WO2023053968A1 - Inspection device and inspection method - Google Patents

Inspection device and inspection method Download PDF

Info

Publication number
WO2023053968A1
WO2023053968A1 PCT/JP2022/034418 JP2022034418W WO2023053968A1 WO 2023053968 A1 WO2023053968 A1 WO 2023053968A1 JP 2022034418 W JP2022034418 W JP 2022034418W WO 2023053968 A1 WO2023053968 A1 WO 2023053968A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
target
targets
electrode
contact
Prior art date
Application number
PCT/JP2022/034418
Other languages
French (fr)
Japanese (ja)
Inventor
顕太朗 小西
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to CN202280063312.XA priority Critical patent/CN117981064A/en
Priority to KR1020247012521A priority patent/KR20240068698A/en
Publication of WO2023053968A1 publication Critical patent/WO2023053968A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • G01R31/2891Features relating to contacting the IC under test, e.g. probe heads; chucks related to sensing or controlling of force, position, temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07314Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card the body of the probe being perpendicular to test object, e.g. bed of nails or probe with bump contacts on a rigid support
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • G01R31/2887Features relating to contacting the IC under test, e.g. probe heads; chucks involving moving the probe head or the IC under test; docking stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • G01R31/2889Interfaces, e.g. between probe and tester
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Definitions

