WO2023053683A1 - 異常判定装置、導電性粒体検出装置、異常判定方法、およびプログラム - Google Patents

異常判定装置、導電性粒体検出装置、異常判定方法、およびプログラム Download PDF

Info

Publication number
WO2023053683A1
WO2023053683A1 PCT/JP2022/028197 JP2022028197W WO2023053683A1 WO 2023053683 A1 WO2023053683 A1 WO 2023053683A1 JP 2022028197 W JP2022028197 W JP 2022028197W WO 2023053683 A1 WO2023053683 A1 WO 2023053683A1
Authority
WO
WIPO (PCT)
Prior art keywords
abnormality determination
electrical resistance
resistance value
abnormality
unit
Prior art date
Application number
PCT/JP2022/028197
Other languages
English (en)
French (fr)
Inventor
和彦 櫻井
昌樹 原田
Original Assignee
ナブテスコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナブテスコ株式会社 filed Critical ナブテスコ株式会社
Priority to JP2023550405A priority Critical patent/JPWO2023053683A1/ja
Priority to US18/686,217 priority patent/US20240353303A1/en
Priority to EP22875561.7A priority patent/EP4411357A1/en
Priority to CN202280057793.3A priority patent/CN117918000A/zh
Publication of WO2023053683A1 publication Critical patent/WO2023053683A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0656Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2835Specific substances contained in the oils or fuels
    • G01N33/2858Metal particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2888Lubricating oil characteristics, e.g. deterioration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0053Investigating dispersion of solids in liquids, e.g. trouble

