WO2023054230A1 - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
WO2023054230A1
WO2023054230A1 PCT/JP2022/035597 JP2022035597W WO2023054230A1 WO 2023054230 A1 WO2023054230 A1 WO 2023054230A1 JP 2022035597 W JP2022035597 W JP 2022035597W WO 2023054230 A1 WO2023054230 A1 WO 2023054230A1
Authority
WO
WIPO (PCT)
Prior art keywords
addition
unit
storage section
potential
transistor
Prior art date
Application number
PCT/JP2022/035597
Other languages
French (fr)
Japanese (ja)
Inventor
琢己 山口
Original Assignee
株式会社 Rosnes
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 Rosnes filed Critical 株式会社 Rosnes
Publication of WO2023054230A1 publication Critical patent/WO2023054230A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith

Definitions

  • the present invention relates to an image pickup apparatus, and in particular, when signal charges in a light receiving section are added to an addition accumulation section via a unit accumulation section and read out a plurality of times, the number of times of addition and accumulation in the addition accumulation section are performed.
  • the present invention relates to a method of driving an image pickup device and an image pickup device in which the amount of signal charge is linearly proportional, or an electronic device having the image pickup device and requiring a wide dynamic range.
  • CMOS image sensors have become the mainstream of imaging devices used in cameras.
  • Conventional CMOS sensors generally convert the charge in the light-receiving part of a pixel to a floating diffusion (FD) to convert it into a voltage and read it out from a source follower amplifier (AMP).
  • FD floating diffusion
  • AMP source follower amplifier
  • FIG. 14 is an example of a circuit diagram of a conventional pixel.
  • incident light is photoelectrically converted to store signal charges. be.
  • AMP source follower amplifier
  • the floating diffusion (FD) 5 is The voltage of the amplifier power supply 10 is reset.
  • the readout transistor 2 (TR2) operates (turns on)
  • the charge Q1 of the photodiode (PD) of the light receiving section 1 is transferred to the FD5 of the AMP3 and converted into a voltage.
  • the converted voltage is read out from signal line 4 as the output of source follower transistor 7 (TR7) when row select transistor 8 (TR8) turns on.
  • the floating diffusion (FD) capacity (5-1 ) cannot receive all the charges, by applying a voltage to the addition transistor wiring (9-1), the addition transistor 9 (TR9) is turned on, and the capacitance of the addition storage section (9-2) and It is configured such that electric charges are stored in both of the FD capacitors (5-1).
  • FIG. 15 is a cross-sectional view of the light receiving section and the FD section.
  • the FD capacitor (5-1) and the addition storage section (9-2) are made of a dense N+ diffusion layer.
  • FIG. 16 shows the basic operation of adding the signal charges of the sections of the light receiving section and the FD section.
  • the operation of (A-1) is a state in which signal charges are held in the light receiving section 1 .
  • the FD capacity (5-1) and the capacity of the addition storage section (9-2) are set by setting the FD reset transistor 6 adjacent to the FD capacity (5-1) shown in FIG. This is a state in which the amplifier power supply 10 is reset to 3V by changing the potential.
  • TR9 turns on the signal charge of the FD capacitor (5-1), thereby transferring three signal charges in the unit storage section of the FD capacitor (5-1) to the FD capacitor (5 -1) and the addition storage unit (9-2).
  • FIG. 17 is a diagram of excerpts of the first basic motion and the second motion. (A-1), (B-1), and (C-1) are part of the basic operation in FIG.
  • (C-2) is 3 signal charges of the FD capacitor (5-1) of the operation of (B-2) and 2 signal charges of the addition storage section (9-2), a total of 5 signals.
  • the signal charges are 2 at the time of the first operation (C-1), and the signal charges are 10/3 at the time of the second operation (C-2). ing.
  • the signal charges should be accumulated linearly in direct proportion each time. If two signal charges are accumulated in the first cycle, four signal charges in direct proportion are accumulated in the second cycle. need to However, the number is 10/3 in the second time compared to 2 in the first time, and the value in the second time is smaller than the proportional value of 4, resulting in a non-proportional state between the first time and the second time.
  • the signal charge of the light receiving section 1 cannot be added to the addition accumulation section (9-2) in proportion to the number of times.
  • 16 and 17 show the addition results up to the second time, but as the number of additions increases to 3 times, 4 times, and 5 times, the distance from the linear line of proportionality increases.
  • An object of the present invention is to provide a driving method for an imaging device in which, when a signal from a light-receiving unit is read out by adding it to an addition/accumulation unit a plurality of times, the number of times of addition and the amount of signal charge accumulated in the addition/accumulation unit are linearly proportional to each other. and an imaging device or an electronic device equipped with the imaging device that requires a wide dynamic range.
  • a light receiving unit a unit storage section that stores part or all of the signal charge of the light receiving section; a readout transistor arranged between the light receiving section and the unit storage section; an addition storage unit that adds part or all of the signal charges of the unit storage units; an addition transistor arranged between the unit storage section and the addition storage section; a source follower amplifier (AMP) in which a floating diffusion (FD) is arranged; In an imaging device in which pixels having The unit storage section is arranged between the light receiving section and the FD.
  • AMP source follower amplifier
  • the maximum potential of the potential of the addition transistor is set to a potential smaller than the maximum potential of the potential of the addition storage section.
  • a reset transistor is arranged adjacent to the unit storage section;
  • the charge transferred is a low potential of the potential of the unit storage section determined by a low potential of the potential of the reset transistor (a reference low potential of the potential);
  • a high potential of the addition transistor when transferring the signal charge in the unit storage portion to the addition storage portion; is a charge in the potential range between .
  • the unit storage section is characterized by having a fully depleted structure or a structure in which afterimage of the unit storage section is less than 5%.
  • One or both of the unit storage section and the addition storage section has an electrode above a charge storage region.
  • the unit storage portion and the summation storage portion are N-type semiconductors that store electrons
  • one or both of the unit storage portion and the summation storage portion have a semiconductor surface area above the N-type semiconductor.
  • a P-type semiconductor is formed in the .
  • the electrode of the read transistor and the transfer gate electrode are formed of the same electrode or have the same voltage.
  • the electrode of the summing transistor and the summing gate electrode are formed of the same electrode or have the same voltage.
  • a light receiving unit a unit storage section that stores part or all of the signal charge of the light receiving section; a readout transistor arranged between the light receiving section and the unit storage section; an addition storage unit that adds part or all of the signal charges of the unit storage units; an addition transistor arranged between the unit storage section and the addition storage section; a source follower amplifier (AMP) in which a floating diffusion (FD) is arranged;
  • AMP source follower amplifier
  • a mixed transistor is provided between the plurality of unit storage portions.
  • the charges of the plurality of unit storage portions are summed, and then by stopping the operation (turning off) of the mixed transistor, the summed charges are transferred to the plurality of unit storage portions again.
  • Distributing is characterized.
  • the present invention it is possible to obtain an imaging apparatus in which the number of times of addition and the amount of signal charge accumulated in the addition/accumulation unit are linearly proportional when the signal of the light receiving portion is added to the addition/accumulation unit and read out a plurality of times. can be done.
  • FIGS. 1A and 1B are diagrams of the first and second driving methods of the imaging device of the present invention.
  • 2A and 2B are diagrams for the third and fourth times of the driving method of the imaging device of the present invention.
  • FIG. 3 is a diagram in which the potential under the addition transistor is increased to increase the amount of signal charge per transfer from the unit accumulation section to the addition accumulation section.
  • FIG. 4 is a diagram of arranging a unit accumulation portion at a position different from that of the floating diffusion.
  • FIG. 5 is a diagram using an avalanche photodiode in the light receiving section.
  • FIG. 6 is a diagram in which the light receiving section is an avalanche photodiode and the unit storage section is arranged at a position different from the floating diffusion.
  • FIG. 1A and 1B are diagrams of the first and second driving methods of the imaging device of the present invention.
  • 2A and 2B are diagrams for the third and fourth times of the driving method of the imaging device of the present invention.
  • FIG. 7 is a cross-sectional view of a semiconductor having a configuration in which a unit storage portion is arranged between a light receiving portion and a floating diffusion.
  • FIG. 8 is a cross-sectional view of a semiconductor in which a unit storage portion is composed of an N ⁇ semiconductor and a MOS electrode.
  • FIG. 9 is a cross-sectional view of a semiconductor having a configuration in which an electrode is formed on both the unit storage section and the addition storage section.
  • FIG. 10 is a cross-sectional view of a semiconductor configured such that the electrode of the readout transistor and the electrode on the unit storage section are used as common electrodes, and the electrode of the addition transistor and the electrode on the addition storage section are used as common electrodes.
  • FIG. 11 is a cross-sectional view of a semiconductor having a structure in which a P-type semiconductor is formed in a semiconductor surface region above an N-type semiconductor in which a unit accumulation portion and an addition accumulation portion accumulate electrons.
  • FIG. 12 is a circuit diagram of a pixel having a plurality of sets (two sets) of combinations of readout transistors and unit storage portions. 13A and 13B are diagrams showing the average charge of a plurality of unit storage portions and the added capacitance of the addition storage portion.
  • FIG. 14 is an example of a circuit diagram of a conventional pixel.
  • FIG. 15 is a cross-sectional view of the light receiving section and the FD section. 16A and 16B are diagrams for explaining the basic operation of adding the signal charges of the sections of the light receiving portion and the FD portion.
  • FIG. 17 is a diagram of excerpts of the first basic motion and the second motion.
  • FIGS. 1A and 1B are diagrams of the first and second driving methods of the imaging device of the present invention.
  • the operations of (A-1) and (B-1) are similar to the conventional FIG. 16, and are applied to the circuit of FIG.
  • the operation (B-1) three of the twelve signal charges in the light receiving section 1 are read out to the unit storage section of the FD capacitor (5-1).
  • the difference between the maximum potential (3V) of the addition storage section (9-2) and the potential of the addition transistor 9 when the voltage is applied to the addition transistor 9 is ⁇ V2. is set to At this time, among the three signal charges in the unit storage section of the FD capacitor (5-1), the signal charge having a potential lower than ⁇ V1 rolls down to the addition storage section (9-2), and the addition storage section ( 9-2). At this time, the signal charge that rolls down is between the low potential (0.5 V) of the potential of the unit storage section determined by the low potential of the reset transistor and the high potential ⁇ V1 of the potential of the addition transistor 9. It becomes a charge in the potential range.
  • the maximum potential ⁇ V1 of the potential of the addition transistor 9 is set to a potential smaller than the maximum potential ⁇ V1+ ⁇ V2 of the potential of the addition storage section (9-2).
  • the read transistor 2 is at a Low potential (OFF), and the light receiving section 1 and the unit storage section of the FD capacitor (5-1) are in a separated state.
  • the reference low potential which is the Low potential of the potential of the reset transistor
  • the Low potential of the potential of the reset transistor shown in FIG. means For example, when the low potential changes from 0V to 0.5V before the addition transistor 9 turns on after the readout transistor 2 turns off, the number of charges stored in the unit accumulation part of the FD capacitor (5-1) is determined.
  • the low potential in the case of 1 is 0.5 V, which is the upper limit. Also in this case, the maximum potential ⁇ V1 of the potential of the addition transistor 9 is set to a potential smaller than the maximum potential ⁇ V1+ ⁇ V2 of the potential of the addition storage section (9-2).
  • FIGS. 2A and 2B are diagrams for the third and fourth times of the driving method of the imaging device of the present invention.
  • the third (A-5) and the fourth (A-5) are the same operations as the second (A-3), and the third (B-5) and the fourth (B -5) is the same as the second (B-3).
  • the third addition operation results in a total of three charges accumulated in the addition accumulation section (9-2).
  • the fourth addition operation results in a total of four charges accumulated in the addition accumulation section (9-2).
  • the maximum potential of the addition transistor 9 is set to ⁇ V1
  • the maximum potential of the addition transistor 9 becomes the potential of the addition storage unit (9-2).
  • the signal charge of the light-receiving unit 1 is read out by being added to the addition accumulation unit (9-2) via the unit accumulation unit a plurality of times, the number of times of addition , and the amount of signal charge accumulated in the addition accumulation section (9-2) is linearly proportional.
  • the amount of signal charge accumulated in the addition accumulation unit (9-2) per time can be reduced. You can increase the number of times.
  • the limit value of the number of times of accumulation that can increase the amount of signal charge in the addition/accumulation section (9-2) in linear proportion is when the potential due to the charge accumulated in the addition/accumulation section (9-2) exceeds ⁇ V2. There is no problem as long as it is within the range of no.
  • FIG. 3 shows the potential of the addition transistor 9 when the voltage is applied to the addition transistor 9, and the potential of the addition transistor 9 is increased to transfer from the unit storage section (5-1) to the addition storage section (9-2). It is the figure which increased the signal electric charge amount.
  • (C-3) in FIG. 1 the difference ⁇ V1 between the potential of the addition transistor 9 and the potential of the addition transistor 9 when a voltage is applied to the addition transistor 9 is small. 9-2), but in the operation of (C-7) in FIG. Two electric charges can be transferred to the addition storage section (9-2) at one time, and the voltage of the addition storage section (9-2) can be greatly changed, so that the gain and sensitivity read out from the signal line 4 are increased. be able to.
  • FIG. 3 shows the potential of the addition transistor 9 when the voltage is applied to the addition transistor 9, and the potential of the addition transistor 9 is increased to transfer from the unit storage section (5-1) to the addition storage section (9-2). It is the figure which increased the signal electric charge amount.
  • (C-3) in FIG. 1 the difference
  • the limit value of the number of times of accumulation that can increase the amount of signal charge in the addition/accumulation section (9-2) in direct proportion is determined by the potential due to the charge accumulated in the addition/accumulation section (9-2). Since the range does not exceed ⁇ V4, the limit number of times is smaller than in FIG.
  • the difference between the maximum potential (3 V) of the addition storage section (9-2) and the potential of the addition transistor 9 when a voltage is applied to the addition transistor 9 is
  • a driving method that provides ⁇ V2 or ⁇ V4 it is possible to realize an imaging device that can increase the amount of signal charge in the addition accumulation section (9-2) linearly and in direct proportion.
  • FIG. 4 is a diagram of arranging the unit accumulation portion at a position different from that of the floating diffusion (FD).
  • the unit storage section 14 is arranged adjacent to the light receiving section 1, and is characterized in that it is arranged between the light receiving section 1 and the floating diffusion 5 (FD). Further, the addition accumulation section (9-2) is arranged between the unit accumulation section 14 and the FD5. As a result, the light receiving section 1, the readout transistor 2, the unit storage section 14, the addition transistor 9, the addition storage section (9-2), the readout transistor 15 of the addition storage section, and the FD5 are arranged in this order.
  • the unit storage section 14 in FIG. 4 replaces the FD capacitor (5-1) in FIGS.
  • the signal charge of the light receiving section 1 is added to the addition accumulation section (9-2) via the unit accumulation section 14 and read out a plurality of times, the number of times of addition and the addition accumulation section (9- In 2), it is possible to realize a driving method in which the amount of accumulated signal charge is linearly proportional.
  • the readout transistor 15 of the addition/accumulation section is turned on, the signal charge accumulated in the addition/accumulation section (9-2) changes to a voltage due to the total capacitance of the addition/accumulation section (9-2) and the capacitance of the FD5. It is converted and read out to the outside through AMP 3 and signal line 4 .
  • the greatest advantage of FIG. 4 is that the size of the unit storage section 14 can be freely changed. Since the main purpose of the FD capacitor (5-1) is to play an important role in determining the conversion gain of the source follower amplifier 3, the biggest problem is that the FD capacitor (5-1) cannot be easily changed. On the other hand, since the unit storage section 14 in FIG. 4 does not affect the conversion gain, the capacity of the unit storage section 14 can be freely reduced.
  • the signal charge amount can be linearly proportional to the limit number of times of addition. should be increased. Thereby, a wide dynamic range can be realized.
  • FIG. 5 is a diagram using an avalanche photodiode in the light receiving section.
  • FIG. 5 shows a case where an avalanche photodiode (APD) is adopted for the light receiving section 1 of FIG. Since it is necessary to apply a high voltage to the PN junction of the avalanche region 102 , a voltage of approximately 30 V is applied to the semiconductor substrate 13 .
  • APD avalanche photodiode
  • a P-type well (P-well) 101 is sandwiched between an N-type well (N-well) 100 so that a high voltage of the semiconductor substrate 13 is not applied to the semiconductor P-type region of the circuit other than the light receiving unit 1. are separating. 0 V is applied to the P-type well (P-Well) 101 .
  • P-Well P-type well
  • a signal charge is transmitted to the source 103 of the read transistor 2 via the wiring 104 .
  • Signal charges connected to the source 103 of the readout transistor 2 can be driven by the same driving method as in FIGS. 1 to 3 by turning on the readout transistor 2 .
  • the driving method shown in FIGS. 1 to 3 is the optimum driving method for wide dynamic range driving and multiple readout driving.
  • the number of additions and the amount of signal charge accumulated in the addition accumulation section (9-2) are linearly proportional to each other, making it the most effective use. can.
  • FIG. 6 is a diagram in which the light receiving section is an avalanche photodiode and the unit storage section is arranged at a position different from the floating diffusion.
  • FIG. 6 shows an invention in which an avalanche photodiode structure and a driving method are used in the light receiving section 1 in contrast to the wide dynamic range structure of FIG. Therefore, by combining the light receiving section 1 of the wide dynamic range APD as shown in FIG. A driving method in which the number of times signal charges are read out from and the amount of signal charges in the addition storage section (9-2) are directly proportional to each other can be used most effectively. Therefore, an imaging device with the widest dynamic range can be achieved.
  • FIG. 7 is a cross-sectional view of a semiconductor having a structure in which the unit storage section 14 is arranged between the light receiving section 1 and the floating diffusion 5. As shown in FIG. FIG. 7 is a cross-sectional view of the semiconductors of the light receiving section 1, the unit storage section 14, the addition storage section (9-2), and the floating diffusion 5 in the case of the circuit configuration of FIG.
  • the FD capacitance (5-1) of the unit storage section and the capacitance of the addition storage section (9-2) are normally N+ semiconductor capacitors or MIM capacitors having N+ source/drain. be done.
  • the unit storage section 14 and the addition storage section (9-2) are N+ semiconductors.
  • the noise is generated due to leakage charges caused by lattice defects, resulting in a decrease in dynamic range.
  • FIG. 8 is a sectional view of a semiconductor in which the unit storage section 14 is composed of an N ⁇ semiconductor and a MOS electrode.
  • the unit storage section 14 in order to reduce noise due to leakage charges caused by lattice defects when a high-concentration N-type semiconductor is used for the unit storage section 14, the unit storage section 14 is provided with a low-concentration N ⁇ semiconductor and a MOS electrode.
  • the readout transistor 2 is turned on, a high voltage is applied to the wiring (14-1) of the unit storage section to increase the potential of the low-concentration N ⁇ semiconductor of the unit storage section 14, and the charge from the light receiving section 1 is increased. can be easily transferred to the unit storage section 14 . With this configuration, noise due to leakage charges caused by lattice defects is reduced, and a wide dynamic range with little noise is realized.
  • FIG. 9 is a cross-sectional view of a semiconductor in which capacitors are formed by N ⁇ semiconductors and MOS electrodes in both the unit storage section 14 and the addition storage section (9-2).
  • both the unit storage section 14 and the addition storage section (9-2) can reduce noise due to leakage charges caused by lattice defects. It is possible to realize the ultimate wide dynamic range with less. Basically, since it is desired to increase the capacity of the addition storage section (9-2), a positive voltage is applied to the wiring (9-3) of the MOS electrode of the addition storage section (9-2). Since the potential difference of ⁇ V2 of 1 can be increased and the size of the dynamic range can be adjusted, the effect of realizing a wide dynamic range is great.
  • FIG. 10 is a cross-sectional view of a semiconductor having a structure in which the electrodes of the readout transistor and the electrodes on the unit storage section are used as common electrodes, and the electrodes of the addition transistor and the electrodes on the addition storage section are used as common electrodes.
  • the number of electrodes can be reduced and the total capacitance area of both the unit storage section 14 and the addition storage section (9-2) can be increased.
  • the capacity ratio between the unit storage section 14 and the addition storage section (9-2) can be increased, and a wide dynamic range can be achieved.
  • FIG. 11 is a cross-sectional view of a semiconductor having a structure in which a P-type semiconductor is formed in a semiconductor surface region above an N-type semiconductor in which the unit accumulation portion 14 and the addition accumulation portion (9-2) accumulate electrons.
  • a P-type semiconductor is formed in the surface layer as means for reducing leakage charges due to lattice defects on the surface of the unit storage section 14 and the addition storage section (9-2).
  • the process of forming the unit storage section 14 and the addition storage section (9-2) can be used simultaneously with the formation of the light receiving section 1, the manufacturing process can be reduced. As a result, it is possible to reduce the probability of lattice defects occurring during many manufacturing processes, so that a wider dynamic range can be achieved.
  • FIG. 12 is a circuit diagram of a pixel having a plurality of sets (two sets) of combinations of readout transistors and unit storage portions.
  • This structure works in the following order. 1) For the first time, a voltage is applied to the wiring (2-1) of the readout transistor 2 (TR2) to read the charge from the light receiving section 1 to the first capacitor (C14) of the unit storage section . 2) For the second time, a voltage is applied to the wiring (2-3) of the readout transistor 2-2 (TR2-2) to transfer the voltage from the light receiving section 1 to the second capacitor (C14-2) of the unit storage section 14-2. Read the charge. 3) By applying a voltage to the wiring (2-5) of the mixed transistor 2-4 (TR2-4), the charge of the first capacitor 14 (C14) of the unit storage section and the first capacitor (C14- The charges of 2) are mixed and averaged.
  • the signal charge amount for two times can be halved for one time.
  • the ratio between the unit storage section 14 and the addition storage section (9-2) is 1:10
  • the charges in the unit storage section 14 could be added only 10 times.
  • the number of times of addition is doubled, and a wider dynamic range can be realized.
  • FIG. 13A and 13B are diagrams showing the average charge of a plurality of unit storage portions and the added capacitance of the addition storage portion.
  • FIG. 13 is a specific example described in the structure of FIG. (For Case 1) When the first capacitor (C14) is signal 1 and the second capacitor (C14-2) is signal 1, On average, 1. (For Case 2) When the first capacitor (C14) is signal 1 and the second capacitor (C14-2) is signal 0, On average, 0.5. (For Case 3) When the first capacitor (C14) is signal 0 and the second capacitor (C14-2) is signal 1, On average, 0.5. (For Case 4) When the first capacitor (C14) is signal 0 and the second capacitor (C14-2) is signal 0, 0 when averaged. As described above, when the maximum value of two times is 1 and the addition storage unit is 10, The effect of being able to accumulate charges for 20 times and realizing a wide dynamic range is clear.
  • Electronic equipment equipped with an imaging device that employs the driving method according to the present invention is used in many fields that require a wide dynamic range, such as mobile phones, cameras for industrial equipment, and cameras for vehicles.