  • the present disclosure relates to an inspection device and an inspection method.
  • Patent Document 1 discloses a probe card having a probe detection chamber which is formed in line with an inspection chamber for conducting an electrical characteristic inspection of a semiconductor wafer and has a supporting member which is detachably mounted while positioning the probe card at a predetermined position.
  • a detection device is disclosed. This device comprises at least two components: a probe card positioned and mounted on the predetermined position of the support via a first holder; and a probe card movably provided in the probe detection chamber. and a first imaging device that detects the tip of the probe. Further, the probe card detection device is detachably attached to the predetermined position of the support by positioning it via a second holder instead of the probe card, and corresponds to the at least two probes. a probe compensation card having at least two targets.
  • Differences between the horizontal positions of the tips of the at least two probes and the horizontal positions of the at least two targets are detected by the first imaging device in the probe detection chamber.
  • the difference is detected as a correction value for aligning at least two probes of the probe card and at least two electrode pads of the semiconductor wafer in the inspection room.
  • the technology according to the present disclosure more accurately aligns the electrodes provided on the substrate and the probes of the probe card in an inspection apparatus that inspects the substrate.
  • One aspect of the present disclosure is an inspection apparatus for inspecting a substrate, comprising: a mounting member on which the substrate is mounted; a holding unit that holds a probe card having probes that contact electrodes on the substrate; a moving mechanism for holding and moving a member in horizontal and vertical directions; a first acquisition unit fixed to the moving mechanism for acquiring the position of the probe; A second acquisition unit for acquiring the position of the electrode and a control unit, and a plurality of first targets are provided on at least one of the probe card and the holding unit, is provided with the same number of second targets as the first targets, further comprising a detection unit for simultaneously detecting the first targets and the second targets corresponding to the first targets, the control unit is a step of acquiring a representative position of the probe with respect to the probe reference position using the first acquisition unit; a step of moving the mounting member to a region below an acquisition unit and acquiring a representative position of the electrode with respect to the electrode reference position using the second acquisition unit; A step of acquiring matching positions at which a first target simultaneously has a
  • an inspection apparatus that inspects a substrate, it is possible to more accurately align the electrodes provided on the substrate and the probes of the probe card.
  • FIG. 10 is a diagram for explaining inspection processing that accompanies contact position determination processing according to the present embodiment;
  • FIG. 10 is a diagram for explaining inspection processing that accompanies contact position determination processing according to the present embodiment;
  • FIG. 10 is a diagram for explaining inspection processing that accompanies contact position determination processing according to the present embodiment;
  • FIG. 10 is a diagram for explaining inspection processing that accompanies contact position determination processing according to the present embodiment;
  • FIG. 10 is a diagram for explaining inspection processing that accompanies contact position determination processing according to the present embodiment;
  • FIG. 10 is a diagram for explaining inspection processing that accompanies contact position determination processing according to the present embodiment;
  • FIG. 10 is a diagram for explaining inspection processing that accompanies contact position determination processing according to the present embodiment;
  • FIG. 10 is a diagram for explaining inspection processing that accompanies contact position determination processing according to the present embodiment;
  • a large number of semiconductor devices with predetermined circuit patterns are formed on a semiconductor wafer (hereinafter referred to as "wafer").
  • the semiconductor devices thus formed are inspected for electrical characteristics and the like, and sorted into non-defective products and defective products.
  • Semiconductor devices are inspected, for example, by using an inspection apparatus in a state of a wafer before being divided into semiconductor devices.
  • the inspection device is provided with a probe card having a large number of probes that are needle-shaped contact terminals.
  • the wafer and the probe card are brought close to each other, and the probes of the probe card contact each electrode of the semiconductor device formed on the wafer.
  • an electrical signal is supplied to the semiconductor device through each probe from a tester provided above the probe card. Based on the electrical signal received by the tester from the semiconductor device via each probe, it is determined whether or not the semiconductor device is defective.
  • the inspection apparatus aligns the probe card and the wafer, more specifically, aligns the probes with the electrodes on the wafer.
  • the inspection apparatus aligns the probe card and the wafer, more specifically, aligns the probes with the electrodes on the wafer.
  • the technology according to the present disclosure provides a board inspection apparatus that can more accurately align the electrodes on the board and the probes of the probe card.
  • ⁇ Inspection device> 1 and 2 are a cross-sectional view and a vertical cross-sectional view, respectively, showing the outline of the configuration of the inspection apparatus according to this embodiment. Note that FIG. 2 shows only part of an aligner, which will be described later.
  • the inspection apparatus 1 shown in FIGS. 1 and 2 inspects a wafer W as a substrate, and more specifically, inspects the electrical characteristics of semiconductor devices formed on the wafer W as devices to be inspected. be.
  • the inspection apparatus 1 has a housing 10 , and the housing 10 is provided with a loading/unloading area 11 , a transport area 12 and an inspection area 13 .
  • the loading/unloading area 11 is an area where the wafer W is loaded/unloaded to/from the inspection apparatus 1 .
  • the transport area 12 is an area that connects the loading/unloading area 11 and the inspection area 13 .
  • the inspection area 13 is an area where the electrical characteristics of the semiconductor devices formed on the wafer W are inspected.
  • the loading/unloading area 11 is provided with a port 20 for receiving a cassette C housing a plurality of wafers W, a loader 21 housing a probe card described later, and a control unit 22 for controlling each component of the inspection apparatus 1.
  • the control unit 22 is configured by a computer having a CPU, a memory, etc., and has a storage unit (not shown) that stores various information.
  • the storage unit stores, for example, programs for realizing inspection processing and the like.
  • the program may be recorded in a computer-readable storage medium and installed in the control unit 22 from the storage medium.
  • the storage medium may be temporary or non-temporary. Part or all of the program may be realized by dedicated hardware (circuit board).
  • the storage unit is, for example, a storage device such as an HDD, a memory such as a RAM that temporarily stores necessary information related to program calculation, or a combination thereof.
  • a transfer device 30 that can freely move while holding a wafer W or the like is arranged.
  • the transfer device 30 transfers the wafer W between the cassette C in the port 20 of the loading/unloading area 11 and the inspection area 13 .
  • the transport device 30 transports probe cards fixed to a pogo frame, which will be described later, in the inspection area 13 and requiring maintenance to the loader 21 in the loading/unloading area 11 . Further, the transport device 30 transports new or maintained probe cards from the loader 21 into the inspection area 13 .
  • a plurality of testers 40 are provided in the inspection area 13 .
  • the inspection area 13 is divided into three in the vertical direction, and four testers arranged in the horizontal direction (the X direction in the drawing) are arranged in each divided area 13a.
  • a train of 40 testers is provided.
  • each divided area 13a is provided with an aligner 50 as one moving mechanism and one upper camera 60. As shown in FIG. The number and arrangement of the tester 40, the aligner 50, and the upper camera 60 can be arbitrarily selected.
  • the tester 40 transmits and receives electrical signals to and from the wafer W for electrical characteristic inspection.
  • the aligner 50 holds a chuck top 70, which will be described later, and moves it in the horizontal direction (the X direction and the Y direction in FIG. 1, the ⁇ direction around the Z axis in the drawing) and the vertical direction (the Z direction in the drawing). is configured to allow The aligner 50 is also used for alignment between the wafer W placed on the chuck top 70 and probes of a probe card, which will be described later.
  • the upper camera 60 is provided so as to image the downward direction.
  • the upper camera 60 is configured to be horizontally movable.
  • the upper camera 60 is positioned, for example, in an area in front of each tester 40 in the inspection where the upper camera 60 is provided, and in an area that does not overlap a probe card held by a pogo frame, which will be described later, in plan view.
  • the wafer W placed on the chuck top 70 on the aligner 50 is imaged.
  • the upper camera 60 is controlled by the control unit 22 .
  • the result of imaging by the upper camera 60 is output to the control section 22 .
  • the chuck top 70 is an example of a mounting member, on which the wafer W is mounted.
  • the chuck top 70 can hold, for example, the mounted wafer W by suction or the like.
  • the transfer apparatus 30 while the transfer apparatus 30 is transferring the wafer W toward one tester 40, the other tester 40 tests the electrical characteristics of the electronic devices formed on the other wafer W. be able to.
  • FIG. 3 is a side sectional view of the inspection area 13.
  • FIG. 4 is a cross-sectional view of the periphery of a pogo frame, which will be described later.
  • FIG. 5 is a bottom view of a probe card which will be described later. In FIG. 5, the illustration of probes, which will be described later, is omitted.
  • FIG. 6 is a top view of the chuck top 70.
  • Each divided area 13a of the inspection area 13 is provided with the aligner 50 and the upper camera 60 as described above. As shown in FIG. 3, each divided area 13a is provided with a lower camera 80, a pogo frame 90, and a probe card 100, which will be described later.
  • the aligner 50 has an X stage 51, a Y stage 52 and a Z stage 53, for example.
  • the X stage 51 moves along the guide rails 51a in the X-axis direction that constitutes the coordinate system of the movement plane (XY plane) of the aligner 50.
  • the X stage 51 is provided with a position detection mechanism (not shown) for detecting the position of the X stage 51 in the X direction, that is, the position of the chuck top 70 in the X axis direction.
  • the position detection mechanism is, for example, a linear encoder.
  • the Y stage 52 moves on the X stage 51. Specifically, it moves along the guide rails 52a in the Y-axis direction that constitutes the coordinate system of the movement plane (XY plane) of the aligner 50 .
  • the Y stage 52 is provided with a position detection mechanism (not shown) for detecting the position of the Y stage 52 in the Y axis direction, that is, the position of the chuck top 70 in the Y axis direction.
  • the position detection mechanism is, for example, a linear encoder.
  • the Z stage 53 moves in the height direction (Z direction) by means of an extensible shaft 53a that can extend and contract in the height direction (Z direction) perpendicular to the movement plane (XY plane) of the aligner 50 .
  • the Z stage 53 is provided with a position detection mechanism (not shown) for detecting the position of the Z stage 53 in the Z direction, that is, the position of the chuck top 70 in the Z direction.
  • the position detection mechanism is, for example, a linear encoder.
  • the chuck top 70 is detachably held by suction on the Z stage 53 .
  • the chuck top 70 is held by the Z stage 53 by vacuum suction or the like by a suction holding mechanism (not shown).
  • the lower camera 80 is an example of a first acquisition unit, and is used to acquire representative positions of probes provided on the probe card 100, which will be described later. Also, the lower camera 80 is an example of a first imaging unit, and captures an upward image. Note that the above-described upper camera 60 is an example of a second acquisition unit, and is for acquiring the representative position and the like of the wafer W placed on the chuck top 70 on the aligner 50 . Also, the upper camera 60 is an example of a second imaging section, and captures an image of the downward direction as described above.
  • a lower camera 80 is fixed to the aligner 50 .
  • the lower camera 80 is fixed to the Z stage 53 of the aligner 50 . Being fixed in this way, the lower camera 80 can be moved together with the chuck top 70 by the aligner 50 .
  • the lower camera 80 is positioned, for example, in an area below the probe card 100 fixed to the pogo frame 90 and images the probe card 100 .
  • the aligner 50 and the lower camera 80 are controlled by the controller 22.
  • the result of imaging by the lower camera 80 and the result of position detection by the position detection mechanisms provided on the X stage 51 , Y stage 52 and Z stage 53 are output to the control section 22 .
  • the tester 40 has a tester motherboard 41 at its bottom, as shown in FIG.
  • a plurality of inspection circuit boards (not shown) are mounted on the tester motherboard 41 in an upright state.
  • a plurality of electrodes (not shown) are provided on the bottom surface of the tester motherboard 41 .
  • a pogo frame 90 is provided below the tester 40 .
  • the pogo frame 90 is an example of a holding section and holds the probe card 100 . Also, the pogo frame 90 electrically connects the probe card 100 and the tester 40 . This pogo frame 90 has pogo pins 91 for the electrical connection described above, and more specifically, has a pogo block 92 that holds a large number of pogo pins 91 . A probe card 100 is fixed to the lower surface of the pogo frame 90 while being aligned at a predetermined position.
  • the tester motherboard 41 is vacuum-sucked to the pogo frame 90 by an exhaust mechanism (not shown), and the probe card 100 is vacuum-sucked to the pogo frame 90 .
  • the lower end of each pogo pin 91 of the pogo frame 90 is brought into contact with the corresponding electrode on the upper surface of the card body 101 of the probe card 100, and the upper end of each pogo pin 91 is It is pressed against the corresponding electrodes on the underside of the tester motherboard 41 .
  • the probe card 100 has a disk-shaped card body 101 with a plurality of electrodes provided on its upper surface.
  • a plurality of probes 102 which are needle-like contact terminals extending downward, are provided on the lower surface of the card body 101.
  • the plurality of electrodes provided on the upper surface of the card body 101 are electrically connected to corresponding probes 102, respectively.
  • the probes 102 are brought into contact with electrodes P (see FIG. 6) of semiconductor devices formed on the wafer W, respectively. Therefore, during the electrical characteristic inspection, electrical signals for inspection are transmitted and received between the tester mother board 41 and the semiconductor devices on the wafer W via the pogo pins 91, the electrodes provided on the upper surface of the card body 101, and the probes 102. be done.
  • the inspection apparatus 1 is provided with a large number of probes 102 so as to cover substantially the entire lower surface of the card body 101 in order to collectively inspect the electrical characteristics of a plurality of semiconductor devices formed on the wafer W.
  • a bellows 93 is attached to the lower surface of the pogo frame 90 .
  • the bellows 93 is a tubular extendable member that hangs down so as to surround the probe card 100 . Also, the bellows 93 attracts and holds the chuck top 70 at a position below the probe card 100 as indicated by the dotted line in FIG.
  • the bellows 93 sucks and holds the chuck top 70 to form a sealed space S surrounded by the pogo frame 90 including the probe card 100 , the bellows 93 and the chuck top 70 .
  • the contact state between the wafer W and the probes 102 can be maintained by decompressing the sealed space S with a decompression mechanism (not shown).
  • a plurality of first targets 103 are provided on the lower surface of the card body 101 of the probe card 100 as shown in FIGS. 4 and 5 in addition to the probes 102 .
  • the first target 103 is a mark for aligning the wafer W and the probe card 100 .
  • the shape of each first target 103 in plan view is, for example, circular.
  • the first targets 103 are provided at equal intervals on the same circumference around the center of the probe card 100, for example, in a region R2 surrounding the outside of the region R1 where the probes 102 are formed.
  • the number, shape and arrangement of the first targets 103 are arbitrary as long as the purpose of providing the first targets 103 can be achieved.
  • the same number of second targets 71 as the first targets 103 are provided on the upper surface of the chuck top 70 .
  • the second target 71 like the first target 103 , is a mark for aligning the wafer W and the probe card 100 .
  • the shape of each second target 71 in plan view is circular, for example.
  • the second targets 71 are provided at equal intervals on the same circumference around the center of the chuck top 70, for example, in a region R12 surrounding the outside of the region R11 on which the wafer W is placed.
  • the number, shape and arrangement of the second targets are arbitrary as long as the purpose of providing the second targets can be achieved.
  • the first target 103 and the second target 71 are provided as follows. That is, the first targets 103 and the second targets 71 are provided so that all the first targets 103 can simultaneously have a predetermined positional relationship with the second targets 71 corresponding to the first targets 103 in plan view. There is Specifically, for example, all the first targets 103 can simultaneously overlap the second targets 71 corresponding to the first targets 103 in plan view (more specifically, their centers are aligned). ), a first target 103 and a second target 71 are provided.
  • a reference matching camera 110 is provided for each second target 71, that is, each first target 103.
  • the reference matching camera 110 is an example of a detection unit, and is for detecting the corresponding first target 103 and the second target 71 corresponding to the first target 103 at the same time.
  • the reference alignment camera 110 is an example of a third imaging unit, is provided at a position below the second target 71 in the aligner 50, and images the upper side.
  • the first target 103 and the second target 71 are arranged as follows. is provided.
  • the chuck top 70 is formed with a through hole 72 penetrating vertically.
  • the through hole 72 is closed with a window member 73 made of a material transparent to the light used for imaging by the reference alignment camera 110 .
  • a second target 71 is provided on the window member 73 , and the reference alignment camera 110 images the second target 71 and the first target 103 through the through hole 72 .
  • second target 71 is made smaller than first target 103 so that fiducial camera 110 can image first target 103 through second target 71 .
  • the second target 71 may be formed in a ring shape having a hole in the center in plan view, and the reference alignment camera 110 may image the first target 103 through the hole.
  • the contact position is the position of the chuck top 70 when the electrodes P of the wafer W supported by the chuck top 70 are brought into contact with the probes 102 .
  • the lower camera 80 is used to acquire the representative position of the probe 102 with respect to the probe reference position.
  • the representative position of the probe 102 with respect to the probe reference position is, in other words, the representative position of the probe 102 in the coordinate system based on the imaging by the lower camera 80 .
  • a representative image of the electrodes P on the wafer W placed on the chuck top 70 with respect to the electrode reference position is detected.
  • a position is obtained.
  • the representative position of the electrode P with respect to the electrode reference position is, in other words, the representative position of the electrode P in the coordinate system based on the imaging by the upper camera 60 .
  • information for associating the probe reference position and the electrode reference position that is, information for associating the coordinate system based on the imaging by the lower camera 80 and the coordinate system based on the imaging by the upper camera 60 is acquired.
  • an area below the upper camera 60 (hereinafter referred to as an "alignment area") is located in an area that does not overlap the probe card 100 held by the pogo frame 90 in plan view.
  • the lower camera 80 is moved.
  • the same target 500 is imaged by the upper camera 60 and the lower camera 80, and information on the position of the Z stage 53 at that time is acquired as information for associating the probe reference position with the electrode reference position.
  • the contact position is determined based on the obtained representative position of the probe 102 with respect to the probe reference position, the representative position of the electrode P with respect to the electrode reference position, and information for associating the probe reference position with the electrode reference position. be done.
  • the housing 10 in which the aligner 50 is installed is distorted on the order of ⁇ m due to expansion or contraction due to changes in the temperature of the housing 10, changes in the center of gravity of the plurality of aligners 50 within the housing 10, and the like.
  • the information for associating the probe reference position and the electrode reference position is acquired, that is, when the lower camera 80 is positioned in the alignment area A, the chuck top 70 and the probe card 100 held by the pogo frame 90 are shown. There is a distance from the chuck top 70 . Therefore, if there is distortion as described above, it may not be possible to appropriately contact the probe 102 and the electrode P at the contact position determined by the method according to the comparative embodiment.
  • a wafer W to be inspected is carried into a desired divided area 13a.
  • the transfer device 30 and the like are controlled by the control unit 22 , and the wafer W is taken out from the cassette C in the port 20 of the loading/unloading area 11 , loaded into the middle divided area 13 a , and transferred to the aligner 50 . It is placed on the chuck top 70 which is held by suction.
  • the controller 22 uses the lower camera 80 to acquire a representative position of the probe 102 with respect to the probe reference position. Specifically, under the control of the control unit 22, the chuck top 70 is moved by the aligner 50 so that the lower camera 80 is positioned in the area below the probe card 100 as shown in FIG. Based on the result and the detection result of the position detection mechanism of the aligner 50, the representative position of the probe 102 with respect to the probe reference position is acquired.
  • the representative position of the probe 102 is, for example, the center-of-gravity position of the probe 102 at a plurality of predetermined locations.
  • the position (specifically, position coordinates) of each probe 102 is determined based on the output from the position detection mechanism of the aligner 50 when the tip of the probe 102 is positioned at the center of the image obtained by the lower camera 80. can be obtained.
  • the probe reference position may be determined in advance, and may be, for example, a designed position at the center of the probe card 100 .
  • the representative position of the first target 103 of the probe card 100 is acquired as the probe reference position by the controller 22 using the lower camera 80 .
  • the representative position of the first targets 103 is, for example, the center-of-gravity position of the plurality of first targets 103 .
  • the position of each first target 103 is obtained, for example, based on the output from the position detection mechanism of the aligner 50 when the center of the first target 103 is positioned at the center of the image obtained by the lower camera 80. be able to.
  • the representative position of the electrode P is, for example, the position of the center of gravity of the electrode P at a plurality of predetermined locations.
  • the position (specifically, position coordinates) of each electrode P is determined based on the output from the position detection mechanism of the aligner 50 when the center of the electrode P is positioned at the center of the image obtained by the upper camera 60. can be obtained.
  • the electrode reference position may be determined in advance, and may be, for example, a designed position at the center of the chuck top 70 .
  • the representative position of the second target 71 on the chuck top 70 is acquired as the electrode reference position by the controller 22 using the upper camera 60 .
  • the representative position of the second targets 71 is, for example, the center-of-gravity position of the plurality of second targets 71 .
  • the position of each second target 71 is obtained, for example, based on the output from the position detection mechanism of the aligner 50 when the center of the second target 71 is positioned at the center of the image obtained by the upper camera 60. be able to.
  • the control unit 22 uses the reference matching camera 110 to acquire the matching position.
  • the coincident position is the position of the chuck top 70 when all the first targets 103 simultaneously have a predetermined positional relationship with the second targets 71 corresponding to the first targets 103 in plan view.
  • the “predetermined positional relationship in plan view” refers to, for example, a positional relationship in which the center of the first target 103 overlaps the center of the second target 71 corresponding to the first target 103 in plan view.
  • the chuck top 70 is moved by the aligner 50 so as to be positioned below the probe card 100 as shown in FIG.
  • a matching position is acquired based on the detection result of the position detection mechanism of the aligner 50 .
  • the contact position is obtained by the control unit 22 based on the representative position of the probe 102 with respect to the probe reference position and the representative position of the electrode P with respect to the electrode reference position, and the contact position is obtained based on the matching position obtained in step S2c. is corrected. That is, the control unit 22 acquires a temporary contact position based on the representative position of the probe 102 with respect to the probe reference position and the representative position of the electrode P with respect to the electrode reference position, and the temporary contact position is obtained in step S2c. The corrected temporary contact position is determined as the contact position. Correcting the tentative contact position based on the matching position means, in other words, that the probe reference position and the electrode reference position are associated with each other.
  • the matching position information is information for associating the probe reference position with the electrode reference position.
  • the control unit 22 corrects the provisional contact position B3 based on the positional deviation D of the matching position B2 from the contact reference position B1. is determined as the contact position B4.
  • the contact reference position B1 is predetermined, for example. Further, the contact reference position B1 is set by the control unit 22 as (1) It may be obtained based on the representative position of the first target 103 of the probe card 100 as the probe reference position and the predetermined electrode reference position, (2) may be obtained based on a predetermined probe reference position and a representative position of the second target 71 on the chuck top 70 as an electrode reference position; (3) It may be obtained based on the representative position of the first target 103 of the probe card 100 as the probe reference position and the representative position of the second target 71 of the chuck top 70 as the electrode reference position.
  • the controller 22 acquires the horizontal positional change of the second target 71 with respect to the probe card 100 using the reference alignment camera 110, and based on the acquired result, the position of the chuck top 70 is determined. is corrected. Specifically, during the ascent, the position change in the horizontal direction is acquired by the control unit 22 using the reference matching camera 110, and the position of the chuck top 70 is corrected from the contact position so as to cancel this position change.
  • a pattern such as a square pattern may be provided around the first target 103 on the probe card 100 so that the change in the horizontal position of the second target 71 with respect to the probe card 100 can be easily obtained.
  • Step S4 Adsorption of chuck top 70
  • the chuck top 70 is attracted to the pogo frame 90 under the control of the controller 22 .
  • a decompression mechanism (not shown) or the like is controlled, and the Z stage 53 of the aligner 50 is lowered. It is separated from the aligner 50 and attached to the pogo frame 90 .
  • Step S5 Inspection After the chuck top 70 and the aligner 50 are separated, the electrical characteristics of the electronic devices formed on the wafer W are inspected. An electrical signal for electrical characteristic inspection is input from the tester 40 to the electronic device via the pogo pins 91, the probes 102, and the like.
  • the wafer W after inspection is unloaded. Specifically, the chuck top 70 sucked to the pogo frame 90 is delivered to and held by the aligner 50 . Also, the inspected wafer W on the chuck top 70 held by the aligner 50 is unloaded from the inspection area 13 by the transport device 30 and returned to the cassette C in the port 20 of the loading/unloading area 11 . During the inspection by one tester 40 , the aligner 50 transports the wafer W to be inspected to another tester 40 and recovers the wafer W after inspection from the other tester 40 .
  • the moving distance from the position where the information for associating the probe reference position and the electrode reference position to the contact position is shorter than in the comparison mode. Therefore, even if the housing 10 is distorted as described above, the probes 102 and the electrodes P can be brought into contact with each other more appropriately.
  • the representative position of the first target 103 may be used as the probe reference position.
  • the probes 102 and the electrodes P can be brought into contact more appropriately. For example, even when the probe card 100 expands or contracts due to a temperature change of the probe card 100, the probes 102 and the electrodes P can be properly contacted.
  • the representative position of the second target 71 may be used as the electrode reference position.
  • the probes 102 and the electrodes P can be brought into more appropriate contact regardless of the state of the chuck top 70 .
  • the probes 102 and the electrodes P can be properly brought into contact with each other.
  • the horizontal position change of the second target 71 with respect to the probe card 100 is acquired using the reference alignment camera 110, and based on the acquired result, the chuck top 70 is The position may be modified. As a result, the probes 102 and the electrodes P can be properly brought into contact with each other even when the positional change occurs while the chuck top 70 is ascending.
  • the first target 103 is provided on the probe card 100 in the above example, the first target may be provided on the pogo frame 90 . Specifically, the first target may be provided within a region surrounded by the bellows 93 on the lower surface of the pogo frame 90 .
  • the aligner 50 is provided with the reference matching camera 110 for simultaneously detecting the first target 103 and the second target 71, and the first target 103 is imaged through the second target 71.
  • the reference matching camera for the simultaneous detection may be provided on the pogo frame 90 .
  • the control unit 22 uses the reference alignment camera 110 to acquire the change in the horizontal position of the first target 103 with respect to the chuck top 70, and based on the acquisition result, , the position of the chuck top 70 may be corrected.
  • control unit 50 aligner 60 upper camera 70 chuck top 71 second target 80 lower camera 90 pogo frame 100 probe card 102 probe 103 first target 110 reference matching camera B2 match position B3 contact position B4 contact position P electrode W wafer