Definitions

  • the present disclosure relates to an abnormality determination device, a conductive particle detection device, an abnormality determination method, and a program.
  • a mechanical operating device has a built-in mechanical operating mechanism such as a speed reducer.
  • wear of the operating mechanism is reduced by filling the inside of the casing with lubricating liquid.
  • wear and damage occur in mechanical parts as it is used over time.
  • Metal powder generated by wear and breakage is mixed in the lubricating liquid.
  • the function of the lubricating liquid (the function of suppressing wear of the operating mechanism) deteriorates. If a large amount of metal powder is mixed in the lubricating liquid, it means that the operating mechanism is worn or damaged.
  • the present disclosure provides an abnormality determination device, a conductive particle detection device, an abnormality determination method, and a program that can improve convenience for users who use mechanical operation devices.
  • An abnormality determination device includes an acquisition unit that acquires an electrical resistance value between electrodes spaced apart in a lubricating liquid used for lubricating a mechanical operating device, and the acquisition unit: An abnormality determination unit that determines an abnormality of the mechanical operation device based on the acquired number of times that the electrical resistance value falls below a threshold value; and an output unit that outputs a result determined by the abnormality determination unit.
  • the acquisition unit acquires the electrical resistance value between the electrodes that changes according to the conductive particles in the lubricating liquid collected by the magnetic force.
  • the acquisition unit may acquire a plurality of electrical resistance values between a plurality of sets of electrodes having different combinations.
  • the abnormality determination unit may determine the abnormality based on the number of times the plurality of electrical resistance values have fallen below the threshold.
  • the abnormality determination section may determine the abnormality based on the total number of times that the plurality of electrical resistance values have each fallen below the threshold.
  • the abnormality determination section may determine the abnormality including a failure state indicating a failure of the mechanical operating device and a portent state before the failure state.
  • the output unit may output information indicating either the failure state or the predictive state.
  • the threshold value may be a value that can be changed according to the size of the mechanical operation device.
  • the threshold value may be a value that can be changed according to at least one of viscosity and insulating performance of the lubricating liquid.
  • the number of times may be a variable value according to the size of the mechanical operation device.
  • An abnormality determination device includes an acquisition unit that acquires an electrical resistance value between electrodes spaced apart in a non-conductive lubricating liquid used for lubricating a mechanical operating device; an abnormality determination unit that determines an abnormality of the mechanical operation device based on the number of times the electrical resistance value obtained by the acquisition unit falls below a threshold; and an output unit that outputs a result determined by the abnormality determination unit. And prepare.
  • the acquisition unit acquires the electrical resistance value between the electrodes that changes according to the conductive particles in the lubricating liquid collected by the magnetic force. Further, the acquisition unit acquires a plurality of electrical resistance values between a plurality of sets of electrodes having different combinations.
  • the abnormality determination unit includes a failure state indicating a failure of the mechanical operating device and a premonitory state before the failure state, based on the total number of times the plurality of electrical resistance values are below the threshold. The abnormality is determined.
  • the output unit outputs information indicating either the failure state or the predictive state.
  • a conductive particle detection device includes electrodes spaced apart in a non-conductive lubricating liquid used for lubricating mechanical operating devices, and an acquisition unit configured to acquire an electrical resistance value between the electrodes that varies according to conductive particles in the lubricating liquid; An abnormality determination unit that determines an abnormality of the operation device, and an output unit that outputs the result determined by the abnormality determination unit.
  • a computer used in an abnormality determination device performs an acquisition step of acquiring an electrical resistance value; a state determination step of determining an abnormality of the mechanical operating device based on the number of times the electrical resistance value acquired in the acquisition step has fallen below a threshold; and an output step of outputting the determined result.
  • the acquiring step acquires the electrical resistance value between the electrodes that varies according to the conductive particles in the lubricating liquid collected by the magnetic force.
  • a program causes a computer used in an abnormality determination device to measure electrical resistance between electrodes spaced apart in a non-conductive lubricating liquid used for lubricating a mechanical operating device.
  • an acquisition unit that acquires a value
  • an abnormality determination unit that determines an abnormality in the mechanical operating device based on the number of times the electrical resistance value acquired by the acquisition unit falls below a threshold value
  • a result determined by the abnormality determination unit. function as an output unit that outputs the Furthermore, the acquisition unit is caused to acquire the electrical resistance value that changes according to the conductive particles in the lubricating liquid collected by the magnetic force.
  • the conductive particle detection device According to the abnormality determination device, the conductive particle detection device, the abnormality determination method, and the program described above, it is possible to improve convenience for the user who uses the mechanical operation device.
  • FIG. 3 is a partial cross-sectional perspective view of the conductive particle detection device 100 shown in FIG. 2 taken along line XX.
  • FIG. 3 is an explanatory view showing a detection circuit using a cross section of the conductive particle detection device 100 shown in FIG. 2 along the XI-XI line;
  • 4 is a graph showing an example of resistance values detected by a resistance detection unit 210;
  • 4 is a graph showing an example of resistance values detected by a resistance detection unit 210;
  • FIG. 2 is a functional block diagram showing an example of the functional configuration of a control device 140 according to this embodiment; 4 is a flowchart showing an example of a process of setting a threshold value and a reference number of times performed by the control device 140; 4 is a flowchart showing an example of abnormality determination processing performed by the control device 140;
  • FIG. 1 is an explanatory diagram showing an example of a speed reducer 10 according to this embodiment.
  • a speed reducer 10 is an example of a mechanical operating device.
  • the speed reducer 10 is used, for example, in joints of industrial robots used in factory production lines.
  • the speed reducer 10 includes a speed reduction mechanism 11 and a casing 12 .
  • the deceleration mechanism 11 decelerates the input rotation to a predetermined deceleration ratio.
  • the casing 12 accommodates the speed reduction mechanism 11 inside.
  • An oil bath 22 is provided inside the casing 12 .
  • the oil bath 22 is filled with a lubricating liquid 13 for lubricating the speed reduction mechanism 11 and other mechanical contact portions.
  • a non-conductive liquid is used as the lubricating liquid 13 .
  • a conductive particle detection device 100 is attached to the wall 12 a of the casing 12 .
  • the position where the conductive particle detection device 100 is attached is a position where the lubricating liquid 13 has good fluidity.
  • the conductive particle detection device 100 detects conductive particles such as metal powder mixed in the lubricating liquid 13 .
  • FIG. 2 is a perspective view showing an example of the conductive particle detection device 100.
  • FIG. 3 is a partial cross-sectional perspective view of the conductive particle detection device 100 shown in FIG. 2 taken along line XX.
  • the conductive particle detection device 100 includes a mounting portion 110, a support member 120 (see FIG. 3), four electrodes 130, and a control device 140 (see FIG. 3). Prepare.
  • the mounting portion 110 includes a screw portion 111 and a flange portion 112 .
  • the threaded portion 111 is fitted into a threaded hole passing through the wall 12a.
  • the flange portion 112 is a flange nut for fastening the screw portion 111 to the wall 12a.
  • the flange portion 112 is formed integrally with the threaded portion 111 at the end of the threaded portion 111 .
  • the support member 120 is made of a resin material.
  • the support member 120 is arranged so as to pass through the screw portion 111 in the axial direction.
  • One longitudinal end of the support member 120 is fixed inside the device body 121 .
  • the other end of the support member 120 in the longitudinal direction protrudes outward beyond the threaded portion 111 .
  • the four electrodes 130 each have a permanent magnet 131 and a projecting member 132 .
  • Permanent magnet 131 is a conductive magnet.
  • the permanent magnet 131 has properties as a magnet without being supplied with a magnetic field or current from the outside.
  • the permanent magnet 131 attracts and fixes the relay piece 135 made of metal magnetic material by magnetic force.
  • the protruding member 132 is arranged to protrude from the detecting section cover 122 to the outside.
  • the projecting member 132 is attached to the permanent magnet 131 .
  • the projecting member 132 is made of a conductive non-magnetic material such as brass, aluminum, or copper.
  • the projecting member 132 is provided in contact with the permanent magnet 131 . However, the projecting member 132 does not directly adsorb metal powder.
  • Control device 140 is an example of an abnormality determination device.
  • the control device 140 is arranged inside the device cover 101 (see FIG. 4).
  • the control device 140 has a detection board 141 .
  • the detection board 141 is connected to the flexible wiring board 142 .
  • Flexible wiring board 142 has a conductive portion.
  • the flexible wiring board 142 has one end connected to the detection board 141 and the other end branched in four directions. Each end branched in four directions is connected to each corresponding relay piece 135 via a terminal portion (conducting portion).
  • the terminal portion (conducting portion) of each end portion is arranged at a position sandwiched between the support member 120 and the relay piece 135 .
  • the terminal portion is connected to the relay piece 135 by a conductive adhesive, soldering, or the like.
  • FIG. 4 is an explanatory diagram showing a detection circuit using a cross section of the conductive particle detection device 100 shown in FIG. 2 along line XI-XI.
  • the detection circuit 200 shown in FIG. 4 is provided on the detection substrate 141 .
  • a detection circuit 200 is a circuit in which a first electrode 130a and second electrodes 130b and 130c are connected via a power supply 201.
  • FIG. A voltage higher than that of the second electrodes 130b and 130c is applied to the first electrode 130a.
  • the first electrode 130a has, for example, N-pole magnetism.
  • the second electrodes 130b and 130c have, for example, S pole magnetism.
  • the detection circuit 200 includes a resistance detection section 210 .
  • the resistance detection unit 210 detects an electrical resistance value (hereinafter referred to as “resistance value”).
  • the initial metal powder generated when the speed reducer 10 is used for the first time is, for example, fine metal powder having a particle size of less than 10 ⁇ m (usually less than 2 ⁇ m).
  • Initial metal dust is generated during the initial stages of use. Therefore, in the initial stage of use, the initial metal powder adheres to the surface of the detection section cover 122 or the like as a lower layer.
  • the lubricating liquid 30 remains as a non-conductive layer around the initial metal powder adhering to the detector cover 122 . Since the lubricant 13 is non-conductive in the initial state of use, the resistance value detected by the resistance detector 210 is infinite. Since the adsorption force of the initial metal powder is relatively weak, the amount of the initial metal powder that collects between the first electrode 130a and the second electrode 130b (or the second electrode 120c) can also be reduced.
  • metal powder such as metal (abrasion powder) and broken pieces (metal powder used over time) is generated.
  • the metal powder used over time has a large particle size of, for example, 10 ⁇ m or more. Therefore, the metal powder used over time receives a large attractive force from the permanent magnet 131 . Since the metal powder used over time receives a large adsorption force, the iron powder used over time pushes away the non-conductive lubricating liquid and comes into contact with each other.
  • the amount of time-used metal powder mixed in the lubricating liquid 13 increases, the time-used metal powder mixed in the lubricating liquid 13 is attracted by the plurality of permanent magnets 131 of the conductive particle detector 100 .
  • the metal powder used over time adheres to the gap between the electrodes 130 on the outer peripheral surface of the detecting section cover 122 . Since the metal powder used over time receives a large attracting force from the permanent magnet 131, it is reliably attracted even from the upper side of the initial metal powder. Therefore, the aged metal powder inevitably deposits as an upper layer on the initial metal powder.
