curable composition according to the present disclosure. A composition containing an epoxy resin is particularly preferred as an adhesive, especially an adhesive for exterior wall tiles. Examples of epoxy resins include bisphenol A type epoxy resins and novolac type epoxy resins.
 これらのエポキシ樹脂と、反応性ケイ素基を有する重合体(A)の使用割合は、重量比で(A)/エポキシ樹脂=100/1~1/100の範囲である。(A)/エポキシ樹脂の割合が1/100未満になると、エポキシ樹脂硬化物の衝撃強度や強靱性の改良効果が得られがたくなり、(A)/エポキシ樹脂の割合が100/1をこえると、重合体硬化物の強度が不十分となる。 The weight ratio of these epoxy resins to the polymer (A) having a reactive silicon group is in the range of (A)/epoxy resin = 100/1 to 1/100. When the ratio of (A)/epoxy resin is less than 1/100, it becomes difficult to obtain the effect of improving the impact strength and toughness of the cured epoxy resin, and the ratio of (A)/epoxy resin exceeds 100/1. and the strength of the cured polymer becomes insufficient.
 エポキシ樹脂を添加する場合、本開示に係る硬化性組成物には、エポキシ樹脂を硬化させる硬化剤を併用できる。使用し得るエポキシ樹脂硬化剤としては、特に制限はなく、一般に使用されているエポキシ樹脂硬化剤を使用できる。 When an epoxy resin is added, a curing agent that cures the epoxy resin can be used in combination with the curable composition according to the present disclosure. The epoxy resin curing agent that can be used is not particularly limited, and generally used epoxy resin curing agents can be used.
 エポキシ樹脂の硬化剤を使用する場合、その使用量はエポキシ樹脂100重量部に対し、0.1~300重量部の範囲である。 When using an epoxy resin curing agent, the amount used is in the range of 0.1 to 300 parts by weight with respect to 100 parts by weight of the epoxy resin.
 <<硬化性組成物の調製>>
 本開示に係る硬化性組成物は、すべての配合成分を予め配合密封保存し、施工後空気中の湿気により硬化する1成分型として調製することも可能であり、硬化剤として別途硬化触媒、充填材、可塑剤、水等の成分を配合しておき、該配合材と有機重合体組成物を使用前に混合する2成分型として調製することもできる。作業性の点からは、1成分型が好ましい。
<<Preparation of curable composition>>
The curable composition according to the present disclosure can also be prepared as a one-component type in which all the ingredients are preformed and sealed and cured by moisture in the air after application, and a curing catalyst and filling are separately used as curing agents. It can also be prepared as a two-component type in which components such as the material, plasticizer, and water are blended and the blending materials and the organic polymer composition are mixed before use. From the viewpoint of workability, the one-component type is preferred.
 前記硬化性組成物が1成分型の場合、すべての配合成分が予め配合されるため、水分を含有する配合成分は予め脱水乾燥してから使用するか、また配合混練中に減圧などにより脱水するのが好ましい。また、脱水乾燥法に加えてn-プロピルトリメトキシシラン、ビニルトリメトキシシラン、フェニルトリメトキシシラン、ビニルメチルジメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリメトキシシランなどのアルコキシシラン化合物を添加することにより、さらに貯蔵安定性は向上する。 When the curable composition is a one-component type, since all the ingredients are pre-blended, the ingredients containing water are preliminarily dehydrated and dried before use, or dehydrated by decompression or the like during blending and kneading. is preferred. In addition to the dehydration drying method, n-propyltrimethoxysilane, vinyltrimethoxysilane, phenyltrimethoxysilane, vinylmethyldimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, γ-mercaptopropylmethyldiethoxysilane, γ-glycol Addition of an alkoxysilane compound such as sidoxypropyltrimethoxysilane further improves storage stability.
 脱水剤、特にビニルトリメトキシシランなどの水と反応し得るケイ素化合物の使用量は反応性ケイ素基を有する重合体(A)100重量部に対して、0.1~20重量部であり、好ましくは0.5~10重量部である。 The amount of the dehydrating agent, particularly the silicon compound capable of reacting with water such as vinyltrimethoxysilane, is preferably 0.1 to 20 parts by weight per 100 parts by weight of the polymer (A) having a reactive silicon group. is 0.5 to 10 parts by weight.
 <<用途>>
 本開示に係る硬化性組成物は、粘着剤、建造物・船舶・自動車・道路などのシーリング材、接着剤、防水材、塗膜防水材、型取剤、防振材、制振材、防音材、発泡材料、塗料、吹付材などに使用できる。本開示に係る硬化性組成物を硬化して得られる硬化物は、柔軟性および接着性に優れることから、これらのなかでも、シーリング材または接着剤として用いることがより好ましい。
<<Usage>>
The curable composition according to the present disclosure includes adhesives, sealing materials for buildings, ships, automobiles, roads, etc., adhesives, waterproofing materials, coating film waterproofing materials, molding agents, vibration-proof materials, vibration-damping materials, and soundproofing materials. It can be used for materials, foam materials, paints, spray materials, etc. A cured product obtained by curing the curable composition according to the present disclosure is excellent in flexibility and adhesiveness, and therefore, among these, it is more preferably used as a sealant or an adhesive.