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

Provided is an inspection device for inspecting a substrate, comprising: a mounting member on which a substrate is mounted; a holding unit for holding a probe card having a probe that contacts an electrode on the substrate; a movement mechanism for holding and moving the mounting member in a horizontal direction and a vertical direction; a first acquiring unit fixed to the movement mechanism to acquire the position of the probe; a second acquiring unit for acquiring the position of the electrode on the substrate mounted on the mounting member; and a control unit. At least one of the probe card and the holding unit has a plurality of first targets, and the mounting member has the same number of second targets as the first targets. The inspection device further comprises a detection unit for simultaneously detecting the first targets and the second targets corresponding to the first targets. The control unit is configured to perform: a step for using the first acquiring unit to acquire a representative position of the probe with respect to a probe reference position; a step for moving the mounting member to a region under the second acquiring unit that is positioned in a region not overlapping, in plan view, the probe card being held by the holding unit; a step for using the second acquiring unit to acquire a representative position of the electrode with respect to the electrode reference position; a step for using the detection unit to acquire a matching position in which all the first targets simultaneously have a predetermined positional relationship, in plan view, with the second targets corresponding to the first targets; and a step for, on the basis of the representative position of the probe and the representative position of the electrode, acquiring a contact position that is the position of the mounting member when the probe and the electrode are contacted with each other, and correcting the contact position on the basis of the matching position.

