WO2023054581A1 - Adhesive composition, adhesive, adhesive sheet, adhesive sheet with release film, laminate for image display device, curved image display device, adhesive composition for curved optical member - Google Patents

Adhesive composition, adhesive, adhesive sheet, adhesive sheet with release film, laminate for image display device, curved image display device, adhesive composition for curved optical member Download PDF

Info

Publication number
WO2023054581A1
WO2023054581A1 PCT/JP2022/036429 JP2022036429W WO2023054581A1 WO 2023054581 A1 WO2023054581 A1 WO 2023054581A1 JP 2022036429 W JP2022036429 W JP 2022036429W WO 2023054581 A1 WO2023054581 A1 WO 2023054581A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
sensitive adhesive
acrylate
meth
weight
Prior art date
Application number
PCT/JP2022/036429
Other languages
French (fr)
Japanese (ja)
Inventor
鉄也 浅野
一樹 野原
遼太 島中
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to KR1020247009084A priority Critical patent/KR20240065251A/en
Priority to CN202280059067.5A priority patent/CN117897460A/en
Publication of WO2023054581A1 publication Critical patent/WO2023054581A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]

Definitions

  • the present invention mainly relates to a pressure-sensitive adhesive composition, a pressure-sensitive adhesive, a pressure-sensitive adhesive sheet, a pressure-sensitive adhesive sheet with a release film, a laminate for an image display device, a curved image display device, and a pressure-sensitive adhesive composition for a curved optical member.
  • This application is based on Japanese Patent Application No. 2021-160337 filed with the Japan Patent Office on September 30, 2021, Japanese Patent Application No. 2021-160485 filed with the Japan Patent Office on September 30, 2021 and September 2021.
  • a priority is claimed based on Japanese Patent Application No. 2021-160488 filed with the Japan Patent Office on May 30, and the contents thereof are incorporated herein.
  • touch panels that combine a display and a position input device are widely used in mobile devices such as televisions, personal computer monitors, notebook computers, mobile phones, smart phones, and tablet terminals.
  • the capacitive touch panel is commonly used.
  • a touch panel is usually composed of an organic EL or liquid crystal display, a transparent conductive film substrate (ITO substrate), and a protective film (protective glass).
  • ITO substrate transparent conductive film substrate
  • protective film protective glass
  • the pressure-sensitive adhesive for the transparent pressure-sensitive adhesive sheet is bonded together in a low crosslinked state before being completely cured. Therefore, sufficient adhesive physical properties are required in the process until the low-crosslinking adhesive layer is completely cured. For example, when the transparent adhesive sheet is attached to a member having a complicated shape, it is likely that the transparent adhesive sheet sticks to an area other than the intended location, resulting in an attachment failure. Therefore, there is a demand for a transparent pressure-sensitive adhesive sheet with low tackiness. In addition, in order to fix members having complicated shapes to each other, it is required to suppress peeling of the transparent adhesive sheet from the member under stress. Therefore, there is a demand for a transparent pressure-sensitive adhesive sheet having high constant load holding power even in a low cross-linked state.
  • the adhesive layer after complete curing is required to have excellent performance not only in terms of adhesive physical properties such as normal adhesive strength, but also in terms of reliability when bonding various materials such as polarizing plates and glass.
  • the degree of cross-linking is required to be as low as possible until it is attached to an adherend. It is also required to efficiently increase the degree of cross-linking at the time of complete curing.
  • the adhesive layer can be sufficiently adhered to the adherend by laminating the adhesive layer to the adherend in a low crosslinked state.
  • the pressure-sensitive adhesive sheet when the pressure-sensitive adhesive sheet is completely cured in a state of being laminated to an adherend in a low-crosslinking state, the pressure-sensitive adhesive sheet has a high degree of cross-linking, which is expected to improve durability.
  • the resin in the primary curing, the resin is cured by thermal crosslinking or by irradiation with active energy rays, and in the complete curing, it is cured by crosslinking by irradiation with active energy rays.
  • the pressure-sensitive adhesive sheets described in Patent Documents 1 to 3 can be mentioned.
  • Patent Document 1 discloses that a solvent-based pressure-sensitive adhesive made of an acrylic resin further uses an organic solvent that is easily volatile under general drying conditions, and is blended with a specific proportion of an ethylenically unsaturated monomer that is difficult to evaporate. It is in addition, in Patent Document 2, in order to form a three-dimensional network structure of a solvent-type acrylic acid ester-based pressure-sensitive adhesive without using a cross-linking agent, a hydrogen abstraction type photoinitiator is used, and light irradiation is performed after the coating and drying process. It is disclosed that the aging process is omitted by doing so. Furthermore, Patent Literature 3 discloses that a pressure-sensitive adhesive with high level conformability and blister resistance can be obtained by using an acrylic resin with a high glass transition temperature.
  • Patent Literatures 1 to 3 take into account adhesive physical properties in a low-crosslinking state during primary curing. Therefore, there is room for improvement since adhesive physical properties may be insufficient in a low-crosslinking state during primary curing.
  • adhesive physical properties may be insufficient in a low-crosslinking state during primary curing.
  • defects such as peeling of the pressure-sensitive adhesive sheet occur after the attachment.
  • a first aspect of the present invention is mainly a pressure-sensitive adhesive composition that can be used for multistage curing, in which excellent adhesive physical properties are obtained in a low cross-linked state after primary curing, and excellent adhesive properties are obtained even after complete curing. It is an object of the present invention to provide a pressure-sensitive adhesive composition capable of obtaining good pressure-sensitive adhesive physical properties and reliability; a pressure-sensitive adhesive obtained by cross-linking the pressure-sensitive adhesive composition; and a pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer comprising the pressure-sensitive adhesive.
  • the second aspect of the present invention is mainly a pressure-sensitive adhesive composition that can be used for multistage curing, in which excellent adhesive physical properties are obtained in a low cross-linked state after primary curing, and excellent adhesive properties are obtained even after complete curing. It is an object of the present invention to provide a pressure-sensitive adhesive composition capable of obtaining good pressure-sensitive adhesive physical properties and reliability; a pressure-sensitive adhesive obtained by cross-linking the pressure-sensitive adhesive composition; and a pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer comprising the pressure-sensitive adhesive.
  • a third aspect of the present invention is a pressure-sensitive adhesive composition that can be used mainly for multistage curing, and has excellent adhesion even when it is attached to an adherend having a complicated shape that is subjected to strong stress.
  • An object of the present invention is to provide a pressure-sensitive adhesive composition from which a pressure-sensitive adhesive sheet is obtained; a pressure-sensitive adhesive obtained by cross-linking the pressure-sensitive adhesive composition; and a pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer comprising the pressure-sensitive adhesive.
  • a pressure-sensitive adhesive composition containing an acrylic resin obtained using a copolymer component of a specific composition and a specific photoinitiator It is possible to achieve excellent adhesive physical properties such as low tackiness and high constant load holding power even in a low cross-linked state after primary curing, as well as excellent adhesive physical properties and reliability after complete curing.
  • a first aspect of the present invention contains an acrylic resin (A) and a photoinitiator (B); the acrylic resin (A) is a polymerization product of the following copolymerization component (a) Yes; the glass transition temperature based on the dynamic viscoelasticity of the acrylic resin (A) is ⁇ 10° C. or higher; A pressure-sensitive adhesive composition containing an internal hydrogen abstraction type photoinitiator (b2).
  • the copolymer component (a) includes an alkyl acrylate (a1) having a glass transition temperature of ⁇ 30 to 50° C. when forming a homopolymer, and an alkyl acrylate (a1) having a glass transition temperature when forming a homopolymer. containing at least an alkyl methacrylate (a2) with a temperature of ⁇ 10 to 120° C.
  • a3 a hydroxyl group-containing monomer (a3), wherein the weight ratio of the alkyl acrylate (a1) to the alkyl methacrylate (a2) is 5/95 to 55/45; and the total content of the alkyl acrylate (a1) and the alkyl methacrylate (a2) is 30 to 70% by weight based on the copolymerization component (a).
  • an adhesive composition containing an acrylic resin obtained by using a copolymer component of a specific composition and a specific photoinitiator It is possible to achieve excellent adhesive physical properties such as low tackiness and high constant load holding power even in a low cross-linked state after primary curing, as well as excellent adhesive physical properties and reliability after complete curing.
  • a second aspect of the present invention contains an acrylic resin (A) and a photoinitiator (B);
  • the acrylic resin (A) is a polymerization product of the following copolymerization component (a) Yes;
  • the acrylic resin (A) has a glass transition temperature based on dynamic viscoelasticity of ⁇ 10° C. or higher;
  • the photoinitiator (B) contains an intramolecular hydrogen abstraction type photoinitiator (b1) , is an adhesive composition.
  • the copolymer component (a) is an alkyl (meth)acrylate (a1) having an alkyl group having 12 or less carbon atoms and having a homopolymer glass transition temperature of -20 to 120°C. and; a hydroxyalkyl monomer (a2) containing an alkyl chain, a hydroxyl group and an ethylenically unsaturated group; 30% by weight or more with respect to 100% by weight; the content of the hydroxyalkyl monomer (a2) is 0.1% by weight or more with respect to 100% by weight of the copolymerization component (a);
  • the average carbon number of the alkyl chain of the hydroxyalkyl monomer (a2) in (a) is 2.1 or more.
  • the present inventors conducted intensive studies and found that an adhesive composition containing an acrylic resin obtained using a copolymer component of a specific composition and a specific photoinitiator By using a material, it is possible to obtain a pressure-sensitive adhesive sheet that can adhere to complex-shaped adherends that are subject to stress even at the time of primary curing without peeling off, and the pressure-sensitive adhesive sheet that exhibits excellent durability after complete curing. is obtained.
  • a third aspect of the present invention contains an acrylic resin (A) and a photoinitiator (B);
  • the acrylic resin (A) has a homopolymer glass transition temperature of ⁇ 30° C. or higher. It is a polymerization product of a copolymer component (a) containing a branched alkyl (meth)acrylate (a1); and the acrylic resin (A) has a glass transition temperature based on dynamic viscoelasticity of ⁇ 10° C. or higher.
  • the weight average molecular weight of the acrylic resin (A) is 400,000 or less; and the photoinitiator (B) is an intramolecular hydrogen abstraction photoinitiator (b1) and an intermolecular hydrogen abstraction photoinitiator.
  • a pressure-sensitive adhesive composition that can be used for multistage curing, in which excellent adhesive physical properties are obtained in a low cross-linked state after primary curing, and excellent adhesive properties are obtained even after complete curing.
  • a pressure-sensitive adhesive composition that provides excellent pressure-sensitive adhesive physical properties and reliability; a pressure-sensitive adhesive obtained by cross-linking the pressure-sensitive adhesive composition; and a pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer comprising the pressure-sensitive adhesive.
  • a pressure-sensitive adhesive composition that can be used for multi-stage curing, in which excellent adhesive physical properties are obtained in a low cross-linked state after primary curing, and excellent adhesive properties are obtained even after complete curing.
  • a pressure-sensitive adhesive composition that provides excellent pressure-sensitive adhesive physical properties and reliability; a pressure-sensitive adhesive obtained by cross-linking the pressure-sensitive adhesive composition; and a pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer comprising the pressure-sensitive adhesive.
  • a pressure-sensitive adhesive composition that can be used for multi-stage curing and has excellent adhesion even when it is attached to an adherend having a complex shape that is subjected to strong stress.
  • a pressure-sensitive adhesive composition from which a pressure-sensitive adhesive sheet is obtained a pressure-sensitive adhesive obtained by cross-linking the pressure-sensitive adhesive composition; and a pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer comprising the pressure-sensitive adhesive.
  • (Meth)acryl means acryl or methacryl.
  • (Meth)acryloyl means acryloyl or methacryloyl.
  • (Meth)acrylate means acrylate or methacrylate.
  • Acrylic resin is a resin obtained by polymerizing a monomer component containing at least one (meth)acrylic monomer.
  • Sheet is a term that conceptually includes sheets, films, and tapes.
  • Homopolymer means a homopolymer of a monomer.
  • “-” indicating a numerical range means that the numerical values before and after it are included as lower and upper limits.
  • the pressure-sensitive adhesive composition according to the first aspect contains an acrylic resin (A) and a photoinitiator (B).
  • the pressure-sensitive adhesive composition according to the first aspect comprises an acrylic resin (A), a photoinitiator (B), a cross-linking agent (C), a silane coupling agent (D), a carbodiimide compound (E), Other optional components may be further contained as necessary. Each component will be described in order below.
  • the acrylic resin (A) is a polymerization product of a specific copolymer component (a).
  • Copolymer component (a) is a general term for monomer components having a polymerizable double bond.
  • the copolymerization component (a) does not contain a polymerization initiator and a polymerization solvent.
  • the specific copolymer component (a) according to the first aspect includes an alkyl acrylate (a1) having a glass transition temperature of -30 to 50 ° C. when forming a homopolymer, and a glass transition temperature when forming a homopolymer. It contains at least an alkyl methacrylate (a2) having a temperature of -10 to 120°C and a hydroxyl group-containing monomer (a3).
  • the copolymer component (a) according to the first aspect comprises an alkyl acrylate (a1) having a glass transition temperature of ⁇ 27 to 50° C. and an alkyl methacrylate having a glass transition temperature of 0 to 120° C. when forming a homopolymer. (a2) and an ethylenically unsaturated monomer (a4) other than the hydroxyl group-containing monomer (a3) may be further contained as necessary.
  • the glass transition temperature (hereinafter referred to as “Tg”) of the homopolymer of the alkyl acrylate (a1) according to the first aspect is ⁇ 30 to 50° C., preferably ⁇ 27 to 45° C., more preferably ⁇ 10 to 43°C, more preferably -5 to 10°C.
  • Tg glass transition temperature
  • a homopolymer of alkyl acrylate (a1) is a homopolymer of alkyl acrylate (a1).
  • Tg of the homopolymer of alkyl acrylate (a1) a standard analytical value described in Wiley publication "POLYMER HANDBOOK” or the like can be used.
  • alkyl acrylate (a1) examples include methyl acrylate (Tg: 8°C), ethyl acrylate (Tg: -22°C), isobutyl acrylate (Tg: -26°C), tert-butyl acrylate ( Tg: 41°C), cyclohexyl acrylate (Tg: 15°C), and the like.
  • methyl acrylate is preferable from the viewpoint of adhesive physical properties.
  • Alkyl acrylate (a1) may be used alone or in combination of two or more.
  • the Tg of the homopolymer of alkyl methacrylate (a2) according to the first aspect is -10 to 120°C, preferably 0 to 110°C, more preferably 20 to 105°C, still more preferably 40 to 70°C. . When the Tg is within the range, the effects of the first aspect of the present invention are obtained.
  • the homopolymer of alkyl methacrylate (a2) according to the first aspect is a homopolymer of alkyl methacrylate (a2).
  • a standard analytical value described in "POLYMER HANDBOOK" published by Wiley, etc. can be adopted.
  • alkyl methacrylate (a2) examples include methyl methacrylate (Tg: 105°C), ethyl methacrylate (Tg: 65°C), n-butyl methacrylate (Tg: 20°C), isobutyl methacrylate (Tg: 48° C.), cyclohexyl methacrylate (Tg: 66° C.), tert-butyl methacrylate (Tg: 107° C.), and the like.
  • One alkyl methacrylate (a2) may be used alone, or two or more thereof may be used in combination. Among them, methyl methacrylate, ethyl methacrylate and isobutyl methacrylate are preferred.
  • the hydroxyl group-containing monomer (a3) contains one or more hydroxyl groups and an ethylenically unsaturated group.
  • the hydroxyl group-containing monomer (a3) include 2-hydroxyethyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 5-hydroxypentyl (meth)acrylate, 6-hydroxyhexyl (meth)acrylate, 8-hydroxy hydroxyl group-containing alkyl (meth)acrylate such as octyl (meth)acrylate; caprolactone-modified monomers such as caprolactone-modified 2-hydroxyethyl (meth)acrylate; oxyalkylene-modified monomers such as polyethylene glycol mono(meth)acrylate and polybutylene glycol mono(meth)acrylate; 2-acryloyloxyethyl-2-hydroxyethyl phthalic acid, N-methylol (meth)acryl
  • primary hydroxyl group-containing alkyl (meth) acrylate is preferable in that it can be cured efficiently at the time of complete curing, and 2-hydroxyethyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate can be used together It is particularly preferred to use butyl (meth)acrylate alone.
  • the copolymerization component (a) may optionally further contain a copolymerizable ethylenically unsaturated monomer (a4) other than the monomers (a1) to (a3). .
  • copolymerizable ethylenically unsaturated monomers (a4) include, for example, alkyl (meth)acrylates such as n-butyl acrylate and 2-ethylhexyl (meth)acrylate (provided that alkyl acrylate (a1) and alkyl methacrylate (except for a2)); Phenyl (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, phenyldiethylene glycol (meth) acrylate, phenoxy polyethylene glycol (meth) acrylate, phenoxy polyethylene glycol-polypropylene glycol-(meth) acrylate, orthophenylphenoxyethyl Aromatic ring-containing monomers such as (meth)acrylates and nonylphenol ethylene oxide adduct (meth)acrylates; Alicyclic-containing monomers such as cyclohexyloxyalkyl (meth)
  • the amide group-containing monomer of; benzophenone-containing monomers such as 4-(meth)acryloyloxybenzophenone; Acrylonitrile, methacrylonitrile, styrene, ⁇ -methylstyrene, vinyl acetate, vinyl propionate, vinyl stearate, vinyl chloride, vinylidene chloride, alkyl vinyl ether, vinyl toluene, vinylpyridine, vinylpyrrolidone, dialkyl itaconate, dialkyl fumarate Ester, allyl alcohol, acryl chloride, methyl vinyl ketone, N-acrylamidomethyltrimethylammonium chloride, allyltrimethylammonium chloride, dimethyl allyl vinyl ketone and the like.
  • the ethylenically unsaturated monomers (a4) may be used alone or in combination of two or more.
  • ethylenically unsaturated monomers having two or more ethylenically unsaturated groups include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, propylene Glycol di(meth)acrylate, divinylbenzene and the like can also be used in combination.
  • the content of the alkyl acrylate (a1) is 5% by weight or more, preferably 5 to 45% by weight, more preferably 10 to 40% by weight, relative to the copolymer component (a). , particularly preferably 12 to 35% by weight, particularly preferably 15 to 30% by weight. If the content is too small, the adhesive properties in the primary cured state tend to deteriorate. If the content is too large, adhesive physical properties after complete curing tend to deteriorate.
  • the content of the alkyl methacrylate (a2) is 5% by weight or more, preferably 10 to 60% by weight, more preferably 15 to 55% by weight, particularly It is preferably 20 to 45% by weight. If the content is too small, the adhesive properties in the primary cured state tend to deteriorate. If the content is too large, the adhesive physical properties after complete curing tend to deteriorate.
  • the content ratio (a1/a2) of the alkyl acrylate (a1) and the alkyl methacrylate (a2) is 5/95 to 55/45 by weight, preferably 15. /85 to 50/50, particularly preferably 20/80 to 40/60.
  • the total content of alkyl acrylate (a1) and alkyl methacrylate (a2) is preferably 30 to 70% by weight, more preferably 35 to 65% by weight, relative to copolymerization component (a). %, particularly preferably 40 to 60% by weight. If the total content of the alkyl acrylate (a1) and the alkyl methacrylate (a2) is within the above numerical range, it is preferable because adhesive physical properties in a low crosslinked state in the primary cured state will be good.
  • the content of the hydroxyl group-containing monomer (a3) is more preferably 5-30% by weight, even more preferably 10-25% by weight, and particularly preferably 15-20% by weight. If the content of the hydroxyl group-containing monomer (a3) is too small, the moist heat resistance after complete curing tends to decrease. If the content of the hydroxyl group-containing monomer (a3) is too high, the adhesive physical properties after complete curing tend to deteriorate.
  • the total content of the alkyl acrylate (a1) and the alkyl methacrylate (a2) and the content ratio (a1+a2)/(a3) of the hydroxyl group-containing monomer (a3) is the weight ratio 95/5 to 50/50 is preferred, 85/15 to 70/30 is more preferred, and 80/20 to 75/25 is particularly preferred.
  • the content ratio (a1+a2)/(a3) is within the above numerical range, the adhesive physical properties in the primary cured state are excellent.
  • the content of the ethylenically unsaturated monomer (a4) is relative to 100% by weight of the copolymerization component (a) is usually 50% by weight or less, preferably 45% by weight or less, more preferably 40% by weight or less. If the content of the ethylenically unsaturated monomer (a4) is too high, the adhesion property tends to be lowered when low crosslinking is achieved.
  • the acrylic resin (A) comprises a structural unit based on the alkyl acrylate (a1), a structural unit based on the alkyl methacrylate (a2), and a structural unit based on the hydroxyl group-containing monomer (a3). It can also be said that it is a polymer.
  • the acrylic resin (A) includes structural units based on the alkyl acrylate (a1), structural units based on the alkyl methacrylate (a2), structural units based on the hydroxyl group-containing monomer (a3), and ethylenic It may further have a structural unit based on the unsaturated monomer (a4), if necessary.
  • the ratio of structural units based on each monomer can be determined according to the composition of the copolymer component (a), and the preferred embodiment is also the same.
  • the glass transition temperature based on the dynamic viscoelasticity of the acrylic resin (A) according to the first aspect is ⁇ 10° C. or higher, preferably ⁇ 5 to 20° C., more preferably 0 to 15° C., particularly preferably 2 ⁇ 13°C. If the glass transition temperature based on the dynamic viscoelasticity of the acrylic resin (A) is too high, there is a tendency for the pressure-sensitive adhesive layer to be less conformable to irregularities and less adhesive, resulting in a decrease in adhesive force. If the glass transition temperature based on the dynamic viscoelasticity of the acrylic resin (A) is too low, there is a tendency for the adhesive physical properties at the time of low crosslinking to deteriorate.
  • the glass transition temperature based on dynamic viscoelasticity is obtained by the following measuring method.
  • An acrylic resin solution containing only the acrylic resin (A) according to the first embodiment and the organic solvent is prepared by adding an appropriate organic solvent. After adjusting the concentration of the acrylic resin solution, it is coated on a release sheet so that the thickness after drying becomes 50 ⁇ m. After that, the organic solvent is removed by drying by heat treatment or the like at 90 to 105 ° C. for 5 to 10 minutes, and then this is attached to a release sheet, and an acrylic resin containing 99% or more of the acrylic resin (A) A resin sheet is produced. After that, a plurality of acrylic resin sheets are laminated to produce an acrylic resin sheet having a thickness of about 800 ⁇ m.
  • Measuring instrument dynamic viscoelasticity measuring device (trade name: DVA-225, manufactured by IT Instrumentation & Control Co., Ltd.)
  • Deformation mode Shear Strain: 0.1% Measurement temperature: -100 to 60°C Measurement frequency: 1Hz
  • the acrylic resin (A) preferably has a weight average molecular weight of 50,000 to 500,000, more preferably 100,000 to 400,000, even more preferably 150,000 to 350,000. If the weight-average molecular weight of the acrylic resin (A) is too large, the viscosity tends to be too high, resulting in poor coatability and handling. If the weight-average molecular weight of the acrylic resin (A) is too small, the cohesive force tends to decrease and the adhesive physical properties tend to decrease. The weight-average molecular weight of the acrylic resin (A) is the weight-average molecular weight at the completion of production. The weight average molecular weight is measured for the acrylic resin (A) that has not been heated or the like after production.
  • the weight average molecular weight of the acrylic resin (A) is the weight average molecular weight in terms of standard polystyrene molecular weight.
  • the weight-average molecular weight was measured using a high-performance liquid chromatograph ("Waters 2695 (body)” and “Waters 2414 (detector)” manufactured by Nippon Waters Co., Ltd.) using a column: Shodex GPC KF-806L (exclusion limit molecular weight: 2 ⁇ 10 7 , separation Range: 100 to 2 ⁇ 10 7 , Number of theoretical plates: 10,000 plates/line, Filler material: Styrene-divinylbenzene copolymer, Filler particle diameter: 10 ⁇ m) are connected in series. Number average molecular weight can also be measured using a similar method. Further, the dispersity is obtained from the weight average molecular weight and the number average molecular weight.
  • the degree of dispersion (weight average molecular weight/number average molecular weight) of the acrylic resin (A) is preferably 15 or less, more preferably 10 or less, even more preferably 7 or less, and particularly preferably 5 or less. If the degree of dispersion of the acrylic resin (A) is too high, the durability of the pressure-sensitive adhesive layer tends to decrease. Moreover, there is also a tendency that foaming or the like is likely to occur. If the degree of dispersion of the acrylic resin (A) is too low, the handleability tends to deteriorate.
  • the lower limit of the dispersity is usually 1.1 due to manufacturing limitations.
  • the acrylic resin (A) can be produced by polymerizing a copolymer component (a) containing an alkyl acrylate (a1), an alkyl methacrylate (a2), and a hydroxyl group-containing monomer (a3).
  • the copolymerization component (a) according to the first aspect may further contain an ethylenically unsaturated monomer (a4) as an optional polymerization component.
  • polymerization methods for the acrylic resin (A) include conventionally known polymerization methods such as solution polymerization, suspension polymerization, bulk polymerization, and emulsion polymerization. Solution polymerization is preferred in terms of safety and stability of the reaction and the ability to produce the acrylic resin (A) with any monomer composition.
  • An example of a preferred method for producing the acrylic resin (A) according to the first aspect is shown below.
  • solution polymerization can be carried out by mixing or dropping the copolymerization component (a) according to the first aspect and the polymerization initiator into an organic solvent.
  • organic solvents used in the polymerization reaction include aromatic hydrocarbons such as toluene and xylene; Aliphatic hydrocarbons such as n-hexane; Esters such as methyl acetate, ethyl acetate and butyl acetate; Aliphatic alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol and isopropyl alcohol; Acetone, methyl ethyl ketone, methyl isobutyl ketones such as ketones and cyclohexanone; aliphatic ethers such as dimethyl ether and diethyl ether; aliphatic halogenated hydrocarbons such as methylene chloride and ethylene chloride; and cyclic ethers such as tetrahydrofuran.
  • esters such as methyl acetate
  • an azo polymerization initiator As the polymerization initiator used in the polymerization reaction, an azo polymerization initiator, a peroxide polymerization initiator, or the like, which is a normal radical polymerization initiator, can be used.
  • azo polymerization initiators include 2,2′-azobis(2-methylbutyronitrile), 2,2′-azobisisobutyronitrile, (1-phenylethyl)azodiphenylmethane, 2,2′ -azobis(2,4-dimethylvaleronitrile), 2,2'-azobis(2-cyclopropylpropionitrile), 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile) and the like. be done.
  • Peroxide-based polymerization initiators include, for example, benzoyl peroxide, di-tert-butyl peroxide, cumene hydroperoxide, lauroyl peroxide, tert-butylperoxypivalate, tert-hexylperoxypivalate, tert-hexyl peroxyneodecanoate, diisopropyl peroxycarbonate, diisobutyryl peroxide and the like.
  • azo polymerization initiators are preferred, and 2,2'-azobisisobutyronitrile and 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile) are more preferred.
  • One polymerization initiator may be used alone, or two or more polymerization initiators may be used in combination.
  • the amount of the polymerization initiator used is usually 0.001 to 10 parts by weight, preferably 0.1 to 8 parts by weight, more preferably 0.5 to 6 parts by weight, per 100 parts by weight of the copolymer component (a). parts, particularly preferably 1 to 4 parts by weight, more preferably 1.5 to 3 parts by weight, most preferably 2 to 2.5 parts by weight.
  • the amount of the polymerization initiator used is too small, the rate of polymerization of the acrylic resin (A) decreases, and the amount of residual monomer tends to increase. Moreover, the weight average molecular weight of acrylic resin (A) tends to increase. If the amount used is too large, the acrylic resin (A) tends to gel.
  • Polymerization conditions for solution polymerization are not particularly limited, and polymerization can be carried out according to conventionally known polymerization conditions.
  • the copolymerization component (a) and the polymerization initiator can be mixed or dropped into an organic solvent for polymerization.
  • the polymerization temperature in the polymerization reaction is usually 40 to 120°C, preferably 50 to 90°C from the viewpoint of stable reaction. If the polymerization temperature is too high, the acrylic resin (A) tends to gel easily. If the polymerization temperature is too low, the activity of the polymerization initiator will decrease, resulting in a decrease in the rate of polymerization and a tendency for the amount of residual monomers to increase.
  • the polymerization time in the polymerization reaction is not particularly limited, but it is 0.5 hours or longer, preferably 1 hour or longer, more preferably 2 hours or longer, and particularly preferably 5 hours or longer after the last addition of the polymerization initiator.
  • the polymerization reaction is preferably carried out while refluxing the solvent in order to facilitate heat removal.
  • the photoinitiator (B) contains an intramolecular hydrogen abstraction photoinitiator (b1) and an intermolecular hydrogen abstraction photoinitiator (b2).
  • the photoinitiator (B) according to the first aspect is other than the intramolecular hydrogen abstraction photoinitiator (b1) and the intermolecular hydrogen abstraction photoinitiator (b2) within a range that does not impair the effects of the invention. may further contain another photoinitiator (b3).
  • the intramolecular hydrogen abstraction type photoinitiator (b1) has a structure capable of generating radicals by abstraction of hydrogen from the photoinitiator itself.
  • the intramolecular hydrogen abstraction type photoinitiator (b1) may have a phenylglyoxylate structure or the like.
  • Examples of the intramolecular hydrogen abstraction type photoinitiator (b1) include oxy-phenyl-acetic acid 2-[2-oxo-2-phenyl-acetoxy-ethoxy]-ethyl ester, methyl phenylglyoxylate and the like.
  • oxy-phenyl-acetic acid 2-[2-oxo-2-phenyl-acetoxy-ethoxy]-ethyl ester having multiple cross-linking points in the molecule is preferable from the viewpoint of cross-linking efficiency at the time of complete curing.
  • the intermolecular hydrogen abstraction type photoinitiator (b2) has a structure capable of generating radicals by abstracting hydrogen from sources other than the photoinitiator itself.
  • the intermolecular hydrogen abstraction photoinitiator (b2) may have, for example, a benzophenone structure.
  • benzophenone 4-methyl-benzophenone, 2,4,6-trimethylbenzophenone, 4-phenylbenzophenone, 3,3′-dimethyl-4-methoxybenzophenone, 4-(meth)acryloyloxybenzophenone, 4-[2- ((meth)acryloyloxy)ethoxy]benzophenone, 4-(meth)acryloyloxy-4′-methoxybenzophenone, carboxymethoxymethoxybenzophenone-polyethylene glycol 250 diester, methyl 2-benzoylbenzoate, 4-(1,3-acryloyl) -1,4,7,10,13-pentaoxotridecyl)benzophenone and the like.
  • 2,4,6-trimethylbenzophenone is preferred because it is a low-viscosity liquid and is easy to handle.
  • 4-(meth)acryloyloxybenzophenone, 4-[2-((meth)acryloyloxy)ethoxy]benzophenone, 4-(meth)acryloyloxy-, which have multiple cross-linking points in the molecule, can be highly crosslinked.
  • 4′-Methoxybenzophenone, carboxymethoxymethoxybenzophenone-polyethylene glycol 250 diester are preferred.
  • Commercially available products include "MBP" manufactured by Shinryo Corporation and IGM RESINS B.I. V. "OmniradBP", “Omnirad 4MBZ”, "Esacure TZT", "Omnipol BP" manufactured by the company.
  • photoinitiators (b3) include, for example, diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethylketal, 4-(2-hydroxy ethoxy)phenyl-(2-hydroxy-2-propyl)ketone, 1-hydroxycyclohexylphenylketone, 2-methyl-2-morpholino(4-thiomethylphenyl)propan-1-one, 2-benzyl-2-dimethylamino -acetophenones such as 1-(4-morpholinophenyl)butanone, 2-hydroxy-2-methyl-1-[4-(1-methylvinyl)phenyl]propanone oligomers; Benzoins such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzoin isobutyl ether; 2,4,6-trimethylbenzo
  • auxiliary agents for the photoinitiator (B) triethanolamine, triisopropanolamine, 4,4'-dimethylaminobenzophenone (Michler's ketone), 4,4'-diethylaminobenzophenone, 2-dimethylaminoethyl Benzoic acid, ethyl 4-dimethylaminobenzoate, (n-butoxy)ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, 2-ethylhexyl 4-dimethylaminobenzoate, 2,4-diethylthioxanthone , 2,4-diisopropylthioxanthone and the like can also be used in combination.
  • the auxiliary agent for the photoinitiator (B) may be used alone or in combination of two or more.
  • the pressure-sensitive adhesive composition according to the first aspect preferably further contains a cross-linking agent (C) in addition to the acrylic resin (A) and the photoinitiator (B).
  • a cross-linking agent (C) examples include an active energy ray cross-linking agent (c1) and a thermal cross-linking agent (c2).
  • the active energy ray cross-linking agent (c1) and the thermal cross-linking agent (c2) may be used alone or in combination of two or more.
  • multistage curing can be achieved only by controlling the dose of active energy ray.
  • the active energy ray cross-linking agent (c1) and the thermal cross-linking agent (c2) are contained as the cross-linking agent (C)
  • multistage curing can be achieved by using both heat curing and active energy ray curing.
  • active energy ray cross-linking agent (c1) examples include polyfunctional cross-linking agents containing two or more ethylenically unsaturated groups in one molecule.
  • (meth)acrylates containing two ethylenically unsaturated groups are preferable in terms of the balance of adhesive physical properties after curing, and in particular, (poly)ethylene glycol di(meth)acrylate and (poly)propylene glycol. Di(meth)acrylate and (poly)tetramethylene glycol di(meth)acrylate are preferred.
  • Polyfunctional cross-linking agents may be used alone or in combination of two or more.
  • the thermal cross-linking agent (c2) can exhibit excellent adhesion by reacting mainly with functional groups derived from functional group-containing monomers that are constituent monomers of the acrylic resin (A).
  • functional groups derived from functional group-containing monomers that are constituent monomers of the acrylic resin (A).
  • isocyanate cross-linking agent (c2-1) epoxy cross-linking agent (c2-2), aziridine cross-linking agent (c2-3), melamine cross-linking agent (c2-4), aldehyde cross-linking agent (c2-5 ), an amine cross-linking agent (c2-6), and a metal chelate cross-linking agent (c2-7).
  • the isocyanate-based cross-linking agent (c2-1) is preferably used in terms of improving adhesion to the substrate and reactivity with the acrylic resin (A).
  • the thermal cross-linking agent (c2) may be used alone or in combination of two or more.
  • Examples of the isocyanate-based cross-linking agent (c2-1) include tolylene diisocyanate-based compounds such as 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate; xylylene diisocyanate compounds such as 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, tetramethyl xylylene diisocyanate; Aromatic isocyanate compounds such as 1,5-naphthalene diisocyanate and triphenylmethane triisocyanate; Hexamethylene diisocyanate compounds such as hexamethylene diisocyanate and trimethylhexamethylene diisocyanate, aliphatic isocyanate compounds such as lysine diisocyanate; Alicyclic isocyanate compounds such as isophorone diisocyanate; Adducts of these isocyanate compounds and polyol compounds such as trimethylolpropane; burettes and isocyanur
  • isocyanate-based cross-linking agents (c2-1) it is preferable to use aromatic isocyanate-based compounds from the viewpoint of excellent reactivity, and tolylene diisocyanate-based compounds are particularly preferable. Moreover, from the viewpoint of suppressing yellowing, it is preferable to use an aliphatic isocyanate-based compound, and particularly preferably a hexamethylene diisocyanate-based compound.
  • Examples of the epoxy-based cross-linking agent (c2-2) include bisphenol A/epichlorohydrin type epoxy resin, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerin diglycidyl ether, glycerin triglycidyl ether, and 1,6-hexane.
  • aziridine-based cross-linking agents examples include tetramethylolmethane-tri- ⁇ -aziridinylpropionate, trimethylolpropane-tri- ⁇ -aziridinylpropionate, and N,N'-diphenylmethane.
  • Melamine-based cross-linking agents (c2-4) include, for example, hexamethoxymethylmelamine, hexaethoxymethylmelamine, hexapropoxymethylmelamine, hexaptoxymethylmelamine, hexapentyloxymethylmelamine, hexahexyloxymethylmelamine, and melamine resins. etc.
  • Aldehyde-based cross-linking agents (c2-5) include, for example, glyoxal, malondialdehyde, succindialdehyde, maleinedialdehyde, glutaredialdehyde, formaldehyde, acetaldehyde, and benzaldehyde.
  • amine-based cross-linking agents include hexamethylenediamine, triethyldiamine, polyethyleneimine, hexamethylenetetraamine, diethylenetriamine, triethyltetramine, isophoronediamine, amino resins, and polyamides.
  • metal chelate cross-linking agents include acetylacetone and acetoacetyl ester linkages of polyvalent metals such as aluminum, iron, copper, zinc, tin, titanium, nickel, antimony, magnesium, vanadium, chromium and zirconium. position compounds and the like.
  • the pressure-sensitive adhesive composition according to the first aspect further contains a silane coupling agent (D) as a compound other than the acrylic resin (A), the photoinitiator (B) and the cross-linking agent (C). is preferable in terms of improving
  • the silane coupling agent (D) is an organosilicon compound containing in its structure one or more reactive functional groups and one or more alkoxy groups bonded to silicon atoms.
  • the silane coupling agent (D) includes monomer type and oligomer type.
  • Examples of reactive functional groups in the silane coupling agent (D) include epoxy groups, (meth)acryloyl groups, mercapto groups, hydroxyl groups, carboxy groups, amino groups, amide groups, isocyanate groups, and the like. Among these, an epoxy group and a mercapto group are preferable from the viewpoint of excellent durability and reworkability.
  • the content of reactive functional groups in the silane coupling agent (D) is preferably 3,000 g/mol or less, more preferably 1,500 g/mol or less, and even more preferably 1,000 g/mol or less. When the reactive functional group is within the above numerical range, the balance between durability and reworkability is improved.
  • the lower limit of the content of reactive functional groups in the silane coupling agent (D) is 200 g/mol.
  • the silicon-bonded alkoxy group in the silane coupling agent (D) an alkoxy group having 1 to 8 carbon atoms is preferable from the viewpoint of durability and storage stability. Among them, a methoxy group and an ethoxy group are more preferable.
  • the silane coupling agent (D) may have a reactive functional group and an organic functional group other than the silicon-bonded alkoxy group, such as an alkyl group or a phenyl group.
  • silane coupling agent (D) examples include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropyldimethoxymethylsilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycid.
  • Silane coupling agents (D) may be used alone or in combination of two or more.
  • the pressure-sensitive adhesive composition according to the first aspect contains a carbodiimide compound (E) as a compound other than the acrylic resin (A), the photoinitiator (B), the cross-linking agent (C) and the silane coupling agent (D). It is preferable to further contain from the viewpoint of heat resistance.
  • Carbodiimide compounds (E) include, for example, bis(2,6-diisopropylphenyl)carbodiimide, dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, tert-butylisopropylcarbodiimide, diphenylcarbodiimide, di-tert- Examples include monocarbodiimides such as butylcarbodiimide and didodecylcarbodiimide, polycarbodiimides containing multiple carbodiimides, and cyclic carbodiimides.
  • the carbodiimide compound (E) may be used alone or in combination of two or more.
  • the pressure-sensitive adhesive composition according to the first aspect may optionally contain a pressure-sensitive adhesive as another optional component.
  • the pressure-sensitive adhesive composition according to the first aspect may contain conventionally known additives such as cross-linking accelerators, antistatic agents, tackifiers and functional dyes.
  • the content of the acrylic resin (A) is preferably 80% by weight or more, more preferably 90 to 99.9% by weight, and 92 to 99.9% by weight with respect to the entire pressure-sensitive adhesive composition. is more preferred.
  • the content of the acrylic resin (A) is within the above numerical range, excellent adhesive physical properties are likely to be obtained in a low crosslinked state after primary curing.
  • the content of the photoinitiator (B) is preferably 0.1 to 5.0 parts by weight, preferably 0.5 to 4.0 parts by weight, relative to 100 parts by weight of the acrylic resin (A). is more preferred, and 1.0 to 3.0 parts by weight is even more preferred.
  • the content of the photoinitiator (B) is within the above numerical range, sufficient curability can be obtained during complete curing.
  • the content of the intramolecular hydrogen abstraction type photoinitiator (b1) is preferably 0.1 to 5.0 parts by weight, preferably 0.5 to 5.0 parts by weight, based on 100 parts by weight of the acrylic resin (A). 3.0 parts by weight is more preferred. If the content of the intramolecular hydrogen abstraction type photoinitiator (b1) is too high, there is a tendency for discoloration to occur after wet heat durability. If the content of the intramolecular hydrogen abstraction type photoinitiator (b1) is too low, the degree of cross-linking will not increase, and the adhesive physical properties during primary curing and the durability after complete curing will tend to deteriorate.
  • the content of the intermolecular hydrogen abstraction type photoinitiator (b2) is preferably 0.1 to 3.0 parts by weight with respect to 100 parts by weight of the acrylic resin (A), and 0.5 to 2.0 parts by weight is more preferred. If the content of the intermolecular hydrogen abstraction type photoinitiator (b2) is too high, the durability tends to deteriorate due to bleeding out. If the content of the intermolecular hydrogen abstraction type photoinitiator (b2) is too small, the degree of cross-linking will not increase, and the adhesive properties during primary curing and the durability after complete curing will tend to deteriorate.
  • the content of the photoinitiator (b3) is 2.0 parts per 100 parts by weight of the acrylic resin (A). 0 weight part or less is preferable, and 1.0 weight part or less is more preferable.
  • the content of the cross-linking agent (C) is usually preferably 20 parts by weight or less with respect to 100 parts by weight of the acrylic resin (A). , more preferably 0.001 to 10 parts by weight, more preferably 0.1 to 7.5 parts by weight. If the content of the cross-linking agent (C) is too large, the adhesive strength tends to decrease. If the content of the cross-linking agent (C) is too small, the durability tends to decrease.
  • the content of the active energy ray cross-linking agent (c1) is usually based on 100 parts by weight of the acrylic resin (A) 0.01 to 20 parts by weight is preferable, 0.1 to 10 parts by weight is more preferable, and 0.5 to 7.5 parts by weight is even more preferable. If the content of the active energy ray cross-linking agent (c1) is too small, there is a tendency that sufficient durability cannot be obtained due to insufficient cohesion. If the content of the active energy ray cross-linking agent (c1) is too large, the adhesive physical properties during primary curing tend to be lowered.
  • the content of the thermal cross-linking agent (c2) is usually 0.001 per 100 parts by weight of the acrylic resin (A). ⁇ 5 parts by weight is preferred, 0.02 to 1 part by weight is more preferred, and 0.05 to 0.5 parts by weight is even more preferred. If the content of the thermal cross-linking agent (c2) is too small, the cohesive force tends to be insufficient, and the adhesive physical properties tend to deteriorate during the primary curing. If the content of the thermal cross-linking agent (c2) is too large, the adhesive strength tends to decrease at the time of complete curing.
  • the content of the silane coupling agent (D) is from 0.001 to 100 parts by weight of the acrylic resin (A). 3 parts by weight is preferred, 0.005 to 1 part by weight is more preferred, 0.01 to 0.5 parts by weight is even more preferred, and 0.015 to 0.3 parts by weight is particularly preferred. If the content of the silane coupling agent (D) is too small, it tends to be difficult to obtain the effect of improving the durability. If the content of the silane coupling agent (D) is too large, the adhesive strength tends to decrease due to the influence of bleeding out and the like.
  • the content of the carbodiimide compound (E) is 0.01 to 10 parts by weight with respect to 100 parts by weight of the acrylic resin (A). 0.1 to 5 parts by weight is more preferred, 0.2 to 2 parts by weight is even more preferred, and 0.3 to 1 part by weight is particularly preferred. If the content of the carbodiimide-based compound (E) is too small, the thermal stability of the acrylic resin (A) tends to decrease. If the content of the carbodiimide-based compound (E) is too large, there is a tendency for durability to decrease due to the effects of bleeding out and the like.
  • the content of the other adhesives and additives is 10 parts by weight or less with respect to 100 parts by weight of the acrylic resin (A). is preferred, and 5 parts by weight or less is more preferred.
  • a pressure-sensitive adhesive composition according to one aspect can be obtained.
  • the mixing method is not particularly limited, and various methods such as a method of mixing each component at once, a method of mixing an arbitrary component and then mixing the remaining components all at once or sequentially can be adopted.
  • the pressure-sensitive adhesive composition according to the first aspect can be suitably used as a pressure-sensitive adhesive for a multi-stage curing pressure-sensitive adhesive sheet that cures in a plurality of stages.
  • excellent pressure-sensitive adhesive physical properties can be obtained even in a low crosslinked state after primary curing.
  • adhesive physical properties such as ordinary adhesive strength but also excellent durability is exhibited when members of various types and shapes such as polarizing plates and glass are bonded together.
  • the pressure-sensitive adhesive composition according to the first aspect has low tackiness even in a low cross-linking state after primary curing, and has excellent adhesive physical properties such as high constant load holding power, thereby improving workability and reliability. Therefore, it is particularly suitable for use as an adhesive or an adhesive sheet for use in touch panels, image display devices, and the like.
  • the pressure-sensitive adhesive according to the first aspect is obtained by cross-linking the pressure-sensitive adhesive composition according to the first aspect described above.
  • the acrylic resin (A) contained in the pressure-sensitive adhesive composition forms a cross-linked structure at least either intramolecularly or intermolecularly.
  • the pressure-sensitive adhesive composition of the present invention is crosslinked to become the pressure-sensitive adhesive according to the first aspect.
  • the acrylic resin (A) has an active energy ray crosslinkable structural site, a crosslinked structure can be formed by irradiation with an active energy ray.
  • the pressure-sensitive adhesive according to the first aspect exhibits multistage curability that allows curing in multiple stages.
  • the pressure-sensitive adhesive according to the first aspect becomes in a low crosslinked state by primary curing before complete curing. Complete curing and primary curing are not always clearly distinguishable, but can be distinguished, for example, by differences in gel fraction and dynamic viscoelasticity.
  • Curing means is not particularly limited in either the primary curing step or the complete curing step, and heating or irradiation with active energy rays may be used. Further, the primary curing step may be divided into a plurality of times, or multistage curing may be performed to achieve a completely cured state. Since the pressure-sensitive adhesive according to the first aspect has excellent adhesive physical properties after primary curing, it is suitably used for bonding optical members constituting touch panels, image display devices, and the like.
  • the adhesive according to the first aspect contains at least the crosslinked product of the acrylic resin (A) according to the first aspect.
  • the crosslinked product may be a partially crosslinked product in which at least part of the acrylic resin (A) is partially crosslinked, or a completely crosslinked product in which the acrylic resin (A) is entirely crosslinked. good.
  • the adhesive according to the first aspect may contain both a partially crosslinked product and a completely crosslinked product of the acrylic resin (A).
  • the pressure-sensitive adhesive sheet according to the first aspect has a pressure-sensitive adhesive layer made of the pressure-sensitive adhesive according to the first aspect.
  • the pressure-sensitive adhesive sheet according to the first aspect can exhibit multistage curability in which the pressure-sensitive adhesive layer is cured in a plurality of stages.
  • a pressure-sensitive adhesive sheet can be obtained by providing a pressure-sensitive adhesive layer made of the pressure-sensitive adhesive according to the first aspect on a base sheet.
  • a double-sided pressure-sensitive adhesive sheet can be obtained by providing a pressure-sensitive adhesive layer on a release sheet.
  • a substrate-less double-faced PSA sheet can be produced by forming a PSA layer on a release sheet in place of the base sheet, and laminating the release sheet on the opposite side of the PSA layer.
  • a thick pressure-sensitive adhesive layer may be further formed by further forming a pressure-sensitive adhesive layer on the formed pressure-sensitive adhesive layer. The pressure-sensitive adhesive sheet and double-sided pressure-sensitive adhesive sheet thus obtained are used by peeling off the release sheet from the pressure-sensitive adhesive layer.
  • Examples of the method for producing the pressure-sensitive adhesive sheet according to the first aspect include the following methods (i) and (ii).
  • a pressure-sensitive adhesive sheet is formed after applying a coating liquid in which the pressure-sensitive adhesive composition according to the first aspect is dissolved in a solvent
  • the coating containing the pressure-sensitive adhesive composition according to the first aspect is coated with an appropriate organic solvent. Adjust the concentration of the working liquid and apply it directly onto the substrate sheet. After that, it is dried by heat treatment or the like at 80 to 105° C. for 0.5 to 10 minutes, and then attached to a base sheet or a release sheet. After that, the adhesive composition is crosslinked (cured) by irradiation with active energy rays or aged, and a pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer can be produced.
  • the concentration of the pressure-sensitive adhesive composition is usually 20-60% by weight, preferably 30-50% by weight, as a solid content.
  • the method (ii) will be described.
  • the pressure-sensitive adhesive composition according to the first aspect is melted by heating to form a pressure-sensitive adhesive sheet, the melted state is coated on one or both sides of the base sheet, and then the base sheet is cooled, or by a T-die or the like.
  • a pressure-sensitive adhesive layer is formed on one side or both sides of the substrate sheet to a desired thickness by extrusion lamination or the like on the material sheet. Then, a pressure-sensitive adhesive sheet can be produced by laminating a release sheet on the surface of the pressure-sensitive adhesive layer, if necessary.
  • the active energy ray irradiation treatment is performed, and the adhesive composition having the adhesive layer is cured (crosslinked) by aging.
  • a sheet can be made.
  • a substrate-less double-sided PSA sheet can be produced by forming a PSA layer on a release sheet and laminating the release sheet on the opposite side of the PSA layer. The pressure-sensitive adhesive sheet and double-sided pressure-sensitive adhesive sheet thus obtained are used by peeling off the release sheet from the pressure-sensitive adhesive layer.
  • the base sheet examples include polyester resins such as polyethylene naphtate, polyethylene terephthalate, polybutylene terephthalate, and polyethylene terephthalate/isophthalate copolymer; polyolefin resins such as polyethylene, polypropylene, and polymethylpentene; polyvinyl fluoride; Polyethylene fluoride resins such as polyvinylidene fluoride and polyethylene fluoride; polyamides such as nylon 6 and nylon 6,6; polyvinyl chloride, polyvinyl chloride/vinyl acetate copolymer, ethylene-vinyl acetate copolymer, ethylene-vinyl Vinyl polymers such as alcohol copolymers, polyvinyl alcohol and vinylon; Cellulose resins such as cellulose triacetate and cellophane; Acrylic resins such as polymethyl methacrylate, polyethyl methacrylate, polyethyl acrylate and polybutyl acrylate.
  • polyester resins such as polyethylene naph
  • These base sheets can be used as a single-layer body or as a multi-layer body in which two or more types are laminated.
  • a synthetic resin sheet is preferable from the viewpoint of weight reduction.
  • release sheet for example, various synthetic resin sheets exemplified in the base sheet, paper, woven fabric, non-woven fabric, etc. that have been subjected to release treatment can be used.
  • release sheet it is preferable to use, for example, a silicon-based release sheet.
  • the method of applying the adhesive composition is not particularly limited.
  • methods such as roll coating, die coating, gravure coating, comma coating, slot coating and screen printing can be used.
  • UV light As active energy rays, rays such as far-ultraviolet rays, ultraviolet rays, near-ultraviolet rays, and infrared rays; electromagnetic waves such as X-rays and ⁇ -rays; electron beams; proton beams; Curing with UV light is preferred in terms of curing speed, availability of irradiation equipment, price, and the like.
  • the gel fraction of the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet before complete curing it is possible to easily bond the adherend regardless of the shape of the adherend, and the pressure-sensitive adhesive layer can hold the adherend after bonding. From the point of view, it is preferably 0.1 to 60% by weight, more preferably 1 to 50% by weight, particularly preferably 5 to 45% by weight.
  • the gel fraction after complete curing of the adhesive layer of the adhesive sheet is preferably 50 to 95% by weight, more preferably 55 to 90% by weight, and particularly preferably 60% by weight, from the viewpoint of durability and adhesive strength. ⁇ 85% by weight. If the gel fraction is too low, cohesive strength tends to decrease, resulting in a decrease in durability. If the gel fraction is too high, there is a tendency for cohesive strength to increase and adhesive strength to decrease.
  • the gel fraction can be appropriately adjusted, for example, by the following method. ⁇ Adjust the amount of active energy ray irradiation. - Adjust the content of the active energy ray-crosslinkable structural site in the acrylic resin (A). - Adjust the types and amounts of the photoinitiator (B) and the cross-linking agent (C).
  • the gel fraction is a measure of the degree of cross-linking (degree of curing), and is calculated, for example, by the following method. That is, an adhesive sheet (without a release sheet) in which an adhesive layer is formed on a polymer sheet (for example, polyethylene terephthalate (PET) film, etc.) serving as a base material is wrapped with a 200-mesh SUS wire mesh. , and the weight percentage of the undissolved pressure-sensitive adhesive component remaining in the wire mesh after being immersed in toluene maintained at 23°C for 24 hours is defined as the gel fraction. However, it is calculated by subtracting the weight of the substrate from the weight before and after the toluene dissolution.
  • PTT polyethylene terephthalate
  • the thickness of the adhesive layer of the adhesive sheet is usually preferably 50-3000 ⁇ m, more preferably 75-1000 ⁇ m, and particularly preferably 100-350 ⁇ m. If the thickness of the pressure-sensitive adhesive layer is too thin, there is a tendency for the impact absorption to decrease. If the thickness of the pressure-sensitive adhesive layer is too thick, for example, when the adhesive layer is attached to an optical member, the overall thickness tends to increase, resulting in a decrease in practicality.
  • the thickness of the adhesive layer is obtained by subtracting the measured thickness of the constituent members other than the adhesive layer from the measured thickness of the entire laminate containing the adhesive layer using Mitutoyo's "ID-C112B". value.
  • the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet according to the first aspect preferably has a haze value of 2% or less, more preferably 0 to 1.5%, particularly preferably 0 when the thickness of the pressure-sensitive adhesive layer is 100 ⁇ m. ⁇ 1%. If the haze value is too high, the pressure-sensitive adhesive layer tends to whiten and the transparency tends to decrease.
  • an optical member with a pressure-sensitive adhesive layer can be obtained by laminating the pressure-sensitive adhesive layer on the optical member.
  • the pressure-sensitive adhesive layer surface of the pressure-sensitive adhesive sheet according to the first embodiment in which the pressure-sensitive adhesive layer is formed on the release sheet is attached to the optical member, and then the release sheet is peeled off to obtain the optical member with the pressure-sensitive adhesive layer.
  • Optical members can also be bonded together using the above double-sided pressure-sensitive adhesive sheet.
  • optical members examples include members that make up touch panels and image display devices. Examples include displays (organic EL, liquid crystal), transparent conductive film substrates (ITO substrates), protective films (glass), transparent antennas (films), transparent wiring, and the like.
  • displays organic EL, liquid crystal
  • ITO substrates transparent conductive film substrates
  • protective films glass
  • transparent antennas films
  • transparent wiring and the like.
  • [A1] contains an acrylic resin (A) and a photoinitiator (B), the acrylic resin (A) is a polymerization product of the following copolymerization component (a), and the acrylic resin (A) has a glass transition temperature based on dynamic viscoelasticity of ⁇ 10° C. or higher, and the copolymer component (a) is an alkyl acrylate having a glass transition temperature of ⁇ 30 to 50° C. when a homopolymer is formed. (a1), an alkyl methacrylate (a2) having a glass transition temperature of ⁇ 10 to 120° C.
  • the weight ratio of the methacrylate (a2) is 5/95 to 55/45, and the total content of the alkyl acrylate (a1) and the alkyl methacrylate (a2) is 30 to 70 weight relative to the copolymer component (a).
  • the photoinitiator (B) comprises an intramolecular hydrogen abstraction type photoinitiator (b1) and an intermolecular hydrogen abstraction type photoinitiator (b2).
  • [A3] The adhesive composition according to [A1] or [A2], wherein the acrylic resin (A) has a weight average molecular weight of 50,000 to 500,000.
  • [A4] A pressure-sensitive adhesive obtained by cross-linking the pressure-sensitive adhesive composition according to any one of [A1] to [A3].
  • [A5] The pressure-sensitive adhesive according to [A4], wherein the cross-linking is performed by irradiation with an active energy ray.
  • [A6] A pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer comprising the pressure-sensitive adhesive according to [A4] or [A5].
  • [A7] The pressure-sensitive adhesive sheet according to [A6], wherein the pressure-sensitive adhesive layer is multi-stage curing in which it is cured in a plurality of stages.
  • the pressure-sensitive adhesive composition according to the second aspect contains an acrylic resin (A) and a photoinitiator (B).
  • the pressure-sensitive adhesive composition according to the second aspect comprises an acrylic resin (A), a photoinitiator (B), a cross-linking agent (C), a silane coupling agent (D), a carbodiimide compound (E), Other optional components may be further contained as necessary.
  • each component will be described in order.
  • the acrylic resin (A) is a polymerization product of a specific copolymer component (a).
  • Copolymer component (a) is a general term for monomer components having a polymerizable double bond.
  • the copolymerization component (a) does not contain a polymerization initiator and a polymerization solvent.
  • the specific copolymer component (a) according to the second aspect is an alkyl (meth)acrylate ( It contains at least a1) and a hydroxyalkyl monomer (a2) containing an alkyl chain, a hydroxyl group and an ethylenically unsaturated group.
  • the copolymer component (a) according to the second aspect may further contain an ethylenically unsaturated monomer (a3) excluding the alkyl (meth)acrylate (a1) and the hydroxyalkyl monomer (a2), if necessary. .
  • the alkyl (meth)acrylate (a1) has an alkyl group having 12 or less carbon atoms.
  • the number of carbon atoms in the alkyl group of the alkyl (meth)acrylate (a1) is preferably 8 or less, more preferably 4 or less.
  • excellent adhesion physical properties are likely to be obtained in a low crosslinked state after primary curing.
  • the alkyl (meth)acrylate (a1) according to the second aspect is a monomer whose homopolymer has a glass transition temperature (hereinafter referred to as "Tg") of -20 to 120°C.
  • Tg glass transition temperature
  • the Tg of the homopolymer of alkyl (meth)acrylate (a1) according to the second aspect is preferably 0 to 105°C, more preferably 5 to 70°C. Since the Tg of the homopolymer of the alkyl (meth)acrylate (a1) is within the above numerical range, it is possible to obtain a pressure-sensitive adhesive sheet with excellent adhesion even when it is attached to an adherend having a complicated shape which is strongly stressed.
  • a homopolymer of alkyl (meth)acrylate (a1) is a homopolymer of alkyl (meth)acrylate (a1).
  • Tg of the homopolymer of the alkyl (meth)acrylate (a1) a standard analytical value described in "Polymer Handbook" published by Wiley, etc. can be used.
  • alkyl (meth)acrylate (a1) examples include methyl acrylate (Tg: 8°C), tert-butyl acrylate (Tg: 41°C), cyclohexyl acrylate (Tg: 15°C), isobol Nil acrylate (Tg: 97°C), methyl methacrylate (Tg: 105°C), ethyl methacrylate (Tg: 65°C), n-butyl methacrylate (Tg: 20°C), isobutyl methacrylate (Tg: 48°C), tert-butyl Methacrylate (Tg: 107°C), 2-ethylhexyl methacrylate (Tg: -10°C), chlorhexyl methacrylate (Tg: 66°C), and the like.
  • Alkyl (meth)acrylates (a1) may be used alone or in combination of two or more.
  • the hydroxyalkyl monomer (a2) according to the second aspect contains an alkyl chain, a hydroxyl group and an ethylenically unsaturated group.
  • the hydroxyalkyl monomer (a2) according to the second aspect can be represented, for example, by the following general formula.
  • CH2 CHR-XY-OH
  • R is a hydrogen atom or a methyl group
  • X is an oxygen atom, COO or CONH
  • Y is a linear or branched alkyl chain.
  • the average carbon number of the alkyl chain of the hydroxyalkyl monomer (a2) in the copolymer component (a) according to the second aspect is 2.1 or more, preferably 2.1 to 8.0, more preferably 2.4 to 6.0, particularly preferably 2.6 to 4.0. If the average number of carbon atoms in the alkyl chain of the hydroxyalkyl monomer (a2) is too small, there is a tendency for the reliability of complete curing to decrease. If the average number of carbon atoms in the alkyl chain of the hydroxyalkyl monomer (a2) is too large, the adhesive properties after primary curing tend to deteriorate.
  • the average carbon number of the alkyl chain of the hydroxyalkyl monomer (a2) is The number of carbon atoms in the alkyl chain of the alkyl monomer (a2) is the same.
  • the average carbon number of the alkyl chains of the hydroxyalkyl monomers (a2) is The weight average value of the number of carbon atoms in the alkyl chain of the hydroxyalkyl monomer (a2) in the copolymerization component (a) according to the embodiment.
  • the copolymerization component (a) according to the second aspect is a hydroxyalkyl monomer (a2), w s parts by weight of monomer s and wt parts by weight of monomer with respect to 100 parts by weight of copolymerization component (a) t, the average carbon number n of the alkyl chain of the hydroxyalkyl monomer (a2) in the copolymer component (a) according to the second embodiment is determined as follows.
  • n n s ⁇ w s /(w s +w t )+n t ⁇ w t /(w s +w t )
  • ns is the number of carbon atoms in the alkyl chain of monomer s
  • nt is the number of carbon atoms in the alkyl chain of monomer t.
  • Examples of the hydroxyalkyl monomer (a2) according to the second aspect include 2-hydroxyethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 5-hydroxypentyl (meth)acrylate, ) acrylate, 6-hydroxyhexyl (meth) acrylate, 7-hydroxyheptyl (meth) acrylate, primary hydroxyl group-containing (meth) acrylate such as 8-hydroxyoctyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2 -Hydroxyalkyl (meth)acrylate monomers such as secondary or tertiary hydroxyl group-containing (meth)acrylates such as hydroxybutyl (meth)acrylate, 2,2-dimethyl 2-hydroxyethyl (meth)acrylate; N-(2-hydroxy hydroxyalkyl (meth)acrylamides such as ethyl)(meth)acrylamide, N
  • the hydroxyalkyl monomers (a2) may be used singly or in combination of two or more.
  • primary hydroxyl group-containing (meth)acrylates are preferred, and 2-hydroxyethyl (meth)acrylate and 4-hydroxybutyl (meth)acrylate can be used together or 4-hydroxybutyl (meth)acrylate can be used alone. Especially preferred.
  • the copolymerization component (a) includes, if necessary, other copolymerizable ethylenically unsaturated monomers (a3) other than the alkyl (meth)acrylate (a1) and the hydroxyalkyl monomer (a2). Further, it may be contained.
  • copolymerizable ethylenically unsaturated monomers (a3) include, for example, alkyl (meth)acrylates such as n-butyl acrylate and 2-ethylhexyl (meth)acrylate (whereas alkyl (meth)acrylate (a1) except.); Phenyl (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, phenyldiethylene glycol (meth) acrylate, phenoxy polyethylene glycol (meth) acrylate, phenoxy polyethylene glycol-polypropylene glycol-(meth) acrylate, orthophenylphenoxyethyl Aromatic ring-containing monomers such as (meth)acrylates and nonylphenol ethylene oxide adduct (meth)acrylates; Alicyclic-containing monomers such as cyclohexyloxyalkyl (meth)acrylate, tert-butylcycl
  • the amide group-containing monomer of; benzophenone-containing monomers such as 4-(meth)acryloyloxybenzophenone; Acrylonitrile, methacrylonitrile, styrene, ⁇ -methylstyrene, vinyl acetate, vinyl propionate, vinyl stearate, vinyl chloride, vinylidene chloride, alkyl vinyl ether, vinyl toluene, vinylpyridine, vinylpyrrolidone, dialkyl itaconate, dialkyl fumarate Ester, allyl alcohol, acryl chloride, methyl vinyl ketone, N-acrylamidomethyltrimethylammonium chloride, allyltrimethylammonium chloride, dimethyl allyl vinyl ketone and the like.
  • the ethylenically unsaturated monomers (a3) may be used alone or in combination of two or more.
  • ethylenically unsaturated monomers having two or more ethylenically unsaturated groups include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, propylene Glycol di(meth)acrylate, divinylbenzene and the like can also be used in combination.
  • the content of the alkyl (meth)acrylate (a1) is 30% by weight or more relative to 100% by weight of the copolymer component (a).
  • the content of the alkyl (meth)acrylate (a1) is preferably 35 to 75% by weight, more preferably 40 to 65% by weight, even more preferably 45 to 60% by weight. If the content of the alkyl (meth)acrylate (a1) is too small, the adhesive properties in the primary cured state tend to be lowered. If the content of the alkyl (meth)acrylate (a1) is too high, the adhesive physical properties after complete curing tend to deteriorate.
  • the content of the hydroxyalkyl monomer (a2) is 0.1% by weight or more, preferably 0.1 to 30% by weight, based on 100% by weight of the copolymer component (a), and 5 to 30% by weight is more preferred, and 10 to 25% by weight is even more preferred. If the content of the hydroxyalkyl monomer (a2) is too small, the adhesive properties in the primary cured state tend to be lowered. If the content of the hydroxyalkyl monomer (a2) is too high, the adhesive properties after complete curing tend to deteriorate.
  • the content ratio (a1/a2) of the alkyl (meth)acrylate (a1) and the hydroxyalkyl monomer (a2) is preferably 95/5 to 50/50 by weight. , more preferably 85/15 to 70/30, particularly preferably 80/20 to 75/25.
  • the content ratio (a1/a2) is within the above numerical range, the adhesive physical properties in the primary cured state are excellent.
  • the content of the ethylenically unsaturated monomer (a3) is relative to 100% by weight of the copolymerization component (a) is usually 50% by weight or less, preferably 40% by weight or less, more preferably 35% by weight or less. If the content of the ethylenically unsaturated monomer (a3) is too high, the adhesion property tends to be lowered when low crosslinking is achieved.
  • the acrylic resin (A) according to the second aspect is a copolymer having structural units based on the alkyl (meth)acrylate (a1) and structural units based on the hydroxyalkyl monomer (a2).
  • the acrylic resin (A) is based on the ethylenically unsaturated monomer (a3) in addition to the structural unit based on the alkyl (meth)acrylate (a1) and the structural unit based on the hydroxyalkyl monomer (a2). It may further have structural units as necessary.
  • the ratio of structural units based on each monomer can be determined according to the composition of the copolymer component (a), and the preferred embodiment is also the same.
  • the glass transition temperature based on the dynamic viscoelasticity of the acrylic resin (A) according to the second aspect is ⁇ 10° C. or higher, preferably ⁇ 5 to 20° C., more preferably 0 to 15° C., particularly preferably 2 ⁇ 13°C. If the glass transition temperature based on the dynamic viscoelasticity of the acrylic resin (A) is too high, there is a tendency for the pressure-sensitive adhesive layer to be less conformable to irregularities and less adhesive, resulting in a decrease in adhesive strength. If the glass transition temperature based on the dynamic viscoelasticity of the acrylic resin (A) is too low, there is a tendency for the adhesive physical properties at the time of low crosslinking to deteriorate.
  • the glass transition temperature based on dynamic viscoelasticity is obtained by the following measuring method.
  • An acrylic resin solution containing only the acrylic resin (A) and the organic solvent is prepared by using a suitable organic solvent. After adjusting the concentration of the acrylic resin solution, it is coated on a release sheet so that the thickness after drying becomes 50 ⁇ m. After that, the organic solvent is removed by drying by heat treatment at 90 to 105° C. for 5 to 10 minutes, and then this is attached to a release sheet to prepare an acrylic resin sheet containing 99% or more acrylic resin. do. After that, a plurality of acrylic resin sheets are laminated to produce an acrylic resin sheet having a thickness of about 800 ⁇ m.
  • Measuring instrument dynamic viscoelasticity measuring device (trade name: DVA-225, manufactured by IT Instrumentation & Control Co., Ltd.)
  • Deformation mode Shear Strain: 0.1% Measurement temperature: -100 to 60°C Measurement frequency: 1Hz
  • the acrylic resin (A) preferably has a weight average molecular weight of 50,000 to 500,000, more preferably 100,000 to 400,000, even more preferably 150,000 to 350,000. If the weight-average molecular weight of the acrylic resin (A) is too large, the viscosity tends to be too high, resulting in poor coatability and handling. If the weight-average molecular weight of the acrylic resin (A) is too small, the cohesive force tends to decrease and the adhesive physical properties tend to decrease. The weight-average molecular weight of the acrylic resin (A) is the weight-average molecular weight at the completion of production. The weight average molecular weight is measured for the acrylic resin (A) that has not been heated or the like after production.
  • the weight average molecular weight of the acrylic resin (A) is the weight average molecular weight in terms of standard polystyrene molecular weight.
  • the weight-average molecular weight was measured using a high-performance liquid chromatograph ("Waters 2695 (body)” and “Waters 2414 (detector)” manufactured by Nippon Waters Co., Ltd.) using a column: Shodex GPC KF-806L (exclusion limit molecular weight: 2 ⁇ 10 7 , separation Range: 100 to 2 ⁇ 10 7 , Number of theoretical plates: 10,000 plates/line, Filler material: Styrene-divinylbenzene copolymer, Filler particle diameter: 10 ⁇ m) are connected in series. Number average molecular weight can also be measured using a similar method. Further, the dispersity is obtained from the weight average molecular weight and the number average molecular weight.
  • the degree of dispersion (weight average molecular weight/number average molecular weight) of the acrylic resin (A) is preferably 15 or less, more preferably 10 or less, even more preferably 7 or less, and particularly preferably 5 or less. If the degree of dispersion of the acrylic resin (A) is too high, the durability of the pressure-sensitive adhesive layer tends to decrease. Moreover, there is also a tendency that foaming or the like is likely to occur. If the degree of dispersion of the acrylic resin (A) is too low, the handleability tends to deteriorate.
  • the lower limit of the dispersity is usually 1.1 due to manufacturing limitations.
  • the acrylic resin (A) can be produced by polymerizing a copolymer component (a) containing an alkyl (meth)acrylate (a1) and a hydroxyalkyl monomer (a2).
  • the copolymerization component (a) according to the second aspect may further contain an ethylenically unsaturated monomer (a3) as an optional polymerization component.
  • polymerization methods for the acrylic resin (A) include conventionally known polymerization methods such as solution polymerization, suspension polymerization, bulk polymerization, and emulsion polymerization. Solution polymerization is preferred in terms of safety and stability of the reaction and the ability to produce the acrylic resin (A) with any monomer composition.
  • An example of a preferred method for producing the acrylic resin (A) according to the second aspect is shown below.
  • solution polymerization can be carried out by mixing or dropping the copolymerization component (a) according to the second aspect and the polymerization initiator into an organic solvent.
  • organic solvent used in the polymerization reaction include aromatic hydrocarbons such as toluene and xylene; aliphatic hydrocarbons such as n-hexane; esters such as methyl acetate, ethyl acetate and butyl acetate; Aliphatic alcohols such as ethyl alcohol, n-propyl alcohol and isopropyl alcohol; Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; Aliphatic ethers such as dimethyl ether and diethyl ether; Fats such as methylene chloride and ethylene chloride halogenated hydrocarbons; cyclic ethers such as tetrahydrofuran; Among these organic solvents, esters and ketones are
  • an azo polymerization initiator As the polymerization initiator used for the polymerization reaction, an azo polymerization initiator, a peroxide polymerization initiator, or the like, which is a normal radical polymerization initiator, can be used.
  • azo polymerization initiators include 2,2′-azobis(2-methylbutyronitrile), 2,2′-azobisisobutyronitrile, (1-phenylethyl)azodiphenylmethane, 2,2′ -azobis(2,4-dimethylvaleronitrile), 2,2'-azobis(2-cyclopropylpropionitrile), 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile) and the like. be done.
  • Peroxide-based polymerization initiators include, for example, benzoyl peroxide, di-tert-butyl peroxide, cumene hydroperoxide, lauroyl peroxide, tert-butylperoxypivalate, tert-hexylperoxypivalate, tert-hexyl peroxyneodecanoate, diisopropyl peroxycarbonate, diisobutyryl peroxide and the like.
  • azo polymerization initiators are preferred, and 2,2'-azobisisobutyronitrile and 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile) are more preferred.
  • One polymerization initiator may be used alone, or two or more polymerization initiators may be used in combination.
  • the amount of the polymerization initiator used is usually 0.001 to 10 parts by weight, preferably 0.1 to 8 parts by weight, more preferably 0.5 to 6 parts by weight, per 100 parts by weight of the copolymer component (a). parts, particularly preferably 1 to 4 parts by weight, more preferably 1.5 to 3 parts by weight, most preferably 2 to 2.5 parts by weight.
  • the amount of the polymerization initiator used is too small, the rate of polymerization of the acrylic resin (A) decreases, and the amount of residual monomer tends to increase. Moreover, the weight average molecular weight of acrylic resin (A) tends to increase. If the amount used is too large, the acrylic resin (A) tends to gel.
  • Polymerization conditions for solution polymerization are not particularly limited, and polymerization can be carried out according to conventionally known polymerization conditions.
  • the copolymerization component (a) and the polymerization initiator can be mixed or dropped into an organic solvent for polymerization.
  • the polymerization temperature in the polymerization reaction is usually 40 to 120°C, preferably 50 to 90°C from the viewpoint of stable reaction. If the polymerization temperature is too high, the acrylic resin (A) tends to gel easily. If the polymerization temperature is too low, the activity of the polymerization initiator will decrease, resulting in a decrease in the rate of polymerization, which tends to increase the amount of residual monomers.
  • the polymerization time in the polymerization reaction is not particularly limited, but it is 0.5 hours or longer, preferably 1 hour or longer, more preferably 2 hours or longer, and particularly preferably 5 hours or longer after the last addition of the polymerization initiator.
  • the polymerization reaction is preferably carried out while refluxing the solvent in order to facilitate heat removal.
  • the photoinitiator (B) according to the second aspect contains an intramolecular hydrogen abstraction type photoinitiator (b1).
  • the photoinitiator (B) according to the second aspect preferably further contains an intermolecular hydrogen abstraction type photoinitiator (b2).
  • the photoinitiator (B) according to the second aspect is other than the intramolecular hydrogen abstraction photoinitiator (b1) and the intermolecular hydrogen abstraction photoinitiator (b2), as long as it does not impair the effects of the invention. may further contain another photoinitiator (b3).
  • the intramolecular hydrogen abstraction type photoinitiator (b1) has a structure capable of generating radicals by abstracting hydrogen from the photoinitiator itself.
  • the intramolecular hydrogen abstraction type photoinitiator (b1) may have a phenylglyoxylate structure or the like.
  • Examples of the intramolecular hydrogen-abstracting photoinitiator (b1) according to the second aspect include oxy-phenyl-acetic acid 2-[2-oxo-2-phenyl-acetoxy-ethoxy]-ethyl ester and methyl phenylglyoxylate. etc.
  • oxy-phenyl-acetic acid 2-[2-oxo-2-phenyl-acetoxy-ethoxy]-ethyl ester having multiple cross-linking points in the molecule is preferable from the viewpoint of cross-linking efficiency at the time of complete curing.
  • the intermolecular hydrogen abstraction type photoinitiator (b2) has a structure capable of generating radicals by abstracting hydrogen from sources other than the photoinitiator itself.
  • the intermolecular hydrogen abstraction photoinitiator (b2) may have, for example, a benzophenone structure.
  • intermolecular hydrogen abstraction type photoinitiator (b2) for example, benzophenone, 4-methyl-benzophenone, 2,4,6-trimethylbenzophenone, 4-phenylbenzophenone, 3,3′-dimethyl- 4-Methoxybenzophenone, 4-(meth)acryloyloxybenzophenone, 4-[2-((meth)acryloyloxy)ethoxy]benzophenone, 4-(meth)acryloyloxy-4′-methoxybenzophenone, carboxymethoxymethoxybenzophenone-polyethylene Glycol 250 diester, methyl 2-benzoylbenzoate, 4-(1,3-acryloyl-1,4,7,10,13-pentoxotridecyl)benzophenone, and the like.
  • 4-(meth)acryloyloxybenzophenone, 4-[2-((meth)acryloyloxy)ethoxy]benzophenone, and 4-(meth)acryloyloxybenzophenone, which have multiple crosslink points in the molecule, can be highly crosslinked.
  • Acryloyloxy-4'-methoxybenzophenone, carboxymethoxymethoxybenzophenone-polyethylene glycol 250 diester are preferred.
  • Commercially available products include "MBP" manufactured by Shinryo Corporation and IGM RESINS B.I. V. "Omnirad BP", “Omnirad 4MBZ”, “Esacure TZT", "Omnipol BP” manufactured by the company.
  • photoinitiators (b3) include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethylketal, 4-(2-hydroxyethoxy) Phenyl-(2-hydroxy-2-propyl)ketone, 1-hydroxycyclohexylphenylketone, 2-methyl-2-morpholino(4-thiomethylphenyl)propan-1-one, 2-benzyl-2-dimethylamino-1 -Acetophenones such as (4-morpholinophenyl)butanone, 2-hydroxy-2-methyl-1-[4-(1-methylvinyl)phenyl]propanone oligomers; Benzoins such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzoin isobutyl ether; 2,4,6-trimethylbenzoyl-dip
  • auxiliary agents for the photoinitiator (B) triethanolamine, triisopropanolamine, 4,4'-dimethylaminobenzophenone (Michler's ketone), 4,4'-diethylaminobenzophenone, 2-dimethylaminoethyl Benzoic acid, ethyl 4-dimethylaminobenzoate, (n-butoxy)ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, 2-ethylhexyl 4-dimethylaminobenzoate, 2,4-diethylthioxanthone , 2,4-diisopropylthioxanthone and the like can also be used in combination.
  • the auxiliary agent for the photoinitiator (B) may be used alone or in combination of two or more.
  • the pressure-sensitive adhesive composition according to the second aspect preferably further contains a cross-linking agent (C) in addition to the acrylic resin (A) and the photoinitiator (B).
  • a cross-linking agent (C) examples include an active energy ray cross-linking agent (c1) and a thermal cross-linking agent (c2).
  • the active energy ray cross-linking agent (c1) and the thermal cross-linking agent (c2) may be used alone or in combination of two or more.
  • multistage curing is possible only by controlling the dose of active energy ray.
  • the active energy ray cross-linking agent (c1) and the thermal cross-linking agent (c2) are contained as the cross-linking agent (C)
  • multistage curing can be achieved by using both heat curing and active energy ray curing.
  • active energy ray cross-linking agent (c1) examples include polyfunctional cross-linking agents containing two or more ethylenically unsaturated groups in one molecule.
  • the active energy ray cross-linking agent (c1) include polyfunctional cross-linking agents containing two or more ethylenically unsaturated groups in one molecule.
  • polyfunctional cross-linking agents containing two or more ethylenically unsaturated groups in one molecule For example, hexanediol di(meth)acrylate, butanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, (poly)ethylene glycol mono(meth)acrylate ) acrylate, (poly)butylene glycol mono (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (me
  • (meth)acrylates containing two ethylenically unsaturated groups are preferable in terms of the balance of adhesive physical properties after curing, and in particular, (poly)ethylene glycol di(meth)acrylate and (poly)propylene glycol. Di(meth)acrylate and (poly)tetramethylene glycol di(meth)acrylate are preferred.
  • Polyfunctional cross-linking agents may be used alone or in combination of two or more.
  • Thermal cross-linking agent (c2) can exhibit excellent adhesion by reacting with functional groups derived from functional group-containing monomers that are mainly constituent monomers of the acrylic resin (A).
  • functional groups derived from functional group-containing monomers that are mainly constituent monomers of the acrylic resin (A).
  • isocyanate cross-linking agent (c2-1) epoxy cross-linking agent (c2-2), aziridine cross-linking agent (c2-3), melamine cross-linking agent (c2-4), aldehyde cross-linking agent (c2-5 ), amine-based cross-linking agents (c2-6), and metal chelate-based cross-linking agents (c2-7).
  • the isocyanate-based cross-linking agent (c2-1) is preferably used in terms of improving adhesion to the substrate and reactivity with the acrylic resin (A).
  • the thermal cross-linking agent (c2) may be used alone or in combination of two or more.
  • Examples of the isocyanate-based cross-linking agent (c2-1) include tolylene diisocyanate-based compounds such as 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate; xylylene diisocyanate compounds such as 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, tetramethyl xylylene diisocyanate; Aromatic isocyanate compounds such as 1,5-naphthalene diisocyanate and triphenylmethane triisocyanate; Hexamethylene diisocyanate compounds such as hexamethylene diisocyanate and trimethylhexamethylene diisocyanate, aliphatic isocyanate compounds such as lysine diisocyanate; Alicyclic isocyanate compounds such as isophorone diisocyanate; Adducts of these isocyanate compounds and polyol compounds such as trimethylolpropane; burettes and isocyanur
  • isocyanate-based cross-linking agents (c2-1) it is preferable to use aromatic isocyanate-based compounds from the viewpoint of excellent reactivity, and tolylene diisocyanate-based compounds are particularly preferable. Moreover, from the viewpoint of suppressing yellowing, it is preferable to use an aliphatic isocyanate-based compound, and particularly preferably a hexamethylene diisocyanate-based compound.
  • Examples of the epoxy-based cross-linking agent (c2-2) include bisphenol A/epichlorohydrin type epoxy resin, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerin diglycidyl ether, glycerin triglycidyl ether, and 1,6-hexane.
  • aziridine-based cross-linking agents examples include tetramethylolmethane-tri- ⁇ -aziridinylpropionate, trimethylolpropane-tri- ⁇ -aziridinylpropionate, and N,N'-diphenylmethane.
  • Melamine-based cross-linking agents (c2-4) include, for example, hexamethoxymethylmelamine, hexaethoxymethylmelamine, hexapropoxymethylmelamine, hexaptoxymethylmelamine, hexapentyloxymethylmelamine, hexahexyloxymethylmelamine, and melamine resins. etc.
  • Aldehyde-based cross-linking agents (c2-5) include, for example, glyoxal, malondialdehyde, succindialdehyde, maleinedialdehyde, glutaredialdehyde, formaldehyde, acetaldehyde, and benzaldehyde.
  • amine-based cross-linking agents include hexamethylenediamine, triethyldiamine, polyethyleneimine, hexamethylenetetraamine, diethylenetriamine, triethyltetramine, isophoronediamine, amino resins, and polyamides.
  • metal chelate cross-linking agents include acetylacetone and acetoacetyl ester linkages of polyvalent metals such as aluminum, iron, copper, zinc, tin, titanium, nickel, antimony, magnesium, vanadium, chromium and zirconium. position compounds and the like.
  • the pressure-sensitive adhesive composition according to the second aspect further contains a silane coupling agent (D) as a compound other than the acrylic resin (A), the photoinitiator (B) and the cross-linking agent (C). is preferable in terms of improving
  • the silane coupling agent (D) is an organosilicon compound containing in its structure one or more reactive functional groups and one or more alkoxy groups bonded to silicon atoms.
  • the silane coupling agent (D) includes monomer type and oligomer type.
  • Examples of reactive functional groups in the silane coupling agent (D) include epoxy groups, (meth)acryloyl groups, mercapto groups, hydroxyl groups, carboxy groups, amino groups, amide groups, isocyanate groups, and the like. Among these, an epoxy group and a mercapto group are preferable from the viewpoint of excellent durability and reworkability.
  • the content of reactive functional groups in the silane coupling agent (D) is preferably 3,000 g/mol or less, more preferably 1,500 g/mol or less, and even more preferably 1,000 g/mol or less. When the reactive functional group is within the above numerical range, the balance between durability and reworkability is improved.
  • the lower limit of the content of reactive functional groups in the silane coupling agent (D) is 200 g/mol.
  • the silicon-bonded alkoxy group in the silane coupling agent (D) an alkoxy group having 1 to 8 carbon atoms is preferable from the viewpoint of durability and storage stability. Among them, a methoxy group and an ethoxy group are more preferable.
  • the silane coupling agent (D) may have a reactive functional group and an organic functional group other than the silicon-bonded alkoxy group, such as an alkyl group or a phenyl group.
  • Silane coupling agents (D) include, for example, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropyldimethoxymethylsilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxy propyltriethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, methyltri(glycidyl)silane, ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxysilane, ⁇ -( 3,4-epoxycyclohexyl)ethyltrimethoxysilane and the like. Among them, ⁇ -glycidoxypropyltrimethoxysilane is preferable from the viewpoint of heat resistance. Silane coupling agents (D) may be used alone or in combination of
  • the pressure-sensitive adhesive composition according to the second aspect contains a carbodiimide compound (E) as a compound other than the acrylic resin (A), the photoinitiator (B), the cross-linking agent (C) and the silane coupling agent (D). It is preferable to further contain from the viewpoint of heat resistance.
  • Carbodiimide compounds (E) include, for example, bis(2,6-diisopropylphenyl)carbodiimide, dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, tert-butylisopropylcarbodiimide, diphenylcarbodiimide, di-tert- Examples include monocarbodiimides such as butylcarbodiimide and didodecylcarbodiimide, polycarbodiimides containing multiple carbodiimides, and cyclic carbodiimides.
  • the carbodiimide compound (E) may be used alone or in combination of two or more.
  • the pressure-sensitive adhesive composition according to the second aspect may contain a pressure-sensitive adhesive as another optional component, if necessary.
  • the pressure-sensitive adhesive composition according to the second aspect may contain conventionally known additives such as cross-linking accelerators, antistatic agents, tackifiers and functional dyes.
  • composition of adhesive composition the content of the acrylic resin (A) is preferably 80% by weight or more, more preferably 90 to 99.9% by weight, and 92 to 99.9% by weight with respect to the entire pressure-sensitive adhesive composition. is more preferred.
  • content of the acrylic resin (A) is within the above numerical range, excellent adhesive physical properties are likely to be obtained in a low crosslinked state after primary curing.
  • the content of the photoinitiator (B) is preferably 0.1 to 5.0 parts by weight, preferably 0.5 to 4.0 parts by weight, relative to 100 parts by weight of the acrylic resin (A). is more preferred, and 1.0 to 3.0 parts by weight is even more preferred.
  • the content of the photoinitiator (B) is within the above numerical range, sufficient curability can be obtained upon complete curing.
  • the content of the intramolecular hydrogen abstraction type photoinitiator (b1) is preferably 0.1 to 5.0 parts by weight, preferably 0.5 to 3 parts by weight, relative to 100 parts by weight of the acrylic resin (A). 0 parts by weight is more preferred. If the content of the intramolecular hydrogen abstraction type photoinitiator (b1) is too high, there is a tendency for discoloration to occur after wet heat durability. If the content of the intramolecular hydrogen abstraction type photoinitiator (b1) is too low, the degree of cross-linking will not increase, and the adhesive physical properties during primary curing and the durability after complete curing will tend to deteriorate.
  • the content of the intermolecular hydrogen abstraction photoinitiator (b2) is the acrylic resin (A) It is preferably 0.1 to 3.0 parts by weight, more preferably 0.5 to 2.0 parts by weight, per 100 parts by weight. If the content of the intermolecular hydrogen abstraction type photoinitiator (b2) is too high, bleed out tends to deteriorate the durability. If the content of the intermolecular hydrogen abstraction type photoinitiator (b2) is too small, the degree of cross-linking does not increase, and the adhesive properties during primary curing and the durability after complete curing tend to deteriorate.
  • the content of the photoinitiator (b3) is 2.0 parts per 100 parts by weight of the acrylic resin (A). 0 weight part or less is preferable, and 1.0 weight part or less is more preferable.
  • the content of the cross-linking agent (C) is usually preferably 20 parts by weight or less with respect to 100 parts by weight of the acrylic resin (A). , more preferably 0.001 to 10 parts by weight, more preferably 0.1 to 7.5 parts by weight. If the content of the cross-linking agent (C) is too large, the adhesive strength tends to decrease. If the content of the cross-linking agent (C) is too small, the durability tends to decrease.
  • the content of the active energy ray cross-linking agent (c1) is usually based on 100 parts by weight of the acrylic resin (A) 0.01 to 20 parts by weight is preferable, 0.1 to 10 parts by weight is more preferable, and 0.5 to 7.5 parts by weight is even more preferable. If the content of the active energy ray cross-linking agent (c1) is too small, there is a tendency that sufficient durability cannot be obtained due to insufficient cohesion. If the content of the active energy ray cross-linking agent (c1) is too large, the adhesive physical properties during the primary curing tend to deteriorate.
  • the content of the thermal cross-linking agent (c2) is usually 0.001 per 100 parts by weight of the acrylic resin (A). ⁇ 5 parts by weight is preferred, 0.02 to 1 part by weight is more preferred, and 0.05 to 0.5 parts by weight is even more preferred. If the content of the thermal cross-linking agent (c2) is too small, the cohesive force tends to be insufficient and the adhesive physical properties tend to deteriorate during the primary curing. If the content of the thermal cross-linking agent (c2) is too large, the adhesive strength tends to decrease at the time of complete curing.
  • the active energy ray cross-linking agent (c1) and the thermal cross-linking agent (c2) may be used together as the cross-linking agent (C).
  • the content ratio (c1/c2) of the active energy ray cross-linking agent (c1) and the thermal cross-linking agent (c2) is preferably 100/1 to 100/50 in weight ratio.
  • the content of the silane coupling agent (D) is from 0.001 to 100 parts by weight of the acrylic resin (A). 3 parts by weight is preferred, 0.005 to 1 part by weight is more preferred, 0.01 to 0.5 parts by weight is even more preferred, and 0.015 to 0.3 parts by weight is particularly preferred. If the content of the silane coupling agent (D) is too small, it tends to be difficult to obtain the effect of improving the durability. If the content of the silane coupling agent (D) is too large, the adhesive strength tends to decrease due to the influence of bleeding out and the like.
  • the content of the carbodiimide compound (E) is 0.01 to 10 parts by weight with respect to 100 parts by weight of the acrylic resin (A). part is preferred, 0.1 to 5 parts by weight is more preferred, 0.2 to 2 parts by weight is even more preferred, and 0.3 to 1 part by weight is particularly preferred. If the content of the carbodiimide compound (E) is too small, the thermal stability of the acrylic resin (A) tends to decrease. If the content of the carbodiimide-based compound (E) is too high, there is a tendency for durability to decrease due to the effects of bleeding out and the like.
  • the content of the other adhesives and additives is 10 parts by weight or less with respect to 100 parts by weight of the acrylic resin (A). is preferred, and 5 parts by weight or less is more preferred.
  • a pressure-sensitive adhesive composition according to the second aspect can be obtained.
  • the mixing method is not particularly limited, and various methods such as a method of mixing each component at once, a method of mixing an arbitrary component and then mixing the remaining components all at once or sequentially can be adopted.
  • the pressure-sensitive adhesive composition according to the second aspect can be suitably used as a pressure-sensitive adhesive for a multi-stage curing pressure-sensitive adhesive sheet that cures in a plurality of stages.
  • excellent pressure-sensitive adhesive physical properties can be obtained even in a low crosslinked state after primary curing.
  • adhesive physical properties such as ordinary adhesive strength but also excellent durability is exhibited when members of various types and shapes such as polarizing plates and glass are bonded together.
  • the pressure-sensitive adhesive composition according to the second aspect has low tackiness even in a low cross-linking state after primary curing, and has excellent adhesive physical properties such as high constant load holding power, thereby improving workability and reliability. Therefore, it is particularly suitable for use as an adhesive or an adhesive sheet for use in touch panels, image display devices, and the like.