  • the control device 140 can notify an external user terminal or the like that the metal powder used over time in the speed reducer 10 has increased.
  • FIGS. 5A and 5B are graphs showing examples of resistance values detected by the resistance detector 210.
  • FIG. 5A and 5B the horizontal axis indicates the operating time (rated conversion time) of the speed reducer 10, and the vertical axis indicates the resistance value detected by the resistance detecting section 210.
  • Channel 1 (ch1) indicates, for example, a resistance value between the first electrode 130a and the second electrode 130b.
  • Channel 2 indicates, for example, a resistance value between the first electrode 130a and the second electrode 130c.
  • the waveforms for each channel shown in FIGS. 5A and 5B show the same waveform.
  • the speed reducer 10 has failed.
  • the threshold value of the resistance value is the first threshold value
  • the resistance values of both channels 1 and 2 simultaneously fall below the first threshold value for X time.
  • the resistance value threshold is a second threshold value higher than the first threshold value
  • the resistance values of both channels 1 and 2 simultaneously fall below the second threshold value similarly after X is.
  • the failure detection time does not change. Therefore, the failure of the speed reducer 10 cannot be accurately detected simply by changing the threshold value of the resistance value.
  • the speed reducer 10 does not immediately fail. Specifically, as shown in the waveforms of channel 2 in FIGS. 5A and 5B, the resistance value does not immediately drop to 0 ⁇ even if the metal powder from aging is attached. The resistance value tends to eventually converge to several tens of k ⁇ while repeating a decrease and an increase several times. This means that, for example, metal powder that has been used over time has once adhered to the surface of the outer peripheral surface of the detecting section cover 122 , but the adhered metal powder has come off due to the flow of the lubricating liquid 13 . However, the fact that the electroconductive particle detection device 100 detects adhesion of the metal powder used over time means that the metal powder used over time is present in the oil bath 22 .
  • the number of times the resistance value has fallen below the second threshold is measured, and when the number of times reaches a reference number of times (for example, three times), an abnormality in the speed reducer 10 is detected.
  • a reference number of times for example, three times
  • FIG. 6 is a functional block diagram showing an example of the functional configuration of the control device 140 according to this embodiment.
  • the control device 140 includes a resistance detection section 210 , an acquisition section 601 , an abnormality determination section 602 , an output section 603 and a storage section 610 .
  • the resistance detection unit 210 may be provided in a part (another board or the like) different from the control device 140 .
  • the resistance detection unit 210, the acquisition unit 601, the abnormality determination unit 602, and the output unit 603 may be implemented by a hardware processor such as a CPU (Central Processing Unit) executing an abnormality determination program. Some or all of these components of the resistance detection unit 210, the acquisition unit 601, the abnormality determination unit 602, and the output unit 603 are LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), FPGA (Field- Programmable Gate Array), GPU (Graphics Processing Unit) and other hardware (including circuitry), or software and hardware cooperation.
  • LSI Large Scale Integration
  • ASIC Application Specific Integrated Circuit
  • FPGA Field- Programmable Gate Array
  • GPU Graphics Processing Unit
  • the abnormality determination program may be stored in advance in a storage device (a storage device having a non-transitory storage medium) such as a HDD (Hard Disk Drive) or flash memory.
  • the abnormality determination program may be stored in a detachable storage medium (non-transitory storage medium) such as a DVD or CD-ROM, and installed when the storage medium is attached to the drive device.
  • the resistance detection unit 210 , the acquisition unit 601 , the abnormality determination unit 602 and the output unit 603 are implemented by the processor executing the abnormality determination program stored in the storage unit 610 .
  • the storage unit 610 is, for example, a volatile memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, a non-volatile memory (non-temporary recording medium) such as a HDD (Hard Disk Drive). including.
  • a volatile memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, a non-volatile memory (non-temporary recording medium) such as a HDD (Hard Disk Drive).
  • the acquisition unit 601 acquires the resistance value (electrical resistance value) detected by the resistance detection unit 210 .
  • the resistance detection unit 210 detects the resistance value, for example, at predetermined time intervals (for example, at intervals of one minute).
  • Acquisition unit 601 acquires a resistance value from resistance detection unit 210 at predetermined time intervals.
  • the abnormality determination unit 602 determines abnormality of the speed reducer 10 based on the number of times the resistance value acquired by the acquisition unit 601 has fallen below the threshold. Specifically, the abnormality determination unit 602 determines that the reduction gear 10 is abnormal when the number of times the resistance value acquired by the acquisition unit 601 has fallen below the threshold value (second threshold value) reaches a reference number of times (for example, three times). . Hereinafter, the number of times the resistance value acquired by the acquisition unit 601 has fallen below the threshold is referred to as “count number”. The abnormality determination unit 602 determines that the speed reducer 10 is normal when the count number has not reached the reference number of times. Storage unit 610 stores the count number.
  • the output unit 603 outputs the result determined by the abnormality determination unit 602 .
  • the output unit 603 transmits the information (result determined by the abnormality determination unit 602) to an external device.
  • the external device is, for example, the user terminal 300 .
  • the user terminal 300 is a computer device arranged in a facility such as a factory where the speed reducer 10 is used.
  • the computer device is, for example, a desktop personal computer or a notebook computer, but is not limited to this, and may be a tablet terminal or a smart phone.
  • the user terminal 300 displays the result determined by the abnormality determination unit 602 on the display. Specifically, the user terminal 300 displays whether the speed reducer 10 is normal.
  • the output mode of the user terminal 300 is not limited to a display output mode, and includes an audio output mode and an output mode stored in a storage medium.
  • the conductive particle detection device 100 may include a light emitting part such as an LED.
  • the output unit 603 may cause the light emitting unit to emit light in a lighting mode according to the determination result of the abnormality determination unit 602 .
  • the output unit 603 may cause the storage unit 610 to store the determination result of the abnormality determination unit 602 .
  • the acquisition unit 601 acquires a plurality of resistance values between a plurality of pairs of electrodes with different combinations. Specifically, the acquisition unit 601 acquires the resistance value of channel 1 (the resistance value between the first electrode 130a and the second electrode 130b), the resistance value of the channel 2 (the resistance value between the first electrode 130a and the second electrode 130c), resistance value between ) and However, the acquisition unit 601 may acquire only one of the resistance values of channel 1 and channel 2 . In other words, the conductive particle detection device 100 should have at least one channel. More specifically, the control device 140 connects a circuit connecting the first electrode 130a and the second electrode 130b and a circuit connecting the first electrode 130a and the second electrode 130c shown in the detection circuit 200 (see FIG. 4). circuit.
  • the number of channels is two in this embodiment, it may be three or more.
  • a circuit similar to the detection circuit 200 may be provided on the first electrode 130d side. Specifically, a circuit connecting the first electrode 130d and the second electrode 130b via the power source 201 and a circuit connecting the first electrode 130d and the second electrode 130c via the power source 201 are added. good too. By providing a large number of channels in this way, it is possible to more accurately detect the metal powder used over time.
  • the abnormality determination unit 402 determines abnormality based on the count numbers of the plurality of channels. Specifically, the abnormality determination unit 402 determines that there is an abnormality when the total value of the count number in channel 1 and the count number in channel 2 is the reference number of times. However, the count numbers in channel 1 and channel 2 may be measured separately, and if one of the count numbers becomes the reference number, it may be determined as abnormal, or each count number may be the reference number. If so, it may be determined as abnormal.
  • abnormality includes a premonitory state indicating impending failure and a failure state indicating failure.
  • An abnormality determination unit 602 determines an abnormality including a predictor state and a failure state. For example, when the resistance value acquired by the acquisition unit 601 falls below the threshold value (second threshold value) three times, the abnormality determination unit 602 determines that the symptom state is present. That is, when the count number reaches the reference number of times (three times), the abnormality determination unit 602 determines that it is in the predictive state. On the other hand, when the resistance values of both channels 1 and 2 obtained by the obtaining unit 601 are below the threshold (second threshold) at the same time, the abnormality determination unit 602 determines that there is a failure state.
  • the abnormality determination unit 602 may determine that the failure state exists instead of the predictive state state. However, even in this case, the speed reducer 10 can be used for a while. Therefore, the use of the speed reducer 10 may be continued or stopped at the user's discretion.
  • the threshold (second threshold) used for determining the failure state is the same as the threshold (second threshold) used for determining the portent state.
  • the threshold used for determining the failure state may be a different value from the threshold used for determining the portent state.
  • the threshold used to determine the failure state may be a threshold lower than the second threshold.
  • the abnormality determination unit 602 may determine that the failure state occurs when the count number is greater than the reference number (for example, four times or more).
  • the threshold value (second threshold value) used for determining the predictive state is set low (for example, the first threshold value) and the resistance value acquired by the acquiring unit 601 falls below the first threshold value.
  • the abnormality determination unit 602 may determine that it is in a failure state.
  • the output unit 603 outputs information indicating either the predictive state or the failure state.
  • the output unit 603 outputs information indicating the portent state (hereinafter referred to as “prediction information”).
  • prediction information information indicating the portent state
  • the user terminal 300 Upon receiving the predictive information, the user terminal 300 notifies the user of the predictive state by displaying a warning image (for example, yellow) indicating the predictive state on the display.
  • the output unit 603 causes the light emitting unit to emit light in a lighting mode (for example, yellow) that indicates a premonitory state (caution).
  • the output unit 603 When the abnormality determination unit 602 determines that the device is in a failure state, the output unit 603 outputs information indicating the failure state (hereinafter referred to as “failure information”). Upon receiving the failure information, the user terminal 300 notifies the user of the failure state by displaying a warning image (for example, red) indicating the failure state on the display.
  • the output unit 603 causes the light emitting unit to emit light in a lighting mode (for example, red) indicating a failure state (warning).
  • the timing at which the conductive particle detection device 100 can detect a failure depends on the size of the speed reducer 10 .
  • the conductive particle detection device This is because various factors such as the distance to 100 are different. It is not efficient from the viewpoint of manufacturing cost and the like to manufacture the conductive particle detection device 100 corresponding to these factors.
  • the threshold value of the resistance value can be changed according to the size of the speed reducer 10 so as to correspond to the above factors. For example, when the size of the speed reducer 10 is small, the amount of initial metal powder generated is small, and the position of the conductive particle detection device 100 is close to the position of the metal powder generated over time, so the resistance value decreases early. tend to Therefore, when the size of the speed reducer 10 is small, the threshold value of the resistance value is set to be low in order to lower the sensitivity related to the detection of metal powder used over time.
  • the threshold value of the resistance value is set high in order to increase the sensitivity related to the detection of metal powder used over time.