Description

検査装置及び検査方法Inspection device and inspection method
 本開示は、検査装置及び検査方法に関する。 The present disclosure relates to an inspection device and an inspection method.
 特許文献1には、半導体ウェハの電気的特性検査を行う検査室に即して形成され且つプローブカードを所定位置に位置決めして着脱可能に装着される支持体を有するプローブ検出室を備えるプローブカード検出装置が開示されている。この装置は、上記支持体の上記所定位置に対して第1の保持体を介して位置決めして装着されるプローブカードと、上記プローブ検出室内に移動可能に設けられ且つ上記プローブカードの少なくとも2つのプローブの針先を検出する第1の撮像装置と、をさらに備える。また、上記プローブカード検出装置は、上記プローブカードに代えて上記支持体の上記所定位置に対して第2の保持体を介して位置決めして着脱可能に装着され且つ上記少なくとも2つのプローブに対応する少なくとも2つのターゲットを有するプローブ補正カードと、を備える。上記プローブ検出室内で、上記少なくとも2つのプローブの針先の水平位置と上記少なくとも2つのターゲットの水平位置との差が、上記第1の撮像装置で検出される。上記差は、上記検査室における上記プローブカードの少なくとも2つのプローブと上記半導体ウェハの少なくとも2つの電極パッドの位置合わせを行うための補正値として検出される。 Patent Document 1 discloses a probe card having a probe detection chamber which is formed in line with an inspection chamber for conducting an electrical characteristic inspection of a semiconductor wafer and has a supporting member which is detachably mounted while positioning the probe card at a predetermined position. A detection device is disclosed. This device comprises at least two components: a probe card positioned and mounted on the predetermined position of the support via a first holder; and a probe card movably provided in the probe detection chamber. and a first imaging device that detects the tip of the probe. Further, the probe card detection device is detachably attached to the predetermined position of the support by positioning it via a second holder instead of the probe card, and corresponds to the at least two probes. a probe compensation card having at least two targets. Differences between the horizontal positions of the tips of the at least two probes and the horizontal positions of the at least two targets are detected by the first imaging device in the probe detection chamber. The difference is detected as a correction value for aligning at least two probes of the probe card and at least two electrode pads of the semiconductor wafer in the inspection room.
特開2012-204695号公報JP 2012-204695 A
 本開示にかかる技術は、基板を検査する検査装置において、基板に設けられた電極とプローブカードのプローブとの位置合わせをより正確に行う。 The technology according to the present disclosure more accurately aligns the electrodes provided on the substrate and the probes of the probe card in an inspection apparatus that inspects the substrate.
 本開示の一態様は、基板を検査する検査装置であって、基板が載置される載置部材と、基板上の電極に接触するプローブを有するプローブカードを保持する保持部と、前記載置部材を保持し水平方向及び上下方向に移動させる移動機構と、前記移動機構に固定され、前記プローブの位置を取得するための第1取得部と、前記載置部材に載置された基板上の前記電極の位置を取得するための第2取得部と、制御部と、を備え、前記プローブカードまたは前記保持部の少なくともいずれか一方に、第1ターゲットが複数設けられており、前記載置部材に、第2ターゲットが前記第1ターゲットと同数設けられており、前記第1ターゲットと、当該第1ターゲットに対応する前記第2ターゲットとを同時に検出するための検出部をさらに備え、前記制御部は、前記第1取得部を用いて、プローブ基準位置に対する前記プローブの代表位置を取得する工程と、前記保持部に保持された前記プローブカードと平面視では重ならない領域に位置する、前記第2取得部の下方の領域に、前記載置部材を移動させ、前記第2取得部を用いて、電極基準位置に対する前記電極の代表位置を取得する工程と、前記検出部を用いて、全ての前記第1ターゲットが同時に当該第1ターゲットに対応する前記第2ターゲットと平面視で所定の位置関係となる、合致位置を取得する工程と、前記プローブの代表位置と前記電極の代表位置とに基づいて、前記プローブと前記電極とを接触させるときの前記載置部材の位置である接触位置を取得し、前記合致位置に基づき前記接触位置を補正する工程と、を実行するように構成されている。 One aspect of the present disclosure is an inspection apparatus for inspecting a substrate, comprising: a mounting member on which the substrate is mounted; a holding unit that holds a probe card having probes that contact electrodes on the substrate; a moving mechanism for holding and moving a member in horizontal and vertical directions; a first acquisition unit fixed to the moving mechanism for acquiring the position of the probe; A second acquisition unit for acquiring the position of the electrode and a control unit, and a plurality of first targets are provided on at least one of the probe card and the holding unit, is provided with the same number of second targets as the first targets, further comprising a detection unit for simultaneously detecting the first targets and the second targets corresponding to the first targets, the control unit is a step of acquiring a representative position of the probe with respect to the probe reference position using the first acquisition unit; a step of moving the mounting member to a region below an acquisition unit and acquiring a representative position of the electrode with respect to the electrode reference position using the second acquisition unit; A step of acquiring matching positions at which a first target simultaneously has a predetermined positional relationship with the second target corresponding to the first target in plan view; and based on the representative position of the probe and the representative position of the electrode. , acquiring a contact position, which is the position of the mounting member when the probe and the electrode are brought into contact, and correcting the contact position based on the matching position.
 本開示によれば、基板を検査する検査装置において、基板に設けられた電極とプローブカードのプローブとの位置合わせをより正確に行うことができる。 According to the present disclosure, in an inspection apparatus that inspects a substrate, it is possible to more accurately align the electrodes provided on the substrate and the probes of the probe card.
本実施形態にかかる検査装置の構成の概略を示す横断面図である。It is a cross-sectional view showing the outline of the configuration of the inspection apparatus according to the present embodiment. 本実施形態にかかる検査装置の構成の概略を示す縦断面図である。It is a longitudinal section showing an outline of composition of an inspection device concerning this embodiment. 検査領域の側断面図である。FIG. 3 is a side cross-sectional view of an inspection area; ポゴフレームの周辺の断面図である。FIG. 4 is a cross-sectional view of the periphery of the pogo frame; プローブカードの下面図である。It is a bottom view of a probe card. チャックトップ70の上面図である。4 is a top view of the chuck top 70; FIG. 比較の形態にかかる接触位置の決定方法を説明するための図である。It is a figure for demonstrating the determination method of the contact position concerning a form of comparison. 本実施の形態にかかる、接触位置の決定処理を伴う検査処理を説明するための図である。FIG. 10 is a diagram for explaining inspection processing that accompanies contact position determination processing according to the present embodiment; 本実施の形態にかかる、接触位置の決定処理を伴う検査処理を説明するための図である。FIG. 10 is a diagram for explaining inspection processing that accompanies contact position determination processing according to the present embodiment; 本実施の形態にかかる、接触位置の決定処理を伴う検査処理を説明するための図である。FIG. 10 is a diagram for explaining inspection processing that accompanies contact position determination processing according to the present embodiment; 本実施の形態にかかる、接触位置の決定処理を伴う検査処理を説明するための図である。FIG. 10 is a diagram for explaining inspection processing that accompanies contact position determination processing according to the present embodiment;
 半導体製造プロセスでは、半導体ウェハ(以下、「ウェハ」という。)上に所定の回路パターンを持つ多数の半導体デバイスが形成される。形成された半導体デバイスは、電気的特性等の検査が行われ、良品と不良品とに選別される。半導体デバイスの検査は、例えば、各半導体デバイスに分割される前のウェハの状態で、検査装置を用いて行われる。 In the semiconductor manufacturing process, a large number of semiconductor devices with predetermined circuit patterns are formed on a semiconductor wafer (hereinafter referred to as "wafer"). The semiconductor devices thus formed are inspected for electrical characteristics and the like, and sorted into non-defective products and defective products. Semiconductor devices are inspected, for example, by using an inspection apparatus in a state of a wafer before being divided into semiconductor devices.
 検査装置には、多数の針状の接触端子であるプローブを多数有するプローブカードが設けられている。電気的特性の検査の際はまず、ウェハとプローブカードとが近づけられ、ウェハに形成されている半導体デバイスの各電極にプローブカードのプローブが接触する。この状態で、プローブカードの上方に設けられたテスタから各プローブを介して半導体デバイスに電気信号が供給される。そして、各プローブを介して半導体デバイスからテスタが受信した電気信号に基づいて、当該半導体デバイスが不良品か否か判別される。 The inspection device is provided with a probe card having a large number of probes that are needle-shaped contact terminals. When inspecting the electrical characteristics, first, the wafer and the probe card are brought close to each other, and the probes of the probe card contact each electrode of the semiconductor device formed on the wafer. In this state, an electrical signal is supplied to the semiconductor device through each probe from a tester provided above the probe card. Based on the electrical signal received by the tester from the semiconductor device via each probe, it is determined whether or not the semiconductor device is defective.
 このような電気的特性検査が適切に行われるよう、検査装置では、プローブカードとウェハとの位置合わせ、具体的には、プローブとウェハ上の電極との位置合わせが行われている。近年では、電子デバイスのさらなる集積化により小電極化が図られていること等から、上述の位置合わせをより正確に行うことが求められてきている。 In order to properly perform such an electrical property inspection, the inspection apparatus aligns the probe card and the wafer, more specifically, aligns the probes with the electrodes on the wafer. In recent years, as electronic devices have become more integrated and electrodes have become smaller, it has become necessary to perform the above-described alignment more accurately.
 本開示にかかる技術は、基板上の電極とプローブカードのプローブとの位置合わせをより正確に行うことが可能な、基板の検査装置を提供する。 The technology according to the present disclosure provides a board inspection apparatus that can more accurately align the electrodes on the board and the probes of the probe card.
 以下、本実施形態にかかる検査装置及び検査方法について、図面を参照しながら説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。 The inspection apparatus and inspection method according to this embodiment will be described below with reference to the drawings. In the present specification and drawings, elements having substantially the same functional configuration are denoted by the same reference numerals, thereby omitting redundant description.
<検査装置>
 図1及び図2はそれぞれ、本実施形態にかかる検査装置の構成の概略を示す横断面図及び縦断面図である。なお、図2では、後述のアライナについてはその一部のみを示している。
<Inspection device>
1 and 2 are a cross-sectional view and a vertical cross-sectional view, respectively, showing the outline of the configuration of the inspection apparatus according to this embodiment. Note that FIG. 2 shows only part of an aligner, which will be described later.
 図1及び図2の検査装置1は、基板としてのウェハWを検査するものであり、具体的には、ウェハWに形成された検査対象デバイスとしての半導体デバイスの電気的特性検査を行うものである。検査装置1は、筐体10を有し、該筐体10には、搬入出領域11、搬送領域12、検査領域13が設けられている。搬入出領域11は、検査装置1に対してウェハWの搬入出が行われる領域である。搬送領域12は、搬入出領域11と検査領域13とを接続する領域である。また、検査領域13は、ウェハWに形成された半導体デバイスの電気的特性検査が行われる領域である。 The inspection apparatus 1 shown in FIGS. 1 and 2 inspects a wafer W as a substrate, and more specifically, inspects the electrical characteristics of semiconductor devices formed on the wafer W as devices to be inspected. be. The inspection apparatus 1 has a housing 10 , and the housing 10 is provided with a loading/unloading area 11 , a transport area 12 and an inspection area 13 . The loading/unloading area 11 is an area where the wafer W is loaded/unloaded to/from the inspection apparatus 1 . The transport area 12 is an area that connects the loading/unloading area 11 and the inspection area 13 . Also, the inspection area 13 is an area where the electrical characteristics of the semiconductor devices formed on the wafer W are inspected.
 搬入出領域11には、複数のウェハWを収容したカセットCを受け入れるポート20、後述のプローブカードを収容するローダ21、検査装置1の各構成要素の制御等を行う制御部22が設けられている。制御部22は、例えばCPUやメモリ等を備えたコンピュータにより構成され、各種情報を記憶する記憶部(図示せず)を有している。記憶部には、例えば、検査処理等を実現するプログラムが格納されている。なお、上記プログラムは、コンピュータに読み取り可能な記憶媒体に記録されていたものであって、当該記憶媒体から上記制御部22にインストールされたものであってもよい。上記記憶媒体は一時的なものであっても非一時的なものであってもよい。なお、プログラムの一部または全ては専用ハードウェア(回路基板)で実現してもよい。また、上記記憶部は、例えばHDD等のストレージデバイス、プログラムの演算に係る一時的に必要な情報を記憶するRAM等のメモリ、またはこれらの組み合わせである。 The loading/unloading area 11 is provided with a port 20 for receiving a cassette C housing a plurality of wafers W, a loader 21 housing a probe card described later, and a control unit 22 for controlling each component of the inspection apparatus 1. there is The control unit 22 is configured by a computer having a CPU, a memory, etc., and has a storage unit (not shown) that stores various information. The storage unit stores, for example, programs for realizing inspection processing and the like. The program may be recorded in a computer-readable storage medium and installed in the control unit 22 from the storage medium. The storage medium may be temporary or non-temporary. Part or all of the program may be realized by dedicated hardware (circuit board). The storage unit is, for example, a storage device such as an HDD, a memory such as a RAM that temporarily stores necessary information related to program calculation, or a combination thereof.
 搬送領域12には、ウェハW等を保持した状態で自在に移動可能な搬送装置30が配置されている。この搬送装置30は、搬入出領域11のポート20内のカセットCと、検査領域13との間でウェハWの搬送を行う。また、搬送装置30は、検査領域13内の後述のポゴフレームに固定されたプローブカードのうちメンテナンスを必要とするものを搬入出領域11のローダ21へ搬送する。さらに、搬送装置30は、新規な又はメンテナンス済みのプローブカードをローダ21から検査領域13内へ搬送する。 In the transfer area 12, a transfer device 30 that can freely move while holding a wafer W or the like is arranged. The transfer device 30 transfers the wafer W between the cassette C in the port 20 of the loading/unloading area 11 and the inspection area 13 . Further, the transport device 30 transports probe cards fixed to a pogo frame, which will be described later, in the inspection area 13 and requiring maintenance to the loader 21 in the loading/unloading area 11 . Further, the transport device 30 transports new or maintained probe cards from the loader 21 into the inspection area 13 .
 検査領域13は、テスタ40が複数設けられている。具体的には、検査領域13は、例えば、図2に示すように、鉛直方向に3つに分割され、各分割領域13aには、水平方向(図のX方向)に配列された4つのテスタ40からなるテスタ列が設けられている。また、各分割領域13aには、1つの移動機構としてのアライナ50と、1つの上カメラ60が設けられている。なお、テスタ40、アライナ50、上カメラ60の数や配置は任意に選択できる。 A plurality of testers 40 are provided in the inspection area 13 . Specifically, for example, as shown in FIG. 2, the inspection area 13 is divided into three in the vertical direction, and four testers arranged in the horizontal direction (the X direction in the drawing) are arranged in each divided area 13a. A train of 40 testers is provided. Further, each divided area 13a is provided with an aligner 50 as one moving mechanism and one upper camera 60. As shown in FIG. The number and arrangement of the tester 40, the aligner 50, and the upper camera 60 can be arbitrarily selected.
 テスタ40は、電気的特性検査用の電気信号をウェハWとの間で送受するものである。
 アライナ50は、後述のチャックトップ70を保持して、水平方向(図1のX方向及びY方向、図のZ軸を中心としたθ方向)及び上下方向(図のZ方向)に移動させることが可能に構成されている。また、このアライナ50は、チャックトップ70に載置されたウェハWと後述のプローブカードのプローブとの位置合わせに用いられる。
The tester 40 transmits and receives electrical signals to and from the wafer W for electrical characteristic inspection.
The aligner 50 holds a chuck top 70, which will be described later, and moves it in the horizontal direction (the X direction and the Y direction in FIG. 1, the θ direction around the Z axis in the drawing) and the vertical direction (the Z direction in the drawing). is configured to allow The aligner 50 is also used for alignment between the wafer W placed on the chuck top 70 and probes of a probe card, which will be described later.
 上カメラ60は、下方を撮像するように設けられている。一実施形態において、上カメラ60は、水平に移動自在に構成されている。上カメラ60は、例えば、当該上カメラ60が設けられた検査内の各テスタ40の前の領域であって、後述のポゴフレームに保持されたプローブカードと平面視では重ならない領域に位置して、アライナ50上のチャックトップ70に載置されたウェハWを撮像する。
 なお、上カメラ60は、制御部22により制御される。また、上カメラ60による撮像結果は制御部22に出力される。
The upper camera 60 is provided so as to image the downward direction. In one embodiment, the upper camera 60 is configured to be horizontally movable. The upper camera 60 is positioned, for example, in an area in front of each tester 40 in the inspection where the upper camera 60 is provided, and in an area that does not overlap a probe card held by a pogo frame, which will be described later, in plan view. , the wafer W placed on the chuck top 70 on the aligner 50 is imaged.
Note that the upper camera 60 is controlled by the control unit 22 . In addition, the result of imaging by the upper camera 60 is output to the control section 22 .
 チャックトップ70は、載置部材の一例であり、ウェハWが載置される。チャックトップ70は、例えば、載置されたウェハWを吸着等により保持することができる。 The chuck top 70 is an example of a mounting member, on which the wafer W is mounted. The chuck top 70 can hold, for example, the mounted wafer W by suction or the like.
 この検査装置1では、搬送装置30が一のテスタ40へ向けてウェハWを搬送している間に、他のテスタ40は他のウェハWに形成された電子デバイスの電気的特性の検査を行うことができる。 In this inspection apparatus 1, while the transfer apparatus 30 is transferring the wafer W toward one tester 40, the other tester 40 tests the electrical characteristics of the electronic devices formed on the other wafer W. be able to.
<検査領域>
 続いて、図3~図6を用いて、検査領域13のより詳細な構成について説明する。図3は、検査領域13の側断面図である。図4は、後述のポゴフレームの周辺の断面図である。図5は、後述のプローブカードの下面図である。図5では、後述のプローブの図示は省略している。図6は、チャックトップ70の上面図である。
<Inspection area>
Next, a more detailed configuration of the inspection area 13 will be described with reference to FIGS. 3 to 6. FIG. FIG. 3 is a side sectional view of the inspection area 13. As shown in FIG. FIG. 4 is a cross-sectional view of the periphery of a pogo frame, which will be described later. FIG. 5 is a bottom view of a probe card which will be described later. In FIG. 5, the illustration of probes, which will be described later, is omitted. FIG. 6 is a top view of the chuck top 70. FIG.
 検査領域13の各分割領域13aには、前述のように、アライナ50及び上カメラ60が設けられている。また、図3に示すように、各分割領域13aには、後述の下カメラ80、ポゴフレーム90及びプローブカード100が設けられている。 Each divided area 13a of the inspection area 13 is provided with the aligner 50 and the upper camera 60 as described above. As shown in FIG. 3, each divided area 13a is provided with a lower camera 80, a pogo frame 90, and a probe card 100, which will be described later.
 アライナ50は、例えばXステージ51、Yステージ52及びZステージ53を有する。 The aligner 50 has an X stage 51, a Y stage 52 and a Z stage 53, for example.
 Xステージ51は、アライナ50による移動平面(XY平面)の座標系を構成するX軸方向に、ガイドレール51aに沿って移動する。このXステージ51に対しては、Xステージ51のX方向にかかる位置、すなわちチャックトップ70のX軸方向にかかる位置を検出する位置検出機構(図示せず)が設けられている。上記位置検出機構は、例えばリニアエンコーダである。 The X stage 51 moves along the guide rails 51a in the X-axis direction that constitutes the coordinate system of the movement plane (XY plane) of the aligner 50. The X stage 51 is provided with a position detection mechanism (not shown) for detecting the position of the X stage 51 in the X direction, that is, the position of the chuck top 70 in the X axis direction. The position detection mechanism is, for example, a linear encoder.