 また、太陽電池裏面封止材などの電気・電子部品材料、電線・ケーブル用絶縁被覆材などの電気・電子部品、装置の電気絶縁材料、音響学的絶縁材料、弾性接着剤、バインダー、コンタクト型接着剤、スプレー型シール材、クラック補修材、タイル張り用接着剤、アスファルト防水材用接着剤、粉体塗料、注型材料、医療用ゴム材料、医療用粘着剤、医療用粘着シート、医療機器シール材、歯科印象材料、食品包装材、サイジングボードなどの外装材の目地用シーリング材、コーティング材、防滑被覆材、緩衝材、プライマー、電磁波遮蔽用導電性材料、熱伝導性材料、ホットメルト材料、電気電子用ポッティング剤、フィルム、ガスケット、コンクリート補強材、仮止め用接着剤、各種成形材料、および、網入りガラスや合わせガラス端面(切断部)の防錆・防水用封止材、自動車部品、トラック、バスなど大型車両部品、列車車両用部品、航空機部品、船舶用部品、電機部品、各種機械部品などにおいて使用される液状シール剤などの様々な用途に利用可能である。自動車を例にすると、プラスチックカバー、トリム、フランジ、バンパー、ウインドウ取付、内装部材、外装部品などの接着取付など多種多様に使用可能である。更に、単独あるいはプライマーの助けをかりてガラス、磁器、木材、金属、樹脂成形物などの如き広範囲の基質に密着しうるので、種々のタイプの密封組成物および接着組成物としても使用可能である。また、本開示に係る硬化性組成物は、内装パネル用接着剤、外装パネル用接着剤、タイル張り用接着剤、石材張り用接着剤、天井仕上げ用接着剤、床仕上げ用接着剤、壁仕上げ用接着剤、車両パネル用接着剤、電気・電子・精密機器組立用接着剤、皮革、繊維製品、布地、紙、板およびゴムを結合するための接着剤、反応性後架橋感圧性接着剤、ダイレクトグレージング用シーリング材、複層ガラス用シーリング材、SSG工法用シーリング材、または、建築物のワーキングジョイント用シーリング材、土木用、橋梁用材料としても使用可能である。さらに、粘着テープや粘着シートなどの粘着材料としても使用可能である。 In addition, electrical and electronic component materials such as solar cell back sealing materials, electrical and electronic component materials such as insulating coating materials for electric wires and cables, electrical insulating materials for equipment, acoustic insulating materials, elastic adhesives, binders, contact type Adhesives, spray-type sealing materials, crack repair materials, tiling adhesives, asphalt waterproofing adhesives, powder coatings, casting materials, medical rubber materials, medical adhesives, medical adhesive sheets, medical equipment Sealing materials, dental impression materials, food packaging materials, joint sealing materials for exterior materials such as sizing boards, coating materials, anti-slip coating materials, cushioning materials, primers, conductive materials for shielding electromagnetic waves, thermal conductive materials, hot-melt materials , electric and electronic potting agents, films, gaskets, concrete reinforcing materials, adhesives for temporary fixing, various molding materials, rust-proof and waterproof sealing materials for wire glass and laminated glass edges (cut parts), automobile parts , trucks, buses and other large vehicle parts, train vehicle parts, aircraft parts, ship parts, electrical parts, various machine parts, etc. Taking automobiles as an example, it can be used in a wide variety of ways, such as adhesive attachment of plastic covers, trims, flanges, bumpers, windows, interior members, and exterior parts. Furthermore, since it can adhere to a wide range of substrates such as glass, porcelain, wood, metal, resin moldings, etc. alone or with the help of a primer, it can be used as various types of sealing compositions and adhesive compositions. . The curable compositions of the present disclosure are also used in interior panel adhesives, exterior panel adhesives, tiling adhesives, masonry adhesives, ceiling finish adhesives, floor finish adhesives, wall finish adhesives, adhesives for automobiles, adhesives for vehicle panels, adhesives for assembling electrical, electronic and precision equipment, adhesives for bonding leather, textiles, fabrics, paper, boards and rubber, reactive post-crosslinking pressure-sensitive adhesives, It can also be used as a sealing material for direct glazing, a sealing material for double glazing, a sealing material for SSG construction method, a sealing material for working joints of buildings, a material for civil engineering, and a bridge material. Furthermore, it can be used as an adhesive material such as an adhesive tape and an adhesive sheet.
 以下の各項目では、本開示における好ましい態様を列挙するが、本発明は以下の項目に限定されるものではない。
[項目1]
 一般式(1)の反応性ケイ素基を有し、末端構造が、前記反応性ケイ素基と、末端オレフィン基及び/又は内部オレフィン基とを有し、前記末端構造中の前記反応性ケイ素基、前記末端オレフィン基及び前記内部オレフィン基の合計数が、前記末端構造1個あたり平均して1.0より多い、反応性ケイ素基含有ポリオキシアルキレン系重合体(A)を含有し、
-Si(R3-a   (1)
(Rはそれぞれ独立に炭素数1~20の炭化水素基を表し、前記炭化水素基はヘテロ含有基を有していても良い。Xはそれぞれ独立に水酸基または加水分解性基である。aは1,2,または3である。)
 さらに、一般式(2)で表されるチタン化合物(B)、及び
(R-O)Ti-A4-n   (2)
(Rは炭素数1~10の置換又は非置換の炭化水素基である。nは1~4の整数である。Aはβジケトン基である。)
 アンモニウムヒドロキシド(C)を含有するか、又は、前記チタン化合物(B)と前記アンモニウムヒドロキシド(C)との反応生成物を含有する、硬化性組成物。
[項目2]
 反応性ケイ素基含有ポリオキシアルキレン系重合体(A)が一般式(3)で表される構造を有する、項目1に記載の硬化性組成物。
Figure JPOXMLDOC01-appb-C000005
 
