WO2023053587A1 - Temperature adjustment device for vehicle - Google Patents

Temperature adjustment device for vehicle Download PDF

Info

Publication number
WO2023053587A1
WO2023053587A1 PCT/JP2022/023535 JP2022023535W WO2023053587A1 WO 2023053587 A1 WO2023053587 A1 WO 2023053587A1 JP 2022023535 W JP2022023535 W JP 2022023535W WO 2023053587 A1 WO2023053587 A1 WO 2023053587A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat medium
heat
expansion valve
circuit
pipeline
Prior art date
Application number
PCT/JP2022/023535
Other languages
French (fr)
Japanese (ja)
Inventor
太郎 雨貝
健志 南家
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Publication of WO2023053587A1 publication Critical patent/WO2023053587A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/12Arrangements for cooling other engine or machine parts
    • F01P3/14Arrangements for cooling other engine or machine parts for cooling intake or exhaust valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present invention relates to a vehicle temperature control device.
  • Patent Literature 1 discloses a refrigerant circuit capable of cooling and heating a battery via a cooling water circuit.
  • An object of one aspect of the present invention is to provide a temperature control device for a vehicle that can efficiently heat and cool a battery while reducing the number of components and constructing it at a low cost.
  • One aspect of the vehicle temperature control device of the present invention includes a first circuit through which a first heat medium flows, a second circuit through which a second heat medium flows, and a compressor arranged in the first circuit for compressing the first heat medium.
  • a first expansion valve arranged in the first circuit for expanding the first heat medium; a battery arranged in the second circuit; the first heat medium and the second heat medium arranged in the first circuit and the second circuit; and a heat exchanger that exchanges heat with a heat medium.
  • the first heat medium passes through the compressor, the first expansion valve, and the heat exchanger in that order in the first circuit.
  • the first circuit has a first detour that can bypass the first expansion valve.
  • a temperature control device for a vehicle that can efficiently heat and cool a battery while reducing the number of constituent elements and constructing it at a low cost.
  • FIG. 1 is a schematic diagram of a vehicle temperature control device according to one embodiment.
  • FIG. 2 is a schematic diagram showing a cooling mode of the vehicle temperature control device of one embodiment.
  • FIG. 3 is a schematic diagram showing a normal heating mode of the vehicle temperature control device of one embodiment.
  • FIG. 4 is a schematic diagram showing a hot gas heating mode of the vehicle temperature control device of one embodiment.
  • FIG. 5 is a schematic diagram showing a battery heating mode of the vehicle temperature control device of one embodiment.
  • FIG. 6 is a Mollier diagram showing cycles when the first circuits of the comparative example and the embodiment are operated in the battery heating mode.
  • FIG. 7 is a schematic diagram showing a battery cooling mode of the vehicle temperature control device of one embodiment.
  • FIG. 8 is a schematic diagram of a first circuit of Modification 1.
  • FIG. 1 is a schematic diagram of a vehicle temperature control device according to one embodiment.
  • FIG. 2 is a schematic diagram showing a cooling mode of the vehicle temperature control device of one embodiment.
  • FIG. 9 is a schematic diagram of a first circuit of Modification 2.
  • FIG. 10 is a Mollier diagram showing a cycle when the first circuit of the embodiment and modification 2 is operated in the battery cooling mode.
  • FIG. 11 is a schematic diagram of a first circuit in a comparative form.
  • a temperature control device according to an embodiment of the present invention will be described below with reference to the drawings. Note that, in the drawings below, in order to make each configuration easier to understand, the actual structure and the scale and number of each structure may be different.
  • FIG. 1 is a schematic diagram of a vehicle temperature control device 1 of one embodiment.
  • a vehicle temperature control device 1 is mounted on a vehicle using a motor as a power source, such as an electric vehicle (EV), a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHV), or the like.
  • a motor such as an electric vehicle (EV), a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHV), or the like.
  • EV electric vehicle
  • HEV hybrid vehicle
  • PGV plug-in hybrid vehicle
  • the vehicle temperature control device 1 includes a first circuit C1, an accumulator 71, a compressor 72, a first air conditioning heat exchanger 73, a second air conditioning heat exchanger 74, and a first radiator (radiator). 77, a blowing unit 80, a first expansion valve 61, a second expansion valve 62, a third expansion valve 63, a fourth expansion valve 64, a fifth expansion valve 65, a second It has a circuit C ⁇ b>2 , a motor 2 , a power control device 4 , an inverter 3 , a second radiator 5 , a battery 6 , a heat exchanger 7 and a controller 60 .
  • Each part of the vehicle temperature control device 1 is classified into a control part 60, a temperature control part 1a, a cooling part 1b, and a connection part 1c.
  • the vehicle temperature control device 1 adjusts the temperature of the vehicle's living space in the temperature control unit 1a.
  • the vehicle temperature control device 1 cools the vehicle drive units (the motor 2, the inverter 3, the power control device 4, etc.) in the cooling unit 1b as well.
  • the vehicle temperature control device 1 performs heat exchange between the temperature control part 1a and the cooling part 1b at the connection part 1c. Therefore, in the vehicle temperature control device 1, the waste heat recovered from the driving part of the vehicle in the cooling part 1b can be used for heating the living space in the temperature control part 1a.
  • the control unit 60 controls the temperature control unit 1a and the cooling unit 1b.