Abstract

[Problem] Conventional CMOS image sensors have a problem in that when signal charge of a light reception unit is added to an addition accumulation unit a plurality of times, output that is directly linearly proportional to the number of times of addition cannot be obtained. [Solution] An imaging device in which arranged are pixels each having: a light reception unit; a unit accumulation unit for accumulating a part or whole of signal charge of the light reception unit; a reading transistor disposed between the light reception unit and the unit accumulation unit; an adding accumulation unit for adding a part or whole of signal charge of the unit accumulation unit; an adding transistor disposed between the unit accumulation unit and the addition accumulation unit; and a source follower amplifier (AMP) in which a floating diffusion (FD) is disposed, wherein the unit accumulation unit is disposed between the light reception unit and the FD.

Description

[規則37.2に基づきISAが決定した発明の名称] 撮像装置[Title of invention determined by ISA based on Rule 37.2] Imaging device
本発明は、撮像装置に係わり、特に、受光部の信号電荷を複数の回数、単位蓄積部を経由して、加算蓄積部に加算して読み出す場合に、加算する回数と加算蓄積部に蓄積する信号電荷量が直線的に正比例する撮像装置の駆動方法および撮像装置、または前記撮像装置を備えた、広ダイナミックレンジを必要とする電子機器に関する。  The present invention relates to an image pickup apparatus, and in particular, when signal charges in a light receiving section are added to an addition accumulation section via a unit accumulation section and read out a plurality of times, the number of times of addition and accumulation in the addition accumulation section are performed. The present invention relates to a method of driving an image pickup device and an image pickup device in which the amount of signal charge is linearly proportional, or an electronic device having the image pickup device and requiring a wide dynamic range. 
近年、カメラに使われる撮像装置の主流はCMOSイメージセンサである。従来のCMOSセンサは、一般的に、画素の受光部の電荷を、フローティング・ディフュージョン(FD)に移すことで電圧に変換して、ソースフォロア・アンプ(AMP)から読み出す場合が一般的である。 In recent years, CMOS image sensors have become the mainstream of imaging devices used in cameras. Conventional CMOS sensors generally convert the charge in the light-receiving part of a pixel to a floating diffusion (FD) to convert it into a voltage and read it out from a source follower amplifier (AMP).
近年、画素アンプの高ゲインを実現するため、FDの容量は、できる限り小型になっている。そのため、受光部から1回で転送された電荷が多い場合や、受光部の電荷をFDへ複数回転送することで高いダイナミックレンジを実現する場合に、FD容量が満杯になり、AMPから正しい信号電圧が読み出せなくなる不具合が発生している。 In recent years, the capacitance of FDs has been made as small as possible in order to achieve high gain of pixel amplifiers. Therefore, when a large amount of charge is transferred from the light receiving section at one time, or when a high dynamic range is achieved by transferring the charge of the light receiving section to the FD multiple times, the FD capacity becomes full and the correct signal is output from the AMP. There is a problem that the voltage cannot be read.
この課題を解決する手段として、FD部の容量と並列に、トランジスタを介して高い容量が接続された構造が提案されている。 As means for solving this problem, a structure has been proposed in which a high capacitance is connected in parallel with the capacitance of the FD section via a transistor.
図14は、従来の画素の回路図の例である。
従来の画素の受光部1では、入射光を光電変換して信号電荷を蓄え、受光部で溢れた電荷は、受光部リセット・トランジスタ11(TR11)を制御により、受光部リセット電源12へ排出される。
ソースフォロア・アンプ(AMP)3では、リセット・トランジスタ配線(6-1)に電圧を印加してFDリセット・トランジスタ6(TR6)をオン状態にすることで、フローティング・ディフュージョン(FD)5は、アンプ電源10の電圧にリセットされる。
FIG. 14 is an example of a circuit diagram of a conventional pixel.
In the light-receiving portion 1 of the conventional pixel, incident light is photoelectrically converted to store signal charges. be.
In the source follower amplifier (AMP) 3, by applying a voltage to the reset transistor wiring (6-1) to turn on the FD reset transistor 6 (TR6), the floating diffusion (FD) 5 is The voltage of the amplifier power supply 10 is reset.
その後、受光部1のフォトダイオード(PD)の電荷Q1は、読出しトランジスタ2(TR2)が動作(オン)すると、AMP3のFD5に転送され、電圧に変換させる。変換された電圧は、行選択トランジスタ8(TR8)がオンすると、ソースフォロア・トランジスタ 7(TR7)の出力として、信号線4から読み出される。 After that, when the readout transistor 2 (TR2) operates (turns on), the charge Q1 of the photodiode (PD) of the light receiving section 1 is transferred to the FD5 of the AMP3 and converted into a voltage. The converted voltage is read out from signal line 4 as the output of source follower transistor 7 (TR7) when row select transistor 8 (TR8) turns on.
一方、受光部1から1回で転送された電荷が多い場合や、受光部1の電荷を、FDへ複数回の転送をする場合には、FD5のフローティング・ディフュージョン(FD)容量(5-1)で全ての電荷を受けることができないため、加算トランジスタ配線(9-1)に電圧を印加することで、加算トランジスタ9(TR9)をオンして、加算蓄積部(9-2)の容量とFD容量(5-1)の両方に電荷を貯める構成となっている。 On the other hand, when the charge transferred from the light receiving section 1 at one time is large, or when the charge of the light receiving section 1 is transferred to the FD multiple times, the floating diffusion (FD) capacity (5-1 ) cannot receive all the charges, by applying a voltage to the addition transistor wiring (9-1), the addition transistor 9 (TR9) is turned on, and the capacitance of the addition storage section (9-2) and It is configured such that electric charges are stored in both of the FD capacitors (5-1).
図15は、受光部とFD部の断面図である。
FD容量(5-1)と加算蓄積部(9-2)は、N+の濃い拡散層で作られている。
FIG. 15 is a cross-sectional view of the light receiving section and the FD section.
The FD capacitor (5-1) and the addition storage section (9-2) are made of a dense N+ diffusion layer.
図16は、受光部とFD部の断面の信号電荷を加算する基本動作である。
(A-1)の動作は、受光部1に信号電荷が保持された状態である。
 FD容量(5-1)と加算蓄積部(9-2)の容量は、図14に示したFD容量(5-1)に隣接するFDリセット・トランジスタ6をHigh電位にし、加算トランジスタ9をHigh電位することで、アンプ電源10の3Vにリセットされた状態である。
FIG. 16 shows the basic operation of adding the signal charges of the sections of the light receiving section and the FD section.
The operation of (A-1) is a state in which signal charges are held in the light receiving section 1 .
The FD capacity (5-1) and the capacity of the addition storage section (9-2) are set by setting the FD reset transistor 6 adjacent to the FD capacity (5-1) shown in FIG. This is a state in which the amplifier power supply 10 is reset to 3V by changing the potential.
(B-1)の動作は、読出しトランジスタ2の電極に電圧を印加して、受光部1の信号電荷がFD容量(5-1)に、全部または一部が、1回だけ、読み出された状態である。この時、FD容量(5-1)は、受光部1の信号電荷の1回分を蓄積しており、FD容量(5-1)を単位蓄積部と呼ぶことにする。この図の場合は、受光部1の12個の信号電荷の内、3個をFD容量(5-1)の単位蓄積部に読み出した状態である。 In the operation (B-1), a voltage is applied to the electrode of the readout transistor 2, and all or part of the signal charge in the light receiving section 1 is read out to the FD capacitor (5-1) only once. state. At this time, the FD capacitor (5-1) stores one signal charge of the light receiving section 1, and the FD capacitor (5-1) is called a unit storage section. In the case of this figure, 3 out of 12 signal charges of the light receiving portion 1 are read out to the unit storage portion of the FD capacitor (5-1).
(C-1)の動作は、FD容量(5-1)の信号電荷をTR9がオンすることで、FD容量(5-1)の単位蓄積部にある信号電荷3個を、FD容量(5-1)の単位蓄積部と加算蓄積部(9-2)とに、容量分割した状態である。 In the operation of (C-1), TR9 turns on the signal charge of the FD capacitor (5-1), thereby transferring three signal charges in the unit storage section of the FD capacitor (5-1) to the FD capacitor (5 -1) and the addition storage unit (9-2).
仮に、
FD容量(5-1):加算蓄積部(9-2)=1:2
の場合には、
FD容量(5-1)に対して
3個*(1/(1+2))=3*(1/3)=1個
加算蓄積部(9-2)に対して、
3個*(2/(1+2))=3*(2/3)=2個
のように、信号電荷3個が、分割された状態である。
what if,
FD capacity (5-1):addition storage unit (9-2)=1:2
In Case of,
3*(1/(1+2))=3*(1/3)=1 for FD capacity (5-1)
Three signal charges are divided like 3*(2/(1+2))=3*(2/3)=2.
(D-1)の動作は、加算トランジスタ9がオフした状態で、1回目の電荷蓄積が終了した状態である。 In the operation (D-1), the addition transistor 9 is turned off and the first charge accumulation is completed.
図17は、1回目の基本動作と2回目の動作の抜粋の図である。
(A-1)、(B-1)、(C-1)は、図16の基本動作の一部である。
FIG. 17 is a diagram of excerpts of the first basic motion and the second motion.
(A-1), (B-1), and (C-1) are part of the basic operation in FIG.
(A-2)の動作は、(C-1)の後に、加算トランジスタ9がオフし、FD容量(5-1)が図14のTR6で3Vにリセットされ、再度、受光部1に光電変換した電荷が蓄積した状態である。 In the operation of (A-2), after (C-1), the adding transistor 9 is turned off, the FD capacitor (5-1) is reset to 3 V at TR6 in FIG. This is the state in which the electric charge is accumulated.
(B-2)の動作は、(B-1)の動作と同様に、受光部1の信号電荷がFD容量(5-1)に、全部または一部が、1回だけ、読み出された状態である。この図17の場合は、受光部1の12個の信号電荷の内、3個をFD容量(5-1)に読み出した状態である。
この時点で加算蓄積部(9-2)には、(C-1)の動作の時点で電荷2個が入った状態にある。
In the operation of (B-2), like the operation of (B-1), all or part of the signal charge of the light receiving section 1 is read out to the FD capacitor (5-1) only once. state. In the case of FIG. 17, 3 out of 12 signal charges of the light receiving section 1 are read out to the FD capacitor (5-1).
At this time point, the addition/storage section (9-2) is in a state of containing two charges at the time of the operation (C-1).
(C-2)の動作は、(B-2)の動作のFD容量(5-1)の信号電荷3個と加算蓄積部(9-2)の信号電荷2個と、合計5個の信号電荷が、
FD容量(5-1):加算蓄積部(9-2)=1:2
の割合で、再配分された状態である。
The operation of (C-2) is 3 signal charges of the FD capacitor (5-1) of the operation of (B-2) and 2 signal charges of the addition storage section (9-2), a total of 5 signals. the charge is
FD capacity (5-1):addition storage unit (9-2)=1:2
are redistributed at a rate of
この時、
FD容量(5-1)に対して
5個*(1/(1+2))=5*(1/3)=5/3個
加算蓄積部(9-2)に対して、
5個*(2/(1+2))=5*(2/3)=10/3個
となる。
At this time,
5*(1/(1+2))=5*(1/3)=5/3 for FD capacity (5-1)
5*(2/(1+2))=5*(2/3)=10/3.
ここで、
加算蓄積部(9-2)では、1回目の(C-1)の動作時点で2個の信号電荷で、2回目の(C-2)の動作時点で10/3個の信号電荷となっている。
here,
In the addition/storage unit (9-2), the signal charges are 2 at the time of the first operation (C-1), and the signal charges are 10/3 at the time of the second operation (C-2). ing.
本来は、回数毎に直線的に正比例して信号電荷が蓄積される必要があり、1回目で2個の信号電荷の場合、2回目では直線的に正比例値の4個の信号電荷が蓄積される必要がある。しかし、1回目で2個に対して2回目で10/3個となり、2回目では比例値の4個より小さい値であり、1回目と2回目で比例しない状態になる。 Originally, the signal charges should be accumulated linearly in direct proportion each time. If two signal charges are accumulated in the first cycle, four signal charges in direct proportion are accumulated in the second cycle. need to However, the number is 10/3 in the second time compared to 2 in the first time, and the value in the second time is smaller than the proportional value of 4, resulting in a non-proportional state between the first time and the second time.
これにより、受光部1の信号電荷を加算蓄積部(9-2)に回数毎に比例して加算できなくなる。図16、図17では、2回目までの加算結果を示しているが、3回、4回、5回と、回数が増えるに従って、比例直線から離れていく。 As a result, the signal charge of the light receiving section 1 cannot be added to the addition accumulation section (9-2) in proportion to the number of times. 16 and 17 show the addition results up to the second time, but as the number of additions increases to 3 times, 4 times, and 5 times, the distance from the linear line of proportionality increases.
その結果、加算した加算蓄積部(9-2)の電荷を、最終的に、FD5を経由して信号線4に電圧出力する場合に、加算回数と電圧出力が直線的に正比例しない課題を発生する。 As a result, when the added charge of the addition storage unit (9-2) is finally output as a voltage to the signal line 4 via the FD 5, the number of times of addition and the voltage output are not linearly proportional to each other. do.
特開2006-245522JP 2006-245522 特許6024103号Patent No. 6024103
従来のCMOSイメージセンサでは、受光部の信号電荷を加算蓄積部に、複数回加算した場合に、回数に直線的に正比例した出力が得られない課題があった。 In the conventional CMOS image sensor, when the signal charge of the light-receiving section is added to the addition accumulation section a plurality of times, there is a problem that an output that is linearly proportional to the number of additions cannot be obtained.
本発明の目的は、受光部の信号を複数の回数、加算蓄積部に加算して読み出す場合に、加算する回数と加算蓄積部に蓄積する信号電荷量が直線的に正比例する撮像装置の駆動方法および撮像装置、または、撮像装置を備えた広ダイナミックレンジを必要とする電子機器を提供することである。 SUMMARY OF THE INVENTION An object of the present invention is to provide a driving method for an imaging device in which, when a signal from a light-receiving unit is read out by adding it to an addition/accumulation unit a plurality of times, the number of times of addition and the amount of signal charge accumulated in the addition/accumulation unit are linearly proportional to each other. and an imaging device or an electronic device equipped with the imaging device that requires a wide dynamic range.
受光部と、
前記受光部の信号電荷の一部または全部を蓄積する単位蓄積部と、
前記受光部と前記単位蓄積部との間に配置された読出しトランジスタと、
前記単位蓄積部の信号電荷の一部または全部を加算する加算蓄積部と、
前記単位蓄積部と前記加算蓄積部との間に配置された加算トランジスタと、
フローティング・ディフュ-ジョン(FD)が配置されたソースフォロア・アンプ(AMP)と、
を有する画素を配列した撮像装置において、
前記単位蓄積部を、前記受光部と前記FDの間に配置する
ことを特徴とする。
a light receiving unit;
a unit storage section that stores part or all of the signal charge of the light receiving section;
a readout transistor arranged between the light receiving section and the unit storage section;
an addition storage unit that adds part or all of the signal charges of the unit storage units;
an addition transistor arranged between the unit storage section and the addition storage section;
a source follower amplifier (AMP) in which a floating diffusion (FD) is arranged;
In an imaging device in which pixels having
The unit storage section is arranged between the light receiving section and the FD.
前記加算トランジスタのポテンシャルの最大電位は、前記加算蓄積部のポテンシャルの最大電位よりも小さい電位に設定する
ことを特徴とする。
The maximum potential of the potential of the addition transistor is set to a potential smaller than the maximum potential of the potential of the addition storage section.
前記単位蓄積部に隣接してリセット・トランジスタが配置され、
前記単位蓄積部のポテンシャルのLow電位が、前記リセット・トランジスタのポテンシャルのLow電位(ポテンシャルの基準低電位)により決定される構成であって、
前記単位蓄積部にある信号電荷を前記加算蓄積部へ転送する場合に、
転送される電荷は、
前記リセット・トランジスタのポテンシャルのLow電位(ポテンシャルの基準低電位)で決定された前記単位蓄積部のポテンシャルのLow電位と、
前記単位蓄積部にある信号電荷を前記加算蓄積部へ転送する場合の前記加算トランジスタのポテンシャルのHigh電位と、 
の間の電位範囲にある電荷である
ことを特徴とする。
a reset transistor is arranged adjacent to the unit storage section;
A configuration in which a Low potential of the potential of the unit storage section is determined by a Low potential of the potential of the reset transistor (a reference low potential of the potential),
When transferring the signal charge in the unit storage section to the addition storage section,
The charge transferred is
a low potential of the potential of the unit storage section determined by a low potential of the potential of the reset transistor (a reference low potential of the potential);
a high potential of the addition transistor when transferring the signal charge in the unit storage portion to the addition storage portion;
is a charge in the potential range between .
前記単位蓄積部にある信号電荷を前記加算蓄積部へ転送する場合に、
前記単位蓄積部は、完全空乏化する構造、または、前記単位蓄積部の残像が5%未満の構造である
ことを特徴とする。
When transferring the signal charge in the unit storage section to the addition storage section,
The unit storage section is characterized by having a fully depleted structure or a structure in which afterimage of the unit storage section is less than 5%.
前記単位蓄積部と前記加算蓄積部の、一方、または、両方において、電荷を蓄積する領域の上方に電極を有する
ことを特徴とする。
One or both of the unit storage section and the addition storage section has an electrode above a charge storage region.
前記単位蓄積部および前記加算蓄積部が電子を蓄積するN型半導体の場合には、前記単位蓄積部と前記加算蓄積部の、一方、または、両方において、前記N型半導体の上の半導体表面領域にP型半導体が形成されている
ことを特徴とする。
When the unit storage portion and the summation storage portion are N-type semiconductors that store electrons, one or both of the unit storage portion and the summation storage portion have a semiconductor surface area above the N-type semiconductor. A P-type semiconductor is formed in the .
前記読出しトランジスタの電極と前記転送ゲート電極とが、同一電極で形成される、または、同一電圧である
ことを特徴とする。
The electrode of the read transistor and the transfer gate electrode are formed of the same electrode or have the same voltage.
前記加算しトランジスタの電極と前記加算ゲート電極とが、同一電極で形成される、または、同一電圧である
ことを特徴とする。
The electrode of the summing transistor and the summing gate electrode are formed of the same electrode or have the same voltage.
受光部と、
前記受光部の信号電荷の一部または全部を蓄積する単位蓄積部と、
前記受光部と前記単位蓄積部との間に配置された読出しトランジスタと、
前記単位蓄積部の信号電荷の一部または全部を加算する加算蓄積部と、
前記単位蓄積部と前記加算蓄積部との間に配置された加算トランジスタと、
フローティング・ディフュ-ジョン(FD)が配置されたソースフォロア・アンプ(AMP)と、
を有する画素を配列した撮像装置において、
前記読出しトランジスタと前記単位蓄積部の組合せが、複数組で構成されることを特徴とする。
a light receiving unit;
a unit storage section that stores part or all of the signal charge of the light receiving section;
a readout transistor arranged between the light receiving section and the unit storage section;
an addition storage unit that adds part or all of the signal charges of the unit storage units;
an addition transistor arranged between the unit storage section and the addition storage section;
a source follower amplifier (AMP) in which a floating diffusion (FD) is arranged;
In an imaging device in which pixels having
A plurality of combinations of the readout transistors and the unit storage sections are provided.
複数の前記単位蓄積部の間に混合トランジスタを有する
ことを特徴とする。
A mixed transistor is provided between the plurality of unit storage portions.
前記混合トランジスタを動作(オン)することで、複数の前記単位蓄積部の電荷を合算した後、前記混合トランジスタを動作終了(オフ)することで、合算した電荷を複数の前記単位蓄積部に再度振り分ける
ことを特徴とする。
By operating (turning on) the mixed transistor, the charges of the plurality of unit storage portions are summed, and then by stopping the operation (turning off) of the mixed transistor, the summed charges are transferred to the plurality of unit storage portions again. Distributing is characterized.
本発明によれば、受光部の信号を複数の回数、加算蓄積部に加算して読み出す場合に、加算する回数と加算蓄積部に蓄積する信号電荷量が直線的に正比例する撮像装置を得ることができる。 According to the present invention, it is possible to obtain an imaging apparatus in which the number of times of addition and the amount of signal charge accumulated in the addition/accumulation unit are linearly proportional when the signal of the light receiving portion is added to the addition/accumulation unit and read out a plurality of times. can be done.
図1は、本発明の撮像装置の駆動方法の1回目と2回目の図である。FIGS. 1A and 1B are diagrams of the first and second driving methods of the imaging device of the present invention. 図2は、本発明の撮像装置の駆動方法の3回目と4回目の図である。2A and 2B are diagrams for the third and fourth times of the driving method of the imaging device of the present invention. 図3は、加算トランジスタ下の電位を大きくして、単位蓄積部から加算蓄積部へ転送する1回当たりの信号電荷量を増やした図である。FIG. 3 is a diagram in which the potential under the addition transistor is increased to increase the amount of signal charge per transfer from the unit accumulation section to the addition accumulation section. 図4は、単位蓄積部をフローティング・ディフュージョンとは異なる位置に配置した図である。FIG. 4 is a diagram of arranging a unit accumulation portion at a position different from that of the floating diffusion. 図5は、受光部にアバランシェ・フォトダイオードを用いた図である。FIG. 5 is a diagram using an avalanche photodiode in the light receiving section. 図6は、受光部がアバランシェ・フォトダイオードで且つ、単位蓄積部をフローティング・ディフュージョンとは異なる位置に配置した図である。FIG. 6 is a diagram in which the light receiving section is an avalanche photodiode and the unit storage section is arranged at a position different from the floating diffusion. 図7は、単位蓄積部が、受光部とフローティング・ディフュージョンの間に配置された構成の半導体の断面図である。FIG. 7 is a cross-sectional view of a semiconductor having a configuration in which a unit storage portion is arranged between a light receiving portion and a floating diffusion. 図8は、単位蓄積部が、N-半導体とMOS電極とで構成された半導体の断面図である。FIG. 8 is a cross-sectional view of a semiconductor in which a unit storage portion is composed of an N − semiconductor and a MOS electrode. 図9は、単位蓄積部上に電極、および加算蓄積部の両方の上に電極を形成した構成の半導体の断面図である。FIG. 9 is a cross-sectional view of a semiconductor having a configuration in which an electrode is formed on both the unit storage section and the addition storage section. 図10は、読出しトランジスタの電極と単位蓄積部上の電極を共通電極とし、加算しトランジスタの電極と加算蓄積部上の電極を共通電極とした構成の半導体の断面図である。FIG. 10 is a cross-sectional view of a semiconductor configured such that the electrode of the readout transistor and the electrode on the unit storage section are used as common electrodes, and the electrode of the addition transistor and the electrode on the addition storage section are used as common electrodes. 図11は、単位蓄積部および加算蓄積部が電子を蓄積するN型半導体の上の半導体表面領域にP型半導体が形成した構成の半導体の断面図である。FIG. 11 is a cross-sectional view of a semiconductor having a structure in which a P-type semiconductor is formed in a semiconductor surface region above an N-type semiconductor in which a unit accumulation portion and an addition accumulation portion accumulate electrons. 図12は、読出しトランジスタと単位蓄積部の組合せを、複数組(2組)有する画素の回路図である。FIG. 12 is a circuit diagram of a pixel having a plurality of sets (two sets) of combinations of readout transistors and unit storage portions. 図13は、複数の単位蓄積部の平均電荷と、加算蓄積部の加算容量の場合分けを示す図である。13A and 13B are diagrams showing the average charge of a plurality of unit storage portions and the added capacitance of the addition storage portion. 図14は、従来の画素の回路図の例である。FIG. 14 is an example of a circuit diagram of a conventional pixel. 図15は、受光部とFD部の断面図である。FIG. 15 is a cross-sectional view of the light receiving section and the FD section. 図16は、受光部とFD部の断面の信号電荷を加算する基本動作を説明する図である。16A and 16B are diagrams for explaining the basic operation of adding the signal charges of the sections of the light receiving portion and the FD portion. 図17は、1回目の基本動作と2回目の動作の抜粋の図である。FIG. 17 is a diagram of excerpts of the first basic motion and the second motion.
受光部の信号を複数の回数、加算蓄積部に加算して読み出す場合に、加算する回数と加算蓄積部に蓄積する信号電荷量が直線的に正比例する撮像装置の駆動方法および撮像装置、または前記撮像装置を備えた電子機器を提供する。以下に本発明の実施の形態を添付図面に基づいて説明する。 A method for driving an imaging device and an imaging device in which the number of times of addition and the amount of signal charge accumulated in the addition/accumulation unit are linearly proportional when the signal of the light-receiving unit is added to the addition/accumulation unit and read out a plurality of times, or An electronic device having an imaging device is provided. An embodiment of the present invention will be described below with reference to the accompanying drawings.
図1は、本発明の撮像装置の駆動方法の1回目と2回目の図である。
図1では、(A-1)および(B-1)の動作は、従来の図16と同様であり、図14の回路について適用される。
(B-1)の動作では、受光部1の12個の信号電荷の内の3個をFD容量(5-1)の単位蓄積部に、読み出している。
FIGS. 1A and 1B are diagrams of the first and second driving methods of the imaging device of the present invention.
In FIG. 1, the operations of (A-1) and (B-1) are similar to the conventional FIG. 16, and are applied to the circuit of FIG.
In the operation (B-1), three of the twelve signal charges in the light receiving section 1 are read out to the unit storage section of the FD capacitor (5-1).
(C-3)の動作では、加算蓄積部(9-2)の最大電位(3V)と、加算トランジスタ9に電圧を加えた時の加算トランジスタ9のポテンシャルの電位との差は、ΔV2となるように設定している。
この時、FD容量(5-1)の単位蓄積部にある信号電荷3個の内、ΔV1より低い電位にある信号電荷が、加算蓄積部(9-2)に転がり落ちて、加算蓄積部(9-2)に蓄積される事となる。このとき、転がり落ちる信号電荷は、リセット・トランジスタのポテンシャルのLow電位で決定された単位蓄積部のポテンシャルのLow電位(0.5V)と、加算トランジスタ9のポテンシャルのHigh電位ΔV1と、の間の電位範囲にある電荷となる。
ここで、加算トランジスタ9のポテンシャルの最大電位ΔV1は、加算蓄積部(9-2)のポテンシャルの最大電位ΔV1+ΔV2よりも小さい電位に設定されている。
In the operation of (C-3), the difference between the maximum potential (3V) of the addition storage section (9-2) and the potential of the addition transistor 9 when the voltage is applied to the addition transistor 9 is ΔV2. is set to
At this time, among the three signal charges in the unit storage section of the FD capacitor (5-1), the signal charge having a potential lower than ΔV1 rolls down to the addition storage section (9-2), and the addition storage section ( 9-2). At this time, the signal charge that rolls down is between the low potential (0.5 V) of the potential of the unit storage section determined by the low potential of the reset transistor and the high potential ΔV1 of the potential of the addition transistor 9. It becomes a charge in the potential range.
Here, the maximum potential ΔV1 of the potential of the addition transistor 9 is set to a potential smaller than the maximum potential ΔV1+ΔV2 of the potential of the addition storage section (9-2).
(A-4)の動作では、FD容量(5-1)の単位蓄積部のみが、リセット・トランジスタ6で、3Vにリセットされている。 In the operation of (A-4), only the unit storage portion of the FD capacitor (5-1) is reset to 3V by the reset transistor 6. FIG.
(B-4)の動作では、(B-1)の動作と同様にして、受光部1の12個の信号電荷の内の3個を、FD容量(5-1)の単位蓄積部に、2回目の読みだしを行っている。 In the operation of (B-4), similarly to the operation of (B-1), three of the 12 signal charges in the light receiving section 1 are stored in the unit storage section of the FD capacitor (5-1). I am doing a second reading.
(C-4)の動作では、(C-3)の動作と同様に、FD容量(5-1)の単位蓄積部にある信号電荷3個の内、ΔV1より低い電位にある信号電荷1個が、加算蓄積部(9-2)に転がり落ちて、(C-3)の時に蓄積されていた電荷1個に加算されて、加算蓄積部(9-2)の蓄積電荷は、合計2個となる。このときも、転がり落ちる信号電荷は、リセット・トランジスタのポテンシャルのLow電位で決定された単位蓄積部のポテンシャルのLow電位(0.5V)と、加算トランジスタ9のポテンシャルのHigh電位ΔV1と、の間の電位範囲にある電荷となる。図1の(C-3)では、読出しトランジスタ2は、Low電位(オフ)になっていて、受光部1とFD容量(5-1)の単位蓄積部は、切り離された状態にある。
この時、リセット・トランジスタのポテンシャルのLow電位である基準低電位は、0.5Vより小さな電圧に変更、たとえば0Vに変更した場合、でも、FD容量(5-1)の単位蓄積部の電荷数は変化しない。
したがって、図1で示す、リセット・トランジスタのポテンシャルのLow電位とは、読出しトランジスタ2がオフした後、FD容量(5-1)の単位蓄積部に貯める電荷数の上限を決定する場合の低電位を意味する。例えば、読出しトランジスタ2がオフした後に、加算トランジスタ9がオンするまでに、低電位が、0V、0.5Vと変化した場合、FD容量(5-1)の単位蓄積部に貯める電荷数を決定する場合の低電位は、上限として高い方の0.5Vである。
ここでも、加算トランジスタ9のポテンシャルの最大電位ΔV1は、加算蓄積部(9-2)のポテンシャルの最大電位ΔV1+ΔV2よりも小さい電位に設定されている。
In the operation of (C-4), similarly to the operation of (C-3), one of the three signal charges in the unit accumulation portion of the FD capacitor (5-1) has a potential lower than ΔV1. rolls down to the addition storage section (9-2) and is added to the one charge that was stored at (C-3), so that the addition storage section (9-2) has a total of two charges. becomes. At this time as well, the signal charge that rolls down is between the low potential (0.5 V) of the potential of the unit storage section determined by the low potential of the reset transistor and the high potential ΔV1 of the potential of the addition transistor 9. becomes a charge in the potential range of . In (C-3) of FIG. 1, the read transistor 2 is at a Low potential (OFF), and the light receiving section 1 and the unit storage section of the FD capacitor (5-1) are in a separated state.
At this time, even if the reference low potential, which is the Low potential of the potential of the reset transistor, is changed to a voltage lower than 0.5 V, for example, to 0 V, the number of charges in the unit accumulation portion of the FD capacitor (5-1) is does not change.
Therefore, the Low potential of the potential of the reset transistor shown in FIG. means For example, when the low potential changes from 0V to 0.5V before the addition transistor 9 turns on after the readout transistor 2 turns off, the number of charges stored in the unit accumulation part of the FD capacitor (5-1) is determined. The low potential in the case of 1 is 0.5 V, which is the upper limit.
Also in this case, the maximum potential ΔV1 of the potential of the addition transistor 9 is set to a potential smaller than the maximum potential ΔV1+ΔV2 of the potential of the addition storage section (9-2).
図2は、本発明の撮像装置の駆動方法の3回目と4回目の図である。
3回目の(A-5)と、4回目の(A-5)は、2回目の(A-3)と同様の動作であり、3回目の(B-5)と、4回目の(B-5)は、2回目の(B-3)と同様である。
2A and 2B are diagrams for the third and fourth times of the driving method of the imaging device of the present invention.
The third (A-5) and the fourth (A-5) are the same operations as the second (A-3), and the third (B-5) and the fourth (B -5) is the same as the second (B-3).
結果的に、(C-5)の動作では、3回目の加算動作により、加算蓄積部(9-2)の蓄積電荷は、合計3個となる。
さらに、(C-6)の動作では、4回目の加算動作により、加算蓄積部(9-2)のに蓄積電荷は、合計4個となる。
As a result, in the operation (C-5), the third addition operation results in a total of three charges accumulated in the addition accumulation section (9-2).
Furthermore, in the operation (C-6), the fourth addition operation results in a total of four charges accumulated in the addition accumulation section (9-2).
図1と図2から分かるように、1回目の(C-3)の場合に、加算蓄積部(9-2)の最大電位をΔV1+ΔV2=3Vとし、加算トランジスタ9に電圧を加えた時の加算トランジスタ9のポテンシャルの電位との差がΔV2となるように設定することで、加算トランジスタ9の最大電位をΔV1とし、加算トランジスタ9のポテンシャルの最大電位が、加算蓄積部(9-2)のポテンシャルの最大電位よりも小さい関係とすることで、受光部1の信号電荷を複数の回数、単位蓄積部を経由して、加算蓄積部(9-2)に加算して読み出す場合に、加算する回数と加算蓄積部(9-2)に蓄積された信号電荷量が直線的に正比例する駆動方法を実現することができる。 As can be seen from FIGS. 1 and 2, in the case of the first time (C-3), the maximum potential of the addition storage section (9-2) is set to ΔV1+ΔV2=3V, and the addition when voltage is applied to the addition transistor 9 By setting the difference from the potential of the transistor 9 to ΔV2, the maximum potential of the addition transistor 9 is set to ΔV1, and the maximum potential of the addition transistor 9 becomes the potential of the addition storage unit (9-2). is smaller than the maximum potential of the light-receiving unit 1, when the signal charge of the light-receiving unit 1 is read out by being added to the addition accumulation unit (9-2) via the unit accumulation unit a plurality of times, the number of times of addition , and the amount of signal charge accumulated in the addition accumulation section (9-2) is linearly proportional.
この時、ΔV1を小さい電位差にすることで、1回当たりに加算蓄積部(9-2)に蓄積される信号電荷量を少なくすることができるため、加算蓄積部(9-2)への蓄積回数を増やすことができる。加算蓄積部(9-2)の信号電荷量を直線的に正比例して増やすことができる蓄積回数の限界値は、加算蓄積部(9-2)に蓄積された電荷による電位が、ΔV2を超えない範囲であれば、問題ない。 At this time, by setting ΔV1 to a small potential difference, the amount of signal charge accumulated in the addition accumulation unit (9-2) per time can be reduced. You can increase the number of times. The limit value of the number of times of accumulation that can increase the amount of signal charge in the addition/accumulation section (9-2) in linear proportion is when the potential due to the charge accumulated in the addition/accumulation section (9-2) exceeds ΔV2. There is no problem as long as it is within the range of no.
加算蓄積部(9-2)に蓄積された電荷による電位が、ΔV2を超えた場合は、加算蓄積部(9-2)に蓄積された電荷の一部が、加算トランジスタ9のポテンシャルの電位を超えて、FD容量(5-1)の単位蓄積部へ逆流するため、加算蓄積部(9-2)の信号電荷量は、直線的に正比例できなくなる。 When the potential due to the charge accumulated in the addition accumulation section (9-2) exceeds ΔV2, part of the charge accumulated in the addition accumulation section (9-2) exceeds the potential of the addition transistor 9. The signal charge amount of the addition storage section (9-2) cannot be linearly proportional because it exceeds and flows backward to the unit storage section of the FD capacitor (5-1).
図3は、加算トランジスタ9に電圧を加えた時の加算トランジスタ9のポテンシャルの電位を大きくして、単位蓄積部(5-1)から加算蓄積部(9-2)へ転送する1回当たりの信号電荷量を増やした図である。
図1の(C-3)の動作では、加算トランジスタ9に電圧を加えた時の加算トランジスタ9のポテンシャルの電位との差のΔV1が小さいため、1回当たり、電荷1個が加算蓄積部(9-2)へ転送していたが、図3の(C-7)の動作では、加算トランジスタ9に電圧を加えた時の加算トランジスタ9のポテンシャルの電位との差のΔV3を大きくして、1回当たり、電荷2個が加算蓄積部(9-2)へ転送でき、加算蓄積部(9-2)の電圧を大きく変えることができるので、信号線4から読み出されるゲインや感度を大きくすることができる。図3では、加算蓄積部(9-2)の最大電位(3V)と、加算トランジスタ9に電圧を加えた時の加算トランジスタ9のポテンシャルの電位との差は、ΔV4とΔV2よりも小さくなる。このため、加算蓄積部(9-2)の信号電荷量を直線的に正比例して増やすことができる蓄積回数の限界値は、加算蓄積部(9-2)に蓄積された電荷による電位が、ΔV4を超えない範囲であるため、図1に比べて、限界回数は少なくなる。