(式中、R、X、aは上記と同じである。R,Rは、それぞれ独立に、ヘテロ原子を含んでも良い2価の炭素数1~6の結合基である。R、Rは、それぞれ独立に、水素、または炭素数1~10の炭化水素基である。nは1~10の整数である。)
[項目3]
 前記反応性ケイ素基がトリメトキシシリル基である、項目1又は2に記載の硬化性組成物。
[項目4]
 反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体(D)をさらに含有する、項目1~3のいずれか一項に記載の硬化性組成物。
[項目5]
 項目1~4のいずれか一項に記載の硬化性組成物が硬化してなる硬化物。
The following items list preferred embodiments in the present disclosure, but the present invention is not limited to the following items.
[Item 1]
having a reactive silicon group of general formula (1), a terminal structure having the reactive silicon group and a terminal olefin group and/or an internal olefin group, the reactive silicon group in the terminal structure; containing a reactive silicon group-containing polyoxyalkylene polymer (A) in which the total number of the terminal olefin groups and the internal olefin groups is more than 1.0 on average per terminal structure;
—Si(R 1 ) 3-a X a (1)
(R 1 each independently represents a hydrocarbon group having 1 to 20 carbon atoms, and the hydrocarbon group may have a hetero-containing group. Each X is independently a hydroxyl group or a hydrolyzable group. a is 1, 2, or 3.)
Furthermore, a titanium compound (B) represented by general formula (2), and (R 2 —O) n Ti—A 4-n (2)
(R 2 is a substituted or unsubstituted hydrocarbon group having 1 to 10 carbon atoms; n is an integer of 1 to 4; A is a β-diketone group.)
A curable composition containing an ammonium hydroxide (C) or containing a reaction product of said titanium compound (B) and said ammonium hydroxide (C).
[Item 2]
The curable composition according to item 1, wherein the reactive silicon group-containing polyoxyalkylene polymer (A) has a structure represented by general formula (3).
Figure JPOXMLDOC01-appb-C000005