  • the timing at which the conductive particle detection device 100 can detect a failure depends on the viscosity of the lubricating liquid 13 . This is because, as described above, the ease with which the non-conductive layer pushes away the lubricating liquid when the aged metal powder adheres to the conductive particle detection device 100 differs depending on the viscosity of the lubricating liquid 13. be. Therefore, in this embodiment, the threshold value of the resistance value can be changed according to the viscosity of the lubricating liquid 13 .
  • the threshold value of the resistance value is set high in order to increase the sensitivity related to the detection of metal powder used over time.
  • the threshold value of the resistance value is set to be low in order to lower the sensitivity related to the detection of metal powder used over time.
  • the timing at which the conductive particle detection device 100 can detect a failure depends on the insulating performance of the lubricating liquid 13 . This is because the detection accuracy of the resistance value differs depending on the insulating performance of the lubricating liquid 13 . Therefore, in this embodiment, the threshold value of the resistance value can be changed according to the insulation performance of the lubricating liquid 13 .
  • the threshold value of the resistance value is set to be low in order to lower the sensitivity related to the detection of metal powder used over time.
  • the threshold value of the resistance value is set high in order to increase the sensitivity of detection of metal powder used over time.
  • the reference number of times can be changed according to the size of the speed reducer 10 so as to correspond to the above factors. For example, when the size of the speed reducer 10 is small, the resistance value tends to decrease early. For this reason, the reference number of times is set to be relatively large in order to lower the sensitivity related to the detection of metal powder used over time. On the other hand, when the size of the speed reducer 10 is large, the resistance value tends to be difficult to decrease. For this reason, the reference number of times is set to be small in order to increase the sensitivity of detection of metal powder used over time.
  • the setting of the threshold value and the setting of the reference number of times are performed by receiving them from the manufacturing staff when the control device 140 is manufactured.
  • the control device 140 sets the threshold value and the reference number of times using the reception result received from the manufacturing staff as to whether or not the size of the speed reducer 10 is equal to or greater than a predetermined size.
  • the storage unit 610 stores in advance a table that associates the size of the speed reducer 10 with the threshold value and a table that associates the size of the speed reducer 10 with the reference number of times.
  • the control device 140 Upon receiving the size of the speed reducer 10, the control device 140 refers to the table in the storage unit 610 to set the threshold value and the reference number of times.
  • the speed reducer 10 has two sizes, large and small. Furthermore, either one of the two types is set for each of the threshold value and the reference number of times.
  • the size of the speed reducer 10 is not limited to two types, large and small, and may be three types, large, medium, and small, or may be more.
  • the control device 140 may receive the value of the threshold itself and the value of the reference number of times itself from the manufacturing staff and set the received value.
  • FIG. 7 is a flow chart showing an example of a process of setting a threshold value and a reference number of times performed by the control device 140.
  • the control device 140 waits until the setting of the threshold value and the reference number of times is started by receiving a predetermined operation from the manufacturing staff (step S701: NO).
  • step S701: NO the setting of the threshold value and the reference number of times starts
  • step S702: YES the control device 140 determines whether or not the size of the speed reducer 10 received from the manufacturing staff is "large" (step S702).
  • step S702 If the size of the speed reducer 10 is not “large” (step S702: NO), that is, if it is "small”, the control device 140 sets a lower threshold (step S703). Then, the control device 140 sets a relatively large reference number of times (step S704), and terminates the series of processes.
  • step S702 When the size of the speed reducer 10 is "large" (step S702: YES), the control device 140 sets a higher threshold (step S705). Then, the control device 140 sets the reference number of times to a small value (step S706), and terminates the series of processes.
  • FIG. 8 is a flowchart showing an example of abnormality determination processing performed by the control device 140 .
  • the control device 140 waits until abnormality determination is started (step S801: NO).
  • the start of abnormality determination is, for example, turning on the power of the conductive particle detection device 100 .
  • the control device 140 determines whether or not a predetermined time (for example, 1 minute) has elapsed (step S802).
  • the control device 140 waits until a predetermined time elapses (step S802: NO). After a predetermined period of time has elapsed (step S802: YES), the control device 140 detects and acquires two resistance values of channels 1 and 2 (step S803). Then, the control device 140 determines whether or not both of the obtained resistance values are below the threshold (second threshold) (step S804). If both of the acquired resistance values are not below the threshold (step S804: NO), it is determined whether one of the acquired resistance values is below the threshold (second threshold) (step S805).
  • step S805 If one does not fall below the threshold (step S805: NO), that is, if both of the acquired resistance values are equal to or greater than the threshold, the control device 140 proceeds to step S813. If one of the acquired resistance values is less than the threshold (step S805: YES), the control device 140 increments the number of times the resistance value is less than the threshold (count number) by "1" and stores it in the storage unit 610 (step S806).
  • step S807 determines whether or not the count number is equal to or greater than the reference number of times (eg, "3") (step S807). If the count number is not equal to or greater than the reference number (step S807: NO), the control device 140 proceeds to step S813. If the counted number is greater than or equal to the reference number of times (step S807: YES), the control device 140 determines whether the predictor information has already been output to the user terminal 300 (step S808).
  • the reference number of times eg, "3
  • step S808: YES If the predictor information has already been output to the user terminal 300 (step S808: YES), that is, if the user terminal 300 has already notified that it is in a predictive state, the control device 140 proceeds to step S813. On the other hand, when predictive information has not been output to the user terminal 300 (step S808: NO), the control device 140 determines whether failure information has been output to the user terminal 300 (step S809).
  • step S809: YES If the failure information has already been output to the user terminal 300 (step S809: YES), that is, if the user terminal 300 has already been notified that it is in a failure state, the control device 140 proceeds to step S813. On the other hand, if failure information has not been output to the user terminal 300 (step S809: NO), the control device 140 outputs predictive information to the user terminal 300 (step S810), and proceeds to step S813. The user terminal 300 reports the predictive state by receiving the predictive information.
  • step S808 when the user terminal 300 has already notified that the user terminal 300 is in a predictive state, the predictive information is not output to the user terminal 300 (step S808: YES ⁇ step S813). However, even if the predictive state has already been notified, the predictive information may be output to the user terminal 300 again.
  • the user terminal 300 may report the predictive state each time predictive information is received.
  • step S804 when both of the acquired resistance values are below the threshold (step S804: YES), the control device 140 determines whether failure information has been output to the user terminal 300 (step S811). . If failure information has already been output to the user terminal 300 (step S811: YES), that is, if the user terminal 300 has already been notified that it is in a failure state, the control device 140 proceeds to step S813. On the other hand, if failure information has not been output to the user terminal 300 (step S811: NO), the control device 140 outputs failure information to the user terminal 300 (step S812). The user terminal 300 notifies the failure state by receiving the failure information.
  • the failure information is not output to the user terminal 300 (step S811: YES ⁇ step S813). However, even if the failure state has already been notified, the failure information may be output to the user terminal 300 again.
  • the user terminal 300 may notify the failure state each time it receives failure information.
  • control device 140 determines whether or not the abnormality determination has ended (step S813).
  • the termination of the abnormality determination means, for example, that the power of the conductive particle detection device 100 is turned off. If the abnormality determination is not terminated (step S813: NO), the control device 140 returns to step S802 and continues detecting the resistance value. On the other hand, when ending the abnormality determination (step S813: YES), the control device 140 ends the series of processes.
  • the control device 140 determines whether the speed reducer 10 is abnormal based on the number of times the electrical resistance value between the electrodes 130 falls below the threshold value, and outputs the determination result. As a result, the user can be notified of an abnormality that occurs in the stage prior to the failure. Therefore, the user can use the speed reducer 10 systematically.
  • the reduction gear 10 can be maintained in a planned manner during regular maintenance that is performed while the production line is stopped. Also, it is possible to prevent the speed reducer 10 from breaking down during operation of the production line. Therefore, according to the present embodiment, it is possible to improve convenience for the user who uses the speed reducer 10 .
  • the control device 140 determines an abnormality based on the number of times a plurality of different resistance values between the electrodes 130 falls below the threshold. As a result, resistance values can be obtained from a plurality of channels, so that the accuracy of abnormality determination can be improved.
  • the control device 140 determines an abnormality based on the total number of times each of the plurality of resistance values has fallen below the threshold. Therefore, it is possible to notify the user of an abnormality that occurs in a stage prior to failure at an early stage.
  • the control device 140 determines an abnormality including a failure state and a predictive state, and outputs information indicating either the failure state or the predictive state. Thus, it is possible to notify whether the speed reducer 10 is in a pre-failure symptom state or in a failed state. Therefore, the user can appropriately grasp the state of the speed reducer 10 .
  • the threshold is a value that can be changed according to the size of the speed reducer 10 .
  • the threshold value is a value that can be changed according to at least one of the viscosity of the lubricating fluid 13 and the insulation performance. As a result, it is possible to provide a versatile conductive particle detection device 100 that can handle various types of lubricating liquids 13 simply by changing the threshold value.
  • the reference number of times is a value that can be changed according to the size of the speed reducer 10 .
  • An abnormality determination program for realizing the conductive particle detection device 100 and the control device 140 described above may be recorded on a computer-readable recording medium, and the program may be read and executed by a computer system. good.
  • the "computer system” here includes hardware such as an OS and peripheral devices.
  • the term "computer-readable recording medium” refers to portable media such as flexible disks, magneto-optical disks, ROMs and CD-ROMs, and storage devices such as hard disks built into computer systems.
  • Computer-readable recording medium means a volatile memory (RAM) inside a computer system that acts as a server or client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. , including those that hold programs for a certain period of time.
  • the above program may be transmitted from a computer system storing this program in a storage device or the like to another computer system via a transmission medium or by transmission waves in a transmission medium.
  • a "transmission medium” for transmitting a program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
  • the program may be for realizing part of the functions described above. It may be a so-called difference file (difference program) that can realize the functions described above in combination with a program already recorded in the computer system.
  • the conductive particle detection device According to the abnormality determination device, the conductive particle detection device, the abnormality determination method, and the program described above, it is possible to improve convenience for the user who uses the mechanical operation device. Therefore, the present application has industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本開示の異常判定装置は、機械動作装置の潤滑に用いられる非導電性の潤滑液中に離間して配置される電極間の電気抵抗値を取得する取得部(601)と、取得部によって取得された電気抵抗値が閾値を下回った回数に基づいて、機械動作装置の異常を判定する異常判定部(602)と、異常判定部によって判定された結果を出力する出力部(603)と、を備える。取得部は、磁力によって集められた潤滑液中の導電性粒体に応じて変化する電極間の電気抵抗値を取得する。