 Yステージ52は、Xステージ51上を移動する。具体的には、アライナ50による移動平面(XY平面)の座標系を構成するY軸方向に、ガイドレール52aに沿って移動する。このYステージ52に対しては、Yステージ52のY軸方向にかかる位置、すなわちチャックトップ70のY軸方向にかかる位置を検出する位置検出機構(図示せず)が設けられている。上記位置検出機構は、例えばリニアエンコーダである。 The Y stage 52 moves on the X stage 51. Specifically, it moves along the guide rails 52a in the Y-axis direction that constitutes the coordinate system of the movement plane (XY plane) of the aligner 50 . The Y stage 52 is provided with a position detection mechanism (not shown) for detecting the position of the Y stage 52 in the Y axis direction, that is, the position of the chuck top 70 in the Y axis direction. The position detection mechanism is, for example, a linear encoder.
 Zステージ53は、アライナ50による移動平面(XY平面)と直交する高さ方向(Z方向)に伸縮自在な伸縮軸53aにより、上記高さ方向(Z方向)に移動する。このZステージ53に対しては、Zステージ53のZ方向にかかる位置、すなわちチャックトップ70のZ方向にかかる位置を検出する位置検出機構(図示せず)が設けられている。上記位置検出機構は、例えばリニアエンコーダである。
 また、Zステージ53上にチャックトップ70が着脱自在に吸着保持される。Zステージ53によるチャックトップ70の吸着保持は、吸着保持機構(図示せず)による真空吸着等により行われる。
The Z stage 53 moves in the height direction (Z direction) by means of an extensible shaft 53a that can extend and contract in the height direction (Z direction) perpendicular to the movement plane (XY plane) of the aligner 50 . The Z stage 53 is provided with a position detection mechanism (not shown) for detecting the position of the Z stage 53 in the Z direction, that is, the position of the chuck top 70 in the Z direction. The position detection mechanism is, for example, a linear encoder.
Also, the chuck top 70 is detachably held by suction on the Z stage 53 . The chuck top 70 is held by the Z stage 53 by vacuum suction or the like by a suction holding mechanism (not shown).
 下カメラ80は、第1取得部の一例であり、プローブカード100に設けられた後述のプローブの代表位置等を取得するためのものである。また、下カメラ80は、第1撮像部の一例であり、上方を撮像する。なお、前述の上カメラ60は、第2取得部の一例であり、アライナ50上のチャックトップ70に載置されたウェハWの代表位置等を取得するためのものである。また、上カメラ60は、第2撮像部の一例であり、前述のように下方を撮像する。 The lower camera 80 is an example of a first acquisition unit, and is used to acquire representative positions of probes provided on the probe card 100, which will be described later. Also, the lower camera 80 is an example of a first imaging unit, and captures an upward image. Note that the above-described upper camera 60 is an example of a second acquisition unit, and is for acquiring the representative position and the like of the wafer W placed on the chuck top 70 on the aligner 50 . Also, the upper camera 60 is an example of a second imaging section, and captures an image of the downward direction as described above.
 下カメラ80は、アライナ50に固定されている。具体的には、下カメラ80は、アライナ50のZステージ53に固定されている。このように固定されているため、下カメラ80は、アライナ50により、チャックトップ70と共に移動可能である。
 下カメラ80は、例えば、ポゴフレーム90に固定されたプローブカード100の下方の領域に位置して、当該プローブカード100を撮像する。
A lower camera 80 is fixed to the aligner 50 . Specifically, the lower camera 80 is fixed to the Z stage 53 of the aligner 50 . Being fixed in this way, the lower camera 80 can be moved together with the chuck top 70 by the aligner 50 .
The lower camera 80 is positioned, for example, in an area below the probe card 100 fixed to the pogo frame 90 and images the probe card 100 .
 なお、アライナ50や下カメラ80は、制御部22により制御される。また、下カメラ80による撮像結果と、Xステージ51、Yステージ52及びZステージ53に設けられた位置検出機構による位置検出結果とは、制御部22に出力される。 The aligner 50 and the lower camera 80 are controlled by the controller 22. In addition, the result of imaging by the lower camera 80 and the result of position detection by the position detection mechanisms provided on the X stage 51 , Y stage 52 and Z stage 53 are output to the control section 22 .
 テスタ40は、図4に示すように、テスタマザーボード41を底部に有する。テスタマザーボード41には、複数の検査回路基板(図示せず)が立設状態で装着されている。また、テスタマザーボード41の底面には複数の電極(図示せず)が設けられている。
 さらに、テスタ40の下方には、ポゴフレーム90が設けられている。
The tester 40 has a tester motherboard 41 at its bottom, as shown in FIG. A plurality of inspection circuit boards (not shown) are mounted on the tester motherboard 41 in an upright state. A plurality of electrodes (not shown) are provided on the bottom surface of the tester motherboard 41 .
Furthermore, a pogo frame 90 is provided below the tester 40 .
 ポゴフレーム90は、保持部の一例であり、プローブカード100を保持する。また、ポゴフレーム90は、プローブカード100とテスタ40とを電気的に接続する。このポゴフレーム90は、上述の電気的な接続のために、ポゴピン91を有し、具体的には、多数のポゴピン91を保持するポゴブロック92を有する。
 ポゴフレーム90の下面には、プローブカード100が、所定の位置に位置合わせされた状態で固定される。
The pogo frame 90 is an example of a holding section and holds the probe card 100 . Also, the pogo frame 90 electrically connects the probe card 100 and the tester 40 . This pogo frame 90 has pogo pins 91 for the electrical connection described above, and more specifically, has a pogo block 92 that holds a large number of pogo pins 91 .
A probe card 100 is fixed to the lower surface of the pogo frame 90 while being aligned at a predetermined position.
 なお、排気機構(図示せず)によって、テスタマザーボード41はポゴフレーム90に真空吸着され、プローブカード100は、ポゴフレーム90に真空吸着される。これら真空吸着を行うための真空吸引力により、ポゴフレーム90の各ポゴピン91の下端は、プローブカード100の後述のカード本体101の上面における、対応する電極に接触し、各ポゴピン91の上端は、テスタマザーボード41の下面の対応する電極に押し付けられる。 The tester motherboard 41 is vacuum-sucked to the pogo frame 90 by an exhaust mechanism (not shown), and the probe card 100 is vacuum-sucked to the pogo frame 90 . The lower end of each pogo pin 91 of the pogo frame 90 is brought into contact with the corresponding electrode on the upper surface of the card body 101 of the probe card 100, and the upper end of each pogo pin 91 is It is pressed against the corresponding electrodes on the underside of the tester motherboard 41 .
 プローブカード100は、複数の電極が上面に設けられた円板状のカード本体101を有する。カード本体101の下面には、下方へ向けて延びる針状の接触端子であるプローブ102が複数設けられている。
 カード本体101の上面に設けられた上述の複数の電極はそれぞれ対応するプローブ102と電気的に接続されている。また、検査時には、プローブ102はそれぞれ、ウェハWに形成された半導体デバイスの電極P(図6参照)と接触する。したがって、電気的特性検査時には、ポゴピン91、カード本体101の上面に設けられた電極及びプローブ102を介して、テスタマザーボード41とウェハW上の半導体デバイスとの間で、検査にかかる電気信号が送受される。
The probe card 100 has a disk-shaped card body 101 with a plurality of electrodes provided on its upper surface. A plurality of probes 102, which are needle-like contact terminals extending downward, are provided on the lower surface of the card body 101. As shown in FIG.
The plurality of electrodes provided on the upper surface of the card body 101 are electrically connected to corresponding probes 102, respectively. During inspection, the probes 102 are brought into contact with electrodes P (see FIG. 6) of semiconductor devices formed on the wafer W, respectively. Therefore, during the electrical characteristic inspection, electrical signals for inspection are transmitted and received between the tester mother board 41 and the semiconductor devices on the wafer W via the pogo pins 91, the electrodes provided on the upper surface of the card body 101, and the probes 102. be done.
 なお、検査装置1は、ウェハWに形成された複数の半導体デバイスの電気的特性検査を一括で行うために、プローブ102は、カード本体101の下面略全体を覆うように多数設けられている。 Note that the inspection apparatus 1 is provided with a large number of probes 102 so as to cover substantially the entire lower surface of the card body 101 in order to collectively inspect the electrical characteristics of a plurality of semiconductor devices formed on the wafer W.
 また、ポゴフレーム90の下面には、ベローズ93が取り付けられている。ベローズ93は、プローブカード100を囲繞するように垂下する筒状の伸縮自在な部材である。また、ベローズ93は、図4において点線で示すように、プローブカード100の下方の位置にチャックトップ70を吸着保持する。 A bellows 93 is attached to the lower surface of the pogo frame 90 . The bellows 93 is a tubular extendable member that hangs down so as to surround the probe card 100 . Also, the bellows 93 attracts and holds the chuck top 70 at a position below the probe card 100 as indicated by the dotted line in FIG.
 また、ベローズ93は、チャックトップ70を吸着保持することにより、プローブカード100を含むポゴフレーム90、ベローズ93及びチャックトップ70で囲まれる密閉空間Sを形成する。密閉空間Sを減圧機構(図示せず)により減圧することで、ウェハWとプローブ102との接触状態を維持することができる。 In addition, the bellows 93 sucks and holds the chuck top 70 to form a sealed space S surrounded by the pogo frame 90 including the probe card 100 , the bellows 93 and the chuck top 70 . The contact state between the wafer W and the probes 102 can be maintained by decompressing the sealed space S with a decompression mechanism (not shown).
 さらに、本実施形態では、プローブカード100のカード本体101の下面に、プローブ102の他、図4及び図5に示すように、第1ターゲット103が複数設けられている。第1ターゲット103は、ウェハWとプローブカード100との位置合わせを行うためのマークである。各第1ターゲット103の平面視における形状は例えば円形状である。また、各第1ターゲット103は、例えば、プローブ102が形成されている領域R1の外側を囲う領域R2に、プローブカード100の中心を中心とした同一円周上に等間隔で設けられている。
 第1ターゲット103の数、形状及び配置は、第1ターゲット103を設けた目的を達成することが可能な範囲で任意である。
Furthermore, in the present embodiment, a plurality of first targets 103 are provided on the lower surface of the card body 101 of the probe card 100 as shown in FIGS. 4 and 5 in addition to the probes 102 . The first target 103 is a mark for aligning the wafer W and the probe card 100 . The shape of each first target 103 in plan view is, for example, circular. Further, the first targets 103 are provided at equal intervals on the same circumference around the center of the probe card 100, for example, in a region R2 surrounding the outside of the region R1 where the probes 102 are formed.
The number, shape and arrangement of the first targets 103 are arbitrary as long as the purpose of providing the first targets 103 can be achieved.
 また、本実施形態では、図6に示すように、チャックトップ70の上面に、第2ターゲット71が第1ターゲット103と同数設けられている。第2ターゲット71は、第1ターゲット103と同様、ウェハWとプローブカード100との位置合わせを行うためのマークである。各第2ターゲット71の平面視における形状は例えば円形状である。また、各第2ターゲット71は、例えば、ウェハWが載置される領域R11の外側を囲う領域R12に、チャックトップ70の中心を中心とした同一円周上に等間隔で設けられている。
 第2ターゲットの数、形状及び配置は、第2ターゲットを設けた目的を達成することが可能な範囲で任意である。
Further, in this embodiment, as shown in FIG. 6, the same number of second targets 71 as the first targets 103 are provided on the upper surface of the chuck top 70 . The second target 71 , like the first target 103 , is a mark for aligning the wafer W and the probe card 100 . The shape of each second target 71 in plan view is circular, for example. Further, the second targets 71 are provided at equal intervals on the same circumference around the center of the chuck top 70, for example, in a region R12 surrounding the outside of the region R11 on which the wafer W is placed.
The number, shape and arrangement of the second targets are arbitrary as long as the purpose of providing the second targets can be achieved.
 また、第1ターゲット103及び第2ターゲット71は以下のように設けられている。すなわち、全ての第1ターゲット103が同時に、当該第1ターゲット103に対応する第2ターゲット71と、平面視で所定の位置関係となり得るように、第1ターゲット103及び第2ターゲット71は設けられている。具体的には、例えば、全ての第1ターゲット103が同時に、当該第1ターゲット103に対応する第2ターゲット71と、平面視で重なり得るように(より具体的には、互いの中心が一致し得るように)、第1ターゲット103及び第2ターゲット71は設けられている。 Also, the first target 103 and the second target 71 are provided as follows. That is, the first targets 103 and the second targets 71 are provided so that all the first targets 103 can simultaneously have a predetermined positional relationship with the second targets 71 corresponding to the first targets 103 in plan view. there is Specifically, for example, all the first targets 103 can simultaneously overlap the second targets 71 corresponding to the first targets 103 in plan view (more specifically, their centers are aligned). ), a first target 103 and a second target 71 are provided.
 さらに、本実施形態では、図4に示すように、第2ターゲット71毎すなわち第1ターゲット103毎に、基準合わせカメラ110が設けられている。
 基準合わせカメラ110は、検出部の一例であり、対応する第1ターゲット103と、当該第1ターゲット103に対応する第2ターゲット71とを同時に検出するためのものである。また、基準合わせカメラ110は、第3撮像部の一例であり、アライナ50における、第2ターゲット71の下方となる位置に設けられ、上方を撮像する。
Furthermore, in this embodiment, as shown in FIG. 4, a reference matching camera 110 is provided for each second target 71, that is, each first target 103. FIG.
The reference matching camera 110 is an example of a detection unit, and is for detecting the corresponding first target 103 and the second target 71 corresponding to the first target 103 at the same time. Also, the reference alignment camera 110 is an example of a third imaging unit, is provided at a position below the second target 71 in the aligner 50, and images the upper side.
 基準合わせカメラ110による第1ターゲット103と第2ターゲット71との同時撮影を可能にし、且つ、密閉空間Sの密閉が維持可能なように、第1ターゲット103及び基準合わせカメラ110は以下のように設けられている。 In order to allow the first target 103 and the second target 71 to be photographed simultaneously by the reference camera 110 and to keep the sealed space S sealed, the first target 103 and the reference camera 110 are arranged as follows. is provided.
 すなわち、チャックトップ70には、上下方向に貫通する貫通孔72が形成されている。貫通孔72は、基準合わせカメラ110の撮像に用いられる光に対し透明な材料で形成された窓部材73で、塞がれている。この窓部材73に、第2ターゲット71は設けられ、基準合わせカメラ110は、貫通孔72を介して、第2ターゲット71及び第1ターゲット103を撮像する。一実施形態において、基準合わせカメラ110が、第2ターゲット71越しに第1ターゲット103を撮像可能なように、第2ターゲット71は第1ターゲット103より小さく形成される。また、一実施形態において、第2ターゲット71を平面視で中央に孔を有する環状に形成し、基準合わせカメラ110が、上記孔越しに、第1ターゲット103を撮像してもよい。 That is, the chuck top 70 is formed with a through hole 72 penetrating vertically. The through hole 72 is closed with a window member 73 made of a material transparent to the light used for imaging by the reference alignment camera 110 . A second target 71 is provided on the window member 73 , and the reference alignment camera 110 images the second target 71 and the first target 103 through the through hole 72 . In one embodiment, second target 71 is made smaller than first target 103 so that fiducial camera 110 can image first target 103 through second target 71 . Further, in one embodiment, the second target 71 may be formed in a ring shape having a hole in the center in plan view, and the reference alignment camera 110 may image the first target 103 through the hole.
<比較の形態にかかる接触位置の決定方法>
 続いて、本実施形態にかかる接触位置の決定方法の説明を行う前に、本実施の形態とは異なる形態(以下、「比較の形態」という。)にかかる接触位置の決定方法について、図7を用いて説明する。接触位置とは、チャックトップ70に支持されたウェハWの電極Pとプローブ102とを接触させる時のチャックトップ70の位置である。
<How to determine the contact position according to the comparative form>
Next, before explaining the contact position determination method according to the present embodiment, a contact position determination method according to a form different from the present embodiment (hereinafter referred to as a "comparative form") will be described with reference to FIG. will be used to explain. The contact position is the position of the chuck top 70 when the electrodes P of the wafer W supported by the chuck top 70 are brought into contact with the probes 102 .
 比較の形態にかかる接触位置の補正方法では、下カメラ80を用いて、プローブ基準位置に対するプローブ102の代表位置が取得される。プローブ基準位置に対するプローブ102の代表位置とは、言い換えると、下カメラ80による撮像に基づく座標系における、プローブ102の代表位置である。 In the contact position correction method according to the comparison mode, the lower camera 80 is used to acquire the representative position of the probe 102 with respect to the probe reference position. The representative position of the probe 102 with respect to the probe reference position is, in other words, the representative position of the probe 102 in the coordinate system based on the imaging by the lower camera 80 .
 また、ポゴフレーム90に保持されたプローブカード100と平面視では重ならない領域に位置する上カメラ60を用いて、電極基準位置に対する、チャックトップ70に載置されたウェハW上の電極Pの代表位置が取得される。電極基準位置に対する上記電極Pの代表位置とは、言い換えると、上カメラ60による撮像に基づく座標系における、上記電極Pの代表位置である。 In addition, using the upper camera 60 located in an area not overlapping the probe card 100 held by the pogo frame 90 in plan view, a representative image of the electrodes P on the wafer W placed on the chuck top 70 with respect to the electrode reference position is detected. A position is obtained. The representative position of the electrode P with respect to the electrode reference position is, in other words, the representative position of the electrode P in the coordinate system based on the imaging by the upper camera 60 .
 さらに、プローブ基準位置と電極基準位置とを対応付けるための情報、すなわち、下カメラ80による撮像に基づく座標系と上カメラ60による撮像に基づく座標系とを対応付けるための情報が取得される。具体的には、図7に示すように、ポゴフレーム90に保持されたプローブカード100と平面視では重ならない領域に位置する、上カメラ60の下方の領域(以下、「アライメント領域」という。)Aに、下カメラ80が移動される。また、上カメラ60と下カメラ80とで同じターゲット500が撮像され、その時のZステージ53の位置の情報が、プローブ基準位置と電極基準位置とを対応付けるための情報として、取得される。 Furthermore, information for associating the probe reference position and the electrode reference position, that is, information for associating the coordinate system based on the imaging by the lower camera 80 and the coordinate system based on the imaging by the upper camera 60 is acquired. Specifically, as shown in FIG. 7, an area below the upper camera 60 (hereinafter referred to as an "alignment area") is located in an area that does not overlap the probe card 100 held by the pogo frame 90 in plan view. A, the lower camera 80 is moved. Also, the same target 500 is imaged by the upper camera 60 and the lower camera 80, and information on the position of the Z stage 53 at that time is acquired as information for associating the probe reference position with the electrode reference position.
 そして、取得された、プローブ基準位置に対するプローブ102の代表位置、電極基準位置に対する上記電極Pの代表位置、及び、プローブ基準位置と電極基準位置とを対応付けるための情報に基づいて、接触位置が決定される。 Then, the contact position is determined based on the obtained representative position of the probe 102 with respect to the probe reference position, the representative position of the electrode P with respect to the electrode reference position, and information for associating the probe reference position with the electrode reference position. be done.
 しかし、アライナ50が設置される筐体10は、当該筐体10の温度変化による膨張または収縮や、当該筐体10内における複数のアライナ50の重心変化等により、μmオーダーの歪みが生じる。また、プローブ基準位置と電極基準位置とを対応付けるための情報を取得した時すなわちアライメント領域Aに下カメラ80が位置する時のチャックトップ70と、ポゴフレーム90に保持されたプローブカード100の直下のチャックトップ70とでは、距離がある。そのため、上述のような歪みがあると、比較の形態にかかる方法で決定した接触位置では、プローブ102と電極Pとを適切に接触させることができない場合がある。 However, the housing 10 in which the aligner 50 is installed is distorted on the order of μm due to expansion or contraction due to changes in the temperature of the housing 10, changes in the center of gravity of the plurality of aligners 50 within the housing 10, and the like. Also, when the information for associating the probe reference position and the electrode reference position is acquired, that is, when the lower camera 80 is positioned in the alignment area A, the chuck top 70 and the probe card 100 held by the pogo frame 90 are shown. There is a distance from the chuck top 70 . Therefore, if there is distortion as described above, it may not be possible to appropriately contact the probe 102 and the electrode P at the contact position determined by the method according to the comparative embodiment.
<検査装置1を用いた検査処理>
 続いて、検査装置1を用いた、接触位置の決定処理を伴う検査処理について、図8~図11を用いて説明する。
<Inspection processing using inspection device 1>
Next, inspection processing involving contact position determination processing using the inspection apparatus 1 will be described with reference to FIGS. 8 to 11. FIG.
(S1:搬入)
 まず、所望の分割領域13aへの検査対象のウェハWの搬入が行われる。