(wherein R 1 , X and a are the same as above; R 3 and R 5 are each independently a divalent C 1-6 bonding group which may contain a heteroatom; R 4 , R 6 are each independently hydrogen or a hydrocarbon group having 1 to 10 carbon atoms, and n is an integer of 1 to 10.)
[Item 3]
A curable composition according to item 1 or 2, wherein the reactive silicon group is a trimethoxysilyl group.
[Item 4]
4. The curable composition according to any one of items 1 to 3, further comprising a (meth)acrylate polymer (D) having a reactive silicon group.
[Item 5]
A cured product obtained by curing the curable composition according to any one of items 1 to 4.
 以下に、本発明の方法の実施例をあげて具体的に説明するが、本実施例は本発明を限定するものではない。 Examples of the method of the present invention will be described below, but the present examples are not intended to limit the present invention.
 実施例中の数平均分子量は以下の条件で測定したGPC分子量である。
  送液システム:東ソー製HLC-8220GPC
  カラム:東ソー製TSKgel SuperHシリーズ
  溶媒:THF
  分子量:ポリスチレン換算
  測定温度:40℃
The number average molecular weight in the examples is the GPC molecular weight measured under the following conditions.
Liquid delivery system: Tosoh HLC-8220GPC
Column: TSKgel SuperH series manufactured by Tosoh Solvent: THF
Molecular weight: Polystyrene equivalent Measurement temperature: 40°C
 実施例に示す重合体の末端構造1個あたりの反応性ケイ素基の数の平均、1分子あたりの反応性ケイ素基の数の平均、並びに、末端構造1個あたりの反応性ケイ素基、末端オレフィン基及び内部オレフィン基の合計数の平均は、重合体の構造とNMR測定結果により算出した。 Average number of reactive silicon groups per terminal structure of the polymer shown in Examples, average number of reactive silicon groups per molecule, reactive silicon group per terminal structure, terminal olefin The average total number of groups and internal olefinic groups was calculated from the structure of the polymer and the results of NMR measurements.
 (合成例1)
 数平均分子量が約3,000のポリオキシプロピレングリコールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、両末端に水酸基を有する数平均分子量27,900、分子量分布Mw/Mn=1.21のポリオキシプロピレン(P-1)を得た。
(Synthesis example 1)
Polyoxypropylene glycol having a number average molecular weight of about 3,000 is used as an initiator, and propylene oxide is polymerized with a zinc hexacyanocobaltate glyme complex catalyst to obtain a polymer having a hydroxyl group at both ends, a number average molecular weight of 27,900, and a molecular weight distribution Mw. /Mn = 1.21 polyoxypropylene (P-1) was obtained.
 得られた重合体(P-1)の水酸基に対して1.0モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、重合体(P-1)の水酸基に対して、1.0モル当量のアリルグリシジルエーテルを添加して130℃で2時間反応を行った。その後、0.3モル当量のナトリウムメトキシドのメタノール溶液を添加してメタノールを除去し、さらに1.8モル当量の塩化アリルを添加して末端の水酸基をアリル基に変換した。得られた未精製のポリオキシプロピレンをn-ヘキサンと、水を混合攪拌した後、遠心分離により水を除去し、得られたヘキサン溶液からヘキサンを減圧脱揮することでポリマー中の金属塩を除去した。以上により、末端に複数の炭素-炭素不飽和結合を有するポリオキシプロピレン(Q-1)を得た。 1.0 molar equivalent of sodium methoxide was added as a 28% methanol solution to the hydroxyl groups of the obtained polymer (P-1). After methanol was distilled off by vacuum devolatilization, 1.0 molar equivalent of allyl glycidyl ether was added to the hydroxyl groups of polymer (P-1), and reaction was carried out at 130° C. for 2 hours. Thereafter, 0.3 molar equivalent of sodium methoxide in methanol was added to remove methanol, and 1.8 molar equivalent of allyl chloride was added to convert the terminal hydroxyl group to an allyl group. The unpurified polyoxypropylene thus obtained was mixed with n-hexane and water, and then the water was removed by centrifugation. Removed. As a result, polyoxypropylene (Q-1) having a plurality of carbon-carbon unsaturated bonds at the ends was obtained.