Description

異常判定装置、導電性粒体検出装置、異常判定方法、およびプログラム
 本開示は、異常判定装置、導電性粒体検出装置、異常判定方法、およびプログラムに関する。
 本願は、2021年9月28日に日本に出願された特願2021-157903号について優先権を主張し、その内容をここに援用する。
 機械動作装置には、減速機等の機械的な動作機構が内蔵されている。機械動作装置では、ケーシングの内部に潤滑液を充填することによって動作機構の摩耗の低減が図られている。機械動作装置では、経時使用に伴って機械部品に摩耗や破損が発生する。摩耗や破損で発生した金属粉は潤滑液中に混入する。潤滑液中に金属粉が多量に混入すると、潤滑液の機能(動作機構の摩耗を抑制する機能)が低下する。潤滑液中に金属粉が多量に混入することは、動作機構に摩耗や破損等が生じたことを意味する。
 このため、機械動作装置では、潤滑液中に混入している金属粉の量が規定量以上になったことを外部から検知できることが望まれる。この対策として、潤滑液中の金属粉を永久磁石によって吸引し、吸引した金属粉の量を電気的に検知できるようにしたものが知られている(例えば、特許文献1参照。)。
日本国特開2005-331324号公報
 しかしながら、機械動作装置を使用するユーザからすると、機械動作装置の故障が突然報知されることになるため、機械動作装置を計画的に使用することができないことがあった。このため、機械動作装置が使用するユーザにとって利便性が低いという課題があった。
 本開示は、機械動作装置を使用するユーザの利便性を向上させることができる異常判定装置、導電性粒体検出装置、異常判定方法、およびプログラムを提供する。
(1)本開示の一態様に係る異常判定装置は、機械動作装置の潤滑に用いられる潤滑液中に離間して配置される電極間の電気抵抗値を取得する取得部と、前記取得部によって取得された前記電気抵抗値が閾値を下回った回数に基づいて、前記機械動作装置の異常を判定する異常判定部と、前記異常判定部によって判定された結果を出力する出力部と、を備える。前記取得部は、磁力によって集められた前記潤滑液中の導電性粒体に応じて変化する前記電極間の前記電気抵抗値を取得する。
(2)上記構成において、前記取得部は、組み合わせの異なる複数組の電極間の複数の前記電気抵抗値を取得してもよい。前記異常判定部は、複数の前記電気抵抗値が前記閾値を下回った回数に基づいて、前記異常を判定するようにしてもよい。
(3)上記構成において、前記異常判定部は、複数の前記電気抵抗値がそれぞれ前記閾値を下回った回数の合計に基づいて、前記異常を判定するようにしてもよい。
(4)上記構成において、前記異常判定部は、前記機械動作装置の故障を示す故障状態と、前記故障状態となる前の予兆状態とを含む前記異常を判定してもよい。前記出力部は、前記故障状態と前記予兆状態とのうちいずれかを示す情報を出力するようにしてもよい。
(5)上記構成において、前記閾値は、前記機械動作装置の大きさに応じて変更可能な値としてもよい。
(6)上記構成において、前記閾値は、前記潤滑液の粘度および絶縁性能のうち少なくとも一方に応じて変更可能な値としてもよい。
(7)上記構成において、前記回数は、前記機械動作装置の大きさに応じて変更可能な値としてもよい。
(8)本開示の他の態様に係る異常判定装置は、機械動作装置の潤滑に用いられる非導電性の潤滑液中に離間して配置される電極間の電気抵抗値を取得する取得部と、前記取得部によって取得された前記電気抵抗値が閾値を下回った回数に基づいて、前記機械動作装置の異常を判定する異常判定部と、前記異常判定部によって判定された結果を出力する出力部と、を備える。前記取得部は、磁力によって集められた前記潤滑液中の導電性粒体に応じて変化する前記電極間の前記電気抵抗値を取得する。さらに前記取得部は、組み合わせの異なる複数組の電極間の複数の前記電気抵抗値を取得する。前記異常判定部は、複数の前記電気抵抗値がそれぞれ前記閾値を下回った回数の合計に基づいて、前記機械動作装置の故障を示す故障状態と、前記故障状態となる前の予兆状態とを含む前記異常を判定する。前記出力部は、前記故障状態と前記予兆状態とのうちいずれかを示す情報を出力する。
(9)本開示の他の態様に係る導電性粒体検出装置は、機械動作装置の潤滑に用いられる非導電性の潤滑液中に離間して配置される電極と、磁力によって集められた前記潤滑液中の導電性粒体に応じて変化する前記電極間の電気抵抗値を取得する取得部と、前記取得部によって取得された前記電気抵抗値が閾値を下回った回数に基づいて、前記機械動作装置の異常を判定する異常判定部と、前記異常判定部によって判定された結果を出力する出力部と、を備える。
(10)本開示の他の態様に係る異常判定方法は、異常判定装置に用いられるコンピュータが、機械動作装置の潤滑に用いられる非導電性の潤滑液中に離間して配置される電極間の電気抵抗値を取得する取得ステップと、前記取得ステップにおいて取得された前記電気抵抗値が閾値を下回った回数に基づいて、前記機械動作装置の異常を判定する状態判定ステップと、前記状態判定ステップにおいて判定された結果を出力する出力ステップと、を実行する。前記取得ステップは、磁力によって集められた前記潤滑液中の導電性粒体に応じて変化する前記電極間の前記電気抵抗値を取得する。
(11)本開示の他の態様に係るプログラムは、異常判定装置に用いられるコンピュータを、機械動作装置の潤滑に用いられる非導電性の潤滑液中に離間して配置される電極間の電気抵抗値を取得する取得部、前記取得部によって取得された前記電気抵抗値が閾値を下回った回数に基づいて、前記機械動作装置の異常を判定する異常判定部、前記異常判定部によって判定された結果を出力する出力部、として機能させる。さらに前記取得部を、磁力によって集められた前記潤滑液中の導電性粒体に応じて変化する前記電気抵抗値を取得するように機能させる。
 上述の異常判定装置、導電性粒体検出装置、異常判定方法、およびプログラムによれば、機械動作装置を使用するユーザの利便性を向上させることができる。
本実施形態に係る減速機10の一例を示す説明図。 導電性粒体検出装置100の一例を示す斜視図。 図2に示す導電性粒体検出装置100をX-X線に沿って断面にした部分断面斜視図。 図2に示す導電性粒体検出装置100をXI-XI線に沿う断面を用いた検出回路を示す説明図。 抵抗検出部210によって検出された抵抗値の一例を示すグラフ。 抵抗検出部210によって検出された抵抗値の一例を示すグラフ。 本実施形態に係る制御装置140の機能的構成の一例を示す機能ブロック図。 制御装置140が行う閾値および基準回数の設定処理の一例を示すフローチャート。 制御装置140が行う異常判定処理の一例を示すフローチャート。
<実施形態>
 本開示の実施形態を図面に基づいて説明する。
(本実施形態に係る減速機の一例)
 図1は、本実施形態に係る減速機10の一例を示す説明図である。図1において、減速機10は、機械動作装置の一例である。減速機10は、例えば、工場の生産ラインに用いられる産業用ロボットの関節部分に使用される。
 減速機10は、減速機構部11と、ケーシング12とを備える。減速機構部11は、入力回転を所定の減速比に減速する。ケーシング12は、減速機構部11を内部に収容する。ケーシング12の内部には、オイルバス22が設けられる。オイルバス22には、減速機構部11やその他の機械接触部を潤滑するための潤滑液13が充填されている。潤滑液13には、非導電性のものが用いられる。
 ケーシング12の壁12aには、導電性粒体検出装置100が取り付けられている。導電性粒体検出装置100が取り付けられる位置は、潤滑液13の流動性の良好な位置である。導電性粒体検出装置100は、潤滑液13内に混入した金属粉等の導電性粒体を検出する。
(導電性粒体検出装置の構成)
 図2は、導電性粒体検出装置100の一例を示す斜視図である。図3は、図2に示す導電性粒体検出装置100をX-X線に沿って断面にした部分断面斜視図である。
 図2および図3に示すように、導電性粒体検出装置100は、取付部110と、支持部材120(図3参照)と、4個の電極130と、制御装置140(図3参照)とを備える。
 取付部110は、ネジ部111と、フランジ部112とを含む。ネジ部111は、壁12aを貫通するねじ孔に嵌め込まれる。フランジ部112は、ネジ部111を壁12aに締め付けるためのフランジナットである。フランジ部112は、ネジ部111の端部にネジ部111と一体的に形成される。
 支持部材120は、樹脂材料で形成されている。支持部材120は、ネジ部111を軸方向に貫通して配置されている。支持部材120は、長手方向の一端部が装置ボディ121の内側に固定されている。支持部材120の長手方向の他端部は、ネジ部111よりも外側に突出している。
 4つの電極130は、それぞれ、永久磁石131と、突起部材132とを備える。永久磁石131は、導電性の磁石である。永久磁石131は、外部から磁場や電流の供給を受けることなく、磁石としての性質を有する。永久磁石131は、磁力によって、金属磁性体製の中継片135を吸着して固定する。
 突起部材132は、検出部カバー122から外部に突出するように配置される。突起部材132は、永久磁石131に取り付けられている。突起部材132は、真鍮、アルミニウム、銅等の導電性の非磁性体によって形成されている。突起部材132は、永久磁石131に接して設けられている。ただし、突起部材132は、金属粉を直接吸着しない。
 制御装置140は、異常判定装置の一例である。制御装置140は、装置カバー101(図4参照)の内部に配置される。
 制御装置140は、検出基板141を備える。検出基板141は、フレキシブル配線板142に接続される。フレキシブル配線板142は、導通部を備える。フレキシブル配線板142は、一端部が検出基板141に接続され、他端部が四方向に分岐している。
 四方向に分岐した各端部は、対応する各中継片135に端子部(導通部)を介して接続される。具体的に、各端部の端子部(導通部)は、支持部材120と中継片135との間に挟まれた位置に配置されている。端子部は、導電性の接着剤や半田付け等によって中継片135に接続されている。
(金属粉を検出する検出回路について)
 図4は、図2に示す導電性粒体検出装置100をXI-XI線に沿う断面を用いた検出回路を示す説明図である。図4に示す検出回路200は、検出基板141に具備される。
 検出回路200は、電源201を介して、第1電極130aと、第2電極130b、130cとを接続した回路を示す。第1電極130aには、第2電極130b、130cよりも高い電圧が印加される。第1電極130aは、例えば、N極の磁性を帯びている。第2電極130b、130cは、例えば、S極の磁性を帯びている。
 検出回路200は、抵抗検出部210を備える。抵抗検出部210は、隣り合う2つの電極130間(第1電極130aと第2電極130bとの間、および、第1電極130aと第2電極130cとの間)の電気抵抗値(以下「抵抗値」という。)を検出する。
(初期金属粉と経時使用金属粉について)
 減速機10を初めて使用する際に発生する初期金属粉は、例えば粒径が10μm未満(通常2μm未満)の微細な金属粉である。
 初期金属粉は、使用初期段階に発生する。このため、使用初期段階では、初期金属粉は、検出部カバー122の表面等に下層として付着する。検出部カバー122に付着した初期金属粉の周囲には、潤滑液30が非導電層として残存する。使用初期状態では、潤滑液13が非導電性であることから、抵抗検出部210によって検出される抵抗値は無限大となる。初期金属粉の吸着力は比較的弱いため、第1電極130aと第2電極130b(または第2電極120c)の間に集まる初期金属粉の量も少なく抑えられる。
 一方、減速機10の通常の使用を行った場合、金属(摩耗粉)や破損片等の金属粉(経時使用金属粉)が発生する。経時使用金属粉は、例えば粒径が10μm以上と大きい。このため、経時使用金属粉は、永久磁石131から大きな吸着力を受ける。経時使用金属粉は、大きな吸着力を受けることから、非導電性の潤滑液を押しのけて経時使用鉄粉同士が接する。潤滑液13内に混入する経時使用金属粉の量が増大すると、潤滑液13に混入している経時使用金属粉が導電性粒体検出装置100の複数の永久磁石131によって吸引される。
 そして、経時使用金属粉は、検出部カバー122の外周面上における電極130間のギャップに付着する。経時使用金属粉は永久磁石131から大きな吸着力を受けることから、初期金属粉の上側からでも確実に吸着される。このため、経時使用金属粉は、必然的に初期金属粉の上に上層となって堆積する。
 検出部カバー122の外周面に付着した経時使用金属粉の付着量が、ある量よりも増大すると、隣り合う永久磁石131の間の抵抗値(抵抗検出部210によって検出される抵抗値)が規定値以下に低下する。これにより、制御装置140は、外部のユーザ端末等に、減速機10内の経時使用金属粉が増大したことを報知することが可能である。
(減速機の故障について)