 具体的には、搬送装置30等が制御部22により制御され、搬入出領域11のポート20内のカセットCからウェハWが取り出されて、例えば中段の分割領域13a内に搬入され、アライナ50に吸着保持されたチャックトップ70上に載置される。
(S1: Import)
First, a wafer W to be inspected is carried into a desired divided area 13a.
Specifically, the transfer device 30 and the like are controlled by the control unit 22 , and the wafer W is taken out from the cassette C in the port 20 of the loading/unloading area 11 , loaded into the middle divided area 13 a , and transferred to the aligner 50 . It is placed on the chuck top 70 which is held by suction.
(S2:接触位置の決定)
 次いで、制御部22により、接触位置が決定される。
(S2: Determination of contact position)
Next, the contact position is determined by the control unit 22 .
(S2a:プローブの代表位置の取得)
 接触位置の決定の際には、制御部22により、下カメラ80を用いて、プローブ基準位置に対するプローブ102の代表位置が取得される。具体的には、制御部22の制御により、図8に示すように、プローブカード100の下方の領域に下カメラ80が位置するよう、チャックトップ70がアライナ50によって移動され、下カメラ80の撮像結果とアライナ50の位置検出機構の検出結果とに基づいて、プローブ基準位置に対するプローブ102の代表位置が取得される。
(S2a: Acquisition of representative position of probe)
When determining the contact position, the controller 22 uses the lower camera 80 to acquire a representative position of the probe 102 with respect to the probe reference position. Specifically, under the control of the control unit 22, the chuck top 70 is moved by the aligner 50 so that the lower camera 80 is positioned in the area below the probe card 100 as shown in FIG. Based on the result and the detection result of the position detection mechanism of the aligner 50, the representative position of the probe 102 with respect to the probe reference position is acquired.
 プローブ102の代表位置とは、例えば予め定められた複数箇所のプローブ102の重心位置である。各プローブ102の位置(具体的には位置座標)は、下カメラ80により得られた画像の中心に当該プローブ102の先端が位置する時の、アライナ50の位置検出機構からの出力に基づいて、取得することができる。 The representative position of the probe 102 is, for example, the center-of-gravity position of the probe 102 at a plurality of predetermined locations. The position (specifically, position coordinates) of each probe 102 is determined based on the output from the position detection mechanism of the aligner 50 when the tip of the probe 102 is positioned at the center of the image obtained by the lower camera 80. can be obtained.
 また、プローブ基準位置は、予め定められていてもよく、例えば、プローブカード100の中心の設計位置であってもよい。
 一実施形態では、ステップS2aにおいて、制御部22により、下カメラ80を用いて、プローブ基準位置として、プローブカード100の第1ターゲット103の代表位置が取得される。
 第1ターゲット103の代表位置とは、例えば、複数の第1ターゲット103の重心位置である。各第1ターゲット103の位置は、例えば、下カメラ80により得られた画像の中心に当該第1ターゲット103の中心が位置する時の、アライナ50の位置検出機構からの出力に基づいて、取得することができる。
Also, the probe reference position may be determined in advance, and may be, for example, a designed position at the center of the probe card 100 .
In one embodiment, in step S2a, the representative position of the first target 103 of the probe card 100 is acquired as the probe reference position by the controller 22 using the lower camera 80 .
The representative position of the first targets 103 is, for example, the center-of-gravity position of the plurality of first targets 103 . The position of each first target 103 is obtained, for example, based on the output from the position detection mechanism of the aligner 50 when the center of the first target 103 is positioned at the center of the image obtained by the lower camera 80. be able to.
 なお、以上では、「○○位置が取得される」等と記載しているが、実際に「○○位置」が取得されていなくてもよく、「○○」位置を取得するために必要な情報が取得されていればよい。以下でも同様である。 In addition, in the above description, it is stated that "○○ position is acquired", etc., but "○○ position" does not have to be actually acquired. It is sufficient if the information has been acquired. The same applies to the following.
(S2b:電極の代表位置の取得)
 接触位置の決定の際には、さらに、制御部22により、図9に示すように、アライメント領域Aに、チャックトップ70が移動され、上カメラ60を用いて、電極基準位置に対する電極Pの代表位置が取得される。電極基準位置に対する電極Pの代表位置は、具体的には、上カメラ60の撮像結果とアライナ50の位置検出機構の検出結果とに基づいて取得される。
(S2b: Acquisition of representative positions of electrodes)
When determining the contact position, the controller 22 moves the chuck top 70 to the alignment area A as shown in FIG. A position is obtained. Specifically, the representative position of the electrode P with respect to the electrode reference position is acquired based on the imaging result of the upper camera 60 and the detection result of the position detection mechanism of the aligner 50 .
 電極Pの代表位置とは、例えば予め定められた複数箇所の電極Pの重心位置である。各電極Pの位置(具体的には位置座標)は、上カメラ60により得られた画像の中心に当該電極Pの中心が位置する時の、アライナ50の位置検出機構からの出力に基づいて、取得することができる。 The representative position of the electrode P is, for example, the position of the center of gravity of the electrode P at a plurality of predetermined locations. The position (specifically, position coordinates) of each electrode P is determined based on the output from the position detection mechanism of the aligner 50 when the center of the electrode P is positioned at the center of the image obtained by the upper camera 60. can be obtained.
 また、電極基準位置は、予め定められていてもよく、例えば、チャックトップ70の中心の設計位置であってもよい。
 一実施形態では、ステップS2bにおいて、制御部22により、上カメラ60を用いて、電極基準位置として、チャックトップ70の第2ターゲット71の代表位置が取得される。
 第2ターゲット71の代表位置とは、例えば、複数の第2ターゲット71の重心位置である。各第2ターゲット71の位置は、例えば、上カメラ60により得られた画像の中心に当該第2ターゲット71の中心が位置する時の、アライナ50の位置検出機構からの出力に基づいて、取得することができる。
Also, the electrode reference position may be determined in advance, and may be, for example, a designed position at the center of the chuck top 70 .
In one embodiment, in step S2b, the representative position of the second target 71 on the chuck top 70 is acquired as the electrode reference position by the controller 22 using the upper camera 60 .
The representative position of the second targets 71 is, for example, the center-of-gravity position of the plurality of second targets 71 . The position of each second target 71 is obtained, for example, based on the output from the position detection mechanism of the aligner 50 when the center of the second target 71 is positioned at the center of the image obtained by the upper camera 60. be able to.
(S2c:合致位置の取得)
 接触位置の決定の際には、制御部22により、基準合わせカメラ110を用いて、合致位置が取得される。合致位置とは、全ての第1ターゲット103が同時に当該第1ターゲット103に対応する第2ターゲット71と平面視で所定の位置関係となるときのチャックトップ70の位置である。「平面視で所定の位置関係」とは、例えば、第1ターゲット103の中心が、当該第1ターゲット103に対応する第2ターゲット71の中心と平面視で重なる位置関係をいう。
 このステップS2cでは、制御部22の制御により、図10に示すように、チャックトップ70が、プローブカード100の下方の領域に位置するよう、アライナ50によって移動され、基準合わせカメラ110の撮像結果とアライナ50の位置検出機構の検出結果とに基づいて、合致位置が取得される。
(S2c: Acquisition of matching position)
When determining the contact position, the control unit 22 uses the reference matching camera 110 to acquire the matching position. The coincident position is the position of the chuck top 70 when all the first targets 103 simultaneously have a predetermined positional relationship with the second targets 71 corresponding to the first targets 103 in plan view. The “predetermined positional relationship in plan view” refers to, for example, a positional relationship in which the center of the first target 103 overlaps the center of the second target 71 corresponding to the first target 103 in plan view.
In this step S2c, under the control of the control unit 22, the chuck top 70 is moved by the aligner 50 so as to be positioned below the probe card 100 as shown in FIG. A matching position is acquired based on the detection result of the position detection mechanism of the aligner 50 .
(S2d:仮の接触位置の取得及び補正)
 そして、制御部22により、プローブ基準位置に対するプローブ102の代表位置と電極基準位置に対する電極Pの代表位置とに基づいて接触位置が取得され、ステップS2cで取得された合致位置に基づいて上記接触位置が補正される。すなわち、制御部22により、プローブ基準位置に対するプローブ102の代表位置と電極基準位置に対する電極Pの代表位置とに基づいて、仮の接触位置が取得され、仮の接触位置が、ステップS2cで取得された合致位置に基づいて補正され、補正後の仮の接触位置が、接触位置に決定される。合致位置に基づいて仮の接触位置が補正される、ということは、言い換えると、プローブ基準位置と電極基準位置とが対応づけられる、ということである。また、合致位置の情報は、プローブ基準位置と電極基準位置とを対応付けるための情報である。
(S2d: Acquisition and Correction of Temporary Contact Position)
Then, the contact position is obtained by the control unit 22 based on the representative position of the probe 102 with respect to the probe reference position and the representative position of the electrode P with respect to the electrode reference position, and the contact position is obtained based on the matching position obtained in step S2c. is corrected. That is, the control unit 22 acquires a temporary contact position based on the representative position of the probe 102 with respect to the probe reference position and the representative position of the electrode P with respect to the electrode reference position, and the temporary contact position is obtained in step S2c. The corrected temporary contact position is determined as the contact position. Correcting the tentative contact position based on the matching position means, in other words, that the probe reference position and the electrode reference position are associated with each other. The matching position information is information for associating the probe reference position with the electrode reference position.
 本ステップS2dでは、具体的には、制御部22により、図11に示すように、接触基準位置B1からの合致位置B2の位置ずれDに基づいて、仮の接触位置B3が補正され、補正後の仮の接触位置が、接触位置B4に決定される。 Specifically, in this step S2d, as shown in FIG. 11, the control unit 22 corrects the provisional contact position B3 based on the positional deviation D of the matching position B2 from the contact reference position B1. is determined as the contact position B4.
 接触基準位置B1は、例えば予め定められる。
 また、接触基準位置B1は、制御部22により、
(1)プローブ基準位置としての、プローブカード100の第1ターゲット103の代表位置と、予め定められた電極基準位置とに基づいて、取得されてもよいし、
(2)予め定められたプローブ基準位置と、電極基準位置としての、チャックトップ70の第2ターゲット71の代表位置とに基づいて取得されてもよいし、
(3)プローブ基準位置としての、プローブカード100の第1ターゲット103の代表位置と、電極基準位置としての、チャックトップ70の第2ターゲット71の代表位置とに基づいて取得されてもよい。
The contact reference position B1 is predetermined, for example.
Further, the contact reference position B1 is set by the control unit 22 as
(1) It may be obtained based on the representative position of the first target 103 of the probe card 100 as the probe reference position and the predetermined electrode reference position,
(2) may be obtained based on a predetermined probe reference position and a representative position of the second target 71 on the chuck top 70 as an electrode reference position;
(3) It may be obtained based on the representative position of the first target 103 of the probe card 100 as the probe reference position and the representative position of the second target 71 of the chuck top 70 as the electrode reference position.
(S3:チャックトップ70の移動及び上昇、)
 接触位置が決定されると、制御部22により、チャックトップ70が、接触位置に移動され、その後、チャックトップ70が上昇される。上昇は、プローブ102と電極Pとが接触するまで行われる。
(S3: Movement and lifting of chuck top 70)
When the contact position is determined, the chuck top 70 is moved to the contact position by the controller 22, and then the chuck top 70 is raised. Elevation is performed until the probe 102 and the electrode P are in contact.
 一実施形態では、上昇中、制御部22により、基準合わせカメラ110を用いて、プローブカード100に対する第2ターゲット71の水平方向の位置変化が取得され、取得結果に基づいて、チャックトップ70の位置が修正される。具体的には、上昇中、制御部22により、基準合わせカメラ110を用いて上記水平方向の位置変化が取得され、この位置変化がキャンセルされるよう、チャックトップ70の位置が接触位置から修正される。
 プローブカード100に対する第2ターゲット71の水平方向の位置変化が容易に取得可能なように、例えば、プローブカード100における第1ターゲット103の周囲に、升目模様等の模様を設けてもよい。
In one embodiment, during the ascent, the controller 22 acquires the horizontal positional change of the second target 71 with respect to the probe card 100 using the reference alignment camera 110, and based on the acquired result, the position of the chuck top 70 is determined. is corrected. Specifically, during the ascent, the position change in the horizontal direction is acquired by the control unit 22 using the reference matching camera 110, and the position of the chuck top 70 is corrected from the contact position so as to cancel this position change. be.
For example, a pattern such as a square pattern may be provided around the first target 103 on the probe card 100 so that the change in the horizontal position of the second target 71 with respect to the probe card 100 can be easily obtained.
(ステップS4:チャックトップ70の吸着)
 その後、制御部22の制御の下、チャックトップ70がポゴフレーム90に吸着される。
 具体的には、電極Pとプローブ102とが接触している状態で、減圧機構(図示せず)等が制御されると共にアライナ50のZステージ53が下降され、これにより、チャックトップ70が、アライナ50から分離されポゴフレーム90に吸着される。
(Step S4: Adsorption of chuck top 70)
After that, the chuck top 70 is attracted to the pogo frame 90 under the control of the controller 22 .
Specifically, while the electrode P and the probe 102 are in contact with each other, a decompression mechanism (not shown) or the like is controlled, and the Z stage 53 of the aligner 50 is lowered. It is separated from the aligner 50 and attached to the pogo frame 90 .
(ステップS5:検査)
 チャックトップ70とアライナ50との切り離し後、ウェハWに形成された電子デバイスの電気的特性検査が行われる。
 電気的特性検査用の電気信号は、テスタ40からポゴピン91やプローブ102等を介して電子デバイスに入力される。
(Step S5: Inspection)
After the chuck top 70 and the aligner 50 are separated, the electrical characteristics of the electronic devices formed on the wafer W are inspected.
An electrical signal for electrical characteristic inspection is input from the tester 40 to the electronic device via the pogo pins 91, the probes 102, and the like.
(S6.搬出)
 その後、検査後のウェハWが搬出される。
 具体的には、ポゴフレーム90に吸着されていたチャックトップ70がアライナ50に受け渡され保持される。また、アライナ50に保持されたチャックトップ70上の検査後のウェハWが、搬送装置30によって、検査領域13から搬出され、搬入出領域11のポート20内のカセットCに戻される。
 なお、一のテスタ40での検査中、アライナ50によって、他のテスタ40への検査対象のウェハWの搬送や他のテスタ40からの検査後のウェハWの回収が行われる。
(S6. Unloading)
Thereafter, the wafer W after inspection is unloaded.
Specifically, the chuck top 70 sucked to the pogo frame 90 is delivered to and held by the aligner 50 . Also, the inspected wafer W on the chuck top 70 held by the aligner 50 is unloaded from the inspection area 13 by the transport device 30 and returned to the cassette C in the port 20 of the loading/unloading area 11 .
During the inspection by one tester 40 , the aligner 50 transports the wafer W to be inspected to another tester 40 and recovers the wafer W after inspection from the other tester 40 .
<本実施形態の主な効果>
 本実施形態では、比較の形態に比べて、プローブ基準位置と電極基準位置とを対応づけるための情報を取得した位置から、接触位置までの移動距離が短い。したがって、前述のように筐体10に歪みが生じていたとしても、プローブ102と電極Pとをより適切に接触させることができる。
<Main effects of the present embodiment>
In this embodiment, the moving distance from the position where the information for associating the probe reference position and the electrode reference position to the contact position is shorter than in the comparison mode. Therefore, even if the housing 10 is distorted as described above, the probes 102 and the electrodes P can be brought into contact with each other more appropriately.
 また、前述のように、第1ターゲット103の代表位置を、プローブ基準位置としてもよい。これにより、プローブカード100の状態によらず、プローブ102と電極Pとをより適切に接触させることができる。例えば、プローブカード100の温度変化による当該プローブカード100の膨張または収縮が生じている場合でも、プローブ102と電極Pとを適切に接触させることができる。 Also, as described above, the representative position of the first target 103 may be used as the probe reference position. Thereby, regardless of the state of the probe card 100, the probes 102 and the electrodes P can be brought into contact more appropriately. For example, even when the probe card 100 expands or contracts due to a temperature change of the probe card 100, the probes 102 and the electrodes P can be properly contacted.
 さらに、前述のように、第2ターゲット71の代表位置を、電極基準位置としてもよい。これにより、チャックトップ70の状態によらず、プローブ102と電極Pとをより適切に接触させることができる。例えば、チャックトップ70の温度変化による当該チャックトップ70の膨張または収縮が生じている場合でも、プローブ102と電極Pとを適切に接触させることができる。 Furthermore, as described above, the representative position of the second target 71 may be used as the electrode reference position. Thereby, the probes 102 and the electrodes P can be brought into more appropriate contact regardless of the state of the chuck top 70 . For example, even when the chuck top 70 expands or contracts due to temperature changes in the chuck top 70 , the probes 102 and the electrodes P can be properly brought into contact with each other.
 また、前述のように、チャックトップ70の上昇中、基準合わせカメラ110を用いて、プローブカード100に対する第2ターゲット71の水平方向の位置変化が取得され、取得結果に基づいて、チャックトップ70の位置が修正されてもよい。これにより、チャックトップ70の上昇中に上記位置変化が生じていても、プローブ102と電極Pとを適切に接触させることができる。 Further, as described above, while the chuck top 70 is ascending, the horizontal position change of the second target 71 with respect to the probe card 100 is acquired using the reference alignment camera 110, and based on the acquired result, the chuck top 70 is The position may be modified. As a result, the probes 102 and the electrodes P can be properly brought into contact with each other even when the positional change occurs while the chuck top 70 is ascending.
<変形例>
 以上の例では、第1ターゲット103をプローブカード100に設けていたが、第1ターゲットは、ポゴフレーム90に設けてもよい。具体的には、第1ターゲットは、ポゴフレーム90の下面におけるベローズ93に囲まれた領域内に設けられていてもよい。
<Modification>
Although the first target 103 is provided on the probe card 100 in the above example, the first target may be provided on the pogo frame 90 . Specifically, the first target may be provided within a region surrounded by the bellows 93 on the lower surface of the pogo frame 90 .
 また、以上の例では、第1ターゲット103と第2ターゲット71とを同時に検出するための基準合わせカメラ110をアライナ50に設けており、第2ターゲット71越しに第1ターゲット103を撮像していた。しかし、上記同時検出のための基準合わせカメラは、ポゴフレーム90に設けられていてもよい。
 この場合、ステップS3において、チャックトップ70の上昇中に、制御部22により、基準合わせカメラ110を用いて、チャックトップ70に対する第1ターゲット103の水平方向の位置変化が取得され、取得結果に基づいて、チャックトップ70の位置が修正されてもよい。
In the above example, the aligner 50 is provided with the reference matching camera 110 for simultaneously detecting the first target 103 and the second target 71, and the first target 103 is imaged through the second target 71. . However, the reference matching camera for the simultaneous detection may be provided on the pogo frame 90 .
In this case, in step S3, while the chuck top 70 is being lifted, the control unit 22 uses the reference alignment camera 110 to acquire the change in the horizontal position of the first target 103 with respect to the chuck top 70, and based on the acquisition result, , the position of the chuck top 70 may be corrected.
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. The embodiments described above may be omitted, substituted, or modified in various ways without departing from the scope and spirit of the appended claims.
1 検査装置
22 制御部
50 アライナ
60 上カメラ
70 チャックトップ
71 第2ターゲット
80 下カメラ
90 ポゴフレーム
100 プローブカード
102 プローブ
103 第1ターゲット
110 基準合わせカメラ
B2 合致位置
B3 接触位置
B4 接触位置
P 電極
W ウェハ
1 inspection device 22 control unit 50 aligner 60 upper camera 70 chuck top 71 second target 80 lower camera 90 pogo frame 100 probe card 102 probe 103 first target 110 reference matching camera B2 match position B3 contact position B4 contact position P electrode W wafer