 得られた重合体(Q-1)500gに対し白金ジビニルジシロキサン錯体溶液(白金換算で3重量%のイソプロパノール溶液)50μLを加え、撹拌しながらトリメトキシシラン9.6gをゆっくりと滴下した。その混合溶液を90℃で2時間反応させた後、未反応のトリメトキシシランを減圧下留去する事により、末端に複数のトリメトキシシリル基を有する数平均分子量が28,000のポリオキシプロピレン(A-1)を得た。重合体(A-1)は、末端構造に有する反応性ケイ素基、末端オレフィン基及び内部オレフィン基の合計数が1つの末端構造あたり平均して2.0個であり、トリメトキシシリル基を1つの末端構造に平均1.7個、一分子中に平均3.4個有することが分かった。 To 500 g of the obtained polymer (Q-1), 50 μL of a platinum divinyldisiloxane complex solution (isopropanol solution of 3% by weight in terms of platinum) was added, and 9.6 g of trimethoxysilane was slowly added dropwise while stirring. After reacting the mixed solution at 90° C. for 2 hours, unreacted trimethoxysilane is distilled off under reduced pressure to obtain polyoxypropylene having a number average molecular weight of 28,000 and having a plurality of terminal trimethoxysilyl groups. (A-1) was obtained. Polymer (A-1) has an average total number of reactive silicon groups, terminal olefin groups and internal olefin groups per terminal structure of 2.0 per terminal structure, and 1 trimethoxysilyl group. It was found that each terminal structure has an average of 1.7 and one molecule has an average of 3.4.
 (合成例2)
 合成例1で得られた水酸基末端ポリオキシプロピレン(P-1)の水酸基に対して1.0モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、水酸基末端ポリオキシプロピレンの水酸基に対して、1.79モル当量の塩化アリルを添加して末端の水酸基をアリル基に変換した。得られた未精製のポリオキシプロピレンをn-ヘキサンと、水を混合攪拌した後、遠心分離により水を除去し、得られたヘキサン溶液からヘキサンを減圧脱揮することでポリマー中の金属塩を除去した。以上により、末端にアリル基を有するポリオキシプロピレン(Q-2)を得た。この重合体(Q-2)500gに対し白金ジビニルジシロキサン錯体溶液(白金換算で3重量%のイソプロパノール溶液)50μlを加え、撹拌しながらトリメトキシシラン7.5gをゆっくりと滴下した。その混合溶液を90℃で2時間反応させた後、未反応のトリメトキシシランを減圧下留去する事により、トリメトキシシリル基を有する数平均分子量28,500のポリオキシプロピレン(A’-1)を得た。重合体(A’-1)は、末端構造に有する反応性ケイ素基、末端オレフィン基及び内部オレフィン基の合計数が1つの末端構造あたり平均して1.0個であり、トリメトキシシリル基を1つの末端構造に平均0.8個、一分子中に平均1.6個有することが分かった。
(Synthesis example 2)
A 28% methanol solution of sodium methoxide was added in an amount of 1.0 molar equivalent to the hydroxyl group of the hydroxyl-terminated polyoxypropylene (P-1) obtained in Synthesis Example 1. After methanol was distilled off by vacuum devolatilization, 1.79 molar equivalents of allyl chloride was added to the hydroxyl groups of the hydroxyl-terminated polyoxypropylene to convert the terminal hydroxyl groups to allyl groups. The unpurified polyoxypropylene thus obtained was mixed with n-hexane and water, and then the water was removed by centrifugation. Removed. As a result, polyoxypropylene (Q-2) having an allyl group at its end was obtained. To 500 g of this polymer (Q-2) was added 50 μl of a platinum divinyldisiloxane complex solution (isopropanol solution of 3% by weight in terms of platinum), and 7.5 g of trimethoxysilane was slowly added dropwise while stirring. After the mixed solution was reacted at 90° C. for 2 hours, unreacted trimethoxysilane was distilled off under reduced pressure to give a polyoxypropylene (A′-1 ). The polymer (A'-1) has an average total number of reactive silicon groups, terminal olefin groups and internal olefin groups per terminal structure of 1.0 per terminal structure, and has a trimethoxysilyl group. It was found that one terminal structure has an average of 0.8 and one molecule has an average of 1.6.
 (合成例3)触媒(B-1)
 窒素導入管を取り付けた500mL4つ口丸底フラスコに、テトライソプロポキシチタン(東京化成工業(株)製)85.2g(0.3mol)を仕込み、攪拌しながら、37%テトラブチルアンモニウムヒドロキシド(以下、「TBAH」)メタノール溶液(東京化成工業(株)製)70g(0.1mol)を内温60℃で30分かけて滴下し、そのまま1時間攪拌した。その後、減圧濃縮(最終減圧度10mmHg)してイソプロパノールおよびメタノールを留出させて得られた反応生成物:80gを得、さらにイソプロパノールを25g添加し、透明液体として触媒(B-1)を105g得た。
(Synthesis Example 3) Catalyst (B-1)
85.2 g (0.3 mol) of tetraisopropoxytitanium (manufactured by Tokyo Chemical Industry Co., Ltd.) was charged into a 500 mL four-necked round bottom flask equipped with a nitrogen inlet tube, and 37% tetrabutylammonium hydroxide ( 70 g (0.1 mol) of a methanol solution (hereinafter referred to as “TBAH”) (manufactured by Tokyo Chemical Industry Co., Ltd.) was added dropwise at an internal temperature of 60° C. over 30 minutes, followed by stirring for 1 hour. Thereafter, concentration under reduced pressure (final degree of reduced pressure 10 mmHg) was carried out to obtain 80 g of a reaction product obtained by distilling isopropanol and methanol, and 25 g of isopropanol was further added to obtain 105 g of catalyst (B-1) as a transparent liquid. rice field.
 (実施例1)
 合成例1で得られた重合体(A-1)100重量部に対して、DINP((株)ジェイプラス製、フタル酸ジイノ二ル)100重量部、Imerseal 36S(Imerys製:重質炭酸カルシウム)100重量部、白艶華CCR S10(白石カルシウム(株)製:膠質炭酸カルシウム)200重量部、Tinuvin326(BASF製:2-(5-クロロ-2H-ベンゾトリアゾール-2-イル)-4-メチル-6-tert-ブチルフェノール)1重量部、Tinuvin770(BASF製:ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート)1重量部、Irganox 245(BASF製:ヒンダードフェノール系酸化防止剤)1重量部を混合して、均一に分散させた。その後、Dynasylan VTMO(EVONIK社製:ビニルトリメトキシシラン)5重量部、Dynasylan AMMO(EVONIK社製:3-アミノプロピルトリメトキシシラン)3重量部、合成例3で得られた触媒(B-1)3.5重量部を添加し、自転公転ミキサーを用いて均一に混合脱泡した。組成物を型枠に充填し、23℃50%RHで3日間、さらに50℃で4日間養生させて厚さ約3mmのシート状硬化物を作製した。シート状硬化物を3号ダンベル型に打ち抜き、23℃50%RHで引っ張り強度試験を行い100%伸張時のモジュラス(M100)、破断時の強度(TB)、破断時伸び(EB)を測定した。引っ張り強度は(株)島津製オートグラフ(AGS-J)を用い200mm/minの引張り速度で測定を行った。結果を表1に示す。
(Example 1)
For 100 parts by weight of the polymer (A-1) obtained in Synthesis Example 1, 100 parts by weight of DINP (manufactured by J-Plus Co., Ltd., diinonyl phthalate), Imerseal 36S (manufactured by Imerys: ground calcium carbonate ) 100 parts by weight, Hakuenka CCR S10 (manufactured by Shiraishi Calcium Co., Ltd.: colloidal calcium carbonate) 200 parts by weight, Tinuvin 326 (manufactured by BASF: 2-(5-chloro-2H-benzotriazol-2-yl)-4-methyl- 6-tert-butylphenol) 1 part by weight, Tinuvin 770 (manufactured by BASF: bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate) 1 part by weight, Irganox 245 (manufactured by BASF: hindered phenolic antioxidant agent) was mixed and uniformly dispersed. Then, Dynasylan VTMO (manufactured by EVONIK: vinyltrimethoxysilane) 5 parts by weight, Dynasylan AMMO (manufactured by EVONIK: 3-aminopropyltrimethoxysilane) 3 parts by weight, the catalyst (B-1) obtained in Synthesis Example 3 3.5 parts by weight was added and uniformly mixed and defoamed using a rotation/revolution mixer. The composition was filled in a mold and cured at 23° C. and 50% RH for 3 days and further at 50° C. for 4 days to prepare a sheet-like cured product having a thickness of about 3 mm. The sheet-shaped cured product was punched into a No. 3 dumbbell shape, and a tensile strength test was performed at 23°C and 50% RH to measure the modulus at 100% elongation (M100), the strength at break (TB), and the elongation at break (EB). . The tensile strength was measured using an Autograph (AGS-J) manufactured by Shimadzu Corporation at a tensile speed of 200 mm/min. Table 1 shows the results.
 (実施例2)
 触媒(B-1)4.5重量部を添加した以外は実施例1と同様の評価を行なった。結果を表1に示す。
(Example 2)
Evaluation was carried out in the same manner as in Example 1, except that 4.5 parts by weight of catalyst (B-1) was added. Table 1 shows the results.
 (比較例1)
 重合体(A-1)を重合体(A’-1)に変更した以外は実施例1と同様の評価を行なった。結果を表1に示す。
(Comparative example 1)
Evaluation was carried out in the same manner as in Example 1, except that the polymer (A-1) was changed to the polymer (A'-1). Table 1 shows the results.
 (比較例2)
 重合体(A-1)を重合体(A’-1)に変更し、触媒(B-1)4.5重量部を添加した以外は実施例1と同様の評価を行なった。結果を表1に示す。
(Comparative example 2)
Evaluation was carried out in the same manner as in Example 1 except that the polymer (A-1) was changed to the polymer (A'-1) and 4.5 parts by weight of the catalyst (B-1) was added. Table 1 shows the results.
 (比較例3)
 触媒(B-1)をTIB KAT 223(TIBケミカル製:ジオクチルスズジセチルアセトネート)0.3重量部に変更した以外は実施例1と同様の評価を行なった。結果を表1に示す。
(Comparative Example 3)
Evaluation was carried out in the same manner as in Example 1 except that the catalyst (B-1) was changed to 0.3 parts by weight of TIB KAT 223 (dioctyltin dicetylacetonate manufactured by TIB Chemical). Table 1 shows the results.
 (比較例4)
 重合体(A-1)を重合体(A’-1)に変更し、触媒(B-1)をTIB KAT 223 0.3重量部に変更した以外は実施例1と同様の評価を行なった。結果を表1に示す。
(Comparative Example 4)
Evaluation was carried out in the same manner as in Example 1 except that the polymer (A-1) was changed to the polymer (A'-1) and the catalyst (B-1) was changed to 0.3 parts by weight of TIB KAT 223. . Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000006
 