  • the pressure-sensitive adhesive according to the second aspect is obtained by cross-linking the pressure-sensitive adhesive composition according to the second aspect described above.
  • the acrylic resin (A) contained in the pressure-sensitive adhesive composition forms a cross-linked structure at least either intramolecularly or intermolecularly.
  • the pressure-sensitive adhesive composition according to the second aspect is crosslinked to become the pressure-sensitive adhesive according to the second aspect.
  • the acrylic resin (A) has an active energy ray crosslinkable structural site, a crosslinked structure can be formed by irradiation with an active energy ray.
  • the pressure-sensitive adhesive according to the second aspect exhibits multistage curability that allows curing in multiple stages.
  • the pressure-sensitive adhesive according to the second aspect becomes in a low crosslinked state by primary curing before complete curing. Complete curing and primary curing are not always clearly distinguishable, but can be distinguished, for example, by differences in gel fraction and dynamic viscoelasticity.
  • Curing means is not particularly limited in either the primary curing step or the complete curing step, and heating or irradiation with active energy rays may be used. Further, the primary curing step may be divided into a plurality of times, or multistage curing may be performed to achieve a completely cured state. Since the pressure-sensitive adhesive according to the second aspect is excellent in adhesive properties after primary curing, it is suitably used for bonding optical members constituting touch panels, image display devices, and the like.
  • the adhesive according to the second aspect contains at least the crosslinked product of the acrylic resin (A) according to the second aspect.
  • the crosslinked product may be a partially crosslinked product in which at least part of the acrylic resin (A) is partially crosslinked, or a completely crosslinked product in which the acrylic resin (A) is entirely crosslinked. good.
  • the adhesive according to the second aspect may contain both a partially crosslinked product and a completely crosslinked product of the acrylic resin (A).
  • the pressure-sensitive adhesive sheet according to the second aspect has a pressure-sensitive adhesive layer made of the pressure-sensitive adhesive according to the second aspect.
  • the pressure-sensitive adhesive sheet according to the second aspect can exhibit multistage curability in which the pressure-sensitive adhesive layer is cured in a plurality of stages.
  • a pressure-sensitive adhesive sheet can be obtained by providing a pressure-sensitive adhesive layer made of the pressure-sensitive adhesive according to the second aspect on a base sheet.
  • a double-sided pressure-sensitive adhesive sheet can be obtained by providing a pressure-sensitive adhesive layer on a release sheet.
  • a substrate-less double-faced PSA sheet can be produced by forming a PSA layer on a release sheet in place of the base sheet, and laminating the release sheet on the opposite side of the PSA layer.
  • a thick pressure-sensitive adhesive layer may be further formed by further forming a pressure-sensitive adhesive layer on the formed pressure-sensitive adhesive layer. The pressure-sensitive adhesive sheet and double-sided pressure-sensitive adhesive sheet thus obtained are used by peeling off the release sheet from the pressure-sensitive adhesive layer.
  • Examples of the method for producing the pressure-sensitive adhesive sheet according to the second aspect include the following methods (i) and (ii).
  • a pressure-sensitive adhesive sheet is formed after applying a coating liquid in which the pressure-sensitive adhesive composition according to the second aspect is dissolved in a solvent
  • the coating containing the pressure-sensitive adhesive composition according to the second aspect is coated with an appropriate organic solvent. Adjust the concentration of the working liquid and apply it directly onto the substrate sheet. After that, it is dried by heat treatment or the like at 80 to 105° C. for 0.5 to 10 minutes, and then attached to a base sheet or a release sheet. After that, the adhesive composition is crosslinked (cured) by irradiation with active energy rays or aged, and a pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer can be produced.
  • the concentration of the pressure-sensitive adhesive composition is usually 20-60% by weight, preferably 30-50% by weight, as a solid content.
  • the method (ii) will be described.
  • the pressure-sensitive adhesive composition according to the second aspect is melted by heating to form a pressure-sensitive adhesive sheet, the melted state is coated on one or both sides of the base sheet, and then the base sheet is cooled, or by a T-die or the like.
  • a pressure-sensitive adhesive layer is formed on one side or both sides of the substrate sheet to a desired thickness by a method such as extrusion lamination on the material sheet. Then, a pressure-sensitive adhesive sheet can be produced by bonding a release sheet to the surface of the pressure-sensitive adhesive layer, if necessary.
  • a substrate-less double-sided PSA sheet can be produced by forming a PSA layer on a release sheet and laminating the release sheet on the opposite side of the PSA layer. The pressure-sensitive adhesive sheet and double-sided pressure-sensitive adhesive sheet thus obtained are used by peeling off the release sheet from the pressure-sensitive adhesive layer.
  • the base sheet examples include polyester resins such as polyethylene naphtate, polyethylene terephthalate, polybutylene terephthalate, and polyethylene terephthalate/isophthalate copolymer; polyolefin resins such as polyethylene, polypropylene, and polymethylpentene; polyvinyl fluoride; Polyethylene fluoride resins such as polyvinylidene fluoride and polyethylene fluoride; polyamides such as nylon 6 and nylon 6,6; polyvinyl chloride, polyvinyl chloride/vinyl acetate copolymer, ethylene-vinyl acetate copolymer, ethylene-vinyl Vinyl polymers such as alcohol copolymers, polyvinyl alcohol and vinylon; Cellulose resins such as cellulose triacetate and cellophane; Acrylic resins such as polymethyl methacrylate, polyethyl methacrylate, polyethyl acrylate and polybutyl acrylate.
  • polyester resins such as polyethylene naph
  • These base sheets can be used as a single-layer body or as a multi-layer body in which two or more types are laminated.
  • a synthetic resin sheet is preferable from the viewpoint of weight reduction.
  • release sheet for example, various synthetic resin sheets exemplified in the base sheet, paper, woven fabric, non-woven fabric, etc. that have been subjected to release treatment can be used.
  • release sheet it is preferable to use, for example, a silicon-based release sheet.
  • the method of applying the adhesive composition is not particularly limited.
  • methods such as roll coating, die coating, gravure coating, comma coating, slot coating and screen printing can be used.
  • UV light As active energy rays, rays such as far-ultraviolet rays, ultraviolet rays, near-ultraviolet rays, and infrared rays; electromagnetic waves such as X-rays and ⁇ -rays; electron beams; proton beams; Curing with UV light is preferred in terms of curing speed, availability of irradiation equipment, price, and the like.
  • the gel fraction of the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet before complete curing it is possible to easily bond the adherend regardless of the shape of the adherend, and the pressure-sensitive adhesive layer can hold the adherend after bonding. From the point of view, it is preferably 0.1 to 60% by weight, more preferably 1 to 50% by weight, particularly preferably 5 to 45% by weight.
  • the gel fraction after complete curing of the adhesive layer of the adhesive sheet is preferably 50 to 95% by weight, more preferably 55 to 90% by weight, and particularly preferably 60% by weight, from the viewpoint of durability and adhesive strength. ⁇ 85% by weight. If the gel fraction is too low, cohesive strength tends to decrease, resulting in a decrease in durability. If the gel fraction is too high, there is a tendency for cohesive strength to increase and adhesive strength to decrease.
  • the gel fraction can be appropriately adjusted, for example, by the following method. ⁇ Adjust the amount of active energy ray irradiation. - Adjust the content of the active energy ray-crosslinkable structural site in the acrylic resin (A). - Adjust the types and amounts of the photoinitiator (B) and the cross-linking agent (C).
  • the gel fraction is a measure of the degree of cross-linking (degree of curing), and is calculated, for example, by the following method. That is, an adhesive sheet (without a release sheet) in which an adhesive layer is formed on a polymer sheet (for example, polyethylene terephthalate (PET) film, etc.) serving as a base material is wrapped with a 200-mesh SUS wire mesh. , and the weight percentage of the undissolved pressure-sensitive adhesive component remaining in the wire mesh after being immersed in toluene maintained at 23°C for 24 hours is defined as the gel fraction. However, it is calculated by subtracting the weight of the substrate from the weight before and after the toluene dissolution.
  • PTT polyethylene terephthalate
  • the thickness of the adhesive layer of the adhesive sheet is usually preferably 50-3000 ⁇ m, more preferably 75-1000 ⁇ m, and particularly preferably 100-350 ⁇ m. If the thickness of the pressure-sensitive adhesive layer is too thin, there is a tendency for the impact absorption to decrease. If the thickness of the pressure-sensitive adhesive layer is too thick, for example, when the adhesive layer is attached to an optical member, the overall thickness tends to increase, resulting in a decrease in practicality.
  • the thickness of the adhesive layer is obtained by subtracting the measured thickness of the constituent members other than the adhesive layer from the measured thickness of the entire laminate containing the adhesive layer using Mitutoyo's "ID-C112B". value.
  • the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet according to the second aspect preferably has a haze value of 2% or less, more preferably 0 to 1.5%, particularly preferably 0 when the thickness of the pressure-sensitive adhesive layer is 100 ⁇ m. ⁇ 1%. If the haze value is too high, the pressure-sensitive adhesive layer tends to whiten and the transparency tends to decrease.
  • an optical member with a pressure-sensitive adhesive layer can be obtained by laminating the pressure-sensitive adhesive layer on the optical member. For example, after the adhesive layer surface of the adhesive sheet according to the second embodiment in which the adhesive layer is formed on the release sheet is attached to the optical member, the release sheet is peeled off to obtain the optical member with the adhesive layer. can be obtained.
  • Optical members can also be bonded together using the above double-sided pressure-sensitive adhesive sheet.
  • optical members examples include members that make up touch panels and image display devices. Examples include displays (organic EL, liquid crystal), transparent conductive film substrates (ITO substrates), protective films (glass), transparent antennas (films), transparent wiring, and the like.
  • displays organic EL, liquid crystal
  • ITO substrates transparent conductive film substrates
  • protective films glass
  • transparent antennas films
  • transparent wiring and the like.
  • [B1] contains an acrylic resin (A) and a photoinitiator (B), the acrylic resin (A) is a polymerization product of the following copolymerization component (a), and the acrylic resin A pressure-sensitive adhesive composition, wherein (A) has a glass transition temperature based on dynamic viscoelasticity of ⁇ 10° C. or higher, and the photoinitiator (B) contains an intramolecular hydrogen abstraction type photoinitiator (b1).
  • the copolymer component (a) includes an alkyl (meth)acrylate (a1) having an alkyl group having 12 or less carbon atoms and having a homopolymer glass transition temperature of ⁇ 20 to 120° C., and an alkyl chain.
  • At least a hydroxyalkyl monomer (a2) containing a hydroxyl group and an ethylenically unsaturated group is contained, and the content of the alkyl (meth)acrylate (a1) is based on 100% by weight of the copolymerization component (a) is 30% by weight or more, the content of the hydroxyalkyl monomer (a2) is 0.1% by weight or more with respect to 100% by weight of the copolymerization component (a), and the content of the copolymerization component (a) is The average carbon number of the alkyl chain of the hydroxyalkyl monomer (a2) is 2.1 or more.
  • [B6] The pressure-sensitive adhesive according to [B5], wherein the cross-linking is performed by irradiation with an active energy ray.
  • [B7] A pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer comprising the pressure-sensitive adhesive according to [B5] or [B6].
  • [B8] The pressure-sensitive adhesive sheet according to [B7], wherein the pressure-sensitive adhesive layer is multi-stage curing in which it is cured in a plurality of stages.
  • the pressure-sensitive adhesive composition according to the third aspect contains an acrylic resin (A) and a photoinitiator (B).
  • the pressure-sensitive adhesive composition according to the third aspect comprises an acrylic resin (A), a photoinitiator (B), a cross-linking agent (C), a silane coupling agent (D), a carbodiimide compound (E), It may further contain other optional components.
  • each component will be described in order.
  • the acrylic resin (A) is a polymerization product of a copolymer component (a) containing a branched alkyl (meth)acrylate (a1) whose homopolymer has a glass transition temperature of ⁇ 30° C. or higher.
  • Copolymer component (a) is a general term for monomer components having a polymerizable double bond.
  • the copolymerization component (a) does not contain a polymerization initiator and a polymerization solvent.
  • the copolymerization component (a) includes, in addition to the branched alkyl (meth)acrylate (a1), a hydroxyl group-containing (meth)acrylate (a2) and an active energy ray-crosslinkable structural site (meth) At least one selected from the group consisting of acrylic acid ester monomers (a3) and ethylenically unsaturated monomers (a4) may be further contained as necessary.
  • the branched alkyl (meth)acrylate (a1) is a (meth)acrylate having a branched alkyl group.
  • the number of carbon atoms in the branched alkyl group of the branched alkyl (meth)acrylate (a1) is not particularly limited. For example, 30 or less is preferable, 20 or less is more preferable, and 3 to 10 is even more preferable.
  • the lower limit on the number of carbon atoms required to form a normal branch is 3.
  • the branched alkyl (meth)acrylate (a1) according to the third aspect is a monomer whose homopolymer has a glass transition temperature (hereinafter referred to as “Tg”) of ⁇ 30° C. or higher.
  • Tg glass transition temperature
  • the Tg of the homopolymer of the branched alkyl (meth)acrylate (a1) according to the third aspect is preferably -30 to 150°C, more preferably -20 to 140°C, still more preferably -15 to 130°C. and particularly preferably -10 to 100°C.
  • the Tg of the homopolymer of the branched alkyl (meth)acrylate (a1) is within the above numerical range, it is possible to obtain a pressure-sensitive adhesive sheet with excellent adhesion even when it is attached to an adherend having a complex shape that is subjected to strong stress. .
  • the homopolymer of the branched alkyl (meth)acrylate (a1) is a homopolymer of the branched alkyl (meth)acrylate (a1).
  • Tg of the homopolymer of the branched alkyl (meth)acrylate (a1) a standard analytical value described in "Polymer Handbook" published by Wiley can be used.
  • Examples of the branched alkyl (meth)acrylate (a1) according to the third aspect include 2-ethylhexyl methacrylate (Tg: -10°C), isobutyl methacrylate (Tg: 48°C), tert-butyl methacrylate (Tg: 107°C ) and the like. Among them, 2-ethylhexyl methacrylate and isobutyl methacrylate are preferable from the viewpoint of adhesive properties.
  • Branched alkyl (meth)acrylates (a1) may be used alone or in combination of two or more.
  • the hydroxyl group-containing (meth)acrylate (a2) is a (meth)acrylate having a hydroxyl group (excluding branched alkyl (meth)acrylates (a1)).
  • a structural site derived from the polar group-containing monomer is introduced into the acrylic resin (A).
  • Examples of the hydroxyl group-containing (meth)acrylate (a2) according to the third aspect include 2-hydroxyethyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 5-hydroxypentyl (meth)acrylate, 6-hydroxy hydroxyalkyl acrylates such as hexyl (meth)acrylate and 8-hydroxyoctyl (meth)acrylate; caprolactone-modified monomers such as caprolactone-modified 2-hydroxyethyl (meth)acrylate; Oxyalkylene-modified monomers such as diethylene glycol (meth)acrylate and polyethylene glycol (meth)acrylate; Primary hydroxyl group-containing (meth)acrylates such as 2-acryloyloxyethyl-2-hydroxyethyl phthalate, N-methylol (meth)acrylamide, and hydroxyethylacrylamide; Secondary hydroxyl group-containing (meth)acrylates such as 2-hydroxypropyl (meth)acrylate, 2-hydroxybut
  • the hydroxyl group-containing (meth)acrylate (a2) preferably contains a small amount of di(meth)acrylate that may be contained as an impurity in the hydroxyl group-containing (meth)acrylate (a2).
  • the content of di(meth)acrylate that can be contained in the hydroxyl group-containing (meth)acrylate (a2) is preferably 0.5% by weight or less, more preferably 0.2% by weight or less, and particularly preferably 0.2% by weight or less. is 0.1% by weight or less, more preferably 0% by weight.
  • the hydroxyl group-containing (meth)acrylate (a2) according to the third aspect often contains acrylic acid as an impurity, and its content is usually 0.001 in the hydroxyl group-containing (meth)acrylate (a2). It is about 0.5% by weight, and it is preferable to use a smaller amount.
  • the acrylic resin (A) according to the third aspect can also have an active energy ray crosslinkable structural site.
  • the active energy ray crosslinkable structural site is a structure capable of forming a crosslinked structure by reacting with a part of the acrylic resin (A) or other curing components that may be contained in the pressure-sensitive adhesive composition by irradiation with an active energy ray. It is a part.
  • the active energy ray-crosslinkable structural site is preferably a benzophenone-based crosslinkable structural site because of its high reactivity and excellent improvement in cohesive strength.
  • the copolymer component (a) according to the third aspect is a (meth)acrylic acid ester monomer (a3) containing an active energy ray-crosslinkable structural site (provided, however, that a branched alkyl (meth)acrylate (a1) and a hydroxyl group (excluding the containing (meth)acrylate (a2)) is preferably further contained.
  • a (meth)acrylic acid ester monomer (a3) containing an active energy ray crosslinkable structural site As the (meth)acrylic acid ester monomer (a3) containing an active energy ray crosslinkable structural site according to the third aspect, a (meth)acrylic acid ester monomer having a benzophenone-based crosslinkable structural site is exposed to ultraviolet rays and electron beams. It is preferable in that an efficient crosslinked structure can be formed by an active energy ray such as. Examples thereof include 4-(meth)acryloyloxybenzophenone and the like.
  • the (meth)acrylic acid ester monomer (a3) containing an active energy ray-crosslinkable structural site may be used alone or in combination of two or more.
  • acrylic resin (A) in addition to copolymerizing the active energy ray-crosslinkable structural site-containing (meth)acrylic acid ester monomer (a3), acrylic It is also possible to introduce an ethylenically unsaturated group as an active energy ray crosslinkable structural site by allowing hydroxyl groups to be contained in the resin (A) and reacting the hydroxyl groups with an ethylenically unsaturated group-containing isocyanate compound.
  • the copolymer component (a) is a branched alkyl (meth)acrylate (a1), a hydroxyl group-containing (meth)acrylate (a2) and a (meth)acrylic acid ester monomer (a3), other copolymers
  • a polymerizable ethylenically unsaturated monomer (a4) may be further contained as necessary.
  • copolymerizable ethylenically unsaturated monomers (a4) include alkyl (meth)acrylates such as methyl (meth)acrylate, n-butyl (meth)acrylate and 2-ethylhexyl acrylate.
  • Other ethylenically unsaturated monomers (a4) may be used alone or in combination of two or more.
  • compounds having two or more ethylenically unsaturated groups such as di(meth)acrylate and divinylbenzene can also be used in combination.
  • the content of the branched alkyl (meth)acrylate (a1) is preferably 10% by weight or more, more preferably 10 to 60% by weight, more preferably 15 to 15% by weight, based on 100% by weight of the copolymer component (a). 50% by weight is more preferred, and 20 to 45% by weight is particularly preferred. If the content of the branched alkyl (meth)acrylate (a1) is too small, the adhesive properties tend to deteriorate during primary curing. If the content of the branched alkyl (meth)acrylate (a1) is too high, the adhesive properties after complete curing tend to deteriorate.
  • the content of the hydroxyl group-containing (meth)acrylate (a2) is preferably 5% by weight or more, more preferably 10 to 40% by weight, more preferably 12 to 12% by weight, based on 100% by weight of the copolymer component (a). 30% by weight is more preferred. If the content of the hydroxyl group-containing (meth)acrylate (a2) is too small, the moisture and heat resistance tends to decrease. If the content of the hydroxyl group-containing (meth)acrylate (a2) is too high, the acrylic resin tends to undergo a self-crosslinking reaction, which tends to lower the heat resistance.
  • the content of the (meth)acrylate monomer (a3) is preferably 0.01 to 5% by weight, preferably 0.1 to 2% by weight, relative to 100% by weight of the copolymer component (a). is more preferred, and 0.2 to 1% by weight is even more preferred. If the content of the (meth)acrylic acid ester monomer (a3) is too small, there is a tendency for the holding power of the active energy ray to form a crosslinked structure to decrease. Moreover, when forming a crosslinked structure for producing a processable adhesive sheet, a large amount of active energy radiation is required. As a result, a large amount of energy is required to produce the pressure-sensitive adhesive sheet, which tends to make efficient production difficult. If the content of the (meth)acrylic acid ester monomer (a3) is too high, the cohesive force of the entire system tends to be too high and the adhesive force tends to decrease.
  • the content of the other ethylenically unsaturated monomer (a4) is usually preferably 80% by weight or less, more preferably 70% by weight or less, more preferably 70% by weight or less, based on 100% by weight of the copolymerization component (a). Weight % or less is more preferable. If the content of the other ethylenically unsaturated monomer (a4) is too high, the adhesive physical properties at the time of low cross-linking may deteriorate.
  • the acrylic resin (A) according to the third aspect is a polymer having structural units based on the alkyl (meth)acrylate (a1).
  • the acrylic resin (A) includes, in addition to the structural unit based on the branched alkyl (meth)acrylate (a1), the structural unit based on the hydroxyl group-containing (meth)acrylate (a2), and the (meth)acrylic acid ester monomer. It may further have at least one selected from the group consisting of structural units based on (a3) and structural units based on the ethylenically unsaturated monomer (a4), if necessary.
  • the ratio of structural units based on each monomer can be determined according to the composition of the copolymer component (a), and the preferred embodiment is also the same.
  • the glass transition temperature based on the dynamic viscoelasticity of the acrylic resin (A) according to the third aspect is -10°C or higher, preferably -5 to 20°C, more preferably 0 to 15°C, and 2 to 13°C. is more preferred. If the glass transition temperature based on dynamic viscoelasticity is too high, the pressure-sensitive adhesive layer tends to be less conformable to irregularities and less adhesive, resulting in a decrease in adhesive force. If the glass transition temperature based on dynamic viscoelasticity is too low, adhesive physical properties at the time of low cross-linking tend to decrease.
  • the glass transition temperature based on dynamic viscoelasticity is obtained by the following measuring method.
  • An acrylic resin solution containing only the acrylic resin (A) and the organic solvent is prepared by using a suitable organic solvent. After adjusting the concentration of the acrylic resin solution, it is coated on a release sheet so that the thickness after drying becomes 50 ⁇ m. After that, the organic solvent is removed by drying by heat treatment at 90 to 105° C. for 5 to 10 minutes, and then this is attached to a release sheet to prepare an acrylic resin sheet containing 99% or more acrylic resin. do. After that, a plurality of acrylic resin sheets are laminated to produce an acrylic resin sheet having a thickness of about 800 ⁇ m.
  • Measuring instrument dynamic viscoelasticity measuring device (trade name: DVA-225, manufactured by IT Instrumentation & Control Co., Ltd.)
  • Deformation mode Shear Strain: 0.1% Measurement temperature: -100 to 60°C Measurement frequency: 1Hz
  • the acrylic resin (A) has a weight average molecular weight of 400,000 or less, preferably 10,000 to 350,000, more preferably 50,000 to 300,000, and 100,000 to 290. ,000 is more preferred, and 150,000 to 280,000 is particularly preferred. If the weight-average molecular weight of the acrylic resin (A) is too large, the viscosity tends to be too high, resulting in poor coatability and handling. If the weight-average molecular weight of the acrylic resin (A) is too small, the cohesive force tends to decrease and the adhesive physical properties tend to decrease.
  • the weight-average molecular weight of the acrylic resin (A) is the weight-average molecular weight at the time of completion of production, and is the weight-average molecular weight of the acrylic resin (A) that has not been heated or the like after production.
  • the weight average molecular weight of the acrylic resin (A) is the weight average molecular weight in terms of standard polystyrene molecular weight.
  • Number average molecular weight can also be measured using a similar method. Further, the dispersity is obtained from the weight average molecular weight and the number average molecular weight.
  • the degree of dispersion (weight average molecular weight/number average molecular weight) of the acrylic resin (A) is preferably 15 or less, more preferably 10 or less, even more preferably 7 or less, and particularly preferably 5 or less. If the degree of dispersion of the acrylic resin (A) is too high, the durability of the pressure-sensitive adhesive layer tends to decrease. Moreover, there is also a tendency that foaming or the like is likely to occur. If the degree of dispersion of the acrylic resin (A) is too low, the handleability tends to deteriorate.
  • the lower limit of the dispersity is usually 1.1 due to manufacturing limitations.
  • the acrylic resin (A) can be produced by polymerizing a copolymer component (a) containing a branched alkyl (meth)acrylate (a1).
  • the copolymerization component (a) according to the third aspect includes optional polymerization components such as hydroxyalkyl (meth)acrylate (a2), (meth)acrylic acid ester monomer (a3), and ethylenically unsaturated monomer (a4). It may be further contained as necessary.
  • polymerization methods for the acrylic resin (A) include conventionally known polymerization methods such as solution polymerization, suspension polymerization, bulk polymerization, and emulsion polymerization. Solution polymerization is preferred in terms of safety and stability of the reaction and the ability to produce the acrylic resin (A) with any monomer composition.
  • An example of a preferred method for producing the acrylic resin (A) according to the third aspect is shown below.
  • solution polymerization can be carried out by mixing or dropping the copolymerization component (a) according to the third aspect and the polymerization initiator into an organic solvent.
  • organic solvent used in the polymerization reaction include aromatic hydrocarbons such as toluene and xylene; aliphatic hydrocarbons such as n-hexane; esters such as methyl acetate, ethyl acetate and butyl acetate; Aliphatic alcohols such as ethyl alcohol, n-propyl alcohol and isopropyl alcohol; Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; Aliphatic ethers such as dimethyl ether and diethyl ether; Fats such as methylene chloride and ethylene chloride halogenated hydrocarbons; cyclic ethers such as tetrahydrofuran; Among them, esters and ketones are preferred, and
  • an azo polymerization initiator As the polymerization initiator used in the polymerization reaction, an azo polymerization initiator, a peroxide polymerization initiator, or the like, which is a normal radical polymerization initiator, can be used.
  • azo polymerization initiators include 2,2′-azobis(2-methylbutyronitrile), 2,2′-azobisisobutyronitrile, (1-phenylethyl)azodiphenylmethane, 2,2′ -azobis(2,4-dimethylvaleronitrile), 2,2'-azobis(2-cyclopropylpropionitrile), 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile) and the like. be done.
  • Peroxide-based polymerization initiators include, for example, benzoyl peroxide, di-tert-butyl peroxide, cumene hydroperoxide, lauroyl peroxide, tert-butylperoxypivalate, tert-hexylperoxypivalate, tert-hexyl peroxyneodecanoate, diisopropyl peroxycarbonate, diisobutyryl peroxide and the like.
  • azo polymerization initiators are preferred, and 2,2'-azobisisobutyronitrile and 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile) are more preferred.
  • One polymerization initiator may be used alone, or two or more polymerization initiators may be used in combination.
  • the amount of the polymerization initiator used is usually 0.001 to 10 parts by weight, preferably 0.1 to 8 parts by weight, more preferably 0.5 to 6 parts by weight, per 100 parts by weight of the copolymer component (a). parts, particularly preferably 1 to 4 parts by weight, more preferably 1.5 to 3 parts by weight, most preferably 2 to 2.5 parts by weight.
  • the amount of the polymerization initiator used is too small, the rate of polymerization of the acrylic resin (A) decreases, and the amount of residual monomer tends to increase. Moreover, the weight average molecular weight of acrylic resin (A) tends to increase. If the amount of the polymerization initiator used is too large, the acrylic resin (A) tends to gel.
  • Polymerization conditions for solution polymerization are not particularly limited, and polymerization can be carried out according to conventionally known polymerization conditions.
  • the copolymerization component (a) and the polymerization initiator can be mixed or dropped into an organic solvent for polymerization.
  • the polymerization temperature in the polymerization reaction is usually 40 to 120°C, preferably 50 to 90°C from the viewpoint of stable reaction. If the polymerization temperature is too high, the acrylic resin (A) tends to gel easily. If the polymerization temperature is too low, the activity of the polymerization initiator will decrease, resulting in a decrease in the rate of polymerization and an increase in residual monomers.
  • the polymerization time in the polymerization reaction is not particularly limited, but it is 0.5 hours or longer, preferably 1 hour or longer, more preferably 2 hours or longer, and particularly preferably 5 hours or longer after the last addition of the polymerization initiator.
  • the polymerization reaction is preferably carried out while refluxing the solvent in order to facilitate heat removal.
  • the photoinitiator (B) according to the third aspect contains an intramolecular hydrogen abstraction photoinitiator (b1) and an intermolecular hydrogen abstraction photoinitiator (b2).
  • the photoinitiator (B) according to the third aspect is other than the intramolecular hydrogen abstraction photoinitiator (b1) and the intermolecular hydrogen abstraction photoinitiator (b2) within a range that does not impair the effects of the invention. may further contain another photoinitiator (b3).
  • intramolecular hydrogen abstraction type photoinitiator (b1) Examples of the intramolecular hydrogen-abstracting photoinitiator (b1) according to the third aspect include oxy-phenyl-acetic acid 2-[2-oxo-2-phenyl-acetoxy-ethoxy]-ethyl ester and oxy-phenyl- Mixtures of acetic acid 2-[2-hydroxy-ethoxy]-ethyl esters, methyl benzoylformate, and the like.
  • oxy-phenyl-acetic acid 2-[2-oxo-2-phenyl-acetoxy-ethoxy]-ethyl ester and oxy-phenyl-acetic acid 2-[2-hydroxy- A mixture of ethoxy]-ethyl esters is preferred.
  • Intermolecular hydrogen abstraction type photoinitiator (b2) Examples of the intermolecular hydrogen abstraction type photoinitiator (b2) according to the third aspect include benzophenone, 4-methyl-benzophenone, 2,4,6-trimethylbenzophenone, 4-phenylbenzophenone, 3,3′-dimethyl -4-methoxybenzophenone, 4-(meth)acryloyloxybenzophenone, 4-[2-((meth)acryloyloxy)ethoxy]benzophenone, 4-(meth)acryloyloxy-4'-methoxybenzophenone, carboxymethoxymethoxybenzophenone- Examples include polyethylene glycol 250 diester.
  • 2,4,6-trimethylbenzophenone is preferable because it is liquid and easy to handle.
  • 4-(meth)acryloyloxybenzophenone, 4-[2-((meth)acryloyloxy)ethoxy]benzophenone, and 4-(meth)acryloyloxy, which have multiple crosslink points in the molecule, can be highly crosslinked.
  • -4'-Methoxybenzophenone, carboxymethoxymethoxybenzophenone-polyethylene glycol 250 diester are preferred.
  • Commercially available products include "MBP" manufactured by Shinryo Corporation and IGM RESINS B.I. V. "Omnirad BP", “Omnirad 4MBZ”, "Esacure TZT", "Omnipol BP" manufactured by the company.
  • Another photoinitiator (b3) is oxyphenyl-acetic acid 2-[2-oxo-2-phenylacetoxyethoxy]ethyl ester of an intramolecularly cleaved acetophenone photoinitiator; Diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethylketal, 4-(2-hydroxyethoxy)phenyl-(2-hydroxy-2-propyl)ketone, 1-hydroxycyclohexyl Phenyl ketone, 2-methyl-2-morpholino(4-thiomethylphenyl)propan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)butanone, 2-hydroxy-2-methyl- Acetophenones such as 1-[4-(1-methylvinyl)phenyl]propanone oligomers; Benzoins such as benzoin
  • auxiliary agents for the photoinitiator (B) triethanolamine, triisopropanolamine, 4,4'-dimethylaminobenzophenone (Michler's ketone), 4,4'-diethylaminobenzophenone, 2-dimethylaminoethyl Benzoic acid, ethyl 4-dimethylaminobenzoate, (n-butoxy)ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, 2-ethylhexyl 4-dimethylaminobenzoate, 2,4-diethylthioxanthone , 2,4-diisopropylthioxanthone and the like can also be used in combination.
  • the auxiliary agent for the photoinitiator (B) may be used alone or in combination of two or more.
  • the pressure-sensitive adhesive composition according to the third aspect preferably further contains a cross-linking agent (C) in addition to the acrylic resin (A) and the photoinitiator (B).
  • a cross-linking agent (C) examples include an active energy ray cross-linking agent (c1) and a thermal cross-linking agent (c2).
  • the active energy ray cross-linking agent (c1) and the thermal cross-linking agent (c2) may be used alone or in combination of two or more.
  • multistage curing is possible only by controlling the active energy ray dose.
  • the active energy ray cross-linking agent (c1) and the thermal cross-linking agent (c2) are contained as the cross-linking agent (C)
  • multistage curing can be achieved by using both heat curing and active energy ray curing.
  • the active energy ray cross-linking agent (c1) includes a monofunctional cross-linking agent containing one ethylenically unsaturated group in one molecule, and a polyfunctional cross-linking agent containing two or more ethylenically unsaturated groups in one molecule.
  • a cross-linking agent may be mentioned.
  • polyfunctional cross-linking agents are preferred.
  • polyfunctional cross-linking agents include hexanediol di(meth)acrylate, butanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, (Poly)ethylene glycol mono(meth)acrylate, (poly)butylene glycol mono(meth)acrylate, (poly)ethylene glycol di(meth)acrylate, (poly)propylene glycol di(meth)acrylate, (poly)tetramethylene glycol Di(meth)acrylate, (poly)pentamethylene glycol di(meth)acrylate, (poly)hexamethylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, pentaerythritol di(meth)acrylate, pentaerythritol tri (meth)acrylate, dipentaerythr
  • (meth)acrylates containing two ethylenically unsaturated groups are preferable in terms of the balance of adhesive physical properties after curing, and in particular, (poly)ethylene glycol di(meth)acrylate and (poly)propylene glycol. Di(meth)acrylate and (poly)tetramethylene glycol di(meth)acrylate are preferred.
  • Polyfunctional cross-linking agents may be used alone or in combination of two or more.
  • Thermal cross-linking agent (c2) can exhibit excellent adhesion by reacting with functional groups derived from functional group-containing monomers that are mainly constituent monomers of the acrylic resin (A).
  • functional groups derived from functional group-containing monomers that are mainly constituent monomers of the acrylic resin (A).
  • isocyanate cross-linking agent (c2-1) epoxy cross-linking agent (c2-2), aziridine cross-linking agent (c2-3), melamine cross-linking agent (c2-4), aldehyde cross-linking agent (c2-5 ), amine-based cross-linking agents (c2-6), and metal chelate-based cross-linking agents (c2-7).
  • the isocyanate-based cross-linking agent (c2-1) is preferably used in terms of improving adhesion to the substrate and reactivity with the acrylic resin (A).
  • the thermal cross-linking agent (c2) may be used alone or in combination of two or more.
  • Examples of the isocyanate-based cross-linking agent (c2-1) include tolylene diisocyanate-based compounds such as 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate; xylylene diisocyanate compounds such as 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, tetramethyl xylylene diisocyanate; Aromatic isocyanate compounds such as 1,5-naphthalene diisocyanate and triphenylmethane triisocyanate; Hexamethylene diisocyanate compounds such as hexamethylene diisocyanate and trimethylhexamethylene diisocyanate, and aliphatic isocyanate compounds such as lysine diisocyanate; Alicyclic isocyanate compounds such as isophorone diisocyanate; Adducts of these isocyanate compounds and polyol compounds such as trimethylolpropane; burettes and isocyan
  • isocyanate-based cross-linking agents (c2-1) it is preferable to use aromatic isocyanate-based compounds from the viewpoint of excellent reactivity, and tolylene diisocyanate-based compounds are particularly preferable. Moreover, from the viewpoint of suppressing yellowing, it is preferable to use an aliphatic isocyanate-based compound, and particularly preferably a hexamethylene diisocyanate-based compound.
  • Examples of the epoxy-based cross-linking agent (c2-2) include bisphenol A/epichlorohydrin type epoxy resin, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerin diglycidyl ether, glycerin triglycidyl ether, and 1,6-hexane.
  • aziridine-based cross-linking agents examples include tetramethylolmethane-tri- ⁇ -aziridinylpropionate, trimethylolpropane-tri- ⁇ -aziridinylpropionate, and N,N'-diphenylmethane.
  • Melamine-based cross-linking agents (c2-4) include, for example, hexamethoxymethylmelamine, hexaethoxymethylmelamine, hexapropoxymethylmelamine, hexaptoxymethylmelamine, hexapentyloxymethylmelamine, hexahexyloxymethylmelamine, and melamine resins. etc.
  • Aldehyde-based cross-linking agents (c2-5) include, for example, glyoxal, malondialdehyde, succindialdehyde, maleinedialdehyde, glutaredialdehyde, formaldehyde, acetaldehyde, and benzaldehyde.
  • amine-based cross-linking agents include hexamethylenediamine, triethyldiamine, polyethyleneimine, hexamethylenetetraamine, diethylenetriamine, triethyltetramine, isophoronediamine, amino resins, and polyamides.
  • metal chelate cross-linking agents include acetylacetone and acetoacetyl ester linkages of polyvalent metals such as aluminum, iron, copper, zinc, tin, titanium, nickel, antimony, magnesium, vanadium, chromium and zirconium. position compounds and the like.
  • the pressure-sensitive adhesive composition according to the third aspect further contains a silane coupling agent (D) as a compound other than the acrylic resin (A), the photoinitiator (B) and the cross-linking agent (C). is preferable in terms of improving
  • the silane coupling agent (D) is an organosilicon compound containing in its structure one or more reactive functional groups and one or more alkoxy groups bonded to silicon atoms.
  • the silane coupling agent (D) includes monomer type and oligomer type.
  • Examples of reactive functional groups in the silane coupling agent (D) include epoxy groups, (meth)acryloyl groups, mercapto groups, hydroxyl groups, carboxy groups, amino groups, amide groups, isocyanate groups, and the like. Among these, an epoxy group and a mercapto group are preferable from the viewpoint of excellent durability and reworkability.
  • the content of reactive functional groups in the silane coupling agent (D) is preferably 3,000 g/mol or less, more preferably 1,500 g/mol or less, and even more preferably 1,000 g/mol or less. When the reactive functional group is within the above numerical range, the balance between durability and reworkability is improved.
  • the lower limit of the content of reactive functional groups in the silane coupling agent (D) is 200 g/mol.
  • the silicon-bonded alkoxy group in the silane coupling agent (D) an alkoxy group having 1 to 8 carbon atoms is preferable from the viewpoint of durability and storage stability. Among them, a methoxy group and an ethoxy group are more preferable.
  • the silane coupling agent (D) may have a reactive functional group and an organic functional group other than the silicon-bonded alkoxy group, such as an alkyl group or a phenyl group.
  • Silane coupling agents (D) include, for example, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropyldimethoxymethylsilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycid xypropyltriethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, methyltri(glycidyl)silane, ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl)ethyltrimethoxysilane and the like. Among them, ⁇ -glycidoxypropyltrimethoxysilane is preferable from the viewpoint of heat resistance. Silane coupling agents (D) may be used alone or in
  • the pressure-sensitive adhesive composition according to the third aspect contains a carbodiimide compound (E) as a compound other than the acrylic resin (A), the photoinitiator (B), the cross-linking agent (C) and the silane coupling agent (D). Further containing is preferable from the viewpoint of heat resistance.
  • Carbodiimide compounds (E) include, for example, bis(2,6-diisopropylphenyl)carbodiimide, dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, tert-butylisopropylcarbodiimide, diphenylcarbodiimide, di-tert- Examples include monocarbodiimides such as butylcarbodiimide and didodecylcarbodiimide, polycarbodiimides containing multiple carbodiimides, and cyclic carbodiimides.
  • the carbodiimide compound (E) may be used alone or in combination of two or more.
  • the pressure-sensitive adhesive composition according to the third aspect may optionally contain a pressure-sensitive adhesive as another optional component.
  • the pressure-sensitive adhesive composition according to the third aspect may contain conventionally known additives such as cross-linking accelerators, antistatic agents, tackifiers and functional dyes.
  • the content of the acrylic resin (A) is preferably 80% by weight or more, more preferably 90 to 99.9% by weight, and 92 to 99.9% by weight with respect to the entire pressure-sensitive adhesive composition. is more preferred.
  • the content of the acrylic resin (A) is within the above numerical range, it is easy to obtain a pressure-sensitive adhesive sheet exhibiting excellent pressure-sensitive adhesive physical properties in a low crosslinked state after primary curing.
  • the content of the photoinitiator (B) is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 5.0 parts by weight, relative to 100 parts by weight of the acrylic resin (A). Preferably, 0.5 to 3.0 parts by weight is more preferable. When the content of the photoinitiator (B) is within the above numerical range, sufficient curability can be obtained upon complete curing.
  • the content of the intramolecular hydrogen abstraction type photoinitiator (b1) is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 5.0 parts by weight, relative to 100 parts by weight of the acrylic resin (A). Parts by weight are more preferred. If the content of the intramolecular hydrogen abstraction type photoinitiator (b1) is too high, the adhesive strength after complete curing tends to decrease. If the content of the intramolecular hydrogen abstraction type photoinitiator (b1) is too small, the adhesion property tends to deteriorate at a low degree of cross-linking.
  • the content of the intermolecular hydrogen abstraction type photoinitiator (b2) is preferably 0.01 to 10 parts by weight, preferably 0.1 to 5.0 parts by weight, relative to 100 parts by weight of the acrylic resin (A). Parts by weight are more preferred. If the content of the intermolecular hydrogen abstraction type photoinitiator (b2) is too high, the adhesive strength after complete curing tends to decrease. If the content of the intermolecular hydrogen abstraction type photoinitiator (b2) is too small, the adhesion properties at a low degree of crosslinking tend to deteriorate.
  • the content of the cross-linking agent (C) is usually preferably 20 parts by weight or less with respect to 100 parts by weight of the acrylic resin (A). 0.001 to 15 parts by weight is more preferred, and 0.1 to 10 parts by weight is even more preferred. If the content of the cross-linking agent (C) is too large, the adhesive strength tends to decrease. If the content of the cross-linking agent (C) is too small, the adhesive physical properties under high temperature conditions tend to deteriorate.
  • the content of the active energy ray cross-linking agent (c1) is usually based on 100 parts by weight of the acrylic resin (A) 0.01 to 20 parts by weight is preferable, 0.1 to 10 parts by weight is more preferable, and 0.5 to 7.5 parts by weight is even more preferable. If the content of the active energy ray cross-linking agent (c1) is too small, there is a tendency that sufficient durability cannot be obtained due to insufficient cohesion. If the content of the active energy ray cross-linking agent (c1) is too large, the adhesive physical properties during primary curing tend to be lowered.
  • the content of the thermal cross-linking agent (c2) is usually 0.00 per 100 parts by weight of the acrylic resin (A). 001 to 5 parts by weight is preferred, 0.02 to 1 part by weight is more preferred, and 0.05 to 0.5 parts by weight is even more preferred. If the content of the thermal cross-linking agent (c2) is too small, the cohesive force tends to be insufficient and the adhesive physical properties tend to deteriorate during the primary curing. If the content of the thermal cross-linking agent (c2) is too large, the adhesive strength tends to decrease at the time of complete curing.
  • an active energy ray cross-linking agent (c1) and a thermal cross-linking agent (c2) together as the cross-linking agent (C).
  • the content ratio (c1/c2) of the active energy ray cross-linking agent (c1) and the thermal cross-linking agent (c2) is preferably 100/1 to 100/50 in weight ratio.
  • the content of the silane coupling agent (D) is from 0.001 to 100 parts by weight of the acrylic resin (A). 3 parts by weight is preferred, 0.005 to 1 part by weight is more preferred, 0.01 to 0.5 parts by weight is even more preferred, and 0.015 to 0.3 parts by weight is particularly preferred. If the content of the silane coupling agent (D) is too small, it tends to be difficult to obtain the effect of improving the durability. If the content of the silane coupling agent (D) is too large, the adhesive strength tends to decrease due to the influence of bleeding out and the like.
  • the content of the carbodiimide compound (E) is 0.01 to 10 parts by weight with respect to 100 parts by weight of the acrylic resin (A). 0.1 to 5 parts by weight is more preferred, 0.2 to 2 parts by weight is even more preferred, and 0.3 to 1 part by weight is particularly preferred. If the content of the carbodiimide-based compound (E) is too small, the thermal stability of the acrylic resin (A) tends to decrease. If the content of the carbodiimide-based compound (E) is too large, there is a tendency for durability to decrease due to the effects of bleeding out and the like.
  • the content of the other adhesives and additives is 10 parts by weight or less with respect to 100 parts by weight of the acrylic resin (A). is preferred, and 5 parts by weight or less is more preferred.
  • a pressure-sensitive adhesive composition according to the third aspect can be obtained.
  • the mixing method is not particularly limited, and various methods such as a method of mixing each component at once, a method of mixing arbitrary components and then mixing the remaining components all at once or sequentially can be adopted.
  • the pressure-sensitive adhesive composition according to the third aspect can be suitably used as a pressure-sensitive adhesive for a multi-stage curing pressure-sensitive adhesive sheet that cures in a plurality of stages.
  • excellent pressure-sensitive adhesive physical properties can be obtained in terms of low tackiness and high constant load holding power even in a low crosslinked state after primary curing. After complete curing, it not only has adhesive physical properties such as ordinary adhesive strength, but also has excellent durability when bonding members of various types and shapes such as polarizing plates and glass.
  • the pressure-sensitive adhesive composition according to the third aspect can continue to adhere to complex shapes that are subject to stress even in a low-crosslinking state after primary curing, and can be completely cured thereafter. Therefore, it is particularly suitable for use as an adhesive or an adhesive sheet for use in touch panels, image display devices, and the like.
  • the pressure-sensitive adhesive according to the third aspect is obtained by cross-linking the pressure-sensitive adhesive composition according to the third aspect described above.
  • the acrylic resin (A) contained in the pressure-sensitive adhesive composition forms a cross-linked structure at least either intramolecularly or intermolecularly.
  • the pressure-sensitive adhesive composition according to the third aspect is crosslinked to become the pressure-sensitive adhesive according to the third aspect.
  • the acrylic resin (A) has an active energy ray crosslinkable structural site, a crosslinked structure can be formed by irradiation with an active energy ray.
  • the pressure-sensitive adhesive according to the third aspect exhibits multistage curability that allows curing in multiple stages.
  • the pressure-sensitive adhesive according to the third aspect becomes in a low crosslinked state by primary curing before complete curing. Complete curing and primary curing are not always clearly distinguishable, but can be distinguished, for example, by differences in gel fraction and dynamic viscoelasticity.
  • Curing means is not particularly limited in either the primary curing step or the complete curing step, and heating or irradiation with active energy rays may be used. Further, the primary curing process may be divided into a plurality of times, and multistage curing may be performed to achieve a completely cured state. Since the pressure-sensitive adhesive according to the third aspect is excellent in adhesive properties after primary curing, it is suitably used for bonding optical members constituting touch panels, image display devices, and the like.
  • the adhesive according to the third aspect contains at least the crosslinked product of the acrylic resin (A) according to the third aspect.
  • the crosslinked product may be a partially crosslinked product in which at least part of the acrylic resin (A) is partially crosslinked, or a completely crosslinked product in which the acrylic resin (A) is entirely crosslinked. good.
  • the pressure-sensitive adhesive according to the third aspect may contain both a partially crosslinked product and a completely crosslinked product of the acrylic resin (A).
  • a pressure-sensitive adhesive sheet according to the third aspect has a pressure-sensitive adhesive layer comprising the pressure-sensitive adhesive according to the third aspect.
  • the pressure-sensitive adhesive sheet according to the third aspect can exhibit multistage curability in which the pressure-sensitive adhesive layer is cured in multiple stages.
  • a pressure-sensitive adhesive sheet can be obtained by providing a pressure-sensitive adhesive layer made of the pressure-sensitive adhesive according to the third aspect on a base sheet.
  • a double-sided pressure-sensitive adhesive sheet can be obtained by providing a pressure-sensitive adhesive layer on a release sheet.
  • a substrate-less double-faced PSA sheet can be produced by forming a PSA layer on a release sheet in place of the base sheet, and laminating the release sheet on the opposite side of the PSA layer.
  • a thick pressure-sensitive adhesive layer may be further formed by further forming a pressure-sensitive adhesive layer on the formed pressure-sensitive adhesive layer. The pressure-sensitive adhesive sheet and double-sided pressure-sensitive adhesive sheet thus obtained are used by peeling off the release sheet from the pressure-sensitive adhesive layer.
  • Examples of the method for producing the pressure-sensitive adhesive sheet according to the third aspect include the following methods (i) and (ii).
  • a pressure-sensitive adhesive sheet is formed after applying a coating liquid in which the pressure-sensitive adhesive composition according to the third aspect is dissolved in a solvent
  • the coating containing the pressure-sensitive adhesive composition according to the third aspect is coated with an appropriate organic solvent. Adjust the concentration of the working liquid and apply it directly onto the substrate sheet. After that, it is dried by heat treatment or the like at 80 to 105° C. for 0.5 to 10 minutes, and then attached to a base sheet or a release sheet. After that, the adhesive composition is crosslinked (cured) by irradiation with active energy rays or aged, and a pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer can be produced.
  • the concentration of the pressure-sensitive adhesive composition is usually 20-60% by weight, preferably 30-50% by weight, as a solid content.
  • the method (ii) will be described.
  • the pressure-sensitive adhesive composition according to the third aspect is melted by heating to form a pressure-sensitive adhesive sheet, the melted state is coated on one or both sides of the base sheet, and then the base sheet is cooled, or a T-die or the like is used.
  • a pressure-sensitive adhesive layer is formed on one side or both sides of the substrate sheet to a desired thickness by a method such as extrusion lamination on the material sheet. Then, a pressure-sensitive adhesive sheet can be produced by bonding a release sheet to the surface of the pressure-sensitive adhesive layer, if necessary.
  • a substrate-less double-sided PSA sheet can be produced by forming a PSA layer on a release sheet and laminating the release sheet on the opposite side of the PSA layer. The pressure-sensitive adhesive sheet and double-sided pressure-sensitive adhesive sheet thus obtained are used by peeling off the release sheet from the pressure-sensitive adhesive layer.
  • the base sheet examples include polyester resins such as polyethylene naphtate, polyethylene terephthalate, polybutylene terephthalate, and polyethylene terephthalate/isophthalate copolymer; polyolefin resins such as polyethylene, polypropylene, and polymethylpentene; polyvinyl fluoride; Polyethylene fluoride resins such as polyvinylidene fluoride and polyethylene fluoride; polyamides such as nylon 6 and nylon 6,6; polyvinyl chloride, polyvinyl chloride/vinyl acetate copolymer, ethylene-vinyl acetate copolymer, ethylene-vinyl Vinyl polymers such as alcohol copolymers, polyvinyl alcohol and vinylon; Cellulose resins such as cellulose triacetate and cellophane; Acrylic resins such as polymethyl methacrylate, polyethyl methacrylate, polyethyl acrylate and polybutyl acrylate.
  • polyester resins such as polyethylene naph
  • These base sheets can be used as a single-layer body or as a multi-layer body in which two or more types are laminated.
  • a synthetic resin sheet is preferable from the viewpoint of weight reduction.
  • release sheet for example, various synthetic resin sheets exemplified in the base sheet, paper, woven fabric, non-woven fabric, etc. that have been subjected to release treatment can be used.
  • release sheet it is preferable to use, for example, a silicon-based release sheet.
  • the method of applying the adhesive composition is not particularly limited.
  • methods such as roll coating, die coating, gravure coating, comma coating, slot coating and screen printing can be used.
  • UV light As active energy rays, rays such as far-ultraviolet rays, ultraviolet rays, near-ultraviolet rays, and infrared rays; electromagnetic waves such as X-rays and ⁇ -rays; electron beams; proton beams; Curing with UV light is preferred in terms of curing speed, availability of irradiation equipment, price, and the like.
  • the gel fraction of the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet before complete curing it is possible to easily bond the adherend regardless of the shape of the adherend, and the pressure-sensitive adhesive layer can hold the adherend after bonding. From the point of view, it is preferably 0.1 to 60% by weight, more preferably 1 to 50% by weight, particularly preferably 5 to 45% by weight.
  • the gel fraction after complete curing of the adhesive layer of the adhesive sheet is preferably 50 to 95% by weight, more preferably 55 to 90% by weight, and particularly preferably 60 to 85% by weight, from the viewpoint of durability and adhesive strength. %. If the gel fraction is too low, cohesive strength tends to decrease, resulting in a decrease in durability. If the gel fraction is too high, there is a tendency for cohesive strength to increase and adhesive strength to decrease.
  • the gel fraction can be appropriately adjusted, for example, by the following method. ⁇ Adjust the amount of active energy ray irradiation. - Adjust the content of the active energy ray-crosslinkable structural site in the acrylic resin (A). - Adjust the types and amounts of the photoinitiator (B) and the cross-linking agent (C).
  • the gel fraction is a measure of the degree of cross-linking (degree of curing), and is calculated, for example, by the following method. That is, an adhesive sheet (without a release sheet) in which an adhesive layer is formed on a polymer sheet (for example, polyethylene terephthalate (PET) film, etc.) serving as a base material is wrapped with a 200-mesh SUS wire mesh. , and the weight percentage of the undissolved pressure-sensitive adhesive component remaining in the wire mesh after being immersed in toluene maintained at 23°C for 24 hours is defined as the gel fraction. However, it is calculated by subtracting the weight of the substrate from the weight before and after the toluene dissolution.
  • PTT polyethylene terephthalate
  • the thickness of the adhesive layer of the adhesive sheet is usually preferably 50-3000 ⁇ m, more preferably 75-1000 ⁇ m, and particularly preferably 100-350 ⁇ m. If the thickness of the pressure-sensitive adhesive layer is too thin, there is a tendency for the impact absorption to decrease. If the thickness of the pressure-sensitive adhesive layer is too thick, for example, when it is attached to an optical member, the overall thickness tends to increase, resulting in a decrease in practicality.
  • the thickness of the adhesive layer is obtained by subtracting the measured thickness of the constituent members other than the adhesive layer from the measured thickness of the entire laminate containing the adhesive layer using Mitutoyo's "ID-C112B". value.
  • the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet according to the third aspect preferably has a haze value of 2% or less, more preferably 0 to 1.5%, particularly preferably 0 when the thickness of the pressure-sensitive adhesive layer is 100 ⁇ m. ⁇ 1%. If the haze value is too high, the pressure-sensitive adhesive layer tends to whiten and the transparency tends to decrease.
  • an optical member with a pressure-sensitive adhesive layer can be obtained by laminating the pressure-sensitive adhesive layer on the optical member.
  • the pressure-sensitive adhesive layer surface of the pressure-sensitive adhesive sheet according to the third embodiment in which the pressure-sensitive adhesive layer is formed on the release sheet is attached to the optical member, and then the release sheet is peeled off to obtain the optical member with the pressure-sensitive adhesive layer.
  • Optical members can also be bonded together using the above double-sided pressure-sensitive adhesive sheet.
  • optical members examples include members that make up touch panels and image display devices. Examples include displays (organic EL, liquid crystal), transparent conductive film substrates (ITO substrates), protective films (glass), transparent antennas (films), transparent wiring, and the like.
  • displays organic EL, liquid crystal
  • ITO substrates transparent conductive film substrates
  • protective films glass
  • transparent antennas films
  • transparent wiring and the like.
  • Preferred embodiments of the third aspect described above include, but are not limited to, the following [C1] to [C6].
  • [C1] Contains an acrylic resin (A) and a photoinitiator (B), and the acrylic resin (A) is a branched alkyl (meth)acrylate having a homopolymer glass transition temperature of ⁇ 30° C. or higher It is a polymerization product of a copolymer component (a) containing (a1), the acrylic resin (A) has a glass transition temperature based on dynamic viscoelasticity of ⁇ 10° C.
  • the acrylic resin ( A) has a weight average molecular weight of 400,000 or less
  • the photoinitiator (B) contains an intramolecular hydrogen abstraction photoinitiator (b1) and an intermolecular hydrogen abstraction photoinitiator (b2).
  • a pressure-sensitive adhesive composition [C2] The pressure-sensitive adhesive composition according to [C1], further containing a cross-linking agent (C).
  • C3] A pressure-sensitive adhesive obtained by cross-linking the pressure-sensitive adhesive composition according to [C1] or [C2].
  • [C4] The pressure-sensitive adhesive according to [C3], wherein the cross-linking is performed by irradiation with an active energy ray.
  • a pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer comprising the pressure-sensitive adhesive according to [C3] or [C4].
  • Preferred embodiments of the present invention include, but are not limited to, [1] to [26] below.
  • [1] Contains an acrylic resin (A) and a photoinitiator (B), the acrylic resin (A) is a polymerization product of the following copolymerization component (a), and the copolymerization Component (a) consists of an alkyl acrylate (a1) having a glass transition temperature of ⁇ 30 to 50° C. when forming a homopolymer, and an alkyl acrylate having a glass transition temperature of ⁇ 10 to 120° C. when forming a homopolymer.
  • the pressure-sensitive adhesive according to any one of [1] to [9], wherein the hydroxyl-containing monomer (a3) in the copolymer component (a) has an average alkyl chain carbon number of 2.1 or more. Composition.
  • the pressure-sensitive adhesive composition according to any one of [1] to [10], wherein one of the alkyl acrylate (a1) and the alkyl methacrylate (a2) has a branched alkyl group.
  • the photoinitiator (B) contains an intramolecular hydrogen abstraction photoinitiator (b1) or an intermolecular hydrogen abstraction photoinitiator (b2) The adhesive composition described.
  • a pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer comprising the pressure-sensitive adhesive according to [15] or [16].
  • a laminate for an image display device comprising a laminated structure in which two image display device constituent members are laminated via the pressure-sensitive adhesive sheet of [17] or [18], and the two image display devices
  • One of the device constituent members is a cover glass having a curved surface shape
  • the other of the two image display device constituent members is a touch sensor, an image display panel, a surface protective film, an antireflection film, a color filter, and a polarized light.
  • a laminate for an image display device which is at least one selected from the group consisting of films and retardation films.
  • a curved image display device comprising the laminate for an image display device according to [20].
  • Crosslinking agent (C) Polypropylene glycol #400 diacrylate (NK Ester APG400, a product manufactured by Shin-Nakamura Chemical Co., Ltd.)
  • Omnirad 754 2.0 parts (solid content conversion), Esacure TZT: 1.0 part (solid content conversion), polypropylene glycol # for 100 parts of acrylic resin (A-A1) solution (solid content conversion) 400 diacrylate: 5.0 parts (solid content conversion) and KBM403: 0.1 part (solid content conversion) were mixed to obtain an adhesive composition.
  • the obtained pressure-sensitive adhesive composition was adjusted to a solid content concentration of 45% with ethyl acetate, applied to a polyester release sheet so that the thickness after drying was about 50 ⁇ m, dried at 100 ° C. for 5 minutes, An adhesive composition layer was formed.
  • Two polyester-based release sheets on which the pressure-sensitive adhesive composition layer was formed in this manner were prepared and laminated with the pressure-sensitive adhesive composition layers opposed to each other.
  • a high-pressure mercury UV irradiation apparatus was used to irradiate the adhesive composition layer with a peak illuminance of 150 mW/cm 2 and an integrated exposure amount of 1000 mJ/cm 2 (500 mJ/cm 2 ) .
  • ⁇ 2 passes) to form a pressure-sensitive adhesive layer (primary curing) to obtain a substrate-less double-sided pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer thickness of 100 ⁇ m.
  • PET polyethylene terephthalate
  • Examples A2 to A6 Comparative Examples A1 and A2>
  • a pressure-sensitive adhesive composition of each example was prepared in the same manner as in Example A1, except that the acrylic resin (A) and the photoinitiator (B) were changed. Then, in the same manner as in Example A1, a substrate-less double-sided pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer with a thickness of 100 ⁇ m and a PET sheet with a pressure-sensitive adhesive layer were sequentially produced.
  • Table 2 shows the composition of the pressure-sensitive adhesive composition of each example.
  • a weight of 50 g was hung from the end in the length direction of the non-attached part (area 25 mm ⁇ 25 mm), a load of 50 g was applied in a direction of 90° to the plane of the stainless steel plate, and it was left to stand for 60 minutes in that state. , the distance at which the PET sheet was peeled off was measured. Evaluation criteria are as follows. A: The peel distance is less than 10 mm. B: The peel distance is 10 mm or more and less than 50 mm. C: The PET sheet was completely peeled off and dropped.
  • Probe tack before complete curing (after primary curing)
  • the PET sheet with an adhesive layer of each example was cut into a size of 12 mm width x 12 mm length, the release sheet was peeled off, and a probe tack tester (manufactured by Tester Sangyo Co., Ltd., probe tack tester TE-6001) was used.
  • pressure time of 1 second, affixing pressure of 500 gf, pushing speed of 120 mm/min, lifting speed of 600 mm/min, probe diameter of 5.1 mm (diameter), and probe tack (unit: N) was measured. Evaluation criteria are as follows. A: The probe tack (unit: N) is less than 5.
  • B... Probe tack (unit: N) is 5 or more and less than 7.5.
  • C The probe tack (unit: N) is 7.5 or more and less than 10.
  • D... Probe tack (unit: N) is 10 or more.
  • the substrate-less double-sided pressure-sensitive adhesive sheet of each example was irradiated with ultraviolet rays using a high-pressure mercury UV irradiation device at a peak illuminance of 150 mW/cm 2 and an integrated exposure amount of 4000 mJ/cm 2 (1000 mJ/cm 2 ⁇ 4 passes). , 40 mm x 40 mm, and allowed to stand under conditions of 23°C x 50% RH for 30 minutes. Then, one of the release sheets was peeled off, and the exposed pressure-sensitive adhesive layer side was attached to a 50 mm ⁇ 100 mm SUS mesh sheet (200 mesh).
  • the rest of the release sheet was peeled off, and the pressure-sensitive adhesive layer was wrapped with the SUS mesh sheet by folding back from the central portion in the longitudinal direction of the SUS mesh sheet.
  • the gel fraction (%) was calculated from the weight change when this was immersed in a sealed container containing 250 g of toluene kept at 23° C. for 24 hours.
  • the PET sheet with an adhesive layer of each example was cut into a size of 25 mm in width x 100 mm in length, and was irradiated with a high-pressure mercury UV irradiation device with a peak illuminance of 150 mW/cm 2 and an integrated exposure of 4000 mJ/cm 2 (1000 mJ). /cm 2 ⁇ 4 passes), and then the release sheet was peeled off.
  • the exposed pressure-sensitive adhesive layer side was attached to non-alkali glass ("Eagle XG" manufactured by Corning, thickness 1.1 mm) under an atmosphere of 23°C and 50% RH with two reciprocations of a 2-kg rubber roller under the same atmosphere. It was left under for 30 minutes. After that, the 180 degree peel strength (N/25 mm) was measured at normal temperature (23° C.) at a peel rate of 300 mm/min.
  • the exposed pressure-sensitive adhesive layer side was attached to a stainless steel plate (SUS304) by reciprocating a 2-kg roller under pressure (attachment area: 25 mm x 50 mm), and allowed to stand in an atmosphere of 80°C for 20 minutes. After that, a weight of 50 g was hung from the end of the length direction of the non-attached part (area 25 mm ⁇ 25 mm), a load of 50 g was applied in the direction of 90 ° to the plane of the stainless steel plate, and it was left to stand for 60 minutes in that state. , the distance that the PET sheet was peeled off was measured. Evaluation criteria are as follows. A: The peel distance is less than 5 mm. B: The peel distance is 5 mm or more and less than 10 mm. C: The peel distance was 10 mm or more, or the PET sheet was completely peeled and dropped.
  • the PET sheet with an adhesive layer of each example was cut into a size of 25 mm ⁇ 50 mm, and irradiated with a high-pressure mercury UV irradiation device at a peak illuminance of 150 mW/cm 2 and an integrated exposure amount of 4000 mJ/cm 2 (1000 mJ/cm 2 ) . 4 passes), and then the release sheet was peeled off.
  • a stainless steel plate (SUS304) is placed on the exposed adhesive layer side, and a 2 kg roller is reciprocated to apply pressure (pasting area 25 mm ⁇ 25 mm), and a creep tester (manufactured by Tester Sangyo Co., Ltd., held with a constant humidity tank) Using a force tester BE-501), a load of 1 kg was applied in an atmosphere of 80° C. for 24 hours to measure the holding force. Evaluation criteria are as follows. A: No deviation. B: The deviation is less than 1.0 mm. C: The shift was 1.0 mm or more, or the PET sheet fell.
  • the PET sheet with an adhesive layer of each example was cut into a size of 30 mm ⁇ 50 mm and irradiated with a high-pressure mercury UV irradiation device at a peak illuminance of 150 mW/cm 2 and an integrated exposure amount of 4000 mJ/cm 2 (1000 mJ/cm 2 ) . 4 passes), and then the release sheet was peeled off.
  • the exposed pressure-sensitive adhesive layer side was attached to non-alkali glass (“Eagle XG” manufactured by Corning, thickness 1.1 mm).
  • Haze value difference (%) Haze value after moist heat resistance test - Haze value before start of moist heat resistance test [Formula 2]
  • the evaluation criteria for the moist heat resistance test are as follows. A: The difference in haze value is less than 0.5%. B...Haze value difference is 0.5% or more and less than 3.0%. C...Haze value difference is 3.0% or more.
  • the PET sheet with an adhesive layer of each example was cut into a size of 12 mm in width x 12 mm in length, and irradiated with a high-pressure mercury UV irradiation device with a peak illuminance of 150 mW/cm 2 and an integrated exposure amount of 4000 mJ/cm 2 (1000 mJ). / cm 2 ⁇ 4 passes), the release sheet is peeled off, and a probe tack tester (manufactured by Tester Sangyo Co., Ltd., probe tack tester TE-6001) is used for a pressurization time of 5 seconds.
  • a probe tack tester manufactured by Tester Sangyo Co., Ltd., probe tack tester TE-6001
  • the probe tack (unit: N) was measured under the conditions of a pressure of 1000 gf, a pushing speed of 120 mm/min, a lifting speed of 600 mm/min, and a probe diameter of 5.1 mm (diameter). Evaluation criteria are as follows. A: The probe tack (unit: N) is less than 5. B... Probe tack (unit: N) is 5 or more and less than 7.5. C: The probe tack (unit: N) is 7.5 or more and less than 10. D... Probe tack (unit: N) is 10 or more.
  • the PET sheet with an adhesive layer of each example was cut into a size of 40 mm ⁇ 120 mm, and the release sheet was peeled off.
  • the exposed pressure-sensitive adhesive layer side is pressure-bonded to one of the polarizing plates having the TAC-based film laminated on both sides of the polarizer, and the polarizing plate having the surface of the TAC-based film is laminated to form a "PET sheet/adhesive layer/polarizing plate" layer.
  • a structured laminate was obtained. Thereafter, the laminate was adhered and fixed to an aluminum plate (width 70 mm, length 150 mm, thickness 0.3 mm) with a tape so that the PET surface faced the surface, to prepare an aluminum plate-fixed sample.
  • the prepared sample was bent to 5 mm ⁇ with a mandrel tester, fixed in that state, and then autoclaved (0.5 MPa ⁇ 50 ° C. ⁇ 20 minutes). : 150 mW/cm 2 , Accumulated exposure: 4000 mJ/cm 2 (1000 mJ/cm 2 ⁇ 4 passes), the bent sample was irradiated with ultraviolet rays to prepare a sample for evaluation of curved surface durability.
  • the curved surface durability evaluation sample has a layer structure of PET/adhesive layer/polarizing plate/aluminum plate in order from the outside. There is an aluminum plate on the innermost side.
  • the bending part and polarized light excluding the bending part was observed and evaluated according to the following criteria.
  • the substrate-less double-sided pressure-sensitive adhesive sheet of each example was cut into a size of 60 mm ⁇ 100 mm, and one release sheet was peeled off.
  • the exposed pressure-sensitive adhesive layer side was pressure-bonded to one of the polarizing plates having the TAC film laminated on both sides of the polarizer and the polarizing plate having the TAC film surface.
  • the other release sheet was peeled off, and the exposed adhesive layer side was laminated to non-alkali glass (“Eagle XG” manufactured by Corning, thickness 1.1 mm), autoclaved (50 ° C., 0.5 MPa, 20 minutes) was performed.
  • ultraviolet irradiation was performed from the non-alkali glass side at a peak illuminance of 150 mW/cm 2 and an integrated exposure amount of 4000 mJ/cm 2 (1000 mJ/cm 2 ⁇ 4 passes) to improve the durability of the polarizing plate.
  • a sample for evaluation was produced.
  • a sample for polarizing plate durability evaluation was allowed to stand in an atmosphere of 23°C and 50% RH for 1 day, and then subjected to a durability test for 7 days (168 hours) in an atmosphere of 80°C and an atmosphere of 60°C and 90% RH. and evaluated according to the following criteria.
  • the float at the edge of the polarizing plate is less than 1 to 2 mm.
  • C The float at the edge of the polarizing plate is 2 mm or more.
  • the pressure-sensitive adhesive sheets using the pressure-sensitive adhesive compositions of Examples A1 to A6 exhibited excellent adhesive physical properties such as low tackiness and high constant load holding power even in a low crosslinked state before complete curing (after primary curing). rice field. In addition, even after complete curing, excellent adhesion properties and durability were exhibited.
  • the glass transition temperature of the acrylic resin (A) is less than -10°C. Comparative Example A1 does not contain alkyl methacrylate (a2), and the total content of alkyl acrylate (a1) and alkyl methacrylate (a2) is less than 30% by weight.
  • Comparative Example A2 the weight ratio of alkyl acrylate (a1) and alkyl methacrylate (a2) was 85.7/14.3. Compared with Examples A1 to A6, these Comparative Examples A1 and A2 were inferior in adhesive physical properties in a low crosslinked state after primary curing, adhesive physical properties after complete curing, and reliability.
  • Crosslinking agent (C) Polypropylene glycol #400 diacrylate (NK Ester APG400, a product manufactured by Shin-Nakamura Chemical Co., Ltd.)
  • ⁇ Production Example B1 Production of acrylic resin (A-B1)> 35 parts of EMA, 10 parts of MA, 5 parts of 4HBA, 10 parts of HEA and 40 parts of 2EHA were mixed to prepare a monomer solution.
  • Ethyl acetate 18 parts (boiling point: 77°C), methyl ethyl ketone: 18 parts (boiling point: 80°C), ADVN: 0.01 part as a polymerization initiator, and 100 parts of a premixed monomer solution are placed in a 2 L flask equipped with a condenser.
  • the obtained pressure-sensitive adhesive composition was adjusted to a solid content concentration of 45% with ethyl acetate, applied to a polyester-based release sheet so that the thickness after drying was about 50 ⁇ m, dried at 100 ° C. for 5 minutes, An adhesive composition layer was formed.
  • Two polyester-based release sheets on which the pressure-sensitive adhesive composition layer was formed in this manner were prepared and laminated with the pressure-sensitive adhesive composition layers opposed to each other.
  • a high-pressure mercury UV irradiation apparatus was used to irradiate the adhesive composition layer with a peak illuminance of 150 mW/cm 2 and an integrated exposure amount of 1000 mJ/cm 2 (500 mJ/cm 2 ) .
  • ⁇ 2 passes) to form a pressure-sensitive adhesive layer (primary curing) to obtain a substrate-less double-sided pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer thickness of 100 ⁇ m.
  • PET polyethylene terephthalate
  • Examples B2 to B5 Comparative Examples B1 to B4>
  • a pressure-sensitive adhesive composition of each example was prepared in the same manner as in Example B1, except that the acrylic resin (A) and the photoinitiator (B) were changed. Then, in the same manner as in Example B1, a substrate-less double-sided pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer with a thickness of 100 ⁇ m and a PET sheet with a pressure-sensitive adhesive layer were sequentially produced.
  • Table 7 shows the composition of the pressure-sensitive adhesive composition of each example.
  • the PET sheet with an adhesive layer of each example was cut into a size of 12 mm in width ⁇ 12 mm in length, the release sheet was peeled off, and a probe tack tester (manufactured by Tester Sangyo Co., Ltd., probe tack tester TE-6001) was used. , pressure time of 1 second, affixing pressure of 500 gf, pushing speed of 120 mm/min, lifting speed of 600 mm/min, probe diameter of 5.1 mm (diameter), and probe tack (unit: N) was measured. Evaluation criteria are as follows. A: The probe tack (unit: N) is less than 5. B... Probe tack (unit: N) is 5 or more and less than 7.5. C: The probe tack (unit: N) is 7.5 or more and less than 10. D... Probe tack (unit: N) is 10 or more.
  • the substrate-less double-sided pressure-sensitive adhesive sheet of each example was irradiated with ultraviolet rays using a high-pressure mercury UV irradiation apparatus at a peak illuminance of 150 mW/cm 2 and an integrated exposure amount of 4000 mJ/cm 2 (1000 mJ/cm 2 ⁇ 4 passes). , 40 mm x 40 mm, and allowed to stand under the conditions of 23°C x 50% RH for 30 minutes. Then, one of the release sheets was peeled off, and the exposed pressure-sensitive adhesive layer side was attached to a 50 mm ⁇ 100 mm SUS mesh sheet (200 mesh).
  • the rest of the release sheet was peeled off, and the pressure-sensitive adhesive layer was wrapped with the SUS mesh sheet by folding back from the central portion in the longitudinal direction of the SUS mesh sheet.
  • the gel fraction (%) was calculated from the weight change when this was immersed in a sealed container containing 250 g of toluene kept at 23° C. for 24 hours.
  • the PET sheet with an adhesive layer of each example was cut into a size of 25 mm in width x 100 mm in length, and was irradiated with a high-pressure mercury UV irradiation device with a peak illuminance of 150 mW/cm 2 and an integrated exposure of 4000 mJ/cm 2 (1000 mJ). / cm 2 ⁇ 4 passes), and then the release sheet was peeled off.
  • the exposed pressure-sensitive adhesive layer side was attached to non-alkali glass ("Eagle XG" manufactured by Corning, thickness 1.1 mm) under an atmosphere of 23°C and 50% RH with two reciprocations of a 2-kg rubber roller under the same atmosphere. It was left under for 30 minutes. After that, the 180 degree peel strength (N/25 mm) was measured at normal temperature (23° C.) at a peel speed of 300 mm/min.
  • the exposed pressure-sensitive adhesive layer side was attached to a stainless steel plate (SUS304) by reciprocating a 2-kg roller under pressure (attachment area: 25 mm x 50 mm), and allowed to stand in an atmosphere of 80°C for 20 minutes. After that, a weight of 50 g was hung from the end in the length direction of the non-attached part (area 25 mm ⁇ 25 mm), a load of 50 g was applied in a direction of 90° to the plane of the stainless steel plate, and it was left to stand for 60 minutes in that state. , the distance that the PET sheet was peeled off was measured. Evaluation criteria are as follows. A: The peel distance is less than 5 mm. B: The peel distance is 5 mm or more and less than 10 mm. C: The peel distance was 10 mm or more, or the PET sheet was completely peeled and dropped.
  • the PET sheet with an adhesive layer of each example was cut into a size of 25 mm ⁇ 50 mm, and irradiated with a high-pressure mercury UV irradiation device at a peak illuminance of 150 mW/cm 2 and an integrated exposure amount of 4000 mJ/cm 2 (1000 mJ/cm 2 ) . 4 passes), and then the release sheet was peeled off.
  • a stainless steel plate (SUS304) is placed on the exposed adhesive layer side, and a 2 kg roller is reciprocated to apply pressure (pasting area 25 mm ⁇ 25 mm), and a creep tester (manufactured by Tester Sangyo Co., Ltd., held with a constant humidity tank) Using a force tester BE-501), a load of 1 kg was applied in an atmosphere of 80° C. for 24 hours to measure the holding force. Evaluation criteria are as follows. A: No deviation. B: The deviation is less than 1.0 mm. C: The shift was 1.0 mm or more, or the PET sheet fell.
  • the PET sheet with an adhesive layer of each example was cut into a size of 30 mm ⁇ 50 mm and irradiated with a high-pressure mercury UV irradiation device at a peak illuminance of 150 mW/cm 2 and an integrated exposure amount of 4000 mJ/cm 2 (1000 mJ/cm 2 ) . 4 passes), and then the release sheet was peeled off.
  • the exposed pressure-sensitive adhesive layer side was attached to non-alkali glass (“Eagle XG” manufactured by Corning, thickness 1.1 mm).
  • Haze value difference (%) Haze value after moist heat resistance test - Haze value before start of moist heat resistance test [Formula 2]
  • the evaluation criteria for the moist heat resistance test are as follows. A: The difference in haze value is less than 0.5%. B...Haze value difference is 0.5% or more and less than 3.0%. C...Haze value difference is 3.0% or more.
  • the PET sheet with an adhesive layer of each example was cut into a size of 12 mm wide x 12 mm long, and irradiated with a high-pressure mercury UV irradiation device with a peak illuminance of 150 mW/cm 2 and an integrated exposure amount of 4000 mJ/cm 2 (1000 mJ). / cm 2 ⁇ 4 passes), the release sheet is peeled off, and a probe tack tester (manufactured by Tester Sangyo Co., Ltd., probe tack tester TE-6001) is used for a pressurization time of 5 seconds.
  • a probe tack tester manufactured by Tester Sangyo Co., Ltd., probe tack tester TE-6001
  • the probe tack (unit: N) was measured under the conditions of a pressure of 1000 gf/cm 2 , a pushing speed of 120 mm/min, a pulling speed of 600 mm/min, and a probe diameter of 5.1 mm (diameter). Evaluation criteria are as follows. A: The probe tack (unit: N) is less than 5. B... Probe tack (unit: N) is 5 or more and less than 7.5. C: The probe tack (unit: N) is 7.5 or more and less than 10. D... Probe tack (unit: N) is 10 or more.
  • the PET sheet with an adhesive layer of each example was cut into a size of 40 mm ⁇ 120 mm, and the release sheet was peeled off.
  • the exposed pressure-sensitive adhesive layer side is pressure-bonded to one of the polarizing plates having the TAC-based film laminated on both sides of the polarizer, and the polarizing plate having the surface of the TAC-based film is laminated to form a "PET sheet/adhesive layer/polarizing plate" layer.
  • a structured laminate was obtained. Thereafter, the laminate was adhered and fixed to an aluminum plate (width 70 mm, length 150 mm, thickness 0.3 mm) with a tape so that the PET surface faced the surface, to prepare an aluminum plate-fixed sample.
  • the prepared sample was bent to 5 mm ⁇ with a mandrel tester, fixed in that state, and then autoclaved (0.5 MPa ⁇ 50 ° C. ⁇ 20 minutes). : 150 mW/cm 2 , Accumulated exposure: 4000 mJ/cm 2 (1000 mJ/cm 2 ⁇ 4 passes), the bent sample was irradiated with ultraviolet rays to prepare a sample for evaluation of curved surface durability.
  • the curved surface durability evaluation sample has a layer structure of PET/adhesive layer/polarizing plate/aluminum plate in order from the outside. There is an aluminum plate on the innermost side.
  • the bending part and polarized light excluding the bending part was observed and evaluated according to the following criteria.
  • the substrate-less double-sided pressure-sensitive adhesive sheet of each example was cut into a size of 60 mm ⁇ 100 mm, and one release sheet was peeled off.
  • the exposed pressure-sensitive adhesive layer side was pressure-bonded to one of the polarizing plates having the TAC film laminated on both sides of the polarizer and the polarizing plate having the TAC film surface.
  • the other release sheet was peeled off, and the exposed adhesive layer side was laminated to non-alkali glass (“Eagle XG” manufactured by Corning, thickness 1.1 mm), autoclaved (50 ° C., 0.5 MPa, 20 minutes) was performed.
  • ultraviolet irradiation was performed from the non-alkali glass side at a peak illuminance of 150 mW/cm 2 and an integrated exposure amount of 4000 mJ/cm 2 (1000 mJ/cm 2 ⁇ 4 passes) to improve the durability of the polarizing plate.
  • a sample for evaluation was produced.
  • a sample for polarizing plate durability evaluation was allowed to stand in an atmosphere of 23°C and 50% RH for 1 day, and then subjected to a durability test for 7 days (168 hours) in an atmosphere of 80°C and an atmosphere of 60°C and 90% RH. and evaluated according to the following criteria.
  • the float at the edge of the polarizing plate is less than 1 to 2 mm.
  • C The float at the edge of the polarizing plate is 2 mm or more.
  • the pressure-sensitive adhesive sheets using the pressure-sensitive adhesive compositions of Examples B1 to B5 exhibited excellent adhesive physical properties such as low tackiness and high constant load holding power even in a low crosslinked state before complete curing (after primary curing). rice field. In addition, even after complete curing, excellent adhesion properties and durability were exhibited.
  • the glass transition temperature of the acrylic resin (A) is less than -10°C.
  • the average carbon number of the alkyl chain of the hydroxyalkyl monomer (a2) in the copolymerization component (a) is less than 2.1.
  • Comparative Example B3 does not use an intramolecular hydrogen abstraction type photoinitiator. Compared to Examples B1 to B5, these Comparative Examples B1 to B4 were inferior in adhesive physical properties in a low crosslinked state after primary curing, and were also inferior in durability after complete curing.
  • Crosslinking agent (C) ⁇ Polypropylene glycol #400 diacrylate (NK Ester APG400, a product manufactured by Shin-Nakamura Chemical Co., Ltd.)
  • ⁇ Production Example C1 Production of acrylic resin (A-C1)> iBMA: 25 parts, 2EHA: 35 parts, MA: 25 parts, and HEA: 15 parts were mixed to prepare a monomer solution.
  • 40 parts of methyl ethyl ketone (boiling point 80° C.) as a polymerization solvent, 0.008 parts of ADVN as a polymerization initiator, and 10% of 100 parts of the previously prepared monomer solution are placed in a 2 L flask equipped with a condenser, and After heating to reflux, a mixed solution of 0.11 parts of ADVN, 10 parts of ethyl acetate, and 90% of the remaining monomer solution was added dropwise over 3 hours.
  • the obtained pressure-sensitive adhesive composition solution was adjusted to a solid content concentration of 50% with ethyl acetate, applied to a polyester-based release sheet so that the thickness after drying was about 50 ⁇ m, and dried at 100° C. for 5 minutes. , to form an adhesive composition layer.
  • Two polyester-based release sheets on which the pressure-sensitive adhesive composition layer was formed in this manner were prepared, and the two pressure-sensitive adhesive composition layers were laminated so as to face each other.
  • a high-pressure mercury UV irradiation apparatus was used to irradiate the adhesive composition layer with a peak illuminance of 150 mW/cm 2 and an integrated exposure amount of 1000 mJ/cm 2 (500 mJ/cm 2 ) .
  • ⁇ 2 passes) to form a pressure-sensitive adhesive layer (primary curing) by irradiating with ultraviolet rays, to prepare a substrate-less double-sided pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer thickness of 100 ⁇ m.
  • the release sheet on one side was peeled off from the adhesive layer of the obtained substrate-less double-sided adhesive sheet, and the exposed adhesive layer side was pressed against an easy-adhesion-treated polyethylene terephthalate (PET) sheet (thickness: 125 ⁇ m), A PET sheet with an adhesive layer having a thickness of 100 ⁇ m was produced.
  • PET polyethylene terephthalate
  • the release sheet on one side was peeled off from the adhesive layer of the base-less double-sided adhesive sheet that had been primarily cured, and the exposed adhesive layer side was placed on one side of a polarizing plate having TAC films laminated on both sides of a polarizer. was pressed against the surface of the TAC film of No. to prepare a polarizing plate with an adhesive layer having a thickness of 100 ⁇ m.
  • Examples C2 to C6 Comparative Examples C1 to C4>
  • a pressure-sensitive adhesive composition of each example was prepared in the same manner as in Example C1, except that the type of acrylic resin (A) was changed. Then, in the same manner as in Example C1, a substrate-less double-sided pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer with a thickness of 100 ⁇ m, a pressure-sensitive adhesive layer-attached PET sheet, and a pressure-sensitive adhesive layer-attached polarizing plate were sequentially produced.
  • the PET sheet with an adhesive layer of each example was cut into a size of 10 mm wide x 10 mm long, the release sheet was peeled off, and a probe tack tester (manufactured by Tester Sangyo Co., Ltd., probe tack tester TE-6001) was used. , pressure time of 1 second, affixing pressure of 1000 gf, pushing speed of 120 mm/min, lifting speed of 600 mm/min, probe diameter of 5.1 mm (diameter), and probe tack (unit: N) was measured. Evaluation criteria are as follows. A: The probe tack (unit: N) is less than 5. B... Probe tack (unit: N) is 5 or more and less than 7.5. C: The probe tack (unit: N) is 7.5 or more and less than 10. D... Probe tack (unit: N) is 10 or more.
  • the substrate-less double-sided pressure-sensitive adhesive sheet of each example was irradiated with ultraviolet rays using a high-pressure mercury UV irradiation apparatus at a peak illuminance of 150 mW/cm 2 and an integrated exposure amount of 4000 mJ/cm 2 (1000 mJ/cm 2 ⁇ 4 passes). , 40 mm x 40 mm, and allowed to stand under the conditions of 23°C x 50% RH for 30 minutes. Then, one of the release sheets was peeled off, and the exposed pressure-sensitive adhesive layer side was attached to a 50 mm ⁇ 100 mm SUS mesh sheet (200 mesh).
  • the rest of the release sheet was peeled off, and the pressure-sensitive adhesive layer was wrapped with the SUS mesh sheet by folding back from the central portion in the longitudinal direction of the SUS mesh sheet.
  • the gel fraction (%) was calculated from the weight change when this was immersed in a sealed container containing 250 g of toluene kept at 23° C. for 24 hours.
  • the PET sheet with an adhesive layer of each example was cut into a size of 25 mm in width x 100 mm in length, and irradiated with a high-pressure mercury UV irradiation device with a peak illuminance of 150 mW/cm 2 and an integrated exposure of 4000 mJ/cm 2 (1000 mJ). / cm 2 ⁇ 4 passes), and then the release sheet was peeled off.
  • the exposed adhesive layer side was attached to non-alkali glass ("Eagle XG" manufactured by Corning, thickness 1.1 mm) in an atmosphere of 23 ° C. and 50% RH with two reciprocations of a 2 kg rubber roller. Let stand for 30 minutes below. After that, the 180 degree peel strength (N/25 mm) was measured at normal temperature (23° C.) at a peel rate of 300 mm/min.
  • the exposed pressure-sensitive adhesive layer side was attached to a stainless steel plate (SUS304) by reciprocating a 2-kg roller under pressure (attachment area: 25 mm x 50 mm), and allowed to stand in an atmosphere of 80°C for 20 minutes. After that, a weight of 50 g was hung from the end of the length direction of the non-attached part (area 25 mm ⁇ 25 mm), a load of 50 g was applied in the direction of 90 ° to the plane of the stainless steel plate, and it was left to stand for 60 minutes in that state. , the distance that the PET sheet was peeled off was measured. Evaluation criteria are as follows. A: The peel distance is less than 5 mm. B: The peel distance is 5 mm or more and less than 10 mm. C: The peel distance was 10 mm or more, or the PET sheet fell.
  • the PET sheet with an adhesive layer of each example was cut into a size of 25 mm ⁇ 50 mm, and irradiated with a high-pressure mercury UV irradiation device at a peak illuminance of 150 mW/cm 2 and an integrated exposure amount of 4000 mJ/cm 2 (1000 mJ/cm 2 ) . 4 passes), and then the release sheet was peeled off.
  • a stainless steel plate (SUS304) is placed on the exposed adhesive layer side, and a 2 kg roller is reciprocated to apply pressure (pasting area 25 mm ⁇ 25 mm), and a creep tester (manufactured by Tester Sangyo Co., Ltd., held with a constant humidity tank) Using a force tester BE-501), a load of 1 kg was applied in an atmosphere of 80° C. for 24 hours to measure the holding force. Evaluation criteria are as follows. A: No deviation. B: The deviation is less than 1.0 mm. C: The shift was 1.0 mm or more, or the PET sheet fell.
  • the PET sheet with an adhesive layer of each example was cut into a size of 30 mm ⁇ 50 mm and irradiated with a high-pressure mercury UV irradiation device at a peak illuminance of 150 mW/cm 2 and an integrated exposure amount of 4000 mJ/cm 2 (1000 mJ/cm 2 ) . 4 passes), and then the release sheet was peeled off.
  • the exposed pressure-sensitive adhesive layer side was attached to non-alkali glass (“Eagle XG” manufactured by Corning, thickness 1.1 mm). After that, autoclave treatment is performed under the conditions of 50 ° C., 0.5 MPa, 20 minutes, and left to stand in an atmosphere of 23 ° C.
  • Haze value difference (%) Haze value after moist heat resistance test - Haze value before start of moist heat resistance test [Formula 2] Evaluation criteria are as follows. A: The difference in haze value is less than 0.5%. B...Haze value difference is 0.5% or more and less than 3.0%. C...Haze value difference is 3.0% or more.
  • the PET sheet with an adhesive layer of each example was cut into a size of 12 mm wide x 12 mm long, and irradiated with a high-pressure mercury UV irradiation device with a peak illuminance of 150 mW/cm 2 and an integrated exposure amount of 4000 mJ/cm 2 (1000 mJ). / cm 2 ⁇ 4 passes), the release sheet is peeled off, and a probe tack tester (manufactured by Tester Sangyo Co., Ltd., probe tack tester TE-6001) is used for a pressurization time of 1 second.
  • a probe tack tester manufactured by Tester Sangyo Co., Ltd., probe tack tester TE-6001
  • the probe tack (unit: N) was measured under the conditions of a pressure of 1000 gf, a pushing speed of 120 mm/min, a lifting speed of 600 mm/min, and a probe diameter of 5.1 mm (diameter). Evaluation criteria are as follows. A: The probe tack (unit: N) is less than 5. B... Probe tack (unit: N) is 5 or more and less than 7.5. C: The probe tack (unit: N) is 7.5 or more and less than 10. D... Probe tack (unit: N) is 10 or more.
  • the adhesive layer-attached polarizing plate of each example was cut into a size of 60 mm wide ⁇ 100 mm long, and the release sheet was peeled off.
  • the exposed adhesive layer side was attached to non-alkali glass (Corning "Eagle XG", thickness 1.1 mm) in an atmosphere of 23 ° C. and 50% RH by applying pressure with a 2 kg rubber roller 2 reciprocations, and then autoclaved.
  • peak illuminance 150 mW/cm 2
  • integrated exposure 4000 mJ/cm 2 (1000 mJ/cm 2 x 4 passes) with a high-pressure mercury UV irradiation device.
  • UV irradiation was performed from the non-alkali glass side to prepare a sample for polarizing plate durability evaluation.
  • the obtained samples for polarizing plate durability evaluation were exposed for 7 days under dry conditions at 80° C. and conditions at 60° C. and 90% RH for 7 days, respectively.
  • B . . . The float at the edge of the polarizing plate is less than 1 to 2 mm.
  • C The float at the edge of the polarizing plate is 2 mm or more.
  • the adhesive layer-attached polarizing plate of each example was cut into a size of 40 mm wide ⁇ 120 mm long, and the release sheet was peeled off.
  • the exposed pressure-sensitive adhesive layer side was attached to an easy-adhesion-treated polyethylene terephthalate (PET) sheet (thickness: 125 ⁇ m) under pressure with a rubber roller in an atmosphere of 23° C. and 50% RH. After that, it was attached to an aluminum plate (width 70 mm, length 150 mm, thickness 0.3 mm) with a tape so that the PET surface faced the surface, and fixed to prepare an aluminum plate-fixed sample.
  • PET polyethylene terephthalate
  • the prepared sample was bent to 5 mm ⁇ by a mandrel tester, fixed in that state, and then autoclaved (0.5 MPa ⁇ 50 ° C. ⁇ 20 minutes). : 150 mW/cm 2 , integrated exposure amount: 4000 mJ/cm 2 (1000 mJ/cm 2 ⁇ 4 passes), the sample in a bent state was irradiated with ultraviolet rays to prepare a sample for evaluation of curved surface durability.
  • the curved surface durability evaluation sample has a layer structure of PET/adhesive layer/polarizing plate/aluminum plate in order from the outside. There is an aluminum plate on the innermost side.
  • UV irradiation was performed after exposure under the conditions of 80 ° C., Dry, 7 days and 60 ° C., 90% RH, 7 days.
  • the edge of the polarizing plate excluding the part was observed and evaluated according to the following criteria.
  • the pressure-sensitive adhesive sheets using the pressure-sensitive adhesive compositions of Examples C1 to C6 exhibited excellent adhesive physical properties such as low tackiness and high constant load holding power even in a low crosslinked state before complete curing (after primary curing). . In addition, even after complete curing, excellent adhesive physical properties were exhibited.
  • Comparative Examples C1 and C2 only one of the intramolecular hydrogen abstraction type photoinitiator and the intermolecular hydrogen abstraction type photoinitiator was used. In Comparative Examples C3 and C4, no branched alkyl (meth)acrylate having a homopolymer Tg of ⁇ 30° C. or higher was used.
  • the pressure-sensitive adhesive sheets using the pressure-sensitive adhesive compositions of Comparative Examples C1 to C4 were inferior to those of Examples C1 to C6 in adhesive physical properties in a low crosslinked state after primary curing.
  • a pressure-sensitive adhesive using the pressure-sensitive adhesive composition of the present invention has excellent adhesive physical properties in a low crosslinked state after primary curing.
  • a pressure-sensitive adhesive obtained using the pressure-sensitive adhesive composition of the present invention is particularly useful as a pressure-sensitive adhesive for bonding optical members constituting touch panels, image display devices, etc., for sealing organic EL displays, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

The present invention relates to the useful improvement of an adhesive composition that can be used for multistage curing and to the use thereof. The adhesive composition contains an acrylic resin (A) and a photoinitiator (B). The acrylic resin (A) is a polymerization product of a copolymer component (a). The copolymer component (a) contains an alkyl acrylate (a1) that has a glass transition temperature of -30 to 50°C when a homopolymer is formed and an alkyl methacrylate (a2) that has a glass transition temperature of -10 to 120°C when a homopolymer is formed. The total content of alkyl acrylate (a1) and alkyl methacrylate (a2) is 5 wt% or more relative to 100 wt% of copolymer component (a). Application examples of the adhesive composition relate to an adhesive, an adhesive sheet, an adhesive sheet with a release film, a laminate for an image display device, a curved image display device, and an adhesive composition for a curved optical member.

Description

粘着剤組成物、粘着剤、粘着シート、離型フィルム付き粘着シート、画像表示装置用積層体、曲面画像表示装置、曲面光学部材用粘着剤組成物Adhesive composition, adhesive, adhesive sheet, adhesive sheet with release film, laminate for image display device, curved image display device, adhesive composition for curved optical member
 本発明は、主として、粘着剤組成物、粘着剤、粘着シート、離型フィルム付き粘着シート、画像表示装置用積層体、曲面画像表示装置、曲面光学部材用粘着剤組成物に関する。
 本願は、2021年9月30日に日本国特許庁に出願された特願2021-160337号、2021年9月30日に日本国特許庁に出願された特願2021-160485号および2021年9月30日に日本国特許庁に出願された特願2021-160488号に基づき優先権を主張し、その内容をここに援用する。
The present invention mainly relates to a pressure-sensitive adhesive composition, a pressure-sensitive adhesive, a pressure-sensitive adhesive sheet, a pressure-sensitive adhesive sheet with a release film, a laminate for an image display device, a curved image display device, and a pressure-sensitive adhesive composition for a curved optical member.
This application is based on Japanese Patent Application No. 2021-160337 filed with the Japan Patent Office on September 30, 2021, Japanese Patent Application No. 2021-160485 filed with the Japan Patent Office on September 30, 2021 and September 2021. A priority is claimed based on Japanese Patent Application No. 2021-160488 filed with the Japan Patent Office on May 30, and the contents thereof are incorporated herein.
 近年、テレビやパソコン用モニター、ノートパソコンや携帯電話、スマートフォン、タブレット端末等のモバイル機器において、ディスプレイと位置入力装置を組み合わせたタッチパネルが広く用いられている。なかでも、静電容量式タッチパネルが一般的に普及している。
 タッチパネルは、通常、有機ELまたは液晶からなるディスプレイ、透明電導膜基板(ITO基板)、保護フィルム(保護ガラス)から構成される。これらのタッチパネルの部材の貼り合せには透明粘着シートが用いられている。
In recent years, touch panels that combine a display and a position input device are widely used in mobile devices such as televisions, personal computer monitors, notebook computers, mobile phones, smart phones, and tablet terminals. Among them, the capacitive touch panel is commonly used.
A touch panel is usually composed of an organic EL or liquid crystal display, a transparent conductive film substrate (ITO substrate), and a protective film (protective glass). A transparent adhesive sheet is used to bond these touch panel members together.
 透明粘着シートは様々な形状の部材を貼り合わせる必要があるため、透明粘着シート用の粘着剤は完全硬化する前の低架橋状態において貼り合わせられる。そのため、低架橋状態の粘着層を完全硬化させるまでの工程においては、十分な粘着物性が要求される。
 例えば、複雑形状の部材に貼り合わせる場合においては、目的とする箇所以外への透明粘着シートの貼りつき等による貼り合わせ不良が発生しやすい。そのため、タック性が低い透明粘着シートの要求がある。
 また、複雑形状の部材同士を固定するためには、応力がかかった状態での部材からの透明粘着シートの剥がれを抑制することが求められる。そのため、低架橋状態においても定荷重保持力が高い透明粘着シートの要求もある。
Since it is necessary to bond members of various shapes to the transparent pressure-sensitive adhesive sheet, the pressure-sensitive adhesive for the transparent pressure-sensitive adhesive sheet is bonded together in a low crosslinked state before being completely cured. Therefore, sufficient adhesive physical properties are required in the process until the low-crosslinking adhesive layer is completely cured.
For example, when the transparent adhesive sheet is attached to a member having a complicated shape, it is likely that the transparent adhesive sheet sticks to an area other than the intended location, resulting in an attachment failure. Therefore, there is a demand for a transparent pressure-sensitive adhesive sheet with low tackiness.
In addition, in order to fix members having complicated shapes to each other, it is required to suppress peeling of the transparent adhesive sheet from the member under stress. Therefore, there is a demand for a transparent pressure-sensitive adhesive sheet having high constant load holding power even in a low cross-linked state.
 加えて、完全硬化後の粘着層においては、通常の粘着力等の粘着物性のみならず、偏光板やガラス等様々な部材を貼合した際の信頼性においても優れた性能が求められる。例えば、完全硬化後の優れた耐久性を得るためには、被着体に貼合するまでは可能な限り低架橋度であることが求められる。また、完全硬化時に効率的に架橋度を上げることも求められる。 In addition, the adhesive layer after complete curing is required to have excellent performance not only in terms of adhesive physical properties such as normal adhesive strength, but also in terms of reliability when bonding various materials such as polarizing plates and glass. For example, in order to obtain excellent durability after complete curing, the degree of cross-linking is required to be as low as possible until it is attached to an adherend. It is also required to efficiently increase the degree of cross-linking at the time of complete curing.
 そこで、低架橋状態で被着体に粘着層を貼合することで粘着層を十分に被着体に密着させることが可能となると期待される。さらに、低架橋状態で被着体に貼合した状態で完全硬化することで粘着シートが高架橋度になるため、耐久性が向上すると期待される。
 一般的に一次硬化では熱架橋または活性エネルギー線の照射により架橋して硬化した後、完全硬化では活性エネルギー線の照射により架橋して硬化する。かかる多段硬化性の粘着剤を用いた粘着シートとして、例えば特許文献1~3に記載の粘着シートが挙げられる。
Therefore, it is expected that the adhesive layer can be sufficiently adhered to the adherend by laminating the adhesive layer to the adherend in a low crosslinked state. Further, when the pressure-sensitive adhesive sheet is completely cured in a state of being laminated to an adherend in a low-crosslinking state, the pressure-sensitive adhesive sheet has a high degree of cross-linking, which is expected to improve durability.
Generally, in the primary curing, the resin is cured by thermal crosslinking or by irradiation with active energy rays, and in the complete curing, it is cured by crosslinking by irradiation with active energy rays. As a pressure-sensitive adhesive sheet using such a multi-stage curing pressure-sensitive adhesive, for example, the pressure-sensitive adhesive sheets described in Patent Documents 1 to 3 can be mentioned.
 特許文献1には、アクリル系樹脂からなる溶剤系の粘着剤に、一般の乾燥条件において揮発しやすい有機溶剤をさらに用いると共に、揮発しにくいエチレン性不飽和モノマーを特定割合で配合することが開示されている。
 また、特許文献2には、架橋剤を使用せず溶剤型アクリル酸エステル系粘着剤の3次元網目構造を形成するために、水素引抜型光開始剤を用い、塗工乾燥工程の後に光照射することでエージング工程を省略することが開示されている。
 さらに特許文献3には、ガラス転移温度が高いアクリル系樹脂を用いることで、段差追従性と耐ブリスター性の高い粘着剤が得られることが開示されている。
Patent Document 1 discloses that a solvent-based pressure-sensitive adhesive made of an acrylic resin further uses an organic solvent that is easily volatile under general drying conditions, and is blended with a specific proportion of an ethylenically unsaturated monomer that is difficult to evaporate. It is
In addition, in Patent Document 2, in order to form a three-dimensional network structure of a solvent-type acrylic acid ester-based pressure-sensitive adhesive without using a cross-linking agent, a hydrogen abstraction type photoinitiator is used, and light irradiation is performed after the coating and drying process. It is disclosed that the aging process is omitted by doing so.
Furthermore, Patent Literature 3 discloses that a pressure-sensitive adhesive with high level conformability and blister resistance can be obtained by using an acrylic resin with a high glass transition temperature.
特開2012-111939号公報JP 2012-111939 A 特開2017-210542号公報JP 2017-210542 A 国際公開第2017/022770号WO2017/022770
 しかしながら特許文献1~3のいずれにおいても、一次硬化時の低架橋状態における粘着物性について考慮されていない。そのため、一次硬化時の低架橋状態における粘着物性が不十分となることがあるため、改良の余地がある。特に、一次硬化後の粘着シートを応力が強くかかる複雑形状の被着体に貼り合わせる用途においては、貼り合わせ後に粘着シートが剥がれる等の不良が発生してしまう。 However, none of Patent Literatures 1 to 3 take into account adhesive physical properties in a low-crosslinking state during primary curing. Therefore, there is room for improvement since adhesive physical properties may be insufficient in a low-crosslinking state during primary curing. In particular, in applications where the pressure-sensitive adhesive sheet after primary curing is attached to an adherend having a complex shape to which a strong stress is applied, defects such as peeling of the pressure-sensitive adhesive sheet occur after the attachment.
 本発明の第一の態様は、主として、多段硬化させるために用いることができる粘着剤組成物であって、一次硬化後の低架橋状態において優れた粘着物性が得られ、完全硬化後においても優れた粘着物性および信頼性が得られる粘着剤組成物;前記粘着剤組成物が架橋されてなる粘着剤;および前記粘着剤からなる粘着剤層を有する粘着シートを提供することを目的とする。 A first aspect of the present invention is mainly a pressure-sensitive adhesive composition that can be used for multistage curing, in which excellent adhesive physical properties are obtained in a low cross-linked state after primary curing, and excellent adhesive properties are obtained even after complete curing. It is an object of the present invention to provide a pressure-sensitive adhesive composition capable of obtaining good pressure-sensitive adhesive physical properties and reliability; a pressure-sensitive adhesive obtained by cross-linking the pressure-sensitive adhesive composition; and a pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer comprising the pressure-sensitive adhesive.
 本発明の第二の態様は、主として、多段硬化させるために用いることができる粘着剤組成物であって、一次硬化後の低架橋状態において優れた粘着物性が得られ、完全硬化後においても優れた粘着物性および信頼性が得られる粘着剤組成物;前記粘着剤組成物が架橋されてなる粘着剤;および前記粘着剤からなる粘着剤層を有する粘着シートを提供することを目的とする。 The second aspect of the present invention is mainly a pressure-sensitive adhesive composition that can be used for multistage curing, in which excellent adhesive physical properties are obtained in a low cross-linked state after primary curing, and excellent adhesive properties are obtained even after complete curing. It is an object of the present invention to provide a pressure-sensitive adhesive composition capable of obtaining good pressure-sensitive adhesive physical properties and reliability; a pressure-sensitive adhesive obtained by cross-linking the pressure-sensitive adhesive composition; and a pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer comprising the pressure-sensitive adhesive.
 本発明の第三の態様は、主として、多段硬化させるために用いることができる粘着剤組成物であって、応力が強くかかる複雑形状の被着体に対して貼り合わせる際にも密着性に優れる粘着シートが得られる粘着剤組成物;前記粘着剤組成物が架橋されてなる粘着剤;および前記粘着剤からなる粘着剤層を有する粘着シートを提供することを目的とする。 A third aspect of the present invention is a pressure-sensitive adhesive composition that can be used mainly for multistage curing, and has excellent adhesion even when it is attached to an adherend having a complicated shape that is subjected to strong stress. An object of the present invention is to provide a pressure-sensitive adhesive composition from which a pressure-sensitive adhesive sheet is obtained; a pressure-sensitive adhesive obtained by cross-linking the pressure-sensitive adhesive composition; and a pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer comprising the pressure-sensitive adhesive.
 上記の第一の態様に係る課題を解決するために、本発明者が鋭意検討した結果、特定組成の共重合成分を用いて得られるアクリル系樹脂と特定の光開始剤を含有する粘着剤組成物を用いることで、一次硬化後の低架橋状態においてもタック性が低く、定荷重保持力が高いといった優れた粘着物性を実現でき、しかも完全硬化後の優れた粘着物性および信頼性も実現できることを見出した。 As a result of intensive studies by the present inventors in order to solve the problems related to the above first aspect, a pressure-sensitive adhesive composition containing an acrylic resin obtained using a copolymer component of a specific composition and a specific photoinitiator It is possible to achieve excellent adhesive physical properties such as low tackiness and high constant load holding power even in a low cross-linked state after primary curing, as well as excellent adhesive physical properties and reliability after complete curing. I found
 本発明の第一の態様は、アクリル系樹脂(A)と、光開始剤(B)とを含有し;前記アクリル系樹脂(A)は、下記の共重合成分(a)の重合生成物であり;前記アクリル系樹脂(A)の動的粘弾性に基づくガラス転移温度が、-10℃以上であり;光開始剤(B)が、分子内水素引抜型光開始剤(b1)と分子間内水素引抜型光開始剤(b2)を含有する、粘着剤組成物である。 A first aspect of the present invention contains an acrylic resin (A) and a photoinitiator (B); the acrylic resin (A) is a polymerization product of the following copolymerization component (a) Yes; the glass transition temperature based on the dynamic viscoelasticity of the acrylic resin (A) is −10° C. or higher; A pressure-sensitive adhesive composition containing an internal hydrogen abstraction type photoinitiator (b2).
 第一の態様に係る共重合成分(a)は、ホモポリマーを形成した際のガラス転移温度が-30~50℃となるアルキルアクリレート(a1)と、ホモポリマーを形成した際のガラス転移温度が-10~120℃となるアルキルメタクリレート(a2)、および水酸基含有モノマー(a3)を少なくとも含有し、前記アルキルアクリレート(a1)と前記アルキルメタクリレート(a2)の重量比が5/95~55/45であり、前記アルキルアクリレート(a1)と前記アルキルメタクリレート(a2)の合計含有量が、共重合成分(a)に対して30~70重量%である。 The copolymer component (a) according to the first aspect includes an alkyl acrylate (a1) having a glass transition temperature of −30 to 50° C. when forming a homopolymer, and an alkyl acrylate (a1) having a glass transition temperature when forming a homopolymer. containing at least an alkyl methacrylate (a2) with a temperature of −10 to 120° C. and a hydroxyl group-containing monomer (a3), wherein the weight ratio of the alkyl acrylate (a1) to the alkyl methacrylate (a2) is 5/95 to 55/45; and the total content of the alkyl acrylate (a1) and the alkyl methacrylate (a2) is 30 to 70% by weight based on the copolymerization component (a).
 上記の第二の態様に係る課題を解決するために、本発明者が鋭意検討した結果、特定組成の共重合成分を用いて得られるアクリル系樹脂と特定の光開始剤を含有する粘着剤組成物を用いることで、一次硬化後の低架橋状態においてもタック性が低く、定荷重保持力が高いといった優れた粘着物性を実現でき、しかも完全硬化後の優れた粘着物性および信頼性も実現できることを見出した。 In order to solve the above-described problems related to the second aspect, the present inventors conducted intensive studies and found that an adhesive composition containing an acrylic resin obtained by using a copolymer component of a specific composition and a specific photoinitiator It is possible to achieve excellent adhesive physical properties such as low tackiness and high constant load holding power even in a low cross-linked state after primary curing, as well as excellent adhesive physical properties and reliability after complete curing. I found
 本発明の第二の態様は、アクリル系樹脂(A)と、光開始剤(B)とを含有し;前記アクリル系樹脂(A)は、下記の共重合成分(a)の重合生成物であり;前記アクリル系樹脂(A)の動的粘弾性に基づくガラス転移温度が、-10℃以上であり;光開始剤(B)が、分子内水素引抜型光開始剤(b1)を含有する、粘着剤組成物である。 A second aspect of the present invention contains an acrylic resin (A) and a photoinitiator (B); the acrylic resin (A) is a polymerization product of the following copolymerization component (a) Yes; the acrylic resin (A) has a glass transition temperature based on dynamic viscoelasticity of −10° C. or higher; and the photoinitiator (B) contains an intramolecular hydrogen abstraction type photoinitiator (b1) , is an adhesive composition.
 第二の態様に係る共重合成分(a)は、炭素数が12以下のアルキル基を有し、かつ、ホモポリマーのガラス転移温度が-20~120℃となるアルキル(メタ)アクリレート(a1)と;アルキル鎖と水酸基とエチレン性不飽和基とを含有するヒドロキシアルキルモノマー(a2)と;を少なくとも含有し、前記アルキル(メタ)アクリレート(a1)の含有量が、前記共重合成分(a)100重量%に対して30重量%以上であり;前記ヒドロキシアルキルモノマー(a2)の含有量が、前記共重合成分(a)100重量%に対して0.1重量%以上であり;共重合成分(a)中の前記ヒドロキシアルキルモノマー(a2)のアルキル鎖の平均炭素数が、2.1以上である。 The copolymer component (a) according to the second aspect is an alkyl (meth)acrylate (a1) having an alkyl group having 12 or less carbon atoms and having a homopolymer glass transition temperature of -20 to 120°C. and; a hydroxyalkyl monomer (a2) containing an alkyl chain, a hydroxyl group and an ethylenically unsaturated group; 30% by weight or more with respect to 100% by weight; the content of the hydroxyalkyl monomer (a2) is 0.1% by weight or more with respect to 100% by weight of the copolymerization component (a); The average carbon number of the alkyl chain of the hydroxyalkyl monomer (a2) in (a) is 2.1 or more.
 上記の第三の態様に係る課題を解決するために、本発明者が鋭意検討した結果、特定組成の共重合成分を用いて得られるアクリル系樹脂と特定の光開始剤を含有する粘着剤組成物を用いることで、一次硬化時点においても応力のかかる複雑形状の被着体に対しても剥がれることなく密着可能な粘着シートが得られ、完全硬化後においては優れた耐久性をも示す粘着シートが得られることを見出した。 In order to solve the above-mentioned problems related to the third aspect, the present inventors conducted intensive studies and found that an adhesive composition containing an acrylic resin obtained using a copolymer component of a specific composition and a specific photoinitiator By using a material, it is possible to obtain a pressure-sensitive adhesive sheet that can adhere to complex-shaped adherends that are subject to stress even at the time of primary curing without peeling off, and the pressure-sensitive adhesive sheet that exhibits excellent durability after complete curing. is obtained.
 本発明の第三の態様は、アクリル系樹脂(A)と、光開始剤(B)とを含有し;前記アクリル系樹脂(A)は、ホモポリマーのガラス転移温度が-30℃以上である分岐アルキル(メタ)アクリレート(a1)を含有する共重合成分(a)の重合生成物であり;前記アクリル系樹脂(A)の動的粘弾性に基づくガラス転移温度が、-10℃以上であり;前記アクリル系樹脂(A)の重量平均分子量が、400,000以下であり;前記光開始剤(B)が、分子内水素引抜型光開始剤(b1)と分子間水素引抜型光開始剤(b2)とを含有する、粘着剤組成物である。 A third aspect of the present invention contains an acrylic resin (A) and a photoinitiator (B); the acrylic resin (A) has a homopolymer glass transition temperature of −30° C. or higher. It is a polymerization product of a copolymer component (a) containing a branched alkyl (meth)acrylate (a1); and the acrylic resin (A) has a glass transition temperature based on dynamic viscoelasticity of −10° C. or higher. the weight average molecular weight of the acrylic resin (A) is 400,000 or less; and the photoinitiator (B) is an intramolecular hydrogen abstraction photoinitiator (b1) and an intermolecular hydrogen abstraction photoinitiator. A pressure-sensitive adhesive composition containing (b2).
 本発明の第一の態様によれば、多段硬化させるために用いることができる粘着剤組成物であって、一次硬化後の低架橋状態において優れた粘着物性が得られ、完全硬化後においても優れた粘着物性および信頼性が得られる粘着剤組成物;前記粘着剤組成物が架橋されてなる粘着剤;および前記粘着剤からなる粘着剤層を有する粘着シートが提供される。 According to the first aspect of the present invention, a pressure-sensitive adhesive composition that can be used for multistage curing, in which excellent adhesive physical properties are obtained in a low cross-linked state after primary curing, and excellent adhesive properties are obtained even after complete curing. Provided are a pressure-sensitive adhesive composition that provides excellent pressure-sensitive adhesive physical properties and reliability; a pressure-sensitive adhesive obtained by cross-linking the pressure-sensitive adhesive composition; and a pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer comprising the pressure-sensitive adhesive.
 本発明の第二の態様によれば、多段硬化させるために用いることができる粘着剤組成物であって、一次硬化後の低架橋状態において優れた粘着物性が得られ、完全硬化後においても優れた粘着物性および信頼性が得られる粘着剤組成物;前記粘着剤組成物が架橋されてなる粘着剤;および前記粘着剤からなる粘着剤層を有する粘着シートが提供される。 According to the second aspect of the present invention, a pressure-sensitive adhesive composition that can be used for multi-stage curing, in which excellent adhesive physical properties are obtained in a low cross-linked state after primary curing, and excellent adhesive properties are obtained even after complete curing. Provided are a pressure-sensitive adhesive composition that provides excellent pressure-sensitive adhesive physical properties and reliability; a pressure-sensitive adhesive obtained by cross-linking the pressure-sensitive adhesive composition; and a pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer comprising the pressure-sensitive adhesive.
 本発明の第三の態様によれば、多段硬化させるために用いることができる粘着剤組成物であって、応力が強くかかる複雑形状の被着体に対して貼り合わせる際にも密着性に優れる粘着シートが得られる粘着剤組成物;前記粘着剤組成物が架橋されてなる粘着剤;および前記粘着剤からなる粘着剤層を有する粘着シートが提供される。 According to the third aspect of the present invention, a pressure-sensitive adhesive composition that can be used for multi-stage curing and has excellent adhesion even when it is attached to an adherend having a complex shape that is subjected to strong stress. Provided are a pressure-sensitive adhesive composition from which a pressure-sensitive adhesive sheet is obtained; a pressure-sensitive adhesive obtained by cross-linking the pressure-sensitive adhesive composition; and a pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer comprising the pressure-sensitive adhesive.
 本明細書における下記の用語の意味を以下に示す。
 「(メタ)アクリル」とは、アクリルまたはメタクリルを意味する。
 「(メタ)アクリロイル」とは、アクリロイルまたはメタクリロイルを意味する。
 「(メタ)アクリレート」とは、アクリレートまたはメタクリレートを意味する。
 「アクリル系樹脂」とは、(メタ)アクリル系モノマーを少なくとも1種含有するモノマー成分を重合して得られる樹脂である。
 「シート」とは、シート、フィルム、テープを概念的に包含する用語である。
 「ホモポリマー」とは、あるモノマーの単独重合体を意味する。
 数値範囲を示す「~」は、その前後に記載された数値を下限値および上限値として含むことを意味する。
The meanings of the following terms used in this specification are shown below.
"(Meth)acryl" means acryl or methacryl.
"(Meth)acryloyl" means acryloyl or methacryloyl.
"(Meth)acrylate" means acrylate or methacrylate.
"Acrylic resin" is a resin obtained by polymerizing a monomer component containing at least one (meth)acrylic monomer.
"Sheet" is a term that conceptually includes sheets, films, and tapes.
"Homopolymer" means a homopolymer of a monomer.
"-" indicating a numerical range means that the numerical values before and after it are included as lower and upper limits.
[第一の態様]
 以下、本発明の第一の態様の実施形態について詳細に説明するが、これらは望ましい実施態様の代表例として開示するものである。
[First aspect]
Embodiments of the first aspect of the present invention are described in detail below, but are disclosed as representative examples of preferred embodiments.
<粘着剤組成物>
 第一の態様に係る粘着剤組成物は、アクリル系樹脂(A)と光開始剤(B)とを含有する。第一の態様に係る粘着剤組成物は、アクリル系樹脂(A)、光開始剤(B)に加えて、架橋剤(C)、シランカップリング剤(D)、カルボジイミド系化合物(E)、その他の任意成分を必要に応じてさらに含有してもよい。以下、各成分について順に説明する。
<Adhesive composition>
The pressure-sensitive adhesive composition according to the first aspect contains an acrylic resin (A) and a photoinitiator (B). The pressure-sensitive adhesive composition according to the first aspect comprises an acrylic resin (A), a photoinitiator (B), a cross-linking agent (C), a silane coupling agent (D), a carbodiimide compound (E), Other optional components may be further contained as necessary. Each component will be described in order below.
 (アクリル系樹脂(A))
 第一の態様に係るアクリル系樹脂(A)は、特定の共重合成分(a)の重合生成物である。共重合成分(a)は、重合性二重結合を有するモノマー成分の総称である。共重合成分(a)には、重合開始剤、重合溶媒を含めないものとする。
(Acrylic resin (A))
The acrylic resin (A) according to the first aspect is a polymerization product of a specific copolymer component (a). Copolymer component (a) is a general term for monomer components having a polymerizable double bond. The copolymerization component (a) does not contain a polymerization initiator and a polymerization solvent.
 第一の態様に係る特定の共重合成分(a)は、ホモポリマーを形成した際のガラス転移温度が-30~50℃となるアルキルアクリレート(a1)と、ホモポリマーを形成した際のガラス転移温度が-10~120℃となるアルキルメタクリレート(a2)と、水酸基含有モノマー(a3)とを少なくとも含有する。第一の態様に係る共重合成分(a)は、ガラス転移温度が-27~50℃のアルキルアクリレート(a1)と、ホモポリマーを形成した際のガラス転移温度が0~120℃となるアルキルメタクリレート(a2)、および水酸基含有モノマー(a3)を除くエチレン性不飽和モノマー(a4)を必要に応じてさらに含有してもよい。 The specific copolymer component (a) according to the first aspect includes an alkyl acrylate (a1) having a glass transition temperature of -30 to 50 ° C. when forming a homopolymer, and a glass transition temperature when forming a homopolymer. It contains at least an alkyl methacrylate (a2) having a temperature of -10 to 120°C and a hydroxyl group-containing monomer (a3). The copolymer component (a) according to the first aspect comprises an alkyl acrylate (a1) having a glass transition temperature of −27 to 50° C. and an alkyl methacrylate having a glass transition temperature of 0 to 120° C. when forming a homopolymer. (a2) and an ethylenically unsaturated monomer (a4) other than the hydroxyl group-containing monomer (a3) may be further contained as necessary.
 〔アルキルアクリレート(a1)〕
 第一の態様に係るアルキルアクリレート(a1)のホモポリマーのガラス転移温度(以下「Tg」と記す。)は-30~50℃であり、好ましくは-27~45℃であり、より好ましくは-10~43℃、さらに好ましくは-5~10℃である。かかるTgが範囲内であると、本発明の第一の態様の効果が得られる。
[Alkyl acrylate (a1)]
The glass transition temperature (hereinafter referred to as “Tg”) of the homopolymer of the alkyl acrylate (a1) according to the first aspect is −30 to 50° C., preferably −27 to 45° C., more preferably − 10 to 43°C, more preferably -5 to 10°C. When the Tg is within the range, the effects of the first aspect of the present invention are obtained.
 アルキルアクリレート(a1)のホモポリマーは、アルキルアクリレート(a1)の単独重合体である。アルキルアクリレート(a1)のホモポリマーのTgとしては、Wiley出版「POLYMER HANDBOOK」等に記載されている標準的な分析値を採用できる。 A homopolymer of alkyl acrylate (a1) is a homopolymer of alkyl acrylate (a1). As the Tg of the homopolymer of alkyl acrylate (a1), a standard analytical value described in Wiley publication "POLYMER HANDBOOK" or the like can be used.
 第一の態様に係るアルキルアクリレート(a1)としては、例えば、メチルアクリレート(Tg:8℃)、エチルアクリレート(Tg:-22℃)、イソブチルアクリレート(Tg:-26℃)、tert-ブチルアクリレート(Tg:41℃)、シクロヘキシルアクリレート(Tg:15℃)等が挙げられる。なかでも粘着物性の点からメチルアクリレートが好ましい。
 アルキルアクリレート(a1)は1種を単独で用いてもよく、2種以上を併用してもよい。
Examples of the alkyl acrylate (a1) according to the first aspect include methyl acrylate (Tg: 8°C), ethyl acrylate (Tg: -22°C), isobutyl acrylate (Tg: -26°C), tert-butyl acrylate ( Tg: 41°C), cyclohexyl acrylate (Tg: 15°C), and the like. Among them, methyl acrylate is preferable from the viewpoint of adhesive physical properties.
Alkyl acrylate (a1) may be used alone or in combination of two or more.
 〔アルキルメタアクリレート(a2)〕
 第一の態様に係るアルキルメタアクリレート(a2)のホモポリマーのTgは-10~120℃であり、好ましくは0~110℃、より好ましくは20~105℃、さらに好ましくは40~70℃である。かかるTgが範囲内であると、本発明の第一の態様の効果が得られる。
 第一の態様に係るアルキルメタクリレート(a2)のホモポリマーは、アルキルメタクリレート(a2)の単独重合体である。アルキルメタクリレート(a2)のホモポリマーのTgとしては、Wiley出版「POLYMER HANDBOOK」等に記載されている標準的な分析値を採用することができる。
[Alkyl methacrylate (a2)]
The Tg of the homopolymer of alkyl methacrylate (a2) according to the first aspect is -10 to 120°C, preferably 0 to 110°C, more preferably 20 to 105°C, still more preferably 40 to 70°C. . When the Tg is within the range, the effects of the first aspect of the present invention are obtained.
The homopolymer of alkyl methacrylate (a2) according to the first aspect is a homopolymer of alkyl methacrylate (a2). As the Tg of the homopolymer of alkyl methacrylate (a2), a standard analytical value described in "POLYMER HANDBOOK" published by Wiley, etc. can be adopted.
 第一の態様に係るアルキルメタクリレート(a2)としては、例えば、メチルメタクリレート(Tg:105℃)、エチルメタクリレート(Tg:65℃)、n-ブチルメタクリレート(Tg:20℃)、イソブチルメタクリレート(Tg:48℃)、シクロヘキシルメタクリレート(Tg:66℃)、tert-ブチルメタクリレート(Tg:107℃)等が挙げられる。
 アルキルメタクリレート(a2)は1種を単独で用いてもよく、2種以上を併用してもよい。
 なかでも、メチルメタクリレート、エチルメタクリレート、イソブチルメタクリレートが好ましい。
Examples of the alkyl methacrylate (a2) according to the first aspect include methyl methacrylate (Tg: 105°C), ethyl methacrylate (Tg: 65°C), n-butyl methacrylate (Tg: 20°C), isobutyl methacrylate (Tg: 48° C.), cyclohexyl methacrylate (Tg: 66° C.), tert-butyl methacrylate (Tg: 107° C.), and the like.
One alkyl methacrylate (a2) may be used alone, or two or more thereof may be used in combination.
Among them, methyl methacrylate, ethyl methacrylate and isobutyl methacrylate are preferred.
 〔水酸基含有モノマー(a3)〕
 第一の態様に係る水酸基含有モノマー(a3)は、1または2以上の水酸基、およびエチレン性不飽和基を含有する。水酸基含有モノマー(a3)としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、5-ヒドロキシペンチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、8-ヒドロキシオクチル(メタ)アクリレート等の水酸基含有アルキル(メタ)アクリレート;
 カプロラクトン変性2-ヒドロキシエチル(メタ)アクリレート等のカプロラクトン変性モノマー;ポリエチレングリコールモノ(メタ)アクリレート、ポリブチレングリコールモノ(メタ)アクリレート等のオキシアルキレン変性モノマー;
 2-アクリロイロキシエチル-2-ヒドロキシエチルフタル酸、N-メチロール(メタ)アクリルアミド、ヒドロキシエチルアクリルアミド等の1級水酸基含有モノマー;
 2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-クロロ2-ヒドロキシプロピル(メタ)アクリレート等の2級水酸基含有モノマー;
 2,2-ジメチル2-ヒドロキシエチル(メタ)アクリレート等の3級水酸基含有モノマー;
 が挙げられる。
[Hydroxyl group-containing monomer (a3)]
The hydroxyl group-containing monomer (a3) according to the first aspect contains one or more hydroxyl groups and an ethylenically unsaturated group. Examples of the hydroxyl group-containing monomer (a3) include 2-hydroxyethyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 5-hydroxypentyl (meth)acrylate, 6-hydroxyhexyl (meth)acrylate, 8-hydroxy hydroxyl group-containing alkyl (meth)acrylate such as octyl (meth)acrylate;
caprolactone-modified monomers such as caprolactone-modified 2-hydroxyethyl (meth)acrylate; oxyalkylene-modified monomers such as polyethylene glycol mono(meth)acrylate and polybutylene glycol mono(meth)acrylate;
2-acryloyloxyethyl-2-hydroxyethyl phthalic acid, N-methylol (meth)acrylamide, hydroxyethyl acrylamide and other primary hydroxyl group-containing monomers;
Secondary hydroxyl group-containing monomers such as 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 3-chloro 2-hydroxypropyl (meth) acrylate;
Tertiary hydroxyl group-containing monomers such as 2,2-dimethyl 2-hydroxyethyl (meth)acrylate;
is mentioned.
 なかでも、完全硬化時に効率よく硬化可能な点で、1級水酸基含有アルキル(メタ)アクリレートが好ましく、2-ヒドロキシエチル(メタ)アクリレートと4-ヒドロキシブチル(メタ)アクリレートを併用するか4-ヒドロキシブチル(メタ)アクリレートを単独で用いることが特に好ましい。 Among them, primary hydroxyl group-containing alkyl (meth) acrylate is preferable in that it can be cured efficiently at the time of complete curing, and 2-hydroxyethyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate can be used together It is particularly preferred to use butyl (meth)acrylate alone.
 〔エチレン性不飽和モノマー(a4)〕
 第一の態様において、共重合成分(a)は、必要に応じて、モノマー(a1)~(a3)を除くその他の共重合可能なエチレン性不飽和モノマー(a4)を更に含有してもよい。
 その他の共重合可能なエチレン性不飽和モノマー(a4)としては、例えば、n-ブチルアクリレート、2-エチルヘキシル(メタ)アクリレート等のアルキル(メタ)アクリレート(ただし、アルキルアクリレート(a1)およびアルキルメタクリレート(a2)を除く。);
 フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェニルジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール-ポリプロピレングリコール-(メタ)アクリレート、オルトフェニルフェノキシエチル(メタ)アクリレート、ノニルフェノールエチレンオキサイド付加物(メタ)アクリレート等の芳香環含有モノマー;
 シクロヘキシルオキシアルキル(メタ)アクリレート、tert-ブチルシクロヘキシルオキシエチル(メタ)アクリレート、イソボルニルメタクリレート、ジシクロペンタニル(メタ)アクリレート等の脂環含有モノマー;
 2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、2-ブトキシジエチレングリコール(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、オクトキシポリエチレングリコール-ポリプロピレングリコールモノ(メタ)アクリレート、ラウロキシポリエチレングリコールモノ(メタ)アクリレート、ステアロキシポリエチレングリコールモノ(メタ)アクリレート等のエーテル鎖含有モノマー;
 (メタ)アクリル酸、β-カルボキシエチルアクリレート等のアクリル酸ダイマー;
 クロトン酸、マレイン酸、無水マレイン酸、フマル酸、シトラコン酸、グルタコン酸、イタコン酸、N-グリコール酸、ケイ皮酸等のカルボキシ基含有モノマー;
 (メタ)アクリルアミド、N-(n-ブトキシアルキル)(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N,N-ジメチルアミノアルキル(メタ)アクリルアミド等のアミド基含有モノマー;
 4-(メタ)アクリロイルオキシベンゾフェノン等のベンゾフェノン含有モノマー;
 アクリロニトリル、メタクリロニトリル、スチレン、α-メチルスチレン、酢酸ビニル、プロピオン酸ビニル、ステアリン酸ビニル、塩化ビニル、塩化ビニリデン、アルキルビニルエーテル、ビニルトルエン、ビニルピリジン、ビニルピロリドン、イタコン酸ジアルキルエステル、フマル酸ジアルキルエステル、アリルアルコール、アクリルクロライド、メチルビニルケトン、N-アクリルアミドメチルトリメチルアンモニウムクロライド、アリルトリメチルアンモニウムクロライド、ジメチルアリルビニルケトン等が挙げられる。
 エチレン性不飽和モノマー(a4)は1種を単独で用いてもよく、2種以上を併用してもよい。
[Ethylenically unsaturated monomer (a4)]
In the first embodiment, the copolymerization component (a) may optionally further contain a copolymerizable ethylenically unsaturated monomer (a4) other than the monomers (a1) to (a3). .
Other copolymerizable ethylenically unsaturated monomers (a4) include, for example, alkyl (meth)acrylates such as n-butyl acrylate and 2-ethylhexyl (meth)acrylate (provided that alkyl acrylate (a1) and alkyl methacrylate ( except for a2));
Phenyl (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, phenyldiethylene glycol (meth) acrylate, phenoxy polyethylene glycol (meth) acrylate, phenoxy polyethylene glycol-polypropylene glycol-(meth) acrylate, orthophenylphenoxyethyl Aromatic ring-containing monomers such as (meth)acrylates and nonylphenol ethylene oxide adduct (meth)acrylates;
Alicyclic-containing monomers such as cyclohexyloxyalkyl (meth)acrylate, tert-butylcyclohexyloxyethyl (meth)acrylate, isobornyl methacrylate, dicyclopentanyl (meth)acrylate;
2-Methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, 2-butoxyethyl (meth) acrylate, 2-butoxydiethylene glycol (meth) acrylate, methoxydiethylene glycol (meth) Acrylates, methoxytriethylene glycol (meth)acrylate, ethoxydiethylene glycol (meth)acrylate, methoxydipropylene glycol (meth)acrylate, methoxypolyethylene glycol (meth)acrylate, octoxypolyethyleneglycol-polypropyleneglycol mono(meth)acrylate, lauroxy Ether chain-containing monomers such as polyethylene glycol mono (meth) acrylate and stearoxy polyethylene glycol mono (meth) acrylate;
acrylic acid dimers such as (meth)acrylic acid and β-carboxyethyl acrylate;
Carboxy group-containing monomers such as crotonic acid, maleic acid, maleic anhydride, fumaric acid, citraconic acid, glutaconic acid, itaconic acid, N-glycolic acid, cinnamic acid;
(Meth)acrylamide, N-(n-butoxyalkyl)(meth)acrylamide, N,N-dimethyl(meth)acrylamide, N,N-diethyl(meth)acrylamide, N,N-dimethylaminoalkyl(meth)acrylamide, etc. The amide group-containing monomer of;
benzophenone-containing monomers such as 4-(meth)acryloyloxybenzophenone;
Acrylonitrile, methacrylonitrile, styrene, α-methylstyrene, vinyl acetate, vinyl propionate, vinyl stearate, vinyl chloride, vinylidene chloride, alkyl vinyl ether, vinyl toluene, vinylpyridine, vinylpyrrolidone, dialkyl itaconate, dialkyl fumarate Ester, allyl alcohol, acryl chloride, methyl vinyl ketone, N-acrylamidomethyltrimethylammonium chloride, allyltrimethylammonium chloride, dimethyl allyl vinyl ketone and the like.
The ethylenically unsaturated monomers (a4) may be used alone or in combination of two or more.
 エチレン性不飽和基を二つ以上有するエチレン性不飽和モノマーとして、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジビニルベンゼン等を併用することもできる。 Examples of ethylenically unsaturated monomers having two or more ethylenically unsaturated groups include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, propylene Glycol di(meth)acrylate, divinylbenzene and the like can also be used in combination.
 〔第一の態様に係る共重合成分(a)の組成〕
 第一の態様において、アルキルアクリレート(a1)の含有量は、共重合成分(a)に対して5重量%以上であり、好ましくは5~45重量%であり、より好ましくは10~40重量%、特に好ましくは12~35重量%、殊に好ましくは15~30重量%である。
 かかる含有量が少なすぎると、一次硬化状態の粘着物性が低下する傾向がある。該含有量が多すぎると、完全硬化後の粘着物性が低下する傾向がある。
[Composition of the copolymer component (a) according to the first aspect]
In the first aspect, the content of the alkyl acrylate (a1) is 5% by weight or more, preferably 5 to 45% by weight, more preferably 10 to 40% by weight, relative to the copolymer component (a). , particularly preferably 12 to 35% by weight, particularly preferably 15 to 30% by weight.
If the content is too small, the adhesive properties in the primary cured state tend to deteriorate. If the content is too large, adhesive physical properties after complete curing tend to deteriorate.
 第一の態様において、アルキルメタクリレート(a2)の含有量は、共重合成分(a)に対して5重量%以上であり、好ましくは10~60重量%、より好ましくは15~55重量%、特に好ましくは20~45重量%である。
 かかる含有量が少なすぎると、一次硬化状態の粘着物性が低下する傾向がある。該含有量が多すぎると、完全硬化後の粘着物性が低下する傾向がある。
In the first aspect, the content of the alkyl methacrylate (a2) is 5% by weight or more, preferably 10 to 60% by weight, more preferably 15 to 55% by weight, particularly It is preferably 20 to 45% by weight.
If the content is too small, the adhesive properties in the primary cured state tend to deteriorate. If the content is too large, the adhesive physical properties after complete curing tend to deteriorate.
 第一の態様に係る共重合成分(a)において、アルキルアクリレート(a1)とアルキルメタクリレート(a2)の含有割合(a1/a2)は重量比で5/95~55/45であり、好ましくは15/85~50/50、特に好ましくは20/80~40/60である。 In the copolymer component (a) according to the first aspect, the content ratio (a1/a2) of the alkyl acrylate (a1) and the alkyl methacrylate (a2) is 5/95 to 55/45 by weight, preferably 15. /85 to 50/50, particularly preferably 20/80 to 40/60.
 第一の態様において、アルキルアクリレート(a1)とアルキルメタクリレート(a2)との合計含有量は、共重合成分(a)に対して好ましくは30~70重量%であり、より好ましくは35~65重量%、特に好ましくは40~60重量%である。
 アルキルアクリレート(a1)およびアルキルメタクリレート(a2)の合計含有量が前記数値範囲内であれば、一次硬化状態の低架橋状態における粘着物性が良好となるため好ましい。
In the first aspect, the total content of alkyl acrylate (a1) and alkyl methacrylate (a2) is preferably 30 to 70% by weight, more preferably 35 to 65% by weight, relative to copolymerization component (a). %, particularly preferably 40 to 60% by weight.
If the total content of the alkyl acrylate (a1) and the alkyl methacrylate (a2) is within the above numerical range, it is preferable because adhesive physical properties in a low crosslinked state in the primary cured state will be good.
 第一の態様において水酸基含有モノマー(a3)の含有量は、5~30重量%がより好ましく、10~25重量%がさらに好ましく、15~20重量%が特に好ましい。水酸基含有モノマー(a3)の含有量が少なすぎると、完全硬化後の耐湿熱性が低下する傾向がある。水酸基含有モノマー(a3)の含有量が多すぎると、完全硬化後の粘着物性が低下する傾向がある。 In the first aspect, the content of the hydroxyl group-containing monomer (a3) is more preferably 5-30% by weight, even more preferably 10-25% by weight, and particularly preferably 15-20% by weight. If the content of the hydroxyl group-containing monomer (a3) is too small, the moist heat resistance after complete curing tends to decrease. If the content of the hydroxyl group-containing monomer (a3) is too high, the adhesive physical properties after complete curing tend to deteriorate.
 第一の態様に係る共重合成分(a)において、アルキルアクリレート(a1)、アルキルメタクリレート(a2)の合計含有量と水酸基含有モノマー(a3)の含有割合(a1+a2)/(a3)は重量比で95/5~50/50が好ましく、より好ましくは85/15~70/30、特に好ましくは80/20~75/25である。含有割合(a1+a2)/(a3)が前記数値範囲内であると、一次硬化状態での粘着物性に優れる。 In the copolymerization component (a) according to the first aspect, the total content of the alkyl acrylate (a1) and the alkyl methacrylate (a2) and the content ratio (a1+a2)/(a3) of the hydroxyl group-containing monomer (a3) is the weight ratio 95/5 to 50/50 is preferred, 85/15 to 70/30 is more preferred, and 80/20 to 75/25 is particularly preferred. When the content ratio (a1+a2)/(a3) is within the above numerical range, the adhesive physical properties in the primary cured state are excellent.
 第一の態様に係る共重合成分(a)がエチレン性不飽和モノマー(a4)を含有する場合、エチレン性不飽和モノマー(a4)の含有量は、共重合成分(a)100重量%に対して通常50重量%以下であり、好ましくは45重量%以下、さらに好ましくは40重量%以下である。エチレン性不飽和モノマー(a4)の含有量が多すぎると低架橋時の粘着物性が低下する傾向がある。 When the copolymerization component (a) according to the first aspect contains the ethylenically unsaturated monomer (a4), the content of the ethylenically unsaturated monomer (a4) is relative to 100% by weight of the copolymerization component (a) is usually 50% by weight or less, preferably 45% by weight or less, more preferably 40% by weight or less. If the content of the ethylenically unsaturated monomer (a4) is too high, the adhesion property tends to be lowered when low crosslinking is achieved.
 第一の態様においては、アクリル系樹脂(A)は、アルキルアクリレート(a1)に基づく構成単位、アルキルメタクリレート(a2)に基づく構成単位と、水酸基含有モノマー(a3)に基づく構成単位とを有する共重合体であるとも言える。また、この場合、アクリル系樹脂(A)は、アルキルアクリレート(a1)に基づく構成単位、アルキルメタクリレート(a2)に基づく構成単位と、水酸基含有モノマー(a3)に基づく構成単位に加えて、エチレン性不飽和モノマー(a4)に基づく構成単位を必要に応じてさらに有してもよい。このとき、各モノマーに基づく構成単位の割合は共重合成分(a)の組成にしたがって決定でき、その好ましい態様も同様である。 In the first aspect, the acrylic resin (A) comprises a structural unit based on the alkyl acrylate (a1), a structural unit based on the alkyl methacrylate (a2), and a structural unit based on the hydroxyl group-containing monomer (a3). It can also be said that it is a polymer. In this case, the acrylic resin (A) includes structural units based on the alkyl acrylate (a1), structural units based on the alkyl methacrylate (a2), structural units based on the hydroxyl group-containing monomer (a3), and ethylenic It may further have a structural unit based on the unsaturated monomer (a4), if necessary. At this time, the ratio of structural units based on each monomer can be determined according to the composition of the copolymer component (a), and the preferred embodiment is also the same.
 第一の態様に係るアクリル系樹脂(A)の動的粘弾性に基づくガラス転移温度は-10℃以上であり、-5~20℃が好ましく、より好ましくは0~15℃、特に好ましくは2~13℃である。アクリル系樹脂(A)の動的粘弾性に基づくガラス転移温度が高すぎると、粘着剤層の段差追従性の低下や密着性の低下に伴って粘着力が低下する傾向がある。アクリル系樹脂(A)の動的粘弾性に基づくガラス転移温度が低すぎると、低架橋時の粘着物性が低下する傾向がある。 The glass transition temperature based on the dynamic viscoelasticity of the acrylic resin (A) according to the first aspect is −10° C. or higher, preferably −5 to 20° C., more preferably 0 to 15° C., particularly preferably 2 ~13°C. If the glass transition temperature based on the dynamic viscoelasticity of the acrylic resin (A) is too high, there is a tendency for the pressure-sensitive adhesive layer to be less conformable to irregularities and less adhesive, resulting in a decrease in adhesive force. If the glass transition temperature based on the dynamic viscoelasticity of the acrylic resin (A) is too low, there is a tendency for the adhesive physical properties at the time of low crosslinking to deteriorate.
 動的粘弾性に基づくガラス転移温度は、下記の測定法により求められる。
 適当な有機溶媒を添加することにより第一の態様に係るアクリル系樹脂(A)と有機溶媒のみを含有するアクリル系樹脂溶液を調製する。アクリル系樹脂溶液の濃度を調整した後、離型シート上に乾燥後の厚みが50μmになるように塗工する。その後、90~105℃、5~10分間加熱処理等により乾燥させることで、有機溶媒を除去した後、これを離型シートに貼付し、アクリル系樹脂(A)を99%以上含有するアクリル系樹脂シートを作製する。その後、複数のアクリル系樹脂シートを積層して、厚さ約800μmのアクリル系樹脂シートを作製する。
 作製したシートの動的粘弾性を以下の条件にて測定し、損失正接(損失弾性率G’’/貯蔵弾性率G’=tanδ)が最大となった温度を読み取り、動的粘弾性に基づくアクリル系樹脂(A)のガラス転移温度とする。
The glass transition temperature based on dynamic viscoelasticity is obtained by the following measuring method.
An acrylic resin solution containing only the acrylic resin (A) according to the first embodiment and the organic solvent is prepared by adding an appropriate organic solvent. After adjusting the concentration of the acrylic resin solution, it is coated on a release sheet so that the thickness after drying becomes 50 μm. After that, the organic solvent is removed by drying by heat treatment or the like at 90 to 105 ° C. for 5 to 10 minutes, and then this is attached to a release sheet, and an acrylic resin containing 99% or more of the acrylic resin (A) A resin sheet is produced. After that, a plurality of acrylic resin sheets are laminated to produce an acrylic resin sheet having a thickness of about 800 μm.
The dynamic viscoelasticity of the produced sheet was measured under the following conditions, and the temperature at which the loss tangent (loss elastic modulus G''/storage elastic modulus G' = tan δ) was maximized was read, based on the dynamic viscoelasticity. It is defined as the glass transition temperature of the acrylic resin (A).
 (動的粘弾性の測定条件)
 測定機器:動的粘弾性測定装置(商品名:DVA-225、アイティー計測制御社製)
 変形モード:せん断
 歪み:0.1%
 測定温度:-100~60℃
 測定周波数:1Hz
(Measurement conditions for dynamic viscoelasticity)
Measuring instrument: dynamic viscoelasticity measuring device (trade name: DVA-225, manufactured by IT Instrumentation & Control Co., Ltd.)
Deformation mode: Shear Strain: 0.1%
Measurement temperature: -100 to 60°C
Measurement frequency: 1Hz
 第一の態様において、アクリル系樹脂(A)の重量平均分子量は、50,000~500,000が好ましく、100,000~400,000がより好ましく、150,000~350,000がさらに好ましい。アクリル系樹脂(A)の重量平均分子量が大きすぎると粘度が高くなりすぎて、塗工性やハンドリングが低下する傾向がある。アクリル系樹脂(A)の重量平均分子量が小さすぎると凝集力が低下し、粘着物性が低下する傾向がある。
 アクリル系樹脂(A)の重量平均分子量は、製造完了時の重量平均分子量である。重量平均分子量は、製造後に加熱等がされていないアクリル系樹脂(A)について測定される。
In the first aspect, the acrylic resin (A) preferably has a weight average molecular weight of 50,000 to 500,000, more preferably 100,000 to 400,000, even more preferably 150,000 to 350,000. If the weight-average molecular weight of the acrylic resin (A) is too large, the viscosity tends to be too high, resulting in poor coatability and handling. If the weight-average molecular weight of the acrylic resin (A) is too small, the cohesive force tends to decrease and the adhesive physical properties tend to decrease.
The weight-average molecular weight of the acrylic resin (A) is the weight-average molecular weight at the completion of production. The weight average molecular weight is measured for the acrylic resin (A) that has not been heated or the like after production.
 アクリル系樹脂(A)の重量平均分子量は、標準ポリスチレン分子量換算による重量平均分子量である。重量平均分子量は、高速液体クロマトグラフ(日本Waters社製、「Waters2695(本体)」と「Waters2414(検出器)」)に、カラム:Shodex GPC KF-806L(排除限界分子量:2×10、分離範囲:100~2×10、理論段数:10000段/本、充填剤材質:スチレン-ジビニルベンゼン共重合体、充填剤粒径:10μm)の3本を直列にして用いることにより測定される。
 数平均分子量も同様の方法を用いて測定することができる。また、分散度は重量平均分子量と数平均分子量より求められる。
The weight average molecular weight of the acrylic resin (A) is the weight average molecular weight in terms of standard polystyrene molecular weight. The weight-average molecular weight was measured using a high-performance liquid chromatograph ("Waters 2695 (body)" and "Waters 2414 (detector)" manufactured by Nippon Waters Co., Ltd.) using a column: Shodex GPC KF-806L (exclusion limit molecular weight: 2 × 10 7 , separation Range: 100 to 2×10 7 , Number of theoretical plates: 10,000 plates/line, Filler material: Styrene-divinylbenzene copolymer, Filler particle diameter: 10 μm) are connected in series.
Number average molecular weight can also be measured using a similar method. Further, the dispersity is obtained from the weight average molecular weight and the number average molecular weight.
 アクリル系樹脂(A)の分散度(重量平均分子量/数平均分子量)は、15以下が好ましく、より好ましくは10以下、さらに好ましくは7以下、特に好ましくは5以下である。アクリル系樹脂(A)の分散度が高すぎると粘着剤層の耐久性能が低下する傾向がある。また、発泡等が発生しやすくなる傾向もある。アクリル系樹脂(A)の分散度が低すぎると取り扱い性が低下する傾向がある。分散度の下限は、製造の限界の点から、通常1.1である。 The degree of dispersion (weight average molecular weight/number average molecular weight) of the acrylic resin (A) is preferably 15 or less, more preferably 10 or less, even more preferably 7 or less, and particularly preferably 5 or less. If the degree of dispersion of the acrylic resin (A) is too high, the durability of the pressure-sensitive adhesive layer tends to decrease. Moreover, there is also a tendency that foaming or the like is likely to occur. If the degree of dispersion of the acrylic resin (A) is too low, the handleability tends to deteriorate. The lower limit of the dispersity is usually 1.1 due to manufacturing limitations.
 〔アクリル系樹脂(A)の製造方法〕
 第一の態様において、アクリル系樹脂(A)は、アルキルアクリレート(a1)、アルキルメタクリレート(a2)、水酸基含有モノマー(a3)を含有する共重合成分(a)を重合させることで製造できる。
 第一の態様に係る共重合成分(a)は、任意重合成分のエチレン性不飽和モノマー(a4)をさらに含有してもよい。
[Method for producing acrylic resin (A)]
In the first aspect, the acrylic resin (A) can be produced by polymerizing a copolymer component (a) containing an alkyl acrylate (a1), an alkyl methacrylate (a2), and a hydroxyl group-containing monomer (a3).
The copolymerization component (a) according to the first aspect may further contain an ethylenically unsaturated monomer (a4) as an optional polymerization component.
 アクリル系樹脂(A)の重合方法としては、例えば、溶液重合、懸濁重合、塊状重合、乳化重合等の従来公知の重合方法が挙げられる。反応の安全性および安定性、任意のモノマー組成でアクリル系樹脂(A)を製造できる点で溶液重合が好ましい。
 以下、第一の態様に係るアクリル系樹脂(A)の好ましい製造方法の一例を示す。
Examples of polymerization methods for the acrylic resin (A) include conventionally known polymerization methods such as solution polymerization, suspension polymerization, bulk polymerization, and emulsion polymerization. Solution polymerization is preferred in terms of safety and stability of the reaction and the ability to produce the acrylic resin (A) with any monomer composition.
An example of a preferred method for producing the acrylic resin (A) according to the first aspect is shown below.
 例えば、有機溶媒中に、第一の態様に係る共重合成分(a)、重合開始剤を混合または滴下することで、溶液重合を行うことができる。
 重合反応に用いられる有機溶媒としては、例えば、トルエン、キシレン等の芳香族炭化水素類;
 n-ヘキサン等の脂肪族炭化水素類;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類;メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール等の脂肪族アルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;ジメチルエーテル、ジエチルエーテル等の脂肪族エーテル類;塩化メチレン、塩化エチレン等の脂肪族ハロゲン化炭化水素類;テトラヒドロフラン等の環状エーテル類等が挙げられる。
 これらの有機溶媒のなかでも、エステル類、ケトン類が好ましく、酢酸エチル、アセトン、メチルエチルケトンが特に好ましい。
 有機溶媒は1種を単独で用いてもよく、2種以上を併用してもよい。
For example, solution polymerization can be carried out by mixing or dropping the copolymerization component (a) according to the first aspect and the polymerization initiator into an organic solvent.
Examples of organic solvents used in the polymerization reaction include aromatic hydrocarbons such as toluene and xylene;
Aliphatic hydrocarbons such as n-hexane; Esters such as methyl acetate, ethyl acetate and butyl acetate; Aliphatic alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol and isopropyl alcohol; Acetone, methyl ethyl ketone, methyl isobutyl ketones such as ketones and cyclohexanone; aliphatic ethers such as dimethyl ether and diethyl ether; aliphatic halogenated hydrocarbons such as methylene chloride and ethylene chloride; and cyclic ethers such as tetrahydrofuran.
Among these organic solvents, esters and ketones are preferred, and ethyl acetate, acetone and methyl ethyl ketone are particularly preferred.
An organic solvent may be used individually by 1 type, and may use 2 or more types together.
 重合反応に用いられる重合開始剤としては、通常のラジカル重合開始剤であるアゾ系重合開始剤や過酸化物系重合開始剤等を用いることができる。
 アゾ系重合開始剤としては、例えば、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビスイソブチロニトリル、(1-フェニルエチル)アゾジフェニルメタン、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-シクロプロピルプロピオニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)等が挙げられる。
As the polymerization initiator used in the polymerization reaction, an azo polymerization initiator, a peroxide polymerization initiator, or the like, which is a normal radical polymerization initiator, can be used.
Examples of azo polymerization initiators include 2,2′-azobis(2-methylbutyronitrile), 2,2′-azobisisobutyronitrile, (1-phenylethyl)azodiphenylmethane, 2,2′ -azobis(2,4-dimethylvaleronitrile), 2,2'-azobis(2-cyclopropylpropionitrile), 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile) and the like. be done.
 過酸化物系重合開始剤としては、例えば、ベンゾイルパーオキサイド、ジ-tert-ブチルパーオキサイド、クメンハイドロパーオキサイド、ラウロイルパーオキサイド、tert-ブチルペルオキシピバレート、tert-ヘキシルペルオキシピバレート、tert-ヘキシルペルオキシネオデカノエート、ジイソプロピルペルオキシカーボネート、ジイソブチリルパーオキサイド等が挙げられる。 Peroxide-based polymerization initiators include, for example, benzoyl peroxide, di-tert-butyl peroxide, cumene hydroperoxide, lauroyl peroxide, tert-butylperoxypivalate, tert-hexylperoxypivalate, tert-hexyl peroxyneodecanoate, diisopropyl peroxycarbonate, diisobutyryl peroxide and the like.
 なかでもアゾ系重合開始剤が好ましく、より好ましくは2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)である。
 重合開始剤は1種を単独で用いてもよく、2種以上を併用してもよい。
Among them, azo polymerization initiators are preferred, and 2,2'-azobisisobutyronitrile and 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile) are more preferred.
One polymerization initiator may be used alone, or two or more polymerization initiators may be used in combination.
 重合開始剤の使用量は共重合成分(a)100重量部に対して、通常0.001~10重量部であり、好ましくは0.1~8重量部、より好ましくは0.5~6重量部、特に好ましくは1~4重量部、さらに好ましくは1.5~3重量部、最も好ましくは2~2.5重量部である。重合開始剤の使用量が少なすぎると、アクリル系樹脂(A)の重合率が低下するため、残存モノマーが増加する傾向がある。また、アクリル系樹脂(A)の重量平均分子量が高くなる傾向がある。使用量が多すぎると、アクリル系樹脂(A)がゲル化する傾向がある。 The amount of the polymerization initiator used is usually 0.001 to 10 parts by weight, preferably 0.1 to 8 parts by weight, more preferably 0.5 to 6 parts by weight, per 100 parts by weight of the copolymer component (a). parts, particularly preferably 1 to 4 parts by weight, more preferably 1.5 to 3 parts by weight, most preferably 2 to 2.5 parts by weight. When the amount of the polymerization initiator used is too small, the rate of polymerization of the acrylic resin (A) decreases, and the amount of residual monomer tends to increase. Moreover, the weight average molecular weight of acrylic resin (A) tends to increase. If the amount used is too large, the acrylic resin (A) tends to gel.
 溶液重合の重合条件は特に限定されず、従来公知の重合条件にしたがって重合することができる。例えば、有機溶媒中に、共重合成分(a)、重合開始剤を混合または滴下して重合することができる。 Polymerization conditions for solution polymerization are not particularly limited, and polymerization can be carried out according to conventionally known polymerization conditions. For example, the copolymerization component (a) and the polymerization initiator can be mixed or dropped into an organic solvent for polymerization.
 重合反応における重合温度は、通常40~120℃であるが、安定的に反応できる点から50~90℃が好ましい。重合温度が高すぎるとアクリル系樹脂(A)がゲル化しやすくなる傾向がある。重合温度が低すぎると、重合開始剤の活性が低下するため、重合率が低下する結果、残存モノマーが増加する傾向がある。
 重合反応における重合時間は特に制限はないが、最後の重合開始剤の添加から0.5時間以上、好ましくは1時間以上、より好ましくは2時間以上、特に好ましくは5時間以上である。
 重合反応は、除熱しやすい点で溶媒を還流しながら行うことが好ましい。
The polymerization temperature in the polymerization reaction is usually 40 to 120°C, preferably 50 to 90°C from the viewpoint of stable reaction. If the polymerization temperature is too high, the acrylic resin (A) tends to gel easily. If the polymerization temperature is too low, the activity of the polymerization initiator will decrease, resulting in a decrease in the rate of polymerization and a tendency for the amount of residual monomers to increase.
The polymerization time in the polymerization reaction is not particularly limited, but it is 0.5 hours or longer, preferably 1 hour or longer, more preferably 2 hours or longer, and particularly preferably 5 hours or longer after the last addition of the polymerization initiator.
The polymerization reaction is preferably carried out while refluxing the solvent in order to facilitate heat removal.
 (光開始剤(B))
 第一の態様に係る光開始剤(B)は、分子内水素引抜型光開始剤(b1)と分子間水素引抜型光開始剤(b2)を含有する。
 第一の態様に係る光開始剤(B)は、発明の効果を損なわない範囲内であれば、分子内水素引抜型光開始剤(b1)および分子間水素引抜型光開始剤(b2)以外の他の光開始剤(b3)をさらに含有してもよい。
(Photoinitiator (B))
The photoinitiator (B) according to the first aspect contains an intramolecular hydrogen abstraction photoinitiator (b1) and an intermolecular hydrogen abstraction photoinitiator (b2).
The photoinitiator (B) according to the first aspect is other than the intramolecular hydrogen abstraction photoinitiator (b1) and the intermolecular hydrogen abstraction photoinitiator (b2) within a range that does not impair the effects of the invention. may further contain another photoinitiator (b3).
 〔分子内水素引抜型光開始剤(b1)〕
 第一の態様に係る分子内水素引抜型光開始剤(b1)は、光開始剤自身の水素を引き抜くことでラジカルを発生させることが可能な構造を有する。例えば、分子内水素引抜型光開始剤(b1)はフェニルグリオキシレート構造等を有し得る。
 分子内水素引抜型光開始剤(b1)としては、例えば、オキシ-フェニル-酢酸2-[2-オキソ-2-フェニル-アセトキシ-エトキシ]-エチルエステル、フェニルグリオキシル酸メチル等が挙げられる。
 これらのなかでも完全硬化時の架橋効率の点で、分子内に架橋点が複数存在するオキシ-フェニル-酢酸2-[2-オキソ-2-フェニル-アセトキシ-エトキシ]-エチルエステルが好ましい。
 市販品としては、IGM RESINS B.V.社製の「Omnirad MBF」、「Omnirad 754」が挙げられる。
[Intramolecular hydrogen abstraction type photoinitiator (b1)]
The intramolecular hydrogen abstraction type photoinitiator (b1) according to the first aspect has a structure capable of generating radicals by abstraction of hydrogen from the photoinitiator itself. For example, the intramolecular hydrogen abstraction type photoinitiator (b1) may have a phenylglyoxylate structure or the like.
Examples of the intramolecular hydrogen abstraction type photoinitiator (b1) include oxy-phenyl-acetic acid 2-[2-oxo-2-phenyl-acetoxy-ethoxy]-ethyl ester, methyl phenylglyoxylate and the like.
Among these, oxy-phenyl-acetic acid 2-[2-oxo-2-phenyl-acetoxy-ethoxy]-ethyl ester having multiple cross-linking points in the molecule is preferable from the viewpoint of cross-linking efficiency at the time of complete curing.
As a commercial product, IGM RESINS B.I. V. "Omnirad MBF" and "Omnirad 754" manufactured by the company.
 〔分子間水素引抜型光開始剤(b2)〕
 第一の態様に係る分子間水素引抜型光開始剤(b2)は、光開始剤自身以外から水素を引き抜くことでラジカルを発生させることが可能な構造を有する。分子間水素引抜型光開始剤(b2)は、例えばベンゾフェノン構造等を有し得る。
 例えば、ベンゾフェノン、4-メチル-ベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-フェニルベンゾフェノン、3,3‘-ジメチル-4-メトキシベンゾフェノン、4-(メタ)アクリロイルオキシベンゾフェノン、4-[2-((メタ)アクリロイルオキシ)エトキシ]ベンゾフェノン、4-(メタ)アクリロイルオキシ-4’-メトキシベンゾフェノン、カルボキシメトキシメトキシベンゾフェノン-ポリエチレングリコール250ジエステル、2-ベンゾイル安息香酸メチル、4-(1,3-アクリロイル-1,4,7,10,13-ペンタオキソトリデシル)ベンゾフェノン等が挙げられる。
[Intermolecular hydrogen abstraction type photoinitiator (b2)]
The intermolecular hydrogen abstraction type photoinitiator (b2) according to the first aspect has a structure capable of generating radicals by abstracting hydrogen from sources other than the photoinitiator itself. The intermolecular hydrogen abstraction photoinitiator (b2) may have, for example, a benzophenone structure.
For example, benzophenone, 4-methyl-benzophenone, 2,4,6-trimethylbenzophenone, 4-phenylbenzophenone, 3,3′-dimethyl-4-methoxybenzophenone, 4-(meth)acryloyloxybenzophenone, 4-[2- ((meth)acryloyloxy)ethoxy]benzophenone, 4-(meth)acryloyloxy-4′-methoxybenzophenone, carboxymethoxymethoxybenzophenone-polyethylene glycol 250 diester, methyl 2-benzoylbenzoate, 4-(1,3-acryloyl) -1,4,7,10,13-pentaoxotridecyl)benzophenone and the like.
 これらのなかでも低粘度の液体であり、取り扱いが容易である点で、2,4,6-トリメチルベンゾフェノンが好ましい。また高架橋が可能な点で、分子内に架橋点が複数存在する4-(メタ)アクリロイルオキシベンゾフェノン、4-[2-((メタ)アクリロイルオキシ)エトキシ]ベンゾフェノン、4-(メタ)アクリロイルオキシ-4’-メトキシベンゾフェノン、カルボキシメトキシメトキシベンゾフェノン-ポリエチレングリコール250ジエステルが好ましい。
 市販品としては、新菱社製の「MBP」、IGM RESINS B.V.社製の「OmniradBP」、「Omnirad 4MBZ」、「Esacure TZT」、「Omnipol BP」が挙げられる。
Among these, 2,4,6-trimethylbenzophenone is preferred because it is a low-viscosity liquid and is easy to handle. In addition, 4-(meth)acryloyloxybenzophenone, 4-[2-((meth)acryloyloxy)ethoxy]benzophenone, 4-(meth)acryloyloxy-, which have multiple cross-linking points in the molecule, can be highly crosslinked. 4′-Methoxybenzophenone, carboxymethoxymethoxybenzophenone-polyethylene glycol 250 diester are preferred.
Commercially available products include "MBP" manufactured by Shinryo Corporation and IGM RESINS B.I. V. "OmniradBP", "Omnirad 4MBZ", "Esacure TZT", "Omnipol BP" manufactured by the company.
 〔他の光開始剤(b3)〕
 第一の態様に係る他の光開始剤(b3)としては、例えば、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタノン、2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノンオリゴマー等のアセトフェノン類;
 ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾイン類;
 2,4,6-トリメチルベンゾイル-ジフェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等のアシルフォスフォンオキサイド類;
 が挙げられる。
[Other photoinitiator (b3)]
Other photoinitiators (b3) according to the first aspect include, for example, diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethylketal, 4-(2-hydroxy ethoxy)phenyl-(2-hydroxy-2-propyl)ketone, 1-hydroxycyclohexylphenylketone, 2-methyl-2-morpholino(4-thiomethylphenyl)propan-1-one, 2-benzyl-2-dimethylamino -acetophenones such as 1-(4-morpholinophenyl)butanone, 2-hydroxy-2-methyl-1-[4-(1-methylvinyl)phenyl]propanone oligomers;
Benzoins such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzoin isobutyl ether;
2,4,6-trimethylbenzoyl-diphenylphosphine oxide, bis(2,6-dimethoxybenzoyl)-2,4,4-trimethyl-pentylphosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenyl acylphosphone oxides such as phosphine oxide;
are mentioned.
 第一の態様に係る光開始剤(B)の助剤として、トリエタノールアミン、トリイソプロパノールアミン、4,4’-ジメチルアミノベンゾフェノン(ミヒラーケトン)、4,4’-ジエチルアミノベンゾフェノン、2-ジメチルアミノエチル安息香酸、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸(n-ブトキシ)エチル、4-ジメチルアミノ安息香酸イソアミル、4-ジメチルアミノ安息香酸2-エチルヘキシル、2,4-ジエチルチオキサンソン、2,4-ジイソプロピルチオキサンソン等を併用することも可能である。
 光開始剤(B)の助剤は1種を単独で用いてもよく、2種以上を併用してもよい。
As auxiliary agents for the photoinitiator (B) according to the first aspect, triethanolamine, triisopropanolamine, 4,4'-dimethylaminobenzophenone (Michler's ketone), 4,4'-diethylaminobenzophenone, 2-dimethylaminoethyl Benzoic acid, ethyl 4-dimethylaminobenzoate, (n-butoxy)ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, 2-ethylhexyl 4-dimethylaminobenzoate, 2,4-diethylthioxanthone , 2,4-diisopropylthioxanthone and the like can also be used in combination.
The auxiliary agent for the photoinitiator (B) may be used alone or in combination of two or more.
 (架橋剤(C))
 第一の態様に係る粘着剤組成物は、アクリル系樹脂(A)および光開始剤(B)に加えて、架橋剤(C)をさらに含有することが好ましい。
 架橋剤(C)としては、活性エネルギー線架橋剤(c1)、熱架橋剤(c2)が挙げられる。活性エネルギー線架橋剤(c1)、熱架橋剤(c2)は1種を単独で用いてもよく、2種以上を併用してもよい。
(Crosslinking agent (C))
The pressure-sensitive adhesive composition according to the first aspect preferably further contains a cross-linking agent (C) in addition to the acrylic resin (A) and the photoinitiator (B).
Examples of the cross-linking agent (C) include an active energy ray cross-linking agent (c1) and a thermal cross-linking agent (c2). The active energy ray cross-linking agent (c1) and the thermal cross-linking agent (c2) may be used alone or in combination of two or more.
 第一の態様に係る架橋剤(C)として活性エネルギー線架橋剤(c1)のみを含有する場合は、活性エネルギー線量を制御することのみで多段硬化が可能となる。また架橋剤(C)として活性エネルギー線架橋剤(c1)と熱架橋剤(c2)とを含有する場合は、熱硬化と活性エネルギー線硬化を併用することでも多段硬化が可能となる。
 このように架橋反応を制御することで、粘着剤層全体の凝集力を調整し、一次硬化後や完全硬化後において安定した粘着物性を得ることができる。
When only the active energy ray cross-linking agent (c1) is contained as the cross-linking agent (C) according to the first aspect, multistage curing can be achieved only by controlling the dose of active energy ray. Moreover, when the active energy ray cross-linking agent (c1) and the thermal cross-linking agent (c2) are contained as the cross-linking agent (C), multistage curing can be achieved by using both heat curing and active energy ray curing.
By controlling the cross-linking reaction in this way, the cohesive force of the entire adhesive layer can be adjusted, and stable adhesive physical properties can be obtained after primary curing and after complete curing.
 〔活性エネルギー線架橋剤(c1)〕
 第一の態様に係る活性エネルギー線架橋剤(c1)としては、例えば、1分子内に2つ以上のエチレン性不飽和基を含有する多官能性架橋剤が挙げられる。
 例えば、ヘキサンジオールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、(ポリ)エチレングリコールモノ(メタ)アクリレート、(ポリ)ブチレングリコールモノ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレングリコールジ(メタ)アクリレート、(ポリ)ペンタメチレングリコールジ(メタ)アクリレート、(ポリ)ヘキサメチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、EO変性グリセリントリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド変性トリ(メタ)アクリレート、多官能ウレタン(メタ)アクリレート等が挙げられる。
 なかでも、硬化後の粘着物性のバランスの点で、2つのエチレン性不飽和基を含有する(メタ)アクリレートが好ましく、特には、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレングリコールジ(メタ)アクリレートが好ましい。
 多官能性架橋剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
[Active energy ray cross-linking agent (c1)]
Examples of the active energy ray cross-linking agent (c1) according to the first aspect include polyfunctional cross-linking agents containing two or more ethylenically unsaturated groups in one molecule.
For example, hexanediol di(meth)acrylate, butanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, (poly)ethylene glycol mono(meth)acrylate ) acrylate, (poly)butylene glycol mono (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, (poly) tetramethylene glycol di (meth) acrylate, (poly ) pentamethylene glycol di(meth)acrylate, (poly)hexamethylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, pentaerythritol di(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol Hexa(meth)acrylate, trimethylolpropane tri(meth)acrylate, EO-modified trimethylolpropane tri(meth)acrylate, glycerin tri(meth)acrylate, EO-modified glycerin tri(meth)acrylate, tetramethylolmethane tri(meth)acrylate , isocyanuric acid ethylene oxide-modified tri(meth)acrylate, polyfunctional urethane(meth)acrylate, and the like.
Among them, (meth)acrylates containing two ethylenically unsaturated groups are preferable in terms of the balance of adhesive physical properties after curing, and in particular, (poly)ethylene glycol di(meth)acrylate and (poly)propylene glycol. Di(meth)acrylate and (poly)tetramethylene glycol di(meth)acrylate are preferred.
Polyfunctional cross-linking agents may be used alone or in combination of two or more.
 〔熱架橋剤(c2)〕
 第一の態様に係る熱架橋剤(c2)は、主としてアクリル系樹脂(A)の構成モノマーである官能基含有モノマー由来の官能基と反応することで、優れた粘着力を発揮できる。例えば、イソシアネート系架橋剤(c2-1)、エポキシ系架橋剤(c2-2)、アジリジン系架橋剤(c2-3)、メラミン系架橋剤(c2-4)、アルデヒド系架橋剤(c2-5)、アミン系架橋剤(c2-6)、金属キレート系架橋剤(c2-7)が挙げられる。これらのなかでも、基材との密着性を向上させる点やアクリル系樹脂(A)との反応性の点で、イソシアネート系架橋剤(c2-1)が好適に用いられる。
 熱架橋剤(c2)は、1種を単独で使用してもよく、2種以上を併用してもよい。
[Thermal cross-linking agent (c2)]
The thermal cross-linking agent (c2) according to the first aspect can exhibit excellent adhesion by reacting mainly with functional groups derived from functional group-containing monomers that are constituent monomers of the acrylic resin (A). For example, isocyanate cross-linking agent (c2-1), epoxy cross-linking agent (c2-2), aziridine cross-linking agent (c2-3), melamine cross-linking agent (c2-4), aldehyde cross-linking agent (c2-5 ), an amine cross-linking agent (c2-6), and a metal chelate cross-linking agent (c2-7). Among these, the isocyanate-based cross-linking agent (c2-1) is preferably used in terms of improving adhesion to the substrate and reactivity with the acrylic resin (A).
The thermal cross-linking agent (c2) may be used alone or in combination of two or more.
 イソシアネート系架橋剤(c2-1)としては、例えば、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート等のトリレンジイソシアネート系化合物;
 1,3-キシリレンジイソシアネート、1,4-キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート等のキシリレンジイソシアネート系化合物;
 1,5-ナフタレンジイソシアネート、トリフェニルメタントリイソシアネート等の芳香族イソシアネート系化合物;
 ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート等のヘキサメチレンジイソシアネート系化合物、リジンジイソシアネート等の脂肪族イソシアネート系化合物;
 イソホロンジイソシアネート等の脂環式イソシアネート系化合物;
 これらのイソシアネート系化合物とトリメチロールプロパン等のポリオール化合物とのアダクト体;
 これらイソシアネート化合物のビュレット体やイソシアヌレート体;
 等が挙げられる。
Examples of the isocyanate-based cross-linking agent (c2-1) include tolylene diisocyanate-based compounds such as 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate;
xylylene diisocyanate compounds such as 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, tetramethyl xylylene diisocyanate;
Aromatic isocyanate compounds such as 1,5-naphthalene diisocyanate and triphenylmethane triisocyanate;
Hexamethylene diisocyanate compounds such as hexamethylene diisocyanate and trimethylhexamethylene diisocyanate, aliphatic isocyanate compounds such as lysine diisocyanate;
Alicyclic isocyanate compounds such as isophorone diisocyanate;
Adducts of these isocyanate compounds and polyol compounds such as trimethylolpropane;
burettes and isocyanurates of these isocyanate compounds;
etc.
 イソシアネート系架橋剤(c2-1)のなかでも、反応性に優れる点からは芳香族イソシアネート系化合物を用いることが好ましく、特に好ましくはトリレンジイソシアネート系化合物である。また、黄変を抑制する点からは脂肪族イソシアネート系化合物を用いることが好ましく、特に好ましくはヘキサメチレンジイソシアネート系化合物である。 Among the isocyanate-based cross-linking agents (c2-1), it is preferable to use aromatic isocyanate-based compounds from the viewpoint of excellent reactivity, and tolylene diisocyanate-based compounds are particularly preferable. Moreover, from the viewpoint of suppressing yellowing, it is preferable to use an aliphatic isocyanate-based compound, and particularly preferably a hexamethylene diisocyanate-based compound.
 エポキシ系架橋剤(c2-2)としては、例えば、ビスフェノールA・エピクロルヒドリン型のエポキシ樹脂、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、グリセリントリグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ソルビトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエリスリトール、ジグリセロールポリグリシジルエーテル等が挙げられる。 Examples of the epoxy-based cross-linking agent (c2-2) include bisphenol A/epichlorohydrin type epoxy resin, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerin diglycidyl ether, glycerin triglycidyl ether, and 1,6-hexane. Diol diglycidyl ether, trimethylolpropane triglycidyl ether, sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidylerythritol, diglycerol polyglycidyl ether and the like.
 アジリジン系架橋剤(c2-3)としては、例えば、テトラメチロールメタン-トリ-β-アジリジニルプロピオネート、トリメチロールプロパン-トリ-β-アジリジニルプロピオネート、N,N′-ジフェニルメタン-4,4′-ビス(1-アジリジンカルボキシアミド)、N,N′-ヘキサメチレン-1,6-ビス(1-アジリジンカルボキシアミド)等が挙げられる。 Examples of aziridine-based cross-linking agents (c2-3) include tetramethylolmethane-tri-β-aziridinylpropionate, trimethylolpropane-tri-β-aziridinylpropionate, and N,N'-diphenylmethane. -4,4'-bis(1-aziridinecarboxamide), N,N'-hexamethylene-1,6-bis(1-aziridinecarboxamide) and the like.
 メラミン系架橋剤(c2-4)としては、例えば、へキサメトキシメチルメラミン、ヘキサエトキシメチルメラミン、ヘキサプロポキシメチルメラミン、ヘキサプトキシメチルメラミン、ヘキサペンチルオキシメチルメラミン、ヘキサヘキシルオキシメチルメラミン、メラミン樹脂等が挙げられる。 Melamine-based cross-linking agents (c2-4) include, for example, hexamethoxymethylmelamine, hexaethoxymethylmelamine, hexapropoxymethylmelamine, hexaptoxymethylmelamine, hexapentyloxymethylmelamine, hexahexyloxymethylmelamine, and melamine resins. etc.
 アルデヒド系架橋剤(c2-5)としては、例えば、グリオキザール、マロンジアルデヒド、スクシンジアルデヒド、マレインジアルデヒド、グルタルジアルデヒド、ホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド等が挙げられる。 Aldehyde-based cross-linking agents (c2-5) include, for example, glyoxal, malondialdehyde, succindialdehyde, maleinedialdehyde, glutaredialdehyde, formaldehyde, acetaldehyde, and benzaldehyde.
 アミン系架橋剤(c2-6)としては、例えば、ヘキサメチレンジアミン、トリエチルジアミン、ポリエチレンイミン、ヘキサメチレンテトラアミン、ジエチレントリアミン、トリエチルテトラアミン、イソフォロンジアミン、アミノ樹脂、ポリアミド等が挙げられる。 Examples of amine-based cross-linking agents (c2-6) include hexamethylenediamine, triethyldiamine, polyethyleneimine, hexamethylenetetraamine, diethylenetriamine, triethyltetramine, isophoronediamine, amino resins, and polyamides.
 金属キレート系架橋剤(c2-7)としては、例えば、アルミニウム、鉄、銅、亜鉛、スズ、チタン、ニッケル、アンチモン、マグネシウム、パナジウム、クロム、ジルコニウム等の多価金属のアセチルアセトンやアセトアセチルエステル配位化合物等が挙げられる。 Examples of metal chelate cross-linking agents (c2-7) include acetylacetone and acetoacetyl ester linkages of polyvalent metals such as aluminum, iron, copper, zinc, tin, titanium, nickel, antimony, magnesium, vanadium, chromium and zirconium. position compounds and the like.
 (シランカップリング剤(D))
 第一の態様に係る粘着剤組成物は、アクリル系樹脂(A)、光開始剤(B)および架橋剤(C)以外の化合物としてシランカップリング剤(D)をさらに含有することが耐久性を向上させる点で好ましい。
(Silane coupling agent (D))
The pressure-sensitive adhesive composition according to the first aspect further contains a silane coupling agent (D) as a compound other than the acrylic resin (A), the photoinitiator (B) and the cross-linking agent (C). is preferable in terms of improving
 シランカップリング剤(D)は、その構造中に、反応性官能基と、ケイ素原子に結合したアルコキシ基とをそれぞれ1つ以上含有する有機ケイ素化合物である。シランカップリング剤(D)としては、モノマー型とオリゴマー型が挙げられる。 The silane coupling agent (D) is an organosilicon compound containing in its structure one or more reactive functional groups and one or more alkoxy groups bonded to silicon atoms. The silane coupling agent (D) includes monomer type and oligomer type.
 シランカップリング剤(D)中の反応性官能基としては、例えば、エポキシ基、(メタ)アクリロイル基、メルカプト基、水酸基、カルボキシ基、アミノ基、アミド基、イソシアネート基等が挙げられる。これらのなかでも、耐久性、リワーク性に優れる点からエポキシ基、メルカプト基が好ましい。 Examples of reactive functional groups in the silane coupling agent (D) include epoxy groups, (meth)acryloyl groups, mercapto groups, hydroxyl groups, carboxy groups, amino groups, amide groups, isocyanate groups, and the like. Among these, an epoxy group and a mercapto group are preferable from the viewpoint of excellent durability and reworkability.
 シランカップリング剤(D)中の反応性官能基の含有割合としては、3,000g/mol以下が好ましく、1,500g/mol以下がより好ましく、1000g/mol以下がさらに好ましい。反応性官能基が前記数値範囲内であると、耐久性およびリワーク性のバランスが向上する。シランカップリング剤(D)中の反応性官能基の含有割合の下限値は、200g/molである。 The content of reactive functional groups in the silane coupling agent (D) is preferably 3,000 g/mol or less, more preferably 1,500 g/mol or less, and even more preferably 1,000 g/mol or less. When the reactive functional group is within the above numerical range, the balance between durability and reworkability is improved. The lower limit of the content of reactive functional groups in the silane coupling agent (D) is 200 g/mol.
 シランカップリング剤(D)中のケイ素原子に結合したアルコキシ基としては、耐久性と保存安定性の点から、炭素数1~8のアルコキシ基が好ましい。なかでもメトキシ基、エトキシ基がより好ましい。
 シランカップリング剤(D)は、反応性官能基およびケイ素原子と結合したアルコキシ基以外の有機官能基、例えば、アルキル基、フェニル基等を有していてもよい。
As the silicon-bonded alkoxy group in the silane coupling agent (D), an alkoxy group having 1 to 8 carbon atoms is preferable from the viewpoint of durability and storage stability. Among them, a methoxy group and an ethoxy group are more preferable.
The silane coupling agent (D) may have a reactive functional group and an organic functional group other than the silicon-bonded alkoxy group, such as an alkyl group or a phenyl group.
 シランカップリング剤(D)としては、例えば、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルジメトキシメチルシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、メチルトリ(グリシジル)シラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等が挙げられる。なかでも、耐熱性の点からγ-グリシドキシプロピルトリメトキシシランが好ましい。
 シランカップリング剤(D)は1種を単独で用いてもよく、2種以上を併用してもよい。
Examples of the silane coupling agent (D) include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropyldimethoxymethylsilane, γ-glycidoxypropyltrimethoxysilane, γ-glycid. xypropyltriethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, methyltri(glycidyl)silane, β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl)ethyltrimethoxysilane and the like. Among them, γ-glycidoxypropyltrimethoxysilane is preferable from the viewpoint of heat resistance.
Silane coupling agents (D) may be used alone or in combination of two or more.
 (カルボジイミド系化合物(E))
 第一の態様に係る粘着剤組成物は、アクリル系樹脂(A)、光開始剤(B)、架橋剤(C)およびシランカップリング剤(D)以外の化合物としてカルボジイミド系化合物(E)をさらに含有することが耐熱性の点から好ましい。
 カルボジイミド系化合物(E)としては、例えば、ビス(2,6-ジイソプロピルフェニル)カルボジイミド、ジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、ジメチルカルボジイミド、ジイソブチルカルボジイミド、ジオクチルカルボジイミド、tert-ブチルイソプロピルカルボジイミド、ジフェニルカルボジイミド、ジ-tert-ブチルカルボジイミド、ジドデシルカルボジイミド等のモノカルボジイミド、カルボジイミドが複数存在するポリカルボジイミドや環状カルボジイミド等が挙げられる。なかでも、耐熱性の点から、モノカルボジイミド系化合物が好ましく、ビス(2,6-ジイソプロピルフェニル)カルボジイミドがより好ましい。
 カルボジイミド系化合物(E)は1種を単独で用いてもよく、2種以上を併用してもよい。
(Carbodiimide compound (E))
The pressure-sensitive adhesive composition according to the first aspect contains a carbodiimide compound (E) as a compound other than the acrylic resin (A), the photoinitiator (B), the cross-linking agent (C) and the silane coupling agent (D). It is preferable to further contain from the viewpoint of heat resistance.
Carbodiimide compounds (E) include, for example, bis(2,6-diisopropylphenyl)carbodiimide, dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, tert-butylisopropylcarbodiimide, diphenylcarbodiimide, di-tert- Examples include monocarbodiimides such as butylcarbodiimide and didodecylcarbodiimide, polycarbodiimides containing multiple carbodiimides, and cyclic carbodiimides. Among them, from the viewpoint of heat resistance, monocarbodiimide compounds are preferable, and bis(2,6-diisopropylphenyl)carbodiimide is more preferable.
The carbodiimide compound (E) may be used alone or in combination of two or more.
 (任意成分)
 第一の態様に係る粘着剤組成物は、必要に応じて、その他の任意成分としての粘着剤を含有してもよい。第一の態様に係る粘着剤組成物は、架橋促進剤、帯電防止剤、粘着付与剤、機能性色素等の従来公知の添加剤を含有してもよい。
(optional component)
The pressure-sensitive adhesive composition according to the first aspect may optionally contain a pressure-sensitive adhesive as another optional component. The pressure-sensitive adhesive composition according to the first aspect may contain conventionally known additives such as cross-linking accelerators, antistatic agents, tackifiers and functional dyes.
 (粘着剤組成物の組成)
 第一の態様において、アクリル系樹脂(A)の含有量は、粘着剤組成物全体に対して80重量%以上が好ましく、90~99.9重量%がより好ましく、92~99.9重量%がさらに好ましい。アクリル系樹脂(A)の含有量が前記数値範囲内であると、一次硬化後の低架橋状態において優れた粘着物性が得られやすい。
(Composition of adhesive composition)
In the first aspect, the content of the acrylic resin (A) is preferably 80% by weight or more, more preferably 90 to 99.9% by weight, and 92 to 99.9% by weight with respect to the entire pressure-sensitive adhesive composition. is more preferred. When the content of the acrylic resin (A) is within the above numerical range, excellent adhesive physical properties are likely to be obtained in a low crosslinked state after primary curing.
 第一の態様において、光開始剤(B)の含有量は、アクリル系樹脂(A)100重量部に対して0.1~5.0重量部が好ましく、0.5~4.0重量部がより好ましく、1.0~3.0重量部がさらに好ましい。光開始剤(B)の含有量が前記数値範囲内であると、完全硬化を行う際に十分な硬化性を得ることができる。 In the first aspect, the content of the photoinitiator (B) is preferably 0.1 to 5.0 parts by weight, preferably 0.5 to 4.0 parts by weight, relative to 100 parts by weight of the acrylic resin (A). is more preferred, and 1.0 to 3.0 parts by weight is even more preferred. When the content of the photoinitiator (B) is within the above numerical range, sufficient curability can be obtained during complete curing.
 第一の態様において、分子内水素引抜型光開始剤(b1)の含有量は、アクリル系樹脂(A)100重量部に対して0.1~5.0重量部が好ましく、0.5~3.0重量部がより好ましい。
 分子内水素引抜型光開始剤(b1)の含有量が多すぎると湿熱耐久後に変色しやすい傾向がある。分子内水素引抜型光開始剤(b1)の含有量が少なすぎると架橋度が上がらないことに起因して一次硬化時の粘着物性や、完全硬化後の耐久性が悪化する傾向がある。
In the first embodiment, the content of the intramolecular hydrogen abstraction type photoinitiator (b1) is preferably 0.1 to 5.0 parts by weight, preferably 0.5 to 5.0 parts by weight, based on 100 parts by weight of the acrylic resin (A). 3.0 parts by weight is more preferred.
If the content of the intramolecular hydrogen abstraction type photoinitiator (b1) is too high, there is a tendency for discoloration to occur after wet heat durability. If the content of the intramolecular hydrogen abstraction type photoinitiator (b1) is too low, the degree of cross-linking will not increase, and the adhesive physical properties during primary curing and the durability after complete curing will tend to deteriorate.
 第一の態様において、分子間水素引抜型光開始剤(b2)の含有量は、アクリル系樹脂(A)100重量部に対して0.1~3.0重量部が好ましく、0.5~2.0重量部がより好ましい。
 分子間水素引抜型光開始剤(b2)の含有量が多すぎるとブリードアウトにより耐久性が悪化する傾向がある。分子間水素引抜型光開始剤(b2)の含有量が少なすぎると架橋度が上がらないことに起因して一次硬化時の粘着物性や、完全硬化後の耐久性が悪化する傾向がある。
In the first aspect, the content of the intermolecular hydrogen abstraction type photoinitiator (b2) is preferably 0.1 to 3.0 parts by weight with respect to 100 parts by weight of the acrylic resin (A), and 0.5 to 2.0 parts by weight is more preferred.
If the content of the intermolecular hydrogen abstraction type photoinitiator (b2) is too high, the durability tends to deteriorate due to bleeding out. If the content of the intermolecular hydrogen abstraction type photoinitiator (b2) is too small, the degree of cross-linking will not increase, and the adhesive properties during primary curing and the durability after complete curing will tend to deteriorate.
 第一の態様において光開始剤(B)が他の光開始剤(b3)を含有する場合、光開始剤(b3)の含有量は、アクリル系樹脂(A)100重量部に対して2.0重量部以下が好ましく、1.0重量部以下がより好ましい。 In the first embodiment, when the photoinitiator (B) contains another photoinitiator (b3), the content of the photoinitiator (b3) is 2.0 parts per 100 parts by weight of the acrylic resin (A). 0 weight part or less is preferable, and 1.0 weight part or less is more preferable.
 第一の態様において粘着剤組成物が架橋剤(C)を含有する場合、架橋剤(C)の含有量は、アクリル系樹脂(A)100重量部に対して、通常20重量部以下が好ましく、0.001~10重量部がより好ましく、0.1~7.5重量部がさらに好ましい。架橋剤(C)の含有量が多すぎると、粘着力が低下する傾向がある。架橋剤(C)の含有量が少なすぎると、耐久性が低下する傾向がある。 In the first aspect, when the pressure-sensitive adhesive composition contains the cross-linking agent (C), the content of the cross-linking agent (C) is usually preferably 20 parts by weight or less with respect to 100 parts by weight of the acrylic resin (A). , more preferably 0.001 to 10 parts by weight, more preferably 0.1 to 7.5 parts by weight. If the content of the cross-linking agent (C) is too large, the adhesive strength tends to decrease. If the content of the cross-linking agent (C) is too small, the durability tends to decrease.
 第一の態様において粘着剤組成物が活性エネルギー線架橋剤(c1)を含有する場合、活性エネルギー線架橋剤(c1)の含有量は、通常は、アクリル系樹脂(A)100重量部に対して0.01~20重量部が好ましく、0.1~10重量部がより好ましく、0.5~7.5重量部がさらに好ましい。
 活性エネルギー線架橋剤(c1)の含有量が少なすぎると、凝集力が不足するために充分な耐久性が得られない傾向がある。活性エネルギー線架橋剤(c1)の含有量が多すぎると一次硬化時における粘着物性が低下する傾向がある。
In the first aspect, when the adhesive composition contains the active energy ray cross-linking agent (c1), the content of the active energy ray cross-linking agent (c1) is usually based on 100 parts by weight of the acrylic resin (A) 0.01 to 20 parts by weight is preferable, 0.1 to 10 parts by weight is more preferable, and 0.5 to 7.5 parts by weight is even more preferable.
If the content of the active energy ray cross-linking agent (c1) is too small, there is a tendency that sufficient durability cannot be obtained due to insufficient cohesion. If the content of the active energy ray cross-linking agent (c1) is too large, the adhesive physical properties during primary curing tend to be lowered.
 第一の態様において粘着剤組成物が熱架橋剤(c2)を含有する場合、熱架橋剤(c2)の含有量は、通常は、アクリル系樹脂(A)100重量部に対して0.001~5重量部が好ましく、0.02~1重量部がより好ましく、0.05~0.5重量部がさらに好ましい。
 熱架橋剤(c2)の含有量が少なすぎると、凝集力が不足し、一次硬化時において粘着物性が低下する傾向がある。熱架橋剤(c2)の含有量が多すぎると完全硬化時において粘着力が低下する傾向がある。
When the pressure-sensitive adhesive composition contains the thermal cross-linking agent (c2) in the first aspect, the content of the thermal cross-linking agent (c2) is usually 0.001 per 100 parts by weight of the acrylic resin (A). ~5 parts by weight is preferred, 0.02 to 1 part by weight is more preferred, and 0.05 to 0.5 parts by weight is even more preferred.
If the content of the thermal cross-linking agent (c2) is too small, the cohesive force tends to be insufficient, and the adhesive physical properties tend to deteriorate during the primary curing. If the content of the thermal cross-linking agent (c2) is too large, the adhesive strength tends to decrease at the time of complete curing.
 第一の態様において粘着剤組成物がシランカップリング剤(D)を含有する場合、シランカップリング剤(D)の含有量は、アクリル系樹脂(A)100重量部に対して0.001~3重量部が好ましく、0.005~1重量部がより好ましく、0.01~0.5重量部がさらに好ましく、0.015~0.3重量部が特に好ましい。
 シランカップリング剤(D)の含有量が少なすぎると耐久性を向上させる効果が得られにくい傾向がある。シランカップリング剤(D)の含有量が多すぎるとブリードアウト等の影響で粘着力が低下する傾向がある。
In the first aspect, when the pressure-sensitive adhesive composition contains a silane coupling agent (D), the content of the silane coupling agent (D) is from 0.001 to 100 parts by weight of the acrylic resin (A). 3 parts by weight is preferred, 0.005 to 1 part by weight is more preferred, 0.01 to 0.5 parts by weight is even more preferred, and 0.015 to 0.3 parts by weight is particularly preferred.
If the content of the silane coupling agent (D) is too small, it tends to be difficult to obtain the effect of improving the durability. If the content of the silane coupling agent (D) is too large, the adhesive strength tends to decrease due to the influence of bleeding out and the like.
 第一の態様において粘着剤組成物がカルボジイミド系化合物(E)を含有する場合、カルボジイミド系化合物(E)の含有量は、アクリル系樹脂(A)100重量部に対して0.01~10重量部が好ましく、0.1~5重量部がより好ましく、0.2~2重量部がさらに好ましく、0.3~1重量部が特に好ましい。
 カルボジイミド系化合物(E)の含有量が少なすぎるとアクリル系樹脂(A)の熱安定性が低下する傾向がある。カルボジイミド系化合物(E)の含有量が多すぎるとブリードアウト等の影響で耐久性が低下する傾向がある。
In the first aspect, when the pressure-sensitive adhesive composition contains the carbodiimide compound (E), the content of the carbodiimide compound (E) is 0.01 to 10 parts by weight with respect to 100 parts by weight of the acrylic resin (A). 0.1 to 5 parts by weight is more preferred, 0.2 to 2 parts by weight is even more preferred, and 0.3 to 1 part by weight is particularly preferred.
If the content of the carbodiimide-based compound (E) is too small, the thermal stability of the acrylic resin (A) tends to decrease. If the content of the carbodiimide-based compound (E) is too large, there is a tendency for durability to decrease due to the effects of bleeding out and the like.
 第一の態様において粘着剤組成物が他の粘着剤や添加剤を含有する場合、他の粘着剤や添加剤の含有量は、アクリル系樹脂(A)100重量部に対して10重量部以下が好ましく、5重量部以下がより好ましい。 In the first aspect, when the adhesive composition contains other adhesives and additives, the content of the other adhesives and additives is 10 parts by weight or less with respect to 100 parts by weight of the acrylic resin (A). is preferred, and 5 parts by weight or less is more preferred.
 (粘着剤組成物の調製)
 アクリル系樹脂(A)、光開始剤(B)、必要に応じて、架橋剤(C)、シランカップリング剤(D)、カルボジイミド系化合物(E)、その他の任意成分を混合することにより第一の態様に係る粘着剤組成物を得ることができる。
 混合方法は特に限定されるものではなく、各成分を一括で混合する方法、任意の成分を混合した後、残りの成分を一括または順次混合する方法等、種々の方法を採用することができる。
(Preparation of adhesive composition)
Acrylic resin (A), photoinitiator (B), if necessary, cross-linking agent (C), silane coupling agent (D), carbodiimide compound (E), by mixing other optional components A pressure-sensitive adhesive composition according to one aspect can be obtained.
The mixing method is not particularly limited, and various methods such as a method of mixing each component at once, a method of mixing an arbitrary component and then mixing the remaining components all at once or sequentially can be adopted.
 (用途)
 第一の態様に係る粘着剤組成物は、複数の段階で硬化する多段硬化性粘着シートの粘着剤に好適に用いることができる。第一の態様に係る粘着剤組成物によれば、一次硬化後の低架橋状態においても優れた粘着物性が得られる。さらに完全硬化後には、通常の粘着力等の粘着物性のみならず、偏光板やガラス等様々な種類、形状の部材を貼合した際において優れた耐久性が発現する。
(Application)
The pressure-sensitive adhesive composition according to the first aspect can be suitably used as a pressure-sensitive adhesive for a multi-stage curing pressure-sensitive adhesive sheet that cures in a plurality of stages. According to the pressure-sensitive adhesive composition according to the first aspect, excellent pressure-sensitive adhesive physical properties can be obtained even in a low crosslinked state after primary curing. Furthermore, after complete curing, not only adhesive physical properties such as ordinary adhesive strength but also excellent durability is exhibited when members of various types and shapes such as polarizing plates and glass are bonded together.
 第一の態様に係る粘着剤組成物は、一次硬化後の低架橋状態においてもタック性が低く、定荷重保持力が高いといった粘着物性に優れるため、作業性や信頼性が向上する。そのため、特にタッチパネルおよび画像表示装置等に用いられる粘着剤や粘着シートの用途に好適に適用できる。 The pressure-sensitive adhesive composition according to the first aspect has low tackiness even in a low cross-linking state after primary curing, and has excellent adhesive physical properties such as high constant load holding power, thereby improving workability and reliability. Therefore, it is particularly suitable for use as an adhesive or an adhesive sheet for use in touch panels, image display devices, and the like.
<粘着剤>
 第一の態様に係る粘着剤は、上述した第一の態様に係る粘着剤組成物が架橋されてなるものである。本発明の粘着剤組成物が架橋(硬化)することにより、粘着剤組成物中に含有されるアクリル系樹脂(A)が分子内および分子間の少なくとも一方で架橋構造を形成する。その結果、本発明の粘着剤組成物が架橋されて第一の態様に係る粘着剤となる。
 アクリル系樹脂(A)が活性エネルギー線架橋性構造部位を有する場合は活性エネルギー線の照射により、架橋構造を形成できる。
<Adhesive>
The pressure-sensitive adhesive according to the first aspect is obtained by cross-linking the pressure-sensitive adhesive composition according to the first aspect described above. By cross-linking (curing) the pressure-sensitive adhesive composition of the present invention, the acrylic resin (A) contained in the pressure-sensitive adhesive composition forms a cross-linked structure at least either intramolecularly or intermolecularly. As a result, the pressure-sensitive adhesive composition of the present invention is crosslinked to become the pressure-sensitive adhesive according to the first aspect.
When the acrylic resin (A) has an active energy ray crosslinkable structural site, a crosslinked structure can be formed by irradiation with an active energy ray.
 第一の態様に係る粘着剤は、複数の段階で硬化させることができる多段硬化性を示す。第一の態様に係る粘着剤は、完全硬化前の一次硬化により低架橋状態となる。完全硬化と一次硬化は、必ずしも明確に区別できるものではないが、例えば、ゲル分率や動的粘弾性の相違により区別され得る。 The pressure-sensitive adhesive according to the first aspect exhibits multistage curability that allows curing in multiple stages. The pressure-sensitive adhesive according to the first aspect becomes in a low crosslinked state by primary curing before complete curing. Complete curing and primary curing are not always clearly distinguishable, but can be distinguished, for example, by differences in gel fraction and dynamic viscoelasticity.
 一次硬化工程および完全硬化工程のいずれの工程においても硬化手段は特に限定されず、加熱や活性エネルギー線の照射のいずれでもよい。また一次硬化工程を複数回に分けて行ってもよく、また完全硬化状態とするために多段硬化を行ってもよい。
 第一の態様に係る粘着剤は、一次硬化後の粘着物性に優れるため、タッチパネルや画像表示装置等を構成する光学部材の貼り合せに好適に用いられる。
Curing means is not particularly limited in either the primary curing step or the complete curing step, and heating or irradiation with active energy rays may be used. Further, the primary curing step may be divided into a plurality of times, or multistage curing may be performed to achieve a completely cured state.
Since the pressure-sensitive adhesive according to the first aspect has excellent adhesive physical properties after primary curing, it is suitably used for bonding optical members constituting touch panels, image display devices, and the like.
 第一の態様に係る粘着剤は、第一の態様に係るアクリル系樹脂(A)の架橋物を少なくとも含有するとも言える。架橋物は、アクリル系樹脂(A)の少なくとも一部が部分的に架橋した部分架橋物であってもよく、アクリル系樹脂(A)の全てが全体的に架橋した完全架橋物であってもよい。また、第一の態様に係る粘着剤は、アクリル系樹脂(A)の部分架橋物および完全架橋物の両方を含有してもよい。 It can also be said that the adhesive according to the first aspect contains at least the crosslinked product of the acrylic resin (A) according to the first aspect. The crosslinked product may be a partially crosslinked product in which at least part of the acrylic resin (A) is partially crosslinked, or a completely crosslinked product in which the acrylic resin (A) is entirely crosslinked. good. Moreover, the adhesive according to the first aspect may contain both a partially crosslinked product and a completely crosslinked product of the acrylic resin (A).
<粘着シート>
 第一の態様に係る粘着シートは、第一の態様に係る粘着剤からなる粘着剤層を有する。第一の態様に係る粘着シートは、粘着剤層が複数の段階で硬化する多段硬化性を示し得る。
<Adhesive sheet>
The pressure-sensitive adhesive sheet according to the first aspect has a pressure-sensitive adhesive layer made of the pressure-sensitive adhesive according to the first aspect. The pressure-sensitive adhesive sheet according to the first aspect can exhibit multistage curability in which the pressure-sensitive adhesive layer is cured in a plurality of stages.
 第一の態様に係る粘着剤からなる粘着剤層を基材シート上に設けることにより粘着シートとすることができる。また、粘着剤層を離型シート上に設けることにより両面粘着シートとすることができる。
 さらに、基材シートに替えて離型シート上に粘着剤層を形成し、反対側の粘着剤層面に離型シートを貼り合わせることにより、基材レスの両面粘着シートを作製することもできる。形成された粘着剤層上に、粘着剤層をさらに形成して、厚膜の粘着剤層をさらに形成してもよい。
 得られた粘着シートや両面粘着シートは、使用時には離型シートを粘着剤層から剥離して使用に供される。
A pressure-sensitive adhesive sheet can be obtained by providing a pressure-sensitive adhesive layer made of the pressure-sensitive adhesive according to the first aspect on a base sheet. Also, a double-sided pressure-sensitive adhesive sheet can be obtained by providing a pressure-sensitive adhesive layer on a release sheet.
Further, a substrate-less double-faced PSA sheet can be produced by forming a PSA layer on a release sheet in place of the base sheet, and laminating the release sheet on the opposite side of the PSA layer. A thick pressure-sensitive adhesive layer may be further formed by further forming a pressure-sensitive adhesive layer on the formed pressure-sensitive adhesive layer.
The pressure-sensitive adhesive sheet and double-sided pressure-sensitive adhesive sheet thus obtained are used by peeling off the release sheet from the pressure-sensitive adhesive layer.
 第一の態様に係る粘着シートの作製方法として、例えば、以下の(i)、(ii)等の方法が挙げられる。
(i)第一の態様に係る粘着剤組成物を溶媒に溶解した塗工液を塗工した後に粘着シートとする方法。
(ii)第一の態様に係る粘着剤組成物を加熱により溶融した後に粘着シートとする方法。
Examples of the method for producing the pressure-sensitive adhesive sheet according to the first aspect include the following methods (i) and (ii).
(i) A method of forming a pressure-sensitive adhesive sheet after applying a coating liquid in which the pressure-sensitive adhesive composition according to the first aspect is dissolved in a solvent.
(ii) A method of forming an adhesive sheet after melting the adhesive composition according to the first aspect by heating.
 (i)の方法について説明する。
 第一の態様に係る粘着剤組成物を溶媒に溶解した塗工液を塗工した後に粘着シートとする際には、適当な有機溶剤により第一の態様に係る粘着剤組成物を含有する塗工液の濃度を調整し、基材シート上に直接塗工する。その後、例えば80~105℃、0.5~10分間加熱処理等により乾燥させ、これを基材シートまたは離型シートに貼付する。その後、活性エネルギー線照射またはエージングすることによって粘着剤組成物を架橋(硬化)させ、粘着剤からなる粘着剤層を有する粘着シートを作製することができる。
The method (i) will be explained.
When a pressure-sensitive adhesive sheet is formed after applying a coating liquid in which the pressure-sensitive adhesive composition according to the first aspect is dissolved in a solvent, the coating containing the pressure-sensitive adhesive composition according to the first aspect is coated with an appropriate organic solvent. Adjust the concentration of the working liquid and apply it directly onto the substrate sheet. After that, it is dried by heat treatment or the like at 80 to 105° C. for 0.5 to 10 minutes, and then attached to a base sheet or a release sheet. After that, the adhesive composition is crosslinked (cured) by irradiation with active energy rays or aged, and a pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer can be produced.
 濃度調整に用いられる有機溶剤としては、アクリル系樹脂(A)の重合反応に用いられる有機溶媒として挙げられたものを使用することができる。粘着剤組成物の濃度は、固形分として通常、20~60重量%であり、好ましくは30~50重量%である。 As the organic solvent used for adjusting the concentration, those listed as the organic solvent used for the polymerization reaction of the acrylic resin (A) can be used. The concentration of the pressure-sensitive adhesive composition is usually 20-60% by weight, preferably 30-50% by weight, as a solid content.
 (ii)の方法について説明する。
 第一の態様に係る粘着剤組成物を加熱により溶融した後に粘着シートとする場合、溶融した状態で基材シートの片面または両面に塗工し、その後に冷却する方法や、Tダイ等により基材シート上に押出しラミネートする方法等によって、基材シート上の片面または両面に所望の厚みとなるように粘着剤層を形成する。次いで、必要に応じて粘着剤層面に離型シートを貼り合わせることにより粘着シートを作製することができる。
The method (ii) will be described.
When the pressure-sensitive adhesive composition according to the first aspect is melted by heating to form a pressure-sensitive adhesive sheet, the melted state is coated on one or both sides of the base sheet, and then the base sheet is cooled, or by a T-die or the like. A pressure-sensitive adhesive layer is formed on one side or both sides of the substrate sheet to a desired thickness by extrusion lamination or the like on the material sheet. Then, a pressure-sensitive adhesive sheet can be produced by laminating a release sheet on the surface of the pressure-sensitive adhesive layer, if necessary.
 また、基材シート上に粘着剤層を形成した後、必要に応じて活性エネルギー線照射処理を行ない、さらにエージングすることで粘着剤組成物が硬化(架橋)してなる粘着剤層を有する粘着シートを作製することができる。
 さらに、離型シート上に粘着剤層を形成し、反対側の粘着剤層面に離型シートを貼り合わせることにより、基材レスの両面粘着シートを作製することもできる。
 得られた粘着シートや両面粘着シートは、使用時には離型シートを粘着剤層から剥離して使用に供される。
In addition, after forming the adhesive layer on the base sheet, if necessary, the active energy ray irradiation treatment is performed, and the adhesive composition having the adhesive layer is cured (crosslinked) by aging. A sheet can be made.
Further, a substrate-less double-sided PSA sheet can be produced by forming a PSA layer on a release sheet and laminating the release sheet on the opposite side of the PSA layer.
The pressure-sensitive adhesive sheet and double-sided pressure-sensitive adhesive sheet thus obtained are used by peeling off the release sheet from the pressure-sensitive adhesive layer.
 基材シートとしては、例えば、ポリエチレンナフタート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンテレフタレート/イソフタレート共重合体等のポリエステル系樹脂;ポリエチレン、ポリプロピレン、ポリメチルペンテン等のポリオレフィン系樹脂;ポリフッ化ビニル、ポリフッ化ビニリデン、ポリフッ化エチレン等のポリフッ化エチレン樹脂;ナイロン6、ナイロン6,6等のポリアミド;ポリ塩化ビニル、ポリ塩化ビニル/酢酸ビニル共重合体、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、ポリビニルアルコール、ビニロン等のビニル重合体;三酢酸セルロース、セロファン等のセルロース系樹脂;ポリメタクリル酸メチル、ポリメタクリル酸エチル、ポリアクリル酸エチル、ポリアクリル酸ブチル等のアクリル系樹脂;ポリスチレン;ポリカーボネート;ポリアリレート;ポリイミド等の合成樹脂シート、
 アルミニウム、銅、鉄等の金属箔、
 上質紙、グラシン紙等の紙、
 硝子繊維、天然繊維、合成繊維等からなる織物や不織布が挙げられる。これらの基材シートは、単層体としてまたは2種以上が積層された複層体として用いることができる。これらのなかでも軽量化等の点から、合成樹脂シートが好ましい。
Examples of the base sheet include polyester resins such as polyethylene naphtate, polyethylene terephthalate, polybutylene terephthalate, and polyethylene terephthalate/isophthalate copolymer; polyolefin resins such as polyethylene, polypropylene, and polymethylpentene; polyvinyl fluoride; Polyethylene fluoride resins such as polyvinylidene fluoride and polyethylene fluoride; polyamides such as nylon 6 and nylon 6,6; polyvinyl chloride, polyvinyl chloride/vinyl acetate copolymer, ethylene-vinyl acetate copolymer, ethylene-vinyl Vinyl polymers such as alcohol copolymers, polyvinyl alcohol and vinylon; Cellulose resins such as cellulose triacetate and cellophane; Acrylic resins such as polymethyl methacrylate, polyethyl methacrylate, polyethyl acrylate and polybutyl acrylate. Polystyrene; Polycarbonate; Polyarylate; Synthetic resin sheet such as polyimide,
Metal foil such as aluminum, copper, iron, etc.
High-quality paper, glassine paper, etc.
Textiles and non-woven fabrics made of glass fiber, natural fiber, synthetic fiber and the like can be mentioned. These base sheets can be used as a single-layer body or as a multi-layer body in which two or more types are laminated. Among these, a synthetic resin sheet is preferable from the viewpoint of weight reduction.
 離型シートとしては、例えば、基材シートで例示した各種の合成樹脂シート、紙、織物、不織布等に離型処理したものを使用することができる。離型シートとしては、例えば、シリコン系の離型シートを用いることが好ましい。 As the release sheet, for example, various synthetic resin sheets exemplified in the base sheet, paper, woven fabric, non-woven fabric, etc. that have been subjected to release treatment can be used. As the release sheet, it is preferable to use, for example, a silicon-based release sheet.
 粘着剤組成物の塗工方法は特に限定されない。例えば、ロールコーティング、ダイコーティング、グラビアコーティング、コンマコーティング、スロットコーティング、スクリーン印刷等の方法が挙げられる。 The method of applying the adhesive composition is not particularly limited. For example, methods such as roll coating, die coating, gravure coating, comma coating, slot coating and screen printing can be used.
 活性エネルギー線としては、遠紫外線、紫外線、近紫外線、赤外線等の光線;X線、γ線等の電磁波の他;電子線;プロトン線;中性子線等が利用できる。硬化速度、照射装置の入手のしやすさ、価格等から紫外線による硬化が好ましい。 As active energy rays, rays such as far-ultraviolet rays, ultraviolet rays, near-ultraviolet rays, and infrared rays; electromagnetic waves such as X-rays and γ-rays; electron beams; proton beams; Curing with UV light is preferred in terms of curing speed, availability of irradiation equipment, price, and the like.
 粘着シートの粘着剤層の完全硬化前のゲル分率については、被着体の形状に依らず、容易に貼り合わせることが可能な点と、貼り合わせた後に粘着層が被着体を保持できる点から、0.1~60重量%が好ましく、より好ましくは1~50重量%、特に好ましくは5~45重量%である。 Regarding the gel fraction of the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet before complete curing, it is possible to easily bond the adherend regardless of the shape of the adherend, and the pressure-sensitive adhesive layer can hold the adherend after bonding. From the point of view, it is preferably 0.1 to 60% by weight, more preferably 1 to 50% by weight, particularly preferably 5 to 45% by weight.
 粘着シートの粘着剤層の完全硬化後のゲル分率については、耐久性能と粘着力の点から、50~95重量%であることが好ましく、より好ましくは55~90重量%、特に好ましくは60~85重量%である。ゲル分率が低すぎると凝集力が低下することにより耐久性が低下する傾向がある。ゲル分率が高すぎると凝集力の上昇により粘着力が低下する傾向がある。 The gel fraction after complete curing of the adhesive layer of the adhesive sheet is preferably 50 to 95% by weight, more preferably 55 to 90% by weight, and particularly preferably 60% by weight, from the viewpoint of durability and adhesive strength. ~85% by weight. If the gel fraction is too low, cohesive strength tends to decrease, resulting in a decrease in durability. If the gel fraction is too high, there is a tendency for cohesive strength to increase and adhesive strength to decrease.
 ゲル分率は、例えば、以下の手法で適宜調整できる。
・活性エネルギー線照射量を調整すること。
・アクリル系樹脂(A)中の活性エネルギー線架橋性構造部位の含有量を調整すること。
・光開始剤(B)、架橋剤(C)の種類や量を調整すること。
The gel fraction can be appropriately adjusted, for example, by the following method.
・Adjust the amount of active energy ray irradiation.
- Adjust the content of the active energy ray-crosslinkable structural site in the acrylic resin (A).
- Adjust the types and amounts of the photoinitiator (B) and the cross-linking agent (C).
 ゲル分率は、架橋度(硬化度合い)の目安となるもので、例えば、以下の方法にて算出される。すなわち、基材となる高分子シート(例えば、ポリエチレンテレフタレート(PET)フィルム等)に粘着剤層が形成されてなる粘着シート(離型シートを設けていないもの)を200メッシュのSUS製金網で包み、23℃に保持したトルエン中に24時間浸漬したとき、金網中に残存した不溶解の粘着剤成分の重量百分率をゲル分率とする。ただし、トルエン溶解の前後における重量から基材の重量は差し引いて算出する。 The gel fraction is a measure of the degree of cross-linking (degree of curing), and is calculated, for example, by the following method. That is, an adhesive sheet (without a release sheet) in which an adhesive layer is formed on a polymer sheet (for example, polyethylene terephthalate (PET) film, etc.) serving as a base material is wrapped with a 200-mesh SUS wire mesh. , and the weight percentage of the undissolved pressure-sensitive adhesive component remaining in the wire mesh after being immersed in toluene maintained at 23°C for 24 hours is defined as the gel fraction. However, it is calculated by subtracting the weight of the substrate from the weight before and after the toluene dissolution.
 粘着シートの粘着剤層の厚みは、通常、50~3000μmが好ましく、より好ましくは75~1000μm、特に好ましくは100~350μmである。粘着剤層の厚みが薄すぎると衝撃吸収性が低下する傾向がある。粘着剤層の厚みが厚すぎると、例えば光学部材に貼り付けた際に全体の厚みが増して実用性が低下する傾向がある。 The thickness of the adhesive layer of the adhesive sheet is usually preferably 50-3000 μm, more preferably 75-1000 μm, and particularly preferably 100-350 μm. If the thickness of the pressure-sensitive adhesive layer is too thin, there is a tendency for the impact absorption to decrease. If the thickness of the pressure-sensitive adhesive layer is too thick, for example, when the adhesive layer is attached to an optical member, the overall thickness tends to increase, resulting in a decrease in practicality.
 粘着剤層の厚みは、ミツトヨ社製「ID-C112B」を用いて、粘着剤層含有積層体全体の厚みの測定値から、粘着剤層以外の構成部材の厚みの測定値を差し引くことにより求めた値である。 The thickness of the adhesive layer is obtained by subtracting the measured thickness of the constituent members other than the adhesive layer from the measured thickness of the entire laminate containing the adhesive layer using Mitutoyo's "ID-C112B". value.
 第一の態様に係る粘着シートの粘着剤層は、粘着剤層の厚みが100μmの場合のヘイズ値が2%以下であることが好ましく、より好ましくは0~1.5%、特に好ましくは0~1%である。ヘイズ値が高すぎると粘着剤層が白化して透明性が低下する傾向がある。
 ヘイズ値は、拡散透過率および全光線透過率を、HAZE MATER NDH4000(日本電色工業社製)を用いて測定し、得られた拡散透過率(DT)と全光線透過率(TT)の値を下記[式1]に代入して算出した。本機はJIS K7361-1に準拠している。
 ヘイズ値(%)=(DT/TT)×100 ・・・[式1]
The pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet according to the first aspect preferably has a haze value of 2% or less, more preferably 0 to 1.5%, particularly preferably 0 when the thickness of the pressure-sensitive adhesive layer is 100 μm. ~1%. If the haze value is too high, the pressure-sensitive adhesive layer tends to whiten and the transparency tends to decrease.
The haze value is obtained by measuring diffuse transmittance and total light transmittance using HAZE MATER NDH4000 (manufactured by Nippon Denshoku Industries Co., Ltd.), and obtained diffuse transmittance (DT) and total light transmittance (TT) values. was substituted into the following [Equation 1] for calculation. This machine complies with JIS K7361-1.
Haze value (%) = (DT/TT) x 100 [Formula 1]
 第一の態様においては、粘着剤層を光学部材上に積層形成することにより、粘着剤層付き光学部材を得ることができる。例えば、離型シート上に粘着剤層が形成された第一の態様に係る粘着シートの粘着剤層面を光学部材に貼り付けた後、離型シートを剥離することによって、粘着剤層付き光学部材を得ることができる。また、上記の両面粘着シートを用いて光学部材同士を貼合することもできる。 In the first aspect, an optical member with a pressure-sensitive adhesive layer can be obtained by laminating the pressure-sensitive adhesive layer on the optical member. For example, the pressure-sensitive adhesive layer surface of the pressure-sensitive adhesive sheet according to the first embodiment in which the pressure-sensitive adhesive layer is formed on the release sheet is attached to the optical member, and then the release sheet is peeled off to obtain the optical member with the pressure-sensitive adhesive layer. can be obtained. Optical members can also be bonded together using the above double-sided pressure-sensitive adhesive sheet.
 光学部材としては、タッチパネルや画像表示装置を構成する部材が挙げられる。例えば、ディスプレイ(有機EL、液晶)、透明電導膜基板(ITO基板)、保護フィルム(ガラス)、透明アンテナ(フィルム)、透明配線等が挙げられる。 Examples of optical members include members that make up touch panels and image display devices. Examples include displays (organic EL, liquid crystal), transparent conductive film substrates (ITO substrates), protective films (glass), transparent antennas (films), transparent wiring, and the like.
 以上説明した第一の態様の好ましい実施形態には以下の[A1]~[A7]が含まれるが、限定するものではない。
 [A1]アクリル系樹脂(A)と、光開始剤(B)とを含有し、前記アクリル系樹脂(A)は、下記の共重合成分(a)の重合生成物であり、前記アクリル系樹脂(A)の動的粘弾性に基づくガラス転移温度が-10℃以上であり、前記共重合成分(a)は、ホモポリマーを形成した際のガラス転移温度が-30~50℃となるアルキルアクリレート(a1)と、ホモポリマーを形成した際のガラス転移温度が-10~120℃となるアルキルメタクリレート(a2)、および水酸基含有モノマー(a3)を少なくとも含有し、前記アルキルアクリレート(a1)と前記アルキルメタクリレート(a2)の重量比が5/95~55/45であり、前記アルキルアクリレート(a1)と前記アルキルメタクリレート(a2)の合計含有量が、共重合成分(a)に対して30~70重量%であり、光開始剤(B)が、分子内水素引抜型光開始剤(b1)と分子間内水素引抜型光開始剤(b2)を含有することを特徴とする粘着剤組成物。
 [A2]架橋剤(C)をさらに含有する、[A1]に記載の粘着剤組成物。
 [A3]前記アクリル系樹脂(A)の重量平均分子量が、50,000~500,000である、[A1]または[A2]に記載の粘着剤組成物。
 [A4][A1]~[A3]のいずれかに記載の粘着剤組成物が架橋されてなる、粘着剤。
 [A5]架橋が活性エネルギー線の照射により行なわれる、[A4]に記載の粘着剤。
 [A6][A4]または[A5]に記載の粘着剤からなる粘着剤層を有する、粘着シート。
 [A7]前記粘着剤層が、複数の段階で硬化する多段硬化性である、[A6]に記載の粘着シート。
Preferred embodiments of the first aspect described above include, but are not limited to, the following [A1] to [A7].
[A1] contains an acrylic resin (A) and a photoinitiator (B), the acrylic resin (A) is a polymerization product of the following copolymerization component (a), and the acrylic resin (A) has a glass transition temperature based on dynamic viscoelasticity of −10° C. or higher, and the copolymer component (a) is an alkyl acrylate having a glass transition temperature of −30 to 50° C. when a homopolymer is formed. (a1), an alkyl methacrylate (a2) having a glass transition temperature of −10 to 120° C. when forming a homopolymer, and a hydroxyl group-containing monomer (a3), wherein the alkyl acrylate (a1) and the alkyl The weight ratio of the methacrylate (a2) is 5/95 to 55/45, and the total content of the alkyl acrylate (a1) and the alkyl methacrylate (a2) is 30 to 70 weight relative to the copolymer component (a). %, and the photoinitiator (B) comprises an intramolecular hydrogen abstraction type photoinitiator (b1) and an intermolecular hydrogen abstraction type photoinitiator (b2).
[A2] The pressure-sensitive adhesive composition according to [A1], further containing a cross-linking agent (C).
[A3] The adhesive composition according to [A1] or [A2], wherein the acrylic resin (A) has a weight average molecular weight of 50,000 to 500,000.
[A4] A pressure-sensitive adhesive obtained by cross-linking the pressure-sensitive adhesive composition according to any one of [A1] to [A3].
[A5] The pressure-sensitive adhesive according to [A4], wherein the cross-linking is performed by irradiation with an active energy ray.
[A6] A pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer comprising the pressure-sensitive adhesive according to [A4] or [A5].
[A7] The pressure-sensitive adhesive sheet according to [A6], wherein the pressure-sensitive adhesive layer is multi-stage curing in which it is cured in a plurality of stages.
[第二の態様]
 以下、本発明の第二の態様の実施形態について詳細に説明するが、これらは望ましい実施態様の代表例として開示するものである。
[Second aspect]
Embodiments of the second aspect of the present invention are described in detail below and are disclosed as representative examples of preferred embodiments.
<粘着剤組成物>
 第二の態様に係る粘着剤組成物は、アクリル系樹脂(A)と光開始剤(B)とを含有する。第二の態様に係る粘着剤組成物は、アクリル系樹脂(A)、光開始剤(B)に加えて、架橋剤(C)、シランカップリング剤(D)、カルボジイミド系化合物(E)、その他の任意成分を必要に応じてさらに含有してもよい。以下、各成分について順に説明する。
<Adhesive composition>
The pressure-sensitive adhesive composition according to the second aspect contains an acrylic resin (A) and a photoinitiator (B). The pressure-sensitive adhesive composition according to the second aspect comprises an acrylic resin (A), a photoinitiator (B), a cross-linking agent (C), a silane coupling agent (D), a carbodiimide compound (E), Other optional components may be further contained as necessary. Hereinafter, each component will be described in order.
 (アクリル系樹脂(A))
 第二の態様に係るアクリル系樹脂(A)は、特定の共重合成分(a)の重合生成物である。共重合成分(a)は、重合性二重結合を有するモノマー成分の総称である。共重合成分(a)には、重合開始剤、重合溶媒を含めないものとする。
(Acrylic resin (A))
The acrylic resin (A) according to the second aspect is a polymerization product of a specific copolymer component (a). Copolymer component (a) is a general term for monomer components having a polymerizable double bond. The copolymerization component (a) does not contain a polymerization initiator and a polymerization solvent.
 第二の態様に係る特定の共重合成分(a)は、炭素数が12以下のアルキル基を有し、かつ、ホモポリマーのガラス転移温度が-20~120℃となるアルキル(メタ)アクリレート(a1)と、アルキル鎖と水酸基とエチレン性不飽和基とを含有するヒドロキシアルキルモノマー(a2)と、を少なくとも含有する。第二の態様に係る共重合成分(a)は、アルキル(メタ)アクリレート(a1)およびヒドロキシアルキルモノマー(a2)を除くエチレン性不飽和モノマー(a3)を必要に応じてさらに含有してもよい。 The specific copolymer component (a) according to the second aspect is an alkyl (meth)acrylate ( It contains at least a1) and a hydroxyalkyl monomer (a2) containing an alkyl chain, a hydroxyl group and an ethylenically unsaturated group. The copolymer component (a) according to the second aspect may further contain an ethylenically unsaturated monomer (a3) excluding the alkyl (meth)acrylate (a1) and the hydroxyalkyl monomer (a2), if necessary. .
 〔アルキル(メタ)アクリレート(a1)〕
 第二の態様に係るアルキル(メタ)アクリレート(a1)は、炭素数が12以下のアルキル基を有する。アルキル(メタ)アクリレート(a1)のアルキル基の炭素数は8以下が好ましく、4以下がより好ましい。アルキル(メタ)アクリレート(a1)のアルキル基の炭素数が前記上限値以下であると、一次硬化後の低架橋状態において優れた粘着物性が得られやすい。
[Alkyl (meth)acrylate (a1)]
The alkyl (meth)acrylate (a1) according to the second aspect has an alkyl group having 12 or less carbon atoms. The number of carbon atoms in the alkyl group of the alkyl (meth)acrylate (a1) is preferably 8 or less, more preferably 4 or less. When the number of carbon atoms in the alkyl group of the alkyl (meth)acrylate (a1) is equal to or less than the above upper limit, excellent adhesion physical properties are likely to be obtained in a low crosslinked state after primary curing.
 第二の態様に係るアルキル(メタ)アクリレート(a1)は、そのホモポリマーのガラス転移温度(以下「Tg」と記す。)が-20~120℃となるモノマーである。
 第二の態様に係るアルキル(メタ)アクリレート(a1)のホモポリマーのTgは、好ましくは0~105℃であり、より好ましくは5~70℃である。アルキル(メタ)アクリレート(a1)のホモポリマーのTgが前記数値範囲内であるため、応力が強くかかる複雑形状の被着体に対して貼り合わせる際にも密着性に優れる粘着シートが得られる。
The alkyl (meth)acrylate (a1) according to the second aspect is a monomer whose homopolymer has a glass transition temperature (hereinafter referred to as "Tg") of -20 to 120°C.
The Tg of the homopolymer of alkyl (meth)acrylate (a1) according to the second aspect is preferably 0 to 105°C, more preferably 5 to 70°C. Since the Tg of the homopolymer of the alkyl (meth)acrylate (a1) is within the above numerical range, it is possible to obtain a pressure-sensitive adhesive sheet with excellent adhesion even when it is attached to an adherend having a complicated shape which is strongly stressed.
 アルキル(メタ)アクリレート(a1)のホモポリマーは、アルキル(メタ)アクリレート(a1)の単独重合体である。アルキル(メタ)アクリレート(a1)のホモポリマーのTgとしては、Wiley出版「POLYMER HANDBOOK」等に記載されている標準的な分析値を採用できる。 A homopolymer of alkyl (meth)acrylate (a1) is a homopolymer of alkyl (meth)acrylate (a1). As the Tg of the homopolymer of the alkyl (meth)acrylate (a1), a standard analytical value described in "Polymer Handbook" published by Wiley, etc. can be used.
 第二の態様に係るアルキル(メタ)アクリレート(a1)としては、例えば、メチルアクリレート(Tg:8℃)、tert-ブチルアクリレート(Tg:41℃)、シクロヘキシルアクリレート(Tg:15℃)、イソボルニルアクリレート(Tg:97℃)、メチルメタクリレート(Tg:105℃)、エチルメタクリレート(Tg:65℃)、n-ブチルメタクリレート(Tg:20℃)、イソブチルメタクリレート(Tg:48℃)、tert-ブチルメタクリレート(Tg:107℃)、2-エチルヘキシルメタクリレート(Tg:-10℃)、クロヘキシルメタクリレート(Tg:66℃)等が挙げられる。なかでも粘着物性の点からメチルアクリレート、メチルメタクリレート、エチルメタクリレート、イソブチルメタクリレートが好ましい。
 アルキル(メタ)アクリレート(a1)は、1種を単独で用いてもよく、2種以上を併用してもよい。
Examples of the alkyl (meth)acrylate (a1) according to the second aspect include methyl acrylate (Tg: 8°C), tert-butyl acrylate (Tg: 41°C), cyclohexyl acrylate (Tg: 15°C), isobol Nil acrylate (Tg: 97°C), methyl methacrylate (Tg: 105°C), ethyl methacrylate (Tg: 65°C), n-butyl methacrylate (Tg: 20°C), isobutyl methacrylate (Tg: 48°C), tert-butyl Methacrylate (Tg: 107°C), 2-ethylhexyl methacrylate (Tg: -10°C), chlorhexyl methacrylate (Tg: 66°C), and the like. Among them, methyl acrylate, methyl methacrylate, ethyl methacrylate, and isobutyl methacrylate are preferred from the viewpoint of adhesive physical properties.
Alkyl (meth)acrylates (a1) may be used alone or in combination of two or more.
 〔ヒドロキシアルキルモノマー(a2)〕
 第二の態様に係るヒドロキシアルキルモノマー(a2)は、アルキル鎖と水酸基とエチレン性不飽和基とを含有する。
 第二の態様に係るヒドロキシアルキルモノマー(a2)は、例えば、以下の一般式で表すことができる。
 CH=CHR-X-Y-OH
 式中Rは、水素原子またはメチル基、Xは酸素原子、COOまたはCONHであり、Yは直鎖状または分岐状のアルキル鎖である。
[Hydroxyalkyl monomer (a2)]
The hydroxyalkyl monomer (a2) according to the second aspect contains an alkyl chain, a hydroxyl group and an ethylenically unsaturated group.
The hydroxyalkyl monomer (a2) according to the second aspect can be represented, for example, by the following general formula.
CH2 =CHR-XY-OH
In the formula, R is a hydrogen atom or a methyl group, X is an oxygen atom, COO or CONH, and Y is a linear or branched alkyl chain.
 第二の態様に係る共重合成分(a)中のヒドロキシアルキルモノマー(a2)のアルキル鎖の平均炭素数は2.1以上であり、好ましくは2.1~8.0であり、より好ましくは2.4~6.0、特に好ましくは2.6~4.0である。ヒドロキシアルキルモノマー(a2)のアルキル鎖の平均炭素数が少なすぎると、完全硬化時の信頼性が低下する傾向がある。ヒドロキシアルキルモノマー(a2)のアルキル鎖の平均炭素数が多すぎると、一次硬化後の粘着物性が低下する傾向がある。 The average carbon number of the alkyl chain of the hydroxyalkyl monomer (a2) in the copolymer component (a) according to the second aspect is 2.1 or more, preferably 2.1 to 8.0, more preferably 2.4 to 6.0, particularly preferably 2.6 to 4.0. If the average number of carbon atoms in the alkyl chain of the hydroxyalkyl monomer (a2) is too small, there is a tendency for the reliability of complete curing to decrease. If the average number of carbon atoms in the alkyl chain of the hydroxyalkyl monomer (a2) is too large, the adhesive properties after primary curing tend to deteriorate.
 ここで、第二の態様に係る共重合成分(a)が1種類のヒドロキシアルキルモノマー(a2)を含有する場合、ヒドロキシアルキルモノマー(a2)のアルキル鎖の平均炭素数は、その1種類のヒドロキシアルキルモノマー(a2)のアルキル鎖の炭素数そのものとする。
 一方で、第二の態様に係る共重合成分(a)が2種類以上の複数のヒドロキシアルキルモノマー(a2)を含有する場合、ヒドロキシアルキルモノマー(a2)のアルキル鎖の平均炭素数は、第二の態様に係る共重合成分(a)中のヒドロキシアルキルモノマー(a2)のアルキル鎖の炭素数の重量平均値とする。
Here, when the copolymerization component (a) according to the second aspect contains one type of hydroxyalkyl monomer (a2), the average carbon number of the alkyl chain of the hydroxyalkyl monomer (a2) is The number of carbon atoms in the alkyl chain of the alkyl monomer (a2) is the same.
On the other hand, when the copolymer component (a) according to the second aspect contains two or more hydroxyalkyl monomers (a2), the average carbon number of the alkyl chains of the hydroxyalkyl monomers (a2) is The weight average value of the number of carbon atoms in the alkyl chain of the hydroxyalkyl monomer (a2) in the copolymerization component (a) according to the embodiment.
 例えば、第二の態様に係る共重合成分(a)がヒドロキシアルキルモノマー(a2)として、共重合成分(a)100重量部に対してw重量部のモノマーsと、w重量部のモノマーtとの2種類を含有するとき、第二の態様に係る共重合成分(a)中のヒドロキシアルキルモノマー(a2)のアルキル鎖の平均炭素数nは、以下の通り求められる。 For example, the copolymerization component (a) according to the second aspect is a hydroxyalkyl monomer (a2), w s parts by weight of monomer s and wt parts by weight of monomer with respect to 100 parts by weight of copolymerization component (a) t, the average carbon number n of the alkyl chain of the hydroxyalkyl monomer (a2) in the copolymer component (a) according to the second embodiment is determined as follows.
 n=n×w/(w+w)+n×w/(w+w
 ここで、nは、モノマーsのアルキル鎖の炭素数であり、nは、モノマーtのアルキル鎖の炭素数である。
 第二の態様に係る共重合成分(a)が3種類以上のヒドロキシアルキルモノマー(a2)を含有するときも、同様の計算式によって共重合成分(a)中のヒドロキシアルキルモノマー(a2)のアルキル鎖の平均炭素数が求められる。
n=n s ×w s /(w s +w t )+n t ×w t /(w s +w t )
Here, ns is the number of carbon atoms in the alkyl chain of monomer s, and nt is the number of carbon atoms in the alkyl chain of monomer t.
When the copolymerization component (a) according to the second aspect contains three or more hydroxyalkyl monomers (a2), the alkyl The average number of carbon atoms in the chain is determined.
 第二の態様に係るヒドロキシアルキルモノマー(a2)としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、5-ヒドロキシペンチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、7-ヒドロキシヘプチル(メタ)アクリレート、8-ヒドロキシオクチル(メタ)アクリレート等の1級水酸基含有(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2,2-ジメチル2-ヒドロキシエチル(メタ)アクリレート等の2級または3級水酸基含有(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレートモノマー;N-(2-ヒドロキシエチル)(メタ)アクリルアミド、N-(4-ヒドロキシブチル)(メタ)アクリルアミド、N-(6-ヒドロキシヘキシル)(メタ)アクリルアミド等のヒドロキシアルキル(メタ)アクリルアミド;
2-ヒドロキシエチルビニルエーテル、4-ヒドロキシブチルビニルエーテル、6-ヒドロキシヘキシルビニルエーテル等のヒドロキシアルキルビニルエーテルが挙げられる。
 ヒドロキシアルキルモノマー(a2)は、1種を単独で用いてもよく、2種以上を併用してもよい。
 これらのなかでも1級水酸基含有(メタ)アクリレートが好ましく、2-ヒドロキシエチル(メタ)アクリレートと4-ヒドロキシブチル(メタ)アクリレートを併用するか4-ヒドロキシブチル(メタ)アクリレートを単独で用いることが特に好ましい。
Examples of the hydroxyalkyl monomer (a2) according to the second aspect include 2-hydroxyethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 5-hydroxypentyl (meth)acrylate, ) acrylate, 6-hydroxyhexyl (meth) acrylate, 7-hydroxyheptyl (meth) acrylate, primary hydroxyl group-containing (meth) acrylate such as 8-hydroxyoctyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2 -Hydroxyalkyl (meth)acrylate monomers such as secondary or tertiary hydroxyl group-containing (meth)acrylates such as hydroxybutyl (meth)acrylate, 2,2-dimethyl 2-hydroxyethyl (meth)acrylate; N-(2-hydroxy hydroxyalkyl (meth)acrylamides such as ethyl)(meth)acrylamide, N-(4-hydroxybutyl)(meth)acrylamide, N-(6-hydroxyhexyl)(meth)acrylamide;
Hydroxyalkyl vinyl ethers such as 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether and 6-hydroxyhexyl vinyl ether can be mentioned.
The hydroxyalkyl monomers (a2) may be used singly or in combination of two or more.
Among these, primary hydroxyl group-containing (meth)acrylates are preferred, and 2-hydroxyethyl (meth)acrylate and 4-hydroxybutyl (meth)acrylate can be used together or 4-hydroxybutyl (meth)acrylate can be used alone. Especially preferred.
 〔エチレン性不飽和モノマー(a3)〕
 第二の態様に係る共重合成分(a)は、アルキル(メタ)アクリレート(a1)およびヒドロキシアルキルモノマー(a2)以外のその他の共重合可能なエチレン性不飽和モノマー(a3)を必要に応じてさらに含有してもよい。
 その他の共重合可能なエチレン性不飽和モノマー(a3)としては、例えば、n-ブチルアクリレート、2-エチルヘキシル(メタ)アクリレート等のアルキル(メタ)アクリレート(ただし、アルキル(メタ)アクリレート(a1)を除く。);
 フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェニルジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール-ポリプロピレングリコール-(メタ)アクリレート、オルトフェニルフェノキシエチル(メタ)アクリレート、ノニルフェノールエチレンオキサイド付加物(メタ)アクリレート等の芳香環含有モノマー;
 シクロヘキシルオキシアルキル(メタ)アクリレート、tert-ブチルシクロヘキシルオキシエチル(メタ)アクリレート、イソボルニルメタクリレート、ジシクロペンタニル(メタ)アクリレート等の脂環含有モノマー;
 2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、2-ブトキシジエチレングリコール(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、オクトキシポリエチレングリコール-ポリプロピレングリコールモノ(メタ)アクリレート、ラウロキシポリエチレングリコールモノ(メタ)アクリレート、ステアロキシポリエチレングリコールモノ(メタ)アクリレート等のエーテル鎖含有モノマー;
 (メタ)アクリル酸、β-カルボキシエチルアクリレート等のアクリル酸ダイマー、クロトン酸、マレイン酸、無水マレイン酸、フマル酸、シトラコン酸、グルタコン酸、イタコン酸、N-グリコール酸、ケイ皮酸等のカルボキシ基含有モノマー;
 ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、カプロラクトン変性2-ヒドロキシエチル(メタ)アクリレート、2-アクリロイロキシエチル-2-ヒドロキシエチルフタル酸等のヒドロキシアルキルモノマー(a2)以外の水酸基含有モノマー;
 (メタ)アクリルアミド、N-(n-ブトキシアルキル)(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N,N-ジメチルアミノアルキル(メタ)アクリルアミド等のアミド基含有モノマー;
 4-(メタ)アクリロイルオキシベンゾフェノン等のベンゾフェノン含有モノマー;
 アクリロニトリル、メタクリロニトリル、スチレン、α-メチルスチレン、酢酸ビニル、プロピオン酸ビニル、ステアリン酸ビニル、塩化ビニル、塩化ビニリデン、アルキルビニルエーテル、ビニルトルエン、ビニルピリジン、ビニルピロリドン、イタコン酸ジアルキルエステル、フマル酸ジアルキルエステル、アリルアルコール、アクリルクロライド、メチルビニルケトン、N-アクリルアミドメチルトリメチルアンモニウムクロライド、アリルトリメチルアンモニウムクロライド、ジメチルアリルビニルケトン等が挙げられる。
 エチレン性不飽和モノマー(a3)は、1種を単独で用いてもよく、2種以上を併用してもよい。
[Ethylenically unsaturated monomer (a3)]
The copolymerization component (a) according to the second aspect includes, if necessary, other copolymerizable ethylenically unsaturated monomers (a3) other than the alkyl (meth)acrylate (a1) and the hydroxyalkyl monomer (a2). Further, it may be contained.
Other copolymerizable ethylenically unsaturated monomers (a3) include, for example, alkyl (meth)acrylates such as n-butyl acrylate and 2-ethylhexyl (meth)acrylate (whereas alkyl (meth)acrylate (a1) except.);
Phenyl (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, phenyldiethylene glycol (meth) acrylate, phenoxy polyethylene glycol (meth) acrylate, phenoxy polyethylene glycol-polypropylene glycol-(meth) acrylate, orthophenylphenoxyethyl Aromatic ring-containing monomers such as (meth)acrylates and nonylphenol ethylene oxide adduct (meth)acrylates;
Alicyclic-containing monomers such as cyclohexyloxyalkyl (meth)acrylate, tert-butylcyclohexyloxyethyl (meth)acrylate, isobornyl methacrylate, dicyclopentanyl (meth)acrylate;
2-Methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, 2-butoxyethyl (meth) acrylate, 2-butoxydiethylene glycol (meth) acrylate, methoxydiethylene glycol (meth) Acrylates, methoxytriethylene glycol (meth)acrylate, ethoxydiethylene glycol (meth)acrylate, methoxydipropylene glycol (meth)acrylate, methoxypolyethylene glycol (meth)acrylate, octoxypolyethyleneglycol-polypropyleneglycol mono(meth)acrylate, lauroxy Ether chain-containing monomers such as polyethylene glycol mono (meth) acrylate and stearoxy polyethylene glycol mono (meth) acrylate;
(Meth)acrylic acid, acrylic acid dimers such as β-carboxyethyl acrylate, carboxylates such as crotonic acid, maleic acid, maleic anhydride, fumaric acid, citraconic acid, glutaconic acid, itaconic acid, N-glycolic acid and cinnamic acid group-containing monomer;
Polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, caprolactone-modified 2-hydroxyethyl (meth) acrylate, 2-acryloyloxyethyl-2-hydroxyethyl phthalic acid and other hydroxyalkyl monomers other than (a2) a hydroxyl group-containing monomer;
(Meth)acrylamide, N-(n-butoxyalkyl)(meth)acrylamide, N,N-dimethyl(meth)acrylamide, N,N-diethyl(meth)acrylamide, N,N-dimethylaminoalkyl(meth)acrylamide, etc. The amide group-containing monomer of;
benzophenone-containing monomers such as 4-(meth)acryloyloxybenzophenone;
Acrylonitrile, methacrylonitrile, styrene, α-methylstyrene, vinyl acetate, vinyl propionate, vinyl stearate, vinyl chloride, vinylidene chloride, alkyl vinyl ether, vinyl toluene, vinylpyridine, vinylpyrrolidone, dialkyl itaconate, dialkyl fumarate Ester, allyl alcohol, acryl chloride, methyl vinyl ketone, N-acrylamidomethyltrimethylammonium chloride, allyltrimethylammonium chloride, dimethyl allyl vinyl ketone and the like.
The ethylenically unsaturated monomers (a3) may be used alone or in combination of two or more.
 エチレン性不飽和基を二つ以上有するエチレン性不飽和モノマーとして、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジビニルベンゼン等を併用することもできる。 Examples of ethylenically unsaturated monomers having two or more ethylenically unsaturated groups include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, propylene Glycol di(meth)acrylate, divinylbenzene and the like can also be used in combination.
 〔第二の態様に係る共重合成分(a)の組成〕
 第二の態様において、アルキル(メタ)アクリレート(a1)の含有量は、共重合成分(a)100重量%に対して30重量%以上である。アルキル(メタ)アクリレート(a1)の含有量は、35~75重量%が好ましく、40~65重量%がより好ましく、45~60重量%がさらに好ましい。アルキル(メタ)アクリレート(a1)の含有量が少なすぎると、一次硬化状態の粘着物性が低下する傾向がある。アルキル(メタ)アクリレート(a1)の含有量が多すぎると、完全硬化後の粘着物性が低下する傾向がある。
[Composition of the copolymer component (a) according to the second aspect]
In the second aspect, the content of the alkyl (meth)acrylate (a1) is 30% by weight or more relative to 100% by weight of the copolymer component (a). The content of the alkyl (meth)acrylate (a1) is preferably 35 to 75% by weight, more preferably 40 to 65% by weight, even more preferably 45 to 60% by weight. If the content of the alkyl (meth)acrylate (a1) is too small, the adhesive properties in the primary cured state tend to be lowered. If the content of the alkyl (meth)acrylate (a1) is too high, the adhesive physical properties after complete curing tend to deteriorate.
 第二の態様において、ヒドロキシアルキルモノマー(a2)の含有量は、共重合成分(a)100重量%に対して0.1重量%以上であり、0.1~30重量%が好ましく、5~30重量%がより好ましく、10~25重量%がさらに好ましい。ヒドロキシアルキルモノマー(a2)の含有量が少なすぎると、一次硬化状態の粘着物性が低下する傾向がある。ヒドロキシアルキルモノマー(a2)の含有量が多すぎると、完全硬化後の粘着物性が低下する傾向がある。 In the second aspect, the content of the hydroxyalkyl monomer (a2) is 0.1% by weight or more, preferably 0.1 to 30% by weight, based on 100% by weight of the copolymer component (a), and 5 to 30% by weight is more preferred, and 10 to 25% by weight is even more preferred. If the content of the hydroxyalkyl monomer (a2) is too small, the adhesive properties in the primary cured state tend to be lowered. If the content of the hydroxyalkyl monomer (a2) is too high, the adhesive properties after complete curing tend to deteriorate.
 第二の態様に係る共重合成分(a)において、アルキル(メタ)アクリレート(a1)とヒドロキシアルキルモノマー(a2)の含有割合(a1/a2)は重量比で95/5~50/50が好ましく、より好ましくは85/15~70/30、特に好ましくは80/20~75/25である。含有割合(a1/a2)が前記数値範囲内であると、一次硬化状態での粘着物性に優れる。 In the copolymer component (a) according to the second aspect, the content ratio (a1/a2) of the alkyl (meth)acrylate (a1) and the hydroxyalkyl monomer (a2) is preferably 95/5 to 50/50 by weight. , more preferably 85/15 to 70/30, particularly preferably 80/20 to 75/25. When the content ratio (a1/a2) is within the above numerical range, the adhesive physical properties in the primary cured state are excellent.
 第二の態様に係る共重合成分(a)がエチレン性不飽和モノマー(a3)を含有する場合、エチレン性不飽和モノマー(a3)の含有量は、共重合成分(a)100重量%に対して通常50重量%以下であり、好ましくは40重量%以下、さらに好ましくは35重量%以下である。エチレン性不飽和モノマー(a3)の含有量が多すぎると低架橋時の粘着物性が低下する傾向がある。 When the copolymerization component (a) according to the second aspect contains the ethylenically unsaturated monomer (a3), the content of the ethylenically unsaturated monomer (a3) is relative to 100% by weight of the copolymerization component (a) is usually 50% by weight or less, preferably 40% by weight or less, more preferably 35% by weight or less. If the content of the ethylenically unsaturated monomer (a3) is too high, the adhesion property tends to be lowered when low crosslinking is achieved.
 第二の態様に係るアクリル系樹脂(A)は、アルキル(メタ)アクリレート(a1)に基づく構成単位と、ヒドロキシアルキルモノマー(a2)に基づく構成単位とを有する共重合体であるとも言える。また、この場合、アクリル系樹脂(A)は、アルキル(メタ)アクリレート(a1)に基づく構成単位およびヒドロキシアルキルモノマー(a2)に基づく構成単位に加えて、エチレン性不飽和モノマー(a3)に基づく構成単位を必要に応じてさらに有してもよい。このとき、各モノマーに基づく構成単位の割合は共重合成分(a)の組成にしたがって決定でき、その好ましい態様も同様である。 It can also be said that the acrylic resin (A) according to the second aspect is a copolymer having structural units based on the alkyl (meth)acrylate (a1) and structural units based on the hydroxyalkyl monomer (a2). In this case, the acrylic resin (A) is based on the ethylenically unsaturated monomer (a3) in addition to the structural unit based on the alkyl (meth)acrylate (a1) and the structural unit based on the hydroxyalkyl monomer (a2). It may further have structural units as necessary. At this time, the ratio of structural units based on each monomer can be determined according to the composition of the copolymer component (a), and the preferred embodiment is also the same.
 第二の態様に係るアクリル系樹脂(A)の動的粘弾性に基づくガラス転移温度は-10℃以上であり、-5~20℃が好ましく、より好ましくは0~15℃、特に好ましくは2~13℃である。アクリル系樹脂(A)の動的粘弾性に基づくガラス転移温度が高すぎると、粘着剤層の段差追従性の低下や密着性の低下に伴って粘着力が低下する傾向がある。アクリル系樹脂(A)の動的粘弾性に基づくガラス転移温度が低すぎると、低架橋時の粘着物性が低下する傾向がある。 The glass transition temperature based on the dynamic viscoelasticity of the acrylic resin (A) according to the second aspect is −10° C. or higher, preferably −5 to 20° C., more preferably 0 to 15° C., particularly preferably 2 ~13°C. If the glass transition temperature based on the dynamic viscoelasticity of the acrylic resin (A) is too high, there is a tendency for the pressure-sensitive adhesive layer to be less conformable to irregularities and less adhesive, resulting in a decrease in adhesive strength. If the glass transition temperature based on the dynamic viscoelasticity of the acrylic resin (A) is too low, there is a tendency for the adhesive physical properties at the time of low crosslinking to deteriorate.
 動的粘弾性に基づくガラス転移温度は、下記の測定法により求められる。
 適当な有機溶媒を用いることによりアクリル系樹脂(A)と有機溶媒のみを含有するアクリル系樹脂溶液を調製する。アクリル系樹脂溶液の濃度を調整した後、離型シート上に乾燥後の厚みが50μmになるように塗工する。その後、90~105℃、5~10分間加熱処理により乾燥させることで、有機溶媒を除去した後、これを離型シートに貼付し、アクリル系樹脂を99%以上含有するアクリル系樹脂シートを作製する。その後、複数のアクリル系樹脂シートを積層して、厚さ約800μmのアクリル系樹脂シートを作製する。作製したシートの動的粘弾性を以下の条件にて測定し、損失正接(損失弾性率G’’/貯蔵弾性率G’=tanδ)が最大となった温度を読み取り、動的粘弾性に基づくアクリル系樹脂(A)のガラス転移温度とする。
The glass transition temperature based on dynamic viscoelasticity is obtained by the following measuring method.
An acrylic resin solution containing only the acrylic resin (A) and the organic solvent is prepared by using a suitable organic solvent. After adjusting the concentration of the acrylic resin solution, it is coated on a release sheet so that the thickness after drying becomes 50 μm. After that, the organic solvent is removed by drying by heat treatment at 90 to 105° C. for 5 to 10 minutes, and then this is attached to a release sheet to prepare an acrylic resin sheet containing 99% or more acrylic resin. do. After that, a plurality of acrylic resin sheets are laminated to produce an acrylic resin sheet having a thickness of about 800 μm. The dynamic viscoelasticity of the produced sheet was measured under the following conditions, and the temperature at which the loss tangent (loss elastic modulus G''/storage elastic modulus G' = tan δ) was maximized was read, based on the dynamic viscoelasticity. It is defined as the glass transition temperature of the acrylic resin (A).
 (動的粘弾性の測定条件)
 測定機器:動的粘弾性測定装置(商品名:DVA-225、アイティー計測制御社製)
 変形モード:せん断
 歪み:0.1%
 測定温度:-100~60℃
 測定周波数:1Hz
(Measurement conditions for dynamic viscoelasticity)
Measuring instrument: dynamic viscoelasticity measuring device (trade name: DVA-225, manufactured by IT Instrumentation & Control Co., Ltd.)
Deformation mode: Shear Strain: 0.1%
Measurement temperature: -100 to 60°C
Measurement frequency: 1Hz
 第二の態様において、アクリル系樹脂(A)の重量平均分子量は、50,000~500,000が好ましく、100,000~400,000がより好ましく、150,000~350,000がさらに好ましい。アクリル系樹脂(A)の重量平均分子量が大きすぎると粘度が高くなりすぎて、塗工性やハンドリングが低下する傾向がある。アクリル系樹脂(A)の重量平均分子量が小さすぎると凝集力が低下し、粘着物性が低下する傾向がある。
 アクリル系樹脂(A)の重量平均分子量は、製造完了時の重量平均分子量である。重量平均分子量は、製造後に加熱等がされていないアクリル系樹脂(A)について測定される。
In the second aspect, the acrylic resin (A) preferably has a weight average molecular weight of 50,000 to 500,000, more preferably 100,000 to 400,000, even more preferably 150,000 to 350,000. If the weight-average molecular weight of the acrylic resin (A) is too large, the viscosity tends to be too high, resulting in poor coatability and handling. If the weight-average molecular weight of the acrylic resin (A) is too small, the cohesive force tends to decrease and the adhesive physical properties tend to decrease.
The weight-average molecular weight of the acrylic resin (A) is the weight-average molecular weight at the completion of production. The weight average molecular weight is measured for the acrylic resin (A) that has not been heated or the like after production.
 アクリル系樹脂(A)の重量平均分子量は、標準ポリスチレン分子量換算による重量平均分子量である。重量平均分子量は、高速液体クロマトグラフ(日本Waters社製、「Waters2695(本体)」と「Waters2414(検出器)」)に、カラム:Shodex GPC KF-806L(排除限界分子量:2×10、分離範囲:100~2×10、理論段数:10000段/本、充填剤材質:スチレン-ジビニルベンゼン共重合体、充填剤粒径:10μm)の3本を直列にして用いることにより測定される。
 数平均分子量も同様の方法を用いて測定することができる。また、分散度は重量平均分子量と数平均分子量より求められる。
The weight average molecular weight of the acrylic resin (A) is the weight average molecular weight in terms of standard polystyrene molecular weight. The weight-average molecular weight was measured using a high-performance liquid chromatograph ("Waters 2695 (body)" and "Waters 2414 (detector)" manufactured by Nippon Waters Co., Ltd.) using a column: Shodex GPC KF-806L (exclusion limit molecular weight: 2 × 10 7 , separation Range: 100 to 2×10 7 , Number of theoretical plates: 10,000 plates/line, Filler material: Styrene-divinylbenzene copolymer, Filler particle diameter: 10 μm) are connected in series.
Number average molecular weight can also be measured using a similar method. Further, the dispersity is obtained from the weight average molecular weight and the number average molecular weight.
 アクリル系樹脂(A)の分散度(重量平均分子量/数平均分子量)は、15以下が好ましく、より好ましくは10以下、さらに好ましくは7以下、特に好ましくは5以下である。アクリル系樹脂(A)の分散度が高すぎると粘着剤層の耐久性能が低下する傾向がある。また、発泡等が発生しやすくなる傾向もある。アクリル系樹脂(A)の分散度が低すぎると取り扱い性が低下する傾向がある。分散度の下限は、製造の限界の点から、通常1.1である。 The degree of dispersion (weight average molecular weight/number average molecular weight) of the acrylic resin (A) is preferably 15 or less, more preferably 10 or less, even more preferably 7 or less, and particularly preferably 5 or less. If the degree of dispersion of the acrylic resin (A) is too high, the durability of the pressure-sensitive adhesive layer tends to decrease. Moreover, there is also a tendency that foaming or the like is likely to occur. If the degree of dispersion of the acrylic resin (A) is too low, the handleability tends to deteriorate. The lower limit of the dispersity is usually 1.1 due to manufacturing limitations.
 〔アクリル系樹脂(A)の製造方法〕
 第二の態様において、アクリル系樹脂(A)は、アルキル(メタ)アクリレート(a1)、ヒドロキシアルキルモノマー(a2)を含有する共重合成分(a)を重合させることで製造できる。
 第二の態様に係る共重合成分(a)は、任意重合成分のエチレン性不飽和モノマー(a3)をさらに含有してもよい。
[Method for producing acrylic resin (A)]
In the second aspect, the acrylic resin (A) can be produced by polymerizing a copolymer component (a) containing an alkyl (meth)acrylate (a1) and a hydroxyalkyl monomer (a2).
The copolymerization component (a) according to the second aspect may further contain an ethylenically unsaturated monomer (a3) as an optional polymerization component.
 アクリル系樹脂(A)の重合方法としては、例えば、溶液重合、懸濁重合、塊状重合、乳化重合等の従来公知の重合方法が挙げられる。反応の安全性および安定性、任意のモノマー組成でアクリル系樹脂(A)を製造できる点で溶液重合が好ましい。
 以下、第二の態様に係るアクリル系樹脂(A)の好ましい製造方法の一例を示す。
Examples of polymerization methods for the acrylic resin (A) include conventionally known polymerization methods such as solution polymerization, suspension polymerization, bulk polymerization, and emulsion polymerization. Solution polymerization is preferred in terms of safety and stability of the reaction and the ability to produce the acrylic resin (A) with any monomer composition.
An example of a preferred method for producing the acrylic resin (A) according to the second aspect is shown below.
 例えば、有機溶媒中に、第二の態様に係る共重合成分(a)、重合開始剤を混合または滴下することで、溶液重合を行うことができる。
 重合反応に用いられる有機溶媒としては、例えば、トルエン、キシレン等の芳香族炭化水素類;n-ヘキサン等の脂肪族炭化水素類;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類;メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール等の脂肪族アルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;ジメチルエーテル、ジエチルエーテル等の脂肪族エーテル類;塩化メチレン、塩化エチレン等の脂肪族ハロゲン化炭化水素類;テトラヒドロフラン等の環状エーテル類等が挙げられる。
 これらの有機溶媒のなかでも、エステル類、ケトン類が好ましく、酢酸エチル、アセトン、メチルエチルケトンが特に好ましい。
 有機溶媒は1種を単独で用いてもよく、2種以上を併用してもよい。
For example, solution polymerization can be carried out by mixing or dropping the copolymerization component (a) according to the second aspect and the polymerization initiator into an organic solvent.
Examples of the organic solvent used in the polymerization reaction include aromatic hydrocarbons such as toluene and xylene; aliphatic hydrocarbons such as n-hexane; esters such as methyl acetate, ethyl acetate and butyl acetate; Aliphatic alcohols such as ethyl alcohol, n-propyl alcohol and isopropyl alcohol; Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; Aliphatic ethers such as dimethyl ether and diethyl ether; Fats such as methylene chloride and ethylene chloride halogenated hydrocarbons; cyclic ethers such as tetrahydrofuran;
Among these organic solvents, esters and ketones are preferred, and ethyl acetate, acetone and methyl ethyl ketone are particularly preferred.
An organic solvent may be used individually by 1 type, and may use 2 or more types together.
 重合反応に用いられる重合開始剤としては、通常のラジカル重合開始剤であるアゾ系重合開始剤や過酸化物系重合開始剤等を用いることができる。
 アゾ系重合開始剤としては、例えば、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビスイソブチロニトリル、(1-フェニルエチル)アゾジフェニルメタン、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-シクロプロピルプロピオニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)等が挙げられる。
As the polymerization initiator used for the polymerization reaction, an azo polymerization initiator, a peroxide polymerization initiator, or the like, which is a normal radical polymerization initiator, can be used.
Examples of azo polymerization initiators include 2,2′-azobis(2-methylbutyronitrile), 2,2′-azobisisobutyronitrile, (1-phenylethyl)azodiphenylmethane, 2,2′ -azobis(2,4-dimethylvaleronitrile), 2,2'-azobis(2-cyclopropylpropionitrile), 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile) and the like. be done.
 過酸化物系重合開始剤としては、例えば、ベンゾイルパーオキサイド、ジ-tert-ブチルパーオキサイド、クメンハイドロパーオキサイド、ラウロイルパーオキサイド、tert-ブチルペルオキシピバレート、tert-ヘキシルペルオキシピバレート、tert-ヘキシルペルオキシネオデカノエート、ジイソプロピルペルオキシカーボネート、ジイソブチリルパーオキサイド等が挙げられる。 Peroxide-based polymerization initiators include, for example, benzoyl peroxide, di-tert-butyl peroxide, cumene hydroperoxide, lauroyl peroxide, tert-butylperoxypivalate, tert-hexylperoxypivalate, tert-hexyl peroxyneodecanoate, diisopropyl peroxycarbonate, diisobutyryl peroxide and the like.
 なかでもアゾ系重合開始剤が好ましく、より好ましくは2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)である。
 重合開始剤は1種を単独で用いてもよく、2種以上を併用してもよい。
Among them, azo polymerization initiators are preferred, and 2,2'-azobisisobutyronitrile and 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile) are more preferred.
One polymerization initiator may be used alone, or two or more polymerization initiators may be used in combination.
 重合開始剤の使用量は共重合成分(a)100重量部に対して、通常0.001~10重量部であり、好ましくは0.1~8重量部、より好ましくは0.5~6重量部、特に好ましくは1~4重量部、さらに好ましくは1.5~3重量部、最も好ましくは2~2.5重量部である。重合開始剤の使用量が少なすぎると、アクリル系樹脂(A)の重合率が低下するため、残存モノマーが増加する傾向がある。また、アクリル系樹脂(A)の重量平均分子量が高くなる傾向がある。使用量が多すぎると、アクリル系樹脂(A)がゲル化する傾向がある。 The amount of the polymerization initiator used is usually 0.001 to 10 parts by weight, preferably 0.1 to 8 parts by weight, more preferably 0.5 to 6 parts by weight, per 100 parts by weight of the copolymer component (a). parts, particularly preferably 1 to 4 parts by weight, more preferably 1.5 to 3 parts by weight, most preferably 2 to 2.5 parts by weight. When the amount of the polymerization initiator used is too small, the rate of polymerization of the acrylic resin (A) decreases, and the amount of residual monomer tends to increase. Moreover, the weight average molecular weight of acrylic resin (A) tends to increase. If the amount used is too large, the acrylic resin (A) tends to gel.
 溶液重合の重合条件は特に限定されず、従来公知の重合条件にしたがって重合することができる。例えば、有機溶媒中に、共重合成分(a)、重合開始剤を混合または滴下して重合することができる。 Polymerization conditions for solution polymerization are not particularly limited, and polymerization can be carried out according to conventionally known polymerization conditions. For example, the copolymerization component (a) and the polymerization initiator can be mixed or dropped into an organic solvent for polymerization.
 重合反応における重合温度は、通常40~120℃であるが、安定的に反応できる点から50~90℃が好ましい。重合温度が高すぎるとアクリル系樹脂(A)がゲル化しやすくなる傾向がある。重合温度が低すぎると重合開始剤の活性が低下するため、重合率が低下する結果、残存モノマーが増加する傾向がある。
 重合反応における重合時間は特に制限はないが、最後の重合開始剤の添加から0.5時間以上、好ましくは1時間以上、より好ましくは2時間以上、特に好ましくは5時間以上である。
 重合反応は、除熱しやすい点で溶媒を還流しながら行うことが好ましい。
The polymerization temperature in the polymerization reaction is usually 40 to 120°C, preferably 50 to 90°C from the viewpoint of stable reaction. If the polymerization temperature is too high, the acrylic resin (A) tends to gel easily. If the polymerization temperature is too low, the activity of the polymerization initiator will decrease, resulting in a decrease in the rate of polymerization, which tends to increase the amount of residual monomers.
The polymerization time in the polymerization reaction is not particularly limited, but it is 0.5 hours or longer, preferably 1 hour or longer, more preferably 2 hours or longer, and particularly preferably 5 hours or longer after the last addition of the polymerization initiator.
The polymerization reaction is preferably carried out while refluxing the solvent in order to facilitate heat removal.
 (光開始剤(B))
 第二の態様に係る光開始剤(B)は、分子内水素引抜型光開始剤(b1)を含有する。第二の態様に係る光開始剤(B)は、分子間水素引抜型光開始剤(b2)をさらに含有することが好ましい。
 第二の態様に係る光開始剤(B)は、発明の効果を損なわない範囲内であれば、分子内水素引抜型光開始剤(b1)および分子間水素引抜型光開始剤(b2)以外の他の光開始剤(b3)をさらに含有してもよい。
(Photoinitiator (B))
The photoinitiator (B) according to the second aspect contains an intramolecular hydrogen abstraction type photoinitiator (b1). The photoinitiator (B) according to the second aspect preferably further contains an intermolecular hydrogen abstraction type photoinitiator (b2).
The photoinitiator (B) according to the second aspect is other than the intramolecular hydrogen abstraction photoinitiator (b1) and the intermolecular hydrogen abstraction photoinitiator (b2), as long as it does not impair the effects of the invention. may further contain another photoinitiator (b3).
 〔分子内水素引抜型光開始剤(b1)〕
 第二の態様に係る分子内水素引抜型光開始剤(b1)は、光開始剤自身の水素を引き抜くことでラジカルを発生させることが可能な構造を有する。例えば、分子内水素引抜型光開始剤(b1)はフェニルグリオキシレート構造等を有し得る。
 第二の態様に係る分子内水素引抜型光開始剤(b1)としては、例えば、オキシ-フェニル-酢酸2-[2-オキソ-2-フェニル-アセトキシ-エトキシ]-エチルエステル、フェニルグリオキシル酸メチル等が挙げられる。
 これらのなかでも完全硬化時の架橋効率の点で、分子内に架橋点が複数存在するオキシ-フェニル-酢酸2-[2-オキソ-2-フェニル-アセトキシ-エトキシ]-エチルエステルが好ましい。
 市販品としては、IGM RESINS B.V.社製の「Omnirad MBF」、「Omnirad 754」が挙げられる。
[Intramolecular hydrogen abstraction type photoinitiator (b1)]
The intramolecular hydrogen abstraction type photoinitiator (b1) according to the second aspect has a structure capable of generating radicals by abstracting hydrogen from the photoinitiator itself. For example, the intramolecular hydrogen abstraction type photoinitiator (b1) may have a phenylglyoxylate structure or the like.
Examples of the intramolecular hydrogen-abstracting photoinitiator (b1) according to the second aspect include oxy-phenyl-acetic acid 2-[2-oxo-2-phenyl-acetoxy-ethoxy]-ethyl ester and methyl phenylglyoxylate. etc.
Among these, oxy-phenyl-acetic acid 2-[2-oxo-2-phenyl-acetoxy-ethoxy]-ethyl ester having multiple cross-linking points in the molecule is preferable from the viewpoint of cross-linking efficiency at the time of complete curing.
As a commercial product, IGM RESINS B.I. V. "Omnirad MBF" and "Omnirad 754" manufactured by the company.
 〔分子間水素引抜型光開始剤(b2)〕
 第二の態様に係る分子間水素引抜型光開始剤(b2)は、光開始剤自身以外から水素を引き抜くことでラジカルを発生させることが可能な構造を有する。分子間水素引抜型光開始剤(b2)は、例えばベンゾフェノン構造等を有し得る。
 第二の態様に係る分子間水素引抜型光開始剤(b2)として、例えば、ベンゾフェノン、4-メチル-ベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-フェニルベンゾフェノン、3,3’-ジメチル-4-メトキシベンゾフェノン、4-(メタ)アクリロイルオキシベンゾフェノン、4-[2-((メタ)アクリロイルオキシ)エトキシ]ベンゾフェノン、4-(メタ)アクリロイルオキシ-4’-メトキシベンゾフェノン、カルボキシメトキシメトキシベンゾフェノン-ポリエチレングリコール250ジエステル、2-ベンゾイル安息香酸メチル、4-(1,3-アクリロイル-1,4,7,10,13-ペンタオキソトリデシル)ベンゾフェノン等が挙げられる。
[Intermolecular hydrogen abstraction type photoinitiator (b2)]
The intermolecular hydrogen abstraction type photoinitiator (b2) according to the second aspect has a structure capable of generating radicals by abstracting hydrogen from sources other than the photoinitiator itself. The intermolecular hydrogen abstraction photoinitiator (b2) may have, for example, a benzophenone structure.
As the intermolecular hydrogen abstraction type photoinitiator (b2) according to the second aspect, for example, benzophenone, 4-methyl-benzophenone, 2,4,6-trimethylbenzophenone, 4-phenylbenzophenone, 3,3′-dimethyl- 4-Methoxybenzophenone, 4-(meth)acryloyloxybenzophenone, 4-[2-((meth)acryloyloxy)ethoxy]benzophenone, 4-(meth)acryloyloxy-4′-methoxybenzophenone, carboxymethoxymethoxybenzophenone-polyethylene Glycol 250 diester, methyl 2-benzoylbenzoate, 4-(1,3-acryloyl-1,4,7,10,13-pentoxotridecyl)benzophenone, and the like.
 これらのなかでも高架橋が可能な点で、分子内に架橋点が複数存在する4-(メタ)アクリロイルオキシベンゾフェノン、4-[2-((メタ)アクリロイルオキシ)エトキシ]ベンゾフェノン、4-(メタ)アクリロイルオキシ-4’-メトキシベンゾフェノン、カルボキシメトキシメトキシベンゾフェノン-ポリエチレングリコール250ジエステルが好ましい。
 市販品としては、新菱社製の「MBP」、IGM RESINS B.V.社製の「Omnirad BP」、「Omnirad 4MBZ」、「Esacure TZT」、「Omnipol BP」が挙げられる。
Among these, 4-(meth)acryloyloxybenzophenone, 4-[2-((meth)acryloyloxy)ethoxy]benzophenone, and 4-(meth)acryloyloxybenzophenone, which have multiple crosslink points in the molecule, can be highly crosslinked. Acryloyloxy-4'-methoxybenzophenone, carboxymethoxymethoxybenzophenone-polyethylene glycol 250 diester are preferred.
Commercially available products include "MBP" manufactured by Shinryo Corporation and IGM RESINS B.I. V. "Omnirad BP", "Omnirad 4MBZ", "Esacure TZT", "Omnipol BP" manufactured by the company.
 〔他の光開始剤(b3)〕
 第二の態様に係る他の光開始剤(b3)としては、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタノン、2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノンオリゴマー等のアセトフェノン類;
 ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾイン類;
 2,4,6-トリメチルベンゾイル-ジフェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等のアシルフォスフォンオキサイド類が挙げられる。
[Other photoinitiator (b3)]
Other photoinitiators (b3) according to the second aspect include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethylketal, 4-(2-hydroxyethoxy) Phenyl-(2-hydroxy-2-propyl)ketone, 1-hydroxycyclohexylphenylketone, 2-methyl-2-morpholino(4-thiomethylphenyl)propan-1-one, 2-benzyl-2-dimethylamino-1 -Acetophenones such as (4-morpholinophenyl)butanone, 2-hydroxy-2-methyl-1-[4-(1-methylvinyl)phenyl]propanone oligomers;
Benzoins such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzoin isobutyl ether;
2,4,6-trimethylbenzoyl-diphenylphosphine oxide, bis(2,6-dimethoxybenzoyl)-2,4,4-trimethyl-pentylphosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenyl Acylphosphone oxides such as phosphine oxide are included.
 第二の態様に係る光開始剤(B)の助剤として、トリエタノールアミン、トリイソプロパノールアミン、4,4’-ジメチルアミノベンゾフェノン(ミヒラーケトン)、4,4’-ジエチルアミノベンゾフェノン、2-ジメチルアミノエチル安息香酸、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸(n-ブトキシ)エチル、4-ジメチルアミノ安息香酸イソアミル、4-ジメチルアミノ安息香酸2-エチルヘキシル、2,4-ジエチルチオキサンソン、2,4-ジイソプロピルチオキサンソン等を併用することも可能である。
 光開始剤(B)の助剤は1種を単独で用いてもよく、2種以上を併用してもよい。
As auxiliary agents for the photoinitiator (B) according to the second aspect, triethanolamine, triisopropanolamine, 4,4'-dimethylaminobenzophenone (Michler's ketone), 4,4'-diethylaminobenzophenone, 2-dimethylaminoethyl Benzoic acid, ethyl 4-dimethylaminobenzoate, (n-butoxy)ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, 2-ethylhexyl 4-dimethylaminobenzoate, 2,4-diethylthioxanthone , 2,4-diisopropylthioxanthone and the like can also be used in combination.
The auxiliary agent for the photoinitiator (B) may be used alone or in combination of two or more.
 (架橋剤(C))
 第二の態様に係る粘着剤組成物は、アクリル系樹脂(A)および光開始剤(B)に加えて、架橋剤(C)をさらに含有することが好ましい。
 架橋剤(C)としては、活性エネルギー線架橋剤(c1)、熱架橋剤(c2)が挙げられる。
 活性エネルギー線架橋剤(c1)、熱架橋剤(c2)は1種を単独で用いてもよく、2種以上を併用してもよい。
(Crosslinking agent (C))
The pressure-sensitive adhesive composition according to the second aspect preferably further contains a cross-linking agent (C) in addition to the acrylic resin (A) and the photoinitiator (B).
Examples of the cross-linking agent (C) include an active energy ray cross-linking agent (c1) and a thermal cross-linking agent (c2).
The active energy ray cross-linking agent (c1) and the thermal cross-linking agent (c2) may be used alone or in combination of two or more.
 架橋剤(C)として活性エネルギー線架橋剤(c1)のみを含有する場合は、活性エネルギー線量を制御することのみで多段硬化が可能となる。また架橋剤(C)として活性エネルギー線架橋剤(c1)と熱架橋剤(c2)とを含有する場合は、熱硬化と活性エネルギー線硬化を併用することでも多段硬化が可能となる。
 このように架橋反応を制御することで、粘着剤層全体の凝集力を調整し、一次硬化後や完全硬化後において安定した粘着物性を得ることができる。
When only the active energy ray cross-linking agent (c1) is contained as the cross-linking agent (C), multistage curing is possible only by controlling the dose of active energy ray. Moreover, when the active energy ray cross-linking agent (c1) and the thermal cross-linking agent (c2) are contained as the cross-linking agent (C), multistage curing can be achieved by using both heat curing and active energy ray curing.
By controlling the cross-linking reaction in this way, the cohesive force of the entire adhesive layer can be adjusted, and stable adhesive physical properties can be obtained after primary curing and after complete curing.
 〔活性エネルギー線架橋剤(c1)〕
 活性エネルギー線架橋剤(c1)としては、1分子内に2つ以上のエチレン性不飽和基を含有する多官能性架橋剤が挙げられる。
 例えば、ヘキサンジオールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、(ポリ)エチレングリコールモノ(メタ)アクリレート、(ポリ)ブチレングリコールモノ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレングリコールジ(メタ)アクリレート、(ポリ)ペンタメチレングリコールジ(メタ)アクリレート、(ポリ)ヘキサメチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、EO変性グリセリントリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド変性トリ(メタ)アクリレート、多官能ウレタン(メタ)アクリレート等が挙げられる。
 なかでも、硬化後の粘着物性のバランスの点で、2つのエチレン性不飽和基を含有する(メタ)アクリレートが好ましく、特には、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレングリコールジ(メタ)アクリレートが好ましい。
 多官能性架橋剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
[Active energy ray cross-linking agent (c1)]
Examples of the active energy ray cross-linking agent (c1) include polyfunctional cross-linking agents containing two or more ethylenically unsaturated groups in one molecule.
For example, hexanediol di(meth)acrylate, butanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, (poly)ethylene glycol mono(meth)acrylate ) acrylate, (poly)butylene glycol mono (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, (poly) tetramethylene glycol di (meth) acrylate, (poly ) pentamethylene glycol di(meth)acrylate, (poly)hexamethylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, pentaerythritol di(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol Hexa(meth)acrylate, trimethylolpropane tri(meth)acrylate, EO-modified trimethylolpropane tri(meth)acrylate, glycerin tri(meth)acrylate, EO-modified glycerin tri(meth)acrylate, tetramethylolmethane tri(meth)acrylate , isocyanuric acid ethylene oxide-modified tri(meth)acrylate, polyfunctional urethane(meth)acrylate, and the like.
Among them, (meth)acrylates containing two ethylenically unsaturated groups are preferable in terms of the balance of adhesive physical properties after curing, and in particular, (poly)ethylene glycol di(meth)acrylate and (poly)propylene glycol. Di(meth)acrylate and (poly)tetramethylene glycol di(meth)acrylate are preferred.
Polyfunctional cross-linking agents may be used alone or in combination of two or more.
 〔熱架橋剤(c2)〕
 熱架橋剤(c2)は、主としてアクリル系樹脂(A)の構成モノマーである官能基含有モノマー由来の官能基と反応することで、優れた粘着力を発揮できる。例えば、イソシアネート系架橋剤(c2-1)、エポキシ系架橋剤(c2-2)、アジリジン系架橋剤(c2-3)、メラミン系架橋剤(c2-4)、アルデヒド系架橋剤(c2-5)、アミン系架橋剤(c2-6)、金属キレート系架橋剤(c2-7)が挙げられる。これらのなかでも、基材との密着性を向上させる点やアクリル系樹脂(A)との反応性の点で、イソシアネート系架橋剤(c2-1)が好適に用いられる。
 熱架橋剤(c2)は、1種を単独で使用してもよく、2種以上を併用してもよい。
[Thermal cross-linking agent (c2)]
The thermal cross-linking agent (c2) can exhibit excellent adhesion by reacting with functional groups derived from functional group-containing monomers that are mainly constituent monomers of the acrylic resin (A). For example, isocyanate cross-linking agent (c2-1), epoxy cross-linking agent (c2-2), aziridine cross-linking agent (c2-3), melamine cross-linking agent (c2-4), aldehyde cross-linking agent (c2-5 ), amine-based cross-linking agents (c2-6), and metal chelate-based cross-linking agents (c2-7). Among these, the isocyanate-based cross-linking agent (c2-1) is preferably used in terms of improving adhesion to the substrate and reactivity with the acrylic resin (A).
The thermal cross-linking agent (c2) may be used alone or in combination of two or more.
 イソシアネート系架橋剤(c2-1)としては、例えば、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート等のトリレンジイソシアネート系化合物;
 1,3-キシリレンジイソシアネート、1,4-キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート等のキシリレンジイソシアネート系化合物;
 1,5-ナフタレンジイソシアネート、トリフェニルメタントリイソシアネート等の芳香族イソシアネート系化合物;
 ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート等のヘキサメチレンジイソシアネート系化合物、リジンジイソシアネート等の脂肪族イソシアネート系化合物;
 イソホロンジイソシアネート等の脂環式イソシアネート系化合物;
 これらのイソシアネート系化合物とトリメチロールプロパン等のポリオール化合物とのアダクト体;
 これらイソシアネート化合物のビュレット体やイソシアヌレート体;
 等が挙げられる。
Examples of the isocyanate-based cross-linking agent (c2-1) include tolylene diisocyanate-based compounds such as 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate;
xylylene diisocyanate compounds such as 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, tetramethyl xylylene diisocyanate;
Aromatic isocyanate compounds such as 1,5-naphthalene diisocyanate and triphenylmethane triisocyanate;
Hexamethylene diisocyanate compounds such as hexamethylene diisocyanate and trimethylhexamethylene diisocyanate, aliphatic isocyanate compounds such as lysine diisocyanate;
Alicyclic isocyanate compounds such as isophorone diisocyanate;
Adducts of these isocyanate compounds and polyol compounds such as trimethylolpropane;
burettes and isocyanurates of these isocyanate compounds;
etc.
 イソシアネート系架橋剤(c2-1)のなかでも、反応性に優れる点からは芳香族イソシアネート系化合物を用いることが好ましく、特に好ましくはトリレンジイソシアネート系化合物である。また、黄変を抑制する点からは脂肪族イソシアネート系化合物を用いることが好ましく、特に好ましくはヘキサメチレンジイソシアネート系化合物である。 Among the isocyanate-based cross-linking agents (c2-1), it is preferable to use aromatic isocyanate-based compounds from the viewpoint of excellent reactivity, and tolylene diisocyanate-based compounds are particularly preferable. Moreover, from the viewpoint of suppressing yellowing, it is preferable to use an aliphatic isocyanate-based compound, and particularly preferably a hexamethylene diisocyanate-based compound.
 エポキシ系架橋剤(c2-2)としては、例えば、ビスフェノールA・エピクロルヒドリン型のエポキシ樹脂、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、グリセリントリグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ソルビトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエリスリトール、ジグリセロールポリグリシジルエーテル等が挙げられる。 Examples of the epoxy-based cross-linking agent (c2-2) include bisphenol A/epichlorohydrin type epoxy resin, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerin diglycidyl ether, glycerin triglycidyl ether, and 1,6-hexane. Diol diglycidyl ether, trimethylolpropane triglycidyl ether, sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidylerythritol, diglycerol polyglycidyl ether and the like.
 アジリジン系架橋剤(c2-3)としては、例えば、テトラメチロールメタン-トリ-β-アジリジニルプロピオネート、トリメチロールプロパン-トリ-β-アジリジニルプロピオネート、N,N′-ジフェニルメタン-4,4′-ビス(1-アジリジンカルボキシアミド)、N,N′-ヘキサメチレン-1,6-ビス(1-アジリジンカルボキシアミド)等が挙げられる。 Examples of aziridine-based cross-linking agents (c2-3) include tetramethylolmethane-tri-β-aziridinylpropionate, trimethylolpropane-tri-β-aziridinylpropionate, and N,N'-diphenylmethane. -4,4'-bis(1-aziridinecarboxamide), N,N'-hexamethylene-1,6-bis(1-aziridinecarboxamide) and the like.
 メラミン系架橋剤(c2-4)としては、例えば、へキサメトキシメチルメラミン、ヘキサエトキシメチルメラミン、ヘキサプロポキシメチルメラミン、ヘキサプトキシメチルメラミン、ヘキサペンチルオキシメチルメラミン、ヘキサヘキシルオキシメチルメラミン、メラミン樹脂等が挙げられる。 Melamine-based cross-linking agents (c2-4) include, for example, hexamethoxymethylmelamine, hexaethoxymethylmelamine, hexapropoxymethylmelamine, hexaptoxymethylmelamine, hexapentyloxymethylmelamine, hexahexyloxymethylmelamine, and melamine resins. etc.
 アルデヒド系架橋剤(c2-5)としては、例えば、グリオキザール、マロンジアルデヒド、スクシンジアルデヒド、マレインジアルデヒド、グルタルジアルデヒド、ホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド等が挙げられる。 Aldehyde-based cross-linking agents (c2-5) include, for example, glyoxal, malondialdehyde, succindialdehyde, maleinedialdehyde, glutaredialdehyde, formaldehyde, acetaldehyde, and benzaldehyde.
 アミン系架橋剤(c2-6)としては、例えば、ヘキサメチレンジアミン、トリエチルジアミン、ポリエチレンイミン、ヘキサメチレンテトラアミン、ジエチレントリアミン、トリエチルテトラアミン、イソフォロンジアミン、アミノ樹脂、ポリアミド等が挙げられる。 Examples of amine-based cross-linking agents (c2-6) include hexamethylenediamine, triethyldiamine, polyethyleneimine, hexamethylenetetraamine, diethylenetriamine, triethyltetramine, isophoronediamine, amino resins, and polyamides.
 金属キレート系架橋剤(c2-7)としては、例えば、アルミニウム、鉄、銅、亜鉛、スズ、チタン、ニッケル、アンチモン、マグネシウム、パナジウム、クロム、ジルコニウム等の多価金属のアセチルアセトンやアセトアセチルエステル配位化合物等が挙げられる。 Examples of metal chelate cross-linking agents (c2-7) include acetylacetone and acetoacetyl ester linkages of polyvalent metals such as aluminum, iron, copper, zinc, tin, titanium, nickel, antimony, magnesium, vanadium, chromium and zirconium. position compounds and the like.
 (シランカップリング剤(D))
 第二の態様に係る粘着剤組成物は、アクリル系樹脂(A)、光開始剤(B)および架橋剤(C)以外の化合物としてシランカップリング剤(D)をさらに含有することが耐久性を向上させる点で好ましい。
(Silane coupling agent (D))
The pressure-sensitive adhesive composition according to the second aspect further contains a silane coupling agent (D) as a compound other than the acrylic resin (A), the photoinitiator (B) and the cross-linking agent (C). is preferable in terms of improving
 シランカップリング剤(D)は、その構造中に、反応性官能基と、ケイ素原子に結合したアルコキシ基とをそれぞれ1つ以上含有する有機ケイ素化合物である。シランカップリング剤(D)としては、モノマー型とオリゴマー型が挙げられる。 The silane coupling agent (D) is an organosilicon compound containing in its structure one or more reactive functional groups and one or more alkoxy groups bonded to silicon atoms. The silane coupling agent (D) includes monomer type and oligomer type.
 シランカップリング剤(D)中の反応性官能基としては、例えば、エポキシ基、(メタ)アクリロイル基、メルカプト基、水酸基、カルボキシ基、アミノ基、アミド基、イソシアネート基等が挙げられる。これらのなかでも、耐久性、リワーク性に優れる点からエポキシ基、メルカプト基が好ましい。 Examples of reactive functional groups in the silane coupling agent (D) include epoxy groups, (meth)acryloyl groups, mercapto groups, hydroxyl groups, carboxy groups, amino groups, amide groups, isocyanate groups, and the like. Among these, an epoxy group and a mercapto group are preferable from the viewpoint of excellent durability and reworkability.
 シランカップリング剤(D)中の反応性官能基の含有割合としては、3,000g/mol以下が好ましく、1,500g/mol以下がより好ましく、1000g/mol以下がさらに好ましい。反応性官能基が前記数値範囲内であると、耐久性およびリワーク性のバランスが向上する。シランカップリング剤(D)中の反応性官能基の含有割合の下限値は、200g/molである。 The content of reactive functional groups in the silane coupling agent (D) is preferably 3,000 g/mol or less, more preferably 1,500 g/mol or less, and even more preferably 1,000 g/mol or less. When the reactive functional group is within the above numerical range, the balance between durability and reworkability is improved. The lower limit of the content of reactive functional groups in the silane coupling agent (D) is 200 g/mol.
 シランカップリング剤(D)中のケイ素原子に結合したアルコキシ基としては、耐久性と保存安定性の点から、炭素数1~8のアルコキシ基が好ましい。なかでもメトキシ基、エトキシ基がより好ましい。
 シランカップリング剤(D)は、反応性官能基およびケイ素原子と結合したアルコキシ基以外の有機官能基、例えば、アルキル基、フェニル基等を有していてもよい。
As the silicon-bonded alkoxy group in the silane coupling agent (D), an alkoxy group having 1 to 8 carbon atoms is preferable from the viewpoint of durability and storage stability. Among them, a methoxy group and an ethoxy group are more preferable.
The silane coupling agent (D) may have a reactive functional group and an organic functional group other than the silicon-bonded alkoxy group, such as an alkyl group or a phenyl group.
 シランカップリング剤(D)としては例えば、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルジメトキシメチルシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、メチルトリ(グリシジル)シラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等が挙げられる。なかでも、耐熱性の点からγ-グリシドキシプロピルトリメトキシシランが好ましい。
 シランカップリング剤(D)は1種を単独で用いてもよく、2種以上を併用してもよい。
Silane coupling agents (D) include, for example, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropyldimethoxymethylsilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxy propyltriethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, methyltri(glycidyl)silane, β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, β-( 3,4-epoxycyclohexyl)ethyltrimethoxysilane and the like. Among them, γ-glycidoxypropyltrimethoxysilane is preferable from the viewpoint of heat resistance.
Silane coupling agents (D) may be used alone or in combination of two or more.
 (カルボジイミド系化合物(E))
 第二の態様に係る粘着剤組成物は、アクリル系樹脂(A)、光開始剤(B)、架橋剤(C)およびシランカップリング剤(D)以外の化合物としてカルボジイミド系化合物(E)をさらに含有することが耐熱性の点から好ましい。
 カルボジイミド系化合物(E)としては、例えば、ビス(2,6-ジイソプロピルフェニル)カルボジイミド、ジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、ジメチルカルボジイミド、ジイソブチルカルボジイミド、ジオクチルカルボジイミド、tert-ブチルイソプロピルカルボジイミド、ジフェニルカルボジイミド、ジ-tert-ブチルカルボジイミド、ジドデシルカルボジイミド等のモノカルボジイミド、カルボジイミドが複数存在するポリカルボジイミドや環状カルボジイミド等が挙げられる。なかでも、耐熱性の点から、モノカルボジイミド系化合物が好ましく、ビス(2,6-ジイソプロピルフェニル)カルボジイミドがより好ましい。
 カルボジイミド系化合物(E)は1種を単独で用いてもよく、2種以上を併用してもよい。
(Carbodiimide compound (E))
The pressure-sensitive adhesive composition according to the second aspect contains a carbodiimide compound (E) as a compound other than the acrylic resin (A), the photoinitiator (B), the cross-linking agent (C) and the silane coupling agent (D). It is preferable to further contain from the viewpoint of heat resistance.
Carbodiimide compounds (E) include, for example, bis(2,6-diisopropylphenyl)carbodiimide, dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, tert-butylisopropylcarbodiimide, diphenylcarbodiimide, di-tert- Examples include monocarbodiimides such as butylcarbodiimide and didodecylcarbodiimide, polycarbodiimides containing multiple carbodiimides, and cyclic carbodiimides. Among them, from the viewpoint of heat resistance, monocarbodiimide compounds are preferable, and bis(2,6-diisopropylphenyl)carbodiimide is more preferable.
The carbodiimide compound (E) may be used alone or in combination of two or more.
 (任意成分)
 第二の態様に係る粘着剤組成物は、必要に応じて、その他の任意成分としての粘着剤を含有してもよい。第二の態様に係る粘着剤組成物は、架橋促進剤、帯電防止剤、粘着付与剤、機能性色素等の従来公知の添加剤を含有してもよい。
(Optional component)
The pressure-sensitive adhesive composition according to the second aspect may contain a pressure-sensitive adhesive as another optional component, if necessary. The pressure-sensitive adhesive composition according to the second aspect may contain conventionally known additives such as cross-linking accelerators, antistatic agents, tackifiers and functional dyes.
 (粘着剤組成物の組成)
 第二の態様において、アクリル系樹脂(A)の含有量は、粘着剤組成物全体に対して80重量%以上が好ましく、90~99.9重量%がより好ましく、92~99.9重量%がさらに好ましい。アクリル系樹脂(A)の含有量が前記数値範囲内であると、一次硬化後の低架橋状態において優れた粘着物性が得られやすい。
(Composition of adhesive composition)
In the second aspect, the content of the acrylic resin (A) is preferably 80% by weight or more, more preferably 90 to 99.9% by weight, and 92 to 99.9% by weight with respect to the entire pressure-sensitive adhesive composition. is more preferred. When the content of the acrylic resin (A) is within the above numerical range, excellent adhesive physical properties are likely to be obtained in a low crosslinked state after primary curing.
 第二の態様において、光開始剤(B)の含有量は、アクリル系樹脂(A)100重量部に対して0.1~5.0重量部が好ましく、0.5~4.0重量部がより好ましく、1.0~3.0重量部がさらに好ましい。光開始剤(B)の含有量が前記数値範囲内であると、完全硬化の際に十分な硬化性を得ることができる。 In the second aspect, the content of the photoinitiator (B) is preferably 0.1 to 5.0 parts by weight, preferably 0.5 to 4.0 parts by weight, relative to 100 parts by weight of the acrylic resin (A). is more preferred, and 1.0 to 3.0 parts by weight is even more preferred. When the content of the photoinitiator (B) is within the above numerical range, sufficient curability can be obtained upon complete curing.
 第二の態様において分子内水素引抜型光開始剤(b1)の含有量は、アクリル系樹脂(A)100重量部に対して0.1~5.0重量部が好ましく、0.5~3.0重量部がより好ましい。
 分子内水素引抜型光開始剤(b1)の含有量が多すぎると湿熱耐久後に変色しやすい傾向がある。分子内水素引抜型光開始剤(b1)の含有量が少なすぎると架橋度が上がらないことに起因して一次硬化時の粘着物性や、完全硬化後の耐久性が悪化する傾向がある。
In the second embodiment, the content of the intramolecular hydrogen abstraction type photoinitiator (b1) is preferably 0.1 to 5.0 parts by weight, preferably 0.5 to 3 parts by weight, relative to 100 parts by weight of the acrylic resin (A). 0 parts by weight is more preferred.
If the content of the intramolecular hydrogen abstraction type photoinitiator (b1) is too high, there is a tendency for discoloration to occur after wet heat durability. If the content of the intramolecular hydrogen abstraction type photoinitiator (b1) is too low, the degree of cross-linking will not increase, and the adhesive physical properties during primary curing and the durability after complete curing will tend to deteriorate.
 第二の態様において光開始剤(B)が分子間水素引抜型光開始剤(b2)を含有する場合、分子間水素引抜型光開始剤(b2)の含有量は、アクリル系樹脂(A)100重量部に対して0.1~3.0重量部が好ましく、0.5~2.0重量部がより好ましい。
 分子間水素引抜型光開始剤(b2)の含有量が多すぎるとブリードアウトにより耐久性が悪化する傾向がある。分子間水素引抜型光開始剤(b2)の含有量が少なすぎると架橋度が上がらないことに起因して一次硬化時の粘着物性や、完全硬化後の耐久性が悪化する傾向がある。
In the second aspect, when the photoinitiator (B) contains the intermolecular hydrogen abstraction photoinitiator (b2), the content of the intermolecular hydrogen abstraction photoinitiator (b2) is the acrylic resin (A) It is preferably 0.1 to 3.0 parts by weight, more preferably 0.5 to 2.0 parts by weight, per 100 parts by weight.
If the content of the intermolecular hydrogen abstraction type photoinitiator (b2) is too high, bleed out tends to deteriorate the durability. If the content of the intermolecular hydrogen abstraction type photoinitiator (b2) is too small, the degree of cross-linking does not increase, and the adhesive properties during primary curing and the durability after complete curing tend to deteriorate.
 第二の態様において光開始剤(B)が他の光開始剤(b3)を含有する場合、光開始剤(b3)の含有量は、アクリル系樹脂(A)100重量部に対して2.0重量部以下が好ましく、1.0重量部以下がより好ましい。 In the second embodiment, when the photoinitiator (B) contains another photoinitiator (b3), the content of the photoinitiator (b3) is 2.0 parts per 100 parts by weight of the acrylic resin (A). 0 weight part or less is preferable, and 1.0 weight part or less is more preferable.
 第二の態様において粘着剤組成物が架橋剤(C)を含有する場合、架橋剤(C)の含有量は、アクリル系樹脂(A)100重量部に対して、通常20重量部以下が好ましく、0.001~10重量部がより好ましく、0.1~7.5重量部がさらに好ましい。架橋剤(C)の含有量が多すぎると、粘着力が低下する傾向がある。架橋剤(C)の含有量が少なすぎると、耐久性が低下する傾向がある。 In the second aspect, when the pressure-sensitive adhesive composition contains the cross-linking agent (C), the content of the cross-linking agent (C) is usually preferably 20 parts by weight or less with respect to 100 parts by weight of the acrylic resin (A). , more preferably 0.001 to 10 parts by weight, more preferably 0.1 to 7.5 parts by weight. If the content of the cross-linking agent (C) is too large, the adhesive strength tends to decrease. If the content of the cross-linking agent (C) is too small, the durability tends to decrease.
 第二の態様において粘着剤組成物が活性エネルギー線架橋剤(c1)を含有する場合、活性エネルギー線架橋剤(c1)の含有量は、通常は、アクリル系樹脂(A)100重量部に対して0.01~20重量部が好ましく、0.1~10重量部がより好ましく、0.5~7.5重量部がさらに好ましい。
 活性エネルギー線架橋剤(c1)の含有量が少なすぎると、凝集力が不足するために充分な耐久性が得られない傾向がある。活性エネルギー線架橋剤(c1)の含有量が多すぎると一次硬化時における粘着物性が低下する傾向がある。
In the second aspect, when the pressure-sensitive adhesive composition contains the active energy ray cross-linking agent (c1), the content of the active energy ray cross-linking agent (c1) is usually based on 100 parts by weight of the acrylic resin (A) 0.01 to 20 parts by weight is preferable, 0.1 to 10 parts by weight is more preferable, and 0.5 to 7.5 parts by weight is even more preferable.
If the content of the active energy ray cross-linking agent (c1) is too small, there is a tendency that sufficient durability cannot be obtained due to insufficient cohesion. If the content of the active energy ray cross-linking agent (c1) is too large, the adhesive physical properties during the primary curing tend to deteriorate.
 第二の態様において粘着剤組成物が熱架橋剤(c2)を含有する場合、熱架橋剤(c2)の含有量は、通常は、アクリル系樹脂(A)100重量部に対して0.001~5重量部が好ましく、0.02~1重量部がより好ましく、0.05~0.5重量部がさらに好ましい。
 熱架橋剤(c2)の含有量が少なすぎると、凝集力が不足し、一次硬化時において粘着物性が低下する傾向がある。熱架橋剤(c2)の含有量が多すぎると完全硬化時において粘着力が低下する傾向がある。
When the pressure-sensitive adhesive composition contains the thermal cross-linking agent (c2) in the second aspect, the content of the thermal cross-linking agent (c2) is usually 0.001 per 100 parts by weight of the acrylic resin (A). ~5 parts by weight is preferred, 0.02 to 1 part by weight is more preferred, and 0.05 to 0.5 parts by weight is even more preferred.
If the content of the thermal cross-linking agent (c2) is too small, the cohesive force tends to be insufficient and the adhesive physical properties tend to deteriorate during the primary curing. If the content of the thermal cross-linking agent (c2) is too large, the adhesive strength tends to decrease at the time of complete curing.
 第二の態様において架橋剤(C)として、活性エネルギー線架橋剤(c1)および熱架橋剤(c2)を併用してもよい。併用する場合は、活性エネルギー線架橋剤(c1)と熱架橋剤(c2)の含有割合(c1/c2)は重量比で、100/1~100/50が好ましい。 In the second aspect, the active energy ray cross-linking agent (c1) and the thermal cross-linking agent (c2) may be used together as the cross-linking agent (C). When used in combination, the content ratio (c1/c2) of the active energy ray cross-linking agent (c1) and the thermal cross-linking agent (c2) is preferably 100/1 to 100/50 in weight ratio.
 第二の態様において粘着剤組成物がシランカップリング剤(D)を含有する場合、シランカップリング剤(D)の含有量は、アクリル系樹脂(A)100重量部に対して0.001~3重量部が好ましく、0.005~1重量部がより好ましく、0.01~0.5重量部がさらに好ましく、0.015~0.3重量部が特に好ましい。
 シランカップリング剤(D)の含有量が少なすぎると耐久性を向上させる効果が得られにくい傾向がある。シランカップリング剤(D)の含有量が多すぎるとブリードアウト等の影響で粘着力が低下する傾向がある。
In the second aspect, when the pressure-sensitive adhesive composition contains a silane coupling agent (D), the content of the silane coupling agent (D) is from 0.001 to 100 parts by weight of the acrylic resin (A). 3 parts by weight is preferred, 0.005 to 1 part by weight is more preferred, 0.01 to 0.5 parts by weight is even more preferred, and 0.015 to 0.3 parts by weight is particularly preferred.
If the content of the silane coupling agent (D) is too small, it tends to be difficult to obtain the effect of improving the durability. If the content of the silane coupling agent (D) is too large, the adhesive strength tends to decrease due to the influence of bleeding out and the like.
 第二の態様において粘着剤組成物がカルボジイミド系化合物(E)を含有する場合、カルボジイミド系化合物(E)の含有量は、アクリル系樹脂(A)100重量部に対して0.01~10重量部が好ましく、0.1~5重量部がより好ましく、0.2~2重量部がさらに好ましく、0.3~1重量部が特に好ましい。
 カルボジイミド系化合物(E)の含有量が少なすぎるとアクリル系樹脂(A)の熱安定性が低下する傾向がある。カルボジイミド系化合物(E)の含有量が多すぎるとブリードアウト等の影響で耐久性が低下する傾向がある。
In the second aspect, when the pressure-sensitive adhesive composition contains the carbodiimide compound (E), the content of the carbodiimide compound (E) is 0.01 to 10 parts by weight with respect to 100 parts by weight of the acrylic resin (A). part is preferred, 0.1 to 5 parts by weight is more preferred, 0.2 to 2 parts by weight is even more preferred, and 0.3 to 1 part by weight is particularly preferred.
If the content of the carbodiimide compound (E) is too small, the thermal stability of the acrylic resin (A) tends to decrease. If the content of the carbodiimide-based compound (E) is too high, there is a tendency for durability to decrease due to the effects of bleeding out and the like.
 第二の態様において粘着剤組成物が他の粘着剤や添加剤を含有する場合、他の粘着剤や添加剤の含有量は、アクリル系樹脂(A)100重量部に対して10重量部以下が好ましく、5重量部以下がより好ましい。 In the second aspect, when the adhesive composition contains other adhesives and additives, the content of the other adhesives and additives is 10 parts by weight or less with respect to 100 parts by weight of the acrylic resin (A). is preferred, and 5 parts by weight or less is more preferred.
 (粘着剤組成物の調製)
 アクリル系樹脂(A)、光開始剤(B)、必要に応じて、架橋剤(C)、シランカップリング剤(D)、カルボジイミド系化合物(E)、その他の任意成分を混合することにより第二の態様に係る粘着剤組成物を得ることができる。
 混合方法は特に限定されるものではなく、各成分を一括で混合する方法、任意の成分を混合した後、残りの成分を一括または順次混合する方法等、種々の方法を採用することができる。
(Preparation of adhesive composition)
Acrylic resin (A), photoinitiator (B), if necessary, cross-linking agent (C), silane coupling agent (D), carbodiimide compound (E), by mixing other optional components A pressure-sensitive adhesive composition according to the second aspect can be obtained.
The mixing method is not particularly limited, and various methods such as a method of mixing each component at once, a method of mixing an arbitrary component and then mixing the remaining components all at once or sequentially can be adopted.
 (用途)
 第二の態様に係る粘着剤組成物は、複数の段階で硬化する多段硬化性粘着シートの粘着剤に好適に用いることができる。第二の態様の粘着剤組成物によれば、一次硬化後の低架橋状態においても優れた粘着物性が得られる。さらに完全硬化後には、通常の粘着力等の粘着物性のみならず、偏光板やガラス等様々な種類、形状の部材を貼合した際において優れた耐久性が発現する。
(Application)
The pressure-sensitive adhesive composition according to the second aspect can be suitably used as a pressure-sensitive adhesive for a multi-stage curing pressure-sensitive adhesive sheet that cures in a plurality of stages. According to the pressure-sensitive adhesive composition of the second aspect, excellent pressure-sensitive adhesive physical properties can be obtained even in a low crosslinked state after primary curing. Furthermore, after complete curing, not only adhesive physical properties such as ordinary adhesive strength but also excellent durability is exhibited when members of various types and shapes such as polarizing plates and glass are bonded together.
 第二の態様に係る粘着剤組成物は、一次硬化後の低架橋状態においてもタック性が低く、定荷重保持力が高いといった粘着物性に優れるため、作業性や信頼性が向上する。そのため、特にタッチパネルおよび画像表示装置等に用いられる粘着剤や粘着シートの用途に好適に適用できる。 The pressure-sensitive adhesive composition according to the second aspect has low tackiness even in a low cross-linking state after primary curing, and has excellent adhesive physical properties such as high constant load holding power, thereby improving workability and reliability. Therefore, it is particularly suitable for use as an adhesive or an adhesive sheet for use in touch panels, image display devices, and the like.
<粘着剤>
 第二の態様に係る粘着剤は、上述した第二の態様に係る粘着剤組成物が架橋されてなるものである。第二の態様に係る粘着剤組成物が架橋(硬化)することにより、粘着剤組成物中に含有されるアクリル系樹脂(A)が分子内および分子間の少なくとも一方で架橋構造を形成する。その結果、第二の態様に係る粘着剤組成物が架橋されて第二の態様に係る粘着剤となる。
 アクリル系樹脂(A)が活性エネルギー線架橋性構造部位を有する場合は活性エネルギー線の照射により、架橋構造を形成できる。
<Adhesive>
The pressure-sensitive adhesive according to the second aspect is obtained by cross-linking the pressure-sensitive adhesive composition according to the second aspect described above. By cross-linking (curing) the pressure-sensitive adhesive composition according to the second aspect, the acrylic resin (A) contained in the pressure-sensitive adhesive composition forms a cross-linked structure at least either intramolecularly or intermolecularly. As a result, the pressure-sensitive adhesive composition according to the second aspect is crosslinked to become the pressure-sensitive adhesive according to the second aspect.
When the acrylic resin (A) has an active energy ray crosslinkable structural site, a crosslinked structure can be formed by irradiation with an active energy ray.
 第二の態様に係る粘着剤は、複数の段階で硬化させることができる多段硬化性を示す。第二の態様に係る粘着剤は、完全硬化前の一次硬化により低架橋状態となる。完全硬化と一次硬化は、必ずしも明確に区別できるものではないが、例えば、ゲル分率や動的粘弾性の相違により区別され得る。 The pressure-sensitive adhesive according to the second aspect exhibits multistage curability that allows curing in multiple stages. The pressure-sensitive adhesive according to the second aspect becomes in a low crosslinked state by primary curing before complete curing. Complete curing and primary curing are not always clearly distinguishable, but can be distinguished, for example, by differences in gel fraction and dynamic viscoelasticity.
 一次硬化工程および完全硬化工程のいずれの工程においても硬化手段は特に限定されず、加熱や活性エネルギー線の照射のいずれでもよい。また一次硬化工程を複数回に分けて行ってもよく、また完全硬化状態とするために多段硬化を行ってもよい。
 第二の態様に係る粘着剤は、一次硬化後の粘着物性に優れるため、タッチパネルや画像表示装置等を構成する光学部材の貼り合せに好適に用いられる。
Curing means is not particularly limited in either the primary curing step or the complete curing step, and heating or irradiation with active energy rays may be used. Further, the primary curing step may be divided into a plurality of times, or multistage curing may be performed to achieve a completely cured state.
Since the pressure-sensitive adhesive according to the second aspect is excellent in adhesive properties after primary curing, it is suitably used for bonding optical members constituting touch panels, image display devices, and the like.
 第二の態様に係る粘着剤は、第二の態様に係るアクリル系樹脂(A)の架橋物を少なくとも含有するとも言える。架橋物は、アクリル系樹脂(A)の少なくとも一部が部分的に架橋した部分架橋物であってもよく、アクリル系樹脂(A)の全てが全体的に架橋した完全架橋物であってもよい。また、第二の態様に係る粘着剤は、アクリル系樹脂(A)の部分架橋物および完全架橋物の両方を含有してもよい。 It can also be said that the adhesive according to the second aspect contains at least the crosslinked product of the acrylic resin (A) according to the second aspect. The crosslinked product may be a partially crosslinked product in which at least part of the acrylic resin (A) is partially crosslinked, or a completely crosslinked product in which the acrylic resin (A) is entirely crosslinked. good. Moreover, the adhesive according to the second aspect may contain both a partially crosslinked product and a completely crosslinked product of the acrylic resin (A).
<粘着シート>
 第二の態様に係る粘着シートは、第二の態様に係る粘着剤からなる粘着剤層を有する。第二の態様に係る粘着シートは、粘着剤層が複数の段階で硬化する多段硬化性を示し得る。
<Adhesive sheet>
The pressure-sensitive adhesive sheet according to the second aspect has a pressure-sensitive adhesive layer made of the pressure-sensitive adhesive according to the second aspect. The pressure-sensitive adhesive sheet according to the second aspect can exhibit multistage curability in which the pressure-sensitive adhesive layer is cured in a plurality of stages.
 第二の態様に係る粘着剤からなる粘着剤層を基材シート上に設けることにより粘着シートとすることができる。また、粘着剤層を離型シート上に設けることにより両面粘着シートとすることができる。
 さらに、基材シートに替えて離型シート上に粘着剤層を形成し、反対側の粘着剤層面に離型シートを貼り合わせることにより、基材レスの両面粘着シートを作製することもできる。形成された粘着剤層上に、粘着剤層をさらに形成して、厚膜の粘着剤層をさらに形成してもよい。
 得られた粘着シートや両面粘着シートは、使用時には離型シートを粘着剤層から剥離して使用に供される。
A pressure-sensitive adhesive sheet can be obtained by providing a pressure-sensitive adhesive layer made of the pressure-sensitive adhesive according to the second aspect on a base sheet. Also, a double-sided pressure-sensitive adhesive sheet can be obtained by providing a pressure-sensitive adhesive layer on a release sheet.
Furthermore, a substrate-less double-faced PSA sheet can be produced by forming a PSA layer on a release sheet in place of the base sheet, and laminating the release sheet on the opposite side of the PSA layer. A thick pressure-sensitive adhesive layer may be further formed by further forming a pressure-sensitive adhesive layer on the formed pressure-sensitive adhesive layer.
The pressure-sensitive adhesive sheet and double-sided pressure-sensitive adhesive sheet thus obtained are used by peeling off the release sheet from the pressure-sensitive adhesive layer.
 第二の態様に係る粘着シートの作製方法として、例えば、以下の(i)、(ii)等の方法が挙げられる。
(i)第二の態様に係る粘着剤組成物を溶媒に溶解した塗工液を塗工した後に粘着シートとする方法。
(ii)第二の態様に係る粘着剤組成物を加熱により溶融した後に粘着シートとする方法。
Examples of the method for producing the pressure-sensitive adhesive sheet according to the second aspect include the following methods (i) and (ii).
(i) A method of forming a pressure-sensitive adhesive sheet after applying a coating liquid in which the pressure-sensitive adhesive composition according to the second aspect is dissolved in a solvent.
(ii) A method of forming an adhesive sheet after melting the adhesive composition according to the second aspect by heating.
 (i)の方法について説明する。
 第二の態様に係る粘着剤組成物を溶媒に溶解した塗工液を塗工した後に粘着シートとする際には、適当な有機溶剤により第二の態様に係る粘着剤組成物を含有する塗工液の濃度を調整し、基材シート上に直接塗工する。その後、例えば80~105℃、0.5~10分間加熱処理等により乾燥させ、これを基材シートまたは離型シートに貼付する。その後、活性エネルギー線照射またはエージングすることによって粘着剤組成物を架橋(硬化)させ、粘着剤からなる粘着剤層を有する粘着シートを作製できる。
The method (i) will be explained.
When a pressure-sensitive adhesive sheet is formed after applying a coating liquid in which the pressure-sensitive adhesive composition according to the second aspect is dissolved in a solvent, the coating containing the pressure-sensitive adhesive composition according to the second aspect is coated with an appropriate organic solvent. Adjust the concentration of the working liquid and apply it directly onto the substrate sheet. After that, it is dried by heat treatment or the like at 80 to 105° C. for 0.5 to 10 minutes, and then attached to a base sheet or a release sheet. After that, the adhesive composition is crosslinked (cured) by irradiation with active energy rays or aged, and a pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer can be produced.
 濃度調整に用いられる有機溶剤としては、アクリル系樹脂(A)の重合反応に用いられる有機溶媒として挙げられたものを使用することができる。粘着剤組成物の濃度は、固形分として通常、20~60重量%であり、好ましくは30~50重量%である。 As the organic solvent used for adjusting the concentration, those listed as the organic solvent used for the polymerization reaction of the acrylic resin (A) can be used. The concentration of the pressure-sensitive adhesive composition is usually 20-60% by weight, preferably 30-50% by weight, as a solid content.
 (ii)の方法について説明する。
 第二の態様に係る粘着剤組成物を加熱により溶融した後に粘着シートとする場合、溶融した状態で基材シートの片面または両面に塗工し、その後に冷却する方法や、Tダイ等により基材シート上に押出しラミネートする方法等によって、基材シート上の片面または両面に所望の厚みとなるように粘着剤層を形成する。次いで、必要に応じて粘着剤層面に離型シートを貼り合わせることにより粘着シートを作製することができる。
The method (ii) will be described.
When the pressure-sensitive adhesive composition according to the second aspect is melted by heating to form a pressure-sensitive adhesive sheet, the melted state is coated on one or both sides of the base sheet, and then the base sheet is cooled, or by a T-die or the like. A pressure-sensitive adhesive layer is formed on one side or both sides of the substrate sheet to a desired thickness by a method such as extrusion lamination on the material sheet. Then, a pressure-sensitive adhesive sheet can be produced by bonding a release sheet to the surface of the pressure-sensitive adhesive layer, if necessary.
 また、基材シート上に粘着剤層を形成した後、必要に応じて活性エネルギー線照射処理を行ない、さらにエージングすることで粘着剤組成物が硬化(架橋)してなる粘着剤層を有する粘着シートを作製することができる。
 さらに、離型シート上に粘着剤層を形成し、反対側の粘着剤層面に離型シートを貼り合わせることにより、基材レスの両面粘着シートを作製することもできる。
 得られた粘着シートや両面粘着シートは、使用時には離型シートを粘着剤層から剥離して使用に供される。
In addition, after forming the adhesive layer on the base sheet, if necessary, the active energy ray irradiation treatment is performed, and the adhesive composition having the adhesive layer is cured (crosslinked) by aging. Sheets can be made.
Further, a substrate-less double-sided PSA sheet can be produced by forming a PSA layer on a release sheet and laminating the release sheet on the opposite side of the PSA layer.
The pressure-sensitive adhesive sheet and double-sided pressure-sensitive adhesive sheet thus obtained are used by peeling off the release sheet from the pressure-sensitive adhesive layer.
 基材シートとしては、例えば、ポリエチレンナフタート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンテレフタレート/イソフタレート共重合体等のポリエステル系樹脂;ポリエチレン、ポリプロピレン、ポリメチルペンテン等のポリオレフィン系樹脂;ポリフッ化ビニル、ポリフッ化ビニリデン、ポリフッ化エチレン等のポリフッ化エチレン樹脂;ナイロン6、ナイロン6,6等のポリアミド;ポリ塩化ビニル、ポリ塩化ビニル/酢酸ビニル共重合体、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、ポリビニルアルコール、ビニロン等のビニル重合体;三酢酸セルロース、セロファン等のセルロース系樹脂;ポリメタクリル酸メチル、ポリメタクリル酸エチル、ポリアクリル酸エチル、ポリアクリル酸ブチル等のアクリル系樹脂;ポリスチレン;ポリカーボネート;ポリアリレート;ポリイミド等の合成樹脂シート、
 アルミニウム、銅、鉄等の金属箔、
 上質紙、グラシン紙等の紙、
 硝子繊維、天然繊維、合成繊維等からなる織物や不織布が挙げられる。これらの基材シートは、単層体としてまたは2種以上が積層された複層体として用いることができる。これらのなかでも軽量化等の点から、合成樹脂シートが好ましい。
Examples of the base sheet include polyester resins such as polyethylene naphtate, polyethylene terephthalate, polybutylene terephthalate, and polyethylene terephthalate/isophthalate copolymer; polyolefin resins such as polyethylene, polypropylene, and polymethylpentene; polyvinyl fluoride; Polyethylene fluoride resins such as polyvinylidene fluoride and polyethylene fluoride; polyamides such as nylon 6 and nylon 6,6; polyvinyl chloride, polyvinyl chloride/vinyl acetate copolymer, ethylene-vinyl acetate copolymer, ethylene-vinyl Vinyl polymers such as alcohol copolymers, polyvinyl alcohol and vinylon; Cellulose resins such as cellulose triacetate and cellophane; Acrylic resins such as polymethyl methacrylate, polyethyl methacrylate, polyethyl acrylate and polybutyl acrylate. Polystyrene; Polycarbonate; Polyarylate; Synthetic resin sheet such as polyimide,
Metal foil such as aluminum, copper, iron, etc.
High-quality paper, glassine paper, etc.
Textiles and non-woven fabrics made of glass fiber, natural fiber, synthetic fiber and the like can be mentioned. These base sheets can be used as a single-layer body or as a multi-layer body in which two or more types are laminated. Among these, a synthetic resin sheet is preferable from the viewpoint of weight reduction.
 離型シートとしては、例えば、基材シートで例示した各種の合成樹脂シート、紙、織物、不織布等に離型処理したものを使用することができる。離型シートとしては、例えば、シリコン系の離型シートを用いることが好ましい。 As the release sheet, for example, various synthetic resin sheets exemplified in the base sheet, paper, woven fabric, non-woven fabric, etc. that have been subjected to release treatment can be used. As the release sheet, it is preferable to use, for example, a silicon-based release sheet.
 粘着剤組成物の塗工方法は特に限定されない。例えば、ロールコーティング、ダイコーティング、グラビアコーティング、コンマコーティング、スロットコーティング、スクリーン印刷等の方法が挙げられる。 The method of applying the adhesive composition is not particularly limited. For example, methods such as roll coating, die coating, gravure coating, comma coating, slot coating and screen printing can be used.
 活性エネルギー線としては、遠紫外線、紫外線、近紫外線、赤外線等の光線;X線、γ線等の電磁波の他;電子線;プロトン線;中性子線等が利用できる。硬化速度、照射装置の入手のしやすさ、価格等から紫外線による硬化が好ましい。 As active energy rays, rays such as far-ultraviolet rays, ultraviolet rays, near-ultraviolet rays, and infrared rays; electromagnetic waves such as X-rays and γ-rays; electron beams; proton beams; Curing with UV light is preferred in terms of curing speed, availability of irradiation equipment, price, and the like.
 粘着シートの粘着剤層の完全硬化前のゲル分率については、被着体の形状に依らず、容易に貼り合わせることが可能な点と、貼り合わせた後に粘着層が被着体を保持できる点から、0.1~60重量%が好ましく、より好ましくは1~50重量%、特に好ましくは5~45重量%である。 Regarding the gel fraction of the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet before complete curing, it is possible to easily bond the adherend regardless of the shape of the adherend, and the pressure-sensitive adhesive layer can hold the adherend after bonding. From the point of view, it is preferably 0.1 to 60% by weight, more preferably 1 to 50% by weight, particularly preferably 5 to 45% by weight.
 粘着シートの粘着剤層の完全硬化後のゲル分率については、耐久性能と粘着力の点から、50~95重量%であることが好ましく、より好ましくは55~90重量%、特に好ましくは60~85重量%である。ゲル分率が低すぎると凝集力が低下することにより耐久性が低下する傾向がある。ゲル分率が高すぎると凝集力の上昇により粘着力が低下する傾向がある。 The gel fraction after complete curing of the adhesive layer of the adhesive sheet is preferably 50 to 95% by weight, more preferably 55 to 90% by weight, and particularly preferably 60% by weight, from the viewpoint of durability and adhesive strength. ~85% by weight. If the gel fraction is too low, cohesive strength tends to decrease, resulting in a decrease in durability. If the gel fraction is too high, there is a tendency for cohesive strength to increase and adhesive strength to decrease.
 ゲル分率は、例えば、以下の手法で適宜調整できる。
・活性エネルギー線照射量を調整すること。
・アクリル系樹脂(A)中の活性エネルギー線架橋性構造部位の含有量を調整すること。
・光開始剤(B)、架橋剤(C)の種類や量を調整すること。
The gel fraction can be appropriately adjusted, for example, by the following method.
・Adjust the amount of active energy ray irradiation.
- Adjust the content of the active energy ray-crosslinkable structural site in the acrylic resin (A).
- Adjust the types and amounts of the photoinitiator (B) and the cross-linking agent (C).
 ゲル分率は、架橋度(硬化度合い)の目安となるもので、例えば、以下の方法にて算出される。すなわち、基材となる高分子シート(例えば、ポリエチレンテレフタレート(PET)フィルム等)に粘着剤層が形成されてなる粘着シート(離型シートを設けていないもの)を200メッシュのSUS製金網で包み、23℃に保持したトルエン中に24時間浸漬したとき、金網中に残存した不溶解の粘着剤成分の重量百分率をゲル分率とする。ただし、トルエン溶解の前後における重量から基材の重量は差し引いて算出する。 The gel fraction is a measure of the degree of cross-linking (degree of curing), and is calculated, for example, by the following method. That is, an adhesive sheet (without a release sheet) in which an adhesive layer is formed on a polymer sheet (for example, polyethylene terephthalate (PET) film, etc.) serving as a base material is wrapped with a 200-mesh SUS wire mesh. , and the weight percentage of the undissolved pressure-sensitive adhesive component remaining in the wire mesh after being immersed in toluene maintained at 23°C for 24 hours is defined as the gel fraction. However, it is calculated by subtracting the weight of the substrate from the weight before and after the toluene dissolution.
 粘着シートの粘着剤層の厚みは、通常、50~3000μmが好ましく、より好ましくは75~1000μm、特に好ましくは100~350μmである。粘着剤層の厚みが薄すぎると衝撃吸収性が低下する傾向がある。粘着剤層の厚みが厚すぎると、例えば光学部材に貼り付けた際に全体の厚みが増して実用性が低下する傾向がある。 The thickness of the adhesive layer of the adhesive sheet is usually preferably 50-3000 μm, more preferably 75-1000 μm, and particularly preferably 100-350 μm. If the thickness of the pressure-sensitive adhesive layer is too thin, there is a tendency for the impact absorption to decrease. If the thickness of the pressure-sensitive adhesive layer is too thick, for example, when the adhesive layer is attached to an optical member, the overall thickness tends to increase, resulting in a decrease in practicality.
 粘着剤層の厚みは、ミツトヨ社製「ID-C112B」を用いて、粘着剤層含有積層体全体の厚みの測定値から、粘着剤層以外の構成部材の厚みの測定値を差し引くことにより求めた値である。 The thickness of the adhesive layer is obtained by subtracting the measured thickness of the constituent members other than the adhesive layer from the measured thickness of the entire laminate containing the adhesive layer using Mitutoyo's "ID-C112B". value.
 第二の態様に係る粘着シートの粘着剤層は、粘着剤層の厚みが100μmの場合のヘイズ値が2%以下であることが好ましく、より好ましくは0~1.5%、特に好ましくは0~1%である。ヘイズ値が高すぎると粘着剤層が白化して透明性が低下する傾向がある。
 ヘイズ値は、拡散透過率および全光線透過率を、HAZE MATER NDH4000(日本電色工業社製)を用いて測定し、得られた拡散透過率(DT)と全光線透過率(TT)の値を下記[式1]に代入して算出した。本機はJIS K7361-1に準拠している。
 ヘイズ値(%)=(DT/TT)×100 ・・・[式1]
The pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet according to the second aspect preferably has a haze value of 2% or less, more preferably 0 to 1.5%, particularly preferably 0 when the thickness of the pressure-sensitive adhesive layer is 100 μm. ~1%. If the haze value is too high, the pressure-sensitive adhesive layer tends to whiten and the transparency tends to decrease.
The haze value is obtained by measuring diffuse transmittance and total light transmittance using HAZE MATER NDH4000 (manufactured by Nippon Denshoku Industries Co., Ltd.), and obtained diffuse transmittance (DT) and total light transmittance (TT) values. was substituted into the following [Equation 1] for calculation. This machine complies with JIS K7361-1.
Haze value (%) = (DT/TT) x 100 [Formula 1]
 第二の態様においては、粘着剤層を光学部材上に積層形成することにより、粘着剤層付き光学部材を得ることができる。例えば、離型シート上に粘着剤層が形成された第二の態様に係る粘着シートの粘着剤層面を光学部材に貼り付けた後、離型シートを剥離することによって、粘着剤層付き光学部材を得ることができる。また、上記の両面粘着シートを用いて光学部材同士を貼合することもできる。 In the second aspect, an optical member with a pressure-sensitive adhesive layer can be obtained by laminating the pressure-sensitive adhesive layer on the optical member. For example, after the adhesive layer surface of the adhesive sheet according to the second embodiment in which the adhesive layer is formed on the release sheet is attached to the optical member, the release sheet is peeled off to obtain the optical member with the adhesive layer. can be obtained. Optical members can also be bonded together using the above double-sided pressure-sensitive adhesive sheet.
 光学部材としては、タッチパネルや画像表示装置を構成する部材が挙げられる。例えば、ディスプレイ(有機EL、液晶)、透明電導膜基板(ITO基板)、保護フィルム(ガラス)、透明アンテナ(フィルム)、透明配線等が挙げられる。 Examples of optical members include members that make up touch panels and image display devices. Examples include displays (organic EL, liquid crystal), transparent conductive film substrates (ITO substrates), protective films (glass), transparent antennas (films), transparent wiring, and the like.
 以上説明した第二の態様の好ましい実施形態には以下の[B1]~[B8]が含まれるが、限定するものではない。
 [B1]アクリル系樹脂(A)と、光開始剤(B)とを含有し、前記アクリル系樹脂(A)は、下記の共重合成分(a)の重合生成物であり、前記アクリル系樹脂(A)の動的粘弾性に基づくガラス転移温度が、-10℃以上であり、光開始剤(B)が、分子内水素引抜型光開始剤(b1)を含有する、粘着剤組成物。
 前記共重合成分(a)は、炭素数が12以下のアルキル基を有し、かつ、ホモポリマーのガラス転移温度が-20~120℃となるアルキル(メタ)アクリレート(a1)と、アルキル鎖と水酸基とエチレン性不飽和基とを含有するヒドロキシアルキルモノマー(a2)と、を少なくとも含有し、前記アルキル(メタ)アクリレート(a1)の含有量が、前記共重合成分(a)100重量%に対して30重量%以上であり、前記ヒドロキシアルキルモノマー(a2)の含有量が、前記共重合成分(a)100重量%に対して0.1重量%以上であり、共重合成分(a)中の前記ヒドロキシアルキルモノマー(a2)のアルキル鎖の平均炭素数が、2.1以上である。
 [B2]前記光開始剤(B)が、分子間水素引抜型光開始剤(b2)をさらに含有する、[B1]に記載の粘着剤組成物。
 [B3]架橋剤(C)をさらに含有する、[B1]または[B2]に記載の粘着剤組成物。
 [B4]前記アクリル系樹脂(A)の重量平均分子量が、50,000~500,000である、[B1]~[B3]のいずれか一項に記載の粘着剤組成物。
 [B5][B1]~[B4]のいずれか一項に記載の粘着剤組成物が架橋されてなる、粘着剤。
 [B6]架橋が活性エネルギー線の照射により行なわれる、[B5]に記載の粘着剤。
 [B7][B5]または[B6]に記載の粘着剤からなる粘着剤層を有する、粘着シート。
 [B8]前記粘着剤層が、複数の段階で硬化する多段硬化性である、[B7]に記載の粘着シート。
Preferred embodiments of the second aspect described above include, but are not limited to, the following [B1] to [B8].
[B1] contains an acrylic resin (A) and a photoinitiator (B), the acrylic resin (A) is a polymerization product of the following copolymerization component (a), and the acrylic resin A pressure-sensitive adhesive composition, wherein (A) has a glass transition temperature based on dynamic viscoelasticity of −10° C. or higher, and the photoinitiator (B) contains an intramolecular hydrogen abstraction type photoinitiator (b1).
The copolymer component (a) includes an alkyl (meth)acrylate (a1) having an alkyl group having 12 or less carbon atoms and having a homopolymer glass transition temperature of −20 to 120° C., and an alkyl chain. At least a hydroxyalkyl monomer (a2) containing a hydroxyl group and an ethylenically unsaturated group is contained, and the content of the alkyl (meth)acrylate (a1) is based on 100% by weight of the copolymerization component (a) is 30% by weight or more, the content of the hydroxyalkyl monomer (a2) is 0.1% by weight or more with respect to 100% by weight of the copolymerization component (a), and the content of the copolymerization component (a) is The average carbon number of the alkyl chain of the hydroxyalkyl monomer (a2) is 2.1 or more.
[B2] The pressure-sensitive adhesive composition according to [B1], wherein the photoinitiator (B) further contains an intermolecular hydrogen abstraction type photoinitiator (b2).
[B3] The pressure-sensitive adhesive composition according to [B1] or [B2], further containing a cross-linking agent (C).
[B4] The adhesive composition according to any one of [B1] to [B3], wherein the acrylic resin (A) has a weight average molecular weight of 50,000 to 500,000.
[B5] A pressure-sensitive adhesive obtained by cross-linking the pressure-sensitive adhesive composition according to any one of [B1] to [B4].
[B6] The pressure-sensitive adhesive according to [B5], wherein the cross-linking is performed by irradiation with an active energy ray.
[B7] A pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer comprising the pressure-sensitive adhesive according to [B5] or [B6].
[B8] The pressure-sensitive adhesive sheet according to [B7], wherein the pressure-sensitive adhesive layer is multi-stage curing in which it is cured in a plurality of stages.
[第三の態様]
 以下、本発明の第三の態様の実施形態について詳細に説明するが、これらは望ましい実施態様の代表例として開示するものである。
[Third aspect]
Embodiments of the third aspect of the present invention are described in detail below, but are disclosed as representative examples of preferred embodiments.
<粘着剤組成物>
 第三の態様に係る粘着剤組成物は、アクリル系樹脂(A)と光開始剤(B)とを含有する。第三の態様に係る粘着剤組成物は、アクリル系樹脂(A)、光開始剤(B)に加えて、架橋剤(C)、シランカップリング剤(D)、カルボジイミド系化合物(E)、その他の任意成分をさらに含有してもよい。以下、各成分について順に説明する。
<Adhesive composition>
The pressure-sensitive adhesive composition according to the third aspect contains an acrylic resin (A) and a photoinitiator (B). The pressure-sensitive adhesive composition according to the third aspect comprises an acrylic resin (A), a photoinitiator (B), a cross-linking agent (C), a silane coupling agent (D), a carbodiimide compound (E), It may further contain other optional components. Hereinafter, each component will be described in order.
 (アクリル系樹脂(A))
 第三の態様に係るアクリル系樹脂(A)は、ホモポリマーのガラス転移温度が-30℃以上である分岐アルキル(メタ)アクリレート(a1)を含有する共重合成分(a)の重合生成物である。共重合成分(a)は、重合性二重結合を有するモノマー成分の総称である。共重合成分(a)には、重合開始剤、重合溶媒を含めないものとする。
(Acrylic resin (A))
The acrylic resin (A) according to the third aspect is a polymerization product of a copolymer component (a) containing a branched alkyl (meth)acrylate (a1) whose homopolymer has a glass transition temperature of −30° C. or higher. be. Copolymer component (a) is a general term for monomer components having a polymerizable double bond. The copolymerization component (a) does not contain a polymerization initiator and a polymerization solvent.
 第三の態様に係る共重合成分(a)は、分岐アルキル(メタ)アクリレート(a1)に加えて、水酸基含有(メタ)アクリレート(a2)、活性エネルギー線架橋性構造部位を含有する(メタ)アクリル酸エステルモノマー(a3)およびエチレン性不飽和モノマー(a4)からなる群から選ばれる少なくとも1種以上を必要に応じてさらに含有してもよい。 The copolymerization component (a) according to the third aspect includes, in addition to the branched alkyl (meth)acrylate (a1), a hydroxyl group-containing (meth)acrylate (a2) and an active energy ray-crosslinkable structural site (meth) At least one selected from the group consisting of acrylic acid ester monomers (a3) and ethylenically unsaturated monomers (a4) may be further contained as necessary.
 〔分岐アルキル(メタ)アクリレート(a1)〕
 第三の態様に係る分岐アルキル(メタ)アクリレート(a1)は、分岐鎖を有するアルキル基を有する(メタ)アクリレートである。
 分岐アルキル(メタ)アクリレート(a1)の分岐鎖を有するアルキル基の炭素数は特に限定されない。例えば、30以下が好ましく、20以下がより好ましく、3~10がさらに好ましい。通常分岐を形成するために必要な炭素数の下限は3である。
[Branched alkyl (meth)acrylate (a1)]
The branched alkyl (meth)acrylate (a1) according to the third aspect is a (meth)acrylate having a branched alkyl group.
The number of carbon atoms in the branched alkyl group of the branched alkyl (meth)acrylate (a1) is not particularly limited. For example, 30 or less is preferable, 20 or less is more preferable, and 3 to 10 is even more preferable. The lower limit on the number of carbon atoms required to form a normal branch is 3.
 第三の態様に係る分岐アルキル(メタ)アクリレート(a1)は、そのホモポリマーのガラス転移温度(以下「Tg」と記す。)が-30℃以上となるモノマーである。
 第三の態様に係る分岐アルキル(メタ)アクリレート(a1)のホモポリマーのTgは、好ましくは-30~150℃、より好ましくは、-20℃~140℃、さらに好ましくは-15~130℃であり、特に好ましくは-10~100℃である。分岐アルキル(メタ)アクリレート(a1)のホモポリマーのTgが前記数値範囲内であるため、応力が強くかかる複雑形状の被着体に対して貼り合わせる際にも密着性に優れる粘着シートが得られる。
The branched alkyl (meth)acrylate (a1) according to the third aspect is a monomer whose homopolymer has a glass transition temperature (hereinafter referred to as “Tg”) of −30° C. or higher.
The Tg of the homopolymer of the branched alkyl (meth)acrylate (a1) according to the third aspect is preferably -30 to 150°C, more preferably -20 to 140°C, still more preferably -15 to 130°C. and particularly preferably -10 to 100°C. Since the Tg of the homopolymer of the branched alkyl (meth)acrylate (a1) is within the above numerical range, it is possible to obtain a pressure-sensitive adhesive sheet with excellent adhesion even when it is attached to an adherend having a complex shape that is subjected to strong stress. .
 第三の態様に係る分岐アルキル(メタ)アクリレート(a1)のホモポリマーは、分岐アルキル(メタ)アクリレート(a1)の単独重合体である。分岐アルキル(メタ)アクリレート(a1)のホモポリマーのTgとしては、Wiley出版「POLYMER HANDBOOK」等に記載されている標準的な分析値を採用できる。 The homopolymer of the branched alkyl (meth)acrylate (a1) according to the third aspect is a homopolymer of the branched alkyl (meth)acrylate (a1). As the Tg of the homopolymer of the branched alkyl (meth)acrylate (a1), a standard analytical value described in "Polymer Handbook" published by Wiley can be used.
 第三の態様に係る分岐アルキル(メタ)アクリレート(a1)としては、例えば、2-エチルヘキシルメタクリレート(Tg:-10℃)、イソブチルメタクリレート(Tg:48℃)、tert-ブチルメタクリレート(Tg:107℃)等が挙げられる。なかでも粘着物性の点から2-エチルヘキシルメタクリレート、イソブチルメタクリレートが好ましい。
 分岐アルキル(メタ)アクリレート(a1)は1種を単独で用いてもよく、2種以上を併用してもよい。
Examples of the branched alkyl (meth)acrylate (a1) according to the third aspect include 2-ethylhexyl methacrylate (Tg: -10°C), isobutyl methacrylate (Tg: 48°C), tert-butyl methacrylate (Tg: 107°C ) and the like. Among them, 2-ethylhexyl methacrylate and isobutyl methacrylate are preferable from the viewpoint of adhesive properties.
Branched alkyl (meth)acrylates (a1) may be used alone or in combination of two or more.
 〔水酸基含有(メタ)アクリレート(a2)〕
 第三の態様に係る水酸基含有(メタ)アクリレート(a2)は、水酸基を有する(メタ)アクリレートである(ただし、分岐アルキル(メタ)アクリレート(a1)を除く。)。
 アクリル系樹脂(A)を構成する重合成分が水酸基含有(メタ)アクリレート(a2)を含有することにより、アクリル系樹脂(A)に極性基含有モノマー由来の構造部位が導入される。
[Hydroxyl group-containing (meth)acrylate (a2)]
The hydroxyl group-containing (meth)acrylate (a2) according to the third aspect is a (meth)acrylate having a hydroxyl group (excluding branched alkyl (meth)acrylates (a1)).
By including the hydroxyl group-containing (meth)acrylate (a2) in the polymerizable component constituting the acrylic resin (A), a structural site derived from the polar group-containing monomer is introduced into the acrylic resin (A).
 第三の態様に係る水酸基含有(メタ)アクリレート(a2)としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、5-ヒドロキシペンチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、8-ヒドロキシオクチル(メタ)アクリレート等のアクリル酸ヒドロキシアルキルエステル;
 カプロラクトン変性2-ヒドロキシエチル(メタ)アクリレート等のカプロラクトン変性モノマー;
 ジエチレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート等のオキシアルキレン変性モノマー;
 2-アクリロイロキシエチル-2-ヒドロキシエチルフタル酸、N-メチロール(メタ)アクリルアミド、ヒドロキシエチルアクリルアミド等の1級水酸基含有(メタ)アクリレート;
 2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-クロロ2-ヒドロキシプロピル(メタ)アクリレート等の2級水酸基含有(メタ)アクリレート;
 2,2-ジメチル2-ヒドロキシエチル(メタ)アクリレート等の水酸基含有(メタ)アクリレートが挙げられる。なかでも、2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートが好ましい。
 水酸基含有(メタ)アクリレート(a2)は1種を単独で用いてもよく、2種以上を併用してもよい。
Examples of the hydroxyl group-containing (meth)acrylate (a2) according to the third aspect include 2-hydroxyethyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 5-hydroxypentyl (meth)acrylate, 6-hydroxy hydroxyalkyl acrylates such as hexyl (meth)acrylate and 8-hydroxyoctyl (meth)acrylate;
caprolactone-modified monomers such as caprolactone-modified 2-hydroxyethyl (meth)acrylate;
Oxyalkylene-modified monomers such as diethylene glycol (meth)acrylate and polyethylene glycol (meth)acrylate;
Primary hydroxyl group-containing (meth)acrylates such as 2-acryloyloxyethyl-2-hydroxyethyl phthalate, N-methylol (meth)acrylamide, and hydroxyethylacrylamide;
Secondary hydroxyl group-containing (meth)acrylates such as 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3-chloro 2-hydroxypropyl (meth)acrylate;
Examples include hydroxyl group-containing (meth)acrylates such as 2,2-dimethyl-2-hydroxyethyl (meth)acrylate. Among them, 2-hydroxyethyl (meth)acrylate and 4-hydroxybutyl (meth)acrylate are preferred.
The hydroxyl group-containing (meth)acrylates (a2) may be used alone or in combination of two or more.
 第三の態様に係る水酸基含有(メタ)アクリレート(a2)としては、水酸基含有(メタ)アクリレート(a2)に不純物として含有され得るジ(メタ)アクリレートの含有割合が少ないものが好ましい。具体的には、水酸基含有(メタ)アクリレート(a2)に含有され得るジ(メタ)アクリレートの含有割合が0.5重量%以下のものが好ましく、より好ましくは0.2重量%以下、特に好ましくは0.1重量%以下、さらに好ましくは0重量%のものである。 The hydroxyl group-containing (meth)acrylate (a2) according to the third aspect preferably contains a small amount of di(meth)acrylate that may be contained as an impurity in the hydroxyl group-containing (meth)acrylate (a2). Specifically, the content of di(meth)acrylate that can be contained in the hydroxyl group-containing (meth)acrylate (a2) is preferably 0.5% by weight or less, more preferably 0.2% by weight or less, and particularly preferably 0.2% by weight or less. is 0.1% by weight or less, more preferably 0% by weight.
 第三の態様に係る水酸基含有(メタ)アクリレート(a2)は、不純物としてアクリル酸も含有していることが多く、その含有量は、水酸基含有(メタ)アクリレート(a2)中、通常0.001~0.5重量%程度であり、より少ないものを用いることが好ましい。 The hydroxyl group-containing (meth)acrylate (a2) according to the third aspect often contains acrylic acid as an impurity, and its content is usually 0.001 in the hydroxyl group-containing (meth)acrylate (a2). It is about 0.5% by weight, and it is preferable to use a smaller amount.
 〔活性エネルギー線架橋性構造部位を含有する(メタ)アクリル酸エステルモノマー(a3)〕
 第三の態様に係るアクリル系樹脂(A)は、活性エネルギー線架橋性構造部位を有することもできる。活性エネルギー線架橋性構造部位とは、活性エネルギー線照射により、アクリル系樹脂(A)の一部分、または、粘着剤組成物中に含有され得るその他硬化成分と反応し、架橋構造を形成し得る構造部位である。
 第三の態様において活性エネルギー線架橋性構造部位としては、ベンゾフェノン系架橋性構造部位であることが、反応性が高く、凝集力向上に優れる点で好ましい。
 したがって、第三の態様に係る共重合成分(a)は、活性エネルギー線架橋性構造部位を含有する(メタ)アクリル酸エステルモノマー(a3)(ただし、分岐アルキル(メタ)アクリレート(a1)および水酸基含有(メタ)アクリレート(a2)を除く。)をさらに含有することが好ましい。
[(Meth)acrylate Monomer (a3) Containing Active Energy Ray Crosslinkable Structural Site]
The acrylic resin (A) according to the third aspect can also have an active energy ray crosslinkable structural site. The active energy ray crosslinkable structural site is a structure capable of forming a crosslinked structure by reacting with a part of the acrylic resin (A) or other curing components that may be contained in the pressure-sensitive adhesive composition by irradiation with an active energy ray. It is a part.
In the third aspect, the active energy ray-crosslinkable structural site is preferably a benzophenone-based crosslinkable structural site because of its high reactivity and excellent improvement in cohesive strength.
Therefore, the copolymer component (a) according to the third aspect is a (meth)acrylic acid ester monomer (a3) containing an active energy ray-crosslinkable structural site (provided, however, that a branched alkyl (meth)acrylate (a1) and a hydroxyl group (excluding the containing (meth)acrylate (a2)) is preferably further contained.
 第三の態様に係る活性エネルギー線架橋性構造部位を含有する(メタ)アクリル酸エステルモノマー(a3)としては、ベンゾフェノン系架橋性構造部位を有する(メタ)アクリル酸エステルモノマーが、紫外線、電子線等の活性エネルギー線により効率的な架橋構造を形成することができる点で好ましい。例えば、4-(メタ)アクリロイルオキシベンゾフェノン等が挙げられる。
 活性エネルギー線架橋性構造部位を含有する(メタ)アクリル酸エステルモノマー(a3)は1種を単独で用いてもよく、2種以上を併用してもよい。
As the (meth)acrylic acid ester monomer (a3) containing an active energy ray crosslinkable structural site according to the third aspect, a (meth)acrylic acid ester monomer having a benzophenone-based crosslinkable structural site is exposed to ultraviolet rays and electron beams. It is preferable in that an efficient crosslinked structure can be formed by an active energy ray such as. Examples thereof include 4-(meth)acryloyloxybenzophenone and the like.
The (meth)acrylic acid ester monomer (a3) containing an active energy ray-crosslinkable structural site may be used alone or in combination of two or more.
 また、アクリル系樹脂(A)に活性エネルギー線架橋性構造部位を導入するに際しては、活性エネルギー線架橋性構造部位含有(メタ)アクリル酸エステルモノマー(a3)を共重合する以外にも、アクリル系樹脂(A)中に水酸基を含有させておき、かかる水酸基にエチレン性不飽和基含有イソシアネート化合物を反応させて、活性エネルギー線架橋性構造部位としてエチレン性不飽和基を導入することもできる。 Further, when introducing the active energy ray-crosslinkable structural site into the acrylic resin (A), in addition to copolymerizing the active energy ray-crosslinkable structural site-containing (meth)acrylic acid ester monomer (a3), acrylic It is also possible to introduce an ethylenically unsaturated group as an active energy ray crosslinkable structural site by allowing hydroxyl groups to be contained in the resin (A) and reacting the hydroxyl groups with an ethylenically unsaturated group-containing isocyanate compound.
 〔エチレン性不飽和モノマー(a4)〕
 第三の態様に係る共重合成分(a)は、分岐アルキル(メタ)アクリレート(a1)、水酸基含有(メタ)アクリレート(a2)および(メタ)アクリル酸エステルモノマー(a3)を除く、他の共重合可能なエチレン性不飽和モノマー(a4)を必要に応じてさらに含有してもよい。
[Ethylenically unsaturated monomer (a4)]
The copolymer component (a) according to the third aspect is a branched alkyl (meth)acrylate (a1), a hydroxyl group-containing (meth)acrylate (a2) and a (meth)acrylic acid ester monomer (a3), other copolymers A polymerizable ethylenically unsaturated monomer (a4) may be further contained as necessary.
 第三の態様に係る他の共重合可能なエチレン性不飽和モノマー(a4)としては、例えば、メチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、2-エチルヘキシルアクリレート等のアルキル(メタ)アクリレート(ただし、分岐アルキル(メタ)アクリレート(a1)、水酸基含有(メタ)アクリレート(a2)および(メタ)アクリル酸エステルモノマー(a3)を除く。);
 フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェニルジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール-ポリプロピレングリコール-(メタ)アクリレート、オルトフェニルフェノキシエチル(メタ)アクリレート、ノニルフェノールエチレンオキサイド付加物(メタ)アクリレート等の芳香環含有モノマー;
 シクロヘキシルオキシアルキル(メタ)アクリレート、tert-ブチルシクロヘキシルオキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート等の脂環含有モノマー;
 2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、2-ブトキシジエチレングリコール(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、オクトキシポリエチレングリコール-ポリプロピレングリコールモノ(メタ)アクリレート、ラウロキシポリエチレングリコールモノ(メタ)アクリレート、ステアロキシポリエチレングリコールモノ(メタ)アクリレート等のエーテル鎖含有モノマー;
 (メタ)アクリル酸、β-カルボキシエチルアクリレート等のアクリル酸ダイマー、クロトン酸、マレイン酸、無水マレイン酸、フマル酸、シトラコン酸、グルタコン酸、イタコン酸、N-グリコール酸、ケイ皮酸等のカルボキシ基含有モノマー;
 (メタ)アクリルアミド、N-(n-ブトキシアルキル)(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N,N-ジメチルアミノアルキル(メタ)アクリルアミド等のアミド基含有モノマー;
 アクリロニトリル、メタクリロニトリル、スチレン、α-メチルスチレン、酢酸ビニル、プロピオン酸ビニル、ステアリン酸ビニル、塩化ビニル、塩化ビニリデン、アルキルビニルエーテル、ビニルトルエン、ビニルピリジン、ビニルピロリドン、イタコン酸ジアルキルエステル、フマル酸ジアルキルエステル、アリルアルコール、アクリルクロライド、メチルビニルケトン、N-アクリルアミドメチルトリメチルアンモニウムクロライド、アリルトリメチルアンモニウムクロライド、ジメチルアリルビニルケトン等が挙げられる。
 他のエチレン性不飽和モノマー(a4)は1種を単独で用いてもよく、2種以上を併用してもよい。
Other copolymerizable ethylenically unsaturated monomers (a4) according to the third aspect include alkyl (meth)acrylates such as methyl (meth)acrylate, n-butyl (meth)acrylate and 2-ethylhexyl acrylate. (Excluding branched alkyl (meth)acrylate (a1), hydroxyl group-containing (meth)acrylate (a2) and (meth)acrylate monomer (a3));
Phenyl (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, phenyldiethylene glycol (meth) acrylate, phenoxy polyethylene glycol (meth) acrylate, phenoxy polyethylene glycol-polypropylene glycol-(meth) acrylate, orthophenylphenoxyethyl Aromatic ring-containing monomers such as (meth)acrylates and nonylphenol ethylene oxide adduct (meth)acrylates;
Alicyclic-containing monomers such as cyclohexyloxyalkyl (meth)acrylate, tert-butylcyclohexyloxyethyl (meth)acrylate, isobornyl (meth)acrylate, dicyclopentanyl (meth)acrylate;
2-Methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, 2-butoxyethyl (meth) acrylate, 2-butoxydiethylene glycol (meth) acrylate, methoxydiethylene glycol (meth) Acrylates, methoxytriethylene glycol (meth)acrylate, ethoxydiethylene glycol (meth)acrylate, methoxydipropylene glycol (meth)acrylate, methoxypolyethylene glycol (meth)acrylate, octoxypolyethyleneglycol-polypropyleneglycol mono(meth)acrylate, lauroxy Ether chain-containing monomers such as polyethylene glycol mono (meth) acrylate and stearoxy polyethylene glycol mono (meth) acrylate;
(Meth)acrylic acid, acrylic acid dimers such as β-carboxyethyl acrylate, carboxylates such as crotonic acid, maleic acid, maleic anhydride, fumaric acid, citraconic acid, glutaconic acid, itaconic acid, N-glycolic acid and cinnamic acid group-containing monomer;
(Meth)acrylamide, N-(n-butoxyalkyl)(meth)acrylamide, N,N-dimethyl(meth)acrylamide, N,N-diethyl(meth)acrylamide, N,N-dimethylaminoalkyl(meth)acrylamide, etc. The amide group-containing monomer of;
Acrylonitrile, methacrylonitrile, styrene, α-methylstyrene, vinyl acetate, vinyl propionate, vinyl stearate, vinyl chloride, vinylidene chloride, alkyl vinyl ether, vinyl toluene, vinylpyridine, vinylpyrrolidone, dialkyl itaconate, dialkyl fumarate Ester, allyl alcohol, acryl chloride, methyl vinyl ketone, N-acrylamidomethyltrimethylammonium chloride, allyltrimethylammonium chloride, dimethyl allyl vinyl ketone and the like.
Other ethylenically unsaturated monomers (a4) may be used alone or in combination of two or more.
 アクリル系樹脂(A)の高分子量化を目的とする場合、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジビニルベンゼン等のエチレン性不飽和基を二つ以上有する化合物等を併用することもできる。 For the purpose of increasing the molecular weight of the acrylic resin (A), ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, propylene glycol Compounds having two or more ethylenically unsaturated groups such as di(meth)acrylate and divinylbenzene can also be used in combination.
 〔第三の態様に係る共重合成分(a)の組成〕
 第三の態様において、分岐アルキル(メタ)アクリレート(a1)の含有量は、共重合成分(a)100重量%に対して10重量%以上が好ましく、10~60重量%がより好ましく、15~50重量%がさらに好ましく、20~45重量%が特に好ましい。
 分岐アルキル(メタ)アクリレート(a1)の含有量が少なすぎると、一次硬化時における粘着物性が低下する傾向がある。分岐アルキル(メタ)アクリレート(a1)の含有量が多すぎると、完全硬化後の粘着物性が低下する傾向がある。
[Composition of the copolymer component (a) according to the third aspect]
In the third aspect, the content of the branched alkyl (meth)acrylate (a1) is preferably 10% by weight or more, more preferably 10 to 60% by weight, more preferably 15 to 15% by weight, based on 100% by weight of the copolymer component (a). 50% by weight is more preferred, and 20 to 45% by weight is particularly preferred.
If the content of the branched alkyl (meth)acrylate (a1) is too small, the adhesive properties tend to deteriorate during primary curing. If the content of the branched alkyl (meth)acrylate (a1) is too high, the adhesive properties after complete curing tend to deteriorate.
 第三の態様において、水酸基含有(メタ)アクリレート(a2)の含有量は、共重合成分(a)100重量%に対して5重量%以上が好ましく、10~40重量%がより好ましく、12~30重量%がさらに好ましい。水酸基含有(メタ)アクリレート(a2)の含有量が少なすぎると、耐湿熱性が低下する傾向がある。水酸基含有(メタ)アクリレート(a2)の含有量が多すぎると、アクリル系樹脂の自己架橋反応が起こりやすくなり、耐熱性が低下する傾向がある。 In the third aspect, the content of the hydroxyl group-containing (meth)acrylate (a2) is preferably 5% by weight or more, more preferably 10 to 40% by weight, more preferably 12 to 12% by weight, based on 100% by weight of the copolymer component (a). 30% by weight is more preferred. If the content of the hydroxyl group-containing (meth)acrylate (a2) is too small, the moisture and heat resistance tends to decrease. If the content of the hydroxyl group-containing (meth)acrylate (a2) is too high, the acrylic resin tends to undergo a self-crosslinking reaction, which tends to lower the heat resistance.
 第三の態様において、(メタ)アクリル酸エステルモノマー(a3)の含有量は、共重合成分(a)100重量%に対して0.01~5重量%が好ましく、0.1~2重量%がより好ましく、0.2~1重量%がさらに好ましい。
 (メタ)アクリル酸エステルモノマー(a3)の含有量が少なすぎると、活性エネルギー線により架橋構造を形成する際の保持力が低下する傾向がある。また、加工可能な粘着シートを作製するために架橋構造を形成する際、活性エネルギー線量が多く必要となる。結果、粘着シート作製時にエネルギーを多量に必要とし、効率の良い製造が困難となる傾向がある。
 (メタ)アクリル酸エステルモノマー(a3)の含有量が多すぎると系全体の凝集力が上がりすぎ、粘着力が低下する傾向がある。
In the third aspect, the content of the (meth)acrylate monomer (a3) is preferably 0.01 to 5% by weight, preferably 0.1 to 2% by weight, relative to 100% by weight of the copolymer component (a). is more preferred, and 0.2 to 1% by weight is even more preferred.
If the content of the (meth)acrylic acid ester monomer (a3) is too small, there is a tendency for the holding power of the active energy ray to form a crosslinked structure to decrease. Moreover, when forming a crosslinked structure for producing a processable adhesive sheet, a large amount of active energy radiation is required. As a result, a large amount of energy is required to produce the pressure-sensitive adhesive sheet, which tends to make efficient production difficult.
If the content of the (meth)acrylic acid ester monomer (a3) is too high, the cohesive force of the entire system tends to be too high and the adhesive force tends to decrease.
 第三の態様において、他のエチレン性不飽和モノマー(a4)の含有量は、共重合成分(a)100重量%に対して通常80重量%以下が好ましく、70重量%以下がより好ましく、60重量%以下がさらに好ましい。
 他のエチレン性不飽和モノマー(a4)の含有量が多すぎると、低架橋時の粘着物性が低下することがある。
In the third aspect, the content of the other ethylenically unsaturated monomer (a4) is usually preferably 80% by weight or less, more preferably 70% by weight or less, more preferably 70% by weight or less, based on 100% by weight of the copolymerization component (a). Weight % or less is more preferable.
If the content of the other ethylenically unsaturated monomer (a4) is too high, the adhesive physical properties at the time of low cross-linking may deteriorate.
 第三の態様に係るアクリル系樹脂(A)は、アルキル(メタ)アクリレート(a1)に基づく構成単位を有する重合体であるとも言える。また、この場合、アクリル系樹脂(A)は、分岐アルキル(メタ)アクリレート(a1)に基づく構成単位加えて、水酸基含有(メタ)アクリレート(a2)に基づく構成単位、(メタ)アクリル酸エステルモノマー(a3)に基づく構成単位およびエチレン性不飽和モノマー(a4)に基づく構成単位からなる群から選ばれる少なくとも1種以上を必要に応じてさらに有してもよい。このとき、各モノマーに基づく構成単位の割合は共重合成分(a)の組成にしたがって決定でき、その好ましい態様も同様である。 It can also be said that the acrylic resin (A) according to the third aspect is a polymer having structural units based on the alkyl (meth)acrylate (a1). Further, in this case, the acrylic resin (A) includes, in addition to the structural unit based on the branched alkyl (meth)acrylate (a1), the structural unit based on the hydroxyl group-containing (meth)acrylate (a2), and the (meth)acrylic acid ester monomer. It may further have at least one selected from the group consisting of structural units based on (a3) and structural units based on the ethylenically unsaturated monomer (a4), if necessary. At this time, the ratio of structural units based on each monomer can be determined according to the composition of the copolymer component (a), and the preferred embodiment is also the same.
 第三の態様に係るアクリル系樹脂(A)の動的粘弾性に基づくガラス転移温度は-10℃以上であり、-5~20℃が好ましく、0~15℃がより好ましく、2~13℃がさらに好ましい。動的粘弾性に基づくガラス転移温度が高すぎると、粘着剤層の段差追従性の低下や密着性の低下に伴って粘着力が低下する傾向がある。動的粘弾性に基づくガラス転移温度が低すぎると、低架橋時の粘着物性が低下する傾向がある。 The glass transition temperature based on the dynamic viscoelasticity of the acrylic resin (A) according to the third aspect is -10°C or higher, preferably -5 to 20°C, more preferably 0 to 15°C, and 2 to 13°C. is more preferred. If the glass transition temperature based on dynamic viscoelasticity is too high, the pressure-sensitive adhesive layer tends to be less conformable to irregularities and less adhesive, resulting in a decrease in adhesive force. If the glass transition temperature based on dynamic viscoelasticity is too low, adhesive physical properties at the time of low cross-linking tend to decrease.
 動的粘弾性に基づくガラス転移温度は、下記の測定法により求められる。
 適当な有機溶媒を用いることにより、アクリル系樹脂(A)と有機溶媒のみを含有するアクリル系樹脂溶液を調製する。アクリル系樹脂溶液の濃度を調整した後、離型シート上に乾燥後の厚みが50μmになるように塗工する。その後、90~105℃、5~10分間加熱処理により乾燥させることで、有機溶媒を除去した後、これを離型シートに貼付し、アクリル系樹脂を99%以上含有するアクリル系樹脂シートを作製する。その後、複数のアクリル系樹脂シートを積層して、厚さ約800μmのアクリル系樹脂シートを作製する。作製したシートの動的粘弾性を以下の条件にて測定し、損失正接(損失弾性率G’’/貯蔵弾性率G’=tanδ)が最大となった温度を読み取り、動的粘弾性に基づくアクリル系樹脂(A)のガラス転移温度とする。
The glass transition temperature based on dynamic viscoelasticity is obtained by the following measuring method.
An acrylic resin solution containing only the acrylic resin (A) and the organic solvent is prepared by using a suitable organic solvent. After adjusting the concentration of the acrylic resin solution, it is coated on a release sheet so that the thickness after drying becomes 50 μm. After that, the organic solvent is removed by drying by heat treatment at 90 to 105° C. for 5 to 10 minutes, and then this is attached to a release sheet to prepare an acrylic resin sheet containing 99% or more acrylic resin. do. After that, a plurality of acrylic resin sheets are laminated to produce an acrylic resin sheet having a thickness of about 800 μm. The dynamic viscoelasticity of the produced sheet was measured under the following conditions, and the temperature at which the loss tangent (loss elastic modulus G''/storage elastic modulus G' = tan δ) was maximized was read, based on the dynamic viscoelasticity. It is defined as the glass transition temperature of the acrylic resin (A).
 (動的粘弾性の測定条件)
 測定機器:動的粘弾性測定装置(商品名:DVA-225、アイティー計測制御社製)
 変形モード:せん断
 歪み:0.1%
 測定温度:-100~60℃
 測定周波数:1Hz
(Measurement conditions for dynamic viscoelasticity)
Measuring instrument: dynamic viscoelasticity measuring device (trade name: DVA-225, manufactured by IT Instrumentation & Control Co., Ltd.)
Deformation mode: Shear Strain: 0.1%
Measurement temperature: -100 to 60°C
Measurement frequency: 1Hz
 第三の態様において、アクリル系樹脂(A)の重量平均分子量は400,000以下であり、10,000~350,000が好ましく、50,000~300,000がより好ましく、100,000~290,000がさらに好ましく、150,000~280,000が特に好ましい。アクリル系樹脂(A)の重量平均分子量が大きすぎると粘度が高くなりすぎて、塗工性やハンドリングが低下する傾向がある。アクリル系樹脂(A)の重量平均分子量が小さすぎると凝集力が低下し、粘着物性が低下する傾向がある。
 アクリル系樹脂(A)の重量平均分子量は、製造完了時の重量平均分子量であり、製造後に加熱等がされていないアクリル系樹脂(A)の重量平均分子量である。
In the third aspect, the acrylic resin (A) has a weight average molecular weight of 400,000 or less, preferably 10,000 to 350,000, more preferably 50,000 to 300,000, and 100,000 to 290. ,000 is more preferred, and 150,000 to 280,000 is particularly preferred. If the weight-average molecular weight of the acrylic resin (A) is too large, the viscosity tends to be too high, resulting in poor coatability and handling. If the weight-average molecular weight of the acrylic resin (A) is too small, the cohesive force tends to decrease and the adhesive physical properties tend to decrease.
The weight-average molecular weight of the acrylic resin (A) is the weight-average molecular weight at the time of completion of production, and is the weight-average molecular weight of the acrylic resin (A) that has not been heated or the like after production.
 アクリル系樹脂(A)の重量平均分子量は、標準ポリスチレン分子量換算による重量平均分子量である。高速液体クロマトグラフ(日本Waters社製、「Waters 2695(本体)」と「Waters 2414(検出器)」)に、カラム:Shodex GPC KF-806L(排除限界分子量:2×10、分離範囲:100~2×10、理論段数:10000段/本、充填剤材質:スチレン-ジビニルベンゼン共重合体、充填剤粒径:10μm)の3本を直列にして用いることにより測定される。
 数平均分子量も同様の方法を用いて測定できる。また、分散度は、重量平均分子量と数平均分子量より求められる。
The weight average molecular weight of the acrylic resin (A) is the weight average molecular weight in terms of standard polystyrene molecular weight. A column: Shodex GPC KF-806L (exclusion limit molecular weight: 2 × 10 7 , separation range: 100 up to 2×10 7 , theoretical plate number: 10000 plates/line, filler material: styrene-divinylbenzene copolymer, filler particle diameter: 10 μm) are connected in series.
Number average molecular weight can also be measured using a similar method. Further, the dispersity is obtained from the weight average molecular weight and the number average molecular weight.
 アクリル系樹脂(A)の分散度(重量平均分子量/数平均分子量)は、15以下が好ましく、より好ましくは10以下、さらに好ましくは7以下、特に好ましくは5以下である。アクリル系樹脂(A)の分散度が高すぎると粘着剤層の耐久性能が低下する傾向がある。また、発泡等が発生しやすくなる傾向もある。アクリル系樹脂(A)の分散度が低すぎると取り扱い性が低下する傾向がある。分散度の下限は、製造の限界の点から、通常1.1である。 The degree of dispersion (weight average molecular weight/number average molecular weight) of the acrylic resin (A) is preferably 15 or less, more preferably 10 or less, even more preferably 7 or less, and particularly preferably 5 or less. If the degree of dispersion of the acrylic resin (A) is too high, the durability of the pressure-sensitive adhesive layer tends to decrease. Moreover, there is also a tendency that foaming or the like is likely to occur. If the degree of dispersion of the acrylic resin (A) is too low, the handleability tends to deteriorate. The lower limit of the dispersity is usually 1.1 due to manufacturing limitations.
 〔アクリル系樹脂(A)の製造方法〕
 第三の態様において、アクリル系樹脂(A)は、分岐アルキル(メタ)アクリレート(a1)を含有する共重合成分(a)を重合させることで製造できる。
 第三の態様に係る共重合成分(a)は、任意重合成分のヒドロキシアルキル(メタ)アクリレート(a2)、(メタ)アクリル酸エステルモノマー(a3)、エチレン性不飽和モノマー(a4)を必要に応じてさらに含有してもよい。
[Method for producing acrylic resin (A)]
In the third aspect, the acrylic resin (A) can be produced by polymerizing a copolymer component (a) containing a branched alkyl (meth)acrylate (a1).
The copolymerization component (a) according to the third aspect includes optional polymerization components such as hydroxyalkyl (meth)acrylate (a2), (meth)acrylic acid ester monomer (a3), and ethylenically unsaturated monomer (a4). It may be further contained as necessary.
 アクリル系樹脂(A)の重合方法としては、例えば、溶液重合、懸濁重合、塊状重合、乳化重合等の従来公知の重合方法が挙げられる。反応の安全性および安定性、任意のモノマー組成でアクリル系樹脂(A)を製造できる点で溶液重合が好ましい。
 以下、第三の態様に係るアクリル系樹脂(A)の好ましい製造方法の一例を示す。
Examples of polymerization methods for the acrylic resin (A) include conventionally known polymerization methods such as solution polymerization, suspension polymerization, bulk polymerization, and emulsion polymerization. Solution polymerization is preferred in terms of safety and stability of the reaction and the ability to produce the acrylic resin (A) with any monomer composition.
An example of a preferred method for producing the acrylic resin (A) according to the third aspect is shown below.
 例えば、有機溶媒中に、第三の態様に係る共重合成分(a)、重合開始剤を混合または滴下することで、溶液重合を行うことができる。
 重合反応に用いられる有機溶媒としては、例えば、トルエン、キシレン等の芳香族炭化水素類;n-ヘキサン等の脂肪族炭化水素類;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類;メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール等の脂肪族アルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;ジメチルエーテル、ジエチルエーテル等の脂肪族エーテル類;塩化メチレン、塩化エチレン等の脂肪族ハロゲン化炭化水素類;テトラヒドロフラン等の環状エーテル類等が挙げられる。なかでも、エステル類、ケトン類が好ましく、酢酸エチル、アセトン、メチルエチルケトンが特に好ましい。
 有機溶媒は1種を単独で用いてもよく、2種以上を併用してもよい。
For example, solution polymerization can be carried out by mixing or dropping the copolymerization component (a) according to the third aspect and the polymerization initiator into an organic solvent.
Examples of the organic solvent used in the polymerization reaction include aromatic hydrocarbons such as toluene and xylene; aliphatic hydrocarbons such as n-hexane; esters such as methyl acetate, ethyl acetate and butyl acetate; Aliphatic alcohols such as ethyl alcohol, n-propyl alcohol and isopropyl alcohol; Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; Aliphatic ethers such as dimethyl ether and diethyl ether; Fats such as methylene chloride and ethylene chloride halogenated hydrocarbons; cyclic ethers such as tetrahydrofuran; Among them, esters and ketones are preferred, and ethyl acetate, acetone and methyl ethyl ketone are particularly preferred.
An organic solvent may be used individually by 1 type, and may use 2 or more types together.
 重合反応に用いられる重合開始剤としては、通常のラジカル重合開始剤であるアゾ系重合開始剤や過酸化物系重合開始剤等を用いることができる。
 アゾ系重合開始剤としては、例えば、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビスイソブチロニトリル、(1-フェニルエチル)アゾジフェニルメタン、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-シクロプロピルプロピオニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)等が挙げられる。
As the polymerization initiator used in the polymerization reaction, an azo polymerization initiator, a peroxide polymerization initiator, or the like, which is a normal radical polymerization initiator, can be used.
Examples of azo polymerization initiators include 2,2′-azobis(2-methylbutyronitrile), 2,2′-azobisisobutyronitrile, (1-phenylethyl)azodiphenylmethane, 2,2′ -azobis(2,4-dimethylvaleronitrile), 2,2'-azobis(2-cyclopropylpropionitrile), 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile) and the like. be done.
 過酸化物系重合開始剤としては、例えば、ベンゾイルパーオキサイド、ジ-tert-ブチルパーオキサイド、クメンハイドロパーオキサイド、ラウロイルパーオキサイド、tert-ブチルペルオキシピバレート、tert-ヘキシルペルオキシピバレート、tert-ヘキシルペルオキシネオデカノエート、ジイソプロピルペルオキシカーボネート、ジイソブチリルパーオキサイド等が挙げられる。 Peroxide-based polymerization initiators include, for example, benzoyl peroxide, di-tert-butyl peroxide, cumene hydroperoxide, lauroyl peroxide, tert-butylperoxypivalate, tert-hexylperoxypivalate, tert-hexyl peroxyneodecanoate, diisopropyl peroxycarbonate, diisobutyryl peroxide and the like.
 なかでもアゾ系重合開始剤が好ましく、より好ましくは2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)である。
 重合開始剤は1種を単独で用いてもよく、2種以上を併用してもよい。
Among them, azo polymerization initiators are preferred, and 2,2'-azobisisobutyronitrile and 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile) are more preferred.
One polymerization initiator may be used alone, or two or more polymerization initiators may be used in combination.
 重合開始剤の使用量は共重合成分(a)100重量部に対して、通常0.001~10重量部であり、好ましくは0.1~8重量部、より好ましくは0.5~6重量部、特に好ましくは1~4重量部、さらに好ましくは1.5~3重量部、最も好ましくは2~2.5重量部である。重合開始剤の使用量が少なすぎると、アクリル系樹脂(A)の重合率が低下するため、残存モノマーが増加する傾向がある。また、アクリル系樹脂(A)の重量平均分子量が高くなる傾向がある。重合開始剤の使用量が多すぎると、アクリル系樹脂(A)がゲル化する傾向がある。 The amount of the polymerization initiator used is usually 0.001 to 10 parts by weight, preferably 0.1 to 8 parts by weight, more preferably 0.5 to 6 parts by weight, per 100 parts by weight of the copolymer component (a). parts, particularly preferably 1 to 4 parts by weight, more preferably 1.5 to 3 parts by weight, most preferably 2 to 2.5 parts by weight. When the amount of the polymerization initiator used is too small, the rate of polymerization of the acrylic resin (A) decreases, and the amount of residual monomer tends to increase. Moreover, the weight average molecular weight of acrylic resin (A) tends to increase. If the amount of the polymerization initiator used is too large, the acrylic resin (A) tends to gel.
 溶液重合の重合条件は特に限定されず、従来公知の重合条件にしたがって重合することができる。例えば、有機溶媒中に、共重合成分(a)、重合開始剤を混合または滴下して重合することができる。 Polymerization conditions for solution polymerization are not particularly limited, and polymerization can be carried out according to conventionally known polymerization conditions. For example, the copolymerization component (a) and the polymerization initiator can be mixed or dropped into an organic solvent for polymerization.
 重合反応における重合温度は、通常40~120℃であるが、安定的に反応できる点から50~90℃が好ましい。重合温度が高すぎるとアクリル系樹脂(A)がゲル化しやすくなる傾向がある。重合温度が低すぎると重合開始剤の活性が低下するため、重合率が低下する結果、残存モノマーが増加する傾向がある。 The polymerization temperature in the polymerization reaction is usually 40 to 120°C, preferably 50 to 90°C from the viewpoint of stable reaction. If the polymerization temperature is too high, the acrylic resin (A) tends to gel easily. If the polymerization temperature is too low, the activity of the polymerization initiator will decrease, resulting in a decrease in the rate of polymerization and an increase in residual monomers.
 重合反応における重合時間は特に制限はないが、最後の重合開始剤の添加から0.5時間以上、好ましくは1時間以上、より好ましくは2時間以上、特に好ましくは5時間以上である。
 重合反応は、除熱しやすい点で溶媒を還流しながら行うことが好ましい。
The polymerization time in the polymerization reaction is not particularly limited, but it is 0.5 hours or longer, preferably 1 hour or longer, more preferably 2 hours or longer, and particularly preferably 5 hours or longer after the last addition of the polymerization initiator.
The polymerization reaction is preferably carried out while refluxing the solvent in order to facilitate heat removal.
 (光開始剤(B))
 第三の態様に係る光開始剤(B)は、分子内水素引抜型光開始剤(b1)と分子間水素引抜型光開始剤(b2)とを含有する。第三の態様に係る光開始剤(B)は、発明の効果を損なわない範囲内であれば、分子内水素引抜型光開始剤(b1)および分子間水素引抜型光開始剤(b2)以外の他の光開始剤(b3)をさらに含有してもよい。
(Photoinitiator (B))
The photoinitiator (B) according to the third aspect contains an intramolecular hydrogen abstraction photoinitiator (b1) and an intermolecular hydrogen abstraction photoinitiator (b2). The photoinitiator (B) according to the third aspect is other than the intramolecular hydrogen abstraction photoinitiator (b1) and the intermolecular hydrogen abstraction photoinitiator (b2) within a range that does not impair the effects of the invention. may further contain another photoinitiator (b3).
 〔分子内水素引抜型光開始剤(b1)〕
 第三の態様に係る分子内水素引抜型光開始剤(b1)としては、例えば、オキシ-フェニル-酢酸2-[2-オキソ-2-フェニル-アセトキシ-エトキシ]-エチルエステルおよびオキシ-フェニル-酢酸2-[2-ヒドロキシ-エトキシ]-エチルエステルの混合物、ベンゾイルギ酸メチル等が挙げられる。
 これらのなかでも完全硬化時の架橋効率の点で、オキシ-フェニル-酢酸2-[2-オキソ-2-フェニル-アセトキシ-エトキシ]-エチルエステルおよびオキシ-フェニル-酢酸2-[2-ヒドロキシ-エトキシ]-エチルエステルの混合物が好ましい。
 市販品としては、IGM RESINS B.V.社製の「Omnirad 754」、「Omnirad MBF」が挙げられる。
[Intramolecular hydrogen abstraction type photoinitiator (b1)]
Examples of the intramolecular hydrogen-abstracting photoinitiator (b1) according to the third aspect include oxy-phenyl-acetic acid 2-[2-oxo-2-phenyl-acetoxy-ethoxy]-ethyl ester and oxy-phenyl- Mixtures of acetic acid 2-[2-hydroxy-ethoxy]-ethyl esters, methyl benzoylformate, and the like.
Among these, oxy-phenyl-acetic acid 2-[2-oxo-2-phenyl-acetoxy-ethoxy]-ethyl ester and oxy-phenyl-acetic acid 2-[2-hydroxy- A mixture of ethoxy]-ethyl esters is preferred.
As a commercial product, IGM RESINS B.I. V. "Omnirad 754" and "Omnirad MBF" manufactured by the company.
 〔分子間水素引抜型光開始剤(b2)〕
 第三の態様に係る分子間水素引抜型光開始剤(b2)としては、例えば、ベンゾフェノン、4-メチル-ベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-フェニルベンゾフェノン、3,3’-ジメチル-4-メトキシベンゾフェノン、4-(メタ)アクリロイルオキシベンゾフェノン、4-[2-((メタ)アクリロイルオキシ)エトキシ]ベンゾフェノン、4-(メタ)アクリロイルオキシ-4’-メトキシベンゾフェノン、カルボキシメトキシメトキシベンゾフェノン-ポリエチレングリコール250ジエステル等が挙げられる。 なかでも液体で取り扱いが容易である点で、2,4,6-トリメチルベンゾフェノンが好ましい。また、高架橋が可能な点で、分子内に架橋点が複数存在する4-(メタ)アクリロイルオキシベンゾフェノン、4-[2-((メタ)アクリロイルオキシ)エトキシ]ベンゾフェノン、4-(メタ)アクリロイルオキシ-4’-メトキシベンゾフェノン、カルボキシメトキシメトキシベンゾフェノン-ポリエチレングリコール250ジエステルが好ましい。
 市販品としては、新菱社製の「MBP」、IGM RESINS B.V.社製の「Omnirad BP」、「Omnirad 4MBZ」、「Esacure TZT」、「Omnipol BP」が挙げられる。
[Intermolecular hydrogen abstraction type photoinitiator (b2)]
Examples of the intermolecular hydrogen abstraction type photoinitiator (b2) according to the third aspect include benzophenone, 4-methyl-benzophenone, 2,4,6-trimethylbenzophenone, 4-phenylbenzophenone, 3,3′-dimethyl -4-methoxybenzophenone, 4-(meth)acryloyloxybenzophenone, 4-[2-((meth)acryloyloxy)ethoxy]benzophenone, 4-(meth)acryloyloxy-4'-methoxybenzophenone, carboxymethoxymethoxybenzophenone- Examples include polyethylene glycol 250 diester. Among them, 2,4,6-trimethylbenzophenone is preferable because it is liquid and easy to handle. In addition, 4-(meth)acryloyloxybenzophenone, 4-[2-((meth)acryloyloxy)ethoxy]benzophenone, and 4-(meth)acryloyloxy, which have multiple crosslink points in the molecule, can be highly crosslinked. -4'-Methoxybenzophenone, carboxymethoxymethoxybenzophenone-polyethylene glycol 250 diester are preferred.
Commercially available products include "MBP" manufactured by Shinryo Corporation and IGM RESINS B.I. V. "Omnirad BP", "Omnirad 4MBZ", "Esacure TZT", "Omnipol BP" manufactured by the company.
 〔他の光開始剤(b3)〕
 第三の態様に係る他の光開始剤(b3)としては、分子内開裂型のアセトフェノン類の光開始剤のオキシフェニル-酢酸2-[2-オキソ-2-フェニルアセトキシエトキシ]エチルエステル;
 ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタノン、2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノンオリゴマー等のアセトフェノン類;
 ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾイン類;
 2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、1-クロロ-4-プロポキシチオキサントン、2-(3-ジメチルアミノ-2-ヒドロキシ)-3,4-ジメチル-9H-チオキサントン-9-オンメソクロリド等のチオキサントン類;
 2,4,6-トリメチルベンゾイル-ジフェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等のアシルフォスフォンオキサイド類が挙げられる。
[Other photoinitiator (b3)]
Another photoinitiator (b3) according to the third aspect is oxyphenyl-acetic acid 2-[2-oxo-2-phenylacetoxyethoxy]ethyl ester of an intramolecularly cleaved acetophenone photoinitiator;
Diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethylketal, 4-(2-hydroxyethoxy)phenyl-(2-hydroxy-2-propyl)ketone, 1-hydroxycyclohexyl Phenyl ketone, 2-methyl-2-morpholino(4-thiomethylphenyl)propan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)butanone, 2-hydroxy-2-methyl- Acetophenones such as 1-[4-(1-methylvinyl)phenyl]propanone oligomers;
Benzoins such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether;
2-isopropylthioxanthone, 4-isopropylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone, 1-chloro-4-propoxythioxanthone, 2-(3-dimethylamino-2-hydroxy)-3,4- Thioxanthones such as dimethyl-9H-thioxanthone-9-one mesochloride;
2,4,6-trimethylbenzoyl-diphenylphosphine oxide, bis(2,6-dimethoxybenzoyl)-2,4,4-trimethyl-pentylphosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenyl Acylphosphone oxides such as phosphine oxide can be mentioned.
 第三の態様に係る光開始剤(B)の助剤として、トリエタノールアミン、トリイソプロパノールアミン、4,4’-ジメチルアミノベンゾフェノン(ミヒラーケトン)、4,4’-ジエチルアミノベンゾフェノン、2-ジメチルアミノエチル安息香酸、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸(n-ブトキシ)エチル、4-ジメチルアミノ安息香酸イソアミル、4-ジメチルアミノ安息香酸2-エチルヘキシル、2,4-ジエチルチオキサンソン、2,4-ジイソプロピルチオキサンソン等を併用することも可能である。
 光開始剤(B)の助剤は1種を単独で用いてもよく、2種以上を併用してもよい。
As auxiliary agents for the photoinitiator (B) according to the third aspect, triethanolamine, triisopropanolamine, 4,4'-dimethylaminobenzophenone (Michler's ketone), 4,4'-diethylaminobenzophenone, 2-dimethylaminoethyl Benzoic acid, ethyl 4-dimethylaminobenzoate, (n-butoxy)ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, 2-ethylhexyl 4-dimethylaminobenzoate, 2,4-diethylthioxanthone , 2,4-diisopropylthioxanthone and the like can also be used in combination.
The auxiliary agent for the photoinitiator (B) may be used alone or in combination of two or more.
 (架橋剤(C))
 第三の態様に係る粘着剤組成物は、アクリル系樹脂(A)および光開始剤(B)に加えて、架橋剤(C)をさらに含有することが好ましい。
 架橋剤(C)としては、活性エネルギー線架橋剤(c1)、熱架橋剤(c2)が挙げられる。
 活性エネルギー線架橋剤(c1)、熱架橋剤(c2)は1種を単独で用いてもよく、2種以上を併用してもよい。
(Crosslinking agent (C))
The pressure-sensitive adhesive composition according to the third aspect preferably further contains a cross-linking agent (C) in addition to the acrylic resin (A) and the photoinitiator (B).
Examples of the cross-linking agent (C) include an active energy ray cross-linking agent (c1) and a thermal cross-linking agent (c2).
The active energy ray cross-linking agent (c1) and the thermal cross-linking agent (c2) may be used alone or in combination of two or more.
 架橋剤(C)として活性エネルギー線架橋剤(c1)のみを含有する場合は、活性エネルギー線量を制御することのみで多段硬化が可能となる。また架橋剤(C)として活性エネルギー線架橋剤(c1)と熱架橋剤(c2)を含有する場合は、熱硬化と活性エネルギー線硬化を併用することでも多段硬化が可能となる。このように架橋反応を制御することで、粘着剤層全体の凝集力を調整し、一次硬化後や完全硬化後において安定した粘着物性を得ることができる。 When only the active energy ray cross-linking agent (c1) is contained as the cross-linking agent (C), multistage curing is possible only by controlling the active energy ray dose. Moreover, when the active energy ray cross-linking agent (c1) and the thermal cross-linking agent (c2) are contained as the cross-linking agent (C), multistage curing can be achieved by using both heat curing and active energy ray curing. By controlling the cross-linking reaction in this way, the cohesive force of the entire adhesive layer can be adjusted, and stable adhesive physical properties can be obtained after primary curing and after complete curing.
 〔活性エネルギー線架橋剤(c1)〕
 活性エネルギー線架橋剤(c1)としては、1分子内に1つのエチレン性不飽和基を含有する単官能性架橋剤、1分子内に2つ以上のエチレン性不飽和基を含有する多官能性架橋剤が挙げられる。なかでも、多官能性架橋剤が好ましい。
[Active energy ray cross-linking agent (c1)]
The active energy ray cross-linking agent (c1) includes a monofunctional cross-linking agent containing one ethylenically unsaturated group in one molecule, and a polyfunctional cross-linking agent containing two or more ethylenically unsaturated groups in one molecule. A cross-linking agent may be mentioned. Among them, polyfunctional cross-linking agents are preferred.
 多官能性架橋剤としては、例えば、ヘキサンジオールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、(ポリ)エチレングリコールモノ(メタ)アクリレート、(ポリ)ブチレングリコールモノ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレングリコールジ(メタ)アクリレート、(ポリ)ペンタメチレングリコールジ(メタ)アクリレート、(ポリ)ヘキサメチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、EO変性グリセリントリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド変性トリ(メタ)アクリレート、アリル(メタ)アクリレート、ビニル(メタ)アクリレート、ウレタン(メタ)アクリレート等が挙げられる。
 なかでも、硬化後の粘着物性のバランスの点で、2つのエチレン性不飽和基を含有する(メタ)アクリレートが好ましく、特には、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレングリコールジ(メタ)アクリレートが好ましい。
 多官能性架橋剤は1種を単独で用いてもよく、2種以上を併用してもよい。
Examples of polyfunctional cross-linking agents include hexanediol di(meth)acrylate, butanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, (Poly)ethylene glycol mono(meth)acrylate, (poly)butylene glycol mono(meth)acrylate, (poly)ethylene glycol di(meth)acrylate, (poly)propylene glycol di(meth)acrylate, (poly)tetramethylene glycol Di(meth)acrylate, (poly)pentamethylene glycol di(meth)acrylate, (poly)hexamethylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, pentaerythritol di(meth)acrylate, pentaerythritol tri (meth)acrylate, dipentaerythritol hexa(meth)acrylate, trimethylolpropane tri(meth)acrylate, EO-modified trimethylolpropane tri(meth)acrylate, glycerin tri(meth)acrylate, EO-modified glycerin tri(meth)acrylate, Examples include tetramethylolmethane tri(meth)acrylate, isocyanuric acid ethylene oxide-modified tri(meth)acrylate, allyl (meth)acrylate, vinyl (meth)acrylate, urethane (meth)acrylate and the like.
Among them, (meth)acrylates containing two ethylenically unsaturated groups are preferable in terms of the balance of adhesive physical properties after curing, and in particular, (poly)ethylene glycol di(meth)acrylate and (poly)propylene glycol. Di(meth)acrylate and (poly)tetramethylene glycol di(meth)acrylate are preferred.
Polyfunctional cross-linking agents may be used alone or in combination of two or more.
 〔熱架橋剤(c2)〕
 熱架橋剤(c2)は、主としてアクリル系樹脂(A)の構成モノマーである官能基含有モノマー由来の官能基と反応することで、優れた粘着力を発揮できる。例えば、イソシアネート系架橋剤(c2-1)、エポキシ系架橋剤(c2-2)、アジリジン系架橋剤(c2-3)、メラミン系架橋剤(c2-4)、アルデヒド系架橋剤(c2-5)、アミン系架橋剤(c2-6)、金属キレート系架橋剤(c2-7)が挙げられる。
 なかでも、基材との密着性を向上させる点やアクリル系樹脂(A)との反応性の点で、イソシアネート系架橋剤(c2-1)が好適に用いられる。
 熱架橋剤(c2)は1種を単独で使用してもよく、2種以上を併用してもよい。
[Thermal cross-linking agent (c2)]
The thermal cross-linking agent (c2) can exhibit excellent adhesion by reacting with functional groups derived from functional group-containing monomers that are mainly constituent monomers of the acrylic resin (A). For example, isocyanate cross-linking agent (c2-1), epoxy cross-linking agent (c2-2), aziridine cross-linking agent (c2-3), melamine cross-linking agent (c2-4), aldehyde cross-linking agent (c2-5 ), amine-based cross-linking agents (c2-6), and metal chelate-based cross-linking agents (c2-7).
Among them, the isocyanate-based cross-linking agent (c2-1) is preferably used in terms of improving adhesion to the substrate and reactivity with the acrylic resin (A).
The thermal cross-linking agent (c2) may be used alone or in combination of two or more.
 イソシアネート系架橋剤(c2-1)としては、例えば、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート等のトリレンジイソシアネート系化合物;
 1,3-キシリレンジイソシアネート、1,4-キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート等のキシリレンジイソシアネート系化合物;
 1,5-ナフタレンジイソシアネート、トリフェニルメタントリイソシアネート等の芳香族イソシアネート系化合物;
 ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート等のヘキサメチレンジイソシアネート系化合物やリジンジイソシアネート等の脂肪族イソシアネート系化合物;
 イソホロンジイソシアネート等の脂環式イソシアネート系化合物;
 これらのイソシアネート系化合物とトリメチロールプロパン等のポリオール化合物とのアダクト体;
 これらイソシアネート化合物のビュレット体やイソシアヌレート体;
 等が挙げられる。
Examples of the isocyanate-based cross-linking agent (c2-1) include tolylene diisocyanate-based compounds such as 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate;
xylylene diisocyanate compounds such as 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, tetramethyl xylylene diisocyanate;
Aromatic isocyanate compounds such as 1,5-naphthalene diisocyanate and triphenylmethane triisocyanate;
Hexamethylene diisocyanate compounds such as hexamethylene diisocyanate and trimethylhexamethylene diisocyanate, and aliphatic isocyanate compounds such as lysine diisocyanate;
Alicyclic isocyanate compounds such as isophorone diisocyanate;
Adducts of these isocyanate compounds and polyol compounds such as trimethylolpropane;
burettes and isocyanurates of these isocyanate compounds;
etc.
 イソシアネート系架橋剤(c2-1)のなかでも、反応性に優れる点からは芳香族イソシアネート系化合物を用いることが好ましく、特に好ましくはトリレンジイソシアネート系化合物である。また、黄変を抑制する点からは脂肪族イソシアネート系化合物を用いることが好ましく、特に好ましくはヘキサメチレンジイソシアネート系化合物である。 Among the isocyanate-based cross-linking agents (c2-1), it is preferable to use aromatic isocyanate-based compounds from the viewpoint of excellent reactivity, and tolylene diisocyanate-based compounds are particularly preferable. Moreover, from the viewpoint of suppressing yellowing, it is preferable to use an aliphatic isocyanate-based compound, and particularly preferably a hexamethylene diisocyanate-based compound.
 エポキシ系架橋剤(c2-2)としては、例えば、ビスフェノールA・エピクロルヒドリン型のエポキシ樹脂、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、グリセリントリグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ソルビトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエリスリトール、ジグリセロールポリグリシジルエーテル等が挙げられる。 Examples of the epoxy-based cross-linking agent (c2-2) include bisphenol A/epichlorohydrin type epoxy resin, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerin diglycidyl ether, glycerin triglycidyl ether, and 1,6-hexane. Diol diglycidyl ether, trimethylolpropane triglycidyl ether, sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidylerythritol, diglycerol polyglycidyl ether and the like.
 アジリジン系架橋剤(c2-3)としては、例えば、テトラメチロールメタン-トリ-β-アジリジニルプロピオネート、トリメチロールプロパン-トリ-β-アジリジニルプロピオネート、N,N′-ジフェニルメタン-4,4′-ビス(1-アジリジンカルボキシアミド)、N,N′-ヘキサメチレン-1,6-ビス(1-アジリジンカルボキシアミド)等が挙げられる。 Examples of aziridine-based cross-linking agents (c2-3) include tetramethylolmethane-tri-β-aziridinylpropionate, trimethylolpropane-tri-β-aziridinylpropionate, and N,N'-diphenylmethane. -4,4'-bis(1-aziridinecarboxamide), N,N'-hexamethylene-1,6-bis(1-aziridinecarboxamide) and the like.
 メラミン系架橋剤(c2-4)としては、例えば、へキサメトキシメチルメラミン、ヘキサエトキシメチルメラミン、ヘキサプロポキシメチルメラミン、ヘキサプトキシメチルメラミン、ヘキサペンチルオキシメチルメラミン、ヘキサヘキシルオキシメチルメラミン、メラミン樹脂等が挙げられる。 Melamine-based cross-linking agents (c2-4) include, for example, hexamethoxymethylmelamine, hexaethoxymethylmelamine, hexapropoxymethylmelamine, hexaptoxymethylmelamine, hexapentyloxymethylmelamine, hexahexyloxymethylmelamine, and melamine resins. etc.
 アルデヒド系架橋剤(c2-5)としては、例えば、グリオキザール、マロンジアルデヒド、スクシンジアルデヒド、マレインジアルデヒド、グルタルジアルデヒド、ホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド等が挙げられる。 Aldehyde-based cross-linking agents (c2-5) include, for example, glyoxal, malondialdehyde, succindialdehyde, maleinedialdehyde, glutaredialdehyde, formaldehyde, acetaldehyde, and benzaldehyde.
 アミン系架橋剤(c2-6)としては、例えば、ヘキサメチレンジアミン、トリエチルジアミン、ポリエチレンイミン、ヘキサメチレンテトラアミン、ジエチレントリアミン、トリエチルテトラアミン、イソフォロンジアミン、アミノ樹脂、ポリアミド等が挙げられる。 Examples of amine-based cross-linking agents (c2-6) include hexamethylenediamine, triethyldiamine, polyethyleneimine, hexamethylenetetraamine, diethylenetriamine, triethyltetramine, isophoronediamine, amino resins, and polyamides.
 金属キレート系架橋剤(c2-7)としては、例えば、アルミニウム、鉄、銅、亜鉛、スズ、チタン、ニッケル、アンチモン、マグネシウム、パナジウム、クロム、ジルコニウム等の多価金属のアセチルアセトンやアセトアセチルエステル配位化合物等が挙げられる。 Examples of metal chelate cross-linking agents (c2-7) include acetylacetone and acetoacetyl ester linkages of polyvalent metals such as aluminum, iron, copper, zinc, tin, titanium, nickel, antimony, magnesium, vanadium, chromium and zirconium. position compounds and the like.
 (シランカップリング剤(D))
 第三の態様に係る粘着剤組成物は、アクリル系樹脂(A)、光開始剤(B)および架橋剤(C)以外の化合物としてシランカップリング剤(D)をさらに含有することが耐久性を向上させる点で好ましい。
(Silane coupling agent (D))
The pressure-sensitive adhesive composition according to the third aspect further contains a silane coupling agent (D) as a compound other than the acrylic resin (A), the photoinitiator (B) and the cross-linking agent (C). is preferable in terms of improving
 シランカップリング剤(D)は、その構造中に、反応性官能基と、ケイ素原子に結合したアルコキシ基とをそれぞれ1つ以上含有する有機ケイ素化合物である。シランカップリング剤(D)としては、モノマー型とオリゴマー型が挙げられる。 The silane coupling agent (D) is an organosilicon compound containing in its structure one or more reactive functional groups and one or more alkoxy groups bonded to silicon atoms. The silane coupling agent (D) includes monomer type and oligomer type.
 シランカップリング剤(D)中の反応性官能基としては、例えば、エポキシ基、(メタ)アクリロイル基、メルカプト基、水酸基、カルボキシ基、アミノ基、アミド基、イソシアネート基等が挙げられる。これらのなかでも、耐久性、リワーク性に優れる点からエポキシ基、メルカプト基が好ましい。 Examples of reactive functional groups in the silane coupling agent (D) include epoxy groups, (meth)acryloyl groups, mercapto groups, hydroxyl groups, carboxy groups, amino groups, amide groups, isocyanate groups, and the like. Among these, an epoxy group and a mercapto group are preferable from the viewpoint of excellent durability and reworkability.
 シランカップリング剤(D)中の反応性官能基の含有割合としては、3,000g/mol以下が好ましく、1,500g/mol以下がより好ましく、1000g/mol以下がさらに好ましい。反応性官能基が前記数値範囲内であると、耐久性およびリワーク性のバランスが向上する。シランカップリング剤(D)中の反応性官能基の含有割合の下限値は、200g/molである。 The content of reactive functional groups in the silane coupling agent (D) is preferably 3,000 g/mol or less, more preferably 1,500 g/mol or less, and even more preferably 1,000 g/mol or less. When the reactive functional group is within the above numerical range, the balance between durability and reworkability is improved. The lower limit of the content of reactive functional groups in the silane coupling agent (D) is 200 g/mol.
 シランカップリング剤(D)中のケイ素原子に結合したアルコキシ基としては、耐久性と保存安定性の点から、炭素数1~8のアルコキシ基が好ましい。なかでもメトキシ基、エトキシ基がより好ましい。
 シランカップリング剤(D)は、反応性官能基およびケイ素原子と結合したアルコキシ基以外の有機官能基、例えば、アルキル基、フェニル基等を有していてもよい。
As the silicon-bonded alkoxy group in the silane coupling agent (D), an alkoxy group having 1 to 8 carbon atoms is preferable from the viewpoint of durability and storage stability. Among them, a methoxy group and an ethoxy group are more preferable.
The silane coupling agent (D) may have a reactive functional group and an organic functional group other than the silicon-bonded alkoxy group, such as an alkyl group or a phenyl group.
 シランカップリング剤(D)としては、例えば、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルジメトキシメチルシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、メチルトリ(グリシジル)シラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等が挙げられる。
 なかでも、耐熱性の点からγ-グリシドキシプロピルトリメトキシシランが好ましい。
 シランカップリング剤(D)は1種を単独で用いてもよく、2種以上を併用してもよい。
Silane coupling agents (D) include, for example, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropyldimethoxymethylsilane, γ-glycidoxypropyltrimethoxysilane, γ-glycid xypropyltriethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, methyltri(glycidyl)silane, β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl)ethyltrimethoxysilane and the like.
Among them, γ-glycidoxypropyltrimethoxysilane is preferable from the viewpoint of heat resistance.
Silane coupling agents (D) may be used alone or in combination of two or more.
 (カルボジイミド系化合物(E))
 第三の態様に係る粘着剤組成物は、アクリル系樹脂(A)、光開始剤(B)、架橋剤(C)およびシランカップリング剤(D)以外の化合物としてカルボジイミド系化合物(E)をさらに含有することが耐熱性の点で好ましい。
 カルボジイミド系化合物(E)としては、例えば、ビス(2,6-ジイソプロピルフェニル)カルボジイミド、ジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、ジメチルカルボジイミド、ジイソブチルカルボジイミド、ジオクチルカルボジイミド、tert-ブチルイソプロピルカルボジイミド、ジフェニルカルボジイミド、ジ-tert-ブチルカルボジイミド、ジドデシルカルボジイミド等のモノカルボジイミド、カルボジイミドが複数存在するポリカルボジイミドや環状カルボジイミド等が挙げられる。
 なかでも、耐熱性の点から、モノカルボジイミド系化合物、さらにはビス(2,6-ジイソプロピルフェニル)カルボジイミドが好ましい。
 カルボジイミド系化合物(E)は1種を単独で用いてもよく、2種以上を併用してもよい。
(Carbodiimide compound (E))
The pressure-sensitive adhesive composition according to the third aspect contains a carbodiimide compound (E) as a compound other than the acrylic resin (A), the photoinitiator (B), the cross-linking agent (C) and the silane coupling agent (D). Further containing is preferable from the viewpoint of heat resistance.
Carbodiimide compounds (E) include, for example, bis(2,6-diisopropylphenyl)carbodiimide, dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, tert-butylisopropylcarbodiimide, diphenylcarbodiimide, di-tert- Examples include monocarbodiimides such as butylcarbodiimide and didodecylcarbodiimide, polycarbodiimides containing multiple carbodiimides, and cyclic carbodiimides.
Among them, from the viewpoint of heat resistance, monocarbodiimide compounds and bis(2,6-diisopropylphenyl)carbodiimide are preferred.
The carbodiimide compound (E) may be used alone or in combination of two or more.
 (任意成分)
 第三の態様に係る粘着剤組成物は、必要に応じて、その他の任意成分としての粘着剤を含有してもよい。第三の態様に係る粘着剤組成物は、架橋促進剤、帯電防止剤、粘着付与剤、機能性色素等の従来公知の添加剤を含有してもよい。
(Optional component)
The pressure-sensitive adhesive composition according to the third aspect may optionally contain a pressure-sensitive adhesive as another optional component. The pressure-sensitive adhesive composition according to the third aspect may contain conventionally known additives such as cross-linking accelerators, antistatic agents, tackifiers and functional dyes.
 (粘着剤組成物の組成)
 第三の態様において、アクリル系樹脂(A)の含有量は、粘着剤組成物全体に対して80重量%以上が好ましく、90~99.9重量%がより好ましく、92~99.9重量%がさらに好ましい。アクリル系樹脂(A)の含有量が前記数値範囲内であると、一次硬化後の低架橋状態において優れた粘着物性を示す粘着シートが得られやすい。
(Composition of adhesive composition)
In the third aspect, the content of the acrylic resin (A) is preferably 80% by weight or more, more preferably 90 to 99.9% by weight, and 92 to 99.9% by weight with respect to the entire pressure-sensitive adhesive composition. is more preferred. When the content of the acrylic resin (A) is within the above numerical range, it is easy to obtain a pressure-sensitive adhesive sheet exhibiting excellent pressure-sensitive adhesive physical properties in a low crosslinked state after primary curing.
 第三の態様において、光開始剤(B)の含有量は、アクリル系樹脂(A)100重量部に対して0.01~10重量部が好ましく、0.1~5.0重量部がより好ましく、0.5~3.0重量部がさらに好ましい。光開始剤(B)の含有量が前記数値範囲内であると、完全硬化の際に十分な硬化性を得ることができる。 In the third aspect, the content of the photoinitiator (B) is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 5.0 parts by weight, relative to 100 parts by weight of the acrylic resin (A). Preferably, 0.5 to 3.0 parts by weight is more preferable. When the content of the photoinitiator (B) is within the above numerical range, sufficient curability can be obtained upon complete curing.
 第三の態様において分子内水素引抜型光開始剤(b1)の含有量は、アクリル系樹脂(A)100重量部に対して0.01~10重量部が好ましく、0.1~5.0重量部がより好ましい。分子内水素引抜型光開始剤(b1)の含有量が多すぎると完全硬化後の粘着力が低下する傾向がある。分子内水素引抜型光開始剤(b1)の含有量が少なすぎると低架橋度における粘着物性が悪化する傾向がある。 In the third aspect, the content of the intramolecular hydrogen abstraction type photoinitiator (b1) is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 5.0 parts by weight, relative to 100 parts by weight of the acrylic resin (A). Parts by weight are more preferred. If the content of the intramolecular hydrogen abstraction type photoinitiator (b1) is too high, the adhesive strength after complete curing tends to decrease. If the content of the intramolecular hydrogen abstraction type photoinitiator (b1) is too small, the adhesion property tends to deteriorate at a low degree of cross-linking.
 第三の態様において分子間水素引抜型光開始剤(b2)の含有量は、アクリル系樹脂(A)100重量部に対して0.01~10重量部が好ましく、0.1~5.0重量部がより好ましい。分子間水素引抜型光開始剤(b2)の含有量が多すぎると完全硬化後の粘着力が低下する傾向がある。分子間水素引抜型光開始剤(b2)の含有量が少なすぎると低架橋度における粘着物性が悪化する傾向がある。 In the third aspect, the content of the intermolecular hydrogen abstraction type photoinitiator (b2) is preferably 0.01 to 10 parts by weight, preferably 0.1 to 5.0 parts by weight, relative to 100 parts by weight of the acrylic resin (A). Parts by weight are more preferred. If the content of the intermolecular hydrogen abstraction type photoinitiator (b2) is too high, the adhesive strength after complete curing tends to decrease. If the content of the intermolecular hydrogen abstraction type photoinitiator (b2) is too small, the adhesion properties at a low degree of crosslinking tend to deteriorate.
 第三の態様において粘着剤組成物が架橋剤(C)を含有する場合、架橋剤(C)の含有量はアクリル系樹脂(A)100重量部に対して通常20重量部以下が好ましく、0.001~15重量部がより好ましく、0.1~10重量部がさらに好ましい。架橋剤(C)の含有量が多すぎると粘着力が低下する傾向がある。架橋剤(C)の含有量が少なすぎると高温条件下の粘着物性が低下する傾向がある。 In the third aspect, when the pressure-sensitive adhesive composition contains the cross-linking agent (C), the content of the cross-linking agent (C) is usually preferably 20 parts by weight or less with respect to 100 parts by weight of the acrylic resin (A). 0.001 to 15 parts by weight is more preferred, and 0.1 to 10 parts by weight is even more preferred. If the content of the cross-linking agent (C) is too large, the adhesive strength tends to decrease. If the content of the cross-linking agent (C) is too small, the adhesive physical properties under high temperature conditions tend to deteriorate.
 第三の態様において粘着剤組成物が活性エネルギー線架橋剤(c1)を含有する場合、活性エネルギー線架橋剤(c1)の含有量は、通常は、アクリル系樹脂(A)100重量部に対して0.01~20重量部が好ましく、0.1~10重量部がより好ましく、0.5~7.5重量部がさらに好ましい。
 活性エネルギー線架橋剤(c1)の含有量が少なすぎると、凝集力が不足するために充分な耐久性が得られない傾向がある。活性エネルギー線架橋剤(c1)の含有量が多すぎると一次硬化時における粘着物性が低下する傾向がある。
In the third aspect, when the adhesive composition contains the active energy ray cross-linking agent (c1), the content of the active energy ray cross-linking agent (c1) is usually based on 100 parts by weight of the acrylic resin (A) 0.01 to 20 parts by weight is preferable, 0.1 to 10 parts by weight is more preferable, and 0.5 to 7.5 parts by weight is even more preferable.
If the content of the active energy ray cross-linking agent (c1) is too small, there is a tendency that sufficient durability cannot be obtained due to insufficient cohesion. If the content of the active energy ray cross-linking agent (c1) is too large, the adhesive physical properties during primary curing tend to be lowered.
 第三の態様において粘着剤組成物が熱架橋剤(c2)を含有する場合、熱架橋剤(c2)の含有量は、通常は、アクリル系樹脂(A)100重量部に対して、0.001~5重量部が好ましく、0.02~1重量部がより好ましく、0.05~0.5重量部がさらに好ましい。
 熱架橋剤(c2)の含有量が少なすぎると、凝集力が不足し、一次硬化時において粘着物性が低下する傾向がある。熱架橋剤(c2)の含有量が多すぎると完全硬化時において粘着力が低下する傾向がある。
In the third aspect, when the pressure-sensitive adhesive composition contains the thermal cross-linking agent (c2), the content of the thermal cross-linking agent (c2) is usually 0.00 per 100 parts by weight of the acrylic resin (A). 001 to 5 parts by weight is preferred, 0.02 to 1 part by weight is more preferred, and 0.05 to 0.5 parts by weight is even more preferred.
If the content of the thermal cross-linking agent (c2) is too small, the cohesive force tends to be insufficient and the adhesive physical properties tend to deteriorate during the primary curing. If the content of the thermal cross-linking agent (c2) is too large, the adhesive strength tends to decrease at the time of complete curing.
 第三の態様において架橋剤(C)として、活性エネルギー線架橋剤(c1)および熱架橋剤(c2)を併用することが好ましい。併用する場合は、活性エネルギー線架橋剤(c1)と熱架橋剤(c2)の含有割合(c1/c2)は重量比で、100/1~100/50が好ましい。 In the third aspect, it is preferable to use an active energy ray cross-linking agent (c1) and a thermal cross-linking agent (c2) together as the cross-linking agent (C). When used in combination, the content ratio (c1/c2) of the active energy ray cross-linking agent (c1) and the thermal cross-linking agent (c2) is preferably 100/1 to 100/50 in weight ratio.
 第三の態様において粘着剤組成物がシランカップリング剤(D)を含有する場合、シランカップリング剤(D)の含有量は、アクリル系樹脂(A)100重量部に対して0.001~3重量部が好ましく、0.005~1重量部がより好ましく、0.01~0.5重量部がさらに好ましく、0.015~0.3重量部が特に好ましい。
 シランカップリング剤(D)の含有量が少なすぎると耐久性を向上させる効果が得られにくい傾向がある。シランカップリング剤(D)の含有量が多すぎるとブリードアウト等の影響で粘着力が低下する傾向がある。
In the third aspect, when the pressure-sensitive adhesive composition contains a silane coupling agent (D), the content of the silane coupling agent (D) is from 0.001 to 100 parts by weight of the acrylic resin (A). 3 parts by weight is preferred, 0.005 to 1 part by weight is more preferred, 0.01 to 0.5 parts by weight is even more preferred, and 0.015 to 0.3 parts by weight is particularly preferred.
If the content of the silane coupling agent (D) is too small, it tends to be difficult to obtain the effect of improving the durability. If the content of the silane coupling agent (D) is too large, the adhesive strength tends to decrease due to the influence of bleeding out and the like.
 第三の態様において粘着剤組成物がカルボジイミド系化合物(E)を含有する場合、カルボジイミド系化合物(E)の含有量は、アクリル系樹脂(A)100重量部に対して0.01~10重量部が好ましく、0.1~5重量部がより好ましく、0.2~2重量部がさらに好ましく、0.3~1重量部が特に好ましい。
 カルボジイミド系化合物(E)の含有量が少なすぎるとアクリル系樹脂(A)の熱安定性が低下する傾向がある。カルボジイミド系化合物(E)の含有量が多すぎるとブリードアウト等の影響で耐久性が低下する傾向がある。
In the third aspect, when the adhesive composition contains the carbodiimide compound (E), the content of the carbodiimide compound (E) is 0.01 to 10 parts by weight with respect to 100 parts by weight of the acrylic resin (A). 0.1 to 5 parts by weight is more preferred, 0.2 to 2 parts by weight is even more preferred, and 0.3 to 1 part by weight is particularly preferred.
If the content of the carbodiimide-based compound (E) is too small, the thermal stability of the acrylic resin (A) tends to decrease. If the content of the carbodiimide-based compound (E) is too large, there is a tendency for durability to decrease due to the effects of bleeding out and the like.
 第三の態様において粘着剤組成物が他の粘着剤や添加剤を含有する場合、他の粘着剤や添加剤の含有量は、アクリル系樹脂(A)100重量部に対して10重量部以下が好ましく、5重量部以下がより好ましい。 In the third aspect, when the adhesive composition contains other adhesives and additives, the content of the other adhesives and additives is 10 parts by weight or less with respect to 100 parts by weight of the acrylic resin (A). is preferred, and 5 parts by weight or less is more preferred.
 (粘着剤組成物の調製)
 アクリル系樹脂(A)、光開始剤(B)、必要に応じて、架橋剤(C)、シランカップリング剤(D)、カルボジイミド系化合物(E)、その他の任意成分を混合することにより第三の態様に係る粘着剤組成物を得ることができる。
 混合方法は特に限定されるものではなく、各成分を一括で混合する方法、任意の成分を混合した後、残りの成分を一括または順次混合する方法等、種々の方法を採用することができる。
(Preparation of adhesive composition)
Acrylic resin (A), photoinitiator (B), if necessary, cross-linking agent (C), silane coupling agent (D), carbodiimide compound (E), by mixing other optional components A pressure-sensitive adhesive composition according to the third aspect can be obtained.
The mixing method is not particularly limited, and various methods such as a method of mixing each component at once, a method of mixing arbitrary components and then mixing the remaining components all at once or sequentially can be adopted.
 (用途)
 第三の態様に係る粘着剤組成物は、複数の段階で硬化する多段硬化性粘着シートの粘着剤に好適に用いることができる。第三の態様の粘着剤組成物によれば、一次硬化後の低架橋状態においてもタック性が低く、定荷重保持力が高い点で優れた粘着物性が得られる。完全硬化後においては、通常の粘着力等の粘着物性のみならず、偏光板やガラス等様々な種類、形状の部材を貼合した際において優れた耐久性を有する。
(Application)
The pressure-sensitive adhesive composition according to the third aspect can be suitably used as a pressure-sensitive adhesive for a multi-stage curing pressure-sensitive adhesive sheet that cures in a plurality of stages. According to the pressure-sensitive adhesive composition of the third aspect, excellent pressure-sensitive adhesive physical properties can be obtained in terms of low tackiness and high constant load holding power even in a low crosslinked state after primary curing. After complete curing, it not only has adhesive physical properties such as ordinary adhesive strength, but also has excellent durability when bonding members of various types and shapes such as polarizing plates and glass.
 第三の態様に係る粘着剤組成物は、一次硬化後の低架橋状態においても応力のかかる複雑形状に密着し続けることが可能であり、その後完全硬化できる。そのため、特にタッチパネルおよび画像表示装置等に用いられる粘着剤や粘着シートの用途に好適に適用できる。 The pressure-sensitive adhesive composition according to the third aspect can continue to adhere to complex shapes that are subject to stress even in a low-crosslinking state after primary curing, and can be completely cured thereafter. Therefore, it is particularly suitable for use as an adhesive or an adhesive sheet for use in touch panels, image display devices, and the like.
<粘着剤>
 第三の態様に係る粘着剤は、上述した第三の態様に係る粘着剤組成物が架橋されてなるものである。第三の態様に係る粘着剤組成物が架橋(硬化)することにより、粘着剤組成物中に含有されるアクリル系樹脂(A)が分子内および分子間の少なくとも一方で架橋構造を形成する。その結果、第三の態様に係る粘着剤組成物が架橋されて第三の態様に係る粘着剤となる。
 アクリル系樹脂(A)が活性エネルギー線架橋性構造部位を有する場合は活性エネルギー線の照射により、架橋構造を形成できる。
<Adhesive>
The pressure-sensitive adhesive according to the third aspect is obtained by cross-linking the pressure-sensitive adhesive composition according to the third aspect described above. By cross-linking (curing) the pressure-sensitive adhesive composition according to the third aspect, the acrylic resin (A) contained in the pressure-sensitive adhesive composition forms a cross-linked structure at least either intramolecularly or intermolecularly. As a result, the pressure-sensitive adhesive composition according to the third aspect is crosslinked to become the pressure-sensitive adhesive according to the third aspect.
When the acrylic resin (A) has an active energy ray crosslinkable structural site, a crosslinked structure can be formed by irradiation with an active energy ray.
 第三の態様に係る粘着剤は、複数の段階で硬化させることができる多段硬化性を示す。第三の態様に係る粘着剤は、完全硬化前の一次硬化により低架橋状態となる。完全硬化と一次硬化は、必ずしも明確に区別できるものではないが、例えば、ゲル分率や動的粘弾性の相違により区別され得る。 The pressure-sensitive adhesive according to the third aspect exhibits multistage curability that allows curing in multiple stages. The pressure-sensitive adhesive according to the third aspect becomes in a low crosslinked state by primary curing before complete curing. Complete curing and primary curing are not always clearly distinguishable, but can be distinguished, for example, by differences in gel fraction and dynamic viscoelasticity.
 一次硬化工程および完全硬化工程のいずれの工程においても硬化手段は特に限定されず、加熱や活性エネルギー線の照射のいずれでもよい。また一次硬化工程を複数回に分けて行ってもよく、また完全硬化状態とするために多段硬化を行ってもよい。
 第三の態様に係る粘着剤は、一次硬化後の粘着物性に優れるため、タッチパネルや画像表示装置等を構成する光学部材の貼り合せに好適に用いられる。
Curing means is not particularly limited in either the primary curing step or the complete curing step, and heating or irradiation with active energy rays may be used. Further, the primary curing process may be divided into a plurality of times, and multistage curing may be performed to achieve a completely cured state.
Since the pressure-sensitive adhesive according to the third aspect is excellent in adhesive properties after primary curing, it is suitably used for bonding optical members constituting touch panels, image display devices, and the like.
 第三の態様に係る粘着剤は、第三の態様に係るアクリル系樹脂(A)の架橋物を少なくとも含有するとも言える。架橋物は、アクリル系樹脂(A)の少なくとも一部が部分的に架橋した部分架橋物であってもよく、アクリル系樹脂(A)の全てが全体的に架橋した完全架橋物であってもよい。また、第三の態様に係る粘着剤は、アクリル系樹脂(A)の部分架橋物および完全架橋物の両方を含有してもよい。 It can also be said that the adhesive according to the third aspect contains at least the crosslinked product of the acrylic resin (A) according to the third aspect. The crosslinked product may be a partially crosslinked product in which at least part of the acrylic resin (A) is partially crosslinked, or a completely crosslinked product in which the acrylic resin (A) is entirely crosslinked. good. Moreover, the pressure-sensitive adhesive according to the third aspect may contain both a partially crosslinked product and a completely crosslinked product of the acrylic resin (A).
<粘着シート>
 第三の態様に係る粘着シートは、第三の態様に係る粘着剤からなる粘着剤層を有する。第三の態様に係る粘着シートは、粘着剤層が複数の段階で硬化する多段硬化性を示し得る。
<Adhesive sheet>
A pressure-sensitive adhesive sheet according to the third aspect has a pressure-sensitive adhesive layer comprising the pressure-sensitive adhesive according to the third aspect. The pressure-sensitive adhesive sheet according to the third aspect can exhibit multistage curability in which the pressure-sensitive adhesive layer is cured in multiple stages.
 第三の態様に係る粘着剤からなる粘着剤層を基材シート上に設けることにより粘着シートとすることができる。また、粘着剤層を離型シート上に設けることにより両面粘着シートとすることができる。
 さらに、基材シートに替えて離型シート上に粘着剤層を形成し、反対側の粘着剤層面に離型シートを貼り合わせることにより、基材レスの両面粘着シートを作製することもできる。形成された粘着剤層上に、粘着剤層をさらに形成して、厚膜の粘着剤層をさらに形成してもよい。
 得られた粘着シートや両面粘着シートは、使用時には離型シートを粘着剤層から剥離して使用に供される。
A pressure-sensitive adhesive sheet can be obtained by providing a pressure-sensitive adhesive layer made of the pressure-sensitive adhesive according to the third aspect on a base sheet. Also, a double-sided pressure-sensitive adhesive sheet can be obtained by providing a pressure-sensitive adhesive layer on a release sheet.
Further, a substrate-less double-faced PSA sheet can be produced by forming a PSA layer on a release sheet in place of the base sheet, and laminating the release sheet on the opposite side of the PSA layer. A thick pressure-sensitive adhesive layer may be further formed by further forming a pressure-sensitive adhesive layer on the formed pressure-sensitive adhesive layer.
The pressure-sensitive adhesive sheet and double-sided pressure-sensitive adhesive sheet thus obtained are used by peeling off the release sheet from the pressure-sensitive adhesive layer.
 第三の態様に係る粘着シートの作製方法として、例えば、以下の(i)、(ii)等の方法が挙げられる。
(i)第三の態様に係る粘着剤組成物を溶媒に溶解した塗工液を塗工した後に粘着シートとする方法。
(ii)第三の態様に係る粘着剤組成物を加熱により溶融した後に粘着シートとする方法。
Examples of the method for producing the pressure-sensitive adhesive sheet according to the third aspect include the following methods (i) and (ii).
(i) A method of forming a pressure-sensitive adhesive sheet after applying a coating liquid in which the pressure-sensitive adhesive composition according to the third aspect is dissolved in a solvent.
(ii) A method of forming an adhesive sheet after melting the adhesive composition according to the third aspect by heating.
 (i)の方法について説明する。
 第三の態様に係る粘着剤組成物を溶媒に溶解した塗工液を塗工した後に粘着シートとする際には、適当な有機溶剤により第三の態様に係る粘着剤組成物を含有する塗工液の濃度を調整し、基材シート上に直接塗工する。その後、例えば80~105℃、0.5~10分間加熱処理等により乾燥させ、これを基材シートまたは離型シートに貼付する。その後、活性エネルギー線照射またはエージングすることによって粘着剤組成物を架橋(硬化)させ、粘着剤からなる粘着剤層を有する粘着シートを作製できる。
The method (i) will be explained.
When a pressure-sensitive adhesive sheet is formed after applying a coating liquid in which the pressure-sensitive adhesive composition according to the third aspect is dissolved in a solvent, the coating containing the pressure-sensitive adhesive composition according to the third aspect is coated with an appropriate organic solvent. Adjust the concentration of the working liquid and apply it directly onto the substrate sheet. After that, it is dried by heat treatment or the like at 80 to 105° C. for 0.5 to 10 minutes, and then attached to a base sheet or a release sheet. After that, the adhesive composition is crosslinked (cured) by irradiation with active energy rays or aged, and a pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer can be produced.
 濃度調整に用いられる有機溶剤としては、アクリル系樹脂(A)の重合反応に用いられる有機溶媒として挙げられたものを使用することができる。粘着剤組成物の濃度は、固形分として通常、20~60重量%であり、好ましくは30~50重量%である。 As the organic solvent used for adjusting the concentration, those listed as the organic solvent used for the polymerization reaction of the acrylic resin (A) can be used. The concentration of the pressure-sensitive adhesive composition is usually 20-60% by weight, preferably 30-50% by weight, as a solid content.
 (ii)の方法について説明する。
 第三の態様に係る粘着剤組成物を加熱により溶融した後に粘着シートとする場合、溶融した状態で基材シートの片面または両面に塗工し、その後に冷却する方法や、Tダイ等により基材シート上に押出しラミネートする方法等によって、基材シート上の片面または両面に所望の厚みとなるように粘着剤層を形成する。次いで、必要に応じて粘着剤層面に離型シートを貼り合わせることにより粘着シートを作製することができる。
The method (ii) will be described.
When the pressure-sensitive adhesive composition according to the third aspect is melted by heating to form a pressure-sensitive adhesive sheet, the melted state is coated on one or both sides of the base sheet, and then the base sheet is cooled, or a T-die or the like is used. A pressure-sensitive adhesive layer is formed on one side or both sides of the substrate sheet to a desired thickness by a method such as extrusion lamination on the material sheet. Then, a pressure-sensitive adhesive sheet can be produced by bonding a release sheet to the surface of the pressure-sensitive adhesive layer, if necessary.
 また、基材シート上に粘着剤層を形成した後、必要に応じて活性エネルギー線照射処理を行ない、さらにエージングすることで粘着剤組成物が硬化(架橋)してなる粘着剤層を有する粘着シートを作製することができる。
 さらに、離型シート上に粘着剤層を形成し、反対側の粘着剤層面に離型シートを貼り合わせることにより、基材レスの両面粘着シートを作製することもできる。
 得られた粘着シートや両面粘着シートは、使用時には、離型シートを粘着剤層から剥離して使用に供される。
In addition, after forming the adhesive layer on the base sheet, if necessary, the active energy ray irradiation treatment is performed, and the adhesive composition having the adhesive layer is cured (crosslinked) by aging. Sheets can be made.
Further, a substrate-less double-sided PSA sheet can be produced by forming a PSA layer on a release sheet and laminating the release sheet on the opposite side of the PSA layer.
The pressure-sensitive adhesive sheet and double-sided pressure-sensitive adhesive sheet thus obtained are used by peeling off the release sheet from the pressure-sensitive adhesive layer.
 基材シートとしては、例えば、ポリエチレンナフタート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンテレフタレート/イソフタレート共重合体等のポリエステル系樹脂;ポリエチレン、ポリプロピレン、ポリメチルペンテン等のポリオレフィン系樹脂;ポリフッ化ビニル、ポリフッ化ビニリデン、ポリフッ化エチレン等のポリフッ化エチレン樹脂;ナイロン6、ナイロン6,6等のポリアミド;ポリ塩化ビニル、ポリ塩化ビニル/酢酸ビニル共重合体、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、ポリビニルアルコール、ビニロン等のビニル重合体;三酢酸セルロース、セロファン等のセルロース系樹脂;ポリメタクリル酸メチル、ポリメタクリル酸エチル、ポリアクリル酸エチル、ポリアクリル酸ブチル等のアクリル系樹脂;ポリスチレン;ポリカーボネート;ポリアリレート;ポリイミド等の合成樹脂シート、
 アルミニウム、銅、鉄等の金属箔、
 上質紙、グラシン紙等の紙、
 硝子繊維、天然繊維、合成繊維等からなる織物や不織布が挙げられる。これらの基材シートは、単層体としてまたは2種以上が積層された複層体として用いることができる。これらのなかでも、軽量化等の点から、合成樹脂シートが好ましい。
Examples of the base sheet include polyester resins such as polyethylene naphtate, polyethylene terephthalate, polybutylene terephthalate, and polyethylene terephthalate/isophthalate copolymer; polyolefin resins such as polyethylene, polypropylene, and polymethylpentene; polyvinyl fluoride; Polyethylene fluoride resins such as polyvinylidene fluoride and polyethylene fluoride; polyamides such as nylon 6 and nylon 6,6; polyvinyl chloride, polyvinyl chloride/vinyl acetate copolymer, ethylene-vinyl acetate copolymer, ethylene-vinyl Vinyl polymers such as alcohol copolymers, polyvinyl alcohol and vinylon; Cellulose resins such as cellulose triacetate and cellophane; Acrylic resins such as polymethyl methacrylate, polyethyl methacrylate, polyethyl acrylate and polybutyl acrylate. Polystyrene; Polycarbonate; Polyarylate; Synthetic resin sheet such as polyimide,
Metal foil such as aluminum, copper, iron, etc.
High-quality paper, glassine paper, etc.
Textiles and non-woven fabrics made of glass fiber, natural fiber, synthetic fiber and the like can be mentioned. These base sheets can be used as a single-layer body or as a multi-layer body in which two or more types are laminated. Among these, a synthetic resin sheet is preferable from the viewpoint of weight reduction.
 離型シートとしては、例えば、基材シートで例示した各種の合成樹脂シート、紙、織物、不織布等に離型処理したものを使用することができる。離型シートとしては、例えば、シリコン系の離型シートを用いることが好ましい。 As the release sheet, for example, various synthetic resin sheets exemplified in the base sheet, paper, woven fabric, non-woven fabric, etc. that have been subjected to release treatment can be used. As the release sheet, it is preferable to use, for example, a silicon-based release sheet.
 粘着剤組成物の塗工方法は特に限定されない。例えば、ロールコーティング、ダイコーティング、グラビアコーティング、コンマコーティング、スロットコーティング、スクリーン印刷等の方法が挙げられる。 The method of applying the adhesive composition is not particularly limited. For example, methods such as roll coating, die coating, gravure coating, comma coating, slot coating and screen printing can be used.
 活性エネルギー線としては、遠紫外線、紫外線、近紫外線、赤外線等の光線;X線、γ線等の電磁波の他;電子線;プロトン線;中性子線等が利用できる。硬化速度、照射装置の入手のしやすさ、価格等から紫外線による硬化が好ましい。 As active energy rays, rays such as far-ultraviolet rays, ultraviolet rays, near-ultraviolet rays, and infrared rays; electromagnetic waves such as X-rays and γ-rays; electron beams; proton beams; Curing with UV light is preferred in terms of curing speed, availability of irradiation equipment, price, and the like.
 粘着シートの粘着剤層の完全硬化前のゲル分率については、被着体の形状に依らず、容易に貼り合わせることが可能な点と、貼り合わせた後に粘着層が被着体を保持できる点から、0.1~60重量%が好ましく、より好ましくは1~50重量%、特に好ましくは5~45重量%である。 Regarding the gel fraction of the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet before complete curing, it is possible to easily bond the adherend regardless of the shape of the adherend, and the pressure-sensitive adhesive layer can hold the adherend after bonding. From the point of view, it is preferably 0.1 to 60% by weight, more preferably 1 to 50% by weight, particularly preferably 5 to 45% by weight.
 粘着シートの粘着剤層の完全硬化後のゲル分率については、耐久性能と粘着力の点から、50~95重量%が好ましく、より好ましくは55~90重量%、特に好ましくは60~85重量%である。ゲル分率が低すぎると凝集力が低下することにより耐久性が低下する傾向がある。ゲル分率が高すぎると凝集力の上昇により粘着力が低下する傾向がある。 The gel fraction after complete curing of the adhesive layer of the adhesive sheet is preferably 50 to 95% by weight, more preferably 55 to 90% by weight, and particularly preferably 60 to 85% by weight, from the viewpoint of durability and adhesive strength. %. If the gel fraction is too low, cohesive strength tends to decrease, resulting in a decrease in durability. If the gel fraction is too high, there is a tendency for cohesive strength to increase and adhesive strength to decrease.
 ゲル分率は、例えば、以下の手法で適宜調整できる。
・活性エネルギー線照射量を調整すること。
・アクリル系樹脂(A)中の活性エネルギー線架橋性構造部位の含有量を調整すること。
・光開始剤(B)、架橋剤(C)の種類や量を調整すること。
The gel fraction can be appropriately adjusted, for example, by the following method.
・Adjust the amount of active energy ray irradiation.
- Adjust the content of the active energy ray-crosslinkable structural site in the acrylic resin (A).
- Adjust the types and amounts of the photoinitiator (B) and the cross-linking agent (C).
 ゲル分率は、架橋度(硬化度合い)の目安となるもので、例えば、以下の方法にて算出される。すなわち、基材となる高分子シート(例えば、ポリエチレンテレフタレート(PET)フィルム等)に粘着剤層が形成されてなる粘着シート(離型シートを設けていないもの)を200メッシュのSUS製金網で包み、23℃に保持したトルエン中に24時間浸漬したとき、金網中に残存した不溶解の粘着剤成分の重量百分率をゲル分率とする。ただし、トルエン溶解の前後における重量から基材の重量は差し引いて算出する。 The gel fraction is a measure of the degree of cross-linking (degree of curing), and is calculated, for example, by the following method. That is, an adhesive sheet (without a release sheet) in which an adhesive layer is formed on a polymer sheet (for example, polyethylene terephthalate (PET) film, etc.) serving as a base material is wrapped with a 200-mesh SUS wire mesh. , and the weight percentage of the undissolved pressure-sensitive adhesive component remaining in the wire mesh after being immersed in toluene maintained at 23°C for 24 hours is defined as the gel fraction. However, it is calculated by subtracting the weight of the substrate from the weight before and after the toluene dissolution.
 粘着シートの粘着剤層の厚みは、通常、50~3000μmが好ましく、より好ましくは75~1000μm、特に好ましくは100~350μmである。粘着剤層の厚みが薄すぎると衝撃吸収性が低下する傾向がある。粘着剤層の厚みが厚すぎると、例えば光学部材に貼り付けた際に全体の厚みが増して実用性が低下する傾向がある。 The thickness of the adhesive layer of the adhesive sheet is usually preferably 50-3000 μm, more preferably 75-1000 μm, and particularly preferably 100-350 μm. If the thickness of the pressure-sensitive adhesive layer is too thin, there is a tendency for the impact absorption to decrease. If the thickness of the pressure-sensitive adhesive layer is too thick, for example, when it is attached to an optical member, the overall thickness tends to increase, resulting in a decrease in practicality.
 粘着剤層の厚みは、ミツトヨ社製「ID-C112B」を用いて、粘着剤層含有積層体全体の厚みの測定値から、粘着剤層以外の構成部材の厚みの測定値を差し引くことにより求めた値である。 The thickness of the adhesive layer is obtained by subtracting the measured thickness of the constituent members other than the adhesive layer from the measured thickness of the entire laminate containing the adhesive layer using Mitutoyo's "ID-C112B". value.
 第三の態様に係る粘着シートの粘着剤層は、粘着剤層の厚みが100μmの場合のヘイズ値が2%以下であることが好ましく、より好ましくは0~1.5%、特に好ましくは0~1%である。ヘイズ値が高すぎると粘着剤層が白化して透明性が低下する傾向がある。
 ヘイズ値は、拡散透過率および全光線透過率を、HAZE MATER NDH4000(日本電色工業社製)を用いて測定し、得られた拡散透過率(DT)と全光線透過率(TT)の値を下記[式1]に代入して算出した。本機はJIS K7361-1に準拠している。
 ヘイズ値(%)=(DT/TT)×100 ・・・[式1]
The pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet according to the third aspect preferably has a haze value of 2% or less, more preferably 0 to 1.5%, particularly preferably 0 when the thickness of the pressure-sensitive adhesive layer is 100 μm. ~1%. If the haze value is too high, the pressure-sensitive adhesive layer tends to whiten and the transparency tends to decrease.
The haze value is obtained by measuring diffuse transmittance and total light transmittance using HAZE MATER NDH4000 (manufactured by Nippon Denshoku Industries Co., Ltd.), and obtained diffuse transmittance (DT) and total light transmittance (TT) values. was substituted into the following [Equation 1] for calculation. This machine complies with JIS K7361-1.
Haze value (%) = (DT/TT) x 100 [Formula 1]
 第三の態様においては、粘着剤層を光学部材上に積層形成することにより、粘着剤層付き光学部材を得ることができる。例えば、離型シート上に粘着剤層が形成された第三の態様に係る粘着シートの粘着剤層面を光学部材に貼り付けた後、離型シートを剥離することによって、粘着剤層付き光学部材を得ることができる。また、上記の両面粘着シートを用いて光学部材同士を貼合することもできる。 In the third aspect, an optical member with a pressure-sensitive adhesive layer can be obtained by laminating the pressure-sensitive adhesive layer on the optical member. For example, the pressure-sensitive adhesive layer surface of the pressure-sensitive adhesive sheet according to the third embodiment in which the pressure-sensitive adhesive layer is formed on the release sheet is attached to the optical member, and then the release sheet is peeled off to obtain the optical member with the pressure-sensitive adhesive layer. can be obtained. Optical members can also be bonded together using the above double-sided pressure-sensitive adhesive sheet.
 光学部材としては、タッチパネルや画像表示装置を構成する部材が挙げられる。例えば、ディスプレイ(有機EL、液晶)、透明電導膜基板(ITO基板)、保護フィルム(ガラス)、透明アンテナ(フィルム)、透明配線等が挙げられる。 Examples of optical members include members that make up touch panels and image display devices. Examples include displays (organic EL, liquid crystal), transparent conductive film substrates (ITO substrates), protective films (glass), transparent antennas (films), transparent wiring, and the like.
 以上説明した第三の態様の好ましい実施形態には以下の[C1]~[C6]が含まれるが、限定するものではない。
 [C1]アクリル系樹脂(A)と、光開始剤(B)とを含有し、前記アクリル系樹脂(A)は、ホモポリマーのガラス転移温度が-30℃以上である分岐アルキル(メタ)アクリレート(a1)を含有する共重合成分(a)の重合生成物であり、前記アクリル系樹脂(A)の動的粘弾性に基づくガラス転移温度が、-10℃以上であり、前記アクリル系樹脂(A)の重量平均分子量が、400,000以下であり、前記光開始剤(B)が、分子内水素引抜型光開始剤(b1)と分子間水素引抜型光開始剤(b2)とを含有する、粘着剤組成物。
 [C2]架橋剤(C)をさらに含有する、[C1]に記載の粘着剤組成物。
 [C3][C1]または[C2]に記載の粘着剤組成物が架橋されてなる、粘着剤。
 [C4]架橋が活性エネルギー線の照射により行なわれる、[C3]に記載の粘着剤。
 [C5][C3]または[C4]に記載の粘着剤からなる粘着剤層を有する、粘着シート。
 [C6]前記粘着剤層が、複数の段階で硬化する多段硬化性である、[C5]に記載の粘着シート。
Preferred embodiments of the third aspect described above include, but are not limited to, the following [C1] to [C6].
[C1] Contains an acrylic resin (A) and a photoinitiator (B), and the acrylic resin (A) is a branched alkyl (meth)acrylate having a homopolymer glass transition temperature of −30° C. or higher It is a polymerization product of a copolymer component (a) containing (a1), the acrylic resin (A) has a glass transition temperature based on dynamic viscoelasticity of −10° C. or higher, and the acrylic resin ( A) has a weight average molecular weight of 400,000 or less, and the photoinitiator (B) contains an intramolecular hydrogen abstraction photoinitiator (b1) and an intermolecular hydrogen abstraction photoinitiator (b2). A pressure-sensitive adhesive composition.
[C2] The pressure-sensitive adhesive composition according to [C1], further containing a cross-linking agent (C).
[C3] A pressure-sensitive adhesive obtained by cross-linking the pressure-sensitive adhesive composition according to [C1] or [C2].
[C4] The pressure-sensitive adhesive according to [C3], wherein the cross-linking is performed by irradiation with an active energy ray.
[C5] A pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer comprising the pressure-sensitive adhesive according to [C3] or [C4].
[C6] The pressure-sensitive adhesive sheet according to [C5], wherein the pressure-sensitive adhesive layer is multi-stage curing in which it is cured in a plurality of stages.
 本発明の好ましい実施形態には以下の[1]~[26]が含まれるが、限定するものではない。
 [1]アクリル系樹脂(A)と、光開始剤(B)と、を含有し、前記アクリル系樹脂(A)は、下記の共重合成分(a)の重合生成物であり、前記共重合成分(a)は、ホモポリマーを形成した際のガラス転移温度が-30~50℃となるアルキルアクリレート(a1)と、ホモポリマーを形成した際のガラス転移温度が-10~120℃となるアルキルメタクリレート(a2)と、を含有し、前記アルキルアクリレート(a1)と前記アルキルメタクリレート(a2)の合計含有量が、前記共重合成分(a)100重量%に対して5重量%以上である、粘着剤組成物。
 [2]前記共重合成分(a)が、水酸基含有モノマー(a3)をさらに含有する、[1]に記載の粘着剤組成物。
 [3]前記水酸基含有モノマー(a3)の含有量が、前記共重合成分(a)100重量%に対して0.1重量%以上である、[2]に記載の粘着剤組成物。
 [4]前記アクリル系樹脂(A)の動的粘弾性に基づくガラス転移温度が、-10℃以上である、[1]~[3]のいずれかに記載の粘着剤組成物。
 [5]前記アクリル系樹脂(A)の重量平均分子量が、50,000~500,000である、[1]~[4]のいずれかに記載の粘着剤組成物。
 [6]前記アクリル系樹脂(A)の重量平均分子量が、50,000~400,000である、[1]~[5]のいずれかに記載の粘着剤組成物。
 [7]前記アルキルアクリレート(a1)と前記アルキルメタクリレート(a2)の重量比が、5/95~55/45である、[1]~[6]のいずれかに記載の粘着剤組成物。
 [8]前記アルキルアクリレート(a1)と前記アルキルメタクリレート(a2)の合計含有量が、前記共重合成分(a)に対して30~70重量%である、[1]~[7]のいずれかに記載の粘着剤組成物。
 [9]前記共重合成分(a)が、アルキル鎖と水酸基とエチレン性不飽和基とを含有する水酸基含有モノマー(a4)をさらに含有する、[1]~[8]のいずれかに記載の粘着剤組成物。
 [10]前記共重合成分(a)中の前記水酸基含有モノマー(a3)のアルキル鎖の平均炭素数が、2.1以上である、[1]~[9]のいずれかに記載の粘着剤組成物。
 [11]前記アルキルアクリレート(a1)および前記アルキルメタクリレート(a2)のうちいずれか一方が、分岐鎖を有するアルキル基を有する、[1]~[10]のいずれかに記載の粘着剤組成物。
 [12]前記光開始剤(B)が、分子内水素引抜型光開始剤(b1)または分子間水素引抜型光開始剤(b2)を含有する、[1]~[11]のいずれかに記載の粘着剤組成物。
 [13]前記光開始剤(B)が、分子内水素引抜型光開始剤(b1)および分子間水素引抜型光開始剤(b2)を含有する、[1]~[12]のいずれかに記載の粘着剤組成物。
 [14]架橋剤(C)をさらに含有する、[1]~[13]のいずれかに記載の粘着剤組成物。
 [15][1]~[14]のいずれかに記載の粘着剤組成物が架橋されてなる、粘着剤。
 [16]架橋が活性エネルギー線の照射により行なわれる、[15]に記載の粘着剤。
 [17][15]または[16]に記載の粘着剤からなる粘着剤層を有する、粘着シート。
 [18]前記粘着剤層が、複数の段階で硬化する多段硬化性である、[17]に記載の粘着シート。
 [19][17]または[18]に記載の粘着シートの少なくとも片面に、離型フィルムが積層された積層構造を備えた、離型フィルム付き粘着シート。
 [20]画像表示装置用積層体であって、2つの画像表示装置構成部材が、[17]または[18]に記載の粘着シートを介して積層された積層構造を備え、前記2つの画像表示装置構成部材のうち一方が、曲面形状を有するカバーガラスであり、前記2つの画像表示装置構成部材のうちもう一方が、タッチセンサー、画像表示パネル、表面保護フィルム、反射防止フィルム、カラーフィルター、偏光フィルムおよび位相差フィルムからなる群から選ばれる少なくとも1種以上である、画像表示装置用積層体。
 [21][20]に記載の画像表示装置用積層体を備えた、曲面画像表示装置。
 [22]アクリル系樹脂(A)を含有し、前記アクリル系樹脂(A)は、下記の共重合成分(a)の重合生成物であり、前記共重合成分(a)は、アルキルアクリレート(a1)とアルキルメタクリレート(a2)を含有する、曲面光学部材用粘着剤組成物。
 [23]前記共重合成分(a)が、水酸基含有モノマー(a3)をさらに含有する、[22]に記載の曲面光学部材用粘着剤組成物。
 [24]前記アルキルアクリレート(a1)と前記アルキルメタクリレート(a2)の重量比が、5/95~55/45である、[22]または[23]に記載の曲面光学部材用粘着剤組成物。
 [25]前記アルキルアクリレート(a1)と前記アルキルメタクリレート(a2)の合計含有量が、前記共重合成分(a)に対して10重量%以上である、[22]~[24]のいずれかに記載の曲面光学部材用粘着剤組成物。
 [26]さらに光重合開始剤を含有する、[22]~[25]のいずれかに記載の曲面光学部材用粘着剤組成物。
Preferred embodiments of the present invention include, but are not limited to, [1] to [26] below.
[1] Contains an acrylic resin (A) and a photoinitiator (B), the acrylic resin (A) is a polymerization product of the following copolymerization component (a), and the copolymerization Component (a) consists of an alkyl acrylate (a1) having a glass transition temperature of −30 to 50° C. when forming a homopolymer, and an alkyl acrylate having a glass transition temperature of −10 to 120° C. when forming a homopolymer. and a methacrylate (a2), wherein the total content of the alkyl acrylate (a1) and the alkyl methacrylate (a2) is 5% by weight or more relative to 100% by weight of the copolymer component (a). agent composition.
[2] The adhesive composition according to [1], wherein the copolymer component (a) further contains a hydroxyl group-containing monomer (a3).
[3] The pressure-sensitive adhesive composition according to [2], wherein the content of the hydroxyl group-containing monomer (a3) is 0.1% by weight or more relative to 100% by weight of the copolymer component (a).
[4] The adhesive composition according to any one of [1] to [3], wherein the acrylic resin (A) has a glass transition temperature based on dynamic viscoelasticity of −10° C. or higher.
[5] The adhesive composition according to any one of [1] to [4], wherein the acrylic resin (A) has a weight average molecular weight of 50,000 to 500,000.
[6] The adhesive composition according to any one of [1] to [5], wherein the acrylic resin (A) has a weight average molecular weight of 50,000 to 400,000.
[7] The pressure-sensitive adhesive composition according to any one of [1] to [6], wherein the weight ratio of the alkyl acrylate (a1) and the alkyl methacrylate (a2) is 5/95 to 55/45.
[8] Any one of [1] to [7], wherein the total content of the alkyl acrylate (a1) and the alkyl methacrylate (a2) is 30 to 70% by weight relative to the copolymer component (a) The pressure-sensitive adhesive composition according to .
[9] The copolymerization component (a) according to any one of [1] to [8], further comprising a hydroxyl group-containing monomer (a4) containing an alkyl chain, a hydroxyl group and an ethylenically unsaturated group. Adhesive composition.
[10] The pressure-sensitive adhesive according to any one of [1] to [9], wherein the hydroxyl-containing monomer (a3) in the copolymer component (a) has an average alkyl chain carbon number of 2.1 or more. Composition.
[11] The pressure-sensitive adhesive composition according to any one of [1] to [10], wherein one of the alkyl acrylate (a1) and the alkyl methacrylate (a2) has a branched alkyl group.
[12] Any one of [1] to [11], wherein the photoinitiator (B) contains an intramolecular hydrogen abstraction photoinitiator (b1) or an intermolecular hydrogen abstraction photoinitiator (b2) The adhesive composition described.
[13] Any one of [1] to [12], wherein the photoinitiator (B) contains an intramolecular hydrogen abstraction photoinitiator (b1) and an intermolecular hydrogen abstraction photoinitiator (b2). The adhesive composition described.
[14] The pressure-sensitive adhesive composition according to any one of [1] to [13], further containing a cross-linking agent (C).
[15] A pressure-sensitive adhesive obtained by cross-linking the pressure-sensitive adhesive composition according to any one of [1] to [14].
[16] The pressure-sensitive adhesive according to [15], wherein the cross-linking is performed by irradiation with an active energy ray.
[17] A pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer comprising the pressure-sensitive adhesive according to [15] or [16].
[18] The pressure-sensitive adhesive sheet according to [17], wherein the pressure-sensitive adhesive layer is multi-stage curing that cures in a plurality of stages.
[19] A pressure-sensitive adhesive sheet with a release film, comprising a laminated structure in which a release film is laminated on at least one side of the pressure-sensitive adhesive sheet of [17] or [18].
[20] A laminate for an image display device, comprising a laminated structure in which two image display device constituent members are laminated via the pressure-sensitive adhesive sheet of [17] or [18], and the two image display devices One of the device constituent members is a cover glass having a curved surface shape, and the other of the two image display device constituent members is a touch sensor, an image display panel, a surface protective film, an antireflection film, a color filter, and a polarized light. A laminate for an image display device, which is at least one selected from the group consisting of films and retardation films.
[21] A curved image display device comprising the laminate for an image display device according to [20].
[22] It contains an acrylic resin (A), the acrylic resin (A) is a polymerization product of the following copolymerization component (a), and the copolymerization component (a) is an alkyl acrylate (a1 ) and an alkyl methacrylate (a2).
[23] The pressure-sensitive adhesive composition for curved optical members according to [22], wherein the copolymer component (a) further contains a hydroxyl group-containing monomer (a3).
[24] The adhesive composition for curved optical members according to [22] or [23], wherein the weight ratio of the alkyl acrylate (a1) and the alkyl methacrylate (a2) is 5/95 to 55/45.
[25] Any one of [22] to [24], wherein the total content of the alkyl acrylate (a1) and the alkyl methacrylate (a2) is 10% by weight or more with respect to the copolymer component (a) The pressure-sensitive adhesive composition for curved optical members described above.
[26] The adhesive composition for curved optical members according to any one of [22] to [25], further comprising a photopolymerization initiator.
 以上、本発明の各態様について具体的な実施形態を例示しながら説明したが、各実施形態は例として提示されたものであり、本発明の範囲を限定するものではない。本明細書に記載された各態様およびその各実施形態は、発明の効果が奏される範囲内で、様々に変形することができ、かつ、実施可能な範囲内で、他の態様の説明において開示された特徴と組み合わせることができる。 As described above, each aspect of the present invention has been described by exemplifying specific embodiments, but each embodiment is presented as an example and does not limit the scope of the present invention. Each aspect and each embodiment thereof described in this specification can be variously modified within the scope of achieving the effect of the invention, and within the practicable range, in the description of other aspects Any combination of the disclosed features is possible.
[第一の態様の実施例および比較例]
 以下、本発明の第一の態様の実施例および比較例を具体的に説明するが、本発明は以下の記載に限定されない。例中、「部」、「%」とあるのは、重量基準を意味する。また、アクリル系樹脂(A)の重量平均分子量、動的粘弾性に基づくガラス転移温度の測定、粘着剤層の厚み、ヘイズ値(%)に関しては、上述の第一の態様に係る実施形態に記載の方法に従って測定した。
[Examples and comparative examples of the first aspect]
EXAMPLES Examples and comparative examples of the first aspect of the present invention will be specifically described below, but the present invention is not limited to the following descriptions. In the examples, "parts" and "%" mean weight basis. In addition, regarding the weight average molecular weight of the acrylic resin (A), the measurement of the glass transition temperature based on dynamic viscoelasticity, the thickness of the adhesive layer, and the haze value (%), the above-described embodiment according to the first aspect Measured according to the described method.
<略語、原料>
 (アルキルアクリレート(a1))
・MA:メチルアクリレート(ホモポリマーのTg:8℃)
・tBA:tert-ブチルアクリレート(ホモポリマーのTg:41℃)
<Abbreviations, raw materials>
(Alkyl acrylate (a1))
・MA: methyl acrylate (Tg of homopolymer: 8°C)
・ tBA: tert-butyl acrylate (Tg of homopolymer: 41 ° C.)
 (アルキルメタクリレート(a2))
・MMA:メチルメタクリレート(ホモポリマーのTg:105℃)
・EMA:エチルメタクリレート(ホモポリマーのTg:65℃)
・IBMA:イソブチルメタクリレート(ホモポリマーのTg:48℃)
(Alkyl methacrylate (a2))
・MMA: methyl methacrylate (Tg of homopolymer: 105°C)
・EMA: Ethyl methacrylate (Tg of homopolymer: 65°C)
IBMA: isobutyl methacrylate (Tg of homopolymer: 48°C)
 (水酸基含有モノマー(a3))
・4HBA:4-ヒドロキシブチルアクリレート
・HEA:2-ヒドロキシエチルアクリレート
(Hydroxyl group-containing monomer (a3))
・4HBA: 4-hydroxybutyl acrylate ・HEA: 2-hydroxyethyl acrylate
 (エチレン性不飽和モノマー(a4))
・2EHA:2-エチルヘキシルアクリレート(ホモポリマーのTg:-70℃)
(Ethylenically unsaturated monomer (a4))
2EHA: 2-ethylhexyl acrylate (Tg of homopolymer: -70°C)
・ADVN:2,2’-アゾビス(2,4-ジメチルバレロニトリル)(10時間半減期温度52℃) ・ ADVN: 2,2'-azobis (2,4-dimethylvaleronitrile) (10-hour half-life temperature 52 ° C.)
 (光開始剤(B))
 〔分子内水素引抜型光開始剤(b1)〕
・Omnirad 754:IGM Resins B.V.社製の製品
 〔分子間水素引抜型光開始剤(b2)〕
・Esacure TZT:IGM Resins B.V.社製の製品
・MBP:新菱社製の製品
(Photoinitiator (B))
[Intramolecular hydrogen abstraction type photoinitiator (b1)]
- Omnirad 754: IGM Resins B.I. V. Company product [Intermolecular hydrogen abstraction type photoinitiator (b2)]
- Esacure TZT: IGM Resins B.I. V. Products manufactured by Shinryo Corporation ・MBP: Products manufactured by Shinryo Corporation
 (架橋剤(C))
・ポリプロピレングリコール♯400ジアクリレート(NKエステルAPG400、新中村化学工業社製の製品)
(Crosslinking agent (C))
・ Polypropylene glycol #400 diacrylate (NK Ester APG400, a product manufactured by Shin-Nakamura Chemical Co., Ltd.)
 (シランカップリング剤(D))
・KBM403(信越化学工業社製の製品)
(Silane coupling agent (D))
・KBM403 (manufactured by Shin-Etsu Chemical Co., Ltd.)
<製造例A1:アクリル系樹脂(A-A1)の製造>
 EMA:35部、MA:10部、4HBA:5部、HEA:10部、2EHA:40部を混合し、モノマー溶液を調製した。冷却器付きの2Lフラスコに、重合溶媒として酢酸エチル:18部(沸点77℃)、メチルエチルケトン:18部(沸点80℃)、重合開始剤としてADVN:0.01部、あらかじめ混合したモノマー溶液100部のうちの10%を入れ、フラスコ内で加熱還流させた後、酢酸エチル:10部、ADVN:0.18部、前述のモノマー溶液の残り90%を3時間かけて滴下した。さらに、滴下30分後、酢酸エチル:10部とADVN:0.13部の混合物を1時間かけ滴下して反応させ、アクリル系樹脂(A-A1)の溶液を得た。アクリル系樹脂(A-A1)の重量平均分子量(Mw)、分散度、動的粘弾性に基づくガラス転移温度の測定結果を表1に示す。
<Production Example A1: Production of acrylic resin (A-A1)>
35 parts of EMA, 10 parts of MA, 5 parts of 4HBA, 10 parts of HEA and 40 parts of 2EHA were mixed to prepare a monomer solution. Ethyl acetate: 18 parts (boiling point: 77°C), methyl ethyl ketone: 18 parts (boiling point: 80°C), ADVN: 0.01 part as a polymerization initiator, and 100 parts of a premixed monomer solution are placed in a 2 L flask equipped with a condenser. After 10% of the solution was added and heated to reflux in the flask, 10 parts of ethyl acetate, 0.18 parts of ADVN, and the remaining 90% of the above monomer solution were added dropwise over 3 hours. Further, 30 minutes after dropping, a mixture of 10 parts of ethyl acetate and 0.13 parts of ADVN was added dropwise over 1 hour for reaction to obtain a solution of acrylic resin (A-A1). Table 1 shows the measurement results of the glass transition temperature based on the weight average molecular weight (Mw), dispersity, and dynamic viscoelasticity of the acrylic resin (A-A1).
<製造例A2~A6、比較製造例A1、A2>
 モノマー溶液からなる共重合成分の組成を表1の通りとした以外は製造例A1と同様にしてアクリル系樹脂(A-A2)~アクリル系樹脂(A-A6)、アクリル系樹脂(A’-A1)、アクリル系樹脂(A’-A2)を製造した。各アクリル系樹脂の重量平均分子量(Mw)、分散度、動的粘弾性に基づくガラス転移温度の測定結果を表1に示す。
<Production Examples A2 to A6, Comparative Production Examples A1 and A2>
Acrylic resin (A-A2) to acrylic resin (A-A6), acrylic resin (A'- A1) and acrylic resin (A'-A2) were produced. Table 1 shows the measurement results of the glass transition temperature based on the weight average molecular weight (Mw), dispersity, and dynamic viscoelasticity of each acrylic resin.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<実施例A1>
 アクリル系樹脂(A-A1)の溶液100部(固形分換算)に対して、Omnirad 754:2.0部(固形分換算)、Esacure TZT:1.0部(固形分換算)、ポリプロピレングリコール♯400ジアクリレート:5.0部(固形分換算)、KBM403:0.1部(固形分換算)を混合し、粘着剤組成物を得た。得られた粘着剤組成物を酢酸エチルにて固形分濃度45%に調整し、ポリエステル系離型シートに、乾燥後の厚みが約50μmとなるように塗布し、100℃で5分間乾燥し、粘着剤組成物層を形成した。
<Example A1>
Omnirad 754: 2.0 parts (solid content conversion), Esacure TZT: 1.0 part (solid content conversion), polypropylene glycol # for 100 parts of acrylic resin (A-A1) solution (solid content conversion) 400 diacrylate: 5.0 parts (solid content conversion) and KBM403: 0.1 part (solid content conversion) were mixed to obtain an adhesive composition. The obtained pressure-sensitive adhesive composition was adjusted to a solid content concentration of 45% with ethyl acetate, applied to a polyester release sheet so that the thickness after drying was about 50 μm, dried at 100 ° C. for 5 minutes, An adhesive composition layer was formed.
 このようにして粘着剤組成物層が形成されたポリエステル系離型シートを2枚用意し、両粘着剤組成物層を対向させて積層した。積層した粘着剤組成物層の両側をポリエステル系離型シートで挟んだ状態で、高圧水銀UV照射装置にて、ピーク照度:150mW/cm、積算露光量:1000mJ/cm(500mJ/cm×2パス)で紫外線照射を行うことで粘着剤層を形成し(一次硬化)、粘着剤層の厚みが100μmの基材レス両面粘着シートを得た。
 次いで、得られた基材レス両面粘着シートの粘着剤層から一方の面の離型シートを剥がし、露出した粘着剤層側を易接着処理ポリエチレンテレフタレート(PET)シート(厚み125μm)に押圧し、粘着剤層の厚みが100μmの粘着剤層付きPETシートを得た。
Two polyester-based release sheets on which the pressure-sensitive adhesive composition layer was formed in this manner were prepared and laminated with the pressure-sensitive adhesive composition layers opposed to each other. With both sides of the laminated pressure-sensitive adhesive composition layer sandwiched between polyester-based release sheets, a high-pressure mercury UV irradiation apparatus was used to irradiate the adhesive composition layer with a peak illuminance of 150 mW/cm 2 and an integrated exposure amount of 1000 mJ/cm 2 (500 mJ/cm 2 ) . × 2 passes) to form a pressure-sensitive adhesive layer (primary curing) to obtain a substrate-less double-sided pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer thickness of 100 μm.
Next, the release sheet on one side was peeled off from the adhesive layer of the obtained substrate-less double-sided adhesive sheet, and the exposed adhesive layer side was pressed against an easy-adhesion-treated polyethylene terephthalate (PET) sheet (thickness: 125 μm), A PET sheet with an adhesive layer having an adhesive layer thickness of 100 μm was obtained.
<実施例A2~A6、比較例A1、A2>
 表2に示す通りに、アクリル系樹脂(A)、光開始剤(B)を変更した以外は実施例A1と同様にして各例の粘着剤組成物を調製した。次いで、実施例A1と同様にして粘着剤層の厚みが100μmの基材レス両面粘着シート、粘着剤層付きPETシートを順次作製した。各例の粘着剤組成物の組成を表2に示す。
<Examples A2 to A6, Comparative Examples A1 and A2>
As shown in Table 2, a pressure-sensitive adhesive composition of each example was prepared in the same manner as in Example A1, except that the acrylic resin (A) and the photoinitiator (B) were changed. Then, in the same manner as in Example A1, a substrate-less double-sided pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer with a thickness of 100 μm and a PET sheet with a pressure-sensitive adhesive layer were sequentially produced. Table 2 shows the composition of the pressure-sensitive adhesive composition of each example.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<測定方法、評価方法>
 実施例A1~A6、比較例A1、A2の粘着組成物の測定方法、評価方法を以下に示す。結果を表3~5に示す。
<Measurement method, evaluation method>
Measurement methods and evaluation methods for the adhesive compositions of Examples A1 to A6 and Comparative Examples A1 and A2 are shown below. The results are shown in Tables 3-5.
 (ゲル分率:完全硬化前(一次硬化後))
 各例の基材レス両面粘着シートを40mm×40mmに裁断した後、23℃×50%RHの条件下で30分静置した後、一方の離型シートを剥がし、露出した粘着剤層側を50mm×100mmのSUSメッシュシート(200メッシュ)に貼合した。残りの離型シートを剥離し、SUSメッシュシートの長手方向に対して中央部より折り返して粘着剤層をSUSメッシュシートで包み込んだ。これを23℃に保持したトルエン250gの入った密封容器にて24時間浸漬したときの重量変化からゲル分率(%)を算出した。
(Gel fraction: before complete curing (after primary curing))
After cutting the substrate-less double-sided pressure-sensitive adhesive sheet of each example into 40 mm × 40 mm, let it stand under the conditions of 23 ° C. × 50% RH for 30 minutes, peel off one release sheet, and expose the exposed pressure-sensitive adhesive layer side. It was pasted on a 50 mm×100 mm SUS mesh sheet (200 mesh). The rest of the release sheet was peeled off, and the pressure-sensitive adhesive layer was wrapped with the SUS mesh sheet by folding back from the central portion in the longitudinal direction of the SUS mesh sheet. The gel fraction (%) was calculated from the weight change when this was immersed in a sealed container containing 250 g of toluene kept at 23° C. for 24 hours.
 (定荷重保持力(50℃):完全硬化前(一次硬化後))
 各例の粘着剤層付きPETシートについて、幅25mm×長さ75mm(粘着剤層部の幅25mm×長さ50mm+非粘着層部の幅25mm×長さ25mm)の大きさに裁断し、離型シートを剥離した。露出した粘着剤層側をステンレス鋼板(SUS304)に2kgローラーを往復させ加圧して貼付(貼り付け面積25mm×50mm)して、50℃雰囲気下で20分間静置した。その後、非貼付部(面積25mm×25mm)の長さ方向端部に50gのおもりを吊るし、ステンレス鋼板の平面に対して90°の方向に50gの荷重を加え、その状態で60分間静置し、PETシートが剥離した距離を測定した。評価基準は下記の通りである。
 A・・・剥離距離が10mm未満である。
 B・・・剥離距離が10mm以上、50mm未満である。
 C・・・PETシートが完全に剥離して落下した。
(Constant load holding power (50°C): before complete curing (after primary curing))
The PET sheet with an adhesive layer of each example was cut into a size of 25 mm width x 75 mm length (adhesive layer width 25 mm x length 50 mm + non-adhesive layer width 25 mm x length 25 mm) and released. The sheet was peeled off. The exposed pressure-sensitive adhesive layer side was attached to a stainless steel plate (SUS304) by reciprocating a 2-kg roller under pressure (attachment area: 25 mm x 50 mm), and allowed to stand in an atmosphere of 50°C for 20 minutes. After that, a weight of 50 g was hung from the end in the length direction of the non-attached part (area 25 mm × 25 mm), a load of 50 g was applied in a direction of 90° to the plane of the stainless steel plate, and it was left to stand for 60 minutes in that state. , the distance at which the PET sheet was peeled off was measured. Evaluation criteria are as follows.
A: The peel distance is less than 10 mm.
B: The peel distance is 10 mm or more and less than 50 mm.
C: The PET sheet was completely peeled off and dropped.
 (プローブタック:完全硬化前(一次硬化後))
 各例の粘着剤層付きPETシートについて、幅12mm×長さ12mmの大きさに裁断し、離型シートを剥離し、プローブタックテスター(テスター産業社製、プローブタックテスターTE-6001)を用いて、加圧時間1秒、貼り付け圧力500gf、押し込み速度120mm/min、引き上げ速度600mm/min、プローブ径5.1mm(直径)の条件にてプローブタック(単位:N)を測定した。評価基準は下記の通りである。
 A・・・プローブタック(単位:N)が5未満である。
 B・・・プローブタック(単位:N)が5以上、7.5未満である。
 C・・・プローブタック(単位:N)が7.5以上、10未満である。
 D・・・プローブタック(単位:N)が10以上である。
(Probe tack: before complete curing (after primary curing))
The PET sheet with an adhesive layer of each example was cut into a size of 12 mm width x 12 mm length, the release sheet was peeled off, and a probe tack tester (manufactured by Tester Sangyo Co., Ltd., probe tack tester TE-6001) was used. , pressure time of 1 second, affixing pressure of 500 gf, pushing speed of 120 mm/min, lifting speed of 600 mm/min, probe diameter of 5.1 mm (diameter), and probe tack (unit: N) was measured. Evaluation criteria are as follows.
A: The probe tack (unit: N) is less than 5.
B... Probe tack (unit: N) is 5 or more and less than 7.5.
C: The probe tack (unit: N) is 7.5 or more and less than 10.
D... Probe tack (unit: N) is 10 or more.
 (ゲル分率:完全硬化後)
 各例の基材レス両面粘着シートを高圧水銀UV照射装置にて、ピーク照度:150mW/cm、積算露光量:4000mJ/cm(1000mJ/cm×4パス)で紫外線照射を行った後、40mm×40mmに裁断し、23℃×50%RHの条件下で30分静置した。その後、一方の離型シートを剥がし、露出した粘着剤層側を50mm×100mmのSUSメッシュシート(200メッシュ)に貼合した。残りの離型シートを剥離し、SUSメッシュシートの長手方向に対して中央部より折り返して粘着剤層をSUSメッシュシートで包み込んだ。これを23℃に保持したトルエン250gの入った密封容器にて24時間浸漬したときの重量変化からゲル分率(%)を算出した。
(Gel fraction: after complete curing)
The substrate-less double-sided pressure-sensitive adhesive sheet of each example was irradiated with ultraviolet rays using a high-pressure mercury UV irradiation device at a peak illuminance of 150 mW/cm 2 and an integrated exposure amount of 4000 mJ/cm 2 (1000 mJ/cm 2 × 4 passes). , 40 mm x 40 mm, and allowed to stand under conditions of 23°C x 50% RH for 30 minutes. Then, one of the release sheets was peeled off, and the exposed pressure-sensitive adhesive layer side was attached to a 50 mm×100 mm SUS mesh sheet (200 mesh). The rest of the release sheet was peeled off, and the pressure-sensitive adhesive layer was wrapped with the SUS mesh sheet by folding back from the central portion in the longitudinal direction of the SUS mesh sheet. The gel fraction (%) was calculated from the weight change when this was immersed in a sealed container containing 250 g of toluene kept at 23° C. for 24 hours.
 (180度剥離強度(23℃):完全硬化後)
 各例の粘着剤層付きPETシートについて、幅25mm×長さ100mmの大きさに裁断し、高圧水銀UV照射装置にて、ピーク照度:150mW/cm、積算露光量:4000mJ/cm(1000mJ/cm×4パス)で紫外線照射を行った後、離型シートを剥離した。露出した粘着剤層側を無アルカリガラス(コーニング社製「イーグルXG」、厚み1.1mm)に、23℃、50%RHの雰囲気下、2kgゴムローラー2往復で加圧して貼付し、同雰囲気下で30分間静置した。この後、常温(23℃)下、剥離速度300mm/minで180度剥離強度(N/25mm)を測定した。
(180 degree peel strength (23°C): after complete curing)
The PET sheet with an adhesive layer of each example was cut into a size of 25 mm in width x 100 mm in length, and was irradiated with a high-pressure mercury UV irradiation device with a peak illuminance of 150 mW/cm 2 and an integrated exposure of 4000 mJ/cm 2 (1000 mJ). /cm 2 ×4 passes), and then the release sheet was peeled off. The exposed pressure-sensitive adhesive layer side was attached to non-alkali glass ("Eagle XG" manufactured by Corning, thickness 1.1 mm) under an atmosphere of 23°C and 50% RH with two reciprocations of a 2-kg rubber roller under the same atmosphere. It was left under for 30 minutes. After that, the 180 degree peel strength (N/25 mm) was measured at normal temperature (23° C.) at a peel rate of 300 mm/min.
 (定荷重保持力(80℃):完全硬化後)
 各例の粘着剤層付きPETシートについて、幅25mm×長さ75mm(粘着剤層部の幅25mm×長さ50mm+非粘着層部の幅25mm×長さ25mm)の大きさに裁断し、高圧水銀UV照射装置にて、ピーク照度:150mW/cm、積算露光量:4000mJ/cm(1000mJ/cm×4パス)の条件で紫外線照射を行った後、離型シートを剥離した。露出した粘着剤層側をステンレス鋼板(SUS304)に2kgローラーを往復させ加圧して貼付(貼り付け面積25mm×50mm)し、80℃雰囲気下で20分間静置した。その後、非貼付部(面積25mm×25mm)の長さ方向端部に50gのおもりを吊るし、ステンレス鋼板の平面に対して90°の方向に50gの荷重を加え、その状態で60分間静置し、PETシートが剥離した距離を測定した。評価基準は下記の通りである。
 A・・・剥離距離が5mm未満である。
 B・・・剥離距離が5mm以上10mm未満である。
 C・・・剥離距離が10mm以上、もしくはPETシートが完全に剥離して落下した。
(Constant load holding power (80°C): after complete curing)
The PET sheet with an adhesive layer of each example was cut into a size of 25 mm width x 75 mm length (adhesive layer width 25 mm x length 50 mm + non-adhesive layer width 25 mm x length 25 mm). After UV irradiation was performed using a UV irradiation apparatus under the conditions of peak illuminance: 150 mW/cm 2 and cumulative exposure amount: 4000 mJ/cm 2 (1000 mJ/cm 2 ×4 passes), the release sheet was peeled off. The exposed pressure-sensitive adhesive layer side was attached to a stainless steel plate (SUS304) by reciprocating a 2-kg roller under pressure (attachment area: 25 mm x 50 mm), and allowed to stand in an atmosphere of 80°C for 20 minutes. After that, a weight of 50 g was hung from the end of the length direction of the non-attached part (area 25 mm × 25 mm), a load of 50 g was applied in the direction of 90 ° to the plane of the stainless steel plate, and it was left to stand for 60 minutes in that state. , the distance that the PET sheet was peeled off was measured. Evaluation criteria are as follows.
A: The peel distance is less than 5 mm.
B: The peel distance is 5 mm or more and less than 10 mm.
C: The peel distance was 10 mm or more, or the PET sheet was completely peeled and dropped.
 (保持力(80℃):完全硬化後)
 各例の粘着剤層付きPETシートについて、25mm×50mmの大きさに裁断し、高圧水銀UV照射装置にて、ピーク照度:150mW/cm、積算露光量:4000mJ/cm(1000mJ/cm×4パス)で紫外線照射を行った後、離型シートを剥離した。露出した粘着剤層側にステンレス鋼板(SUS304)を静置し、2kgローラーを往復させて加圧して貼付(貼り付け面積25mm×25mm)し、クリープテスター(テスター産業社製、恒湿槽付保持力試験機BE-501)を用いて、80℃雰囲気下で24時間、荷重1kgを加えて保持力を測定した。評価基準は下記の通りである。
 A・・・ズレなし。
 B・・・ズレが1.0mm未満である。
 C・・・ズレが1.0mm以上であるか、PETシートが落下した。
(Holding power (80°C): after complete curing)
The PET sheet with an adhesive layer of each example was cut into a size of 25 mm × 50 mm, and irradiated with a high-pressure mercury UV irradiation device at a peak illuminance of 150 mW/cm 2 and an integrated exposure amount of 4000 mJ/cm 2 (1000 mJ/cm 2 ) . 4 passes), and then the release sheet was peeled off. A stainless steel plate (SUS304) is placed on the exposed adhesive layer side, and a 2 kg roller is reciprocated to apply pressure (pasting area 25 mm × 25 mm), and a creep tester (manufactured by Tester Sangyo Co., Ltd., held with a constant humidity tank) Using a force tester BE-501), a load of 1 kg was applied in an atmosphere of 80° C. for 24 hours to measure the holding force. Evaluation criteria are as follows.
A: No deviation.
B: The deviation is less than 1.0 mm.
C: The shift was 1.0 mm or more, or the PET sheet fell.
 (耐湿熱性試験:完全硬化後)
 各例の粘着剤層付きPETシートについて、30mm×50mmの大きさに裁断し、高圧水銀UV照射装置にて、ピーク照度:150mW/cm、積算露光量:4000mJ/cm(1000mJ/cm×4パス)で紫外線照射を行った後、離型シートを剥離した。露出した粘着剤層側を無アルカリガラス(コーニング社製「イーグルXG」、厚み1.1mm)に貼り合わせた。その後、50℃、0.5MPa、20分間の条件でオートクレーブ処理を行い、23℃、50%RHの雰囲気下で30分間静置し、「無アルカリガラス/粘着剤層/PET」の層構成を有する試験片を作製した。
 得られた試験片を用いて60℃、90%RHの雰囲気下で7日間(168時間)の耐湿熱性試験を行い、耐湿熱性試験前と、耐湿熱性試験後のヘイズ値を測定した。
(Heat and humidity resistance test: after complete curing)
The PET sheet with an adhesive layer of each example was cut into a size of 30 mm × 50 mm and irradiated with a high-pressure mercury UV irradiation device at a peak illuminance of 150 mW/cm 2 and an integrated exposure amount of 4000 mJ/cm 2 (1000 mJ/cm 2 ) . 4 passes), and then the release sheet was peeled off. The exposed pressure-sensitive adhesive layer side was attached to non-alkali glass (“Eagle XG” manufactured by Corning, thickness 1.1 mm). After that, autoclave treatment is performed under the conditions of 50 ° C., 0.5 MPa, 20 minutes, and left to stand in an atmosphere of 23 ° C. and 50% RH for 30 minutes to form a layer structure of "non-alkali glass / adhesive layer / PET". A test piece having
Using the obtained test piece, a heat and humidity resistance test was performed for 7 days (168 hours) in an atmosphere of 60° C. and 90% RH, and the haze values before and after the heat and humidity resistance test were measured.
 ヘイズ値は、拡散透過率および全光線透過率を、HAZE MATER NDH4000(日本電色工業社製)を用いて測定し、得られた拡散透過率(DT)と全光線透過率(TT)の値を下記[式1]に代入して算出した。さらに、下記[式2]からヘイズ値の上昇率(%)を算出した。本機はJIS K7361-1に準拠している。
 ヘイズ値(%)=(DT/TT)×100 ・・・[式1]
 ヘイズ値差(%)=耐湿熱性試験後のヘイズ値-耐湿熱性試験開始前のヘイズ値 ・・・[式2]
The haze value is obtained by measuring the diffuse transmittance and total light transmittance using a HAZE MATER NDH4000 (manufactured by Nippon Denshoku Industries Co., Ltd.), and the obtained diffuse transmittance (DT) and total light transmittance (TT) values. was substituted into the following [Equation 1] for calculation. Furthermore, the haze value increase rate (%) was calculated from the following [Formula 2]. This machine complies with JIS K7361-1.
Haze value (%) = (DT/TT) x 100 [Formula 1]
Haze value difference (%) = Haze value after moist heat resistance test - Haze value before start of moist heat resistance test [Formula 2]
 耐湿熱性試験の評価基準は下記の通りである。
 A・・・ヘイズ値差が0.5%未満である。
 B・・・ヘイズ値差が0.5%以上、3.0%未満である。
 C・・・ヘイズ値差が3.0%以上である。
The evaluation criteria for the moist heat resistance test are as follows.
A: The difference in haze value is less than 0.5%.
B...Haze value difference is 0.5% or more and less than 3.0%.
C...Haze value difference is 3.0% or more.
 (プローブタック:完全硬化後)
 各例の粘着剤層付きPETシートについて、幅12mm×長さ12mmの大きさに裁断し、高圧水銀UV照射装置にて、ピーク照度:150mW/cm、積算露光量:4000mJ/cm(1000mJ/cm×4パス)で紫外線照射を行った後、離型シートを剥離し、プローブタックテスター(テスター産業社製、プローブタックテスターTE-6001)を用いて、加圧時間5秒、貼り付け圧力1000gf、押し込み速度120mm/min、引き上げ速度600mm/min、プローブ径5.1mm(直径)の条件にてプローブタック(単位:N)を測定した。評価基準は下記の通りである。
 A・・・プローブタック(単位:N)が5未満である。
 B・・・プローブタック(単位:N)が5以上、7.5未満である。
 C・・・プローブタック(単位:N)が7.5以上、10未満である。
 D・・・プローブタック(単位:N)が10以上である。
(Probe tack: after complete curing)
The PET sheet with an adhesive layer of each example was cut into a size of 12 mm in width x 12 mm in length, and irradiated with a high-pressure mercury UV irradiation device with a peak illuminance of 150 mW/cm 2 and an integrated exposure amount of 4000 mJ/cm 2 (1000 mJ). / cm 2 × 4 passes), the release sheet is peeled off, and a probe tack tester (manufactured by Tester Sangyo Co., Ltd., probe tack tester TE-6001) is used for a pressurization time of 5 seconds. The probe tack (unit: N) was measured under the conditions of a pressure of 1000 gf, a pushing speed of 120 mm/min, a lifting speed of 600 mm/min, and a probe diameter of 5.1 mm (diameter). Evaluation criteria are as follows.
A: The probe tack (unit: N) is less than 5.
B... Probe tack (unit: N) is 5 or more and less than 7.5.
C: The probe tack (unit: N) is 7.5 or more and less than 10.
D... Probe tack (unit: N) is 10 or more.
 (曲面耐久性:完全硬化後)
 各例の粘着剤層付きPETシートについて、40mm×120mmの大きさに裁断し、離型シートを剥離した。露出した粘着剤層側を、偏光子の両面にTAC系フィルムが積層された偏光板の一方のTAC系フィルム表面偏光板に加圧貼合し「PETシート/粘着剤層/偏光板」の層構成の積層体を得た。
 その後、アルミニウム板(幅70mm、長さ150mm、厚さ0.3mm)にPET面が表面になるようにテープで積層体を貼り付けて固定し、アルミニウム板固定サンプルを作製した。作製したサンプルをマンドレル試験機にて5mmφとなるように屈曲させ、その状態で固定したのち、オートクレーブ処理(0.5MPa×50℃×20分間)を行い、高圧水銀UV照射装置にて、ピーク照度:150mW/cm、積算露光量:4000mJ/cm(1000mJ/cm×4パス)で屈曲させた状態のサンプルに紫外線照射を行い、曲面耐久評価用サンプルを作製した。曲面耐久評価用サンプルは、外側から順に、PET/粘着層/偏光板/アルミニウム板の層構成を有する。最も内側にアルミニウム板がある。
 得られた曲面耐久評価用サンプルを用いて、80℃、Dry、7日間の条件下および60℃、90%RH、7日間の条件下でそれぞれ暴露した後に、屈曲部および屈曲部を除いた偏光板端部を観察し、以下の基準で評価した。
(curved surface durability: after complete curing)
The PET sheet with an adhesive layer of each example was cut into a size of 40 mm×120 mm, and the release sheet was peeled off. The exposed pressure-sensitive adhesive layer side is pressure-bonded to one of the polarizing plates having the TAC-based film laminated on both sides of the polarizer, and the polarizing plate having the surface of the TAC-based film is laminated to form a "PET sheet/adhesive layer/polarizing plate" layer. A structured laminate was obtained.
Thereafter, the laminate was adhered and fixed to an aluminum plate (width 70 mm, length 150 mm, thickness 0.3 mm) with a tape so that the PET surface faced the surface, to prepare an aluminum plate-fixed sample. The prepared sample was bent to 5 mmφ with a mandrel tester, fixed in that state, and then autoclaved (0.5 MPa × 50 ° C. × 20 minutes). : 150 mW/cm 2 , Accumulated exposure: 4000 mJ/cm 2 (1000 mJ/cm 2 × 4 passes), the bent sample was irradiated with ultraviolet rays to prepare a sample for evaluation of curved surface durability. The curved surface durability evaluation sample has a layer structure of PET/adhesive layer/polarizing plate/aluminum plate in order from the outside. There is an aluminum plate on the innermost side.
Using the obtained curved surface durability evaluation sample, after exposure under the conditions of 80 ° C., Dry, 7 days and 60 ° C., 90% RH, 7 days, respectively, the bending part and polarized light excluding the bending part The edge of the plate was observed and evaluated according to the following criteria.
 (評価基準:屈曲部)
 A・・・浮き、発泡、糊のはみ出しのいずれもが見られない。
 B・・・浮き、発泡、または糊のはみ出しが見られる。
(Evaluation criteria: bent portion)
A . . . None of floating, foaming, and paste extrusion is observed.
B . . . Floating, foaming, or paste extrusion is observed.
 (評価基準:偏光板端部)
 A・・・端部に浮き、気泡がいずれも見られない。
 B・・・端部に極僅かに気泡が見られる。
 C・・・端部の一部に気泡が見られる。
 D・・・端部全体に浮き、気泡が発生した。
(Evaluation criteria: edge of polarizing plate)
A .
B . . . Air bubbles are very slightly observed at the edge.
C: Air bubbles are seen in part of the edge.
D . . . Floating and air bubbles were generated on the entire edge.
 (評価基準:総合評価)
 A・・・屈曲部の評価がAかつ偏光板端部の評価がAである。
 B・・・屈曲部の評価がAかつ偏光板端部の評価がBまたはCである。
 C・・・屈曲部の評価がAかつ偏光板端部の評価がDである。
 D・・・屈曲部の評価がBかつ偏光板端部の評価がA~Dのいずれかである。
(Evaluation criteria: Comprehensive evaluation)
A . . . The bending portion was evaluated as A, and the polarizing plate end portion was evaluated as A.
B . . . The bending portion was evaluated as A, and the polarizing plate end portion was evaluated as B or C.
C . . . The bending portion was evaluated as A, and the polarizing plate end portion was evaluated as D.
D . . . The bending portion was evaluated as B, and the polarizing plate end portion was evaluated as one of A to D.
 (偏光板耐久性:完全硬化後)
 各例の基材レス両面粘着シートについて、60mm×100mmの大きさに裁断し、一方の離型シートを剥離した。露出した粘着剤層側を、偏光子の両面にTAC系フィルムが積層された偏光板の一方のTAC系フィルム表面偏光板に加圧貼合した。次にもう一方の離型シートを剥離し、露出した粘着剤層側を無アルカリガラス(コーニング社製「イーグルXG」、厚み1.1mm)に貼り合わせ、オートクレーブ処理(50℃、0.5MPa、20分間)を行った。その後、高圧水銀UV照射装置にて、無アルカリガラス側よりピーク照度:150mW/cm、積算露光量:4000mJ/cm(1000mJ/cm×4パス)で紫外線照射を行い、偏光板耐久性評価用サンプルを作製した。
 偏光板耐久性評価用サンプルを23℃、50%RHの雰囲気下で1日間静置した後、80℃雰囲気下と60℃、90%RHの雰囲気下でそれぞれ7日間(168時間)の耐久試験を行い、以下の基準にて評価を行った。
 A・・・偏光板端部の浮きが1mm未満である。
 B・・・偏光板端部の浮きが1~2mm未満である。
 C・・・偏光板端部の浮きが2mm以上である。
(Polarizing plate durability: after complete curing)
The substrate-less double-sided pressure-sensitive adhesive sheet of each example was cut into a size of 60 mm×100 mm, and one release sheet was peeled off. The exposed pressure-sensitive adhesive layer side was pressure-bonded to one of the polarizing plates having the TAC film laminated on both sides of the polarizer and the polarizing plate having the TAC film surface. Next, the other release sheet was peeled off, and the exposed adhesive layer side was laminated to non-alkali glass (“Eagle XG” manufactured by Corning, thickness 1.1 mm), autoclaved (50 ° C., 0.5 MPa, 20 minutes) was performed. After that, with a high-pressure mercury UV irradiation device, ultraviolet irradiation was performed from the non-alkali glass side at a peak illuminance of 150 mW/cm 2 and an integrated exposure amount of 4000 mJ/cm 2 (1000 mJ/cm 2 × 4 passes) to improve the durability of the polarizing plate. A sample for evaluation was produced.
A sample for polarizing plate durability evaluation was allowed to stand in an atmosphere of 23°C and 50% RH for 1 day, and then subjected to a durability test for 7 days (168 hours) in an atmosphere of 80°C and an atmosphere of 60°C and 90% RH. and evaluated according to the following criteria.
A: The floating of the polarizing plate edge is less than 1 mm.
B . . . The float at the edge of the polarizing plate is less than 1 to 2 mm.
C: The float at the edge of the polarizing plate is 2 mm or more.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例A1~A6の粘着剤組成物を用いてなる粘着シートは、完全硬化前(一次硬化後)の低架橋状態においてもタック性が低く、定荷重保持力が高いといった優れた粘着物性を示した。また、完全硬化後においても優れた粘着物性、耐久性を示した。
 一方、比較例A1、A2ではアクリル系樹脂(A)のガラス転移温度が-10℃未満である。比較例A1ではアルキルメタクリレート(a2)を含まず、アルキルアクリレート(a1)と、アルキルメタクリレート(a2)の合計含有量が30重量%未満である。比較例A2ではアルキルアクリレート(a1)と、アルキルメタクリレート(a2)の重量比が85.7/14.3である。
これら比較例A1、A2では、実施例A1~A6と比べて、一次硬化後の低架橋状態における粘着物性、完全硬化後の粘着物性や信頼性にも劣るものであった。
The pressure-sensitive adhesive sheets using the pressure-sensitive adhesive compositions of Examples A1 to A6 exhibited excellent adhesive physical properties such as low tackiness and high constant load holding power even in a low crosslinked state before complete curing (after primary curing). rice field. In addition, even after complete curing, excellent adhesion properties and durability were exhibited.
On the other hand, in Comparative Examples A1 and A2, the glass transition temperature of the acrylic resin (A) is less than -10°C. Comparative Example A1 does not contain alkyl methacrylate (a2), and the total content of alkyl acrylate (a1) and alkyl methacrylate (a2) is less than 30% by weight. In Comparative Example A2, the weight ratio of alkyl acrylate (a1) and alkyl methacrylate (a2) was 85.7/14.3.
Compared with Examples A1 to A6, these Comparative Examples A1 and A2 were inferior in adhesive physical properties in a low crosslinked state after primary curing, adhesive physical properties after complete curing, and reliability.
[第二の態様の実施例および比較例]
 以下、本発明の第二の態様の実施例および比較例を具体的に説明するが、本発明は以下の記載に限定されない。例中、「部」、「%」とあるのは、重量基準を意味する。また、アクリル系樹脂(A)の重量平均分子量、動的粘弾性に基づくガラス転移温度の測定、粘着剤層の厚み、ヘイズ値(%)に関しては、上述の第二の態様に係る実施形態に記載の方法に従って測定した。
[Examples and comparative examples of the second aspect]
EXAMPLES Examples and comparative examples of the second aspect of the present invention will be specifically described below, but the present invention is not limited to the following description. In the examples, "parts" and "%" are based on weight. In addition, regarding the weight average molecular weight of the acrylic resin (A), the measurement of the glass transition temperature based on dynamic viscoelasticity, the thickness of the adhesive layer, and the haze value (%), the above-described embodiment according to the second aspect Measured according to the described method.
<略語、原料>
 (アルキル(メタ)アクリレート(a1))
・EMA:エチルメタクリレート(ホモポリマーのTg:65℃)
・MA:メチルアクリレート(ホモポリマーのTg:8℃)
・MMA:メチルメタクリレート(ホモポリマーのTg:105℃)
<Abbreviations, raw materials>
(Alkyl (meth)acrylate (a1))
・EMA: Ethyl methacrylate (Tg of homopolymer: 65°C)
・MA: methyl acrylate (Tg of homopolymer: 8°C)
・MMA: methyl methacrylate (Tg of homopolymer: 105°C)
 (ヒドロキシアルキルモノマー(a2))
・4HBA:4-ヒドロキシブチルアクリレート
・HEA:2-ヒドロキシエチルアクリレート
(Hydroxyalkyl monomer (a2))
・4HBA: 4-hydroxybutyl acrylate ・HEA: 2-hydroxyethyl acrylate
 (エチレン性不飽和モノマー(a3))
・2EHA:2-エチルヘキシルアクリレート(ホモポリマーのTg:-70℃)
(Ethylenically unsaturated monomer (a3))
2EHA: 2-ethylhexyl acrylate (Tg of homopolymer: -70°C)
・ADVN:2,2’-アゾビス(2,4-ジメチルバレロニトリル)(10時間半減期温度52℃) ・ ADVN: 2,2'-azobis (2,4-dimethylvaleronitrile) (10-hour half-life temperature 52 ° C.)
 (光開始剤(B))
 〔分子内水素引抜型光開始剤(b1)〕
・Omnirad 754:IGM Resins B.V.社製の製品
 〔分子間水素引抜型光開始剤(b2)〕
・Omnipol BP:IGM Resins B.V.社製の製品
・Esacure TZT:IGM Resins B.V.社製の製品
・MBP:新菱社製の製品
(Photoinitiator (B))
[Intramolecular hydrogen abstraction type photoinitiator (b1)]
- Omnirad 754: IGM Resins B.I. V. Company product [Intermolecular hydrogen abstraction type photoinitiator (b2)]
- Omnipol BP: IGM Resins B.I. V. company product ・Esacure TZT: IGM Resins B.I. V. Products manufactured by Shinryo Corporation ・MBP: Products manufactured by Shinryo Corporation
 (架橋剤(C))
・ポリプロピレングリコール♯400ジアクリレート(NKエステルAPG400、新中村化学工業社製の製品)
(Crosslinking agent (C))
・ Polypropylene glycol #400 diacrylate (NK Ester APG400, a product manufactured by Shin-Nakamura Chemical Co., Ltd.)
 (シランカップリング剤(D))
・KBM403(信越化学工業社製の製品)
(Silane coupling agent (D))
・KBM403 (manufactured by Shin-Etsu Chemical Co., Ltd.)
<製造例B1:アクリル系樹脂(A-B1)の製造>
 EMA:35部、MA:10部、4HBA:5部、HEA:10部、2EHA:40部を混合し、モノマー溶液を調製した。冷却器付きの2Lフラスコに、重合溶媒として酢酸エチル:18部(沸点77℃)、メチルエチルケトン:18部(沸点80℃)、重合開始剤としてADVN:0.01部、あらかじめ混合したモノマー溶液100部のうちの10%を入れ、フラスコ内で加熱還流させた後、酢酸エチル:10部、ADVN:0.18部、前述のモノマー溶液の残り90%を3時間かけて滴下した。さらに、滴下30分後、酢酸エチル:10部とADVN:0.13部の混合物を1時間かけ滴下して反応させ、アクリル系樹脂(A-B1)の溶液を得た。アクリル系樹脂(A-B1)の重量平均分子量(Mw)、分散度、動的粘弾性に基づくガラス転移温度の測定結果を表6に示す。
<Production Example B1: Production of acrylic resin (A-B1)>
35 parts of EMA, 10 parts of MA, 5 parts of 4HBA, 10 parts of HEA and 40 parts of 2EHA were mixed to prepare a monomer solution. Ethyl acetate: 18 parts (boiling point: 77°C), methyl ethyl ketone: 18 parts (boiling point: 80°C), ADVN: 0.01 part as a polymerization initiator, and 100 parts of a premixed monomer solution are placed in a 2 L flask equipped with a condenser. 10% of the monomer solution was added and heated to reflux in a flask, and then 10 parts of ethyl acetate, 0.18 parts of ADVN, and the remaining 90% of the above monomer solution were added dropwise over 3 hours. Further, 30 minutes after dropping, a mixture of 10 parts of ethyl acetate and 0.13 parts of ADVN was added dropwise over 1 hour to react to obtain a solution of acrylic resin (A-B1). Table 6 shows the measurement results of the glass transition temperature based on the weight average molecular weight (Mw), dispersity, and dynamic viscoelasticity of the acrylic resin (A-B1).
<製造例B2~B4、比較製造例B1~B4>
 モノマー溶液からなる共重合成分の組成を表6の通りとした以外は製造例B1と同様にしてアクリル系樹脂(A-B2)~アクリル系樹脂(A-B4)、アクリル系樹脂(A’-B1)~アクリル系樹脂(A’-B4)を製造した。各アクリル系樹脂の重量平均分子量(Mw)、分散度、動的粘弾性に基づくガラス転移温度の測定結果を表6に示す。
<Production Examples B2 to B4, Comparative Production Examples B1 to B4>
Acrylic resin (A-B2) to acrylic resin (A-B4), acrylic resin (A'- B1) to acrylic resins (A'-B4) were produced. Table 6 shows the measurement results of the glass transition temperature based on the weight average molecular weight (Mw), dispersity, and dynamic viscoelasticity of each acrylic resin.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
<実施例B1>
 アクリル系樹脂(A-B1)の溶液100部(固形分換算)に対して、Omnirad 754:2.0部(固形分換算)、MBP:1.0部(固形分換算)、ポリプロピレングリコール♯400ジアクリレート:5.0部(固形分換算)、KBM403:0.1部(固形分換算)を混合し、粘着剤組成物を得た。得られた粘着剤組成物を酢酸エチルにて固形分濃度45%に調整し、ポリエステル系離型シートに、乾燥後の厚みが約50μmとなるように塗布し、100℃で5分間乾燥し、粘着剤組成物層を形成した。
<Example B1>
Omnirad 754: 2.0 parts (solid content conversion), MBP: 1.0 part (solid content conversion), polypropylene glycol #400 for 100 parts of acrylic resin (A-B1) solution (solid content conversion) Diacrylate: 5.0 parts (converted to solid content) and KBM403: 0.1 part (converted to solid content) were mixed to obtain an adhesive composition. The obtained pressure-sensitive adhesive composition was adjusted to a solid content concentration of 45% with ethyl acetate, applied to a polyester-based release sheet so that the thickness after drying was about 50 μm, dried at 100 ° C. for 5 minutes, An adhesive composition layer was formed.
 このようにして粘着剤組成物層が形成されたポリエステル系離型シートを2枚用意し、両粘着剤組成物層を対向させて積層した。積層した粘着剤組成物層の両側をポリエステル系離型シートで挟んだ状態で、高圧水銀UV照射装置にて、ピーク照度:150mW/cm、積算露光量:1000mJ/cm(500mJ/cm×2パス)で紫外線照射を行うことで粘着剤層を形成し(一次硬化)、粘着剤層の厚みが100μmの基材レス両面粘着シートを得た。
 次いで、得られた基材レス両面粘着シートの粘着剤層から一方の面の離型シートを剥がし、露出した粘着剤層側を易接着処理ポリエチレンテレフタレート(PET)シート(厚み125μm)に押圧し、粘着剤層の厚みが100μmの粘着剤層付きPETシートを得た。
Two polyester-based release sheets on which the pressure-sensitive adhesive composition layer was formed in this manner were prepared and laminated with the pressure-sensitive adhesive composition layers opposed to each other. With both sides of the laminated pressure-sensitive adhesive composition layer sandwiched between polyester-based release sheets, a high-pressure mercury UV irradiation apparatus was used to irradiate the adhesive composition layer with a peak illuminance of 150 mW/cm 2 and an integrated exposure amount of 1000 mJ/cm 2 (500 mJ/cm 2 ) . × 2 passes) to form a pressure-sensitive adhesive layer (primary curing) to obtain a substrate-less double-sided pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer thickness of 100 μm.
Next, the release sheet on one side was peeled off from the adhesive layer of the obtained substrate-less double-sided adhesive sheet, and the exposed adhesive layer side was pressed against an easy-adhesion-treated polyethylene terephthalate (PET) sheet (thickness: 125 μm), A PET sheet with an adhesive layer having an adhesive layer thickness of 100 μm was obtained.
<実施例B2~B5、比較例B1~B4>
 表7に示す通りに、アクリル系樹脂(A)、光開始剤(B)を変更した以外は実施例B1と同様にして各例の粘着剤組成物を調製した。次いで、実施例B1と同様にして粘着剤層の厚みが100μmの基材レス両面粘着シート、粘着剤層付きPETシートを順次作製した。各例の粘着剤組成物の組成を表7に示す。
<Examples B2 to B5, Comparative Examples B1 to B4>
As shown in Table 7, a pressure-sensitive adhesive composition of each example was prepared in the same manner as in Example B1, except that the acrylic resin (A) and the photoinitiator (B) were changed. Then, in the same manner as in Example B1, a substrate-less double-sided pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer with a thickness of 100 μm and a PET sheet with a pressure-sensitive adhesive layer were sequentially produced. Table 7 shows the composition of the pressure-sensitive adhesive composition of each example.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
<測定方法、評価方法>
 実施例B1~B5、比較例B1~B4の粘着組成物の測定方法、評価方法を以下に示す。結果を表8~10に示す。
<Measurement method, evaluation method>
Measurement methods and evaluation methods for the adhesive compositions of Examples B1 to B5 and Comparative Examples B1 to B4 are shown below. The results are shown in Tables 8-10.
 (ゲル分率:完全硬化前(一次硬化後))
 各例の基材レス両面粘着シートを40mm×40mmに裁断した後、23℃×50%RHの条件下で30分静置した後、一方の離型シートを剥がし、露出した粘着剤層側を50mm×100mmのSUSメッシュシート(200メッシュ)に貼合した。残りの離型シートを剥離し、SUSメッシュシートの長手方向に対して中央部より折り返して粘着剤層をSUSメッシュシートで包み込んだ。これを23℃に保持したトルエン250gの入った密封容器にて24時間浸漬したときの重量変化からゲル分率(%)を算出した。
(Gel fraction: before complete curing (after primary curing))
After cutting the substrate-less double-sided pressure-sensitive adhesive sheet of each example into 40 mm × 40 mm, let it stand under the conditions of 23 ° C. × 50% RH for 30 minutes, peel off one release sheet, and peel off the exposed pressure-sensitive adhesive layer side. It was pasted on a 50 mm×100 mm SUS mesh sheet (200 mesh). The rest of the release sheet was peeled off, and the pressure-sensitive adhesive layer was wrapped with the SUS mesh sheet by folding back from the central portion in the longitudinal direction of the SUS mesh sheet. The gel fraction (%) was calculated from the weight change when this was immersed in a sealed container containing 250 g of toluene kept at 23° C. for 24 hours.
 (定荷重保持力(50℃):完全硬化前(一次硬化後))
 各例の粘着剤層付きPETシートについて、幅25mm×長さ75mm(粘着剤層部の幅25mm×長さ50mm+非粘着層部の幅25mm×長さ25mm)の大きさに裁断し、離型シートを剥離した。露出した粘着剤層側をステンレス鋼板(SUS304)に2kgローラーを往復させ加圧して貼付(貼り付け面積25mm×50mm)して、50℃雰囲気下で20分間静置した。その後、非貼付部(面積25mm×25mm)の長さ方向端部に50gのおもりを吊るし、ステンレス鋼板の平面に対して90°の方向に50gの荷重を加え、その状態で60分間静置し、PETシートが剥離した距離を測定した。評価基準は下記の通りである。
 A・・・剥離距離が10mm未満である。
 B・・・剥離距離が10mm以上、50mm未満である。
 C・・・PETシートが完全に剥離して落下した。
(Constant load holding power (50°C): before complete curing (after primary curing))
The PET sheet with an adhesive layer of each example was cut into a size of 25 mm width x 75 mm length (adhesive layer width 25 mm x length 50 mm + non-adhesive layer width 25 mm x length 25 mm) and released. The sheet was peeled off. The exposed pressure-sensitive adhesive layer side was attached to a stainless steel plate (SUS304) by reciprocating a 2-kg roller under pressure (attachment area: 25 mm x 50 mm), and allowed to stand in an atmosphere of 50°C for 20 minutes. After that, a weight of 50 g was hung from the end of the length direction of the non-attached part (area 25 mm × 25 mm), a load of 50 g was applied in the direction of 90 ° to the plane of the stainless steel plate, and it was left to stand for 60 minutes in that state. , the distance that the PET sheet was peeled off was measured. Evaluation criteria are as follows.
A: The peel distance is less than 10 mm.
B: The peel distance is 10 mm or more and less than 50 mm.
C: The PET sheet was completely peeled off and dropped.
 (プローブタック:完全硬化前(一次硬化後))
 各例の粘着剤層付きPETシートについて、幅12mm×長さ12mmの大きさに裁断し、離型シートを剥離し、プローブタックテスター(テスター産業社製、プローブタックテスターTE-6001)を用いて、加圧時間1秒、貼り付け圧力500gf、押し込み速度120mm/min、引き上げ速度600mm/min、プローブ径5.1mm(直径)の条件にてプローブタック(単位:N)を測定した。評価基準は下記の通りである。
 A・・・プローブタック(単位:N)が5未満である。
 B・・・プローブタック(単位:N)が5以上、7.5未満である。
 C・・・プローブタック(単位:N)が7.5以上、10未満である。
 D・・・プローブタック(単位:N)が10以上である。
(Probe tack: before complete curing (after primary curing))
The PET sheet with an adhesive layer of each example was cut into a size of 12 mm in width × 12 mm in length, the release sheet was peeled off, and a probe tack tester (manufactured by Tester Sangyo Co., Ltd., probe tack tester TE-6001) was used. , pressure time of 1 second, affixing pressure of 500 gf, pushing speed of 120 mm/min, lifting speed of 600 mm/min, probe diameter of 5.1 mm (diameter), and probe tack (unit: N) was measured. Evaluation criteria are as follows.
A: The probe tack (unit: N) is less than 5.
B... Probe tack (unit: N) is 5 or more and less than 7.5.
C: The probe tack (unit: N) is 7.5 or more and less than 10.
D... Probe tack (unit: N) is 10 or more.
 (ゲル分率:完全硬化後)
 各例の基材レス両面粘着シートを高圧水銀UV照射装置にて、ピーク照度:150mW/cm、積算露光量:4000mJ/cm(1000mJ/cm×4パス)で紫外線照射を行った後、40mm×40mmに裁断し、23℃×50%RHの条件下で30分静置した。その後、一方の離型シートを剥がし、露出した粘着剤層側を50mm×100mmのSUSメッシュシート(200メッシュ)に貼合した。残りの離型シートを剥離し、SUSメッシュシートの長手方向に対して中央部より折り返して粘着剤層をSUSメッシュシートで包み込んだ。これを23℃に保持したトルエン250gの入った密封容器にて24時間浸漬したときの重量変化からゲル分率(%)を算出した。
(Gel fraction: after complete curing)
The substrate-less double-sided pressure-sensitive adhesive sheet of each example was irradiated with ultraviolet rays using a high-pressure mercury UV irradiation apparatus at a peak illuminance of 150 mW/cm 2 and an integrated exposure amount of 4000 mJ/cm 2 (1000 mJ/cm 2 × 4 passes). , 40 mm x 40 mm, and allowed to stand under the conditions of 23°C x 50% RH for 30 minutes. Then, one of the release sheets was peeled off, and the exposed pressure-sensitive adhesive layer side was attached to a 50 mm×100 mm SUS mesh sheet (200 mesh). The rest of the release sheet was peeled off, and the pressure-sensitive adhesive layer was wrapped with the SUS mesh sheet by folding back from the central portion in the longitudinal direction of the SUS mesh sheet. The gel fraction (%) was calculated from the weight change when this was immersed in a sealed container containing 250 g of toluene kept at 23° C. for 24 hours.
 (180度剥離強度(23℃):完全硬化後)
 各例の粘着剤層付きPETシートについて、幅25mm×長さ100mmの大きさに裁断し、高圧水銀UV照射装置にて、ピーク照度:150mW/cm、積算露光量:4000mJ/cm(1000mJ/cm×4パス)で紫外線照射を行った後、離型シートを剥離した。露出した粘着剤層側を無アルカリガラス(コーニング社製「イーグルXG」、厚み1.1mm)に、23℃、50%RHの雰囲気下、2kgゴムローラー2往復で加圧して貼付し、同雰囲気下で30分間静置した。この後、常温(23℃)下、剥離速度300mm/minで180度剥離強度(N/25mm)を測定した。
(180 degree peel strength (23°C): after complete curing)
The PET sheet with an adhesive layer of each example was cut into a size of 25 mm in width x 100 mm in length, and was irradiated with a high-pressure mercury UV irradiation device with a peak illuminance of 150 mW/cm 2 and an integrated exposure of 4000 mJ/cm 2 (1000 mJ). / cm 2 × 4 passes), and then the release sheet was peeled off. The exposed pressure-sensitive adhesive layer side was attached to non-alkali glass ("Eagle XG" manufactured by Corning, thickness 1.1 mm) under an atmosphere of 23°C and 50% RH with two reciprocations of a 2-kg rubber roller under the same atmosphere. It was left under for 30 minutes. After that, the 180 degree peel strength (N/25 mm) was measured at normal temperature (23° C.) at a peel speed of 300 mm/min.
 (定荷重保持力(80℃):完全硬化後)
 各例の粘着剤層付きPETシートについて、幅25mm×長さ75mm(粘着剤層部の幅25mm×長さ50mm+非粘着層部の幅25mm×長さ25mm)の大きさに裁断し、高圧水銀UV照射装置にて、ピーク照度:150mW/cm、積算露光量:4000mJ/cm(1000mJ/cm×4パス)の条件で紫外線照射を行った後、離型シートを剥離した。露出した粘着剤層側をステンレス鋼板(SUS304)に2kgローラーを往復させ加圧して貼付(貼り付け面積25mm×50mm)し、80℃雰囲気下で20分間静置した。その後、非貼付部(面積25mm×25mm)の長さ方向端部に50gのおもりを吊るし、ステンレス鋼板の平面に対して90°の方向に50gの荷重を加え、その状態で60分間静置し、PETシートが剥離した距離を測定した。評価基準は下記の通りである。
 A・・・剥離距離が5mm未満である。
 B・・・剥離距離が5mm以上10mm未満である。
 C・・・剥離距離が10mm以上であるか、または、PETシートが完全に剥離して落下した。
(Constant load holding power (80°C): after complete curing)
The PET sheet with an adhesive layer of each example was cut into a size of 25 mm width x 75 mm length (adhesive layer width 25 mm x length 50 mm + non-adhesive layer width 25 mm x length 25 mm), and high-pressure mercury After UV irradiation was performed using a UV irradiation device under the conditions of peak illuminance: 150 mW/cm 2 and cumulative exposure amount: 4000 mJ/cm 2 (1000 mJ/cm 2 ×4 passes), the release sheet was peeled off. The exposed pressure-sensitive adhesive layer side was attached to a stainless steel plate (SUS304) by reciprocating a 2-kg roller under pressure (attachment area: 25 mm x 50 mm), and allowed to stand in an atmosphere of 80°C for 20 minutes. After that, a weight of 50 g was hung from the end in the length direction of the non-attached part (area 25 mm × 25 mm), a load of 50 g was applied in a direction of 90° to the plane of the stainless steel plate, and it was left to stand for 60 minutes in that state. , the distance that the PET sheet was peeled off was measured. Evaluation criteria are as follows.
A: The peel distance is less than 5 mm.
B: The peel distance is 5 mm or more and less than 10 mm.
C: The peel distance was 10 mm or more, or the PET sheet was completely peeled and dropped.
 (保持力(80℃):完全硬化後)
 各例の粘着剤層付きPETシートについて、25mm×50mmの大きさに裁断し、高圧水銀UV照射装置にて、ピーク照度:150mW/cm、積算露光量:4000mJ/cm(1000mJ/cm×4パス)で紫外線照射を行った後、離型シートを剥離した。露出した粘着剤層側にステンレス鋼板(SUS304)を静置し、2kgローラーを往復させて加圧して貼付(貼り付け面積25mm×25mm)し、クリープテスター(テスター産業社製、恒湿槽付保持力試験機BE-501)を用いて、80℃雰囲気下で24時間、荷重1kgを加えて保持力を測定した。評価基準は下記の通りである。
 A・・・ズレなし。
 B・・・ズレが1.0mm未満である。
 C・・・ズレが1.0mm以上であるか、PETシートが落下した。
(Holding power (80°C): after complete curing)
The PET sheet with an adhesive layer of each example was cut into a size of 25 mm × 50 mm, and irradiated with a high-pressure mercury UV irradiation device at a peak illuminance of 150 mW/cm 2 and an integrated exposure amount of 4000 mJ/cm 2 (1000 mJ/cm 2 ) . 4 passes), and then the release sheet was peeled off. A stainless steel plate (SUS304) is placed on the exposed adhesive layer side, and a 2 kg roller is reciprocated to apply pressure (pasting area 25 mm × 25 mm), and a creep tester (manufactured by Tester Sangyo Co., Ltd., held with a constant humidity tank) Using a force tester BE-501), a load of 1 kg was applied in an atmosphere of 80° C. for 24 hours to measure the holding force. Evaluation criteria are as follows.
A: No deviation.
B: The deviation is less than 1.0 mm.
C: The shift was 1.0 mm or more, or the PET sheet fell.
 (耐湿熱性試験:完全硬化後)
 各例の粘着剤層付きPETシートについて、30mm×50mmの大きさに裁断し、高圧水銀UV照射装置にて、ピーク照度:150mW/cm、積算露光量:4000mJ/cm(1000mJ/cm×4パス)で紫外線照射を行った後、離型シートを剥離した。露出した粘着剤層側を無アルカリガラス(コーニング社製「イーグルXG」、厚み1.1mm)に貼り合わせた。その後、50℃、0.5MPa、20分間の条件でオートクレーブ処理を行い、23℃、50%RHの雰囲気下で30分間静置し、「無アルカリガラス/粘着剤層/PET」の層構成を有する試験片を作製した。
 得られた試験片を用いて60℃、90%RHの雰囲気下で7日間(168時間)の耐湿熱性試験を行い、耐湿熱性試験前と、耐湿熱性試験後のヘイズ値を測定した。
(Heat and humidity resistance test: after complete curing)
The PET sheet with an adhesive layer of each example was cut into a size of 30 mm × 50 mm and irradiated with a high-pressure mercury UV irradiation device at a peak illuminance of 150 mW/cm 2 and an integrated exposure amount of 4000 mJ/cm 2 (1000 mJ/cm 2 ) . 4 passes), and then the release sheet was peeled off. The exposed pressure-sensitive adhesive layer side was attached to non-alkali glass (“Eagle XG” manufactured by Corning, thickness 1.1 mm). After that, autoclave treatment is performed under the conditions of 50 ° C., 0.5 MPa, 20 minutes, and left to stand in an atmosphere of 23 ° C. and 50% RH for 30 minutes to form a layer structure of "non-alkali glass / adhesive layer / PET". A test piece having
Using the obtained test piece, a heat and humidity resistance test was performed for 7 days (168 hours) in an atmosphere of 60° C. and 90% RH, and the haze values before and after the heat and humidity resistance test were measured.
 ヘイズ値は、拡散透過率および全光線透過率を、HAZE MATER NDH4000(日本電色工業社製)を用いて測定し、得られた拡散透過率(DT)と全光線透過率(TT)の値を下記[式1]に代入して算出した。さらに、下記[式2]からヘイズ値の上昇率(%)を算出した。本機はJIS K7361-1に準拠している。
 ヘイズ値(%)=(DT/TT)×100 ・・・[式1]
 ヘイズ値差(%)=耐湿熱性試験後のヘイズ値-耐湿熱性試験開始前のヘイズ値 ・・・[式2]
The haze value is obtained by measuring the diffuse transmittance and total light transmittance using a HAZE MATER NDH4000 (manufactured by Nippon Denshoku Industries Co., Ltd.), and the obtained diffuse transmittance (DT) and total light transmittance (TT) values. was substituted into the following [Equation 1] for calculation. Furthermore, the haze value increase rate (%) was calculated from the following [Formula 2]. This machine complies with JIS K7361-1.
Haze value (%) = (DT/TT) x 100 [Formula 1]
Haze value difference (%) = Haze value after moist heat resistance test - Haze value before start of moist heat resistance test [Formula 2]
 耐湿熱性試験の評価基準は下記の通りである。
 A・・・ヘイズ値差が0.5%未満である。
 B・・・ヘイズ値差が0.5%以上、3.0%未満である。
 C・・・ヘイズ値差が3.0%以上である。
The evaluation criteria for the moist heat resistance test are as follows.
A: The difference in haze value is less than 0.5%.
B...Haze value difference is 0.5% or more and less than 3.0%.
C...Haze value difference is 3.0% or more.
 (プローブタック:完全硬化後)
 各例の粘着剤層付きPETシートについて、幅12mm×長さ12mmの大きさに裁断し、高圧水銀UV照射装置にて、ピーク照度:150mW/cm、積算露光量:4000mJ/cm(1000mJ/cm×4パス)で紫外線照射を行った後、離型シートを剥離し、プローブタックテスター(テスター産業社製、プローブタックテスターTE-6001)を用いて、加圧時間5秒、貼り付け圧力1000gf/cm、押し込み速度120mm/min、引き上げ速度600mm/min、プローブ径5.1mm(直径)の条件にてプローブタック(単位:N)を測定した。評価基準は下記の通りである。
 A・・・プローブタック(単位:N)が5未満である。
 B・・・プローブタック(単位:N)が5以上、7.5未満である。
 C・・・プローブタック(単位:N)が7.5以上、10未満である。
 D・・・プローブタック(単位:N)が10以上である。
(Probe tack: after complete curing)
The PET sheet with an adhesive layer of each example was cut into a size of 12 mm wide x 12 mm long, and irradiated with a high-pressure mercury UV irradiation device with a peak illuminance of 150 mW/cm 2 and an integrated exposure amount of 4000 mJ/cm 2 (1000 mJ). / cm 2 × 4 passes), the release sheet is peeled off, and a probe tack tester (manufactured by Tester Sangyo Co., Ltd., probe tack tester TE-6001) is used for a pressurization time of 5 seconds. The probe tack (unit: N) was measured under the conditions of a pressure of 1000 gf/cm 2 , a pushing speed of 120 mm/min, a pulling speed of 600 mm/min, and a probe diameter of 5.1 mm (diameter). Evaluation criteria are as follows.
A: The probe tack (unit: N) is less than 5.
B... Probe tack (unit: N) is 5 or more and less than 7.5.
C: The probe tack (unit: N) is 7.5 or more and less than 10.
D... Probe tack (unit: N) is 10 or more.
 (曲面耐久性:完全硬化後)
 各例の粘着剤層付きPETシートについて、40mm×120mmの大きさに裁断し、離型シートを剥離した。露出した粘着剤層側を、偏光子の両面にTAC系フィルムが積層された偏光板の一方のTAC系フィルム表面偏光板に加圧貼合し「PETシート/粘着剤層/偏光板」の層構成の積層体を得た。
 その後、アルミニウム板(幅70mm、長さ150mm、厚さ0.3mm)にPET面が表面になるようにテープで積層体を貼り付けて固定し、アルミニウム板固定サンプルを作製した。作製したサンプルをマンドレル試験機にて5mmφとなるように屈曲させ、その状態で固定したのち、オートクレーブ処理(0.5MPa×50℃×20分間)を行い、高圧水銀UV照射装置にて、ピーク照度:150mW/cm、積算露光量:4000mJ/cm(1000mJ/cm×4パス)で屈曲させた状態のサンプルに紫外線照射を行い、曲面耐久評価用サンプルを作製した。曲面耐久評価用サンプルは、外側から順に、PET/粘着層/偏光板/アルミニウム板の層構成を有する。最も内側にアルミニウム板がある。
 得られた曲面耐久評価用サンプルを用いて、80℃、Dry、7日間の条件下および60℃、90%RH、7日間の条件下でそれぞれ暴露した後に、屈曲部および屈曲部を除いた偏光板端部を観察し、以下の基準で評価した。
(curved surface durability: after complete curing)
The PET sheet with an adhesive layer of each example was cut into a size of 40 mm×120 mm, and the release sheet was peeled off. The exposed pressure-sensitive adhesive layer side is pressure-bonded to one of the polarizing plates having the TAC-based film laminated on both sides of the polarizer, and the polarizing plate having the surface of the TAC-based film is laminated to form a "PET sheet/adhesive layer/polarizing plate" layer. A structured laminate was obtained.
Thereafter, the laminate was adhered and fixed to an aluminum plate (width 70 mm, length 150 mm, thickness 0.3 mm) with a tape so that the PET surface faced the surface, to prepare an aluminum plate-fixed sample. The prepared sample was bent to 5 mmφ with a mandrel tester, fixed in that state, and then autoclaved (0.5 MPa × 50 ° C. × 20 minutes). : 150 mW/cm 2 , Accumulated exposure: 4000 mJ/cm 2 (1000 mJ/cm 2 × 4 passes), the bent sample was irradiated with ultraviolet rays to prepare a sample for evaluation of curved surface durability. The curved surface durability evaluation sample has a layer structure of PET/adhesive layer/polarizing plate/aluminum plate in order from the outside. There is an aluminum plate on the innermost side.
Using the obtained curved surface durability evaluation sample, after exposure under the conditions of 80 ° C., Dry, 7 days and 60 ° C., 90% RH, 7 days, respectively, the bending part and polarized light excluding the bending part The edge of the plate was observed and evaluated according to the following criteria.
 (評価基準:屈曲部)
 A・・・浮き、発泡、糊のはみ出しのいずれもが見られない。
 B・・・浮き、発泡、または糊のはみ出しが見られる。
(Evaluation criteria: bent portion)
A . . . None of floating, foaming, and paste extrusion is observed.
B . . . Floating, foaming, or sticking out of glue is observed.
 (評価基準:偏光板端部)
 A・・・端部に浮き、気泡がいずれも見られない。
 B・・・端部に極僅かに気泡が見られる。
 C・・・端部の一部に気泡が見られる。
 D・・・端部全体に浮き、気泡が発生した。
(Evaluation criteria: edge of polarizing plate)
A .
B . . . Air bubbles are very slightly observed at the edge.
C: Air bubbles are seen in part of the edge.
D . . . Floating and air bubbles were generated on the entire edge.
 (評価基準:総合評価)
 A・・・屈曲部の評価がAかつ偏光板端部の評価がAである。
 B・・・屈曲部の評価がAかつ偏光板端部の評価がBまたはCである。
 C・・・屈曲部の評価がAかつ偏光板端部の評価がDである。
 D・・・屈曲部の評価がBかつ偏光板端部の評価がA~Dのいずれかである。
(Evaluation criteria: Comprehensive evaluation)
A . . . The bending portion was evaluated as A, and the polarizing plate end portion was evaluated as A.
B . . . The bending portion was evaluated as A, and the polarizing plate end portion was evaluated as B or C.
C . . . The bending portion was evaluated as A, and the polarizing plate end portion was evaluated as D.
D . . . The bending portion was evaluated as B, and the polarizing plate end portion was evaluated as one of A to D.
 (偏光板耐久性:完全硬化後)
 各例の基材レス両面粘着シートについて、60mm×100mmの大きさに裁断し、一方の離型シートを剥離した。露出した粘着剤層側を、偏光子の両面にTAC系フィルムが積層された偏光板の一方のTAC系フィルム表面偏光板に加圧貼合した。次にもう一方の離型シートを剥離し、露出した粘着剤層側を無アルカリガラス(コーニング社製「イーグルXG」、厚み1.1mm)に貼り合わせ、オートクレーブ処理(50℃、0.5MPa、20分間)を行った。その後、高圧水銀UV照射装置にて、無アルカリガラス側よりピーク照度:150mW/cm、積算露光量:4000mJ/cm(1000mJ/cm×4パス)で紫外線照射を行い、偏光板耐久性評価用サンプルを作製した。
 偏光板耐久性評価用サンプルを23℃、50%RHの雰囲気下で1日間静置した後、80℃雰囲気下と60℃、90%RHの雰囲気下でそれぞれ7日間(168時間)の耐久試験を行い、以下の基準にて評価を行った。
 A・・・偏光板端部の浮きが1mm未満である。
 B・・・偏光板端部の浮きが1~2mm未満である。
 C・・・偏光板端部の浮きが2mm以上である。
(Polarizing plate durability: after complete curing)
The substrate-less double-sided pressure-sensitive adhesive sheet of each example was cut into a size of 60 mm×100 mm, and one release sheet was peeled off. The exposed pressure-sensitive adhesive layer side was pressure-bonded to one of the polarizing plates having the TAC film laminated on both sides of the polarizer and the polarizing plate having the TAC film surface. Next, the other release sheet was peeled off, and the exposed adhesive layer side was laminated to non-alkali glass (“Eagle XG” manufactured by Corning, thickness 1.1 mm), autoclaved (50 ° C., 0.5 MPa, 20 minutes) was performed. After that, with a high-pressure mercury UV irradiation device, ultraviolet irradiation was performed from the non-alkali glass side at a peak illuminance of 150 mW/cm 2 and an integrated exposure amount of 4000 mJ/cm 2 (1000 mJ/cm 2 × 4 passes) to improve the durability of the polarizing plate. A sample for evaluation was produced.
A sample for polarizing plate durability evaluation was allowed to stand in an atmosphere of 23°C and 50% RH for 1 day, and then subjected to a durability test for 7 days (168 hours) in an atmosphere of 80°C and an atmosphere of 60°C and 90% RH. and evaluated according to the following criteria.
A: The floating of the polarizing plate edge is less than 1 mm.
B . . . The float at the edge of the polarizing plate is less than 1 to 2 mm.
C: The float at the edge of the polarizing plate is 2 mm or more.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 実施例B1~B5の粘着剤組成物を用いてなる粘着シートは、完全硬化前(一次硬化後)の低架橋状態においてもタック性が低く、定荷重保持力が高いといった優れた粘着物性を示した。また、完全硬化後においても優れた粘着物性、耐久性を示した。
 一方、比較例B1、B4ではアクリル系樹脂(A)のガラス転移温度が-10℃未満である。比較例B1、B2、B4では、共重合成分(a)中のヒドロキシアルキルモノマー(a2)のアルキル鎖の平均炭素数が2.1未満である。比較例B3では、分子内水素引抜型光開始剤を使用していない。これら比較例B1~B4では実施例B1~B5と比べて、一次硬化後の低架橋状態における粘着物性に劣り、更に完全硬化後の耐久性にも劣っていた。
The pressure-sensitive adhesive sheets using the pressure-sensitive adhesive compositions of Examples B1 to B5 exhibited excellent adhesive physical properties such as low tackiness and high constant load holding power even in a low crosslinked state before complete curing (after primary curing). rice field. In addition, even after complete curing, excellent adhesion properties and durability were exhibited.
On the other hand, in Comparative Examples B1 and B4, the glass transition temperature of the acrylic resin (A) is less than -10°C. In Comparative Examples B1, B2 and B4, the average carbon number of the alkyl chain of the hydroxyalkyl monomer (a2) in the copolymerization component (a) is less than 2.1. Comparative Example B3 does not use an intramolecular hydrogen abstraction type photoinitiator. Compared to Examples B1 to B5, these Comparative Examples B1 to B4 were inferior in adhesive physical properties in a low crosslinked state after primary curing, and were also inferior in durability after complete curing.
[第三の態様の実施例および比較例]
 以下本発明の第三の態様の実施例および比較例を具体的に説明するが、本発明は以下の記載に限定されない。例中、「部」、「%」とあるのは、重量基準を意味する。また、アクリル系樹脂(A)の重量平均分子量、動的粘弾性に基づくガラス転移温度の測定、粘着剤層の厚み、ヘイズ値(%)に関しては、上述の第三の態様に係る実施形態に記載の方法に従って測定した。
[Examples and comparative examples of the third aspect]
EXAMPLES Examples and comparative examples of the third aspect of the present invention will be specifically described below, but the present invention is not limited to the following descriptions. In the examples, "parts" and "%" are based on weight. In addition, regarding the weight average molecular weight of the acrylic resin (A), the measurement of the glass transition temperature based on dynamic viscoelasticity, the thickness of the adhesive layer, and the haze value (%), the above-mentioned embodiment according to the third aspect Measured according to the described method.
<略語、原料>
 (アクリル系樹脂(A))
 〔分岐アルキル(メタ)アクリレート(a1)〕
・iBMA:イソブチルメタクリレート(ホモポリマーのTg:48℃)
・2EHMA:2-エチルヘキシルメタクリレート(ホモポリマーのTg:-10℃)
<Abbreviations, raw materials>
(Acrylic resin (A))
[Branched alkyl (meth)acrylate (a1)]
iBMA: isobutyl methacrylate (Tg of homopolymer: 48°C)
2EHMA: 2-ethylhexyl methacrylate (Tg of homopolymer: -10°C)
 〔水酸基含有(メタ)アクリレート(a2)〕
・HEA:2-ヒドロキシエチルアクリレート(ホモポリマーのTg:-15℃)
[Hydroxyl group-containing (meth)acrylate (a2)]
- HEA: 2-hydroxyethyl acrylate (Tg of homopolymer: -15°C)
 〔エチレン性不飽和モノマー(a4)〕
・2EHA:2-エチルヘキシルアクリレート(ホモポリマーのTg:-70℃)
・MA:メチルアクリレート(ホモポリマーのTg:8℃)
・MMA:メチルメタクリレート(ホモポリマーのTg:105℃)
[Ethylenically unsaturated monomer (a4)]
2EHA: 2-ethylhexyl acrylate (Tg of homopolymer: -70°C)
・MA: methyl acrylate (Tg of homopolymer: 8°C)
・MMA: methyl methacrylate (Tg of homopolymer: 105°C)
・ADVN:2,2’-アゾビス(2,4-ジメチルバレロニトリル)(10時間半減期温度52℃) ・ ADVN: 2,2'-azobis (2,4-dimethylvaleronitrile) (10-hour half-life temperature 52 ° C.)
 (光開始剤(B))
 〔分子内水素引抜型光開始剤(b1)〕
・Omnirad 754:IGM Resins B.V.社製の製品
 〔分子間水素引抜型光開始剤(b2)〕
・Esacure TZT:IGM Resins B.V.社製の製品
・Omnipol BP:IGM Resins B.V.社製の製品
・MBP:新菱社製の製品
(Photoinitiator (B))
[Intramolecular hydrogen abstraction type photoinitiator (b1)]
- Omnirad 754: IGM Resins B.I. V. Company product [Intermolecular hydrogen abstraction type photoinitiator (b2)]
- Esacure TZT: IGM Resins B.I. V. Products manufactured by Omnipol BP: IGM Resins B.I. V. Products manufactured by Shinryo Corporation ・MBP: Products manufactured by Shinryo Corporation
 (架橋剤(C))
・ポリプロピレングリコール♯400ジアクリレート(NKエステルAPG400、新中村化学工業社製の製品)
(Crosslinking agent (C))
・Polypropylene glycol #400 diacrylate (NK Ester APG400, a product manufactured by Shin-Nakamura Chemical Co., Ltd.)
 (シランカップリング剤(D))
・KBM403(信越化学工業社製の製品)
(Silane coupling agent (D))
・KBM403 (manufactured by Shin-Etsu Chemical Co., Ltd.)
<製造例C1:アクリル系樹脂(A-C1)の製造>
 iBMA:25部、2EHA:35部、MA:25部、HEA:15部を混合し、モノマー溶液を調製した。冷却器付きの2Lフラスコに、重合溶媒としてメチルエチルケトン:40部(沸点80℃)、重合開始剤としてADVN:0.008部、あらかじめ調製したモノマー溶液100部のうちの10%を入れ、フラスコ内で加熱還流させた後、ADVN:0.11部、酢酸エチル:10部、残るモノマー溶液の90%の混合溶液を3時間かけて滴下した。さらに、滴下30分後、酢酸エチル:10部とADVN:0.13部の混合物を1時間かけ滴下して反応させ、アクリル系樹脂(A-C1)の溶液を得た。アクリル系樹脂(A-C1)の重量平均分子量(Mw)、分散度、動的粘弾性に基づくガラス転移温度の測定結果を表11に示す。
<Production Example C1: Production of acrylic resin (A-C1)>
iBMA: 25 parts, 2EHA: 35 parts, MA: 25 parts, and HEA: 15 parts were mixed to prepare a monomer solution. 40 parts of methyl ethyl ketone (boiling point 80° C.) as a polymerization solvent, 0.008 parts of ADVN as a polymerization initiator, and 10% of 100 parts of the previously prepared monomer solution are placed in a 2 L flask equipped with a condenser, and After heating to reflux, a mixed solution of 0.11 parts of ADVN, 10 parts of ethyl acetate, and 90% of the remaining monomer solution was added dropwise over 3 hours. Further, 30 minutes after dropping, a mixture of 10 parts of ethyl acetate and 0.13 parts of ADVN was added dropwise over 1 hour to allow reaction to obtain a solution of acrylic resin (A-C1). Table 11 shows the measurement results of the glass transition temperature based on the weight average molecular weight (Mw), dispersity, and dynamic viscoelasticity of the acrylic resin (A-C1).
<製造例C2~C4、比較製造例C1、C2>
 モノマー溶液からなる共重合成分の組成を表11の通りとした以外は製造例C1と同様にしてアクリル系樹脂(A-C2)~アクリル系樹脂(A-C4)、アクリル系樹脂(A’-C1)、アクリル系樹脂(A’-2)を製造した。各アクリル系樹脂の重量平均分子量(Mw)、分散度、動的粘弾性に基づくガラス転移温度の測定結果を表11に示す。
<Production Examples C2 to C4, Comparative Production Examples C1 and C2>
Acrylic resin (A-C2) to acrylic resin (A-C4), acrylic resin (A'- C1), an acrylic resin (A'-2) was produced. Table 11 shows the measurement results of the glass transition temperature based on the weight average molecular weight (Mw), dispersity, and dynamic viscoelasticity of each acrylic resin.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
<実施例C1>
 アクリル系樹脂(A-C1)の溶液100部(固形分換算)に対して、ポリプロピレングリコール♯400ジアクリレート:5.0部(固形分換算)、KBM403:0.1部(固形分換算)、Esacure TZT:1.0部(固形分換算)、Omnirad 754:2.0部(固形分換算)を混合し、粘着剤組成物を得た。得られた粘着剤組成物溶液を酢酸エチルにて固形分濃度50%に調整し、ポリエステル系離型シートに、乾燥後の厚みが約50μmとなるように塗布し、100℃で5分間乾燥し、粘着剤組成物層を形成させた。
<Example C1>
Polypropylene glycol #400 diacrylate: 5.0 parts (solid content conversion), KBM403: 0.1 part (solid content conversion) with respect to 100 parts of acrylic resin (A-C1) solution (solid content conversion), Esacure TZT: 1.0 parts (solid content conversion) and Omnirad 754: 2.0 parts (solid content conversion) were mixed to obtain an adhesive composition. The obtained pressure-sensitive adhesive composition solution was adjusted to a solid content concentration of 50% with ethyl acetate, applied to a polyester-based release sheet so that the thickness after drying was about 50 μm, and dried at 100° C. for 5 minutes. , to form an adhesive composition layer.
 このようにして粘着剤組成物層が形成されたポリエステル系離型シートを2枚用意し、両粘着剤組成物層を対向させて積層した。積層した粘着剤組成物層の両側をポリエステル系離型シートで挟んだ状態で、高圧水銀UV照射装置にて、ピーク照度:150mW/cm、積算露光量:1000mJ/cm(500mJ/cm×2パス)で紫外線照射を行うことで粘着剤層を形成し(一次硬化)、粘着剤層の厚みが100μmの基材レス両面粘着シートを作製した。
 次いで、得られた基材レス両面粘着シートの粘着剤層から一方の面の離型シートを剥がし、露出した粘着剤層側を易接着処理ポリエチレンテレフタレート(PET)シート(厚み125μm)に押圧し、粘着剤層の厚みが100μmの粘着剤層付きPETシートを作製した。
 また、一次硬化した基材レス両面粘着シートの粘着剤層から一方の面の離型シートを剥がし、露出した粘着剤層側を、偏光子の両面にTAC系フィルムが積層された偏光板の一方のTAC系フィルム表面に押圧し、粘着剤層の厚みが100μmの粘着剤層付き偏光板を作製した。
Two polyester-based release sheets on which the pressure-sensitive adhesive composition layer was formed in this manner were prepared, and the two pressure-sensitive adhesive composition layers were laminated so as to face each other. With both sides of the laminated pressure-sensitive adhesive composition layer sandwiched between polyester-based release sheets, a high-pressure mercury UV irradiation apparatus was used to irradiate the adhesive composition layer with a peak illuminance of 150 mW/cm 2 and an integrated exposure amount of 1000 mJ/cm 2 (500 mJ/cm 2 ) . × 2 passes) to form a pressure-sensitive adhesive layer (primary curing) by irradiating with ultraviolet rays, to prepare a substrate-less double-sided pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer thickness of 100 µm.
Next, the release sheet on one side was peeled off from the adhesive layer of the obtained substrate-less double-sided adhesive sheet, and the exposed adhesive layer side was pressed against an easy-adhesion-treated polyethylene terephthalate (PET) sheet (thickness: 125 μm), A PET sheet with an adhesive layer having a thickness of 100 μm was produced.
In addition, the release sheet on one side was peeled off from the adhesive layer of the base-less double-sided adhesive sheet that had been primarily cured, and the exposed adhesive layer side was placed on one side of a polarizing plate having TAC films laminated on both sides of a polarizer. was pressed against the surface of the TAC film of No. to prepare a polarizing plate with an adhesive layer having a thickness of 100 μm.
<実施例C2~C6、比較例C1~C4>
 表12に示す通り、アクリル系樹脂(A)の種類を変更した以外は実施例C1と同様にして各例の粘着剤組成物を調製した。次いで、実施例C1と同様にして粘着剤層の厚みが100μmの基材レス両面粘着シート、粘着剤層付きPETシートおよび粘着剤層付き偏光板を順次作製した。
<Examples C2 to C6, Comparative Examples C1 to C4>
As shown in Table 12, a pressure-sensitive adhesive composition of each example was prepared in the same manner as in Example C1, except that the type of acrylic resin (A) was changed. Then, in the same manner as in Example C1, a substrate-less double-sided pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer with a thickness of 100 μm, a pressure-sensitive adhesive layer-attached PET sheet, and a pressure-sensitive adhesive layer-attached polarizing plate were sequentially produced.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
<測定方法、評価方法>
 実施例C1~C6、比較例C1~C4の組成物の測定方法、評価方法を以下に示す。結果を表13~15に示す。
<Measurement method, evaluation method>
Measurement methods and evaluation methods for the compositions of Examples C1 to C6 and Comparative Examples C1 to C4 are shown below. The results are shown in Tables 13-15.
 (ゲル分率:完全硬化前(一次硬化後))
 各例の基材レス両面粘着シートを40mm×40mmに裁断した後、23℃×50%RHの条件下で30分静置した後、一方の離型シートを剥がし、露出した粘着剤層側を50mm×100mmのSUSメッシュシート(200メッシュ)に貼合した。残りの離型シートを剥離し、SUSメッシュシートの長手方向に対して中央部より折り返して粘着剤層をSUSメッシュシートで包み込んだ。これを23℃に保持したトルエン250gの入った密封容器にて24時間浸漬したときの重量変化からゲル分率(%)を算出した。
(Gel fraction: before complete curing (after primary curing))
After cutting the substrate-less double-sided pressure-sensitive adhesive sheet of each example into 40 mm × 40 mm, let it stand under the conditions of 23 ° C. × 50% RH for 30 minutes, peel off one release sheet, and expose the exposed pressure-sensitive adhesive layer side. It was pasted on a 50 mm×100 mm SUS mesh sheet (200 mesh). The rest of the release sheet was peeled off, and the pressure-sensitive adhesive layer was wrapped with the SUS mesh sheet by folding back from the central portion in the longitudinal direction of the SUS mesh sheet. The gel fraction (%) was calculated from the weight change when this was immersed in a sealed container containing 250 g of toluene kept at 23° C. for 24 hours.
 (定荷重保持力(50℃):完全硬化前(一次硬化後))
 各例の粘着剤層付きPETシートについて、幅25mm×長さ75mm(粘着剤層部の幅25mm×長さ50mm+非粘着層部の幅25mm×長さ25mm)の大きさに裁断し、離型シートを剥離した。露出した粘着剤層側をステンレス鋼板(SUS304)に2kgローラーを往復させ加圧して貼付(貼り付け面積25mm×50mm)して、50℃雰囲気下で20分間静置した。その後、非貼付部(面積25mm×25mm)の長さ方向端部に50gのおもりを吊るし、ステンレス鋼板の平面に対して90°の方向に50gの荷重を加え、その状態で60分間静置し、PETシートが剥離した距離を測定した。評価基準は下記の通りである。
 A・・・剥離距離が10mm未満である。
 B・・・剥離距離が10mm以上、50mm未満である。
 C・・・PETシートが完全に剥離して落下した。
(Constant load holding power (50°C): before complete curing (after primary curing))
The PET sheet with an adhesive layer of each example was cut into a size of 25 mm width x 75 mm length (adhesive layer width 25 mm x length 50 mm + non-adhesive layer width 25 mm x length 25 mm) and released. The sheet was peeled off. The exposed pressure-sensitive adhesive layer side was attached to a stainless steel plate (SUS304) by reciprocating a 2-kg roller under pressure (attachment area: 25 mm x 50 mm), and allowed to stand in an atmosphere of 50°C for 20 minutes. After that, a weight of 50 g was hung from the end of the length direction of the non-attached part (area 25 mm × 25 mm), a load of 50 g was applied in the direction of 90 ° to the plane of the stainless steel plate, and it was left to stand for 60 minutes in that state. , the distance that the PET sheet was peeled off was measured. Evaluation criteria are as follows.
A: The peel distance is less than 10 mm.
B: The peel distance is 10 mm or more and less than 50 mm.
C: The PET sheet was completely peeled off and dropped.
 (プローブタック:完全硬化前(一次硬化後))
 各例の粘着剤層付きPETシートについて、幅10mm×長さ10mmの大きさに裁断し、離型シートを剥離し、プローブタックテスター(テスター産業社製、プローブタックテスターTE-6001)を用いて、加圧時間1秒、貼り付け圧力1000gf、押し込み速度120mm/min、引き上げ速度600mm/min、プローブ径5.1mm(直径)の条件にてプローブタック(単位:N)を測定した。評価基準は下記のとおりである。
 A・・・プローブタック(単位:N)が5未満である。
 B・・・プローブタック(単位:N)が5以上、7.5未満である。
 C・・・プローブタック(単位:N)が7.5以上、10未満である。
 D・・・プローブタック(単位:N)が10以上である。
(Probe tack: before complete curing (after primary curing))
The PET sheet with an adhesive layer of each example was cut into a size of 10 mm wide x 10 mm long, the release sheet was peeled off, and a probe tack tester (manufactured by Tester Sangyo Co., Ltd., probe tack tester TE-6001) was used. , pressure time of 1 second, affixing pressure of 1000 gf, pushing speed of 120 mm/min, lifting speed of 600 mm/min, probe diameter of 5.1 mm (diameter), and probe tack (unit: N) was measured. Evaluation criteria are as follows.
A: The probe tack (unit: N) is less than 5.
B... Probe tack (unit: N) is 5 or more and less than 7.5.
C: The probe tack (unit: N) is 7.5 or more and less than 10.
D... Probe tack (unit: N) is 10 or more.
 (ゲル分率:完全硬化後)
 各例の基材レス両面粘着シートを高圧水銀UV照射装置にて、ピーク照度:150mW/cm、積算露光量:4000mJ/cm(1000mJ/cm×4パス)で紫外線照射を行った後、40mm×40mmに裁断し、23℃×50%RHの条件下で30分静置した。その後、一方の離型シートを剥がし、露出した粘着剤層側を50mm×100mmのSUSメッシュシート(200メッシュ)に貼合した。残りの離型シートを剥離し、SUSメッシュシートの長手方向に対して中央部より折り返して粘着剤層をSUSメッシュシートで包み込んだ。これを23℃に保持したトルエン250gの入った密封容器にて24時間浸漬したときの重量変化からゲル分率(%)を算出した。
(Gel fraction: after complete curing)
The substrate-less double-sided pressure-sensitive adhesive sheet of each example was irradiated with ultraviolet rays using a high-pressure mercury UV irradiation apparatus at a peak illuminance of 150 mW/cm 2 and an integrated exposure amount of 4000 mJ/cm 2 (1000 mJ/cm 2 × 4 passes). , 40 mm x 40 mm, and allowed to stand under the conditions of 23°C x 50% RH for 30 minutes. Then, one of the release sheets was peeled off, and the exposed pressure-sensitive adhesive layer side was attached to a 50 mm×100 mm SUS mesh sheet (200 mesh). The rest of the release sheet was peeled off, and the pressure-sensitive adhesive layer was wrapped with the SUS mesh sheet by folding back from the central portion in the longitudinal direction of the SUS mesh sheet. The gel fraction (%) was calculated from the weight change when this was immersed in a sealed container containing 250 g of toluene kept at 23° C. for 24 hours.
 (180度剥離強度(23℃):完全硬化後)
 各例の粘着剤層付きPETシートについて、幅25mm×長さ100mmの大きさに裁断し、高圧水銀UV照射装置にて、ピーク照度:150mW/cm、積算露光量:4000mJ/cm(1000mJ/cm×4パス)で紫外線照射を行った後、離型シートを剥離した。露出した粘着剤層側を無アルカリガラス(コーニング社製「イーグルXG」、厚み1.1mm)に、23℃、50%RHの雰囲気下、2kgゴムローラー2往復で加圧して貼付し、同雰囲気下で30分間静置した。この後、常温(23℃)下、剥離速度300mm/minで180度剥離強度(N/25mm)を測定した。
(180 degree peel strength (23°C): after complete curing)
The PET sheet with an adhesive layer of each example was cut into a size of 25 mm in width x 100 mm in length, and irradiated with a high-pressure mercury UV irradiation device with a peak illuminance of 150 mW/cm 2 and an integrated exposure of 4000 mJ/cm 2 (1000 mJ). / cm 2 × 4 passes), and then the release sheet was peeled off. The exposed adhesive layer side was attached to non-alkali glass ("Eagle XG" manufactured by Corning, thickness 1.1 mm) in an atmosphere of 23 ° C. and 50% RH with two reciprocations of a 2 kg rubber roller. Let stand for 30 minutes below. After that, the 180 degree peel strength (N/25 mm) was measured at normal temperature (23° C.) at a peel rate of 300 mm/min.
 (定荷重保持力(80℃):完全硬化後)
 各例の粘着剤層付きPETシートについて、幅25mm×長さ75mm(粘着剤層部の幅25mm×長さ50mm+非粘着層部の幅25mm×長さ25mm)の大きさに裁断し、高圧水銀UV照射装置にて、ピーク照度:150mW/cm、積算露光量:4000mJ/cm(1000mJ/cm×4パス)の条件で紫外線照射を行った後、離型シートを剥離した。露出した粘着剤層側をステンレス鋼板(SUS304)に2kgローラーを往復させ加圧して貼付(貼り付け面積25mm×50mm)し、80℃雰囲気下で20分間静置した。その後、非貼付部(面積25mm×25mm)の長さ方向端部に50gのおもりを吊るし、ステンレス鋼板の平面に対して90°の方向に50gの荷重を加え、その状態で60分間静置し、PETシートが剥離した距離を測定した。評価基準は下記の通りである。
 A・・・剥離距離が5mm未満である。
 B・・・剥離距離が5mm以上10mm未満である。
 C・・・剥離距離が10mm以上であるか、またはPETシートが落下した。
(Constant load holding power (80°C): after complete curing)
The PET sheet with an adhesive layer of each example was cut into a size of 25 mm width x 75 mm length (adhesive layer width 25 mm x length 50 mm + non-adhesive layer width 25 mm x length 25 mm). After UV irradiation was performed using a UV irradiation apparatus under the conditions of peak illuminance: 150 mW/cm 2 and cumulative exposure amount: 4000 mJ/cm 2 (1000 mJ/cm 2 ×4 passes), the release sheet was peeled off. The exposed pressure-sensitive adhesive layer side was attached to a stainless steel plate (SUS304) by reciprocating a 2-kg roller under pressure (attachment area: 25 mm x 50 mm), and allowed to stand in an atmosphere of 80°C for 20 minutes. After that, a weight of 50 g was hung from the end of the length direction of the non-attached part (area 25 mm × 25 mm), a load of 50 g was applied in the direction of 90 ° to the plane of the stainless steel plate, and it was left to stand for 60 minutes in that state. , the distance that the PET sheet was peeled off was measured. Evaluation criteria are as follows.
A: The peel distance is less than 5 mm.
B: The peel distance is 5 mm or more and less than 10 mm.
C: The peel distance was 10 mm or more, or the PET sheet fell.
 (保持力(80℃):完全硬化後)
 各例の粘着剤層付きPETシートについて、25mm×50mmの大きさに裁断し、高圧水銀UV照射装置にて、ピーク照度:150mW/cm、積算露光量:4000mJ/cm(1000mJ/cm×4パス)で紫外線照射を行った後、離型シートを剥離した。露出した粘着剤層側にステンレス鋼板(SUS304)を静置し、2kgローラーを往復させて加圧して貼付(貼り付け面積25mm×25mm)し、クリープテスター(テスター産業社製、恒湿槽付保持力試験機BE-501)を用いて、80℃雰囲気下で24時間、荷重1kgを加えて保持力を測定した。評価基準は下記の通りである。
 A・・・ズレなし。
 B・・・ズレが1.0mm未満である。
 C・・・ズレが1.0mm以上であるか、PETシートが落下した。
(Holding power (80°C): after complete curing)
The PET sheet with an adhesive layer of each example was cut into a size of 25 mm × 50 mm, and irradiated with a high-pressure mercury UV irradiation device at a peak illuminance of 150 mW/cm 2 and an integrated exposure amount of 4000 mJ/cm 2 (1000 mJ/cm 2 ) . 4 passes), and then the release sheet was peeled off. A stainless steel plate (SUS304) is placed on the exposed adhesive layer side, and a 2 kg roller is reciprocated to apply pressure (pasting area 25 mm × 25 mm), and a creep tester (manufactured by Tester Sangyo Co., Ltd., held with a constant humidity tank) Using a force tester BE-501), a load of 1 kg was applied in an atmosphere of 80° C. for 24 hours to measure the holding force. Evaluation criteria are as follows.
A: No deviation.
B: The deviation is less than 1.0 mm.
C: The shift was 1.0 mm or more, or the PET sheet fell.
 (耐湿熱性:完全硬化後)
 各例の粘着剤層付きPETシートについて、30mm×50mmの大きさに裁断し、高圧水銀UV照射装置にて、ピーク照度:150mW/cm、積算露光量:4000mJ/cm(1000mJ/cm×4パス)で紫外線照射を行った後、離型シートを剥離した。露出した粘着剤層側を無アルカリガラス(コーニング社製「イーグルXG」、厚み1.1mm)に貼り合わせた。その後、50℃、0.5MPa、20分間の条件でオートクレーブ処理を行い、23℃、50%RHの雰囲気下で30分間静置し、「無アルカリガラス/粘着剤層/PET」の層構成を有する試験片を作製した。
 得られた試験片を用いて、60℃、90%RHの雰囲気下で7日間(168時間)の耐湿熱性試験を行い、耐湿熱性試験前と、耐湿熱性試験後のヘイズ値を測定した。
(Heat and humidity resistance: after complete curing)
The PET sheet with an adhesive layer of each example was cut into a size of 30 mm × 50 mm and irradiated with a high-pressure mercury UV irradiation device at a peak illuminance of 150 mW/cm 2 and an integrated exposure amount of 4000 mJ/cm 2 (1000 mJ/cm 2 ) . 4 passes), and then the release sheet was peeled off. The exposed pressure-sensitive adhesive layer side was attached to non-alkali glass (“Eagle XG” manufactured by Corning, thickness 1.1 mm). After that, autoclave treatment is performed under the conditions of 50 ° C., 0.5 MPa, 20 minutes, and left to stand in an atmosphere of 23 ° C. and 50% RH for 30 minutes to form a layer structure of "non-alkali glass / adhesive layer / PET". A test piece having
Using the obtained test piece, a heat and humidity resistance test was performed for 7 days (168 hours) in an atmosphere of 60° C. and 90% RH, and the haze values before and after the heat and humidity resistance test were measured.
 ヘイズ値は、拡散透過率および全光線透過率を、HAZE MATER NDH4000(日本電色工業社製)を用いて測定し、得られた拡散透過率(DT)と全光線透過率(TT)の値を下記式1に代入して算出した。さらに、下記式2からヘイズ値の上昇率(%)を算出した。本機はJIS K7361-1に準拠している。
 ヘイズ値(%)=(DT/TT)×100 ・・・[式1]
 ヘイズ値差(%)=耐湿熱性試験後のヘイズ値-耐湿熱性試験開始前のヘイズ値 ・・・[式2]
 評価基準は下記の通りである。
 A・・・ヘイズ値差が0.5%未満である。
 B・・・ヘイズ値差が0.5%以上、3.0%未満である。
 C・・・ヘイズ値差が3.0%以上である。
The haze value is obtained by measuring the diffuse transmittance and total light transmittance using a HAZE MATER NDH4000 (manufactured by Nippon Denshoku Industries Co., Ltd.), and the obtained diffuse transmittance (DT) and total light transmittance (TT) values. was substituted into the following formula 1 and calculated. Furthermore, the haze value increase rate (%) was calculated from the following formula 2. This machine complies with JIS K7361-1.
Haze value (%) = (DT/TT) x 100 [Formula 1]
Haze value difference (%) = Haze value after moist heat resistance test - Haze value before start of moist heat resistance test [Formula 2]
Evaluation criteria are as follows.
A: The difference in haze value is less than 0.5%.
B...Haze value difference is 0.5% or more and less than 3.0%.
C...Haze value difference is 3.0% or more.
 (プローブタック:完全硬化後)
 各例の粘着剤層付きPETシートについて、幅12mm×長さ12mmの大きさに裁断し、高圧水銀UV照射装置にて、ピーク照度:150mW/cm、積算露光量:4000mJ/cm(1000mJ/cm×4パス)で紫外線照射を行った後、離型シートを剥離し、プローブタックテスター(テスター産業社製、プローブタックテスターTE-6001)を用いて、加圧時間1秒、貼り付け圧力1000gf、押し込み速度120mm/min、引き上げ速度600mm/min、プローブ径5.1mm(直径)の条件にてプローブタック(単位:N)を測定した。評価基準は下記の通りである。
 A・・・プローブタック(単位:N)が5未満である。
 B・・・プローブタック(単位:N)が5以上、7.5未満である。
 C・・・プローブタック(単位:N)が7.5以上、10未満である。
 D・・・プローブタック(単位:N)が10以上である。
(Probe tack: after complete curing)
The PET sheet with an adhesive layer of each example was cut into a size of 12 mm wide x 12 mm long, and irradiated with a high-pressure mercury UV irradiation device with a peak illuminance of 150 mW/cm 2 and an integrated exposure amount of 4000 mJ/cm 2 (1000 mJ). / cm 2 × 4 passes), the release sheet is peeled off, and a probe tack tester (manufactured by Tester Sangyo Co., Ltd., probe tack tester TE-6001) is used for a pressurization time of 1 second. The probe tack (unit: N) was measured under the conditions of a pressure of 1000 gf, a pushing speed of 120 mm/min, a lifting speed of 600 mm/min, and a probe diameter of 5.1 mm (diameter). Evaluation criteria are as follows.
A: The probe tack (unit: N) is less than 5.
B... Probe tack (unit: N) is 5 or more and less than 7.5.
C: The probe tack (unit: N) is 7.5 or more and less than 10.
D... Probe tack (unit: N) is 10 or more.
 (偏光板耐久性:完全硬化後)
 各例の粘着層付き偏光板について、幅60mm×長さ100mmの大きさに裁断し、離型シートを剥離した。露出した粘着剤層側を無アルカリガラス(コーニング社製「イーグルXG」、厚み1.1mm)に、23℃、50%RHの雰囲気下、2kgゴムローラー2往復で加圧して貼付したのち、オートクレーブ処理(0.5MPa×50℃×20分間)を行った後、高圧水銀UV照射装置にて、ピーク照度:150mW/cm、積算露光量:4000mJ/cm(1000mJ/cm×4パス)で無アルカリガラス側から紫外線照射を行い、偏光板耐久評価用サンプルを作製した。
 得られた偏光板耐久評価用サンプルを、80℃、Dryの条件下および60℃、90%RHの条件下でそれぞれ7日間暴露した後に偏光板端部を観察し、以下の基準で評価した。
 A・・・偏光板端部の浮きが1mm未満である。
 B・・・偏光板端部の浮きが1~2mm未満である。
 C・・・偏光板端部の浮きが2mm以上である。
(Polarizing plate durability: after complete curing)
The adhesive layer-attached polarizing plate of each example was cut into a size of 60 mm wide×100 mm long, and the release sheet was peeled off. The exposed adhesive layer side was attached to non-alkali glass (Corning "Eagle XG", thickness 1.1 mm) in an atmosphere of 23 ° C. and 50% RH by applying pressure with a 2 kg rubber roller 2 reciprocations, and then autoclaved. After treatment (0.5 MPa x 50°C x 20 minutes), peak illuminance: 150 mW/cm 2 , integrated exposure: 4000 mJ/cm 2 (1000 mJ/cm 2 x 4 passes) with a high-pressure mercury UV irradiation device. UV irradiation was performed from the non-alkali glass side to prepare a sample for polarizing plate durability evaluation.
The obtained samples for polarizing plate durability evaluation were exposed for 7 days under dry conditions at 80° C. and conditions at 60° C. and 90% RH for 7 days, respectively.
A: The floating of the polarizing plate edge is less than 1 mm.
B . . . The float at the edge of the polarizing plate is less than 1 to 2 mm.
C: The float at the edge of the polarizing plate is 2 mm or more.
 (曲面耐久性:完全硬化後)
 各例の粘着層付き偏光板について、幅40mm×長さ120mmの大きさに裁断し、離型シートを剥離した。露出した粘着剤層側を易接着処理ポリエチレンテレフタレート(PET)シート(厚み125μm)に、23℃、50%RHの雰囲気下、ゴムローラーで加圧して貼付した。その後、アルミニウム板(幅70mm、長さ150mm、厚さ0.3mm)にPET面が表面になるようにテープで貼り付けて固定し、アルミニウム板固定サンプルを作製した。作製したサンプルをマンドレル試験機にて5mmφとなるように屈曲させ、その状態で固定したのち、オートクレーブ処理(0.5MPa×50℃×20分間)を行い、高圧水銀UV照射装置にて、ピーク照度:150mW/cm、積算露光量:4000mJ/cm(1000mJ/cm×4パス)で屈曲させた状態のサンプルに紫外線照射を行い、曲面耐久評価用サンプルを作製した。曲面耐久評価用サンプルは、外側から順に、PET/粘着層/偏光板/アルミニウム板の層構成を有する。最も内側にアルミニウム板がある。
 得られた曲面耐久評価用サンプルを用いて、80℃、Dry、7日間の条件下および60℃、90%RH、7日間の条件下でそれぞれ暴露した後に、紫外線照射を行った屈曲部および屈曲部を除いた偏光板端部を観察し、以下の基準で評価した。
(curved surface durability: after complete curing)
The adhesive layer-attached polarizing plate of each example was cut into a size of 40 mm wide×120 mm long, and the release sheet was peeled off. The exposed pressure-sensitive adhesive layer side was attached to an easy-adhesion-treated polyethylene terephthalate (PET) sheet (thickness: 125 μm) under pressure with a rubber roller in an atmosphere of 23° C. and 50% RH. After that, it was attached to an aluminum plate (width 70 mm, length 150 mm, thickness 0.3 mm) with a tape so that the PET surface faced the surface, and fixed to prepare an aluminum plate-fixed sample. The prepared sample was bent to 5 mmφ by a mandrel tester, fixed in that state, and then autoclaved (0.5 MPa × 50 ° C. × 20 minutes). : 150 mW/cm 2 , integrated exposure amount: 4000 mJ/cm 2 (1000 mJ/cm 2 × 4 passes), the sample in a bent state was irradiated with ultraviolet rays to prepare a sample for evaluation of curved surface durability. The curved surface durability evaluation sample has a layer structure of PET/adhesive layer/polarizing plate/aluminum plate in order from the outside. There is an aluminum plate on the innermost side.
Using the obtained sample for curved surface durability evaluation, UV irradiation was performed after exposure under the conditions of 80 ° C., Dry, 7 days and 60 ° C., 90% RH, 7 days. The edge of the polarizing plate excluding the part was observed and evaluated according to the following criteria.
 (評価基準:屈曲部)
 A・・・浮き、発泡、糊のはみ出しのいずれもが見られない。
 B・・・浮き、発泡、または糊のはみ出しが見られる。
(Evaluation criteria: bent portion)
A . . . None of floating, foaming, and paste extrusion is observed.
B . . . Floating, foaming, or sticking out of glue is observed.
 (評価基準:偏光板端部)
 A・・・端部に浮き、気泡がいずれも見られない。
 B・・・端部に極僅かに気泡が見られる。
 C・・・端部の一部に気泡が見られる。
 D・・・端部全体に浮き、気泡が発生した。
(Evaluation criteria: edge of polarizing plate)
A .
B . . . Air bubbles are very slightly observed at the edge.
C: Air bubbles are seen in part of the edge.
D . . . Floating and air bubbles were generated on the entire edge.
 (評価基準:総合評価)
 A・・・屈曲部の評価がAかつ偏光板端部の評価がAである。
 B・・・屈曲部の評価がAかつ偏光板端部の評価がBまたはCである。
 C・・・屈曲部の評価がAかつ偏光板端部の評価がDである。
 D・・・屈曲部の評価がBかつ偏光板端部の評価がA~Dのいずれかである。
(Evaluation criteria: Comprehensive evaluation)
A . . . The bending portion was evaluated as A, and the polarizing plate end portion was evaluated as A.
B . . . The bending portion was evaluated as A, and the polarizing plate end portion was evaluated as B or C.
C . . . The bending portion was evaluated as A, and the polarizing plate end portion was evaluated as D.
D . . . The bending portion was evaluated as B, and the polarizing plate end portion was evaluated as one of A to D.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 実施例C1~C6の粘着剤組成物を用いた粘着シートは、完全硬化前(一次硬化後)の低架橋状態においてもタック性が低く、定荷重保持力が高いといった優れた粘着物性を示した。また、完全硬化後においても優れた粘着物性を示した。
 一方、比較例C1、C2では、分子内水素引き抜き型光開始剤または分子間水素引き抜き型光開始剤のどちらか一方しか使用していない。比較例C3、C4では、ホモポリマーのTgが-30℃以上である分岐アルキル(メタ)アクリレートを使用していない。これら比較例C1~C4の粘着剤組成物を用いた粘着シートは、実施例C1~C6と比べて、一次硬化後の低架橋状態における粘着物性に劣っていた。
The pressure-sensitive adhesive sheets using the pressure-sensitive adhesive compositions of Examples C1 to C6 exhibited excellent adhesive physical properties such as low tackiness and high constant load holding power even in a low crosslinked state before complete curing (after primary curing). . In addition, even after complete curing, excellent adhesive physical properties were exhibited.
On the other hand, in Comparative Examples C1 and C2, only one of the intramolecular hydrogen abstraction type photoinitiator and the intermolecular hydrogen abstraction type photoinitiator was used. In Comparative Examples C3 and C4, no branched alkyl (meth)acrylate having a homopolymer Tg of −30° C. or higher was used. The pressure-sensitive adhesive sheets using the pressure-sensitive adhesive compositions of Comparative Examples C1 to C4 were inferior to those of Examples C1 to C6 in adhesive physical properties in a low crosslinked state after primary curing.
 本発明の粘着剤組成物を用いてなる粘着剤は、一次硬化後の低架橋状態における粘着物性に優れるものである。本発明の粘着剤組成物を用いてなる粘着剤は、特にタッチパネルや画像表示装置等を構成する光学部材の貼り合せや有機ELディスプレイ封止用途等に用いられる粘着剤として有用である。 A pressure-sensitive adhesive using the pressure-sensitive adhesive composition of the present invention has excellent adhesive physical properties in a low crosslinked state after primary curing. A pressure-sensitive adhesive obtained using the pressure-sensitive adhesive composition of the present invention is particularly useful as a pressure-sensitive adhesive for bonding optical members constituting touch panels, image display devices, etc., for sealing organic EL displays, and the like.

Claims (26)

  1.  アクリル系樹脂(A)と、光開始剤(B)と、を含有し、
     前記アクリル系樹脂(A)は、下記の共重合成分(a)の重合生成物であり、
     前記共重合成分(a)は、ホモポリマーを形成した際のガラス転移温度が-30~50℃となるアルキルアクリレート(a1)と、ホモポリマーを形成した際のガラス転移温度が-10~120℃となるアルキルメタクリレート(a2)と、を含有し、
     前記アルキルアクリレート(a1)と前記アルキルメタクリレート(a2)の合計含有量が、前記共重合成分(a)100重量%に対して5重量%以上である、粘着剤組成物。
    containing an acrylic resin (A) and a photoinitiator (B),
    The acrylic resin (A) is a polymerization product of the following copolymer component (a),
    The copolymer component (a) comprises an alkyl acrylate (a1) having a glass transition temperature of −30 to 50° C. when forming a homopolymer, and an alkyl acrylate (a1) having a glass transition temperature of −10 to 120° C. when forming a homopolymer. and an alkyl methacrylate (a2) that becomes
    The pressure-sensitive adhesive composition, wherein the total content of the alkyl acrylate (a1) and the alkyl methacrylate (a2) is 5% by weight or more relative to 100% by weight of the copolymer component (a).
  2.  前記共重合成分(a)が、水酸基含有モノマー(a3)をさらに含有する、請求項1に記載の粘着剤組成物。 The pressure-sensitive adhesive composition according to claim 1, wherein the copolymer component (a) further contains a hydroxyl group-containing monomer (a3).
  3.  前記水酸基含有モノマー(a3)の含有量が、前記共重合成分(a)100重量%に対して0.1重量%以上である、請求項2に記載の粘着剤組成物。 The pressure-sensitive adhesive composition according to claim 2, wherein the content of the hydroxyl group-containing monomer (a3) is 0.1% by weight or more with respect to 100% by weight of the copolymer component (a).
  4.  前記アクリル系樹脂(A)の動的粘弾性に基づくガラス転移温度が、-10℃以上である、請求項1に記載の粘着剤組成物。 The adhesive composition according to claim 1, wherein the acrylic resin (A) has a glass transition temperature based on dynamic viscoelasticity of -10°C or higher.
  5.  前記アクリル系樹脂(A)の重量平均分子量が、50,000~500,000である、請求項1に記載の粘着剤組成物。 The pressure-sensitive adhesive composition according to claim 1, wherein the acrylic resin (A) has a weight average molecular weight of 50,000 to 500,000.
  6.  前記アクリル系樹脂(A)の重量平均分子量が、50,000~400,000である、請求項1に記載の粘着剤組成物。 The pressure-sensitive adhesive composition according to claim 1, wherein the acrylic resin (A) has a weight average molecular weight of 50,000 to 400,000.
  7.  前記アルキルアクリレート(a1)と前記アルキルメタクリレート(a2)の重量比が、5/95~55/45である、請求項1に記載の粘着剤組成物。 The pressure-sensitive adhesive composition according to claim 1, wherein the weight ratio of said alkyl acrylate (a1) and said alkyl methacrylate (a2) is from 5/95 to 55/45.
  8.  前記アルキルアクリレート(a1)と前記アルキルメタクリレート(a2)の合計含有量が、前記共重合成分(a)に対して30~70重量%である、請求項1に記載の粘着剤組成物。 The pressure-sensitive adhesive composition according to claim 1, wherein the total content of said alkyl acrylate (a1) and said alkyl methacrylate (a2) is 30 to 70% by weight based on said copolymer component (a).
  9.  前記共重合成分(a)が、アルキル鎖と水酸基とエチレン性不飽和基とを含有する水酸基含有モノマー(a4)をさらに含有する、請求項1に記載の粘着剤組成物。 The adhesive composition according to claim 1, wherein the copolymer component (a) further contains a hydroxyl group-containing monomer (a4) containing an alkyl chain, a hydroxyl group and an ethylenically unsaturated group.
  10.  前記共重合成分(a)中の前記水酸基含有モノマー(a3)のアルキル鎖の平均炭素数が、2.1以上である、請求項2に記載の粘着剤組成物。 The pressure-sensitive adhesive composition according to claim 2, wherein the average number of carbon atoms in the alkyl chain of the hydroxyl group-containing monomer (a3) in the copolymer component (a) is 2.1 or more.
  11.  前記アルキルアクリレート(a1)および前記アルキルメタクリレート(a2)のうちいずれか一方が、分岐鎖を有するアルキル基を有する、請求項1に記載の粘着剤組成物。 The pressure-sensitive adhesive composition according to claim 1, wherein one of the alkyl acrylate (a1) and the alkyl methacrylate (a2) has a branched alkyl group.
  12.  前記光開始剤(B)が、分子内水素引抜型光開始剤(b1)または分子間水素引抜型光開始剤(b2)を含有する、請求項1に記載の粘着剤組成物。 The pressure-sensitive adhesive composition according to claim 1, wherein the photoinitiator (B) contains an intramolecular hydrogen abstraction photoinitiator (b1) or an intermolecular hydrogen abstraction photoinitiator (b2).
  13.  前記光開始剤(B)が、分子内水素引抜型光開始剤(b1)および分子間水素引抜型光開始剤(b2)を含有する、請求項1に記載の粘着剤組成物。 The pressure-sensitive adhesive composition according to claim 1, wherein the photoinitiator (B) contains an intramolecular hydrogen abstraction photoinitiator (b1) and an intermolecular hydrogen abstraction photoinitiator (b2).
  14.  架橋剤(C)をさらに含有する、請求項1に記載の粘着剤組成物。 The pressure-sensitive adhesive composition according to claim 1, further comprising a cross-linking agent (C).
  15.  請求項1~14のいずれか一項に記載の粘着剤組成物が架橋されてなる、粘着剤。 A pressure-sensitive adhesive obtained by cross-linking the pressure-sensitive adhesive composition according to any one of claims 1 to 14.
  16.  架橋が活性エネルギー線の照射により行なわれる、請求項15に記載の粘着剤。 The pressure-sensitive adhesive according to claim 15, wherein the cross-linking is performed by irradiation with active energy rays.
  17.  請求項15または16に記載の粘着剤からなる粘着剤層を有する、粘着シート。 A pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer made of the pressure-sensitive adhesive according to claim 15 or 16.
  18.  前記粘着剤層が、複数の段階で硬化する多段硬化性である、請求項17に記載の粘着シート。 The pressure-sensitive adhesive sheet according to claim 17, wherein the pressure-sensitive adhesive layer is multi-stage curing in which it is cured in a plurality of stages.
  19.  請求項17または18に記載の粘着シートの少なくとも片面に、離型フィルムが積層された積層構造を備えた、離型フィルム付き粘着シート。 A pressure-sensitive adhesive sheet with a release film, comprising a laminated structure in which a release film is laminated on at least one side of the pressure-sensitive adhesive sheet according to claim 17 or 18.
  20.  画像表示装置用積層体であって、
     2つの画像表示装置構成部材が、請求項17または18に記載の粘着シートを介して積層された積層構造を備え、
     前記2つの画像表示装置構成部材のうち一方が、曲面形状を有するカバーガラスであり、
     前記2つの画像表示装置構成部材のうちもう一方が、タッチセンサー、画像表示パネル、表面保護フィルム、反射防止フィルム、カラーフィルター、偏光フィルムおよび位相差フィルムからなる群から選ばれる少なくとも1種以上である、画像表示装置用積層体。
    A laminate for an image display device,
    Two image display device constituent members have a laminated structure laminated via the pressure-sensitive adhesive sheet according to claim 17 or 18,
    one of the two image display device constituent members is a cover glass having a curved shape;
    The other of the two image display device constituent members is at least one or more selected from the group consisting of a touch sensor, an image display panel, a surface protective film, an antireflection film, a color filter, a polarizing film and a retardation film. , a laminate for an image display device.
  21.  請求項20に記載の画像表示装置用積層体を備えた、曲面画像表示装置。 A curved image display device comprising the laminate for an image display device according to claim 20.
  22.  アクリル系樹脂(A)を含有し、
     前記アクリル系樹脂(A)は、下記の共重合成分(a)の重合生成物であり、
     前記共重合成分(a)は、アルキルアクリレート(a1)とアルキルメタクリレート(a2)を含有する、曲面光学部材用粘着剤組成物。
    containing an acrylic resin (A),
    The acrylic resin (A) is a polymerization product of the following copolymer component (a),
    A pressure-sensitive adhesive composition for a curved optical member, wherein the copolymer component (a) contains an alkyl acrylate (a1) and an alkyl methacrylate (a2).
  23.  前記共重合成分(a)が、水酸基含有モノマー(a3)をさらに含有する、請求項22に記載の曲面光学部材用粘着剤組成物。 The pressure-sensitive adhesive composition for curved optical members according to claim 22, wherein the copolymer component (a) further contains a hydroxyl group-containing monomer (a3).
  24.  前記アルキルアクリレート(a1)と前記アルキルメタクリレート(a2)の重量比が、5/95~55/45である、請求項22または23に記載の曲面光学部材用粘着剤組成物。 The pressure-sensitive adhesive composition for curved optical members according to claim 22 or 23, wherein the weight ratio of said alkyl acrylate (a1) and said alkyl methacrylate (a2) is 5/95 to 55/45.
  25.  前記アルキルアクリレート(a1)と前記アルキルメタクリレート(a2)の合計含有量が、前記共重合成分(a)に対して10重量%以上である、請求項22または23に記載の曲面光学部材用粘着剤組成物。 24. The pressure-sensitive adhesive for curved optical members according to claim 22 or 23, wherein the total content of said alkyl acrylate (a1) and said alkyl methacrylate (a2) is 10% by weight or more relative to said copolymer component (a). Composition.
  26.  さらに光重合開始剤を含有する、請求項22または23に記載の曲面光学部材用粘着剤組成物。 The pressure-sensitive adhesive composition for curved optical members according to claim 22 or 23, further comprising a photopolymerization initiator.
PCT/JP2022/036429 2021-09-30 2022-09-29 Adhesive composition, adhesive, adhesive sheet, adhesive sheet with release film, laminate for image display device, curved image display device, adhesive composition for curved optical member WO2023054581A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020247009084A KR20240065251A (en) 2021-09-30 2022-09-29 Adhesive composition, adhesive, adhesive sheet, adhesive sheet with release film, laminate for image display device, curved image display device, adhesive composition for curved optical member
CN202280059067.5A CN117897460A (en) 2021-09-30 2022-09-29 Adhesive composition, adhesive sheet with release film, laminate for image display device, curved image display device, and adhesive composition for curved optical member

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021-160485 2021-09-30
JP2021-160488 2021-09-30
JP2021-160337 2021-09-30
JP2021160488 2021-09-30
JP2021160485 2021-09-30
JP2021160337 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023054581A1 true WO2023054581A1 (en) 2023-04-06

Family

ID=85782884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036429 WO2023054581A1 (en) 2021-09-30 2022-09-29 Adhesive composition, adhesive, adhesive sheet, adhesive sheet with release film, laminate for image display device, curved image display device, adhesive composition for curved optical member

Country Status (3)

Country Link
KR (1) KR20240065251A (en)
TW (1) TW202323487A (en)
WO (1) WO2023054581A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015151514A (en) * 2014-02-18 2015-08-24 綜研化学株式会社 Optical adhesive composition, optical adhesive sheet and picture display unit
JP5801514B1 (en) * 2013-11-26 2015-10-28 株式会社イーテック Photocurable pressure-sensitive adhesive composition, pressure-sensitive adhesive sheet, and laminate
KR101934825B1 (en) * 2017-11-29 2019-01-03 동우 화인켐 주식회사 Adhesive composition and adhesive sheet prepared from the same
JP2019108499A (en) * 2017-12-19 2019-07-04 リンテック株式会社 Adhesive for repeatedly bending device, adhesive sheet, repeatedly bending laminate member, and repeatedly bending device
JP2020530521A (en) * 2017-09-29 2020-10-22 エルジー・ケム・リミテッド Adhesive composition and adhesive film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012060364A1 (en) 2010-11-02 2012-05-10 日本合成化学工業株式会社 Acrylic resin composition, acrylic adhesive, adhesive sheet, double-sided adhesive sheet, adhesive for transparent electrodes, touch-panel and image display device, as well as production method for adhesive layer-containing laminates
KR102496512B1 (en) 2015-08-03 2023-02-06 미쯔비시 케미컬 주식회사 Pressure-sensitive adhesive sheet, method for manufacturing a laminate including a pressure-sensitive adhesive layer, a laminate including a pressure-sensitive adhesive layer, an image display device, and a touch panel
JP6895228B2 (en) 2016-05-25 2021-06-30 王子ホールディングス株式会社 Adhesive sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5801514B1 (en) * 2013-11-26 2015-10-28 株式会社イーテック Photocurable pressure-sensitive adhesive composition, pressure-sensitive adhesive sheet, and laminate
JP2015151514A (en) * 2014-02-18 2015-08-24 綜研化学株式会社 Optical adhesive composition, optical adhesive sheet and picture display unit
JP2020530521A (en) * 2017-09-29 2020-10-22 エルジー・ケム・リミテッド Adhesive composition and adhesive film
KR101934825B1 (en) * 2017-11-29 2019-01-03 동우 화인켐 주식회사 Adhesive composition and adhesive sheet prepared from the same
JP2019108499A (en) * 2017-12-19 2019-07-04 リンテック株式会社 Adhesive for repeatedly bending device, adhesive sheet, repeatedly bending laminate member, and repeatedly bending device

Also Published As

Publication number Publication date
TW202323487A (en) 2023-06-16
KR20240065251A (en) 2024-05-14

Similar Documents

Publication Publication Date Title
TWI702272B (en) Adhesive sheet, manufacturing method of laminated body with adhesive layer, laminated body with adhesive layer, image display device and touch panel
JP6065002B2 (en) Adhesive sheet for image display device, method for manufacturing image display device, and image display device
JP7243621B2 (en) Use of double-sided pressure-sensitive adhesive sheet, laminate having members for constituting image display device, laminate-forming kit, and double-sided pressure-sensitive adhesive sheet
JP6651855B2 (en) Pressure-sensitive adhesive composition, pressure-sensitive adhesive, pressure-sensitive adhesive sheet, double-sided pressure-sensitive adhesive sheet, pressure-sensitive adhesive for transparent electrode, touch panel, and image display device
JP2018109102A (en) Adhesive composition, adhesive, adhesive sheet, method for producing laminate with adhesive layer, image display device, and touch panel
JP2012021148A (en) Pressure-sensitive adhesive, pressure-sensitive adhesive for optical member, optical member with pressure-sensitive adhesive layer and image display device
KR20150002456A (en) adhesion sheet and laminate
JP2013234322A (en) Pressure sensitive adhesive sheet, method of manufacturing laminate with adhesive layer and application of the same
JPWO2015155844A1 (en) Adhesive sheet and laminate
KR20170062390A (en) Pressure-sensitive adhesive sheet and pressure-sensitive adhesive sheet with release film
WO2013141296A1 (en) Heat- or photocurable resin composition for forming optical pressure-sensitive adhesive sheet, and optical pressure-sensitive adhesive sheet
JP6094226B2 (en) Protective adhesive film, screen panel and touch panel
JP2012158632A (en) Pressure sensitive adhesive and laminated product therewith
WO2016148208A1 (en) Adhesive sheet for image display device, adhesive layered body for image display device, and image display device
JP6226684B2 (en) A pressure-sensitive adhesive for polarizing plates, a polarizing plate with a pressure-sensitive adhesive layer, an image display device, an active energy ray and / or a pressure-sensitive adhesive composition for thermosetting polarizing plates
JP7234674B2 (en) Adhesive sheet and laminate
JP7278967B2 (en) Optical transparent adhesive sheet
TWI735646B (en) Acrylic adhesive composition, adhesive and adhesive sheet
WO2023054581A1 (en) Adhesive composition, adhesive, adhesive sheet, adhesive sheet with release film, laminate for image display device, curved image display device, adhesive composition for curved optical member
JP2024033916A (en) Adhesive compositions, adhesives and adhesive sheets
JP2024033911A (en) Adhesive compositions, adhesives and adhesive sheets
JP2024033923A (en) Adhesive compositions, adhesives and adhesive sheets
CN117897460A (en) Adhesive composition, adhesive sheet with release film, laminate for image display device, curved image display device, and adhesive composition for curved optical member
JP2020128488A (en) Adhesive sheet and laminate
JP2024079661A (en) Adhesive composition, adhesive, and adhesive sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876445

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551843

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280059067.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247009084

Country of ref document: KR

Kind code of ref document: A