Claims (13)

  1. 基板を検査する検査装置であって、
    基板が載置される載置部材と、
    基板上の電極に接触するプローブを有するプローブカードを保持する保持部と、
    前記載置部材を保持し水平方向及び上下方向に移動させる移動機構と、
    前記移動機構に固定され、前記プローブの位置を取得するための第1取得部と、
    前記載置部材に載置された基板上の前記電極の位置を取得するための第2取得部と、
    制御部と、を備え、
    前記プローブカードまたは前記保持部の少なくともいずれか一方に、第1ターゲットが複数設けられており、
    前記載置部材に、第2ターゲットが前記第1ターゲットと同数設けられており、
    前記第1ターゲットと、当該第1ターゲットに対応する前記第2ターゲットとを同時に検出するための検出部をさらに備え、
    前記制御部は、
     前記第1取得部を用いて、プローブ基準位置に対する前記プローブの代表位置を取得する工程と、
     前記保持部に保持された前記プローブカードと平面視では重ならない領域に位置する、前記第2取得部の下方の領域に、前記載置部材を移動させ、前記第2取得部を用いて、電極基準位置に対する前記電極の代表位置を取得する工程と、
     前記検出部を用いて、全ての前記第1ターゲットが同時に当該第1ターゲットに対応する前記第2ターゲットと平面視で所定の位置関係となる、合致位置を取得する工程と、
     前記プローブの代表位置と前記電極の代表位置とに基づいて、前記プローブと前記電極とを接触させるときの前記載置部材の位置である接触位置を取得し、前記合致位置に基づき前記接触位置を補正する工程と、を実行するように構成されている、検査装置。
    An inspection device for inspecting a substrate,
    a mounting member on which the substrate is mounted;
    a holder that holds a probe card having probes that contact electrodes on the substrate;
    a moving mechanism that holds the mounting member and moves it horizontally and vertically;
    a first acquisition unit fixed to the moving mechanism for acquiring the position of the probe;
    a second acquisition unit for acquiring the position of the electrode on the substrate placed on the placement member;
    a control unit;
    A plurality of first targets are provided on at least one of the probe card and the holding unit,
    The mounting member is provided with the same number of second targets as the first targets,
    further comprising a detection unit for simultaneously detecting the first target and the second target corresponding to the first target;
    The control unit
    obtaining a representative position of the probe with respect to the probe reference position using the first obtaining unit;
    The mounting member is moved to a region below the second obtaining portion, which is located in a region that does not overlap the probe card held by the holding portion in a plan view, and the second obtaining portion is used to move the electrode. obtaining a representative position of the electrode relative to a reference position;
    a step of using the detection unit to acquire matching positions where all of the first targets simultaneously have a predetermined positional relationship with the second targets corresponding to the first targets in a plan view;
    A contact position, which is a position of the mounting member when the probe and the electrode are brought into contact, is obtained based on the representative position of the probe and the representative position of the electrode, and the contact position is obtained based on the matching position. an inspection device configured to perform a compensating step;
  2. 前記プローブの代表位置を取得する工程は、前記第1取得部を用いて、前記プローブ基準位置として、前記第1ターゲットの代表位置を取得する工程を含む、請求項1に記載の検査装置。 The inspection apparatus according to claim 1, wherein the step of acquiring the representative position of the probe includes the step of acquiring the representative position of the first target as the probe reference position using the first acquisition unit.
  3. 前記基板の代表位置を取得する工程は、前記第2取得部を用いて、前記電極基準位置として、前記第2ターゲットの代表位置を取得する工程を含む、請求項1または2に記載の検査装置。 3. The inspection apparatus according to claim 1, wherein the step of obtaining the representative position of the substrate includes the step of obtaining the representative position of the second target as the electrode reference position using the second obtaining unit. .
  4. 前記補正する工程は、接触基準位置からの前記合致位置の位置ずれに基づいて、前記接触位置を補正する、請求項1~3のいずれか1項に記載の検査装置。 4. The inspection apparatus according to claim 1, wherein said correcting step corrects said contact position based on a positional deviation of said matching position from a contact reference position.
  5. 前記補正する工程は、接触基準位置からの前記合致位置の位置ずれに基づいて、前記接触位置を補正し、
    前記接触基準位置は、前記プローブ基準位置及び前記電極基準位置に基づいて取得される、請求項2または3に記載の検査装置。
    The correcting step corrects the contact position based on a positional deviation of the matching position from the contact reference position;
    4. The inspection apparatus according to claim 2, wherein said contact reference position is obtained based on said probe reference position and said electrode reference position.
  6. 前記制御部は、
     補正された前記接触位置に前記載置部材を移動させた後、当該載置部材を上昇させる工程をさらに実行する、請求項1~5のいずれか1項に記載の検査装置。
    The control unit
    The inspection apparatus according to any one of claims 1 to 5, further comprising a step of raising the mounting member after moving the mounting member to the corrected contact position.
  7. 前記載置部材を上昇させる工程は、前記検出部を用いて、上昇中における、前記プローブカードに対する前記第2ターゲットの水平方向の位置変化、または、上昇中における、前記基板に対する前記第1ターゲットの水平方向の位置変化を取得し、取得結果に基づいて、前記接触位置を修正する工程を含む、請求項6に記載の検査装置。 The step of elevating the mounting member includes changing the position of the second target in the horizontal direction with respect to the probe card during elevating, or changing the position of the first target with respect to the substrate during elevating, using the detection unit. 7. The inspection apparatus according to claim 6, further comprising the step of acquiring horizontal position change and correcting said contact position based on the acquired result.
  8. 前記第1取得部は、上方を撮像する第1撮像部である、請求項1~7のいずれか1項に記載の検査装置。 The inspection apparatus according to any one of claims 1 to 7, wherein the first acquisition section is a first imaging section that captures an upward image.
  9. 前記第2取得部は、下方を撮像する第2撮像部である、請求項1~8のいずれか1項に記載の検査装置。 The inspection apparatus according to any one of claims 1 to 8, wherein the second acquisition section is a second image pickup section that picks up an image below.
  10. 前記検出部は、前記移動機構における、前記第2ターゲットの下方に設けられ、上方を撮像する第3撮像部である、請求項1~9のいずれか1項に記載の検査装置。 10. The inspection apparatus according to any one of claims 1 to 9, wherein said detection unit is a third imaging unit provided below said second target in said moving mechanism and imaging above.
  11. 前記載置部材は、
     上下方向に貫通する貫通孔と、
     前記貫通孔を塞ぐ、透明な材料で形成された窓部材と、有し、
    前記第2ターゲットは、前記窓部材に設けられ、
    前記第3撮像部は、前記貫通孔を介して前記第1ターゲット及び前記第2ターゲットを撮像する、請求項10に記載の検査装置。
    The placement member is
    a through hole penetrating in the vertical direction;
    a window member made of a transparent material that closes the through hole;
    The second target is provided on the window member,
    11. The inspection apparatus according to claim 10, wherein said third imaging unit images said first target and said second target through said through hole.
  12. 前記検出部は、前記第1ターゲットの上方に設けられ、下方を撮像する第3撮像部である、請求項1~9のいずれか1項に記載の検査装置。 10. The inspection apparatus according to any one of claims 1 to 9, wherein said detection unit is a third imaging unit provided above said first target and imaging below.
  13. 検査装置により基板を検査する方法であって、
    前記検査装置は、
     基板が載置される載置部材と、
     基板上の電極に接触するプローブを有するプローブカードを保持する保持部と、
     前記載置部材を保持し水平方向及び上下方向に移動させる移動機構と、
     前記移動機構に固定され、前記プローブカードの位置を取得するための第1取得部と、
     前記載置部材に載置された基板上の前記電極の位置を取得するための第2取得部と、を備え、
     前記プローブカードまたは前記保持部の少なくともいずれか一方に、第1ターゲットが複数設けられており、
     前記載置部材に、前記第1ターゲットに対応する第2ターゲットが複数設けられており、
     前記第1ターゲットと、当該第1ターゲットに対応する前記第2ターゲットとを同時に検出するための検出部をさらに備え、
    前記第1取得部を用いて、プローブ基準位置に対する前記プローブの代表位置を取得する工程と前記保持部に保持された前記プローブカードと平面視では重ならない領域に位置する、前記第2取得部の下方の領域に、前記載置部材を移動させ、前記第2取得部を用いて、電極基準位置に対する前記電極の代表位置を取得する工程と、
    前記検出部を用いて、全ての前記第1ターゲットが同時に当該第1ターゲットに対応する前記第2ターゲットと平面視で所定の位置関係となる、合致位置を取得する工程と、
    前記プローブの代表位置と前記電極の代表位置とに基づいて、前記プローブと前記電極とを接触させるときの前記載置部材の位置である接触位置を取得し、前記合致位置に基づき前記接触位置を補正する工程と、を含む、検査方法。
     