 図5A及び図5Bは、抵抗検出部210によって検出された抵抗値の一例を示すグラフである。図5A及び図5Bにおいて、横軸は、減速機10の運転時間(定格換算時間)を示し、縦軸は、抵抗検出部210によって検出された抵抗値を示す。
 チャンネル1(ch1)は、例えば、第1電極130aと、第2電極130bとの間の抵抗値を示す。チャンネル2(ch2)は、例えば、第1電極130aと、第2電極130cとの間の抵抗値を示す。図5A及び図5Bに示す各チャンネルの波形は、同じ波形を示す。
 例えば図5Aに示すように、チャンネル1と、チャンネル2との両方の抵抗値が同時に閾値を下回った場合、減速機10が故障したと仮定する。この際、例えば抵抗値の閾値が第1閾値であると仮定した場合、両チャンネル1、2の抵抗値が同時に第1閾値を下回るのは、X時間である。
 この場合とは異なり、例えば抵抗値の閾値が第1閾値よりも高い第2閾値であると仮定した場合、両チャンネル1、2の抵抗値が同時に第2閾値を下回るのは、同様にX時間である。
 つまり、閾値を変えたとしても、故障を検知する時間は変わらない。このため、抵抗値の閾値を変えただけでは、減速機10の故障を精度よく検出することができない。
 これに対して、導電性粒体検出装置100に経時使用金属粉が付着しても、直ちに減速機10が故障するものではない。具体的には、図5A及び図5Bのチャンネル2の波形に示すように、抵抗値は、経時使用金属粉が付着しても、直ちに0Ωまで低下するのではない。抵抗値は、低下と上昇を幾度か繰り返しながら、最終的に数十kΩへ収束する傾向がある。
 これは、例えば、経時使用金属粉が検出部カバー122の外周面の表面に一旦付着したものの、潤滑液13の流れによって、付着した金属粉が剥がれたことを意味する。ただし、導電性粒体検出装置100によって経時使用金属粉の付着が検出されたということは、オイルバス22の中に、経時使用金属粉が存在することが判明したことになる。
 そこで、本実施形態では、図5Bに示すように、抵抗値が第2閾値を下回った回数を計測し、その回数が基準回数(例えば、3回)となった場合に、減速機10の異常を検出するように構成している。これにより、閾値を高く(第2閾値)設定したとしても、早期に(図示ではY時間:Y<X)、異常を検出することができる。
(制御装置の機能的構成)
 図6は、本実施形態に係る制御装置140の機能的構成の一例を示す機能ブロック図である。図6に示すように、制御装置140は、抵抗検出部210と、取得部601と、異常判定部602と、出力部603と、記憶部610を備える。抵抗検出部210は、制御装置140とは異なる部位(他の基板等)に具備されていてもよい。
 抵抗検出部210、取得部601、異常判定部602及び出力部603は、CPU(Central Processing Unit)などのハードウェアプロセッサが異常判定プログラムを実行することにより実現されてもよい。
 抵抗検出部210、取得部601、異常判定部602及び出力部603は、これらの構成要素のうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、GPU(Graphics Processing Unit)などのハードウェア(回路部;circuitryを含む)によって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。
 異常判定プログラムは、予めHDD(Hard Disk Drive)やフラッシュメモリなどの記憶装置(非一過性の記憶媒体を備える記憶装置)に格納されていてもよい。或いは異常判定プログラムは、DVDやCD-ROMなどの着脱可能な記憶媒体(非一過性の記憶媒体)に格納されており、記憶媒体がドライブ装置に装着されることでインストールされてもよい。プロセッサが記憶部610に記憶されている異常判定プログラムを実行することによって、抵抗検出部210、取得部601、異常判定部602及び出力部603が実現される。
 記憶部610は、例えば、RAM(Random Access Memory)などの揮発性メモリや、ROM(Read Only Memory)、フラッシュメモリ、HDD(Hard Disk Drive)などの不揮発性のメモリ(非一時的な記録媒体)を含む。
 取得部601は、抵抗検出部210によって検出された抵抗値(電気抵抗値)を取得する。抵抗検出部210は、例えば、所定時間おき(例えば、1分おき)に抵抗値を検出する。取得部601は、抵抗検出部210から所定時間おきに抵抗値を取得する。
 異常判定部602は、取得部601によって取得された抵抗値が閾値を下回った回数に基づいて、減速機10の異常を判定する。
 具体的には、異常判定部602は、取得部601によって取得された抵抗値が閾値(第2閾値)を下回った回数が基準回数(例えば3回)になると、減速機10の異常を判定する。以下において、取得部601によって取得された抵抗値が閾値を下回った回数を「カウント数」という。異常判定部602は、カウント数が基準回数に達していない場合には、減速機10が正常であると判定する。記憶部610は、カウント数を記憶する。
 出力部603は、異常判定部602によって判定された結果を出力する。出力部603は、当該情報(異常判定部602によって判定された結果)を外部の装置へ送信する。
 外部の装置は、例えば、ユーザ端末300である。ユーザ端末300は、減速機10が用いられる工場等の施設内に配置されるコンピュータ装置である。コンピュータ装置は、例えば、デスクトップ型のパソコンや、ノートパソコンであるが、これに限らず、タブレット端末やスマートフォンであってもよい。ユーザ端末300は、異常判定部602によって判定された結果をディスプレイに表示する。具体的には、ユーザ端末300は、減速機10が正常であるか否かを表示する。ユーザ端末300の出力態様は、表示による出力態様に限らず、音声による出力態様や、記憶媒体に記憶させる出力態様を含む。
 導電性粒体検出装置100は、LED等の発光部を備えていてもよい。この場合、出力部603は、異常判定部602の判定結果に応じた点灯態様で、発光部を発光させればよい。出力部603は、記憶部610に、異常判定部602の判定結果を記憶させてもよい。
(複数の抵抗値の取得について)
 本実施形態において、取得部601は、組み合わせの異なる複数組の電極間の複数の抵抗値を取得する。
 具体的には、取得部601は、チャンネル1の抵抗値(第1電極130aと第2電極130bとの間の抵抗値)と、チャンネル2の抵抗値(第1電極130aと第2電極130cとの間の抵抗値)とを取得する。
 ただし、取得部601は、チャンネル1及びチャンネル2の抵抗値のうち、いずれか一方の抵抗値のみを取得してもよい。言い換えれば、導電性粒体検出装置100は、チャンネルは少なくとも一つあればよい。より具体的には、制御装置140は、検出回路200(図4参照)に示した、第1電極130aと第2電極130bとを結ぶ回路と、第1電極130aと第2電極130cとを結ぶ回路とのうち、少なくとも一方を備えていればよい。
 本実施形態において、チャンネル数は2であるが、3以上としてもよい。例えば、チャンネル数を4とする場合、検出回路200(図4参照)と同様の回路を第1電極130d側に設けるようにすればよい。具体的には、電源201を介して第1電極130dと第2電極130bとを結ぶ回路と、電源201を介して第1電極130dと第2電極130cとを結ぶ回路とを追加するようにしてもよい。このように、チャンネル数を多く備えることによって、より精度よく経時使用金属粉を検出することができる。
 異常判定部402は、複数のチャンネルのカウント数に基づいて、異常を判定する。
 具体的には、異常判定部402は、チャンネル1におけるカウント数と、チャンネル2におけるカウント数との合計値が基準回数となった場合に、異常である判定する。ただし、チャンネル1とチャンネル2とにおけるカウント数をそれぞれ別々に計測し、各カウント数のうち一方が基準回数となった場合に、異常と判定してもよいし、各カウント数のそれぞれが基準回数となった場合に、異常と判定してもよい。
(予兆状態と故障状態の報知について)
 本実施形態において、「異常」とは、故障の手前であることを示す予兆状態と、故障したことを示す故障状態とを含む。
 異常判定部602は、予兆状態と、故障状態とを含む異常を判定する。例えば、異常判定部602は、取得部601によって取得された抵抗値が閾値(第2閾値)を3回下回ると、予兆状態であると判定する。すなわち、異常判定部602は、カウント数が基準回数(3回)となると、予兆状態であると判定する。
 一方、異常判定部602は、取得部601によって取得された両チャンネル1、2の抵抗値が同時に閾値(第2閾値)を下回った場合に、故障状態であると判定する。
 異常判定部602は、カウント数が基準回数(3回)となると、予兆状態であると判定するのではなく、故障状態であると判定してもよい。
 ただし、この場合でも、しばらくの期間は減速機10を使用できる。このため、ユーザの判断で、減速機10の使用継続または使用停止を行うようにすればよい。
 本実施形態において、故障状態の判定に用いる閾値(第2閾値)は、予兆状態の判定に用いる閾値(第2閾値)と同じである。
 ただし、故障状態の判定に用いる閾値は、予兆状態の判定に用いる閾値と異なる値であってもよい。例えば、故障状態の判定に用いる閾値は、第2閾値よりも低い閾値としてもよい。
 検出回路200(図4参照)において、複数のチャンネルを備えない場合、すなわち、一のチャンネルを備える場合の故障状態の判定について補足する。
 例えば、異常判定部602は、カウント数が基準回数よりも多い回数(例えば4回以上)となった場合、故障状態であると判定してもよい。故障状態の判定に用いる閾値を、予兆状態の判定に用いる閾値(第2閾値)を低くし(例えば、第1閾値とし)、取得部601によって取得された抵抗値が第1閾値を下回った場合に、異常判定部602が故障状態であると判定してもよい。
 出力部603は、予兆状態と故障状態とのうちいずれかを示す情報を出力する。異常判定部602によって予兆状態であると判定された場合、出力部603は、予兆状態を示す情報(以下「予兆情報」という。)を出力する。ユーザ端末300は、予兆情報を受信すると、予兆状態を示す注意画像(例えば黄色)をディスプレイに表示することにより、ユーザに予兆状態であることを報知する。
 導電性粒体検出装置100が発光部を備える場合、出力部603は、予兆状態(注意)を示す点灯態様(例えば黄色)で発光部を発光させる。
 異常判定部602によって故障状態であると判定された場合、出力部603は、故障状態を示す情報(以下「故障情報」という。)を出力する。ユーザ端末300は、故障情報を受信すると、故障状態を示す警告画像(例えば赤色)をディスプレイに表示することにより、ユーザに故障状態であることを報知する。
 導電性粒体検出装置100が発光部を備える場合、出力部603は、故障状態(警告)を示す点灯態様(例えば赤色)で発光部を発光させる。
(減速機の大きさに応じた閾値の変更について)
 導電性粒体検出装置100が故障を検出できるタイミングは、減速機10の大きさに依存する。これは、減速機10の大きさによって、例えばオイルバス22の大きさ、潤滑液13の量、減速機10の経時使用金属粉の量、経時使用金属粉の発生個所から導電性粒体検出装置100までの距離など、様々な要素が異なるためである。これらの要素に対応させて、導電性粒体検出装置100をそれぞれ製造することは、製造コスト等の観点から効率的ではない。
 そこで、本実施形態では、抵抗値の閾値を、減速機10の大きさに応じて変更可能にし、上記要素に対応させることを可能にしている。例えば、減速機10のサイズが小さい場合は、初期金属粉の発生量が少なく、経時使用金属粉の発生個所と導電性粒体検出装置100の位置とが近いことから、早期に抵抗値が低下する傾向にある。このため、減速機10のサイズが小さい場合には、経時使用金属粉の検出に係る感度を下げるべく、抵抗値の閾値を低めに設定する。
 一方、減速機10のサイズが大きい場合、初期金属粉の発生量が多く、経時使用金属粉の発生個所と導電性粒体検出装置100の位置とが遠いことから、抵抗値が低下しにくい傾向にある。このため、減速機10のサイズが大きい場合には、経時使用金属粉の検出に係る感度を上げるべく、抵抗値の閾値を高めに設定する。
(潤滑液の粘度に応じた閾値の変更について)
 導電性粒体検出装置100が故障を検出できるタイミングは、潤滑液13の粘度に依存する。これは、潤滑液13の粘度に応じて、経時使用金属粉の導電性粒体検出装置100への付着の際に、上述したように、非導電層の潤滑液の押しのけやすさが異なるためである。
 そこで、本実施形態では、抵抗値の閾値を、潤滑液13の粘度に応じて変更可能にしている。
 例えば、潤滑液13の粘度が高い場合には、経時使用金属粉が導電性粒体検出装置100への付着時に潤滑液を押しのけにくいことから、抵抗値が下がりにくい傾向にある。このため、潤滑液13の粘度が高い場合には、経時使用金属粉の検出に係る感度を上げるべく、抵抗値の閾値を高めに設定する。
 一方、潤滑液13の粘度が低い場合、経時使用金属粉が導電性粒体検出装置100への付着時に潤滑液を押しのけやすいことから、抵抗値が下がりやすい傾向にある。このため、潤滑液13の粘度が低い場合には、経時使用金属粉の検出に係る感度を下げるべく、抵抗値の閾値を低めに設定する。
(潤滑液の絶縁性能に応じた閾値の変更について)
 導電性粒体検出装置100が故障を検出できるタイミングは、潤滑液13の絶縁性能に依存する。これは、潤滑液13の絶縁性能に応じて、抵抗値の検出精度が異なるためである。
 そこで、本実施形態では、抵抗値の閾値を、潤滑液13の絶縁性能に応じて変更可能にしている。
 例えば、絶縁性能が低い場合(すなわち導電性が高い場合)には、抵抗値が低下しやすいことから、早期に抵抗値が低下する傾向にある。このため、潤滑液13の絶縁性能が低い場合には、経時使用金属粉の検出に係る感度を下げるべく、抵抗値の閾値を低めに設定する。
 一方、潤滑液13の絶縁性能が高い場合(すなわち導電性が低い場合)には、抵抗値が低下しにくい傾向にある。このため、潤滑液13の絶縁性能が高い場合には、経時使用金属粉の検出に係る感度を上げるべく、抵抗値の閾値を高めに設定する。
(基準回数の変更について)
 本実施形態では、基準回数は、減速機10の大きさに応じて変更可能にし、上記要素に対応させることを可能にしている。例えば、減速機10のサイズが小さい場合、早期に抵抗値が低下する傾向にある。このため、経時使用金属粉の検出に係る感度を下げるべく、基準回数を多めに設定する。
 一方、減速機10のサイズが大きい場合、抵抗値が低下しにくい傾向にある。このため、経時使用金属粉の検出に係る感度を上げるべく、基準回数を少なめに設定する。
 閾値の設定や、基準回数の設定は、制御装置140の製造時に製造スタッフから受け付けることによって行われる。例えば、制御装置140は、減速機10のサイズが所定のサイズ以上であるか否かを製造スタッフから受け付けた受付結果を用いて、閾値および基準回数を設定する。
 具体的には、記憶部610は、減速機10の大きさと閾値とを対応付けたテーブルや、減速機10の大きさと基準回数とを対応付けたテーブルを予め記憶する。制御装置140は、減速機10の大きさを受け付けると、記憶部610のテーブルを参照して、閾値および基準回数を設定するようにする。
 本実施形態では、減速機10の大きさは大小2種類とする。さらに閾値と基準回数についてもそれぞれ2種類のうち、いずれか一方を設定するようにする。
 ただし、減速機10の大きさは大小2種類に限らず、大中小の3種類としてもよいし、それ以上の種類としてもよい。制御装置140は、製造スタッフから閾値そのものの値、および基準回数そのものの値を受け付けて、受け付けた値を設定するようにしてもよい。
(閾値および基準回数の設定処理について)
 図7は、制御装置140が行う閾値および基準回数の設定処理の一例を示すフローチャートである。図7に示すように、制御装置140は、製造スタッフから所定の操作を受け付けることにより、閾値および基準回数の設定開始となるまで待機する(ステップS701:NO)。閾値および基準回数の設定開始になると(ステップS701:YES)、制御装置140は、製造スタッフから受け付けた減速機10のサイズが「大」であるか否かを判断する(ステップS702)。
 減速機10のサイズが「大」ではない場合(ステップS702:NO)、すなわち、「小」である場合、制御装置140は、閾値を低めに設定する(ステップS703)。そして、制御装置140は、基準回数を多めに設定し(ステップS704)、一連の処理を終了する。
 減速機10のサイズが「大」である場合(ステップS702:YES)、制御装置140は、閾値を高めに設定する(ステップS705)。そして、制御装置140は、基準回数を少なめに設定し(ステップS706)、一連の処理を終了する。
 上述したフローチャートにおいて、潤滑液13の粘度および絶縁性能のうち、少なくとも一方を製造スタッフから受け付けるようにし、受け付けた粘度や絶縁性能に応じた閾値を設定することも可能である。
(異常判定処理について)
 図8は、制御装置140が行う異常判定処理の一例を示すフローチャートである。図8に示すように、制御装置140は、異常判定の開始となるまで待機する(ステップS801:NO)。異常判定の開始とは、例えば、導電性粒体検出装置100の電源がオンになることである。異常判定の開始になると(ステップS801:YES)、制御装置140は、所定時間(例えば、1分)経過したか否かを判断する(ステップS802)。
 制御装置140は、所定時間が経過するまで待機する(ステップS802:NO)。所定時間が経過すると(ステップS802:YES)、制御装置140は、チャンネル1、2の2つの抵抗値の検出および取得を行う(ステップS803)。そして、制御装置140は、取得した抵抗値の両方が閾値(第2閾値)を下回ったか否かを判断する(ステップS804)。取得した抵抗値の両方が閾値を下回っていない場合(ステップS804:NO)、取得した抵抗値のうち一方が閾値(第2閾値)を下回ったか否かを判断する(ステップS805)。
 一方が閾値を下回っていない場合(ステップS805:NO)、すなわち、取得した抵抗値の両方が閾値以上である場合、制御装置140は、ステップS813に移行する。取得した抵抗値のうち一方が閾値を下回った場合(ステップS805:YES)、制御装置140は、抵抗値が閾値を下回った回数(カウント数)を「+1」し、記憶部610に記憶する(ステップS806)。
 そして、制御装置140は、カウント数が基準回数(例えば「3」)以上であるか否かを判断する(ステップS807)。カウント数が基準回数以上ではない場合(ステップS807:NO)、制御装置140は、ステップS813に移行する。カウント数が基準回数以上である場合(ステップS807:YES)、制御装置140は、ユーザ端末300に予兆情報を出力済であるか否かを判断する(ステップS808)。
 ユーザ端末300に予兆情報を出力済である場合(ステップS808:YES)、すなわち、ユーザ端末300において予兆状態であることが既に報知されている場合、制御装置140は、ステップS813に移行する。
 一方、ユーザ端末300に予兆情報を出力済ではない(ステップS808:NO)、制御装置140は、ユーザ端末300に故障情報を出力済であるか否かを判断する(ステップS809)。
 ユーザ端末300に故障情報を出力済である場合(ステップS809:YES)、すなわち、ユーザ端末300において故障状態であることが既に報知されている場合、制御装置140は、ステップS813に移行する。
 一方、ユーザ端末300に故障情報を出力済ではない場合(ステップS809:NO)、制御装置140は、ユーザ端末300に予兆情報を出力し(ステップS810)、ステップS813に進む。ユーザ端末300は、予兆情報を受信することにより、予兆状態を報知する。
 本フローチャートでは、ユーザ端末300において予兆状態であることが既に報知されている場合、ユーザ端末300に予兆情報を出力しないようにしている(ステップS808:YES→ステップS813)。
 ただし、予兆状態であることが既に報知されている場合でも、ユーザ端末300に予兆情報を再度出力してもよい。ユーザ端末300は、予兆情報を受信するたびに、予兆状態を報知してもよい。
 ステップS804において、取得した抵抗値の両方が閾値を下回っている場合(ステップS804:YES)、制御装置140は、ユーザ端末300に故障情報を出力済であるか否かを判断する(ステップS811)。ユーザ端末300に故障情報を出力済である場合(ステップS811:YES)、すなわち、ユーザ端末300において既に故障状態であることが既に報知されている場合、制御装置140は、ステップS813に移行する。
 一方、ユーザ端末300に故障情報を出力済ではない(ステップS811:NO)、制御装置140は、ユーザ端末300に故障情報を出力する(ステップS812)。ユーザ端末300は、故障情報を受信することにより、故障状態を報知する。
 本フローチャートでは、ユーザ端末300において故障状態であることが既に報知されている場合には、ユーザ端末300に故障情報を出力しないようにしている(ステップS811:YES→ステップS813)。
 ただし、故障状態であることが既に報知されている場合でも、ユーザ端末300に故障情報を再度出力してもよい。ユーザ端末300は、故障情報を受信するたびに、故障状態を報知してもよい。
 そして、制御装置140は、異常判定の終了か否かを判断する(ステップS813)。異常判定の終了とは、例えば、導電性粒体検出装置100の電源がオフになることである。異常判定を終了しない場合(ステップS813:NO)、制御装置140は、ステップS802に戻り、抵抗値の検出を継続して行う。
 一方、異常判定を終了する場合(ステップS813:YES)、制御装置140は、一連の処理を終了する。
 以上説明したように、本実施形態に係る制御装置140は、電極130間の電気抵抗値が閾値を下回った回数に基づいて、減速機10の異常を判定して、判定結果を出力する。これにより、故障の前段階に生じる異常をユーザに知らせることができる。
 したがって、ユーザは、減速機10を計画的に使用することができる。例えば、生産ラインを止めて行われる定期メンテナンスにおいて、計画的に減速機10のメンテナンスを行うことができる。また、生産ラインの運転中に減速機10が故障することを抑えることができる。したがって、本実施形態によれば、減速機10を使用するユーザの利便性を向上させることができる。
 本実施形態に係る制御装置140は、電極130間が異なる複数の抵抗値が閾値を下回った回数に基づいて、異常を判定する。これにより、複数のチャンネルから抵抗値を得ることができるため、異常判定に係る精度を向上させることができる。
 本実施形態に係る制御装置140は、複数の抵抗値がそれぞれ閾値を下回った回数の合計に基づいて、異常を判定する。したがって、より早期に故障の前段階に生じる異常をユーザに知らせることができる。
 本実施形態に係る制御装置140は、故障状態と予兆状態とを含む異常を判定し、故障状態と予兆状態とのうちいずれかを示す情報を出力する。これにより、減速機10が故障前の予兆状態であるのか、故障した故障状態であるのかを報知できる。したがって、ユーザは、減速機10の状態を適切に把握することができる。
 本実施形態に係る制御装置140において、閾値は、減速機10の大きさに応じて変更可能な値とした。これにより、閾値を変更するだけで、様々な大きさの減速機10に対応した汎用性のある導電性粒体検出装置100を提供することができる。
 本実施形態に係る制御装置140において、閾値は、潤滑液13の粘度および絶縁性能のうち少なくとも一方に応じて変更可能な値とした。これにより、閾値を変更するだけで、様々な種類の潤滑液13に対応した汎用性のある導電性粒体検出装置100を提供することができる。
 本実施形態に係る制御装置140において、基準回数は、減速機10の大きさに応じて変更可能な値とした。これにより、基準回数を変更するだけで、様々な大きさの減速機10に対応した汎用性のある導電性粒体検出装置100を提供することができる。
 以上に説明した導電性粒体検出装置100および制御装置140を実現するための異常判定プログラムを、コンピュータ読み取り可能な記録媒体に記録し、そのプログラムをコンピュータシステムに読み込ませて実行するようにしてもよい。
 ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(RAM)のように、一定時間プログラムを保持しているものも含む。
 上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。上記プログラムは、前述した機能の一部を実現するためのものであってもよい。前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
 本明細書で開示した実施形態において、複数の機能が分散して設けられているものは、当該複数の機能の一部又は全部を集約して設けても良く、逆に複数の機能が集約して設けられているものを、当該複数の機能の一部又は全部が分散するように設けることができる。機能が集約されているか分散されているかにかかわらず、発明の目的を達成できるように構成されていればよい。
 上述の異常判定装置、導電性粒体検出装置、異常判定方法、およびプログラムによれば、機械動作装置を使用するユーザの利便性を向上させることができる。従って、本願は産業上の利用可能性を有する。
10…減速機(機械動作装置)、13…潤滑液、100…導電性粒体検出装置、130…電極、131…永久磁石、140…制御装置(異常判定装置)、210…抵抗検出部、601…取得部、602…異常判定部、603…出力部、610…記憶部

Claims (11)

  1.  機械動作装置の潤滑に用いられる非導電性の潤滑液中に離間して配置される電極間の電気抵抗値を取得する取得部と、
     前記取得部によって取得された前記電気抵抗値が閾値を下回った回数に基づいて、前記機械動作装置の異常を判定する異常判定部と、
     前記異常判定部によって判定された結果を出力する出力部と、を備え、
     前記取得部は、磁力によって集められた前記潤滑液中の導電性粒体に応じて変化する前記電極間の前記電気抵抗値を取得する、異常判定装置。
  2.  前記取得部は、組み合わせの異なる複数組の電極間の複数の前記電気抵抗値を取得し、
     前記異常判定部は、複数の前記電気抵抗値が前記閾値を下回った回数に基づいて、前記異常を判定する、請求項1に記載の異常判定装置。
  3.  前記異常判定部は、複数の前記電気抵抗値がそれぞれ前記閾値を下回った回数の合計に基づいて、前記異常を判定する、請求項2に記載の異常判定装置。
  4.  前記異常判定部は、前記機械動作装置の故障を示す故障状態と、前記故障状態となる前の予兆状態とを含む前記異常を判定し、
     前記出力部は、前記故障状態と前記予兆状態とのうちいずれかを示す情報を出力する、請求項1から請求項3のいずれか一項に記載の異常判定装置。
  5.  前記閾値は、前記機械動作装置の大きさに応じて変更可能な値である、請求項1から請求項4のいずれか一項に記載の異常判定装置。
  6.  前記閾値は、前記潤滑液の粘度および絶縁性能のうち少なくとも一方に応じて変更可能な値である、請求項1から請求項5のいずれか一項に記載の異常判定装置。
  7.  前記回数は、前記機械動作装置の大きさに応じて変更可能な値である、請求項1から請求項6のいずれか一項に記載の異常判定装置。
  8.  機械動作装置の潤滑に用いられる非導電性の潤滑液中に離間して配置される電極間の電気抵抗値を取得する取得部と、
     前記取得部によって取得された前記電気抵抗値が閾値を下回った回数に基づいて、前記機械動作装置の異常を判定する異常判定部と、
     前記異常判定部によって判定された結果を出力する出力部と、を備え、
     前記取得部は、磁力によって集められた前記潤滑液中の導電性粒体に応じて変化する前記電極間の前記電気抵抗値を取得し、
     さらに前記取得部は、組み合わせの異なる複数組の電極間の複数の前記電気抵抗値を取得し、
     前記異常判定部は、複数の前記電気抵抗値がそれぞれ前記閾値を下回った回数の合計に基づいて、前記機械動作装置の故障を示す故障状態と、前記故障状態となる前の予兆状態とを含む前記異常を判定し、
     前記出力部は、前記故障状態と前記予兆状態とのうちいずれかを示す情報を出力する、異常判定装置。
  9.  機械動作装置の潤滑に用いられる非導電性の潤滑液中に離間して配置される電極と、
     磁力によって集められた前記潤滑液中の導電性粒体に応じて変化する前記電極間の電気抵抗値を取得する取得部と、
     前記取得部によって取得された前記電気抵抗値が閾値を下回った回数に基づいて、前記機械動作装置の異常を判定する異常判定部と、
     前記異常判定部によって判定された結果を出力する出力部と、を備える導電性粒体検出装置。
  10.  異常判定装置に用いられるコンピュータが、
     機械動作装置の潤滑に用いられる非導電性の潤滑液中に離間して配置される電極間の電気抵抗値を取得する取得ステップと、
     前記取得ステップにおいて取得された前記電気抵抗値が閾値を下回った回数に基づいて、前記機械動作装置の異常を判定する状態判定ステップと、
     前記状態判定ステップにおいて判定された結果を出力する出力ステップと、を実行し、
     前記取得ステップは、磁力によって集められた前記潤滑液中の導電性粒体に応じて変化する前記電極間の前記電気抵抗値を取得する、異常判定方法。
  11.  異常判定装置に用いられるコンピュータを、
     機械動作装置の潤滑に用いられる非導電性の潤滑液中に離間して配置される電極間の電気抵抗値を取得する取得部、
     前記取得部によって取得された前記電気抵抗値が閾値を下回った回数に基づいて、前記機械動作装置の異常を判定する異常判定部、
     前記異常判定部によって判定された結果を出力する出力部、として機能させ、
     さらに前記取得部を、磁力によって集められた前記潤滑液中の導電性粒体に応じて変化する前記電極間の前記電気抵抗値を取得するように機能させる、プログラム。
PCT/JP2022/028197 2021-09-28 2022-07-20 異常判定装置、導電性粒体検出装置、異常判定方法、およびプログラム WO2023053683A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023550405A JPWO2023053683A1 (ja) 2021-09-28 2022-07-20
US18/686,217 US20240353303A1 (en) 2021-09-28 2022-07-20 Abnormality determination device, conductive particle detecting device, and abnormality determination method
EP22875561.7A EP4411357A1 (en) 2021-09-28 2022-07-20 Abnormality determining device, electroconductive particle detection device, abnormality determining method, and program
CN202280057793.3A CN117918000A (zh) 2021-09-28 2022-07-20 异常判定装置、导电性粒体检测装置、异常判定方法以及程序

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021157903 2021-09-28
JP2021-157903 2021-09-28

Publications (1)

Publication Number Publication Date
WO2023053683A1 true WO2023053683A1 (ja) 2023-04-06

Family

ID=85782286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028197 WO2023053683A1 (ja) 2021-09-28 2022-07-20 異常判定装置、導電性粒体検出装置、異常判定方法、およびプログラム

Country Status (5)

Country Link
US (1) US20240353303A1 (ja)
EP (1) EP4411357A1 (ja)
JP (1) JPWO2023053683A1 (ja)
CN (1) CN117918000A (ja)
WO (1) WO2023053683A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4070660A (en) * 1976-02-20 1978-01-24 Tauber Thomas E Wear particle detector
JPH03123926U (ja) * 1990-03-29 1991-12-17
JP2005331324A (ja) 2004-05-19 2005-12-02 Ntn Corp オイルチェックセンサ
JP2007003435A (ja) * 2005-06-27 2007-01-11 Honda Motor Co Ltd 潤滑油劣化検出装置
US20080143351A1 (en) * 2005-04-13 2008-06-19 Min Ho Lee Carbon nanotube sensor and apparatus and method for detecting change time of engine oil for automobile using the same
JP2020183932A (ja) * 2019-04-26 2020-11-12 ナブテスコ株式会社 センサ
JP2021157903A (ja) 2020-03-26 2021-10-07 株式会社ティカ.ティカ 照明器具

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4070660A (en) * 1976-02-20 1978-01-24 Tauber Thomas E Wear particle detector
JPH03123926U (ja) * 1990-03-29 1991-12-17
JP2005331324A (ja) 2004-05-19 2005-12-02 Ntn Corp オイルチェックセンサ
US20080143351A1 (en) * 2005-04-13 2008-06-19 Min Ho Lee Carbon nanotube sensor and apparatus and method for detecting change time of engine oil for automobile using the same
JP2007003435A (ja) * 2005-06-27 2007-01-11 Honda Motor Co Ltd 潤滑油劣化検出装置
JP2020183932A (ja) * 2019-04-26 2020-11-12 ナブテスコ株式会社 センサ
JP2021157903A (ja) 2020-03-26 2021-10-07 株式会社ティカ.ティカ 照明器具

Also Published As

Publication number Publication date
US20240353303A1 (en) 2024-10-24
EP4411357A1 (en) 2024-08-07
JPWO2023053683A1 (ja) 2023-04-06
CN117918000A (zh) 2024-04-23

Similar Documents

Publication Publication Date Title
US8887582B2 (en) Piezoelectric vibration type force sensor and robot apparatus
TW201925770A (zh) 感測器及機構
JP7366731B2 (ja) センサ
US11658449B2 (en) Slipring with wear monitoring
JP7452980B2 (ja) センサ
JP2002310967A (ja) 導電体検出装置
WO2023053683A1 (ja) 異常判定装置、導電性粒体検出装置、異常判定方法、およびプログラム
US20200057044A1 (en) Industrial device including sensor
JP2019128311A (ja) センサ
US20060125487A1 (en) Oil condition sensor
JP6553875B2 (ja) 電気特性測定装置
JP2022139964A (ja) 導電性粒体検出装置、及び、機械動作装置
JP2019139546A (ja) 分離式センサ装置
US20230243768A1 (en) Abnormality detecting device and mechanical device
JP7319131B2 (ja) センサを備えた産業装置
CN113728225A (zh) 传感器
CA2927508C (en) Locking confirmation device of multiple electrode contacts and locking confirmation device for detecting fault electrode contacts of nodes of multiple electrodes
US10008971B2 (en) Monitor circuit and monitoring method
JPH09112661A (ja) 変速機用オイルのチップ検知装置
JP5374890B2 (ja) 膜厚・接触状態計測方法及び装置
JP4395209B2 (ja) 自動ドライバ
JP2024008810A (ja) 異常検出装置
JP2011220693A (ja) 動作チェッカー
JP3194295U (ja) 電線用センサ装置およびセンサ
JP2006300606A (ja) オイルチェックセンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875561

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023550405

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18686217

Country of ref document: US

Ref document number: 202280057793.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022875561

Country of ref document: EP

Effective date: 20240429