FIG. 3 shows the potential of the addition transistor 9 when the voltage is applied to the addition transistor 9, and the potential of the addition transistor 9 is increased to transfer from the unit storage section (5-1) to the addition storage section (9-2). It is the figure which increased the signal electric charge amount.
In the operation of (C-3) in FIG. 1, the difference ΔV1 between the potential of the addition transistor 9 and the potential of the addition transistor 9 when a voltage is applied to the addition transistor 9 is small. 9-2), but in the operation of (C-7) in FIG. Two electric charges can be transferred to the addition storage section (9-2) at one time, and the voltage of the addition storage section (9-2) can be greatly changed, so that the gain and sensitivity read out from the signal line 4 are increased. be able to. In FIG. 3, the difference between the maximum potential (3V) of the addition storage section (9-2) and the potential of the addition transistor 9 when a voltage is applied to the addition transistor 9 is smaller than ΔV4 and ΔV2. Therefore, the limit value of the number of times of accumulation that can increase the amount of signal charge in the addition/accumulation section (9-2) in direct proportion is determined by the potential due to the charge accumulated in the addition/accumulation section (9-2). Since the range does not exceed ΔV4, the limit number of times is smaller than in FIG.
以上により、図1の場合と図3の場合では、加算蓄積部(9-2)の最大電位(3V)と、加算トランジスタ9に電圧を加えた時の加算トランジスタ9のポテンシャルの電位との差は、ΔV2、または、ΔV4を設ける駆動方法を採用することで、加算蓄積部(9-2)の信号電荷量を直線的に正比例して増やすことができる撮像装置を実現することができる。 1 and FIG. 3, the difference between the maximum potential (3 V) of the addition storage section (9-2) and the potential of the addition transistor 9 when a voltage is applied to the addition transistor 9 is By adopting a driving method that provides ΔV2 or ΔV4, it is possible to realize an imaging device that can increase the amount of signal charge in the addition accumulation section (9-2) linearly and in direct proportion.
図4は、単位蓄積部を、フローティング・ディフュージョン(FD)とは、異なる位置に配置した図である。単位蓄積部14は、受光部1に隣接して配置され、受光部1とフローティング・ディフュ-ジョン5(FD)の間に配置された構成を特徴としている。また、加算蓄積部(9-2)は、単位蓄積部14とFD5の間に配置している。結果的に、受光部1、読出しトランジスタ2、単位蓄積部14、加算トランジスタ9、加算蓄積部(9-2)、加算蓄積部の読出しトランジスタ15、FD5の順に、配置した構成である。図4の単位蓄積部14は、図1-図3のFD容量(5―1)が、単位蓄積部14に置き換わることになる。 FIG. 4 is a diagram of arranging the unit accumulation portion at a position different from that of the floating diffusion (FD). The unit storage section 14 is arranged adjacent to the light receiving section 1, and is characterized in that it is arranged between the light receiving section 1 and the floating diffusion 5 (FD). Further, the addition accumulation section (9-2) is arranged between the unit accumulation section 14 and the FD5. As a result, the light receiving section 1, the readout transistor 2, the unit storage section 14, the addition transistor 9, the addition storage section (9-2), the readout transistor 15 of the addition storage section, and the FD5 are arranged in this order. The unit storage section 14 in FIG. 4 replaces the FD capacitor (5-1) in FIGS.
この時、(A-1)の駆動の場合に、単位蓄積部14と加算蓄積部(9-2)を3Vにリセットする必要があるが、加算トランジスタ9と、加算蓄積部リセット・トランジスタ配線(6-3)に電圧を印加して加算蓄積部リセット・トランジスタ(6-2)との両方をオンすることで、初期のリセット動作を行う構成となっている。その他の動作は、図1-図3と、全く同じで駆動方法が実現できる。 At this time, in the case of driving (A-1), it is necessary to reset the unit storage section 14 and the addition storage section (9-2) to 3V. 6-3) to turn on both the reset transistor (6-2) of the addition accumulation section, thereby performing an initial reset operation. Other operations are completely the same as those in FIGS. 1 to 3, and the driving method can be realized.
結果的に、受光部1の信号電荷を複数の回数、単位蓄積部14を経由して、加算蓄積部(9-2)に加算して読み出す場合に、加算する回数と加算蓄積部(9-2)に蓄積された信号電荷量が直線的に正比例する駆動方法を実現することができる。
その後、加算蓄積部の読出しトランジスタ15がオンすると、加算蓄積部(9-2)の容量とFD5の容量の合計容量により、加算蓄積部(9-2)に蓄積された信号電荷は、電圧に変換されて、AMP3と信号線4を通して外部に読み出される。
As a result, when the signal charge of the light receiving section 1 is added to the addition accumulation section (9-2) via the unit accumulation section 14 and read out a plurality of times, the number of times of addition and the addition accumulation section (9- In 2), it is possible to realize a driving method in which the amount of accumulated signal charge is linearly proportional.
After that, when the readout transistor 15 of the addition/accumulation section is turned on, the signal charge accumulated in the addition/accumulation section (9-2) changes to a voltage due to the total capacitance of the addition/accumulation section (9-2) and the capacitance of the FD5. It is converted and read out to the outside through AMP 3 and signal line 4 .
図4の最大の利点は、単位蓄積部14の大きさを自由に変えることができる事である。FD容量(5-1)の主な目的は、ソースフォロア・アンプ3の変換ゲインを決定する重要な役割であるため、FD容量(5-1)を安易に変更できないという最大の課題がある。一方、図4の単位蓄積部14は、変換ゲインに影響を与える訳では無いため、自由に単位蓄積部14の容量を小さく変更することができる。 The greatest advantage of FIG. 4 is that the size of the unit storage section 14 can be freely changed. Since the main purpose of the FD capacitor (5-1) is to play an important role in determining the conversion gain of the source follower amplifier 3, the biggest problem is that the FD capacitor (5-1) cannot be easily changed. On the other hand, since the unit storage section 14 in FIG. 4 does not affect the conversion gain, the capacity of the unit storage section 14 can be freely reduced.
加算蓄積部(9-2)のダイナミックレンジを確保するためには、容量は大きな面積が必要なため、なるべくなら、小さい容量の単位蓄積部14の容量を減らすことで、小さい単位蓄積部14の容量と、大きい容量の加算蓄積部(9-2)の容量比率を大きくして、加算蓄積部(9-2)に加算蓄積しながら、信号電荷量が直線的に正比例できるための限界加算回数を増やすことが望ましい。これにより、広ダイナミックレンジを実現することができる。 In order to ensure the dynamic range of the addition storage section (9-2), a large area is required for the capacitance. By increasing the capacity ratio between the capacity and the large-capacity addition/accumulation section (9-2), while adding and accumulating in the addition/accumulation section (9-2), the signal charge amount can be linearly proportional to the limit number of times of addition. should be increased. Thereby, a wide dynamic range can be realized.
図5は、受光部にアバランシェ・フォトダイオードを用いた図である。
図5は、図14の受光部1に、アバランシェ・フォトダイオード(APD)を採用した場合である。アバランシェ領域102のPN接合に高い電圧を印加する必要があるため、半導体基板13に30V程度の電圧を加える。
FIG. 5 is a diagram using an avalanche photodiode in the light receiving section.
FIG. 5 shows a case where an avalanche photodiode (APD) is adopted for the light receiving section 1 of FIG. Since it is necessary to apply a high voltage to the PN junction of the avalanche region 102 , a voltage of approximately 30 V is applied to the semiconductor substrate 13 .
受光部1以外の回路の半導体のP型領域には、半導体基板13の高い電圧が印加されないように、P型ウェル(P-Well)101を、N型ウェル(N-Well)100を挟んで分離をしている。
P型ウェル(P-Well)101には、0Vを印加する。
この状態で、アバランシェ領域102に光が入ると、アバランシェの増倍現象が発生し、アバランシェ領域102のN領域に信号電荷が蓄積され、電荷は、受光部1と読出しトランジスタ2のソースを接続する配線104を経由して、読出しトランジスタ2のソース103へ信号電荷が伝えられる構成となっている。
読出しトランジスタ2のソース103へ繋がる信号電荷は、読出しトランジスタ2がオンすることで、図1-図3と、全く同じで駆動方法を実現できる。
A P-type well (P-well) 101 is sandwiched between an N-type well (N-well) 100 so that a high voltage of the semiconductor substrate 13 is not applied to the semiconductor P-type region of the circuit other than the light receiving unit 1. are separating.
0 V is applied to the P-type well (P-Well) 101 .
When light enters the avalanche region 102 in this state, an avalanche multiplication phenomenon occurs, signal charge is accumulated in the N region of the avalanche region 102 , and the charge connects the light receiving portion 1 and the source of the readout transistor 2 . A signal charge is transmitted to the source 103 of the read transistor 2 via the wiring 104 .
Signal charges connected to the source 103 of the readout transistor 2 can be driven by the same driving method as in FIGS. 1 to 3 by turning on the readout transistor 2 .
結果的に、APDの信号電荷を複数の回数、単位蓄積部14を経由して、加算蓄積部(9-2)に加算して読み出す場合に、加算する回数と加算蓄積部(9-2)に蓄積された信号電荷量が直線的に正比例する駆動方法を実現することができる。 As a result, when the signal charges of the APD are read out by being added to the addition accumulation section (9-2) via the unit accumulation section 14 a plurality of times, the number of times of addition and the addition accumulation section (9-2) It is possible to realize a driving method in which the amount of signal charge accumulated in is linearly proportional.
特に、APDのアバランシェ領域100で発生する信号電荷量は、通常の受光部1に比べて桁違いに大きいけれど、発生確率が小さいため、dToFなどの距離測定装置に使う場合には、何度も読み出す必要があり、図1-図3の駆動方法は、広ダイナミックレンジ駆動や、複数回読出し駆動には、最適な駆動方法である。 In particular, the amount of signal charge generated in the avalanche region 100 of the APD is much larger than that in the normal light receiving section 1, but the generation probability is small. Therefore, the driving method shown in FIGS. 1 to 3 is the optimum driving method for wide dynamic range driving and multiple readout driving.
したがって、広ダイナミックレンジ駆動や、複数回読出し駆動の時であっても、加算する回数と加算蓄積部(9-2)に蓄積された信号電荷量が直線的に正比例するため、最も有効に利用できる。 Therefore, even in wide dynamic range driving or multiple readout driving, the number of additions and the amount of signal charge accumulated in the addition accumulation section (9-2) are linearly proportional to each other, making it the most effective use. can.
図6は、受光部がアバランシェ・フォトダイオードで且つ、単位蓄積部をフローティング・ディフュージョンとは異なる位置に配置した図である。 FIG. 6 is a diagram in which the light receiving section is an avalanche photodiode and the unit storage section is arranged at a position different from the floating diffusion.
図6は、図4の広ダイナミックレンジの構造に対して、受光部1にアバランシェ・フォトダイオード構造と駆動方法を用いた発明である。
したがって、図5のような広ダイナミックレンジAPDの受光部1と、図4のような単位蓄積部14と加算蓄積部(9-2)の広ダイナミックレンジ駆動方法を合体することで、受光部1から信号電荷を読み出す回数と加算蓄積部(9-2)の信号電荷量が直線的に正比例する駆動方法を、最も有効に利用できる。そのため、最も広ダイナミックレンジな撮像装置を達成できる。
FIG. 6 shows an invention in which an avalanche photodiode structure and a driving method are used in the light receiving section 1 in contrast to the wide dynamic range structure of FIG.
Therefore, by combining the light receiving section 1 of the wide dynamic range APD as shown in FIG. A driving method in which the number of times signal charges are read out from and the amount of signal charges in the addition storage section (9-2) are directly proportional to each other can be used most effectively. Therefore, an imaging device with the widest dynamic range can be achieved.
図7は、単位蓄積部14が、受光部1とフローティング・ディフュージョン5の間に配置された構成の半導体の断面図である。図7は、図4の回路構成の場合の、受光部1、単位蓄積部14、加算蓄積部(9-2)、フローティング・ディフュージョン5の各部分の半導体の断面図である。 FIG. 7 is a cross-sectional view of a semiconductor having a structure in which the unit storage section 14 is arranged between the light receiving section 1 and the floating diffusion 5. As shown in FIG. FIG. 7 is a cross-sectional view of the semiconductors of the light receiving section 1, the unit storage section 14, the addition storage section (9-2), and the floating diffusion 5 in the case of the circuit configuration of FIG.
図15に示すように、単位蓄積部のFD容量(5-1)と加算蓄積部(9-2)の容量は、通常では、N+半導体容量や、N+のソース・ドレインを持つMIM容量が用いられる。 As shown in FIG. 15, the FD capacitance (5-1) of the unit storage section and the capacitance of the addition storage section (9-2) are normally N+ semiconductor capacitors or MIM capacitors having N+ source/drain. be done.
図7は、同様に、単位蓄積部14と加算蓄積部(9-2)は、同様に、N+半導体となっている。この場合は、高濃度のN型半導体では、格子欠陥に起因するリーク電荷によるノイズが発生し、ダイナミックレンジの低下をもたらすことになる。 In FIG. 7, similarly, the unit storage section 14 and the addition storage section (9-2) are N+ semiconductors. In this case, in the high-concentration N-type semiconductor, noise is generated due to leakage charges caused by lattice defects, resulting in a decrease in dynamic range.
図8は、単位蓄積部14が、N-半導体とMOS電極とで構成された半導体の断面図である。図8では、単位蓄積部14に高濃度のN型半導体をを用いた場合の格子欠陥に起因するリーク電荷によるノイズを低減するため、単位蓄積部14に低濃度のN-半導体とMOS電極を採用している。読出しトランジスタ2がオンした場合に、単位蓄積部の配線(14-1)にHigh電圧を印加して単位蓄積部14の低濃度のN-半導体の電位を高くして、受光部1からの電荷が単位蓄積部14に容易に転送できるようになっている。この構成により、格子欠陥に起因するリーク電荷によるノイズを低減し、ノイズの少ない広ダイナミックレンジを実現する。 FIG. 8 is a sectional view of a semiconductor in which the unit storage section 14 is composed of an N− semiconductor and a MOS electrode. In FIG. 8, in order to reduce noise due to leakage charges caused by lattice defects when a high-concentration N-type semiconductor is used for the unit storage section 14, the unit storage section 14 is provided with a low-concentration N− semiconductor and a MOS electrode. We are hiring. When the readout transistor 2 is turned on, a high voltage is applied to the wiring (14-1) of the unit storage section to increase the potential of the low-concentration N− semiconductor of the unit storage section 14, and the charge from the light receiving section 1 is increased. can be easily transferred to the unit storage section 14 . With this configuration, noise due to leakage charges caused by lattice defects is reduced, and a wide dynamic range with little noise is realized.
図9は、単位蓄積部14および加算蓄積部(9-2)の両方に、N-半導体とMOS電極とで容量を構成された半導体の断面図である。 FIG. 9 is a cross-sectional view of a semiconductor in which capacitors are formed by N− semiconductors and MOS electrodes in both the unit storage section 14 and the addition storage section (9-2).
図9は、図8と同様に、単位蓄積部14および加算蓄積部(9-2)の両方において、格子欠陥に起因するリーク電荷によるノイズを低減できるため、この構成を用いることで、ノイズの少ない究極の広ダイナミックレンジを実現することができる。基本的に、加算蓄積部(9-2)の容量を大きくとりたいため、加算蓄積部(9-2)のMOS電極の配線(9-3)には、プラス電圧を印加することで、図1のΔV2の電位差を大きくすることができ、ダイナミックレンジの大きさを調整することができるため、広ダイナミックレンジを実現する効果が大きい。 In FIG. 9, as in FIG. 8, both the unit storage section 14 and the addition storage section (9-2) can reduce noise due to leakage charges caused by lattice defects. It is possible to realize the ultimate wide dynamic range with less. Basically, since it is desired to increase the capacity of the addition storage section (9-2), a positive voltage is applied to the wiring (9-3) of the MOS electrode of the addition storage section (9-2). Since the potential difference of ΔV2 of 1 can be increased and the size of the dynamic range can be adjusted, the effect of realizing a wide dynamic range is great.
図10は、読出しトランジスタの電極と単位蓄積部上の電極を共通電極とし、加算トランジスタの電極と加算蓄積部上の電極を共通電極とした構成の半導体の断面図である。 FIG. 10 is a cross-sectional view of a semiconductor having a structure in which the electrodes of the readout transistor and the electrodes on the unit storage section are used as common electrodes, and the electrodes of the addition transistor and the electrodes on the addition storage section are used as common electrodes.
図10に示すように、電極を共有化することで、電極数を削減し、単位蓄積部14および加算蓄積部(9-2)の両方の全体容量面積を大きくできる。結果的に、単位蓄積部14および加算蓄積部(9-2)の容量比率を大きくすることができ、広ダイナミックレンジを実現することができる。 As shown in FIG. 10, by sharing the electrodes, the number of electrodes can be reduced and the total capacitance area of both the unit storage section 14 and the addition storage section (9-2) can be increased. As a result, the capacity ratio between the unit storage section 14 and the addition storage section (9-2) can be increased, and a wide dynamic range can be achieved.
図11は、単位蓄積部14および加算蓄積部(9-2)が電子を蓄積するN型半導体の上の半導体表面領域にP型半導体を形成した構成の半導体の断面図である。 FIG. 11 is a cross-sectional view of a semiconductor having a structure in which a P-type semiconductor is formed in a semiconductor surface region above an N-type semiconductor in which the unit accumulation portion 14 and the addition accumulation portion (9-2) accumulate electrons.
図11の構造では、単位蓄積部14および加算蓄積部(9-2)の表面の格子欠陥によるリーク電荷を低減する手段として、表面層にP型半導体を形成している。この場合、受光部1の形成と同時に、単位蓄積部14および加算蓄積部(9-2)を形成する工程を利用することができるため、製造工程を少なくできる。これにより、多くの製造工程中に発生する格子欠陥ができる確率を低減できるため、更なる広ダイナミックレンジを実現することができる。 In the structure of FIG. 11, a P-type semiconductor is formed in the surface layer as means for reducing leakage charges due to lattice defects on the surface of the unit storage section 14 and the addition storage section (9-2). In this case, since the process of forming the unit storage section 14 and the addition storage section (9-2) can be used simultaneously with the formation of the light receiving section 1, the manufacturing process can be reduced. As a result, it is possible to reduce the probability of lattice defects occurring during many manufacturing processes, so that a wider dynamic range can be achieved.
図12は、読出しトランジスタと単位蓄積部の組合せを、複数組(2組)有する画素の回路図である。 FIG. 12 is a circuit diagram of a pixel having a plurality of sets (two sets) of combinations of readout transistors and unit storage portions.
この構造は、以下の順に動作する。
1)1回目に、読出しトランジスタ2(TR2)の配線(2-1)に電圧を印加して、受光部1から単位蓄積部14の第1容量(C14)に電荷を読出す。
2)2回目に、読出しトランジスタ2-2(TR2-2)の配線(2-3)に電圧を印加して、受光部1から単位蓄積部14-2の第2容量(C14―2)に電荷を読出す。
3)混合トランジスタ2-4(TR2-4)の配線(2-5)に電圧を印加して、単位蓄積部の第1容量14(C14)の電荷と単位蓄積部の第1容量(C14―2)の電荷を混合して平均化する。
したがって、2回分の信号電荷量を、半分の1回分にすることができる。
たとえば、図4では、単位蓄積部14および加算蓄積部(9-2)の比率が
1:10の場合には、単位蓄積部14の電荷を10回しか加算できなかったが、図12の構成では、2回分を平均化して、1回分相当にすることができるため、加算蓄積部(9-2)の容量比率は、2回*10倍=20倍の容量比になる。結果的に、加算回数が2倍になり、更なる広ダイナミックレンジを実現することができる。
This structure works in the following order.
1) For the first time, a voltage is applied to the wiring (2-1) of the readout transistor 2 (TR2) to read the charge from the light receiving section 1 to the first capacitor (C14) of the unit storage section .
2) For the second time, a voltage is applied to the wiring (2-3) of the readout transistor 2-2 (TR2-2) to transfer the voltage from the light receiving section 1 to the second capacitor (C14-2) of the unit storage section 14-2. Read the charge.
3) By applying a voltage to the wiring (2-5) of the mixed transistor 2-4 (TR2-4), the charge of the first capacitor 14 (C14) of the unit storage section and the first capacitor (C14- The charges of 2) are mixed and averaged.
Therefore, the signal charge amount for two times can be halved for one time.
For example, in FIG. 4, when the ratio between the unit storage section 14 and the addition storage section (9-2) is 1:10, the charges in the unit storage section 14 could be added only 10 times. In this case, two times can be averaged to correspond to one time, so the capacity ratio of the addition storage unit (9-2) is 2 times*10 times=20 times. As a result, the number of times of addition is doubled, and a wider dynamic range can be realized.
図13は、複数の単位蓄積部の平均電荷と、加算蓄積部の加算容量の場合分けを示す図である。図13は、図12の構造で説明した具体的な例である。
(Case1の場合)
 第1容量(C14)が信号1で、第2容量(C14―2)が信号1の場合、
平均化すると、1。
(Case2の場合)
 第1容量(C14)が信号1で、第2容量(C14―2)が信号0の場合、
平均化すると、0.5。
(Case3の場合)
 第1容量(C14)が信号0で、第2容量(C14―2)が信号1の場合、
平均化すると、0.5。
(Case4の場合)
 第1容量(C14)が信号0で、第2容量(C14―2)が信号0の場合、
平均化すると、0。
以上のように、2回の最大値は、1であり、加算蓄積部が10の場合には、
20回分の電荷を蓄積できることができ、広ダイナミックレンジが実現できた効果が明確である。
13A and 13B are diagrams showing the average charge of a plurality of unit storage portions and the added capacitance of the addition storage portion. FIG. 13 is a specific example described in the structure of FIG.
(For Case 1)
When the first capacitor (C14) is signal 1 and the second capacitor (C14-2) is signal 1,
On average, 1.
(For Case 2)
When the first capacitor (C14) is signal 1 and the second capacitor (C14-2) is signal 0,
On average, 0.5.
(For Case 3)
When the first capacitor (C14) is signal 0 and the second capacitor (C14-2) is signal 1,
On average, 0.5.
(For Case 4)
When the first capacitor (C14) is signal 0 and the second capacitor (C14-2) is signal 0,
0 when averaged.
As described above, when the maximum value of two times is 1 and the addition storage unit is 10,
The effect of being able to accumulate charges for 20 times and realizing a wide dynamic range is clear.
なお、図9~図12の構成において、受光部にはアバランシェ・フォトダイオードを用いた場合、広ダイナミックレンジが実現できていることがより効果的に利用可能である。 In the configurations of FIGS. 9 to 12, when an avalanche photodiode is used in the light-receiving part, the wide dynamic range can be realized more effectively.
本発明による駆動方法を採用した撮像装置を搭載した電子機器は、携帯電話や産業機器用カメラや車載用カメラなどの多くの広ダイナミックレンジが必要な分野で利用される。 Electronic equipment equipped with an imaging device that employs the driving method according to the present invention is used in many fields that require a wide dynamic range, such as mobile phones, cameras for industrial equipment, and cameras for vehicles.
1 受光部
2 読出しトランジスタ(TR2)
2-1 読出しトランジスタ配線
2-2 読出しトランジスタ(TR2-2)
2-3 読出しトランジスタ配線
2-4 混合トランジスタ(TR2-4)
2-5 混合トランジスタ配線
3 ソースフォロア・アンプ(AMP)
4 信号線
5 フローティング・ディフュ-ジョン(FD)
5-1 フローティング・ディフュ-ジョン容量(FD容量、C5)
6 FDリセット・トランジスタ(TR6)
6-1 FDリセット・トランジスタ配線
6-2 加算蓄積部リセット・トランジスタ(TR6-2)
6-3 加算蓄積部リセット・トランジスタ配線
7 ソースフォロア・トランジスタ(TR7)
8 行選択トランジスタ(TR8)
8-1 行選択トランジスタ(TR8)配線
9 加算トランジスタ(TR9)
9-1 加算トランジスタ配線
9-2 加算蓄積部(C9)
9-3 加算蓄積部(C9)配線
10 アンプ電源
11 受光部リセット・トランジスタ(TR11)
11-1 受光部リセット・トランジスタ(TR11)配線
12 受光部リセット電源
13 半導体基板 
14 単位蓄積部(C14)
14-1 単位蓄積部(C14)配線
14-2 単位蓄積部(C14-2)
15 加算蓄積部の読出しトランジスタ(TR15)
15-1 加算蓄積部の読出しトランジスタ(TR15)配線

100 N型ウェル(N-Well)
101 P型ウェル(P-Well)
102 アバランシェ領域
103 読出しトランジスタのソース
104 受光部と読出しトランジスタのソースを接続する配線
1 light receiving unit 2 readout transistor (TR2)
2-1 Readout transistor wiring 2-2 Readout transistor (TR2-2)
2-3 Readout transistor wiring 2-4 Mixed transistor (TR2-4)
2-5 Mixed transistor wiring 3 Source follower amplifier (AMP)
4 signal line 5 floating diffusion (FD)
5-1 Floating diffusion capacitance (FD capacitance, C5)
6 FD reset transistor (TR6)
6-1 FD reset transistor wiring 6-2 Addition storage unit reset transistor (TR6-2)
6-3 Addition accumulation unit reset transistor wiring 7 Source follower transistor (TR7)
8 row selection transistor (TR8)
8-1 Row selection transistor (TR8) wiring 9 Addition transistor (TR9)
9-1 addition transistor wiring 9-2 addition accumulation unit (C9)
9-3 addition/accumulation unit (C9) wiring 10 amplifier power supply 11 light receiving unit reset transistor (TR11)
11-1 Light-receiving part reset transistor (TR11) wiring 12 Light-receiving part reset power supply 13 Semiconductor substrate
14 unit storage unit (C14)
14-1 unit storage unit (C14) wiring 14-2 unit storage unit (C14-2)
15 readout transistor (TR15) of addition storage unit
15-1 Wiring of readout transistor (TR15) of adder/accumulator

100 N-well (N-Well)
101 P-type well (P-Well)
102 Avalanche region 103 Source of readout transistor 104 Wiring connecting light receiving portion and source of readout transistor

Claims (13)

  1. 受光部と、
    前記受光部の信号電荷の一部または全部を蓄積する単位蓄積部と、
    前記受光部と前記単位蓄積部との間に配置された読出しトランジスタと、
    前記単位蓄積部の信号電荷の一部または全部を加算する加算蓄積部と、
    前記単位蓄積部と前記加算蓄積部との間に配置された加算トランジスタと、
    フローティング・ディフュ-ジョン(FD)が配置されたソースフォロア・アンプ(AMP)と、
    を有する画素を配列した撮像装置において、
    前記単位蓄積部を、前記受光部と前記FDの間に配置する
    ことを特徴とする撮像装置。
    a light receiving unit;
    a unit storage section that stores part or all of the signal charge of the light receiving section;
    a readout transistor arranged between the light receiving section and the unit storage section;
    an addition storage unit that adds part or all of the signal charges of the unit storage units;
    an addition transistor arranged between the unit storage section and the addition storage section;
    a source follower amplifier (AMP) in which a floating diffusion (FD) is arranged;
    In an imaging device in which pixels having
    An imaging apparatus, wherein the unit storage section is arranged between the light receiving section and the FD.
  2. 前記加算トランジスタのポテンシャルの最大電位は、前記加算蓄積部のポテンシャルの最大電位よりも小さい電位に設定する
    ことを特徴とする請求項1記載の撮像装置。
    2. The imaging apparatus according to claim 1, wherein the maximum potential of the potential of said addition transistor is set to a potential smaller than the maximum potential of potential of said addition storage section.
  3. 前記単位蓄積部に隣接してリセット・トランジスタが配置され、
    前記単位蓄積部のポテンシャルのLow電位が、前記リセット・トランジスタのポテンシャルのLow電位(ポテンシャルの基準低電位)により決定される構成であって、
    前記単位蓄積部にある信号電荷を前記加算蓄積部へ転送する場合に、
    転送される電荷は、
    前記リセット・トランジスタのポテンシャルのLow電位(ポテンシャルの基準低電位)で決定された前記単位蓄積部のポテンシャルのLow電位と、
    前記単位蓄積部にある信号電荷を前記加算蓄積部へ転送する場合の前記加算トランジスタのポテンシャルのHigh電位と、 
    の間の電位範囲にある電荷である
    ことを特徴とする請求項1または、請求項2記載の撮像装置。
    a reset transistor is arranged adjacent to the unit storage section;
    A configuration in which a Low potential of the potential of the unit storage section is determined by a Low potential of the potential of the reset transistor (a reference low potential of the potential),
    When transferring the signal charge in the unit storage section to the addition storage section,
    The charge transferred is
    a low potential of the potential of the unit storage section determined by a low potential of the potential of the reset transistor (a reference low potential of the potential);
    a high potential of the addition transistor when transferring the signal charge in the unit storage portion to the addition storage portion;
    3. The imaging device according to claim 1, wherein the charge is in a potential range between .
  4. 前記単位蓄積部にある信号電荷を前記加算蓄積部へ転送する場合に、
    前記単位蓄積部は完全空乏化する構造である、または、前記単位蓄積部の残像が5%未満の構造である
    ことを特徴とする請求項1乃至請求項3記載の撮像装置。
    When transferring the signal charge in the unit storage section to the addition storage section,
    4. The imaging device according to claim 1, wherein said unit storage section has a structure that is completely depleted, or has a structure in which an afterimage of said unit storage section is less than 5%.
  5. 前記単位蓄積部と前記加算蓄積部の、一方、または、両方において、電荷を蓄積する領域の上方に電極を有する
    ことを特徴とする請求項1乃至請求項3記載の撮像装置。
    4. An image pickup apparatus according to claim 1, wherein one or both of said unit storage section and said addition storage section have an electrode above a charge storage region.
  6. 前記単位蓄積部および前記加算蓄積部が電子を蓄積するN型半導体の場合には、前記単位蓄積部と前記加算蓄積部の、一方、または、両方において、前記N型半導体の上の半導体表面領域にP型半導体が形成されている
    ことを特徴とする請求項1乃至請求項4記載の撮像装置。
    When the unit storage portion and the summation storage portion are N-type semiconductors that store electrons, one or both of the unit storage portion and the summation storage portion have a semiconductor surface area above the N-type semiconductor. 5. An image pickup apparatus according to claim 1, wherein a P-type semiconductor is formed in said region.
  7. 前記読出しトランジスタの電極と前記転送ゲートの電極とが、同一電極で形成される、または、同一電圧である
    ことを特徴とする請求項5記載の撮像装置。
    6. The imaging device according to claim 5, wherein the electrode of the readout transistor and the electrode of the transfer gate are formed of the same electrode or have the same voltage.
  8. 前記加算トランジスタの電極と前記加算ゲートの電極とが、同一電極で形成される、または、同一電圧である
    ことを特徴とする請求項5記載の撮像装置。
    6. The image pickup apparatus according to claim 5, wherein the electrode of the addition transistor and the electrode of the addition gate are formed of the same electrode or have the same voltage.
  9. 受光部と、
    前記受光部の信号電荷の一部または全部を蓄積する単位蓄積部と、
    前記受光部と前記単位蓄積部との間に配置された読出しトランジスタと、
    前記単位蓄積部の信号電荷の一部または全部を加算する加算蓄積部と、
    前記単位蓄積部と前記加算蓄積部との間に配置された加算トランジスタと、
    フローティング・ディフュ-ジョン(FD)が配置されたソースフォロア・アンプ(AMP)と、
    を有する画素を配列した撮像装置において、
    前記読出しトランジスタと前記単位蓄積部の組合せが、複数組で構成されることを特徴とする撮像装置。
    a light receiving unit;
    a unit storage section that stores part or all of the signal charge of the light receiving section;
    a readout transistor arranged between the light receiving section and the unit storage section;
    an addition storage unit that adds part or all of the signal charges of the unit storage units;
    an addition transistor arranged between the unit storage section and the addition storage section;
    a source follower amplifier (AMP) in which a floating diffusion (FD) is arranged;
    In an imaging device in which pixels having
    An image pickup device, wherein the combination of the readout transistor and the unit storage section is configured in a plurality of sets.
  10. 前記読出しトランジスタと前記単位蓄積部の組合せが、複数組で構成される
    ことを特徴とする請求項1乃至請求項4記載の撮像装置。
    5. The imaging apparatus according to claim 1, wherein a plurality of combinations of said readout transistors and said unit storage sections are formed.
  11. 複数の前記単位蓄積部の間に混合トランジスタを有する
    ことを特徴とする請求項9または、請求項10記載の撮像装置。
    11. The imaging device according to claim 9, further comprising a mixed transistor between the plurality of unit storage sections.
  12. 前記混合トランジスタを動作(オン)することで、複数の前記単位蓄積部の電荷を合算した後、前記混合トランジスタを動作終了(オフ)することで、合算した電荷を複数の前記単位蓄積部に再度振り分ける
    ことを特徴とする請求項9または、請求項10記載の撮像装置。
    By operating (turning on) the mixed transistor, the charges of the plurality of unit storage portions are summed, and then by stopping the operation (turning off) of the mixed transistor, the summed charges are transferred to the plurality of unit storage portions again. 11. The imaging apparatus according to claim 9, wherein the images are sorted.
  13. 前記受光部は、アバランシェ・フォトダイオードであることを特徴とする請求項1乃至請求項12記載の撮像装置 13. The imaging apparatus according to claim 1, wherein said light receiving unit is an avalanche photodiode.
PCT/JP2022/035597 2021-09-29 2022-09-26 Imaging device WO2023054230A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-159933 2021-09-29
JP2021159933 2021-09-29

Publications (1)

Publication Number Publication Date
WO2023054230A1 true WO2023054230A1 (en) 2023-04-06

Family

ID=85782593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035597 WO2023054230A1 (en) 2021-09-29 2022-09-26 Imaging device

Country Status (1)

Country Link
WO (1) WO2023054230A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011187944A (en) * 2010-02-12 2011-09-22 Semiconductor Energy Lab Co Ltd Semiconductor device and method of driving the same
WO2016017305A1 (en) * 2014-07-31 2016-02-04 ソニー株式会社 Pixel circuit, semiconductor light detection device, and radiation measuring device
JP2016076832A (en) * 2014-10-07 2016-05-12 キヤノン株式会社 Imaging apparatus and imaging system
JP2018019353A (en) * 2016-07-29 2018-02-01 キヤノン株式会社 Imaging apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011187944A (en) * 2010-02-12 2011-09-22 Semiconductor Energy Lab Co Ltd Semiconductor device and method of driving the same
WO2016017305A1 (en) * 2014-07-31 2016-02-04 ソニー株式会社 Pixel circuit, semiconductor light detection device, and radiation measuring device
JP2016076832A (en) * 2014-10-07 2016-05-12 キヤノン株式会社 Imaging apparatus and imaging system
JP2018019353A (en) * 2016-07-29 2018-02-01 キヤノン株式会社 Imaging apparatus

Similar Documents

Publication Publication Date Title
US9991306B2 (en) Hybrid bonded image sensor and method of operating such image sensor
US9854194B2 (en) CMOS active pixel structure
JP5358136B2 (en) Solid-state imaging device
KR101627389B1 (en) Solid-state imaging device and camera
KR100820520B1 (en) Solid state imaging apparatus
KR20090056846A (en) Solid-state imaging device and camera
JP2008244021A (en) Solid state imaging device and camera using it
KR20100100694A (en) Image pickup apparatus
JP2008192648A (en) Imaging device
US9425225B2 (en) Solid-state imaging device
JP2012222807A (en) Pixel, pixel array, and image sensor including pixel array
WO2011058683A1 (en) Solid-state image pickup device
US20100237455A1 (en) Phototransistor having a buried collector
US10535695B2 (en) Stacked wafer arrangement for global shutter pixels utilizing capacitive deep trench isolations
US8542304B2 (en) Solid-state imaging device
TW200539440A (en) Solid-state image pickup device and module type solid-state image pickup device
CN103515405B (en) Solid imaging element and electronic equipment
WO2023054230A1 (en) Imaging device
WO2023033191A1 (en) Imaging device
Kondo et al. A 3D stacked 16Mpixel global-shutter CMOS image sensor using 4 million interconnections
JP6775206B2 (en) Imaging device
JP5231179B2 (en) Image sensor
US20070058060A1 (en) Solid state imaging device and adjustment method thereof
WO2022196155A1 (en) Imaging device and driving method therefor
US20230262364A1 (en) Imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876097

Country of ref document: EP

Kind code of ref document: A1