     
    A method for inspecting a substrate with an inspection device, comprising:
    The inspection device is
    a mounting member on which the substrate is mounted;
    a holder that holds a probe card having probes that contact electrodes on the substrate;
    a moving mechanism that holds the mounting member and moves it horizontally and vertically;
    a first acquisition unit fixed to the moving mechanism for acquiring the position of the probe card;
    a second acquisition unit for acquiring the position of the electrode on the substrate placed on the placement member;
    A plurality of first targets are provided on at least one of the probe card and the holding unit,
    A plurality of second targets corresponding to the first targets are provided on the mounting member,
    further comprising a detection unit for simultaneously detecting the first target and the second target corresponding to the first target;
    a step of acquiring a representative position of the probe with respect to the probe reference position using the first acquisition unit; a step of moving the placement member to a lower region and acquiring a representative position of the electrode with respect to the electrode reference position using the second acquisition unit;
    a step of using the detection unit to acquire matching positions where all of the first targets simultaneously have a predetermined positional relationship with the second targets corresponding to the first targets in a plan view;
    A contact position, which is a position of the mounting member when the probe and the electrode are brought into contact, is obtained based on the representative position of the probe and the representative position of the electrode, and the contact position is obtained based on the matching position. and a step of correcting.

PCT/JP2022/034418 2021-09-28 2022-09-14 Inspection device and inspection method WO2023053968A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280063312.XA CN117981064A (en) 2021-09-28 2022-09-14 Inspection apparatus and inspection method
KR1020247012521A KR20240068698A (en) 2021-09-28 2022-09-14 Inspection device and inspection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-158082 2021-09-28
JP2021158082A JP2023048650A (en) 2021-09-28 2021-09-28 Inspection device and inspection method

Publications (1)

Publication Number Publication Date
WO2023053968A1 true WO2023053968A1 (en) 2023-04-06

Family

ID=85779983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034418 WO2023053968A1 (en) 2021-09-28 2022-09-14 Inspection device and inspection method

Country Status (4)

Country Link
JP (1) JP2023048650A (en)
KR (1) KR20240068698A (en)
CN (1) CN117981064A (en)
WO (1) WO2023053968A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198662A (en) * 1991-08-01 1993-08-06 Tokyo Electron Yamanashi Kk Probe device and aligning method therefor
JP2010219110A (en) * 2009-03-13 2010-09-30 Techno Horon:Kk Probe method and probe device
JP2019145742A (en) * 2018-02-23 2019-08-29 東京エレクトロン株式会社 Contact accuracy assurance method, contact accuracy assurance mechanism, and inspection device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012204695A (en) 2011-03-25 2012-10-22 Tokyo Electron Ltd Probe card detection device, positioning device for wafer, and positioning method for wafer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198662A (en) * 1991-08-01 1993-08-06 Tokyo Electron Yamanashi Kk Probe device and aligning method therefor
JP2010219110A (en) * 2009-03-13 2010-09-30 Techno Horon:Kk Probe method and probe device
JP2019145742A (en) * 2018-02-23 2019-08-29 東京エレクトロン株式会社 Contact accuracy assurance method, contact accuracy assurance mechanism, and inspection device

Also Published As

Publication number Publication date
CN117981064A (en) 2024-05-03
JP2023048650A (en) 2023-04-07
KR20240068698A (en) 2024-05-17

Similar Documents

Publication Publication Date Title
CN111742399B (en) Contact precision assurance method, contact precision assurance mechanism, and inspection apparatus
KR101456253B1 (en) Probe apparatus and test apparatus
US20080059095A1 (en) Electronic Device Handling Apparatus and Defective Terminal Determination Method
JP7153556B2 (en) Temperature measurement member, inspection device and temperature measurement method
CN110211889B (en) Inspection system
CN113874693A (en) Mounting table, inspection apparatus, and temperature correction method
US11933839B2 (en) Inspection apparatus and inspection method
WO2023053968A1 (en) Inspection device and inspection method
CN111446183A (en) Chuck top, inspection device and method for recovering chuck top
US20190187180A1 (en) Prober
WO2023127490A1 (en) Inspection device and inspection method
WO2023189676A1 (en) Inspection method and inspection device
US11221350B2 (en) Probe device for improving transfer accuracy of needle traces of probes and needle trace transcription method therefor
JPH04312939A (en) Probe device
KR100809600B1 (en) Apparatus for inspecting wafer
JPH07161788A (en) Burn-in contactor and probe card
JP2023152601A (en) Inspection method and inspection device
JPH0541423A (en) Probe apparatus
KR20100032329A (en) Probe apparatus
JPH0627252A (en) Device for aligning object to be treated
JP2022082057A (en) Contact release method in inspection device and inspection device
KR20180010480A (en) Method of testing semiconductor devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875839

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280063312.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247012521

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE