WO2023054517A1 - Method of manufacturing package substrate for mounting semiconductor element - Google Patents

Method of manufacturing package substrate for mounting semiconductor element Download PDF

Info

Publication number
WO2023054517A1
WO2023054517A1 PCT/JP2022/036276 JP2022036276W WO2023054517A1 WO 2023054517 A1 WO2023054517 A1 WO 2023054517A1 JP 2022036276 W JP2022036276 W JP 2022036276W WO 2023054517 A1 WO2023054517 A1 WO 2023054517A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
layer
wiring
wiring conductor
laminate
Prior art date
Application number
PCT/JP2022/036276
Other languages
French (fr)
Japanese (ja)
Inventor
慎也 喜多村
晃樹 小松
和晃 川下
隼斗 中川
豪志 信國
Original Assignee
Mgcエレクトロテクノ株式会社
米沢ダイヤエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mgcエレクトロテクノ株式会社, 米沢ダイヤエレクトロニクス株式会社 filed Critical Mgcエレクトロテクノ株式会社
Priority to CN202280065715.8A priority Critical patent/CN118020150A/en
Publication of WO2023054517A1 publication Critical patent/WO2023054517A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to a method of manufacturing a semiconductor device mounting package substrate on which a semiconductor device is mounted.
  • the present invention has been made based on such problems, and provides a method for manufacturing a package substrate for mounting a semiconductor element, which can suppress breakage in the processing steps when the core resin layer is peeled off or after the peeling. intended to provide
  • the present invention is as follows. [1] a first laminated body preparing step of preparing a first laminated body having a core resin layer and a first metal layer provided on at least one side of the core resin layer and provided with a peeling means; a first wiring forming step of applying at least one of electrolytic plating and electroless plating on the first metal layer to form a first wiring conductor; A second laminate is formed by laminating a first insulating resin layer and a second metal layer in this order on the surface of the first laminate on which the first wiring conductor is provided.
  • a second laminate forming step to A non-through hole reaching the first wiring conductor is formed in the first insulating resin layer, and at least one of electrolytic plating and electroless plating is applied to the surface in which the non-through hole is formed to form a second wiring.
  • a second wiring forming step of forming a conductor After the second wiring forming step, the (m+1)-th insulating resin layer and the (m+2)-th insulating resin layer are further formed on the surface on which the (m+1)-th wiring conductor of the (m+1)-th laminate is provided. and a metal layer in this order to form an (m+2)-th laminate, and the (m+1)-th wiring on the (m+1)-th insulating resin layer.
  • (m+2)th wiring formation of forming a non-through hole reaching a conductor and applying at least one of electrolytic plating and electroless plating to the surface in which the non-through hole is formed to form a (m+2)th wiring conductor The steps are repeated n times in this order, and a wiring lamination step (m and n are an integer of 1 or more, provided that m ⁇ n); forming a solder-resist layer on the (n+1)-th insulating resin layer and the (n+2)-th wiring conductor so that the (n+2)-th wiring conductor is partially exposed; a solder resist layer forming step; a core resin layer stripping step of stripping at least the core resin layer from the solder resist formed body by the stripping means to obtain a core resin layer-removed body;
  • a method of manufacturing a package substrate for mounting a semiconductor device comprising: [2] The method of manufacturing a package substrate for mounting a semiconductor element according to [1], wherein the core resin layer has a
  • each of the first insulating resin layer to the (n+1)th insulating resin layer has a thickness of 0.1 ⁇ m or more and 100 ⁇ m or less.
  • a supporting substrate having a thermoplastic resin layer is laminated on the surface of the solder-resist layer forming body provided with the solder-resist layer.
  • a solder resist layer is formed on the (n+1)-th insulating resin layer and the (n+2)-th wiring conductor so that the (n+2)-th wiring conductor is partially exposed, and then peeled off. Since at least the core resin layer is peeled off in the means, the solder resist layer separates the first wiring conductor to the (n+2)th wiring conductor and the first insulating resin layer to the (n+1)th insulating resin layer. can be reinforced and their damage can be suppressed. Therefore, a package substrate for mounting a semiconductor element can be manufactured satisfactorily.
  • At least the core resin layer 11A is peeled off, so that the first wiring conductor 12 to the (n+2)th wiring conductor 15B, and The first insulating resin layer 13A to the (n+1)th insulating resin layer 15A can be reinforced more firmly.
  • the thickness of the first metal layer from the end face of the first wiring conductor side to the peeling means is set to 6 ⁇ m or more, when at least the core resin layer is peeled off by the peeling means, the first wiring conductor is separated from the first wiring conductor by the peeling means.
  • the (n+2) wiring conductors and the first insulating resin layer to the (n+1)th insulating resin layer can be reinforced more firmly.
  • FIGS. 4A to 4C are diagrams showing each step of the manufacturing method of the package substrate for mounting a semiconductor element according to the first embodiment; 1. It is a figure showing each process following FIG. It is a figure showing each process following FIG. It is a figure showing each process of the manufacturing method of the package substrate for mounting a semiconductor element which concerns on 2nd Embodiment.
  • FIG. 5 is a diagram showing each step following FIG. 4;
  • First Embodiment 1 to 3 show each step of a method for manufacturing a package substrate for mounting a semiconductor element according to the first embodiment.
  • the method for manufacturing the package substrate for mounting a semiconductor element includes, for example, the following steps (first laminate preparation step, first wiring formation step, second laminate formation step, second wiring formation step). , wiring lamination step, solder resist layer forming step, and core resin layer peeling step).
  • a core resin layer 11A is provided on at least one side of the core resin layer 11A as a base substrate for forming a package substrate for mounting a semiconductor element, and A first laminate 11 having a first metal layer 11B provided with peeling means is prepared (first laminate preparation step).
  • first laminate preparation step shows the case where the first metal layer 11B is provided on one side of the core resin layer 11A.
  • the first metal layer 11B may be provided on both sides of the core resin layer 11A.
  • the core resin layer 11A is not particularly limited. It can be composed of a material or the like.
  • the thickness of the core resin layer 11A is appropriately set as desired, and is not particularly limited, but is preferably 1 ⁇ m or more, for example. This is because if the thickness of the core resin layer 11A is less than 1 ⁇ m, the insulating resin layer formed in the subsequent process may be defective in molding.
  • Prepreg is made by impregnating or coating a base material with an insulating material such as a resin composition.
  • the substrate is not particularly limited, and known substrates used for various laminates for electrical insulating materials can be appropriately used. Materials constituting the substrate include, for example, inorganic fibers such as E-glass, D-glass, S-glass, and Q-glass; organic fibers such as polyimide, polyester, or tetrafluoroerylene; and mixtures thereof.
  • the substrate is not particularly limited, and for example, those having a shape such as woven fabric, nonwoven fabric, roving, chopped strand mat, surfacing mat and the like can be used as appropriate.
  • the material and shape of the base material are selected according to the intended use and performance of the molded article, and if necessary, it is possible to use one or more kinds of materials and shapes.
  • the thickness of the base material is not particularly limited as long as the thickness of the core resin layer 11A is within the range described above.
  • the base material one surface-treated with a silane coupling agent or the like or one subjected to mechanical fiber opening treatment can be used, and these base materials are suitable in terms of heat resistance, moisture resistance, and workability. is.
  • the insulating material is not particularly limited, and a known resin composition used as an insulating material for package substrates for mounting semiconductor elements can be appropriately selected and used.
  • a thermosetting resin having good heat resistance and chemical resistance can be used as a base.
  • the thermosetting resin is not particularly limited, and examples thereof include polyimide resins, phenol resins, epoxy resins, cyanate resins, maleimide resins, modified polyphenylene ethers, bismaleimide triazine resins, isocyanate resins, benzocyclobutene resins and vinyl resins. be done. These thermosetting resins may be used singly or in combination of two or more.
  • the polyimide resin is not particularly limited, and commercially available products can be appropriately selected and used.
  • a solvent-soluble polyimide resin synthesized by the production method described in JP-A-2005-15629 or a block-copolymerized polyimide resin can be used.
  • block copolymer polyimide resins include block copolymer polyimide resins described in International Publication WO2010-073952.
  • the block copolymerized polyimide resin comprises structure A in which an imide oligomer comprising a second structural unit is bound to the end of an imide oligomer comprising a first structural unit, and a second structural unit.
  • Block copolymerized polyimide resin having a structure in which Structure B, in which an imide oligomer composed of a first structural unit is bonded to the end of the imide oligomer, is alternately repeated. Note that the second structural unit is different from the first structural unit.
  • These block copolymer polyimide resins are produced by reacting a tetracarboxylic dianhydride and a diamine in a polar solvent to form an imide oligomer, and then further tetracarboxylic dianhydride and another diamine or another tetracarboxylic acid. It can be synthesized by a sequential polymerization reaction in which an acid dianhydride and a diamine are added and imidized.
  • One type of these polyimide resins may be used alone, or two or more types may be mixed and used.
  • the phenolic resin is not particularly limited, and one or more molecules per molecule (preferably 2 to 12, more preferably 2 to 6, still more preferably 2 to 4, more preferably 2 or 3, still more preferably 2 ) can be used as long as they are compounds or resins having a phenolic hydroxy group.
  • bisphenol A type phenol resin bisphenol E type phenol resin, bisphenol F type phenol resin, bisphenol S type phenol resin, phenol novolak resin, bisphenol A novolac type phenol resin, glycidyl ester type phenol resin, aralkyl novolac type phenol resin, biphenyl Aralkyl-type phenolic resins, cresol novolac-type phenolic resins, polyfunctional phenolic resins, naphthol resins, naphthol novolak resins, polyfunctional naphthol resins, anthracene-type phenolic resins, naphthalene skeleton-modified novolac-type phenolic resins, phenol aralkyl-type phenolic resins, naphthol aralkyl-type phenolic resins Phenol resins, dicyclopentadiene type phenol resins, biphenyl type phenol resins, alicyclic phenol resins, polyol type phenol resin
  • thermosetting resins epoxy resins are excellent in heat resistance, chemical resistance, and electrical properties, and are relatively inexpensive, so they can be suitably used as insulating materials.
  • the epoxy resin one or more (preferably 2 to 12, more preferably 2 to 6, still more preferably 2 to 4, still more preferably 2 or 3, still more preferably 2) epoxy groups per molecule.
  • cresol novolak type epoxy resin bisphenol A novolac type epoxy resin
  • diglycidyl ether of biphenol diglycidyl ether of naphthalenediol
  • diglycidyl ether of phenols diglycidyl ether of alcohols
  • Alkyl-substituted products, halides, and hydrogenated products thereof are included.
  • One type of these epoxy resins may be used alone, or two or more types may be mixed and used.
  • the curing agent used with this epoxy resin can be used without limitation as long as it cures the epoxy resin. Phosphorus compounds and halides thereof may be mentioned.
  • These epoxy resin curing agents may be used singly or in combination of two or more.
  • a cyanate resin is a resin that, when heated, produces a cured product with repeating units of triazine rings, and the cured product has excellent dielectric properties. For this reason, it is suitable especially when high-frequency characteristics are required.
  • the cyanate resin one or more (preferably 2 to 12, more preferably 2 to 6, more preferably 2 to 4, still more preferably 2 or 3, still more preferably 2) cyanato groups per molecule ( It is not particularly limited as long as it is a compound or resin having an aromatic moiety substituted with a cyanate ester group) in the molecule, but examples include 2,2-bis(4-cyanatophenyl)propane, bis(4-cyanato phenyl)ethane, 2,2-bis(3,5dimethyl-4-cyanatophenyl)methane, 2,2-(4-cyanatophenyl)-1,1,1,3,3,3-hexafluoropropane , ⁇ , ⁇ '-bis(4-cyanatophenyl)-m-di
  • cyanate resins such as cyanate ester compounds may be used singly or in combination of two or more. A part of the cyanate ester compound may be previously oligomerized into a trimer or a pentamer.
  • a curing catalyst or curing accelerator can be used in combination with the cyanate resin.
  • the curing catalyst for example, metals such as manganese, iron, cobalt, nickel, copper and zinc can be used.
  • organic metal salts such as 2-ethylhexanoate and octylate, and acetylacetone Mention may be made of organometallic complexes such as complexes.
  • Curing catalysts may be used singly or in combination of two or more.
  • Phenols are preferably used as the curing accelerator, and monofunctional phenols such as nonylphenol and paracumylphenol; bifunctional phenols such as bisphenol A, bisphenol F and bisphenol S; or phenol novolak and cresol novolak. can be used.
  • a hardening accelerator may be used individually by 1 type, and may be used in mixture of 2 or more types.
  • the maleimide resin has 1 or more (preferably 2 to 12, more preferably 2 to 6, still more preferably 2 to 4, still more preferably 2 or 3, still more preferably 2) maleimide groups in one molecule.
  • a generally known compound or resin can be used as long as it has a compound or resin.
  • Modified polyphenylene ether is useful from the viewpoint that it can improve the dielectric properties of the cured product.
  • Modified polyphenylene ethers include, for example, poly(2,6-dimethyl-1,4-phenylene) ether, an alloyed polymer of poly(2,6-dimethyl-1,4-phenylene) ether and polystyrene, poly(2 ,6-dimethyl-1,4-phenylene)ether and styrene-butadiene copolymer, alloyed polymer of poly(2,6-dimethyl-1,4-phenylene)ether and styrene-maleic anhydride copolymer, poly Alloyed polymers of (3,6-dimethyl-1,4-phenylene) ether and polyamides, alloyed polymers of poly(2,6-dimethyl-1,4-phenylene) ethers and styrene-butadiene-acrylonitrile copolymers, oligophenylene
  • the isocyanate resin is not particularly limited, and includes, for example, an isocyanate resin obtained by a dehydrohalogenation reaction between a phenol and a cyanogen halide.
  • isocyanate resins include 4,4'-diphenylmethane diisocyanate MDI, polymethylene polyphenyl polyisocyanate, tolylene diisocyanate, and hexamethylene diisocyanate.
  • One type of these isocyanate resins may be used alone, or two or more types may be mixed and used.
  • the benzocyclobutene resin is not particularly limited as long as it contains a cyclobutene skeleton, but for example, divinylsiloxane-bisbenzocyclobutene (manufactured by Dow Chemical Co.) can be used.
  • divinylsiloxane-bisbenzocyclobutene manufactured by Dow Chemical Co.
  • One type of these benzocyclobutene resins may be used alone, or two or more types may be mixed and used.
  • the vinyl resin is not particularly limited as long as it is a polymer or copolymer of vinyl monomers.
  • Vinyl monomers are not particularly limited, and examples include (meth)acrylic acid ester derivatives, vinyl ester derivatives, maleic acid diester derivatives, (meth)acrylamide derivatives, styrene derivatives, vinyl ether derivatives, vinyl ketone derivatives, olefin derivatives, maleimide derivatives, (Meth)acrylonitrile may be mentioned. These vinyl resins may be used singly or in combination of two or more.
  • the resin composition used as the insulating material can also be blended with a thermoplastic resin in consideration of dielectric properties, impact resistance, film processability, and the like.
  • the thermoplastic resin is not particularly limited, and examples thereof include fluororesin, polycarbonate, polyetherimide, polyetheretherketone, polyacrylate, polyamide, polyamideimide, and polybutadiene.
  • One type of thermoplastic resin may be used alone, or two or more types may be mixed and used.
  • the fluororesin is not particularly limited, and examples thereof include polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, and polyvinyl fluoride.
  • One type of these fluororesins may be used alone, or two or more types may be mixed and used.
  • polyamide-imide resins are useful from the viewpoint of excellent moisture resistance and good adhesion to metals.
  • the raw material for the polyamideimide resin is not particularly limited, but examples of the acidic component include trimellitic anhydride and trimellitic anhydride monochloride, and examples of the amine component include metaphenylenediamine, paraphenylenediamine, 4 ,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, bis[4-(aminophenoxy)phenyl]sulfone, 2,2'-bis[4-(4-aminophenoxy)phenyl]propane and the like.
  • the polyamide-imide resin may be modified with siloxane to improve drying properties, and in this case, siloxane diamine can be used as the amino component. Considering film processability, it is preferable to use a polyamide-imide resin having a molecular weight of 50,000 or more.
  • thermoplastic resins have been described as insulating materials mainly used for prepregs, these thermoplastic resins are not limited to use as prepregs.
  • the core resin layer 11A may be formed by processing a film (film material) using the thermoplastic resin described above.
  • a filler may be mixed in the resin composition used as the insulating material.
  • fillers include, but are not limited to, alumina, white carbon, titanium white, titanium oxide, zinc oxide, magnesium oxide, metal oxides (including hydrates) such as zirconium oxide, aluminum hydroxide, boehmite, Metal hydroxides such as magnesium hydroxide, silicas such as natural silica, fused silica, synthetic silica, amorphous silica, aerosil, and hollow silica, inorganic materials such as clay, kaolin, talc, mica, glass powder, quartz powder, and Shirasu balloons
  • organic fillers organic fillers
  • organic fillers organic fillers
  • These fillers may be used singly or in combination of two or more.
  • the resin composition used as an insulating material may contain an organic solvent.
  • the organic solvent is not particularly limited, and aromatic hydrocarbon solvents such as benzene, toluene, xylene and trimethylbenzene; ketone solvents such as acetone, methyl ethyl ketone and methylinobutyl ketone; and tetrahydrofuran.
  • Ether solvents aromatic hydrocarbon solvents such as benzene, toluene, xylene and trimethylbenzene
  • ketone solvents such as acetone, methyl ethyl ketone and methylinobutyl ketone
  • tetrahydrofuran Ether solvents
  • alcohol solvents such as isopropanol and butanol
  • ether alcohol solvents such as 2-methoxyethanol and 2-butoxyethanol
  • N-methylpyrrolidone N,N-dimethylformamide and N,N-dimethylacetamide
  • the amount of the solvent in the varnish when producing the prepreg is preferably in the range of 40% by mass to 80% by mass with respect to the entire resin composition. Further, the viscosity of the varnish is desirably in the range of 20 cP to 100 cP (20 mPa ⁇ s to 100 mPa ⁇ s).
  • the resin composition used as an insulating material may contain a flame retardant.
  • flame retardants include, but are not limited to, bromine compounds such as decabromodiphenyl ether, tetrabromobisphenol A, tetrabromophthalic anhydride, and tribromophenol, triphenyl phosphate, trixylyl phosphate, and clay.
  • Known and customary flame retardants such as phosphorus compounds such as dildiphenyl phosphate, red phosphorus and modified products thereof, antimony compounds such as antimony trioxide and antimony pentoxide, triazine compounds such as melamine, cyanuric acid and melamine cyanurate can be used. can.
  • additives such as the above-mentioned curing agent, curing accelerator, thermoplastic particles, coloring agents, ultraviolet opaque agents, antioxidants, reducing agents, etc. Additives and fillers can be added.
  • the prepreg is, for example, a resin composition (varnish is added so that the amount of the resin composition attached to the base material described above is 20% by mass or more and 90% by mass or less in terms of resin content in the prepreg after drying. ) is impregnated or coated on the substrate, and then dried by heating at a temperature of 100° C. or higher and 200° C. or lower for 1 minute to 30 minutes to obtain a prepreg in a semi-cured state (B stage state).
  • GHPL-830NS product name
  • GHPL-830NSF product name
  • the first metal layer 11B can be made of, for example, a metal foil with a carrier.
  • the metal foil with a carrier is, for example, laminated with a metal foil on a carrier via a release layer, which is a release means.
  • a commercial product can also be used for the metal foil with a carrier, for example, MT18SD-HT5 (product name) manufactured by Mitsui Mining & Smelting Co., Ltd. can be used.
  • the thickness of the first metal layer 11B is preferably 100 ⁇ m or less, for example. This is because a thinner metal layer is more advantageous for forming fine wiring. Moreover, it is more preferable that the thickness of the first metal layer 11B is 0.5 ⁇ m or more. Furthermore, the thickness of the first metal layer 11B is more preferably 1 ⁇ m or more and 100 ⁇ m or less.
  • the carrier can be composed of, for example, various metal foils, but is preferably composed of copper foil in terms of uniformity of thickness and corrosion resistance of the foil.
  • the thickness of the carrier is thicker than the thickness of the metal foil, and can be, for example, 3 ⁇ m or more and 100 ⁇ m or less, preferably 5 ⁇ m or more and 50 ⁇ m or less, and more preferably 6 ⁇ m or more and 30 ⁇ m or less.
  • the release layer is for allowing the carrier to be easily separated from the metal foil.
  • Materials for the release layer are not particularly limited, and various well-known materials can be used as appropriate.
  • organic materials include nitrogen-containing organic compounds, sulfur-containing organic compounds, and carboxylic acids.
  • nitrogen-containing organic compound include triazole compounds, imidazole compounds, etc. Among them, triazole compounds are preferable because they tend to have stable peelability.
  • triazole compounds include 1,2,3-benzotriazole, carboxybenzotriazole, N',N'-bis(benzotriazolylmethyl)urea, 1H-1,2,4-triazole and 3-amino- 1H-1,2,4-triazole and the like.
  • Examples of sulfur-containing organic compounds include mercaptobenzothiazole, thiocyanuric acid, 2-benzimidazolethiol, and the like.
  • Examples of carboxylic acids include monocarboxylic acids, dicarboxylic acids, and the like.
  • Inorganic materials include metals or alloys of at least one of Ni, Mo, Co, Cr, Fe, Ti, W, P, Zn, and oxides thereof.
  • the thickness of the release layer can be, for example, 1 nm or more and 1 ⁇ m or less, preferably 5 nm or more and 500 nm or less.
  • the metal foil can be composed of, for example, various metal foils, but is preferably composed of copper foil in terms of thickness uniformity and corrosion resistance of the foil.
  • the thickness of the metal foil is not particularly limited because it is appropriately set as desired.
  • the first metal layer 11B may be provided so that the carrier is on the core resin layer 11A side, or may be provided so that the metal foil is on the core resin layer 11A side.
  • the thickness from the end face of the first metal layer 11B opposite to the core resin layer 11A to the peeling means should be 6 ⁇ m or more. is preferred, 10 ⁇ m or more is more preferred, and 15 ⁇ m or more is even more preferred.
  • the thickness from the end face of the first metal layer 11B opposite to the core resin layer 11A to the peeling means is 70 ⁇ m or less. It is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less, and even more preferably 30 ⁇ m or less. This is because it takes a long time to remove the remaining first metal layer 11B in the first metal layer removing step, which will be described later.
  • the first metal layer 11B can also be composed of a metal foil having a peeling layer as a peeling means.
  • the release layer is laminated so as to face the core resin layer 11A.
  • the release layer include a layer containing at least a silicon compound.
  • the release layer can be formed by applying a silicon compound composed of a single silane compound or a combination of multiple silane compounds onto a metal foil.
  • the means for applying the silicon compound is not particularly limited, and for example, known means such as coating can be used.
  • An antirust treatment can be applied to the surface of the metal foil to be adhered to the release layer (to form an antirust treatment layer).
  • Rust prevention treatment can be performed using any one of nickel, tin, zinc, chromium, molybdenum, cobalt, or alloys thereof.
  • the thickness of the release layer is not particularly limited, but is preferably 5 nm or more and 100 nm or less, more preferably 10 nm or more and 80 nm or less, and particularly preferably 20 nm or more and 60 nm or less, from the viewpoint of removability and peelability.
  • a copper foil is preferable from the viewpoint of uniformity of thickness and corrosion resistance of the foil.
  • the thickness from the end face of the first metal layer 11B opposite to the core resin layer 11A to the peeling means that is, the thickness from the end face of the first wiring conductor 12 side described later to the peeling means is the same as described above. It is preferable to do so.
  • the first laminated body 11 can be produced, for example, by laminating the core resin layer 11A and the first metal layer 11B, heating and pressurizing them, and crimping them.
  • the thickness of the first laminate 11 can be, for example, 20 ⁇ m or more and 1000 ⁇ m or less, preferably 20 ⁇ m or more and 950 ⁇ m or less, and more preferably 20 ⁇ m or more and 900 ⁇ m or less.
  • first wiring forming step at least one of electrolytic plating and electroless plating is applied to the first metal layer 11B of the first laminate 11 to form the first wiring conductor. 12 is formed (first wiring forming step). Specifically, for example, a plating resist is laminated on the first metal layer 11B, a circuit pattern is printed on the plating resist, developed to form a plating resist pattern, and then patterned electrolytic plating is performed. , the first wiring conductor 12 is formed, and the plating resist is removed.
  • the plating resist is not particularly limited, and for example, a known one such as a commercially available dry film resist can be appropriately selected and used. Baking, development, and removal of the plating resist are also not particularly limited, and can be performed using known means and devices. Furthermore, pattern electrolytic plating for forming the first wiring conductors 12 is not particularly limited, and known methods can be used as appropriate.
  • the first wiring conductor 12 is preferably formed by copper plating.
  • the thickness of the first wiring conductor is appropriately set as desired, and is not particularly limited. more preferred.
  • the pattern width of the first wiring conductor is not particularly limited, and the width can be appropriately selected according to the application. be able to.
  • ⁇ Second laminate forming step> Subsequently, for example, as shown in FIG. 1C, a first insulating resin layer 13A and a second metal layer are formed on the surface of the first laminate 11 on which the first wiring conductors 12 are provided.
  • the layer 13B is laminated in this order to form the second laminated body 13 (second laminated body forming step).
  • the first insulating resin layer 13A is not particularly limited, it can be made of, for example, the same material as the core resin layer 11A (for example, prepreg or insulating film material).
  • the thickness of the first insulating resin layer 13A is appropriately set as desired, and is not particularly limited. The following are more preferred.
  • the second metal layer 13B can be made of various metal foils, but is preferably made of copper foil in terms of thickness uniformity and corrosion resistance of the foil.
  • the thickness of the second metal layer 13B is appropriately set as desired, and is not particularly limited. is more preferred.
  • the second laminate forming step is not particularly limited, and can be performed, for example, by the following steps.
  • the surface of the first wiring conductor 12 is roughened as an adhesion treatment for obtaining adhesion to the first insulating resin layer 13A.
  • the first insulating resin layer 13A and the second metal layer 13B can be laminated by placing them in contact with one wiring conductor 12, applying heat and pressure, and peeling off the carrier.
  • the roughening treatment is not particularly limited, and known means can be appropriately used, for example, means using a copper surface roughening liquid.
  • the metal foil with a carrier with a resin layer is obtained by, for example, laminating a resin layer on the metal foil side of the metal foil with a carrier, the resin layer being the first insulating resin layer 13A, and the metal foil being the second metal layer. 13B.
  • a commercial product can also be used for the metal foil with a carrier with a resin layer, for example, CRS381NSI (product name) manufactured by Mitsubishi Gas Chemical Company, Inc. can be used.
  • the heating and pressurizing conditions for the resin layer-attached carrier-attached metal foil are not particularly limited, and for example, vacuum pressing can be performed under conditions of a temperature of 220 ⁇ 2° C., a pressure of 3 ⁇ 0.2 MPa, and a holding time of 60 minutes.
  • a non-through hole 14A reaching the first wiring conductor 12 is formed in the first insulating resin layer 13A, and the surface in which the non-through hole is formed is electrolyzed. At least one of plating and electroless plating is applied to form the second wiring conductors 14B (second wiring forming step).
  • the thickness and pattern width of the second wiring conductor 14B are appropriately set as desired, and are not particularly limited.
  • the means for forming the non-through hole 14A is not particularly limited, and known means such as a laser such as a carbon dioxide laser or a drill can be used. Among them, it is preferable to form the non-through hole 14A with a laser. This is because it is suitable for fine processing.
  • the non-through hole 14A is formed in the first insulating resin layer 13A via the second metal layer 13B, and electrically connects the second wiring conductor 14B and the first wiring conductor 12 formed in this process. provided to connect to The number and size of the non-through holes 14A can be appropriately selected as desired.
  • desmear treatment can be performed using an aqueous solution of sodium permanganate or the like.
  • At least one of electrolytic plating and electroless plating is applied to form a plated film on the inner walls of the non-through holes 14A, and the first wiring conductors 12 and the second metal layers 13B are electrically connected.
  • the thickness of the second metal layer 13B can be increased to form the second wiring conductor 14B.
  • the method of applying electrolytic copper plating or electroless copper plating is not particularly limited, and known methods can be employed.
  • Plating may be either electrolytic plating or electroless plating, but it is preferable to apply both electrolytic plating and electroless plating.
  • the plating is preferably copper plating, and it is preferable to apply at least one of electrolytic copper plating and electroless copper plating.
  • a method for forming the second wiring conductor 14B is not particularly limited, and for example, known means such as a subtractive method or a semi-additive method can be appropriately employed.
  • the subtractive method for example, first, the non-through holes 14A are formed, and at least one of electrolytic plating and electroless plating is applied to the surface on which the non-through holes are formed to reduce the thickness of the second metal layer 13B. Increase and level as needed.
  • a dry film resist or the like is laminated, a negative mask is attached, a circuit pattern is printed, and an etching resist is formed by development.
  • the second metal layer 13B with an increased thickness is etched using an etching resist as a mask to form the second wiring conductors 14B, and the etching resist is removed.
  • the second metal layer 13B is completely removed by etching or the like to expose the first insulating resin layer 13A.
  • an electroless copper plating layer having a thickness of 0.4 ⁇ m to 2 ⁇ m, for example, is formed on the surface of the first insulating resin layer 13A by electroless copper plating.
  • a resist layer is formed by thermocompression bonding of a dry film on the electroless copper plating layer, exposure and development are performed, and a resist pattern is formed by removing a portion for forming the second wiring conductor 14B.
  • Exposure is carried out by, for example, irradiating a predetermined portion of the resist layer with an active energy ray, and the irradiation with the active energy ray may be performed through a mask pattern, or a direct writing method in which the active energy ray is directly applied may be used.
  • scum resist residue
  • an electrolytic copper plating layer is formed on the surface of the electroless copper plating layer using the resist pattern as a plating resist.
  • the resist pattern is removed using a resist stripping solution or the like, and the electroless copper plating layer is etched by flash etching or the like to form a second electroless copper plating layer and an electrolytic copper plating layer. to form a wiring conductor 14B.
  • n is an integer of 1 or more.
  • the number n of repetitions is appropriately set as desired, and is not particularly limited, but can be, for example, 1 or more and 10 or less. Note that FIG. 2 shows a case where the number of repetitions n is three.
  • the (m+1)th insulating resin layer 15A and the (m+2)th insulating resin layer 15A are placed on the surface on which the (m+1)th wiring conductor of the (m+1)th laminate is provided.
  • the (m+2)-th laminate forming step of forming the (m+2)-th laminate 15 by laminating the metal layers in this order, and the (m+1)-th laminate on the (m+1)-th insulating resin layer 15A The (m+2)th wiring that forms a non-through hole reaching the wiring conductor and applies at least one of electrolytic plating and electroless plating to the surface on which the non-through hole is formed to form the (m+2)th wiring conductor 15B.
  • the forming process is repeated n times in this order to form the second to (n+1)th insulating resin layers 15A and the third to (n+2)th wiring conductors 15B.
  • m is an integer of 1 or more, provided that m ⁇ n.
  • solder Resist Layer Forming Step> After the wiring lamination step, the (n+2)th wiring conductor 15B is formed on the (n+1)th insulating resin layer 15A and the (n+2)th wiring conductor 15B, as shown in FIG. A solder-resist layer 16A is formed so as to be partially exposed to form a solder-resist layer forming body 16 (solder-resist layer forming step).
  • the first metal layer 16A By forming the solder resist layer 16A before the subsequent core resin layer peeling step, at least when the core resin layer 11A is peeled off and in the first metal layer removing step after peeling, the first metal layer This is to reinforce the first wiring conductor 12 to the (n+2)th wiring conductor 15B and the first insulating resin layer 13A to the (n+1)th insulating resin layer 15A when removing the wiring conductor 11B.
  • a method for forming the solder resist layer 16A is not particularly limited, and known means can be appropriately adopted.
  • the solder resist layer 16A is formed by applying a solder resist on the (n+1)-th insulating resin layer 15A and the (n+2)-th wiring conductor 15B, that is, the (n+2)-th wiring conductor of the (n+2)-th laminate 15. It can be formed by coating the entire surface on which 15B is formed, curing by exposing through a negative film on which a circuit pattern is formed, and developing the uncured portion.
  • the solder resist layer 16A is formed on the (n+1)-th insulating resin layer 15A and the (n+2)-th wiring conductor 15B, that is, the (n+2)-th wiring conductor 15B of the (n+1)-th laminate 15. It can be formed by pattern-printing a solder resist on the surface on which is formed by screen printing, and curing by irradiation with ultraviolet rays or by heating. That is, the solder-resist layer 16A is after the hardening treatment. Since the solder resist layer 16A is thus hardened, it is possible to prevent contamination of subsequent steps.
  • the resin layer-removed body 17 (core resin layer peeling step).
  • the cured solder resist layer 16A since the cured solder resist layer 16A is provided, sufficient strength can be obtained and damage is suppressed.
  • At least part of the peeling means of the first metal layer 11B may be peeled together with at least the core resin layer 11A, or may remain without being peeled off. Either physical means or chemical means can be adopted as the means for peeling at least the core resin layer 11A in the peeling means. is preferred.
  • first metal layer removing step After the core resin layer peeling step, for example, as shown in FIG. (first metal layer removing step).
  • the means for removing the first metal layer 11B is not particularly limited, but it can be removed using, for example, a sulfuric acid-based or hydrogen peroxide-based etchant.
  • the sulfuric acid-based or hydrogen peroxide-based etchant is not particularly limited, and those used in the industry can be used.
  • solder resist layer 16A since the solder resist layer 16A is hardened, it is possible to reduce the damage caused by the chemical solution.
  • solder-resist layer 19 is formed so as to be exposed to the surface (opposite surface solder-resist layer forming step).
  • the method of forming the solder resist layer 19 is the same as the solder resist layer forming step.
  • ⁇ Plating finishing process> After the opposite surface solder resist layer forming step, for example, on both surfaces of the first metal layer removed body 18, the first wiring conductor 12 exposed from the solder resist layer 19 and the (n+2)th (n+2)th conductor exposed from the solder resist layer 16A are removed. ), a gold plating layer is formed on the wiring conductor 15B. Thus, a package substrate for mounting a semiconductor element is obtained.
  • solder is applied onto the (n+1)th insulating resin layer 15A and the (n+2)th wiring conductor 15B so that the (n+2)th wiring conductor 15B is partially exposed.
  • the resist layer 16A is formed, at least the core resin layer 11A is peeled off by the peeling means. 13A to the (n+1)-th insulating resin layer 15A can be reinforced, and breakage thereof can be suppressed. Therefore, a package substrate for mounting a semiconductor element can be manufactured satisfactorily.
  • solder resist layer 16A is hardened, it is possible to prevent contamination of the subsequent steps and obtain sufficient strength and chemical resistance.
  • the thickness of the first metal layer 11B from the end face of the first wiring conductor 12 side to the peeling means is 6 ⁇ m or more, further preferably 10 ⁇ m or more, and more preferably 15 ⁇ m or more, at least the core resin layer 11A can be peeled off.
  • the first wiring conductor 12 to the (n+2)th wiring conductor 15B and the first insulating resin layer 13A to the (n+1)th insulating resin layer 15A can be further reinforced.
  • a method of manufacturing a package substrate for mounting a semiconductor element according to the second embodiment of the present invention includes a supporting substrate laminating step between the solder resist layer forming step and the core resin layer peeling step of the first embodiment. , including a support substrate removal step after the first metal layer removal step.
  • Other steps first laminate preparation step, first wiring formation step, second laminate formation step, second wiring formation step, wiring lamination step, solder resist layer formation step, core resin layer peeling step , the first metal layer removing step, the opposite surface solder resist layer forming step, and the plating finishing step) are the same as those in the first embodiment.
  • FIGS. 4 and 5 show each step of the manufacturing method of the semiconductor element mounting package substrate according to the second embodiment.
  • this method of manufacturing a package substrate for mounting a semiconductor element for example, as in the first embodiment, first, a first laminate preparation step, a first wiring formation step, a second laminate formation step, a second A wiring formation step, a wiring lamination step, and a solder resist layer formation step are performed.
  • ⁇ Support substrate lamination process> After the solder-resist layer forming step, for example, as shown in FIG. 20 A of board
  • the support substrate 20A is applied with solder when at least the core resin layer 11A is peeled off in the subsequent core resin layer peeling step, and when the first metal layer 11B is removed in the first metal layer removing step after the peeling. Together with the resist layer 16A, the first wiring conductor 12 to the (n+2)th wiring conductor 15B and the first insulating resin layer 13A to the (n+1)th insulating resin layer 15A are reinforced. Also, the support substrate 20A is removed after at least the core resin layer 11A is peeled off, as will be described later.
  • the support substrate 16A may have, for example, a thermosetting resin layer in addition to the thermoplastic resin layer, or may be composed of only the thermoplastic resin layer. This is because thermoplastic resins have higher toughness than thermosetting resins and can provide high strength.
  • the material of the thermoplastic resin layer is not particularly limited, but examples thereof include dry film resist.
  • the thermoplastic resin layer is preferably composed of a photosensitive resin layer made of a photosensitive thermoplastic resin. This is because the process of forming wiring conductors can be used. Examples of photosensitive thermoplastic resins include dry film resists used for patterning.
  • thermoplastic resin layer may be composed of, for example, a UV-releasable resin layer or a thermally-releasable resin layer, and consists of a photosensitive resin layer, a UV-releasable resin layer, and a thermally-releasable resin layer. It is preferable to configure to have at least one selected from the group.
  • the supporting substrate 20A can be laminated by, for example, placing a film-like or sheet-like supporting substrate 20A on the surface of the solder-resist layer forming body 16 on which the solder-resist layer 16A is provided, and laminating the layers. can.
  • the thermoplastic resin layer is composed of a photosensitive resin layer
  • a photosensitive layer is formed on the surface of the solder-resist layer forming body 16 on which the solder-resist layer 16A is provided. After arranging the photosensitive resin layer and laminating, the process of exposing and curing the entire surface of the photosensitive resin layer can be included.
  • the step of laminating the UV-releasable resin layer or the thermally-releasable resin layer may include, for example, the soldering of the solder resist layer forming body 16.
  • a step of disposing a UV-releasable resin layer or a thermally-releasable resin layer on the surface provided with the resist layer 16A and performing lamination can be included.
  • the thickness of the support substrate 16A is appropriately set as desired, and is not particularly limited.
  • ⁇ Core resin layer peeling step and first metal layer removing step> After the support substrate lamination step, for example, as shown in FIG. 4G, in the same manner as in the first embodiment, a support substrate laminate 20, that is, a solder resist layer formed body 16 in which a support substrate 20A is laminated. Then, at least the core resin layer 11A is peeled off by the peeling means for the first metal layer 11B to obtain a core resin layer-removed body 17 (core resin layer peeling step). Subsequently, for example, as shown in FIG. 5H-1, in the same manner as in the first embodiment, the remaining first metal layer 11B is removed to form a first metal layer removed body 18. (First metal layer removal step).
  • the support substrate 20A is removed from the first metal layer removed body 18 to form a support substrate removed body 21 ( support substrate removal step).
  • the means for removing the support substrate 20A is not particularly limited, and can be appropriately selected according to the material of the support substrate 20A.
  • the support substrate 20A may be removed, for example, with a chemical solution such as an aqueous solution of sodium hydroxide, may be removed with a laser, or may be removed with a plasma treatment.
  • the layer may be removed by exfoliation by irradiating with light in the ultraviolet region, and in the case of a heat-peelable resin layer, it may be removed by exfoliation by heat treatment.
  • the opposite surface solder resist layer forming process and the plating finishing process are performed in the same manner as in the first embodiment.
  • a package substrate for mounting a semiconductor element is obtained.
  • the solder resist layer 16A is formed on the (n+1)th insulating resin layer 15A and the (n+2)th wiring conductor 15B, and the support substrate 20A is laminated, Since at least the core resin layer 11A is peeled off by the peeling means, the first wiring conductor 12 to the (n+2)th wiring conductor 15B, and the first insulating resin layer 13A to the (n+1)th insulating resin layer
  • the layer 15A can be reinforced more strongly, and breakage thereof can be further suppressed.
  • Example 1 A package substrate for mounting a semiconductor element was produced as follows. ⁇ First laminate preparation step> (see FIG. 1(A)) A prepreg (thickness: 0.100 mm: manufactured by Mitsubishi Gas Chemical Company, Inc., product name: GHPL-830NS ST56) that is B-staged by impregnating a glass cloth (glass fiber) with a bismaleimide triazine resin (BT resin) is used as the core resin layer 11A.
  • BT resin bismaleimide triazine resin
  • an ultra-thin copper foil with a carrier copper foil having a thickness of 18 ⁇ m as the first metal layer 11B (ultra-thin copper foil; thickness 5 ⁇ m: manufactured by Mitsui Kinzoku Mining Co., Ltd., product name: MT18SD-H -T5) is placed so that the carrier copper foil side is in contact with the core resin layer 11A, and vacuum pressing is performed under the conditions of a temperature of 220 ⁇ 2 ° C., a pressure of 3 ⁇ 0.2 MPa, and a holding time of 60 minutes to form the core resin layer.
  • a first laminate 11 was produced in which the first metal layers 11B were provided on both surfaces of 11A.
  • pattern electrolytic copper plating (electrolytic copper plating) of about 5 ⁇ m to 20 ⁇ m is applied on a copper sulfate plating line with a copper sulfate concentration of 60 g/L to 80 g/L and a sulfuric acid concentration of 150 g/L to 200 g/L, to form the first wiring.
  • a conductor 12 was formed. After that, the dry film resist was peeled off using an amine-based resist stripper.
  • a copper foil with a resin layer and an ultra-thin copper foil with a carrier copper foil having a thickness of 18 ⁇ m (ultra-thin copper foil (metal layer); Thickness 2 ⁇ m, resin layer thickness 0.015 mm: manufactured by Mitsubishi Gas Chemical Co., Ltd., product name: CRS381NSI) was placed so that the resin layer was in contact with the first wiring conductor 12, and the pressure was 3 ⁇ 0.2 MPa and the temperature was 220 ⁇ Vacuum pressing was performed under conditions of 2° C. and holding time of 60 minutes.
  • the carrier copper foil having a thickness of 18 ⁇ m is peeled off, and a second laminate 13 is formed by laminating a first insulating resin layer 13A and a second metal layer 13B having a thickness of 2 ⁇ m on the first wiring conductor 12. Obtained.
  • the second laminate 13 in which the non-through holes 14A are formed is subjected to desmear treatment using an aqueous solution of sodium permanganate at a temperature of 80 ⁇ 5° C. and a concentration of 55 ⁇ 10 g/L.
  • plating with a thickness of 0.4 ⁇ m to 0.8 ⁇ m by plating plating with a thickness of 5 ⁇ m to 20 ⁇ m was performed by electrolytic copper plating.
  • the inner wall of the non-through hole 14A is connected by plating
  • the first wiring conductor 12 and the second metal layer 13B are electrically connected by plating the inner wall of the non-through hole 14, and the second metal layer 13B is electrically connected by plating.
  • the thickness of the metal layer 13B is increased.
  • a dry film resist LDF515F manufactured by Nikko Materials Co., Ltd., product name
  • a temperature of 110 ⁇ 10° C. and a pressure of 0.50 ⁇ 0.02 MPa Laminated.
  • a negative mask was attached, a circuit pattern was printed using a parallel exposure machine, and an etching resist was formed by developing the dry film resist using a 1% sodium carbonate aqueous solution.
  • the portion of the second metal layer 13B without the etching resist was removed by etching with an aqueous solution of ferric chloride, and then the dry film resist was removed with an aqueous solution of sodium hydroxide to form the second wiring conductor 14B.
  • solder Resist Layer Forming Step> (See FIG. 2(F)) After the wiring lamination step, a solder resist layer 16A having a thickness of 10 ⁇ m is formed on the fourth insulating resin layer 15A and the fifth wiring conductors 15B so that the fifth wiring conductors 15B are partially exposed. A resist layer-forming body 16 was obtained.
  • solder Resist Layer Forming Step> (See FIG. 3(I)) After obtaining the first metal layer-removed body 18, a solder resist having a thickness of 10 ⁇ m is applied on the first insulating resin layer 13A and the first wiring conductors 12 so that the first wiring conductors 12 are partially exposed. A layer 19 was formed.
  • a gold plating layer is formed on the first wiring conductor 12 or the fifth wiring conductor 15B exposed from the solder resist layers 16A and 19 to obtain a package substrate for mounting a semiconductor element. rice field. According to this embodiment, no damage was found in the first wiring conductor 12 to the fifth wiring conductor 15B and in the first insulating resin layer 13A to the fourth insulating resin layer 15A, and the package for mounting a semiconductor element was not damaged. A good substrate could be manufactured.
  • Example 2 In the same manner as in Example 1, the first laminate preparation step (see FIG. 1(A)), the first wiring formation step (see FIG. 1(B)), and the second laminate formation step (see FIG. 1 ( C)), a second wiring forming step (see FIG. 1(D)), a wiring lamination step (see FIG. 2(E)), and a solder resist layer forming step (see FIG. 2(F)). .
  • a photosensitive resin layer thermoplastic resin layer
  • a dry film resist LDF515F (manufactured by Nikko Materials Co., Ltd., product name) having a thickness of 15 ⁇ m was laminated. After that, the entire surface was exposed using a parallel exposure machine and cured to obtain a laminate 20 with a supporting substrate in which the supporting substrate 20A was laminated (supporting substrate laminating step; see FIG. 4F-1).
  • the core resin layer peeling step (see FIG. 4(G)) and the first metal layer removing step (see FIG. 5(H)). did Next, the dry film resist, which is the support substrate 20A, was removed using an aqueous sodium hydroxide solution (support substrate removal step; see FIG. 5(I)). Thereafter, a plating finishing process was performed in the same manner as in Example 1 to obtain a package substrate for mounting a semiconductor element. Also in this example, no damage was observed in the first wiring conductor 12 to the fifth wiring conductor 15B and in the first insulating resin layer 13A to the fourth insulating resin layer 15A. was successfully manufactured.
  • Example 1 In the same manner as in Example 1, after performing the first laminate preparation step, the first wiring formation step, the second laminate formation step, the second wiring formation step, and the wiring lamination step, the first A physical force was applied to the boundary between the ultra-thin copper foil of the metal layer and the carrier copper foil to peel and remove at least the core resin layer from the fifth laminate, thereby obtaining a set of laminates. That is, in Comparative Example 1, in Example 1, the core resin layer peeling process was performed without performing the solder resist layer forming process. After peeling off the core resin layer, an attempt was made to remove the ultra-thin copper foil using a perhydrate sulfuric acid-based soft etchant, but the laminate was damaged.
  • solder-resist layer 16A can be reinforced and damage can be suppressed when the core resin layer 11A is peeled off and in the processing steps after the peeling. rice field.
  • It can be used to manufacture package substrates for mounting semiconductor devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Die Bonding (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

Problem] To provide a method of manufacturing a package substrate for mounting a semiconductor element whereby it is possible to suppress damage when separating a core resin layer or during processing steps subsequent to separation. [Solution] A first wiring conductor 12 through a (n+2)th wiring conductor 15B and a first insulating resin layer 13A through a (n+1)th insulating resin layer 15A are laminated on a first metal layer 11B that comprises a separation means in a first laminate 11 obtained by laminating a core resin layer 11A and the first metal layer 11B, a solder resist layer 16A is formed thereupon, and then at least the core resin layer is separated by the separation means.

Description

半導体素子搭載用パッケージ基板の製造方法Manufacturing method of package substrate for mounting semiconductor element
 本発明は、半導体素子を搭載する半導体素子搭載用パッケージ基板の製造方法に関する。 The present invention relates to a method of manufacturing a semiconductor device mounting package substrate on which a semiconductor device is mounted.
 電子機器、通信機器及びパーソナルコンピューターなどに広く用いられる半導体パッケージの高機能化及び小型化は、近年、益々加速している。それに伴い、半導体パッケージにおけるプリント配線板及び半導体素子搭載用パッケージ基板の薄型化が要求されている。薄型化したプリント配線板及び半導体素子搭載用パッケージ基板としては、例えば、コア樹脂層に金属層及び絶縁層を積層したのち、コア樹脂層を剥離したいわゆるコアレス基板が知られている(例えば、特許文献1参照)。 In recent years, the sophistication and miniaturization of semiconductor packages, which are widely used in electronic devices, communication devices, personal computers, etc., are accelerating more and more. Along with this, there is a demand for thinner printed wiring boards and package substrates for mounting semiconductor elements in semiconductor packages. As a thin printed wiring board and a package substrate for mounting a semiconductor element, for example, a so-called coreless substrate is known in which a metal layer and an insulating layer are laminated on a core resin layer and then the core resin layer is peeled off (for example, patent Reference 1).
国際公開WO2020/121651号公報International publication WO2020/121651
 しかしながら、このようなコアレス基板では、金属層や絶縁層の厚みが薄くなるに従い、コア樹脂層を剥離する際、又は、剥離した後の加工工程において、金属層や絶縁層が破損してしまう場合があるという問題があった。 However, in such a coreless substrate, as the thickness of the metal layer and the insulating layer becomes thinner, the metal layer and the insulating layer may be damaged when the core resin layer is peeled off or in the processing step after the peeling. There was a problem that there is
 本発明は、このような問題に基づきなされたものであり、コア樹脂層を剥離する際、又は、剥離した後の加工工程における破損を抑制することができる半導体素子搭載用パッケージ基板の製造方法を提供することを目的とする。 The present invention has been made based on such problems, and provides a method for manufacturing a package substrate for mounting a semiconductor element, which can suppress breakage in the processing steps when the core resin layer is peeled off or after the peeling. intended to provide
 本発明は以下の通りである。
[1]
 コア樹脂層と、前記コア樹脂層の少なくとも一方の面側に設けられ且つ剥離手段を備えた第1の金属層と、を有する第1の積層体を準備する第1の積層体準備工程と、
 前記第1の金属層の上に、電解めっき及び無電解めっきの少なくとも一方を施して、第1の配線導体を形成する第1の配線形成工程と、
 前記第1の積層体の前記第1の配線導体が設けられた面の上に、第1の絶縁樹脂層と第2の金属層とをこの順で積層して、第2の積層体を形成する第2の積層体形成工程と、
 前記第1の絶縁樹脂層に前記第1の配線導体に達する非貫通孔を形成し、前記非貫通孔が形成された表面に電解めっき及び無電解めっきの少なくとも一方を施して、第2の配線導体を形成する第2の配線形成工程と、
 前記第2の配線形成工程の後、更に、第(m+1)の積層体の第(m+1)の配線導体が設けられた面の上に、第(m+1)の絶縁樹脂層と第(m+2)の金属層とをこの順で積層して、第(m+2)の積層体を形成する第(m+2)の積層体形成工程、及び、前記第(m+1)の絶縁樹脂層に前記第(m+1)の配線導体に達する非貫通孔を形成し、前記非貫通孔が形成された表面に電解めっき及び無電解めっきの少なくとも一方を施して、第(m+2)の配線導体を形成する第(m+2)の配線形成工程を、この順にn回繰り返し行い、第2の絶縁樹脂層から第(n+1)の絶縁樹脂層及び第3の配線導体から第(n+2)の配線導体を形成する配線積層工程(m及びnは1以上の整数、但し、m≦n)と、
 前記第(n+1)の絶縁樹脂層及び前記第(n+2)の配線導体の上に、前記第(n+2)の配線導体が部分的に露出するようにソルダーレジスト層を形成し、ソルダーレジスト形成体とするソルダーレジスト層形成工程と、
 前記ソルダーレジスト形成体から、前記剥離手段において少なくとも前記コア樹脂層を剥離し、コア樹脂層除去体とするコア樹脂層剥離工程と、
 を含む半導体素子搭載用パッケージ基板の製造方法。
[2]
 前記コア樹脂層の厚さが1μm以上である[1]記載の半導体素子搭載用パッケージ基板の製造方法。
[3]
 前記第1の金属層の厚みが100μm以下である[1]記載の半導体素子搭載用パッケージ基板の製造方法。
[4]
 前記第1の金属層における前記第1の配線導体の側の端面から前記剥離手段までの厚みが6μm以上である[1]記載の半導体素子搭載用パッケージ基板の製造方法。
[5]
 前記第1の積層体の厚みが20μm以上1000μm以下である[1]記載の半導体素子搭載用パッケージ基板の製造方法。
[6]
 前記第1の絶縁樹脂層から第(n+1)の絶縁樹脂層の厚みは、それぞれ、0.1μm以上100μm以下である[1]記載の半導体素子搭載用パッケージ基板の製造方法。
[7]
 前記ソルダーレジスト層形成工程の後、前記コア樹脂層剥離工程の前に、前記ソルダーレジスト層形成体の前記ソルダーレジスト層が設けられた面の上に、熱可塑性樹脂層を有する支持基板を積層する支持基板積層工程を含む[1]記載の半導体素子搭載用パッケージ基板の製造方法。
The present invention is as follows.
[1]
a first laminated body preparing step of preparing a first laminated body having a core resin layer and a first metal layer provided on at least one side of the core resin layer and provided with a peeling means;
a first wiring forming step of applying at least one of electrolytic plating and electroless plating on the first metal layer to form a first wiring conductor;
A second laminate is formed by laminating a first insulating resin layer and a second metal layer in this order on the surface of the first laminate on which the first wiring conductor is provided. A second laminate forming step to
A non-through hole reaching the first wiring conductor is formed in the first insulating resin layer, and at least one of electrolytic plating and electroless plating is applied to the surface in which the non-through hole is formed to form a second wiring. a second wiring forming step of forming a conductor;
After the second wiring forming step, the (m+1)-th insulating resin layer and the (m+2)-th insulating resin layer are further formed on the surface on which the (m+1)-th wiring conductor of the (m+1)-th laminate is provided. and a metal layer in this order to form an (m+2)-th laminate, and the (m+1)-th wiring on the (m+1)-th insulating resin layer. (m+2)th wiring formation of forming a non-through hole reaching a conductor and applying at least one of electrolytic plating and electroless plating to the surface in which the non-through hole is formed to form a (m+2)th wiring conductor The steps are repeated n times in this order, and a wiring lamination step (m and n are an integer of 1 or more, provided that m ≤ n);
forming a solder-resist layer on the (n+1)-th insulating resin layer and the (n+2)-th wiring conductor so that the (n+2)-th wiring conductor is partially exposed; a solder resist layer forming step;
a core resin layer stripping step of stripping at least the core resin layer from the solder resist formed body by the stripping means to obtain a core resin layer-removed body;
A method of manufacturing a package substrate for mounting a semiconductor device, comprising:
[2]
The method of manufacturing a package substrate for mounting a semiconductor element according to [1], wherein the core resin layer has a thickness of 1 μm or more.
[3]
The method of manufacturing a package substrate for mounting a semiconductor element according to [1], wherein the first metal layer has a thickness of 100 μm or less.
[4]
The method of manufacturing a package substrate for mounting a semiconductor element according to [1], wherein the thickness of the first metal layer from the end face of the first wiring conductor side to the peeling means is 6 μm or more.
[5]
The method for manufacturing a package substrate for mounting a semiconductor element according to [1], wherein the first laminate has a thickness of 20 μm or more and 1000 μm or less.
[6]
The method of manufacturing a package substrate for mounting a semiconductor element according to [1], wherein each of the first insulating resin layer to the (n+1)th insulating resin layer has a thickness of 0.1 μm or more and 100 μm or less.
[7]
After the solder-resist layer forming step and before the core resin layer peeling step, a supporting substrate having a thermoplastic resin layer is laminated on the surface of the solder-resist layer forming body provided with the solder-resist layer. The method for manufacturing a package substrate for mounting a semiconductor element according to [1], including a support substrate lamination step.
 本発明によれば、第(n+1)の絶縁樹脂層及び第(n+2)の配線導体の上に、第(n+2)の配線導体が部分的に露出するようにソルダーレジスト層を形成した後、剥離手段において少なくともコア樹脂層を剥離するようにしたので、ソルダーレジスト層により、第1の配線導体から第(n+2)の配線導体、及び、第1の絶縁樹脂層から第(n+1)の絶縁樹脂層を補強することができ、これらの破損を抑制することができる。よって、半導体素子搭載用パッケージ基板を良好に製造することができる。 According to the present invention, a solder resist layer is formed on the (n+1)-th insulating resin layer and the (n+2)-th wiring conductor so that the (n+2)-th wiring conductor is partially exposed, and then peeled off. Since at least the core resin layer is peeled off in the means, the solder resist layer separates the first wiring conductor to the (n+2)th wiring conductor and the first insulating resin layer to the (n+1)th insulating resin layer. can be reinforced and their damage can be suppressed. Therefore, a package substrate for mounting a semiconductor element can be manufactured satisfactorily.
 また、ソルダーレジスト層を形成し、その上に支持基板を積層した後、少なくともコア樹脂層11Aを剥離するようにすれば、第1の配線導体12から第(n+2)の配線導体15B、及び、第1の絶縁樹脂層13Aから第(n+1)の絶縁樹脂層15Aをより強固に補強することができる。 Also, after forming a solder resist layer and laminating a support substrate thereon, at least the core resin layer 11A is peeled off, so that the first wiring conductor 12 to the (n+2)th wiring conductor 15B, and The first insulating resin layer 13A to the (n+1)th insulating resin layer 15A can be reinforced more firmly.
 更に、第1の金属層における第1の配線導体の側の端面から剥離手段までの厚みを6μm以上とすれば、剥離手段において少なくともコア樹脂層を剥離する際に、第1の配線導体から第(n+2)の配線導体、及び、第1の絶縁樹脂層から第(n+1)の絶縁樹脂層をより強固に補強することができる。 Furthermore, if the thickness of the first metal layer from the end face of the first wiring conductor side to the peeling means is set to 6 μm or more, when at least the core resin layer is peeled off by the peeling means, the first wiring conductor is separated from the first wiring conductor by the peeling means. The (n+2) wiring conductors and the first insulating resin layer to the (n+1)th insulating resin layer can be reinforced more firmly.
第1の実施形態に係る半導体素子搭載用パッケージ基板の製造方法の各工程を表す図である。4A to 4C are diagrams showing each step of the manufacturing method of the package substrate for mounting a semiconductor element according to the first embodiment; 図1に続く各工程を表す図である。1. It is a figure showing each process following FIG. 図2に続く各工程を表す図である。It is a figure showing each process following FIG. 第2の実施形態に係る半導体素子搭載用パッケージ基板の製造方法の各工程を表す図である。It is a figure showing each process of the manufacturing method of the package substrate for mounting a semiconductor element which concerns on 2nd Embodiment. 図4に続く各工程を表す図である。FIG. 5 is a diagram showing each step following FIG. 4;
 以下、本発明を実施するための形態(以下、「実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。 Hereinafter, the mode for carrying out the present invention (hereinafter referred to as "embodiment") will be described in detail, but the present invention is not limited to this, and various modifications can be made without departing from the scope of the invention. It is possible.
[第1の実施形態]
 図1から図3は、第1の実施形態に係る半導体素子搭載用パッケージ基板の製造方法の各工程を表すものである。この半導体素子搭載用パッケージ基板の製造方法は、例えば、以下に説明する各工程(第1の積層体準備工程、第1の配線形成工程、第2の積層体形成工程、第2の配線形成工程、配線積層工程、ソルダーレジスト層形成工程、及び、コア樹脂層剥離工程)を含んでいる。
[First Embodiment]
1 to 3 show each step of a method for manufacturing a package substrate for mounting a semiconductor element according to the first embodiment. The method for manufacturing the package substrate for mounting a semiconductor element includes, for example, the following steps (first laminate preparation step, first wiring formation step, second laminate formation step, second wiring formation step). , wiring lamination step, solder resist layer forming step, and core resin layer peeling step).
<第1の積層体準備工程>
 まず、例えば、図1(A)に示したように、半導体素子搭載用パッケージ基板を形成する際の基礎基板として、コア樹脂層11Aと、コア樹脂層11Aの少なくとも一方の面側に設けられ且つ剥離手段を備えた第1の金属層11Bと、を有する第1の積層体11を準備する(第1の積層体準備工程)。なお、図1では、コア樹脂層11Aの一方の面側に、第1の金属層11Bが設けられた場合について示している。図示しないが、第1の金属層11Bはコア樹脂層11Aの両面に設けるようにしてもよい。
<First laminate preparation step>
First, for example, as shown in FIG. 1A, a core resin layer 11A is provided on at least one side of the core resin layer 11A as a base substrate for forming a package substrate for mounting a semiconductor element, and A first laminate 11 having a first metal layer 11B provided with peeling means is prepared (first laminate preparation step). Note that FIG. 1 shows the case where the first metal layer 11B is provided on one side of the core resin layer 11A. Although not shown, the first metal layer 11B may be provided on both sides of the core resin layer 11A.
(コア樹脂層11A)
 コア樹脂層11Aは、特に限定されるものではないが、例えば、ガラスクロス等の基材に熱硬化性樹脂等の絶縁性の樹脂材料(絶縁材料)を含浸させたプリプレグや、絶縁性のフィルム材等により構成することができる。コア樹脂層11Aの厚みは、所望に応じて適宜設定されるため、特に限定されないが、例えば、1μm以上であることが好ましい。コア樹脂層11Aの厚みが1μm未満であると、後続の工程で形成する絶縁樹脂層が成形不良となる場合があるからである。
(Core resin layer 11A)
The core resin layer 11A is not particularly limited. It can be composed of a material or the like. The thickness of the core resin layer 11A is appropriately set as desired, and is not particularly limited, but is preferably 1 μm or more, for example. This is because if the thickness of the core resin layer 11A is less than 1 μm, the insulating resin layer formed in the subsequent process may be defective in molding.
 “プリプレグ”は樹脂組成物等の絶縁材料を基材に含浸又は塗工してなるものである。基材としては、特に限定されず、各種の電気絶縁材料用積層板に用いられる周知のものを適宜使用することができる。基材を構成する材料としては、例えば、Eガラス、Dガラス、Sガラス又はQガラス等の無機繊維;ポリイミド、ポリエステル又はテトラフルオロエリレン等の有機繊維;及びそれらの混合物等が挙げられる。基材は、特に限定されるものではないが、例えば、織布、不織布、ロービング、チョップドストランドマット、サーフェシングマット等の形状を有するものを適宜用いることができる。基材の材質及び形状は、目的とする成形物の用途や性能により選択され、必要により単独もしくは2種類以上の材質及び形状の使用も可能である。 "Prepreg" is made by impregnating or coating a base material with an insulating material such as a resin composition. The substrate is not particularly limited, and known substrates used for various laminates for electrical insulating materials can be appropriately used. Materials constituting the substrate include, for example, inorganic fibers such as E-glass, D-glass, S-glass, and Q-glass; organic fibers such as polyimide, polyester, or tetrafluoroerylene; and mixtures thereof. The substrate is not particularly limited, and for example, those having a shape such as woven fabric, nonwoven fabric, roving, chopped strand mat, surfacing mat and the like can be used as appropriate. The material and shape of the base material are selected according to the intended use and performance of the molded article, and if necessary, it is possible to use one or more kinds of materials and shapes.
 基材の厚みは、コア樹脂層11Aの厚みが上述した範囲になれば特に制限はない。また、基材としては、シランカップリング剤等で表面処理したものや機械的に開繊処理を施したものを用いることができ、これら基材は耐熱性や耐湿性、加工性の面から好適である。 The thickness of the base material is not particularly limited as long as the thickness of the core resin layer 11A is within the range described above. In addition, as the base material, one surface-treated with a silane coupling agent or the like or one subjected to mechanical fiber opening treatment can be used, and these base materials are suitable in terms of heat resistance, moisture resistance, and workability. is.
 絶縁材料としては、特に限定されず、半導体素子搭載用パッケージ基板の絶縁材料として用いられる公知の樹脂組成物を適宜選定して用いることができる。樹脂組成物としては、耐熱性、耐薬品性の良好な熱硬化性樹脂をベースとして用いることができる。熱硬化性樹脂としては、特に限定されず、例えば、ポリイミド樹脂、フェノール樹脂、エポキシ樹脂、シアネート樹脂、マレイミド樹脂、変性ポリフェニレンエーテル、ビスマレイミドトリアジン樹脂、イソシアネート樹脂、ベンゾシクロブテン樹脂及びビニル樹脂が挙げられる。これらの熱硬化性樹脂は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。 The insulating material is not particularly limited, and a known resin composition used as an insulating material for package substrates for mounting semiconductor elements can be appropriately selected and used. As the resin composition, a thermosetting resin having good heat resistance and chemical resistance can be used as a base. The thermosetting resin is not particularly limited, and examples thereof include polyimide resins, phenol resins, epoxy resins, cyanate resins, maleimide resins, modified polyphenylene ethers, bismaleimide triazine resins, isocyanate resins, benzocyclobutene resins and vinyl resins. be done. These thermosetting resins may be used singly or in combination of two or more.
 ポリイミド樹脂としては、特に限定されず、市販の製品を適宜選定して用いることができる。例えば、特開2005-15629号公報に記載の製造方法によって合成される溶媒可溶性ポリイミド樹脂や、ブロック共重合ポリイミド樹脂を用いることができる。ブロック共重合体ポリイミド樹脂としては、例えば、国際公開WO2010-073952号公報に記載のブロック共重合体ポリイミド樹脂を挙げることができる。具体的には、ブロック共重合ポリイミド樹脂は、第一の構造単位からなるイミドオリゴマーの末端に第二の構造単位からなるイミドオリゴマーが結合している構造A、及び、第二の構造単位からなるイミドオリゴマーの末端に第一の構造単位からなるイミドオリゴマーが結合している構造B、が交互に繰り返される構造を有する共重合ポリイミド樹脂であれば、特に限定されない。なお、第二の構造単位は、第一の構造単位とは異なる。これらのブロック共重合ポリイミド樹脂は、極性溶媒中で、テトラカルボン酸二無水物とジアミンとを反応させイミドオリゴマーとした後、更にテトラカルボン酸二無水物と別のジアミン、或いは、別のテトラカルボン酸二無水物とジアミンを加え、イミド化する逐次重合反応によって合成することができる。これらのポリイミド樹脂は、1種類を単独で用いてもよいし、2種以上を混合して用いてもよい。 The polyimide resin is not particularly limited, and commercially available products can be appropriately selected and used. For example, a solvent-soluble polyimide resin synthesized by the production method described in JP-A-2005-15629 or a block-copolymerized polyimide resin can be used. Examples of block copolymer polyimide resins include block copolymer polyimide resins described in International Publication WO2010-073952. Specifically, the block copolymerized polyimide resin comprises structure A in which an imide oligomer comprising a second structural unit is bound to the end of an imide oligomer comprising a first structural unit, and a second structural unit. There is no particular limitation as long as it is a copolymerized polyimide resin having a structure in which Structure B, in which an imide oligomer composed of a first structural unit is bonded to the end of the imide oligomer, is alternately repeated. Note that the second structural unit is different from the first structural unit. These block copolymer polyimide resins are produced by reacting a tetracarboxylic dianhydride and a diamine in a polar solvent to form an imide oligomer, and then further tetracarboxylic dianhydride and another diamine or another tetracarboxylic acid. It can be synthesized by a sequential polymerization reaction in which an acid dianhydride and a diamine are added and imidized. One type of these polyimide resins may be used alone, or two or more types may be mixed and used.
 フェノール樹脂としては、特に限定されず、1分子中に1個以上(好ましくは2~12、より好ましくは2~6、さらに好ましくは2~4、一層好ましくは2または3、より一層好ましくは2)のフェノール性ヒドロキシ基を有する化合物または樹脂であれば、一般に公知のものを使用できる。例えば、ビスフェノールA型フェノール樹脂、ビスフェノールE型フェノール樹脂、ビスフェノールF型フェノール樹脂、ビスフェノールS型フェノール樹脂、フェノールノボラック樹脂、ビスフェノールAノボラック型フェノール樹脂、グリシジルエステル型フェノール樹脂、アラルキルノボラック型フェノール樹脂、ビフェニルアラルキル型フェノール樹脂、クレゾールノボラック型フェノール樹脂、多官能フェノール樹脂、ナフトール樹脂、ナフトールノボラック樹脂、多官能ナフトール樹脂、アントラセン型フェノール樹脂、ナフタレン骨格変性ノボラック型フェノール樹脂、フェノールアラルキル型フェノール樹脂、ナフトールアラルキル型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、ビフェニル型フェノール樹脂、脂環式フェノール樹脂、ポリオール型フェノール樹脂、リン含有フェノール樹脂及び水酸基含有シリコーン樹脂類が挙げられる。これらのフェノール樹脂は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。 The phenolic resin is not particularly limited, and one or more molecules per molecule (preferably 2 to 12, more preferably 2 to 6, still more preferably 2 to 4, more preferably 2 or 3, still more preferably 2 ) can be used as long as they are compounds or resins having a phenolic hydroxy group. For example, bisphenol A type phenol resin, bisphenol E type phenol resin, bisphenol F type phenol resin, bisphenol S type phenol resin, phenol novolak resin, bisphenol A novolac type phenol resin, glycidyl ester type phenol resin, aralkyl novolac type phenol resin, biphenyl Aralkyl-type phenolic resins, cresol novolac-type phenolic resins, polyfunctional phenolic resins, naphthol resins, naphthol novolak resins, polyfunctional naphthol resins, anthracene-type phenolic resins, naphthalene skeleton-modified novolac-type phenolic resins, phenol aralkyl-type phenolic resins, naphthol aralkyl-type phenolic resins Phenol resins, dicyclopentadiene type phenol resins, biphenyl type phenol resins, alicyclic phenol resins, polyol type phenol resins, phosphorus-containing phenol resins and hydroxyl group-containing silicone resins can be mentioned. These phenol resins may be used singly or in combination of two or more.
 熱硬化性樹脂の中でも、エポキシ樹脂は耐熱性、耐薬品性及び電気特性に優れ、比較的安価であることから、絶縁材料として好適に用いることができる。エポキシ樹脂としては、1分子中に1個以上(好ましくは2~12、より好ましくは2~6、さらに好ましくは2~4、一層好ましくは2または3、より一層好ましくは2)のエポキシ基を有する化合物または樹脂であれば特に限定されず、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビフェノールのジグリシジルエテール化物、ナフタレンジオールのジグリシジルエテール化物、フェノール類のジグリシジルエテール化物、アルコール類のジグリシジルエテール化物、及びこれらのアルキル置換体、ハロゲン化物、水素添加物が挙げられる。これらのエポキシ樹脂は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。また、このエポキシ樹脂とともに用いる硬化剤はエポキシ樹脂を硬化させるものであれば、限定することなく使用でき、例えば、多官能フェノール類、多官能アルコール類、アミン類、イミダゾール化合物、酸無水物、有機リン化合物及びこれらのハロゲン化物が挙げられる。これらのエポキシ樹脂硬化剤は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。  Among thermosetting resins, epoxy resins are excellent in heat resistance, chemical resistance, and electrical properties, and are relatively inexpensive, so they can be suitably used as insulating materials. As the epoxy resin, one or more (preferably 2 to 12, more preferably 2 to 6, still more preferably 2 to 4, still more preferably 2 or 3, still more preferably 2) epoxy groups per molecule. There are no particular limitations as long as the compound or resin has , cresol novolak type epoxy resin, bisphenol A novolac type epoxy resin, diglycidyl ether of biphenol, diglycidyl ether of naphthalenediol, diglycidyl ether of phenols, diglycidyl ether of alcohols, and Alkyl-substituted products, halides, and hydrogenated products thereof are included. One type of these epoxy resins may be used alone, or two or more types may be mixed and used. In addition, the curing agent used with this epoxy resin can be used without limitation as long as it cures the epoxy resin. Phosphorus compounds and halides thereof may be mentioned. These epoxy resin curing agents may be used singly or in combination of two or more.
 シアネート樹脂は、加熱によりトリアジン環を繰り返し単位とする硬化物を生成する樹脂であり、硬化物は誘電特性に優れる。このため、特に高周波特性が要求される場合などに好適である。シアネート樹脂としては、1分子中に1個以上(好ましくは2~12、より好ましくは2~6、さらに好ましくは2~4、一層好ましくは2または3、より一層好ましくは2)のシアナト基(シアン酸エステル基)により置換された芳香族部分を分子中に有する化合物または樹脂であれば特に限定されないが、例えば、2,2-ビス(4-シアナトフェニル)プロパン、ビス(4-シアナトフェニル)エタン、2,2-ビス(3,5ジメチル-4-シアナトフェニル)メタン、2,2-(4-シアナトフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、α,α’-ビス(4-シアナトフェニル)-m-ジイソプロピルベンゼン、フェノールノボラック及びアルキルフェノールノボラックのシアネートエステル化物等が挙げられる。その中でも、2,2-ビス(4-シアナトフェニル)プロパンは、硬化物の誘電特性と硬化性とのバランスが特に良好であり、コスト的にも安価であるため好ましい。これらシアネートエステル化合物等のシアネート樹脂は、1種類を単独で用いてもよく、2種類以上を混合して用いてもよい。また、前記シアネートエステル化合物は予め一部が三量体や五量体にオリゴマー化されていてもよい。 A cyanate resin is a resin that, when heated, produces a cured product with repeating units of triazine rings, and the cured product has excellent dielectric properties. For this reason, it is suitable especially when high-frequency characteristics are required. As the cyanate resin, one or more (preferably 2 to 12, more preferably 2 to 6, more preferably 2 to 4, still more preferably 2 or 3, still more preferably 2) cyanato groups per molecule ( It is not particularly limited as long as it is a compound or resin having an aromatic moiety substituted with a cyanate ester group) in the molecule, but examples include 2,2-bis(4-cyanatophenyl)propane, bis(4-cyanato phenyl)ethane, 2,2-bis(3,5dimethyl-4-cyanatophenyl)methane, 2,2-(4-cyanatophenyl)-1,1,1,3,3,3-hexafluoropropane , α,α'-bis(4-cyanatophenyl)-m-diisopropylbenzene, cyanate esters of phenol novolak and alkylphenol novolak. Among them, 2,2-bis(4-cyanatophenyl)propane is preferable because the balance between the dielectric properties and the curability of the cured product is particularly good and the cost is low. These cyanate resins such as cyanate ester compounds may be used singly or in combination of two or more. A part of the cyanate ester compound may be previously oligomerized into a trimer or a pentamer.
 さらに、シアネート樹脂に対して硬化触媒や硬化促進剤を併用することもできる。硬化触媒としては、例えば、マンガン、鉄、コバルト、ニッケル、銅、亜鉛等の金属類を用いることができ、具体的には、2-エチルヘキサン酸塩、オクチル酸塩等の有機金属塩やアセチルアセトン錯体などの有機金属錯体を挙げることができる。硬化触媒は、1種類を単独で使用してもよいし、2種類以上を混合して使用してもよい。 Furthermore, a curing catalyst or curing accelerator can be used in combination with the cyanate resin. As the curing catalyst, for example, metals such as manganese, iron, cobalt, nickel, copper and zinc can be used. Specifically, organic metal salts such as 2-ethylhexanoate and octylate, and acetylacetone Mention may be made of organometallic complexes such as complexes. Curing catalysts may be used singly or in combination of two or more.
 また、硬化促進剤としてはフェノール類を使用することが好ましく、ノニルフェノール、パラクミルフェノールなどの単官能フェノールや、ビスフェノールA、ビスフェノールF、ビスフェノールSなどの二官能フェノール、又は、フェノールノボラック、クレゾールノボラックなどの多官能フェノールなどを用いることができる。硬化促進剤は、1種類を単独で使用してもよいし、2種類以上を混合して使用してもよい。 Phenols are preferably used as the curing accelerator, and monofunctional phenols such as nonylphenol and paracumylphenol; bifunctional phenols such as bisphenol A, bisphenol F and bisphenol S; or phenol novolak and cresol novolak. can be used. A hardening accelerator may be used individually by 1 type, and may be used in mixture of 2 or more types.
 マレイミド樹脂としては、1分子中に1個以上(好ましくは2~12、より好ましくは2~6、さらに好ましくは2~4、一層好ましくは2または3、より一層好ましくは2)のマレイミド基を有する化合物または樹脂であれば、一般に公知のものを使用できる。例えば、4,4-ジフェニルメタンビスマレイミド、フェニルメタンマレイミド、m-フェニレンビスマレイミド、2,2-ビス(4-(4-マレイミドフェノキシ)-フェニル)プロパン、3,3-ジメチル-5,5-ジエチル-4,4-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、4,4-ジフェニルエーテルビスマレイミド、4,4-ジフェニルスルフォンビスマレイミド、1,3-ビス(3-マレイミドフェノキシ)ベンゼン、1,3-ビス(4-マレイミドフェノキシ)ベンゼン、ポリフェニルメタンマレイミド、ノボラック型マレイミド、ビフェニルアラルキル型マレイミド、及びこれらマレイミド化合物のプレポリマー、もしくはマレイミド化合物とアミン化合物のプレポリマーが挙げられるが、特に制限されるものではない。これらのマレイミド樹脂は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。 The maleimide resin has 1 or more (preferably 2 to 12, more preferably 2 to 6, still more preferably 2 to 4, still more preferably 2 or 3, still more preferably 2) maleimide groups in one molecule. A generally known compound or resin can be used as long as it has a compound or resin. For example, 4,4-diphenylmethanebismaleimide, phenylmethanemaleimide, m-phenylenebismaleimide, 2,2-bis(4-(4-maleimidophenoxy)-phenyl)propane, 3,3-dimethyl-5,5-diethyl -4,4-diphenylmethanebismaleimide, 4-methyl-1,3-phenylenebismaleimide, 1,6-bismaleimide-(2,2,4-trimethyl)hexane, 4,4-diphenyletherbismaleimide, 4,4 -diphenylsulfone bismaleimide, 1,3-bis(3-maleimidophenoxy)benzene, 1,3-bis(4-maleimidophenoxy)benzene, polyphenylmethanemaleimide, novolac-type maleimide, biphenylaralkyl-type maleimide, and these maleimide compounds or a prepolymer of a maleimide compound and an amine compound, but is not particularly limited. One type of these maleimide resins may be used alone, or two or more types may be mixed and used.
 変性ポリフェニレンエーテルは、硬化物の誘電特性を向上させることができるという観点から、有用である。変性ポリフェニレンエーテルとしては、例えば、ポリ(2,6-ジメチル-1,4-フェニレン)エーテル、ポリ(2,6-ジメチル-1,4-フェニレン)エーテルとポリスチレンとのアロイ化ポリマー、ポリ(2,6ジメチル-1,4-フェニレン)エーテルとスチレン-ブタジエンコポリマーとのアロイ化ポリマー、ポリ(2,6-ジメチル-1,4-フェニレン)エーテルとスチレン-無水マレイン酸コポリマのアロイ化ポリマー、ポリ(3,6-ジメチル-1,4-フェニレン)エーテルとポリアミドとのアロイ化ポリマー、ポリ(2,6-ジメチル-1、4-フェニレン)エーテルとスチレン-ブタジエン-アクリロニトリルコポリマーとのアロイ化ポリマー、オリゴフェニレンエーテルなどが挙げられる。また、ポリフェニレンエーテルに反応性や重合性を付与するために、ポリマー鎖末端にアミン基、エポキシ基、カルボン基、スチリル基などの官能基を導入したり、ポリマー鎖側鎖にアミン基、エポキシ基、カルボキシル基、スチリル基、メタクリル基などの官能基を導入してもよい。 Modified polyphenylene ether is useful from the viewpoint that it can improve the dielectric properties of the cured product. Modified polyphenylene ethers include, for example, poly(2,6-dimethyl-1,4-phenylene) ether, an alloyed polymer of poly(2,6-dimethyl-1,4-phenylene) ether and polystyrene, poly(2 ,6-dimethyl-1,4-phenylene)ether and styrene-butadiene copolymer, alloyed polymer of poly(2,6-dimethyl-1,4-phenylene)ether and styrene-maleic anhydride copolymer, poly Alloyed polymers of (3,6-dimethyl-1,4-phenylene) ether and polyamides, alloyed polymers of poly(2,6-dimethyl-1,4-phenylene) ethers and styrene-butadiene-acrylonitrile copolymers, oligophenylene ether and the like. In addition, in order to impart reactivity and polymerizability to polyphenylene ether, functional groups such as amine groups, epoxy groups, carboxylic groups, and styryl groups are introduced into the polymer chain ends, and amine groups and epoxy groups are introduced into the polymer chain side chains. , a carboxyl group, a styryl group, and a methacryl group may be introduced.
 イソシアネート樹脂としては、特に限定されず、例えば、フェノール類とハロゲン化シアンとの脱ハロゲン化水素反応により得られるイソシアネート樹脂がある。イソシアネート樹脂としては、例えば、4,4’-ジフェニルメタンジイソシアネートMDI、ポリメチレンポリフェニルポリイソシアネート、トリレンジイソシアネート、ヘキサメチレンジイソシアネートが挙げられる。これらのイソシアネート樹脂は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。 The isocyanate resin is not particularly limited, and includes, for example, an isocyanate resin obtained by a dehydrohalogenation reaction between a phenol and a cyanogen halide. Examples of isocyanate resins include 4,4'-diphenylmethane diisocyanate MDI, polymethylene polyphenyl polyisocyanate, tolylene diisocyanate, and hexamethylene diisocyanate. One type of these isocyanate resins may be used alone, or two or more types may be mixed and used.
 ベンゾシクロブテン樹脂としては、シクロブテン骨格を含む樹脂であれば特に限定されないが、例えば、ジビニルシロキサン-ビスベンゾシクロブテン(ダウケミカル社製)を用いることができる。これらのベンゾシクロブテン樹脂は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。 The benzocyclobutene resin is not particularly limited as long as it contains a cyclobutene skeleton, but for example, divinylsiloxane-bisbenzocyclobutene (manufactured by Dow Chemical Co.) can be used. One type of these benzocyclobutene resins may be used alone, or two or more types may be mixed and used.
 ビニル樹脂としては、ビニルモノマーの重合体もしくは共重合体であれば特に限定されない。ビニルモノマーとしては、特に制限されず、例えば、(メタ)アクリル酸エステル誘導体、ビニルエステル誘導体、マレイン酸ジエステル誘導体、(メタ)アクリルアミド誘導体、スチレン誘導体、ビニルエーテル誘導体、ビニルケトン誘導体、オレフィン誘導体、マレイミド誘導体、(メタ)アクリロニトリルが挙げられる。これらのビニル樹脂は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。 The vinyl resin is not particularly limited as long as it is a polymer or copolymer of vinyl monomers. Vinyl monomers are not particularly limited, and examples include (meth)acrylic acid ester derivatives, vinyl ester derivatives, maleic acid diester derivatives, (meth)acrylamide derivatives, styrene derivatives, vinyl ether derivatives, vinyl ketone derivatives, olefin derivatives, maleimide derivatives, (Meth)acrylonitrile may be mentioned. These vinyl resins may be used singly or in combination of two or more.
 絶縁材料として用いられる樹脂組成物には、誘電特性、耐衝撃性及びフィルム加工性などを考慮して、熱可塑性樹脂をブレンドすることもできる。熱可塑性樹脂としては、特に限定されず、例えば、フッ素樹脂、ポリカーボネート、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリアクリレート、ポリアミド、ポリアミドイミド、ポリブタジエンなどを挙げることができる。熱可塑性樹脂は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。また、フッ素樹脂は、特に限定されず、例えば、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン及びポリフッ化ビニルが挙げられる。これらのフッ素樹脂は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。 The resin composition used as the insulating material can also be blended with a thermoplastic resin in consideration of dielectric properties, impact resistance, film processability, and the like. The thermoplastic resin is not particularly limited, and examples thereof include fluororesin, polycarbonate, polyetherimide, polyetheretherketone, polyacrylate, polyamide, polyamideimide, and polybutadiene. One type of thermoplastic resin may be used alone, or two or more types may be mixed and used. Moreover, the fluororesin is not particularly limited, and examples thereof include polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, and polyvinyl fluoride. One type of these fluororesins may be used alone, or two or more types may be mixed and used.
 熱可塑性樹脂の中でも、耐湿性に優れ、更に金属に対する接着剤が良好な観点から、ポリアミドイミド樹脂が有用である。ポリアミドイミド樹脂の原料は、特に限定されるものではないが、酸性分としては、無水トリメリット酸、無水トリメリット酸モノクロライドが挙げられ、アミン成分としては、メタフェニレンジアミン、パラフェニレンジアミン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、ビス[4-(アミノフェノキシ)フェニル]スルホン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパンなどが挙げられる。ポリアミドイミド樹脂は、乾燥性を向上させるためにシロキサン変性としてもよく、この場合、アミノ成分としてシロキサンジアミンを用いることができる。ポリアミドイミド樹脂は、フィルム加工性を考慮すると、分子量が5万以上のものを用いるのが好ましい。 Among thermoplastic resins, polyamide-imide resins are useful from the viewpoint of excellent moisture resistance and good adhesion to metals. The raw material for the polyamideimide resin is not particularly limited, but examples of the acidic component include trimellitic anhydride and trimellitic anhydride monochloride, and examples of the amine component include metaphenylenediamine, paraphenylenediamine, 4 ,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, bis[4-(aminophenoxy)phenyl]sulfone, 2,2'-bis[4-(4-aminophenoxy)phenyl]propane and the like. The polyamide-imide resin may be modified with siloxane to improve drying properties, and in this case, siloxane diamine can be used as the amino component. Considering film processability, it is preferable to use a polyamide-imide resin having a molecular weight of 50,000 or more.
 上述の熱可塑性樹脂については、主としてプリプレグに用いられる絶縁材料として説明をしたが、これら熱可塑性樹脂はプリプレグとしての使用に限定されない。例えば、上述の熱可塑性樹脂を用いてフィルムに加工したもの(フィルム材)を、コア樹脂層11Aとしてもよい。 Although the above thermoplastic resins have been described as insulating materials mainly used for prepregs, these thermoplastic resins are not limited to use as prepregs. For example, the core resin layer 11A may be formed by processing a film (film material) using the thermoplastic resin described above.
 絶縁材料として用いられる樹脂組成物には、充填材が混合されていてもよい。充填材としては、特に限定されないが、例えば、アルミナ、ホワイトカーボン、チタンホワイト、酸化チタン、酸化亜鉛、酸化マグネシウム、酸化ジルコニウム等の金属酸化物(水和物を含む)、水酸化アルミニウム、ベーマイト、水酸化マグネシウム等の金属水酸化物、天然シリカ、溶融シリカ、合成シリカ、アモルファスシリカ、アエロジル、中空シリカ等のシリカ類、クレー、カオリン、タルク、マイカ、ガラス粉、石英粉、シラスバルーン等の無機系の充填材(無機充填材)の他、スチレン型、ブタジエン型、アクリル型などのゴムパウダー、コアシェル型のゴムパウダー、シリコーンレジンパウダー、シリコーンゴムパウダー、シリコーン複合パウダーなどの有機系の充填材(有機充填材)が挙げられる。これら充填材は、1種類を単独で使用してもよいし、2種類以上を混合して使用してもよい。 A filler may be mixed in the resin composition used as the insulating material. Examples of fillers include, but are not limited to, alumina, white carbon, titanium white, titanium oxide, zinc oxide, magnesium oxide, metal oxides (including hydrates) such as zirconium oxide, aluminum hydroxide, boehmite, Metal hydroxides such as magnesium hydroxide, silicas such as natural silica, fused silica, synthetic silica, amorphous silica, aerosil, and hollow silica, inorganic materials such as clay, kaolin, talc, mica, glass powder, quartz powder, and Shirasu balloons In addition to organic fillers (inorganic fillers), organic fillers ( organic fillers). These fillers may be used singly or in combination of two or more.
 絶縁材料として用いられる樹脂組成物は、有機溶媒を含有していてもよい。有機溶媒としては、特に限定されるものではなく、ベンゼン、トルエン、キシレン、トリメチルベンゼンのような芳香族炭化水素系溶媒;アセトン、メチルエチルケトン、メチルイノブチルケトンのようなケトン系溶媒;テトラヒドロフランのようなエーテル系溶媒;イソプロパノール、ブタノールのようなアルコール系溶媒;2-メトキシエタノール、2-ブトキシエタノールのようなエーテルアルコール溶媒;N-メチルピロリドン、N、N-ジメチルホルムアミド、N、N-ジメチルアセトアミドのようなアミド系溶媒などを、所望に応じて併用することができる。尚、プリプレグを作製する場合におけるワニス中の溶媒量は、樹脂組成物全体に対して40質量%~80質量%の範囲とすることが好ましい。また、前記ワニスの粘度は20cP~100cP(20mPa・s~100mPa・s)の範囲が望ましい。 The resin composition used as an insulating material may contain an organic solvent. The organic solvent is not particularly limited, and aromatic hydrocarbon solvents such as benzene, toluene, xylene and trimethylbenzene; ketone solvents such as acetone, methyl ethyl ketone and methylinobutyl ketone; and tetrahydrofuran. Ether solvents; alcohol solvents such as isopropanol and butanol; ether alcohol solvents such as 2-methoxyethanol and 2-butoxyethanol; N-methylpyrrolidone, N,N-dimethylformamide and N,N-dimethylacetamide If desired, an amide-based solvent or the like can be used in combination. The amount of the solvent in the varnish when producing the prepreg is preferably in the range of 40% by mass to 80% by mass with respect to the entire resin composition. Further, the viscosity of the varnish is desirably in the range of 20 cP to 100 cP (20 mPa·s to 100 mPa·s).
 絶縁材料として用いられる樹脂組成物は、難燃剤を含有していてもよい。難燃剤としては、特に限定されるものではないが、例えば、デカブロモジフェニルエーテル、テトラブロモビスフェノールA、テトラブロモ無水フタル酸、トリブロモフェノールなどの臭素化合物、トリフェニルフォスフェート、トリキシレルフォスフェート、クレジルジフェニルフォスフェートなどのリン化合物、赤リン及びその変性物、三酸化アンチモン、五酸化アンチモンなどのアンチモン化合物、メラミン、シアヌール酸、シアヌール酸メラミンなどのトリアジン化合物など公知慣例の難燃剤を用いることができる。 The resin composition used as an insulating material may contain a flame retardant. Examples of flame retardants include, but are not limited to, bromine compounds such as decabromodiphenyl ether, tetrabromobisphenol A, tetrabromophthalic anhydride, and tribromophenol, triphenyl phosphate, trixylyl phosphate, and clay. Known and customary flame retardants such as phosphorus compounds such as dildiphenyl phosphate, red phosphorus and modified products thereof, antimony compounds such as antimony trioxide and antimony pentoxide, triazine compounds such as melamine, cyanuric acid and melamine cyanurate can be used. can.
 絶縁材料として用いられる樹脂組成物に対して、さらに必要に応じて上述の硬化剤、硬化促進剤や、その他、熱可塑性粒子、着色剤、紫外線不透過剤、酸化防止剤、還元剤などの各種添加剤や充填材を加えることができる。 For the resin composition used as an insulating material, if necessary, various additives such as the above-mentioned curing agent, curing accelerator, thermoplastic particles, coloring agents, ultraviolet opaque agents, antioxidants, reducing agents, etc. Additives and fillers can be added.
 本実施形態においてプリプレグは、例えば、上述した基材に対する樹脂組成物の付着量が、乾燥後のプリプレグにおける樹脂含有率で20質量%以上90質量%以下となるように、樹脂組成物(ワニスを含む)を基材に含浸又は塗工した後、100℃以上200℃以下の温度で1分から30分間加熱乾燥することで、半硬化状態(Bステージ状態)のプリプレグとして得ることができる。そのようなプリプレグとしては、例えば、三菱ガス化学株式会社製の、GHPL-830NS(製品名)、GHPL-830NSF(製品名)を使用することができる。 In the present embodiment, the prepreg is, for example, a resin composition (varnish is added so that the amount of the resin composition attached to the base material described above is 20% by mass or more and 90% by mass or less in terms of resin content in the prepreg after drying. ) is impregnated or coated on the substrate, and then dried by heating at a temperature of 100° C. or higher and 200° C. or lower for 1 minute to 30 minutes to obtain a prepreg in a semi-cured state (B stage state). As such a prepreg, for example, GHPL-830NS (product name) and GHPL-830NSF (product name) manufactured by Mitsubishi Gas Chemical Company, Inc. can be used.
(第1の金属層11B)
 第1の金属層11Bは、例えば、キャリア付金属箔により構成することができる。キャリア付金属箔は、例えば、キャリアに剥離手段である剥離層を介して金属箔を積層したものである。キャリア付金属箔には市販品を用いることもでき、例えば、三井金属鉱業株式会社製のMT18SD-H-T5(製品名)を使用することができる。第1の金属層11Bの厚みは、例えば、100μm以下であることが好ましい。微細配線を形成するためには金属層の厚みが薄い方が有利であるからである。また、第1の金属層11Bの厚みは、0.5μm以上であればより好ましい。更に、第1の金属層11Bの厚みは、1μm以上100μm以下であればより好ましい。
(First metal layer 11B)
The first metal layer 11B can be made of, for example, a metal foil with a carrier. The metal foil with a carrier is, for example, laminated with a metal foil on a carrier via a release layer, which is a release means. A commercial product can also be used for the metal foil with a carrier, for example, MT18SD-HT5 (product name) manufactured by Mitsui Mining & Smelting Co., Ltd. can be used. The thickness of the first metal layer 11B is preferably 100 μm or less, for example. This is because a thinner metal layer is more advantageous for forming fine wiring. Moreover, it is more preferable that the thickness of the first metal layer 11B is 0.5 μm or more. Furthermore, the thickness of the first metal layer 11B is more preferably 1 μm or more and 100 μm or less.
 キャリアは、例えば、各種金属箔により構成することができるが、厚さの均一性及び箔の耐食性などの点から銅箔により構成することが好ましい。キャリアの厚みは、金属箔の厚みよりも厚く、例えば、3μm以上100μm以下とすることができ、5μm以上50μm以下が好ましく、6μm以上30μm以下が更に好ましい。 The carrier can be composed of, for example, various metal foils, but is preferably composed of copper foil in terms of uniformity of thickness and corrosion resistance of the foil. The thickness of the carrier is thicker than the thickness of the metal foil, and can be, for example, 3 μm or more and 100 μm or less, preferably 5 μm or more and 50 μm or less, and more preferably 6 μm or more and 30 μm or less.
 剥離層は、キャリアを金属箔から容易に剥離できるようにするためのものである。剥離層の材料は、特に限定されず、各種の周知のものを適宜使用することができる。例えば、有機系の材料であれば、窒素含有有機化合物、硫黄含有有機化合物、カルボン酸等が挙げられる。窒素含有有機化合物の例としては、トリアゾール化合物、イミダゾール化合物等が挙げられ、中でもトリアゾール化合物は剥離性が安定しやすい点で好ましい。トリアゾール化合物の例としては、1,2,3-ベンゾトリアゾール、カルボキシベンゾトリアゾール、N‘,N’-ビス(ベンゾトリアゾリルメチル)ユリア、1H-1,2,4-トリアゾール及び3-アミノ-1H-1,2,4-トリアゾール等が挙げられる。硫黄含有有機化合物の例としては、メルカプトベンゾチアゾール、チオシアヌル酸、2-ベンズイミダゾールチオール等が挙げられる。カルボン酸の例としては、モノカルボン酸、ジカルボン酸等が挙げられる。また、無機系の材料であれば、Ni、Mo、Co、Cr、Fe、Ti、W、P、Zn等のうち少なくとも1種からなる金属若しくは合金、又はこれらの酸化物が挙げられる。剥離層の厚みは、例えば、1nm以上1μm以下とすることができ、好ましくは5nm以上500nm以下である。 The release layer is for allowing the carrier to be easily separated from the metal foil. Materials for the release layer are not particularly limited, and various well-known materials can be used as appropriate. For example, organic materials include nitrogen-containing organic compounds, sulfur-containing organic compounds, and carboxylic acids. Examples of the nitrogen-containing organic compound include triazole compounds, imidazole compounds, etc. Among them, triazole compounds are preferable because they tend to have stable peelability. Examples of triazole compounds include 1,2,3-benzotriazole, carboxybenzotriazole, N',N'-bis(benzotriazolylmethyl)urea, 1H-1,2,4-triazole and 3-amino- 1H-1,2,4-triazole and the like. Examples of sulfur-containing organic compounds include mercaptobenzothiazole, thiocyanuric acid, 2-benzimidazolethiol, and the like. Examples of carboxylic acids include monocarboxylic acids, dicarboxylic acids, and the like. Inorganic materials include metals or alloys of at least one of Ni, Mo, Co, Cr, Fe, Ti, W, P, Zn, and oxides thereof. The thickness of the release layer can be, for example, 1 nm or more and 1 μm or less, preferably 5 nm or more and 500 nm or less.
 金属箔は、例えば、各種金属箔により構成することができるが、厚さの均一性及び箔の耐食性などの点から銅箔により構成することが好ましい。金属箔の厚みは、所望に応じて適宜設定されるため、特に限定されないが、例えば、0.5μm以上70μm以下とすることができ、1μm以上50μm以下が好ましく、6μm以上30μm以下が更に好ましい。 The metal foil can be composed of, for example, various metal foils, but is preferably composed of copper foil in terms of thickness uniformity and corrosion resistance of the foil. The thickness of the metal foil is not particularly limited because it is appropriately set as desired.
 第1の金属層11Bは、キャリアがコア樹脂層11Aの側となるように設けてもよく、金属箔がコア樹脂層11Aの側となるように設けてもよい。第1の金属層11Bにおけるコア樹脂層11Aと反対側の端面から剥離手段までの厚み、すなわち、後述する第1の配線導体12の側の端面から剥離手段までの厚みは、6μm以上であることが好ましく、10μm以上であればより好ましく、15μm以上であれば更に好ましい。後述するコア樹脂層剥離工程において、少なくともコア樹脂層11Aを剥離する際に、第1の配線導体12から第(n+2)の配線導体15B、及び、第1の絶縁樹脂層13Aから第(n+1)の絶縁樹脂層15Aを補強し、これらの破損を抑制することができるからである。また、第1の金属層11Bにおけるコア樹脂層11Aと反対側の端面から剥離手段までの厚み、すなわち、後述する第1の配線導体12の側の端面から剥離手段までの厚みは、70μm以下が好ましく、50μm以下であればより好ましく、30μm以下であれば更に好ましい。後述する第1の金属層除去工程において、残存する第1の金属層11Bの除去に時間がかかるからである。 The first metal layer 11B may be provided so that the carrier is on the core resin layer 11A side, or may be provided so that the metal foil is on the core resin layer 11A side. The thickness from the end face of the first metal layer 11B opposite to the core resin layer 11A to the peeling means, that is, the thickness from the end face of the first wiring conductor 12 side to the peeling means, which will be described later, should be 6 μm or more. is preferred, 10 µm or more is more preferred, and 15 µm or more is even more preferred. In the core resin layer peeling step to be described later, when at least the core resin layer 11A is peeled off, the first wiring conductor 12 to the (n+2)th wiring conductor 15B and the first insulating resin layer 13A to the (n+1)th wiring conductor 15B are removed. This is because it is possible to reinforce the insulating resin layer 15A and suppress the breakage thereof. In addition, the thickness from the end face of the first metal layer 11B opposite to the core resin layer 11A to the peeling means, that is, the thickness from the end face on the side of the first wiring conductor 12 described later to the peeling means is 70 μm or less. It is preferably 50 μm or less, more preferably 30 μm or less, and even more preferably 30 μm or less. This is because it takes a long time to remove the remaining first metal layer 11B in the first metal layer removing step, which will be described later.
 また、第1の金属層11Bは、剥離手段である剥型層を有する金属箔により構成することもできる。この場合、剥型層がコア樹脂層11Aの側となるように積層される。剥型層としては、例えば、ケイ素化合物を少なくとも含む層が挙げられ、例えば、金属箔上に、シラン化合物を単独又は複数組合せてなるケイ素化合物を付与することで、形成することができる。尚、ケイ素化合物を付与する手段は特に限定されるものではなく、例えば、塗布等の公知の手段を用いることができる。金属箔の剥型層との接着面には防錆処理を施す(防錆処理層を形成する)ことができる。防錆処理は、ニッケル、錫、亜鉛、クロム、モリブデン、コバルトのいずれか、若しくはそれらの合金を用いて行うことができる。剥型層の厚みは、特に限定されるものではないが、除去性及び剥離性の観点から、5nm以上100nm以下が好ましく、10nm以上80nm以下が更に好ましく、20nm以上60nm以下が特に好ましい。また、金属箔としては、厚さの均一性及び箔の耐食性などの点から銅箔が好ましい。この場合も、第1の金属層11Bにおけるコア樹脂層11Aと反対側の端面から剥離手段までの厚み、すなわち、後述する第1の配線導体12の側の端面から剥離手段までの厚みは、上述した通りとすることが好ましい。 In addition, the first metal layer 11B can also be composed of a metal foil having a peeling layer as a peeling means. In this case, the release layer is laminated so as to face the core resin layer 11A. Examples of the release layer include a layer containing at least a silicon compound. For example, the release layer can be formed by applying a silicon compound composed of a single silane compound or a combination of multiple silane compounds onto a metal foil. Incidentally, the means for applying the silicon compound is not particularly limited, and for example, known means such as coating can be used. An antirust treatment can be applied to the surface of the metal foil to be adhered to the release layer (to form an antirust treatment layer). Rust prevention treatment can be performed using any one of nickel, tin, zinc, chromium, molybdenum, cobalt, or alloys thereof. The thickness of the release layer is not particularly limited, but is preferably 5 nm or more and 100 nm or less, more preferably 10 nm or more and 80 nm or less, and particularly preferably 20 nm or more and 60 nm or less, from the viewpoint of removability and peelability. As the metal foil, a copper foil is preferable from the viewpoint of uniformity of thickness and corrosion resistance of the foil. Also in this case, the thickness from the end face of the first metal layer 11B opposite to the core resin layer 11A to the peeling means, that is, the thickness from the end face of the first wiring conductor 12 side described later to the peeling means is the same as described above. It is preferable to do so.
 なお、第1の積層体11は、例えば、コア樹脂層11Aと第1の金属層11Bとを積層し、加熱加圧して圧着することにより作製することができる。第1の積層体11の厚みは、例えば、20μm以上1000μm以下とすることができ、20μm以上950μm以下が好ましく、20μm以上900μm以下が更に好ましい。 The first laminated body 11 can be produced, for example, by laminating the core resin layer 11A and the first metal layer 11B, heating and pressurizing them, and crimping them. The thickness of the first laminate 11 can be, for example, 20 μm or more and 1000 μm or less, preferably 20 μm or more and 950 μm or less, and more preferably 20 μm or more and 900 μm or less.
<第1の配線形成工程>
 次いで、例えば、図1(B)に示したように、第1の積層体11の第1の金属層11Bの上に、電解めっき及び無電解めっきの少なくとも一方を施して、第1の配線導体12を形成する(第1の配線形成工程)。具体的には、例えば、第1の金属層11Bの上にめっき用レジストをラミネートし、めっき用レジストに回路パターンを焼き付け、現像してめっき用レジストパターンを形成した後、パターン電解めっきを施して、第1の配線導体12を形成し、めっき用レジストを除去することにより形成することができる。
<First Wiring Forming Step>
Next, for example, as shown in FIG. 1B, at least one of electrolytic plating and electroless plating is applied to the first metal layer 11B of the first laminate 11 to form the first wiring conductor. 12 is formed (first wiring forming step). Specifically, for example, a plating resist is laminated on the first metal layer 11B, a circuit pattern is printed on the plating resist, developed to form a plating resist pattern, and then patterned electrolytic plating is performed. , the first wiring conductor 12 is formed, and the plating resist is removed.
 めっき用レジストは、特に限定されず、例えば、市販のドライフィルムレジストなど公知のものを適宜選択して用いることができる。また、めっき用レジストの焼付け、現像、及び、除去についても、特に限定されず、公知の手段及び装置を用いて実施することができる。更に、第1の配線導体12を形成するためのパターン電解めっきについても、特に限定されず、公知の方法を適宜用いることができる。第1の配線導体12は、銅めっきにより形成することが好ましい。 The plating resist is not particularly limited, and for example, a known one such as a commercially available dry film resist can be appropriately selected and used. Baking, development, and removal of the plating resist are also not particularly limited, and can be performed using known means and devices. Furthermore, pattern electrolytic plating for forming the first wiring conductors 12 is not particularly limited, and known methods can be used as appropriate. The first wiring conductor 12 is preferably formed by copper plating.
 第1の配線導体の厚みは、所望に応じて適宜設定されるため、特に限定されないが、例えば、0.5μm以上100μm以下とすることができ、1μm以上50μm以下が好ましく、1μm以上30μm以下がより好ましい。第1の配線導体のパターン幅は、特に限定されず、用途に応じて適宜その幅を選択することができるが、例えば、1μm以上100μm以下とすることができ、好ましくは3μm以上30μm以下とすることができる。 The thickness of the first wiring conductor is appropriately set as desired, and is not particularly limited. more preferred. The pattern width of the first wiring conductor is not particularly limited, and the width can be appropriately selected according to the application. be able to.
<第2の積層体形成工程>
 続いて、例えば、図1(C)に示したように、第1の積層体11の第1の配線導体12が設けられた面の上に、第1の絶縁樹脂層13Aと第2の金属層13Bとをこの順で積層して、第2の積層体13を形成する(第2の積層体形成工程)。
<Second laminate forming step>
Subsequently, for example, as shown in FIG. 1C, a first insulating resin layer 13A and a second metal layer are formed on the surface of the first laminate 11 on which the first wiring conductors 12 are provided. The layer 13B is laminated in this order to form the second laminated body 13 (second laminated body forming step).
 第1の絶縁樹脂層13Aは、特に限定されるものではないが、例えば、コア樹脂層11Aと同様の材料(例えば、プリプレグ又は絶縁性のフィルム材)により構成することができる。第1の絶縁樹脂層13Aの厚みは、所望に応じて適宜設定されるため、特に限定されないが、例えば、0.1μm以上100μm以下とすることができ、3μm以上50μm以下が好ましく、5μm以上20μm以下がより好ましい。 Although the first insulating resin layer 13A is not particularly limited, it can be made of, for example, the same material as the core resin layer 11A (for example, prepreg or insulating film material). The thickness of the first insulating resin layer 13A is appropriately set as desired, and is not particularly limited. The following are more preferred.
 第2の金属層13Bは、各種金属箔により構成することができるが、厚さの均一性及び箔の耐食性などの点から銅箔により構成することが好ましい。第2の金属層13Bの厚みは、所望に応じて適宜設定されるため、特に限定されないが、例えば、0.5μm以上100μm以下とすることができ、1μm以上50μm以下が好ましく、1μm以上30μm以下が更に好ましい。 The second metal layer 13B can be made of various metal foils, but is preferably made of copper foil in terms of thickness uniformity and corrosion resistance of the foil. The thickness of the second metal layer 13B is appropriately set as desired, and is not particularly limited. is more preferred.
 第2の積層体形成工程は、特に限定されず、例えば、以下の工程により行うことができる。例えば、第1の配線導体12の表面に第1の絶縁樹脂層13Aとの密着力を得るための密着処理として粗化処理を施した後、樹脂層付きのキャリア付金属箔を樹脂層が第1の配線導体12と接するように配置して、加熱加圧し、キャリアを剥離することにより、第1の絶縁樹脂層13Aと第2の金属層13Bとを積層することができる。粗化処理は、特に限定されず、公知の手段を適宜使用でき、例えば、銅表面粗化液を用いる手段が挙げられる。 The second laminate forming step is not particularly limited, and can be performed, for example, by the following steps. For example, the surface of the first wiring conductor 12 is roughened as an adhesion treatment for obtaining adhesion to the first insulating resin layer 13A. The first insulating resin layer 13A and the second metal layer 13B can be laminated by placing them in contact with one wiring conductor 12, applying heat and pressure, and peeling off the carrier. The roughening treatment is not particularly limited, and known means can be appropriately used, for example, means using a copper surface roughening liquid.
 樹脂層付きのキャリア付金属箔は、例えば、キャリア付金属箔の金属箔側に樹脂層を積層したものであり、樹脂層が第1の絶縁樹脂層13Aとなり、金属箔が第2の金属層13Bとなる。樹脂層付きのキャリア付金属箔には市販品を用いることもでき、例えば、三菱ガス化学株式会社製のCRS381NSI(製品名)を使用することができる。樹脂層付きのキャリア付金属箔の加熱加圧条件は、特に限定されず、例えば、温度220±2℃、圧力3±0.2MPa、保持時間60分間の条件にて真空プレスすることができる。 The metal foil with a carrier with a resin layer is obtained by, for example, laminating a resin layer on the metal foil side of the metal foil with a carrier, the resin layer being the first insulating resin layer 13A, and the metal foil being the second metal layer. 13B. A commercial product can also be used for the metal foil with a carrier with a resin layer, for example, CRS381NSI (product name) manufactured by Mitsubishi Gas Chemical Company, Inc. can be used. The heating and pressurizing conditions for the resin layer-attached carrier-attached metal foil are not particularly limited, and for example, vacuum pressing can be performed under conditions of a temperature of 220±2° C., a pressure of 3±0.2 MPa, and a holding time of 60 minutes.
<第2の配線形成工程>
 次に、例えば、図1(D)に示したように、第1の絶縁樹脂層13Aに第1の配線導体12に達する非貫通孔14Aを形成し、非貫通孔が形成された表面に電解めっき及び無電解めっきの少なくとも一方を施して、第2の配線導体14Bを形成する(第2の配線形成工程)。第2の配線導体14Bの厚み及びパターン幅は、所望に応じて適宜設定されるため、特に限定されないが、例えば、第1の配線導体12と同様とすることができる
<Second Wiring Forming Step>
Next, for example, as shown in FIG. 1(D), a non-through hole 14A reaching the first wiring conductor 12 is formed in the first insulating resin layer 13A, and the surface in which the non-through hole is formed is electrolyzed. At least one of plating and electroless plating is applied to form the second wiring conductors 14B (second wiring forming step). The thickness and pattern width of the second wiring conductor 14B are appropriately set as desired, and are not particularly limited.
 非貫通孔14Aを形成する手段は、特に限定されず、例えば、炭酸ガスレーザーなどのレーザーやドリルなどの公知の手段を用いることができる。中でも、レーザーにより非貫通孔14Aを形成することが好ましい。微細加工に適しているからである。非貫通孔14Aは、第2の金属層13Bを介して第1の絶縁樹脂層13Aに形成され、本工程にて形成される第2の配線導体14Bと第1の配線導体12とを電気的に接続させるために設けられる。非貫通孔14Aの数やサイズは、所望に応じて適宜選定することができる。また、非貫通孔14Aを形成した後に、過マンガン酸ナトリウム水溶液などを用いてデスミア処理を施すことができる。 The means for forming the non-through hole 14A is not particularly limited, and known means such as a laser such as a carbon dioxide laser or a drill can be used. Among them, it is preferable to form the non-through hole 14A with a laser. This is because it is suitable for fine processing. The non-through hole 14A is formed in the first insulating resin layer 13A via the second metal layer 13B, and electrically connects the second wiring conductor 14B and the first wiring conductor 12 formed in this process. provided to connect to The number and size of the non-through holes 14A can be appropriately selected as desired. After forming the non-through hole 14A, desmear treatment can be performed using an aqueous solution of sodium permanganate or the like.
 非貫通孔14Aを形成した後、電解めっき及び無電解めっきの少なくとも一方を施して非貫通孔14Aの内壁にめっき膜を形成し、第1の配線導体12と第2の金属層13Bとを電気的に接続すると共に、第2の金属層13Bの厚みを増加させ、第2の配線導体14Bを形成することができる。電解銅めっき又は無電解銅めっきを施す方法は、特に限定されるものではなく、公知の方法を採用することができる。めっきは、電解めっき及び無電解めっきのどちらか一方のみでもよいが、電解めっき及び無電解めっきの両方を施すことが好ましい。また、めっきは銅めっきが好ましく、電解銅めっき及び無電解銅めっきの少なくとも一方を施すことが好ましい。 After forming the non-through holes 14A, at least one of electrolytic plating and electroless plating is applied to form a plated film on the inner walls of the non-through holes 14A, and the first wiring conductors 12 and the second metal layers 13B are electrically connected. In addition, the thickness of the second metal layer 13B can be increased to form the second wiring conductor 14B. The method of applying electrolytic copper plating or electroless copper plating is not particularly limited, and known methods can be employed. Plating may be either electrolytic plating or electroless plating, but it is preferable to apply both electrolytic plating and electroless plating. Moreover, the plating is preferably copper plating, and it is preferable to apply at least one of electrolytic copper plating and electroless copper plating.
 第2の配線導体14Bの形成方法は、特に限定されず、例えば、サブトラクティブ工法又はセミアディティブ工法などの公知の手段を適宜採用することができる。サブトラクティブ工法の場合には、例えば、まず、非貫通孔14Aを形成し、非貫通孔が形成された表面に電解めっき及び無電解めっきの少なくとも一方を施して第2の金属層13Bの厚みを増加させ、必要に応じて整面する。次いで、例えば、ドライフィルムレジスト等をラミネートし、ネガ型マスクを張り合わせて回路パターンを焼付け、現像して、エッチングレジストを形成する。続いて、例えば、エッチングレジストをマスクとして厚みを増加させた第2の金属層13Bをエッチングして第2の配線導体14Bを形成し、エッチングレジストを除去する。 A method for forming the second wiring conductor 14B is not particularly limited, and for example, known means such as a subtractive method or a semi-additive method can be appropriately employed. In the case of the subtractive method, for example, first, the non-through holes 14A are formed, and at least one of electrolytic plating and electroless plating is applied to the surface on which the non-through holes are formed to reduce the thickness of the second metal layer 13B. Increase and level as needed. Next, for example, a dry film resist or the like is laminated, a negative mask is attached, a circuit pattern is printed, and an etching resist is formed by development. Subsequently, for example, the second metal layer 13B with an increased thickness is etched using an etching resist as a mask to form the second wiring conductors 14B, and the etching resist is removed.
 また、セミアディティブ工法の場合には、例えば、まず、非貫通孔14Aを形成した後、第2の金属層13Bをエッチング等により全て除去し、第1の絶縁樹脂層13Aを露出させる。次いで、第1の絶縁樹脂層13Aの側の表面に無電解銅めっきにより、例えば厚み0.4μmから2μmの無電解銅めっき層を形成する。続いて、無電解銅めっき層の上にドライフィルムを熱圧着してレジスト層を設け、露光及び現像を行い、第2の配線導体14Bを形成する部分を除去したレジストパターンを形成する。露光は、例えば、レジスト層の所定部分に活性エネルギー線を照射することにより行い、活性エネルギー線の照射はマスクパターンを通してもよいし、直接活性エネルギー線を照射する直接描画法を用いてもよい。レジストパターンを形成した後、例えばプラズマクリーニング等によりスカム(レジスト残渣)を除去し、レジストパターンをめっきレジストとして、無電解銅めっき層の表面に電解銅めっきにより電解銅めっき層を形成する。電解銅めっき層を設けた後、レジスト剥離液等を用いてレジストパターンを除去し、フラッシュエッチング等により無電解銅めっき層をエッチングして、無電解銅めっき層及び電解銅めっき層からなる第2の配線導体14Bを形成する。 In the case of the semi-additive method, for example, after forming the non-through holes 14A, the second metal layer 13B is completely removed by etching or the like to expose the first insulating resin layer 13A. Next, an electroless copper plating layer having a thickness of 0.4 μm to 2 μm, for example, is formed on the surface of the first insulating resin layer 13A by electroless copper plating. Subsequently, a resist layer is formed by thermocompression bonding of a dry film on the electroless copper plating layer, exposure and development are performed, and a resist pattern is formed by removing a portion for forming the second wiring conductor 14B. Exposure is carried out by, for example, irradiating a predetermined portion of the resist layer with an active energy ray, and the irradiation with the active energy ray may be performed through a mask pattern, or a direct writing method in which the active energy ray is directly applied may be used. After forming the resist pattern, scum (resist residue) is removed by, for example, plasma cleaning, and an electrolytic copper plating layer is formed on the surface of the electroless copper plating layer using the resist pattern as a plating resist. After providing the electrolytic copper plating layer, the resist pattern is removed using a resist stripping solution or the like, and the electroless copper plating layer is etched by flash etching or the like to form a second electroless copper plating layer and an electrolytic copper plating layer. to form a wiring conductor 14B.
<配線積層工程>
 第2の配線形成工程の後、例えば、図2(E)に示したように、第2の積層体13の第2の配線導体14Bが設けられた面の上に、更に、第2の積層体形成工程及び第2の配線導体形成工程と同じ工程をn回繰り返し行い、(n+2)層の配線導体を有するビルドアップ構造を形成する(配線積層工程)。nは1以上の整数である。繰り返しの回数nは、所望に応じて適宜設定されるため、特に限定されないが、例えば、1回以上10回以下とすることができる。なお、図2では、繰り返しの回数nが3回の場合を示している。
<Wiring lamination process>
After the second wiring forming step, for example, as shown in FIG. The same steps as the body forming step and the second wiring conductor forming step are repeated n times to form a buildup structure having (n+2) layers of wiring conductors (wiring lamination step). n is an integer of 1 or more. The number n of repetitions is appropriately set as desired, and is not particularly limited, but can be, for example, 1 or more and 10 or less. Note that FIG. 2 shows a case where the number of repetitions n is three.
 具体的には、配線積層工程では、例えば、第(m+1)の積層体の第(m+1)の配線導体が設けられた面の上に、第(m+1)の絶縁樹脂層15Aと第(m+2)の金属層とをこの順で積層して、第(m+2)の積層体15を形成する第(m+2)の積層体形成工程、及び、第(m+1)の絶縁樹脂層15Aに第(m+1)の配線導体に達する非貫通孔を形成し、非貫通孔が形成された表面に電解めっき及び無電解めっきの少なくとも一方を施して、第(m+2)の配線導体15Bを形成する第(m+2)の配線形成工程を、この順にn回繰り返し行い、第2から第(n+1)の絶縁樹脂層15A及び第3から第(n+2)の配線導体15Bを形成する。mは1以上の整数、但し、m≦nである。 Specifically, in the wiring lamination step, for example, the (m+1)th insulating resin layer 15A and the (m+2)th insulating resin layer 15A are placed on the surface on which the (m+1)th wiring conductor of the (m+1)th laminate is provided. The (m+2)-th laminate forming step of forming the (m+2)-th laminate 15 by laminating the metal layers in this order, and the (m+1)-th laminate on the (m+1)-th insulating resin layer 15A The (m+2)th wiring that forms a non-through hole reaching the wiring conductor and applies at least one of electrolytic plating and electroless plating to the surface on which the non-through hole is formed to form the (m+2)th wiring conductor 15B. The forming process is repeated n times in this order to form the second to (n+1)th insulating resin layers 15A and the third to (n+2)th wiring conductors 15B. m is an integer of 1 or more, provided that m≦n.
<ソルダーレジスト層形成工程>
 配線積層工程の後、例えば、図2(F)に示したように、第(n+1)の絶縁樹脂層15A及び第(n+2)の配線導体15Bの上に、第(n+2)の配線導体15Bが部分的に露出するようにソルダーレジスト層16Aを形成し、ソルダーレジスト層形成体16とする(ソルダーレジスト層形成工程)。後続のコア樹脂層剥離工程の前に、ソルダーレジスト層16Aを形成することにより、少なくともコア樹脂層11Aを剥離する際、及び、剥離した後の第1の金属層除去工程において第1の金属層11Bを除去する際に、第1の配線導体12から第(n+2)の配線導体15B、及び、第1の絶縁樹脂層13Aから第(n+1)の絶縁樹脂層15Aを補強するためである。
<Solder Resist Layer Forming Step>
After the wiring lamination step, the (n+2)th wiring conductor 15B is formed on the (n+1)th insulating resin layer 15A and the (n+2)th wiring conductor 15B, as shown in FIG. A solder-resist layer 16A is formed so as to be partially exposed to form a solder-resist layer forming body 16 (solder-resist layer forming step). By forming the solder resist layer 16A before the subsequent core resin layer peeling step, at least when the core resin layer 11A is peeled off and in the first metal layer removing step after peeling, the first metal layer This is to reinforce the first wiring conductor 12 to the (n+2)th wiring conductor 15B and the first insulating resin layer 13A to the (n+1)th insulating resin layer 15A when removing the wiring conductor 11B.
 ソルダーレジスト層16Aの形成方法は、特に限定されず、公知の手段を適宜採用することができる。例えば、ソルダーレジスト層16Aは、ソルダーレジストを第(n+1)の絶縁樹脂層15A及び第(n+2)の配線導体15Bの上、すなわち、第(n+2)の積層体15の第(n+2)の配線導体15Bが形成された面の全面に塗布し、回路パターンが作られたネガフィルムを通して露光することにより硬化し、未硬化部分を現像することにより形成することができる。また、例えば、ソルダーレジスト層16Aは、第(n+1)の絶縁樹脂層15A及び第(n+2)の配線導体15Bの上、すなわち、第(n+1)の積層体15の第(n+2)の配線導体15Bが形成された面にスクリーン印刷によりソルダーレジストをパターン印刷し、紫外線を照射、又は、加熱して硬化することにより形成することができる。すなわち、ソルダーレジスト層16Aは、硬化処理後のものである。このように、ソルダーレジスト層16Aは、硬化されているので、後続の工程が汚染されてしまうことを抑制することができる。 A method for forming the solder resist layer 16A is not particularly limited, and known means can be appropriately adopted. For example, the solder resist layer 16A is formed by applying a solder resist on the (n+1)-th insulating resin layer 15A and the (n+2)-th wiring conductor 15B, that is, the (n+2)-th wiring conductor of the (n+2)-th laminate 15. It can be formed by coating the entire surface on which 15B is formed, curing by exposing through a negative film on which a circuit pattern is formed, and developing the uncured portion. Further, for example, the solder resist layer 16A is formed on the (n+1)-th insulating resin layer 15A and the (n+2)-th wiring conductor 15B, that is, the (n+2)-th wiring conductor 15B of the (n+1)-th laminate 15. It can be formed by pattern-printing a solder resist on the surface on which is formed by screen printing, and curing by irradiation with ultraviolet rays or by heating. That is, the solder-resist layer 16A is after the hardening treatment. Since the solder resist layer 16A is thus hardened, it is possible to prevent contamination of subsequent steps.
<コア樹脂層剥離工程>
 ソルダーレジスト層形成工程の後、例えば、図2(G)に示したように、ソルダーレジスト層形成体16から、第1の金属層11Bの剥離手段において少なくともコア樹脂層11Aを剥離して除去する。これにより、剥離手段(例えば、剥離層又は剥型層)においてコア樹脂層11A、及び、場合により第1の金属層11Bの一部(例えば、キャリア)が剥離され、残存する第1の金属層11Bの上に、第1の配線導体12から第(n+2)の配線導体15B、第1の絶縁樹脂層13Aから第(n+1)の絶縁樹脂層15A、及び、ソルダーレジスト層16Aが積層されたコア樹脂層除去体17となる(コア樹脂層剥離工程)。本実施の形態では、硬化されたソルダーレジスト層16Aが設けられているので、十分な強度を得ることができ、損傷が抑制される。なお、第1の金属層11Bの剥離手段の少なくとも一部は、少なくともコア樹脂層11Aと共に剥離されてもよく、また、剥離されずに残存してもよい。剥離手段において少なくともコア樹脂層11Aを剥離する手段は、物理的手段又は化学的手段のいずれも採用することができるが、例えば、剥離手段に物理的な力を加えて、物理的手段により剥離することが好ましい。
<Core resin layer peeling process>
After the solder resist layer forming step, for example, as shown in FIG. 2G, at least the core resin layer 11A is peeled off from the solder resist layer forming body 16 by peeling means for the first metal layer 11B. . As a result, the core resin layer 11A and, in some cases, a portion (eg, carrier) of the first metal layer 11B are peeled off by the peeling means (eg, peeling layer or release layer), leaving the remaining first metal layer. A core in which the first wiring conductor 12 to the (n+2)th wiring conductor 15B, the first insulating resin layer 13A to the (n+1)th insulating resin layer 15A, and the solder resist layer 16A are laminated on the 11B. It becomes the resin layer-removed body 17 (core resin layer peeling step). In the present embodiment, since the cured solder resist layer 16A is provided, sufficient strength can be obtained and damage is suppressed. At least part of the peeling means of the first metal layer 11B may be peeled together with at least the core resin layer 11A, or may remain without being peeled off. Either physical means or chemical means can be adopted as the means for peeling at least the core resin layer 11A in the peeling means. is preferred.
<第1の金属層除去工程>
 コア樹脂層剥離工程の後、例えば、図3(H)に示したように、コア樹脂層除去体17から、残存する第1の金属層11Bを除去し、第1の金属層除去体18とする(第1の金属層除去工程)。第1の金属層11Bを除去する手段は、特に限定されるものではないが、例えば、硫酸系又は過酸化水素系エッチング液を用いて除去することができる。硫酸系又は過酸化水素系エッチング液は、特に限定されるものではなく、当業界で使用されているものを使用することができる。なお、本実施の形態では、ソルダーレジスト層16Aが硬化されているので、薬液による損傷を小さくすることができる。
<First Metal Layer Removal Step>
After the core resin layer peeling step, for example, as shown in FIG. (first metal layer removing step). The means for removing the first metal layer 11B is not particularly limited, but it can be removed using, for example, a sulfuric acid-based or hydrogen peroxide-based etchant. The sulfuric acid-based or hydrogen peroxide-based etchant is not particularly limited, and those used in the industry can be used. In this embodiment, since the solder resist layer 16A is hardened, it is possible to reduce the damage caused by the chemical solution.
<反対面ソルダーレジスト層形成工程>
 第1の金属層除去工程の後、例えば、図3(I)に示したように、第1の絶縁樹脂層13A及び第1の配線導体12の上に、第1の配線導体12が部分的に露出するようにソルダーレジスト層19を形成する(反対面ソルダーレジスト層形成工程)。ソルダーレジスト層19の形成方法は、ソルダーレジスト層形成工程と同様である。
<Step of Forming Solder Resist Layer on Opposite Side>
After the first metal layer removing step, for example, as shown in FIG. The solder-resist layer 19 is formed so as to be exposed to the surface (opposite surface solder-resist layer forming step). The method of forming the solder resist layer 19 is the same as the solder resist layer forming step.
<めっき仕上げ工程>
 反対面ソルダーレジスト層形成工程の後、例えば、第1の金属層除去体18の両面において、ソルダーレジスト層19から露出した第1の配線導体12、及び、ソルダーレジスト層16Aから露出した第(n+2)の配線導体15Bの上に、金めっき層を形成する。これにより、半導体素子搭載用パッケージ基板が得られる。
<Plating finishing process>
After the opposite surface solder resist layer forming step, for example, on both surfaces of the first metal layer removed body 18, the first wiring conductor 12 exposed from the solder resist layer 19 and the (n+2)th (n+2)th conductor exposed from the solder resist layer 16A are removed. ), a gold plating layer is formed on the wiring conductor 15B. Thus, a package substrate for mounting a semiconductor element is obtained.
 このように本実施の形態によれば、第(n+1)の絶縁樹脂層15A及び第(n+2)の配線導体15Bの上に、第(n+2)の配線導体15Bが部分的に露出するようにソルダーレジスト層16Aを形成した後、剥離手段において少なくともコア樹脂層11Aを剥離するようにしたので、ソルダーレジスト層16Aにより、第1の配線導体12から第(n+2)の配線導体15B、及び、第1の絶縁樹脂層13Aから第(n+1)の絶縁樹脂層15Aを補強することができ、これらの破損を抑制することができる。よって、半導体素子搭載用パッケージ基板を良好に製造することができる。 As described above, according to the present embodiment, solder is applied onto the (n+1)th insulating resin layer 15A and the (n+2)th wiring conductor 15B so that the (n+2)th wiring conductor 15B is partially exposed. After the resist layer 16A is formed, at least the core resin layer 11A is peeled off by the peeling means. 13A to the (n+1)-th insulating resin layer 15A can be reinforced, and breakage thereof can be suppressed. Therefore, a package substrate for mounting a semiconductor element can be manufactured satisfactorily.
 また、ソルダーレジスト層16Aは硬化されているので、後続の工程が汚染されてしまうことを抑制することができると共に、十分な強度及び耐薬液性を得ることができる。 In addition, since the solder resist layer 16A is hardened, it is possible to prevent contamination of the subsequent steps and obtain sufficient strength and chemical resistance.
 更に、第1の金属層11Bにおける第1の配線導体12の側の端面から剥離手段までの厚みを6μm以上、更には10μm以上、更に好ましくは15μm以上とすれば、少なくともコア樹脂層11Aを剥離する際に、第1の配線導体12から第(n+2)の配線導体15B、及び、第1の絶縁樹脂層13Aから第(n+1)の絶縁樹脂層15Aをより補強することができる。 Furthermore, if the thickness of the first metal layer 11B from the end face of the first wiring conductor 12 side to the peeling means is 6 μm or more, further preferably 10 μm or more, and more preferably 15 μm or more, at least the core resin layer 11A can be peeled off. In this case, the first wiring conductor 12 to the (n+2)th wiring conductor 15B and the first insulating resin layer 13A to the (n+1)th insulating resin layer 15A can be further reinforced.
[第2の実施形態]
 本発明の第2の実施形態に係る半導体素子搭載用パッケージ基板の製造方法は、第1の実施形態のソルダーレジスト層形成工程とコア樹脂層剥離工程との間に、支持基板積層工程を含むと共に、第1の金属層除去工程の後に支持基板除去工程を含むものである。その他の各工程(第1の積層体準備工程、第1の配線形成工程、第2の積層体形成工程、第2の配線形成工程、配線積層工程、ソルダーレジスト層形成工程、コア樹脂層剥離工程、第1の金属層除去工程、反対面ソルダーレジスト層形成工程、及び、めっき仕上げ工程)は、第1の実施形態と同様である。
[Second embodiment]
A method of manufacturing a package substrate for mounting a semiconductor element according to the second embodiment of the present invention includes a supporting substrate laminating step between the solder resist layer forming step and the core resin layer peeling step of the first embodiment. , including a support substrate removal step after the first metal layer removal step. Other steps (first laminate preparation step, first wiring formation step, second laminate formation step, second wiring formation step, wiring lamination step, solder resist layer formation step, core resin layer peeling step , the first metal layer removing step, the opposite surface solder resist layer forming step, and the plating finishing step) are the same as those in the first embodiment.
 図4及び図5は、第2の実施形態に係る半導体素子搭載用パッケージ基板の製造方法の各工程を表すものである。この半導体素子搭載用パッケージ基板の製造方法では、まず、例えば、第1の実施形態と同様に、第1の積層体準備工程、第1の配線形成工程、第2の積層体形成工程、第2の配線形成工程、配線積層工程、及び、ソルダーレジスト層形成工程を行う。 4 and 5 show each step of the manufacturing method of the semiconductor element mounting package substrate according to the second embodiment. In this method of manufacturing a package substrate for mounting a semiconductor element, for example, as in the first embodiment, first, a first laminate preparation step, a first wiring formation step, a second laminate formation step, a second A wiring formation step, a wiring lamination step, and a solder resist layer formation step are performed.
<支持基板積層工程>
 ソルダーレジスト層形成工程の後、例えば、図4(F-1)に示したように、ソルダーレジスト層形成体16のソルダーレジスト層16Aが設けられた面の上に、熱可塑性樹脂層を有する支持基板20Aを積層し、支持基板積層体20とする(支持基板積層工程)。支持基板20Aは、後続のコア樹脂層剥離工程において少なくともコア樹脂層11Aを剥離する際、及び、剥離した後の第1の金属層除去工程において第1の金属層11Bを除去する際に、ソルダーレジスト層16Aと共に、第1の配線導体12から第(n+2)の配線導体15B、及び、第1の絶縁樹脂層13Aから第(n+1)の絶縁樹脂層15Aを補強するものである。また、支持基板20Aは、後述するように、少なくともコア樹脂層11Aを剥離した後に、除去されるものである。
<Support substrate lamination process>
After the solder-resist layer forming step, for example, as shown in FIG. 20 A of board|substrates are laminated|stacked and it is set as the support substrate laminated body 20 (support substrate lamination process). The support substrate 20A is applied with solder when at least the core resin layer 11A is peeled off in the subsequent core resin layer peeling step, and when the first metal layer 11B is removed in the first metal layer removing step after the peeling. Together with the resist layer 16A, the first wiring conductor 12 to the (n+2)th wiring conductor 15B and the first insulating resin layer 13A to the (n+1)th insulating resin layer 15A are reinforced. Also, the support substrate 20A is removed after at least the core resin layer 11A is peeled off, as will be described later.
 支持基板16Aは、例えば、熱可塑性樹脂層に加えて熱硬化性樹脂層を有していてもよいが、熱可塑性樹脂層のみにより構成してもよい。熱可塑性樹脂は、熱硬化性樹脂に比べて靭性が高く、高い強度を得ることができるからである。熱可塑性樹脂層の材料は、特に限定されるものではないが、例えば、ドライフィルムレジストが挙げられる。中でも、熱可塑性樹脂層は、感光性の熱可塑性樹脂よりなる感光性樹脂層により構成することが好ましい。配線導体形成の工程が使用できるからである。感光性の熱可塑性樹脂としては、例えば、パターニングに使用されるドライフィルムレジストが挙げられる。また、熱可塑性樹脂層は、例えば、UV剥離性樹脂層又は熱剥離性樹脂層により構成するようにしてもよく、感光性樹脂層、UV剥離性樹脂層、及び、熱剥離性樹脂層からなる群より選択される少なくとも1つを有するように構成することが好ましい。 The support substrate 16A may have, for example, a thermosetting resin layer in addition to the thermoplastic resin layer, or may be composed of only the thermoplastic resin layer. This is because thermoplastic resins have higher toughness than thermosetting resins and can provide high strength. The material of the thermoplastic resin layer is not particularly limited, but examples thereof include dry film resist. Among them, the thermoplastic resin layer is preferably composed of a photosensitive resin layer made of a photosensitive thermoplastic resin. This is because the process of forming wiring conductors can be used. Examples of photosensitive thermoplastic resins include dry film resists used for patterning. Further, the thermoplastic resin layer may be composed of, for example, a UV-releasable resin layer or a thermally-releasable resin layer, and consists of a photosensitive resin layer, a UV-releasable resin layer, and a thermally-releasable resin layer. It is preferable to configure to have at least one selected from the group.
 支持基板20Aは、例えば、ソルダーレジスト層形成体16のソルダーレジスト層16Aが設けられた面の上にフィルム状又はシート状の支持基板20Aを配置し、ラミネートすることにより圧着して積層することができる。また、熱可塑性樹脂層を感光性樹脂層により構成する場合には、感光性樹脂層を積層する工程として、例えば、ソルダーレジスト層形成体16のソルダーレジスト層16Aが設けられた面の上に感光性樹脂層を配置し、ラミネートした後、感光性樹脂層の全面を露光して硬化する工程を含むことができる。感光性樹脂層の全面を露光、硬化することによって、第(n+1)の絶縁樹脂層15A及び第(n+2)の配線導体15Bに対する密着力があがる。熱可塑性樹脂層をUV剥離性樹脂層又は熱剥離性樹脂層により構成する場合には、UV剥離性樹脂層又は熱剥離性樹脂層を積層する工程として、例えば、ソルダーレジスト層形成体16のソルダーレジスト層16Aが設けられた面の上にUV剥離性樹脂層又は熱剥離性樹脂層を配置し、ラミネートして積層する工程を含むことができる。支持基板16Aの厚みは、所望に応じて適宜設定されるため、特に限定されないが、例えば、1μm以上とすることができ、1μm以上50μm以下が好ましく、1μm以上30μm以下が更に好ましい。 The supporting substrate 20A can be laminated by, for example, placing a film-like or sheet-like supporting substrate 20A on the surface of the solder-resist layer forming body 16 on which the solder-resist layer 16A is provided, and laminating the layers. can. Further, when the thermoplastic resin layer is composed of a photosensitive resin layer, as the step of laminating the photosensitive resin layer, for example, a photosensitive layer is formed on the surface of the solder-resist layer forming body 16 on which the solder-resist layer 16A is provided. After arranging the photosensitive resin layer and laminating, the process of exposing and curing the entire surface of the photosensitive resin layer can be included. By exposing and curing the entire surface of the photosensitive resin layer, the adhesion to the (n+1)th insulating resin layer 15A and the (n+2)th wiring conductor 15B is increased. When the thermoplastic resin layer is composed of a UV-releasable resin layer or a thermally-releasable resin layer, the step of laminating the UV-releasable resin layer or the thermally-releasable resin layer may include, for example, the soldering of the solder resist layer forming body 16. A step of disposing a UV-releasable resin layer or a thermally-releasable resin layer on the surface provided with the resist layer 16A and performing lamination can be included. The thickness of the support substrate 16A is appropriately set as desired, and is not particularly limited.
<コア樹脂層剥離工程、及び、第1の金属層除去工程>
 支持基板積層工程の後、例えば、図4(G)に示したように、第1の実施形態と同様にして、支持基板積層体20、すなわち、支持基板20Aを積層したソルダーレジスト層形成体16から、第1の金属層11Bの剥離手段において少なくともコア樹脂層11Aを剥離して、コア樹脂層除去体17とする(コア樹脂層剥離工程)。続いて、例えば、図5(H-1)に示したように、第1の実施形態と同様にして、残存する第1の金属層11Bを除去し、第1の金属層除去体18とする(第1の金属層除去工程)。
<Core resin layer peeling step and first metal layer removing step>
After the support substrate lamination step, for example, as shown in FIG. 4G, in the same manner as in the first embodiment, a support substrate laminate 20, that is, a solder resist layer formed body 16 in which a support substrate 20A is laminated. Then, at least the core resin layer 11A is peeled off by the peeling means for the first metal layer 11B to obtain a core resin layer-removed body 17 (core resin layer peeling step). Subsequently, for example, as shown in FIG. 5H-1, in the same manner as in the first embodiment, the remaining first metal layer 11B is removed to form a first metal layer removed body 18. (First metal layer removal step).
<支持基板除去工程>
 第1の金属層除去工程の後、例えば、図5(H-2)に示したように、第1の金属層除去体18から、支持基板20Aを除去し、支持基板除去体21とする(支持基板除去工程)。支持基板20Aを除去する手段は、特に限定されるものではなく、支持基板20Aの材料に応じて適宜選択することができる。支持基板20Aは、例えば、水酸化ナトリウム水溶液等の薬液により除去するようにしてもよく、レーザーにより除去するようにしてもよく、プラズマ処理により除去するようにしてもよく、例えばUV剥離性樹脂層の場合は、紫外線領域の光線を照射することにより剥離させて除去するようにしてもよく、熱剥離性樹脂層の場合は加熱処理により剥離させて除去するようにしてもよい。
<Support substrate removal step>
After the first metal layer removing step, the support substrate 20A is removed from the first metal layer removed body 18 to form a support substrate removed body 21 ( support substrate removal step). The means for removing the support substrate 20A is not particularly limited, and can be appropriately selected according to the material of the support substrate 20A. The support substrate 20A may be removed, for example, with a chemical solution such as an aqueous solution of sodium hydroxide, may be removed with a laser, or may be removed with a plasma treatment. In the case of (2), the layer may be removed by exfoliation by irradiating with light in the ultraviolet region, and in the case of a heat-peelable resin layer, it may be removed by exfoliation by heat treatment.
 支持基板除去工程の後、例えば、第1の実施形態と同様に、反対面ソルダーレジスト層形成工程、及び、めっき仕上げ工程を行う。これにより、半導体素子搭載用パッケージ基板が得られる。 After the supporting substrate removing process, for example, the opposite surface solder resist layer forming process and the plating finishing process are performed in the same manner as in the first embodiment. Thus, a package substrate for mounting a semiconductor element is obtained.
 このように本実施の形態によれば、第(n+1)の絶縁樹脂層15A及び第(n+2)の配線導体15Bの上に、ソルダーレジスト層16Aを形成し、かつ、支持基板20Aを積層した後、剥離手段において少なくともコア樹脂層11Aを剥離するようにしたので、第1の配線導体12から第(n+2)の配線導体15B、及び、第1の絶縁樹脂層13Aから第(n+1)の絶縁樹脂層15Aをより強固に補強することができ、これらの破損をより抑制することができる。 As described above, according to the present embodiment, after the solder resist layer 16A is formed on the (n+1)th insulating resin layer 15A and the (n+2)th wiring conductor 15B, and the support substrate 20A is laminated, Since at least the core resin layer 11A is peeled off by the peeling means, the first wiring conductor 12 to the (n+2)th wiring conductor 15B, and the first insulating resin layer 13A to the (n+1)th insulating resin layer The layer 15A can be reinforced more strongly, and breakage thereof can be further suppressed.
 以下に、実施例により本実施形態を具体的に説明するが、本実施形態はこれらの実施例により何ら制限されるものではない。 The present embodiment will be specifically described below with reference to examples, but the present embodiment is not limited by these examples.
[実施例1]
 次のようにして半導体素子搭載用パッケージ基板を作製した。
<第1の積層体準備工程>(図1(A)参照)
 ビスマレイミドトリアジン樹脂(BT樹脂)をガラスクロス(ガラス繊維)に含浸させてBステージとしたプリプレグ(厚み0.100mm:三菱ガス化学株式会社製、製品名:GHPL-830NS ST56)をコア樹脂層11Aとし、コア樹脂層11Aの両面に、第1の金属層11Bとして厚み18μmのキャリア銅箔付極薄銅箔(極薄銅箔;厚み5μm:三井金属鉱業株式会社製、製品名:MT18SD-H-T5)を、キャリア銅箔側がコア樹脂層11Aと接するように配置し、温度220±2℃、圧力3±0.2MPa、保持時間60分間の条件にて真空プレスを実施し、コア樹脂層11Aの両面に第1の金属層11Bが設けられた第1の積層体11を作製した。
[Example 1]
A package substrate for mounting a semiconductor element was produced as follows.
<First laminate preparation step> (see FIG. 1(A))
A prepreg (thickness: 0.100 mm: manufactured by Mitsubishi Gas Chemical Company, Inc., product name: GHPL-830NS ST56) that is B-staged by impregnating a glass cloth (glass fiber) with a bismaleimide triazine resin (BT resin) is used as the core resin layer 11A. Then, on both sides of the core resin layer 11A, an ultra-thin copper foil with a carrier copper foil having a thickness of 18 μm as the first metal layer 11B (ultra-thin copper foil; thickness 5 μm: manufactured by Mitsui Kinzoku Mining Co., Ltd., product name: MT18SD-H -T5) is placed so that the carrier copper foil side is in contact with the core resin layer 11A, and vacuum pressing is performed under the conditions of a temperature of 220 ± 2 ° C., a pressure of 3 ± 0.2 MPa, and a holding time of 60 minutes to form the core resin layer. A first laminate 11 was produced in which the first metal layers 11B were provided on both surfaces of 11A.
<第1の配線形成工程>(図1(B)参照)
 第1の積層体11に、温度110±10℃、圧力0.50±0.02MPaの条件で、厚み15μmのドライフィルムレジストLDF515F(ニッコー・マテリアルズ株式会社製、製品名)をラミネートした。ドライフィルムレジストへの回路パターンの焼付けを、平行露光機にて実施した後、1%炭酸ナトリウム水溶液を用いてドライフィルムレジストを現像し、めっき用レジストパターンを形成した。次いで、硫酸銅濃度60g/L~80g/L、硫酸濃度150g/L~200g/Lの硫酸銅めっきラインにて5μm~20μmほどのパターン電解銅めっき(電解銅めっき)を施し、第1の配線導体12を形成した。その後、アミン系のレジスト剥離液を用いてドライフィルムレジストを剥離除去した。
<First Wiring Forming Step> (See FIG. 1B)
A dry film resist LDF515F (manufactured by Nikko Materials Co., Ltd., product name) having a thickness of 15 μm was laminated on the first laminate 11 under conditions of a temperature of 110±10° C. and a pressure of 0.50±0.02 MPa. After the circuit pattern was printed on the dry film resist using a parallel exposure machine, the dry film resist was developed using a 1% sodium carbonate aqueous solution to form a resist pattern for plating. Next, pattern electrolytic copper plating (electrolytic copper plating) of about 5 μm to 20 μm is applied on a copper sulfate plating line with a copper sulfate concentration of 60 g/L to 80 g/L and a sulfuric acid concentration of 150 g/L to 200 g/L, to form the first wiring. A conductor 12 was formed. After that, the dry film resist was peeled off using an amine-based resist stripper.
<第2の積層体形成工程>(図1(C)参照)
 絶縁樹脂との密着力を得るため、第1の配線導体12の表面に、銅表面粗化液CZ-8101(メック株式会社製、製品名)を用いて粗化処理を施した。次いで、第1の配線導体12が形成された第1の積層体11の両面に、樹脂層付きの銅箔厚さ18μmのキャリア銅箔付極薄銅箔(極薄銅箔(金属層);厚み2μm、樹脂層厚み0.015mm:三菱ガス化学株式会社製、製品名:CRS381NSI)を樹脂層が第1の配線導体12と接するように配置して、圧力3±0.2MPa、温度220±2℃、保持時間60分間の条件で、真空プレスした。その後、厚み18μmのキャリア銅箔を剥離して、第1の配線導体12上に、第1の絶縁樹脂層13Aと厚み2μmの第2の金属層13Bとを積層した第2の積層体13を得た。
<Second Laminate Forming Step> (See FIG. 1(C))
In order to obtain adhesion to the insulating resin, the surface of the first wiring conductor 12 was roughened using a copper surface roughening liquid CZ-8101 (manufactured by MEC Co., Ltd., product name). Next, on both sides of the first laminate 11 on which the first wiring conductors 12 are formed, a copper foil with a resin layer and an ultra-thin copper foil with a carrier copper foil having a thickness of 18 μm (ultra-thin copper foil (metal layer); Thickness 2 μm, resin layer thickness 0.015 mm: manufactured by Mitsubishi Gas Chemical Co., Ltd., product name: CRS381NSI) was placed so that the resin layer was in contact with the first wiring conductor 12, and the pressure was 3 ± 0.2 MPa and the temperature was 220 ± Vacuum pressing was performed under conditions of 2° C. and holding time of 60 minutes. Thereafter, the carrier copper foil having a thickness of 18 μm is peeled off, and a second laminate 13 is formed by laminating a first insulating resin layer 13A and a second metal layer 13B having a thickness of 2 μm on the first wiring conductor 12. Obtained.
<第2の配線形成工程>(図1(D)参照)
 第2の積層体13の両面に、炭酸ガスレーザー加工機 ML605GTWIII-5200U(三菱電機株式会社製、製品名)を用いて、ビーム照射径Φ0.06mm、周波数500Hz、パルス幅15μs、照射回数1ショットの条件にて1穴ずつ加工し、第2の金属層13Bを介して第1の絶縁樹脂層13Aに、第1の配線導体12に達する非貫通孔14Aを形成した。
<Second Wiring Forming Step> (See FIG. 1(D))
On both sides of the second laminate 13, using a carbon dioxide laser processing machine ML605GTWIII-5200U (manufactured by Mitsubishi Electric Corporation, product name), beam irradiation diameter Φ 0.06 mm, frequency 500 Hz, pulse width 15 μs, irradiation number 1 shot The non-through holes 14A reaching the first wiring conductors 12 were formed in the first insulating resin layer 13A through the second metal layer 13B.
 次いで、非貫通孔14Aが形成された第2の積層体13に対し、温度80±5℃、濃度55±10g/Lの過マンガン酸ナトリウム水溶液を用いてデスミア処理を施し、更に、無電解銅めっきにて0.4μm~0.8μmの厚みのめっきを実施した後、電解銅めっきにて5μm~20μmの厚みのめっきを実施した。これにより、非貫通孔14Aの内壁がめっきによって接続され、第1の配線導体12と第2の金属層13Bとが、非貫通孔14の内壁のめっきによって電気的に接続すると共に、第2の金属層13Bの厚みを増加させた。 Next, the second laminate 13 in which the non-through holes 14A are formed is subjected to desmear treatment using an aqueous solution of sodium permanganate at a temperature of 80±5° C. and a concentration of 55±10 g/L. After performing plating with a thickness of 0.4 μm to 0.8 μm by plating, plating with a thickness of 5 μm to 20 μm was performed by electrolytic copper plating. Thereby, the inner wall of the non-through hole 14A is connected by plating, the first wiring conductor 12 and the second metal layer 13B are electrically connected by plating the inner wall of the non-through hole 14, and the second metal layer 13B is electrically connected by plating. The thickness of the metal layer 13B is increased.
 次に、第2の金属層13Bの整面を実施し、温度110±10℃、圧力0.50±0.02MPaの条件でドライフィルムレジストLDF515F(ニッコー・マテリアルズ株式会社製、製品名)をラミネートした。その後、ネガ型マスクを張り合わせ、平行露光機を用いて回路パターンを焼付け、1%炭酸ナトリウム水溶液を用いてドライフィルムレジストを現像してエッチングレジストを形成した。次いで、エッチングレジストのない部分の第2の金属層13Bを塩化第二鉄水溶液でエッチング除去した後、水酸化ナトリウム水溶液を用いてドライフィルムレジストを除去し、第2の配線導体14Bを形成した。 Next, the surface of the second metal layer 13B is smoothed, and a dry film resist LDF515F (manufactured by Nikko Materials Co., Ltd., product name) is applied under the conditions of a temperature of 110±10° C. and a pressure of 0.50±0.02 MPa. Laminated. After that, a negative mask was attached, a circuit pattern was printed using a parallel exposure machine, and an etching resist was formed by developing the dry film resist using a 1% sodium carbonate aqueous solution. Then, the portion of the second metal layer 13B without the etching resist was removed by etching with an aqueous solution of ferric chloride, and then the dry film resist was removed with an aqueous solution of sodium hydroxide to form the second wiring conductor 14B.
<配線積層工程>(図2(E)参照)
 第2の積層体形成工程及び第2の配線導体形成工程と同じ工程を3回繰り返し行い、5層の配線導体を有するビルドアップ構造の第5の積層体15を形成した。
<Wiring Lamination Process> (See FIG. 2(E))
The same steps as the second laminate forming step and the second wiring conductor forming step were repeated three times to form a fifth laminate 15 having a buildup structure having five layers of wiring conductors.
<ソルダーレジスト層形成工程>(図2(F)参照)
 配線積層工程の後、第4の絶縁樹脂層15A及び第5の配線導体15Bの上に、第5の配線導体15Bが部分的に露出するように厚み10μmのソルダーレジスト層16Aを形成し、ソルダーレジスト層形成体16を得た。
<Solder Resist Layer Forming Step> (See FIG. 2(F))
After the wiring lamination step, a solder resist layer 16A having a thickness of 10 μm is formed on the fourth insulating resin layer 15A and the fifth wiring conductors 15B so that the fifth wiring conductors 15B are partially exposed. A resist layer-forming body 16 was obtained.
<コア樹脂層剥離工程>(図2(G)参照)
 ソルダーレジスト層形成体16を得た後、第1の金属層11Bの極薄銅箔とキャリア銅箔の境界部に物理的な力を加えて、ソルダーレジスト層形成体16から少なくともコア樹脂層11Aを剥離して除去した。これにより、一組のコア樹脂層除去体17を得た。
<Core Resin Layer Peeling Step> (See FIG. 2(G))
After obtaining the solder-resist layer-formed body 16, a physical force is applied to the boundary between the ultra-thin copper foil of the first metal layer 11B and the carrier copper foil to remove at least the core resin layer 11A from the solder-resist layer-formed body 16. was peeled off and removed. As a result, a set of core resin layer-removed bodies 17 was obtained.
<第1の金属層除去工程>(図3(H)参照)
 コア樹脂層除去体17を得た後、残存する第1の金属層11B(極薄銅箔)を、過水硫酸系のソフトエッチング液を用いて除去し、第1の金属層除去体18を得た。
<First Metal Layer Removal Step> (See FIG. 3(H))
After obtaining the core resin layer-removed body 17, the remaining first metal layer 11B (ultrathin copper foil) is removed using a perhydrate sulfuric acid-based soft etchant, and the first metal layer-removed body 18 is obtained. Obtained.
<ソルダーレジスト層形成工程>(図3(I)参照)
 第1の金属層除去体18を得た後、第1の絶縁樹脂層13A及び第1の配線導体12の上に、第1の配線導体12が部分的に露出するように厚み10μmのソルダーレジスト層19を形成した。
<Solder Resist Layer Forming Step> (See FIG. 3(I))
After obtaining the first metal layer-removed body 18, a solder resist having a thickness of 10 μm is applied on the first insulating resin layer 13A and the first wiring conductors 12 so that the first wiring conductors 12 are partially exposed. A layer 19 was formed.
<めっき仕上げ工程>
 ソルダーレジスト層19を形成した後、ソルダーレジスト層16A,19から露出した第1の配線導体12又は第5の配線導体15Bの上に、金めっき層を形成し、半導体素子搭載用パッケージ基板を得た。本実施例によれば、第1の配線導体12から第5の配線導体15B、及び、第1の絶縁樹脂層13Aから第4の絶縁樹脂層15Aに破損は見られず、半導体素子搭載用パッケージ基板を良好に製造することができた。
<Plating finishing process>
After forming the solder resist layer 19, a gold plating layer is formed on the first wiring conductor 12 or the fifth wiring conductor 15B exposed from the solder resist layers 16A and 19 to obtain a package substrate for mounting a semiconductor element. rice field. According to this embodiment, no damage was found in the first wiring conductor 12 to the fifth wiring conductor 15B and in the first insulating resin layer 13A to the fourth insulating resin layer 15A, and the package for mounting a semiconductor element was not damaged. A good substrate could be manufactured.
[実施例2]
 実施例1と同様にして、第1の積層体準備工程(図1(A)参照)、第1の配線形成工程(図1(B)参照)、第2の積層体形成工程(図1(C)参照)、第2の配線形成工程(図1(D)参照)、配線積層工程(図2(E)参照)、及び、ソルダーレジスト層形成工程(図2(F)参照)を行った。次いで、ソルダーレジスト層16Aが設けられた面の上に、温度110±10℃、圧力0.50±0.02MPaの条件で、支持基板20Aとして、感光性樹脂層(熱可塑性樹脂層)である厚み15μmのドライフィルムレジストLDF515F(ニッコー・マテリアルズ株式会社製、製品名)をラミネートした。その後、平行露光機を用いて全面に露光して硬化させ、支持基板20Aを積層した支持基板付積層体20を得た(支持基板積層工程;図4(F-1)参照)。
[Example 2]
In the same manner as in Example 1, the first laminate preparation step (see FIG. 1(A)), the first wiring formation step (see FIG. 1(B)), and the second laminate formation step (see FIG. 1 ( C)), a second wiring forming step (see FIG. 1(D)), a wiring lamination step (see FIG. 2(E)), and a solder resist layer forming step (see FIG. 2(F)). . Next, on the surface on which the solder resist layer 16A is provided, a photosensitive resin layer (thermoplastic resin layer) is formed as the support substrate 20A under the conditions of a temperature of 110 ± 10 ° C. and a pressure of 0.50 ± 0.02 MPa. A dry film resist LDF515F (manufactured by Nikko Materials Co., Ltd., product name) having a thickness of 15 μm was laminated. After that, the entire surface was exposed using a parallel exposure machine and cured to obtain a laminate 20 with a supporting substrate in which the supporting substrate 20A was laminated (supporting substrate laminating step; see FIG. 4F-1).
 支持基板付積層体20を得た後、実施例1と同様にして、コア樹脂層剥離工程(図4(G)参照)、及び、第1の金属層除去工程(図5(H)参照)を行った。次いで、水酸化ナトリウム水溶液を用いて支持基板20Aであるドライフィルムレジストを除去した(支持基板除去工程;図5(I)参照)。その後、実施例1と同様にして、めっき仕上げ工程を行い、半導体素子搭載用パッケージ基板を得た。本実施例においても、第1の配線導体12から第5の配線導体15B、及び、第1の絶縁樹脂層13Aから第4の絶縁樹脂層15Aに破損は見られず、半導体素子搭載用パッケージ基板を良好に製造することができた。 After obtaining the support substrate-equipped laminate 20, in the same manner as in Example 1, the core resin layer peeling step (see FIG. 4(G)) and the first metal layer removing step (see FIG. 5(H)). did Next, the dry film resist, which is the support substrate 20A, was removed using an aqueous sodium hydroxide solution (support substrate removal step; see FIG. 5(I)). Thereafter, a plating finishing process was performed in the same manner as in Example 1 to obtain a package substrate for mounting a semiconductor element. Also in this example, no damage was observed in the first wiring conductor 12 to the fifth wiring conductor 15B and in the first insulating resin layer 13A to the fourth insulating resin layer 15A. was successfully manufactured.
[比較例1]
 実施例1と同様にして、第1の積層体準備工程、第1の配線形成工程、第2の積層体形成工程、第2の配線形成工程、及び、配線積層工程を行った後、第1の金属層の極薄銅箔とキャリア銅箔の境界部に物理的な力を加えて、第5の積層体から少なくともコア樹脂層を剥離して除去し、一組の積層体を得た。すなわち、比較例1は、実施例1において、ソルダーレジスト層形成工程を行わず、コア樹脂層剥離工程を行ったものである。コア樹脂層を剥離した後、極薄銅箔を、過水硫酸系のソフトエッチング液を用いて除去しようとしたが、積層体が破損してしまった。
[Comparative Example 1]
In the same manner as in Example 1, after performing the first laminate preparation step, the first wiring formation step, the second laminate formation step, the second wiring formation step, and the wiring lamination step, the first A physical force was applied to the boundary between the ultra-thin copper foil of the metal layer and the carrier copper foil to peel and remove at least the core resin layer from the fifth laminate, thereby obtaining a set of laminates. That is, in Comparative Example 1, in Example 1, the core resin layer peeling process was performed without performing the solder resist layer forming process. After peeling off the core resin layer, an attempt was made to remove the ultra-thin copper foil using a perhydrate sulfuric acid-based soft etchant, but the laminate was damaged.
 すなわち、実施例1、2によれば、コア樹脂層11Aを剥離する際、及び、剥離した後の加工工程において、ソルダーレジスト層16Aにより補強することができ、破損を抑制することができることが分かった。 That is, according to Examples 1 and 2, it was found that the solder-resist layer 16A can be reinforced and damage can be suppressed when the core resin layer 11A is peeled off and in the processing steps after the peeling. rice field.
 半導体素子搭載用パッケージ基板の製造に用いることができる。 It can be used to manufacture package substrates for mounting semiconductor devices.
 11…第1の積層体、11A…コア樹脂層、11B…第1の金属層、12…第1の配線導体、13…第2の積層体、13A…第1の絶縁樹脂層、13B…第2の金属層、14A…非貫通孔、14B…第2の配線導体、15…第(m+2)の積層体、15A…第(m+1)の絶縁樹脂層、15B…第(m+2)の配線導体、16…ソルダーレジスト層形成体、16A…ソルダーレジスト層、17…コア樹脂層除去体、18…第1の金属層除去体、19…ソルダーレジスト層、20…支持基板積層体、20A…支持基板、21…支持基板除去体 REFERENCE SIGNS LIST 11 First laminate 11A Core resin layer 11B First metal layer 12 First wiring conductor 13 Second laminate 13A First insulating resin layer 13B Second 2 metal layers, 14A... non-through hole, 14B... second wiring conductor, 15... (m+2)th laminate, 15A... (m+1)th insulating resin layer, 15B... (m+2)th wiring conductor, DESCRIPTION OF SYMBOLS 16... Solder-resist layer formation body, 16A... Solder-resist layer, 17... Core resin layer removal body, 18... First metal layer removal body, 19... Solder-resist layer, 20... Support substrate laminate, 20A... Support substrate, 21 ... support substrate removed body

Claims (7)

  1.  コア樹脂層と、前記コア樹脂層の少なくとも一方の面側に設けられ且つ剥離手段を備えた第1の金属層と、を有する第1の積層体を準備する第1の積層体準備工程と、
     前記第1の金属層の上に、電解めっき及び無電解めっきの少なくとも一方を施して、第1の配線導体を形成する第1の配線形成工程と、
     前記第1の積層体の前記第1の配線導体が設けられた面の上に、第1の絶縁樹脂層と第2の金属層とをこの順で積層して、第2の積層体を形成する第2の積層体形成工程と、
     前記第1の絶縁樹脂層に前記第1の配線導体に達する非貫通孔を形成し、前記非貫通孔が形成された表面に電解めっき及び無電解めっきの少なくとも一方を施して、第2の配線導体を形成する第2の配線形成工程と、
     前記第2の配線形成工程の後、更に、第(m+1)の積層体の第(m+1)の配線導体が設けられた面の上に、第(m+1)の絶縁樹脂層と第(m+2)の金属層とをこの順で積層して、第(m+2)の積層体を形成する第(m+2)の積層体形成工程、及び、前記第(m+1)の絶縁樹脂層に前記第(m+1)の配線導体に達する非貫通孔を形成し、前記非貫通孔が形成された表面に電解めっき及び無電解めっきの少なくとも一方を施して、第(m+2)の配線導体を形成する第(m+2)の配線形成工程を、この順にn回繰り返し行い、第2の絶縁樹脂層から第(n+1)の絶縁樹脂層及び第3の配線導体から第(n+2)の配線導体を形成する配線積層工程(m及びnは1以上の整数、但し、m≦n)と、
     前記第(n+1)の絶縁樹脂層及び前記第(n+2)の配線導体の上に、前記第(n+2)の配線導体が部分的に露出するようにソルダーレジスト層を形成し、ソルダーレジスト形成体とするソルダーレジスト層形成工程と、
     前記ソルダーレジスト形成体から、前記剥離手段において少なくとも前記コア樹脂層を剥離し、コア樹脂層除去体とするコア樹脂層剥離工程と、
     を含む半導体素子搭載用パッケージ基板の製造方法。
    a first laminated body preparing step of preparing a first laminated body having a core resin layer and a first metal layer provided on at least one side of the core resin layer and provided with a peeling means;
    a first wiring forming step of applying at least one of electrolytic plating and electroless plating on the first metal layer to form a first wiring conductor;
    A second laminate is formed by laminating a first insulating resin layer and a second metal layer in this order on the surface of the first laminate on which the first wiring conductor is provided. A second laminate forming step to
    A non-through hole reaching the first wiring conductor is formed in the first insulating resin layer, and at least one of electrolytic plating and electroless plating is applied to the surface in which the non-through hole is formed to form a second wiring. a second wiring forming step of forming a conductor;
    After the second wiring forming step, the (m+1)-th insulating resin layer and the (m+2)-th insulating resin layer are further formed on the surface on which the (m+1)-th wiring conductor of the (m+1)-th laminate is provided. and a metal layer in this order to form an (m+2)-th laminate, and the (m+1)-th wiring on the (m+1)-th insulating resin layer. (m+2)th wiring formation of forming a non-through hole reaching a conductor and applying at least one of electrolytic plating and electroless plating to the surface in which the non-through hole is formed to form a (m+2)th wiring conductor The steps are repeated n times in this order, and a wiring lamination step (m and n are an integer of 1 or more, provided that m ≤ n);
    forming a solder-resist layer on the (n+1)-th insulating resin layer and the (n+2)-th wiring conductor so that the (n+2)-th wiring conductor is partially exposed; a solder resist layer forming step;
    a core resin layer stripping step of stripping at least the core resin layer from the solder resist formed body by the stripping means to obtain a core resin layer-removed body;
    A method of manufacturing a package substrate for mounting a semiconductor device, comprising:
  2.  前記コア樹脂層の厚さが1μm以上である請求項1記載の半導体素子搭載用パッケージ基板の製造方法。 The method of manufacturing a package substrate for mounting a semiconductor element according to claim 1, wherein the core resin layer has a thickness of 1 µm or more.
  3.  前記第1の金属層の厚みが100μm以下である請求項1記載の半導体素子搭載用パッケージ基板の製造方法。 The method for manufacturing a package substrate for mounting a semiconductor element according to claim 1, wherein the thickness of the first metal layer is 100 µm or less.
  4.  前記第1の金属層における前記第1の配線導体の側の端面から前記剥離手段までの厚みが6μm以上である請求項1記載の半導体素子搭載用パッケージ基板の製造方法。 2. The method for manufacturing a package substrate for mounting a semiconductor element according to claim 1, wherein the thickness of said first metal layer from the end face of said first wiring conductor side to said peeling means is 6 μm or more.
  5.  前記第1の積層体の厚みが20μm以上1000μm以下である請求項1記載の半導体素子搭載用パッケージ基板の製造方法。 The method for manufacturing a package substrate for mounting a semiconductor element according to claim 1, wherein the thickness of the first laminate is 20 µm or more and 1000 µm or less.
  6.  前記第1の絶縁樹脂層から第(n+1)の絶縁樹脂層の厚みは、それぞれ、0.1μm以上100μm以下である請求項1記載の半導体素子搭載用パッケージ基板の製造方法。 The method of manufacturing a package substrate for mounting a semiconductor element according to claim 1, wherein each of the first to (n+1)th insulating resin layers has a thickness of 0.1 µm or more and 100 µm or less.
  7.  前記ソルダーレジスト層形成工程の後、前記コア樹脂層剥離工程の前に、前記ソルダーレジスト層形成体の前記ソルダーレジスト層が設けられた面の上に、熱可塑性樹脂層を有する支持基板を積層する支持基板積層工程を含む請求項1記載の半導体素子搭載用パッケージ基板の製造方法。 After the solder-resist layer forming step and before the core resin layer peeling step, a supporting substrate having a thermoplastic resin layer is laminated on the surface of the solder-resist layer forming body provided with the solder-resist layer. 2. The method of manufacturing a package substrate for mounting a semiconductor element according to claim 1, further comprising a step of laminating a support substrate.
PCT/JP2022/036276 2021-09-30 2022-09-28 Method of manufacturing package substrate for mounting semiconductor element WO2023054517A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280065715.8A CN118020150A (en) 2021-09-30 2022-09-28 Method for manufacturing package substrate for mounting semiconductor element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-162335 2021-09-30
JP2021162335 2021-09-30
JP2022-135421 2022-08-26
JP2022135421 2022-08-26

Publications (1)

Publication Number Publication Date
WO2023054517A1 true WO2023054517A1 (en) 2023-04-06

Family

ID=85780713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036276 WO2023054517A1 (en) 2021-09-30 2022-09-28 Method of manufacturing package substrate for mounting semiconductor element

Country Status (2)

Country Link
TW (1) TW202336944A (en)
WO (1) WO2023054517A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012235166A (en) * 2012-08-23 2012-11-29 Shinko Electric Ind Co Ltd Wiring board and manufacturing method of the same
WO2018026004A1 (en) * 2016-08-05 2018-02-08 三菱瓦斯化学株式会社 Support substrate, laminate with support substrate, and method for manufacturing package substrate for mounting semiconductor element
JP2018082084A (en) * 2016-11-17 2018-05-24 イビデン株式会社 Printed circuit board and manufacturing method thereof
JP2019054092A (en) * 2017-09-14 2019-04-04 イビデン株式会社 Printed wiring board with temporary reinforcing plate and manufacturing method thereof, manufacturing method of printed wiring board, and mounting method of electronic component on printed wiring board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012235166A (en) * 2012-08-23 2012-11-29 Shinko Electric Ind Co Ltd Wiring board and manufacturing method of the same
WO2018026004A1 (en) * 2016-08-05 2018-02-08 三菱瓦斯化学株式会社 Support substrate, laminate with support substrate, and method for manufacturing package substrate for mounting semiconductor element
JP2018082084A (en) * 2016-11-17 2018-05-24 イビデン株式会社 Printed circuit board and manufacturing method thereof
JP2019054092A (en) * 2017-09-14 2019-04-04 イビデン株式会社 Printed wiring board with temporary reinforcing plate and manufacturing method thereof, manufacturing method of printed wiring board, and mounting method of electronic component on printed wiring board

Also Published As

Publication number Publication date
TW202336944A (en) 2023-09-16

Similar Documents

Publication Publication Date Title
JP7172597B2 (en) Manufacturing method of support substrate, laminate with support substrate, and package substrate for mounting semiconductor element
WO2022034872A1 (en) Resin layer-equipped copper foil and layered body using same
TWI825152B (en) Laminate, metal foil-clad laminate, patterned metal foil-clad laminate, laminate having build-up structure, printed wiring board, multilayer coreless substrate, and method for manufacturing same
JP7145403B2 (en) SUPPORT AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE MOUNTING BOARD USING THE SAME
WO2023054517A1 (en) Method of manufacturing package substrate for mounting semiconductor element
WO2023054516A1 (en) Method for manufacturing package substrate for carrying semiconductor element, and laminate with support substrate
TWI830797B (en) Method for manufacturing package substrate for mounting semiconductor device
US11990349B2 (en) Method for producing package substrate for loading semiconductor device
WO2023106208A1 (en) Wiring board with support, method for manufacturing wiring board with support, and method for manufacturing electronic component mounting board
CN116075557A (en) Copper foil with resin layer and laminate using the same
WO2024043196A1 (en) Laminate, and method for manufacturing coreless substrate
KR20240070561A (en) Manufacturing method of package substrate for mounting semiconductor devices
CN118020150A (en) Method for manufacturing package substrate for mounting semiconductor element
CN118043958A (en) Method for manufacturing package substrate for mounting semiconductor element and laminate with support substrate
KR20240070560A (en) Manufacturing method of package substrate for semiconductor device mounting and laminate with support substrate
WO2022209851A1 (en) Substrate and method for producing wiring substrate
TW202410319A (en) Method for manufacturing laminated body and coreless substrate
TWI835731B (en) Support body and method for manufacturing semiconductor element mounting board using same
TW202110617A (en) Base material with insulating resin layer, laminate using same, and method for manufacturing laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876383

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551632

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20247010957

Country of ref document: KR

Kind code of ref document: A