 反応性ケイ素基含有ポリオキシアルキレン系重合体(A)、及び、チタン化合物(B)とアンモニウムヒドロキシド(C)との反応生成物を含む実施例1、2は、どちらかを含まない比較例1~4に対して、ダンベル引張試験の破断強度、破断伸びが向上している。
 
Examples 1 and 2 containing a reactive silicon group-containing polyoxyalkylene polymer (A) and a reaction product of a titanium compound (B) and ammonium hydroxide (C) are comparative examples that do not contain either Compared to 1 to 4, the breaking strength and breaking elongation in the dumbbell tensile test are improved.

Claims (5)

  1.  一般式(1)の反応性ケイ素基を有し、末端構造が、前記反応性ケイ素基と、末端オレフィン基及び/又は内部オレフィン基とを有し、前記末端構造中の前記反応性ケイ素基、前記末端オレフィン基及び前記内部オレフィン基の合計数が、前記末端構造1個あたり平均して1.0より多い、反応性ケイ素基含有ポリオキシアルキレン系重合体(A)を含有し、
    -Si(R3-a   (1)
    (Rはそれぞれ独立に炭素数1~20の炭化水素基を表し、前記炭化水素基はヘテロ含有基を有していても良い。Xはそれぞれ独立に水酸基または加水分解性基である。aは1,2,または3である。)
     さらに、一般式(2)で表されるチタン化合物(B)、及び
    (R-O)Ti-A4-n   (2)
    (Rは炭素数1~10の置換又は非置換の炭化水素基である。nは1~4の整数である。Aはβジケトン基である。)
     アンモニウムヒドロキシド(C)を含有するか、又は、前記チタン化合物(B)と前記アンモニウムヒドロキシド(C)との反応生成物を含有する、硬化性組成物。
    having a reactive silicon group of general formula (1), a terminal structure having the reactive silicon group and a terminal olefin group and/or an internal olefin group, the reactive silicon group in the terminal structure; containing a reactive silicon group-containing polyoxyalkylene polymer (A) in which the total number of the terminal olefin groups and the internal olefin groups is more than 1.0 on average per terminal structure;
    —Si(R 1 ) 3-a X a (1)
    (R 1 each independently represents a hydrocarbon group having 1 to 20 carbon atoms, and the hydrocarbon group may have a hetero-containing group. Each X is independently a hydroxyl group or a hydrolyzable group. a is 1, 2, or 3.)
    Furthermore, a titanium compound (B) represented by general formula (2), and (R 2 —O) n Ti—A 4-n (2)
    (R 2 is a substituted or unsubstituted hydrocarbon group having 1 to 10 carbon atoms; n is an integer of 1 to 4; A is a β-diketone group.)
    A curable composition containing an ammonium hydroxide (C) or containing a reaction product of said titanium compound (B) and said ammonium hydroxide (C).
  2.  反応性ケイ素基含有ポリオキシアルキレン系重合体(A)が一般式(3)で表される構造を有する、請求項1に記載の硬化性組成物。
    Figure JPOXMLDOC01-appb-C000001
     
    (式中、R、X、aは上記と同じである。R,Rは、それぞれ独立に、ヘテロ原子を含んでも良い2価の炭素数1~6の結合基である。R、Rは、それぞれ独立に、水素、または炭素数1~10の炭化水素基である。nは1~10の整数である。)
    2. The curable composition according to claim 1, wherein the reactive silicon group-containing polyoxyalkylene polymer (A) has a structure represented by general formula (3).
    Figure JPOXMLDOC01-appb-C000001

    (wherein R 1 , X and a are the same as above; R 3 and R 5 are each independently a divalent C 1-6 bonding group which may contain a heteroatom; R 4 , R 6 are each independently hydrogen or a hydrocarbon group having 1 to 10 carbon atoms, and n is an integer of 1 to 10.)
  3.  前記反応性ケイ素基がトリメトキシシリル基である、請求項1又は2に記載の硬化性組成物。 The curable composition according to claim 1 or 2, wherein the reactive silicon group is a trimethoxysilyl group.
  4.  反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体(D)をさらに含有する、請求項1~3のいずれか一項に記載の硬化性組成物。 The curable composition according to any one of claims 1 to 3, further comprising a (meth)acrylate polymer (D) having a reactive silicon group.
  5.  請求項1~4のいずれか一項に記載の硬化性組成物が硬化してなる硬化物。
     
    A cured product obtained by curing the curable composition according to any one of claims 1 to 4.
PCT/JP2022/036817 2021-10-01 2022-09-30 Curable composition WO2023054701A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-162740 2021-10-01
JP2021162740 2021-10-01

Publications (1)

Publication Number Publication Date
WO2023054701A1 true WO2023054701A1 (en) 2023-04-06

Family

ID=85780793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036817 WO2023054701A1 (en) 2021-10-01 2022-09-30 Curable composition

Country Status (1)

Country Link
WO (1) WO2023054701A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102391529A (en) * 2011-07-14 2012-03-28 杭州师范大学 Preparation method of silicone resin type organic/inorganic hybrid material for packaging
WO2013180203A1 (en) * 2012-05-31 2013-12-05 株式会社カネカ Polymer having terminal structure including plurality of reactive silicon groups, method for manufacturing same, and use for same
CN103694888A (en) * 2013-12-17 2014-04-02 中昊北方涂料工业研究设计院有限公司 Transparent wear-resistant paint containing silicon and preparation method thereof
WO2015080067A1 (en) * 2013-11-29 2015-06-04 株式会社カネカ Curable composition
WO2016002907A1 (en) * 2014-07-02 2016-01-07 株式会社カネカ Curable composition and cured object obtained therefrom
CN108329473A (en) * 2017-01-20 2018-07-27 中国科学院化学研究所 A kind of composition containing high phenyl polysiloxane and the encapsulating material including the composition or optical thin film
WO2021106943A1 (en) * 2019-11-29 2021-06-03 日東化成株式会社 Curing catalyst used for curing of polymer, production method for said curing catalyst, moisture-curable composition, and production method for cured article
WO2021106942A1 (en) * 2019-11-29 2021-06-03 日東化成株式会社 Curing catalyst used for curing of polymer, moisture curable composition, and method for producing cured product

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102391529A (en) * 2011-07-14 2012-03-28 杭州师范大学 Preparation method of silicone resin type organic/inorganic hybrid material for packaging
WO2013180203A1 (en) * 2012-05-31 2013-12-05 株式会社カネカ Polymer having terminal structure including plurality of reactive silicon groups, method for manufacturing same, and use for same
WO2015080067A1 (en) * 2013-11-29 2015-06-04 株式会社カネカ Curable composition
CN103694888A (en) * 2013-12-17 2014-04-02 中昊北方涂料工业研究设计院有限公司 Transparent wear-resistant paint containing silicon and preparation method thereof
WO2016002907A1 (en) * 2014-07-02 2016-01-07 株式会社カネカ Curable composition and cured object obtained therefrom
CN108329473A (en) * 2017-01-20 2018-07-27 中国科学院化学研究所 A kind of composition containing high phenyl polysiloxane and the encapsulating material including the composition or optical thin film
WO2021106943A1 (en) * 2019-11-29 2021-06-03 日東化成株式会社 Curing catalyst used for curing of polymer, production method for said curing catalyst, moisture-curable composition, and production method for cured article
WO2021106942A1 (en) * 2019-11-29 2021-06-03 日東化成株式会社 Curing catalyst used for curing of polymer, moisture curable composition, and method for producing cured product

Similar Documents

Publication Publication Date Title
JP6622200B2 (en) Curable composition and cured product thereof
JP6527589B2 (en) Curable composition
JP6275036B2 (en) POLYMER HAVING TERMINAL STRUCTURE HAVING MULTIPLE REACTIVE SILICON GROUPS, PROCESS FOR PRODUCING THE SAME AND USE
JP6475615B2 (en) Curable composition and cured product thereof
JP6356123B2 (en) Curable composition
JP6682227B2 (en) Curable composition
JP2014114434A (en) Curable composition
JP6401583B2 (en) Curable composition
JP2012214755A (en) Curing composition
JP2014234396A (en) Room temperature-curable composition and cured product thereof
JP7285247B2 (en) REACTIVE SILICON-CONTAINING POLYMER AND CURABLE COMPOSITION
WO2022203065A1 (en) Curable composition and cured product thereof
JP2024009271A (en) Polyoxyalkylene-based polymer and curable composition
JP2014001358A (en) Curable composition
JP7224131B2 (en) Curable composition
WO2022163563A1 (en) Polyoxyalkylene-based polymer and mixture thereof
WO2022163562A1 (en) Polyoxyalkylene polymer mixture and curable composition
JP7356247B2 (en) Curable composition and cured product
WO2021200342A1 (en) Polyoxyalkylene polymer mixture and curable composition
WO2023054701A1 (en) Curable composition
WO2023054700A1 (en) Curable composition
JP7461338B2 (en) Curable composition and cured product
WO2024071051A1 (en) Curable composition
WO2023162664A1 (en) Curable composition and use of same
JP2021055012A (en) Curable composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876563

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551918

Country of ref document: JP