  • the control unit 60 includes a first circuit C1, a compressor 72, a first radiator 77, a blower unit 80, a first expansion valve 61, a second expansion valve 62, and a third expansion valve 63. , the fourth expansion valve 64, the fifth expansion valve 65, the second circuit C2, and the second radiator 5 to control them.
  • connection portion 1c connects the temperature control portion 1a and the cooling portion 1b.
  • the connecting portion 1 c has a heat exchanger 7 .
  • the heat exchanger 7 exchanges heat between the first heat medium flowing through the first circuit C1 of the temperature control section 1a and the second heat medium flowing through the second circuit C2 of the cooling section 1b.
  • the temperature control unit 1a includes a first circuit C1, an accumulator 71, a compressor 72, a first air conditioning heat exchanger (air conditioning heat exchanger) 73, a second air conditioning heat exchanger 74, a first A radiator (radiator) 77, a first expansion valve 61, a second expansion valve 62, a third expansion valve 63, a fourth expansion valve 64, a fifth expansion valve 65, and a blower section 80 and
  • a first heat medium flows through the first circuit C1.
  • the path of the first circuit C1 includes an accumulator 71, a compressor 72, a first air conditioning heat exchanger 73, a second air conditioning heat exchanger 74, a first radiator 77, a first expansion valve 61, a second expansion valve 62, a third expansion valve 63, a fourth expansion valve 64, and a fifth expansion valve 65 are arranged.
  • the first circuit C1 is a heat pump device.
  • the first circuit C1 has a plurality of pipelines 9, a plurality of on-off valves 8A, and a plurality of check valves 8B.
  • a plurality of pipelines 9 are connected to each other to form a loop through which the first heat medium flows.
  • the plurality of conduits 9 includes twelve conduits 9a, 9b, 9d, 9f, 9g, 9h, 9i, 9j, 9k, 9l, 9m, and 9o.
  • a loop means a loop-shaped path through which a heat medium is circulated.
  • the opening/closing valve 8A is connected to the control section 60.
  • the on-off valve 8A is arranged in the path of the pipeline.
  • the opening/closing valve 8A can switch between opening and closing of the arranged pipeline.
  • the loop formed is switched by controlling the on-off valve 8A and the first to fifth expansion valves 61-65.
  • the multiple on-off valves 8A include three on-off valves 8a, 8b, and 8c.
  • the check valve 8B is arranged in the path of the pipeline.
  • the check valve 8B permits the flow of the first heat medium from one end on the upstream side of the arranged pipe line toward the other end on the downstream side, and does not permit the flow from the other end to the one end.
  • the multiple check valves 8B include two check valves 8g and 8h.
  • each conduit 9 will be specifically described.
  • one end indicates the upstream end in the flow direction of the first heat medium
  • the other end indicates the downstream end in the flow direction of the first heat medium. show.
  • conduit 9a One end of the conduit 9a is connected to the other end of the conduit 9b and the other end of the conduit 9l. The other end of the conduit 9a is connected to one end of the conduit 9b and one end of the conduit 9d.
  • Line 9 a passes through accumulator 71 and compressor 72 .
  • the first heat medium flows through the accumulator 71 and the compressor 72 in this order from one end to the other end of the pipeline 9a.
  • One end of the conduit 9b is connected to the other end of the conduit 9a and one end of the conduit 9d.
  • the other end of the conduit 9b is connected to one end of the conduit 9a and the other end of the conduit 9l. That is, both ends of the pipeline 9a and the pipeline 9b are connected to each other to form a loop.
  • One end of the conduit 9d is connected to the other end of the conduit 9a and one end of the conduit 9b.
  • the other end of the conduit 9d is connected to one end of the conduit 9g and one end of the conduit 9f.
  • the pipeline 9d passes through the first heat exchanger 73 for air conditioning.
  • conduit 9f One end of the conduit 9f is connected to the other end of the conduit 9d and one end of the conduit 9g. The other end of the conduit 9f is connected to one end of the conduit 9j and one end of the conduit 9h.
  • Line 9 f passes through third expansion valve 63 and first radiator 77 .
  • the first heat medium flows through the third expansion valve 63 and the first radiator 77 in this order from one end to the other end of the pipeline 9f.
  • One end of the pipeline (third detour) 9g is connected to the other end of the pipeline 9d and one end of the pipeline 9f.
  • the other end of the conduit 9g is connected to the other end of the conduit 9j and one end of the conduit 9k.
  • One end of the conduit 9h is connected to the other end of the conduit 9f and one end of the conduit 9j.
  • the other end of the pipeline 9h is connected to one end of the pipeline 9i and the other end of the pipeline 9m.
  • the conduit 9h passes through the on-off valve 8c.
  • One end of the conduit 9i is connected to the other end of the conduit 9h and the other end of the conduit 9m.
  • the other end of the pipeline 9i is connected to the downstream side of the fifth expansion valve 65 in the path of the pipeline 9b.
  • the conduit 9i passes through a check valve 8g.
  • the check valve 8g allows the flow of the first heat medium from one end to the other end of the pipeline 9i, and restricts the flow of the first heat medium from the other end to the one end.
  • One end of the conduit 9j is connected to the other end of the conduit 9f and one end of the conduit 9h.
  • the other end of the conduit 9j is connected to the other end of the conduit 9g and one end of the conduit 9k.
  • the conduit 9j passes through the check valve 8h.
  • the check valve 8h permits the flow of the first heat medium from one end to the other end of the pipeline 9j and restricts the flow of the first heat medium from the other end to the one end.
  • One end of the conduit 9k is connected to the other end of the conduit 9g and the other end of the conduit 9j.
  • the other end of the conduit 9k is connected to one end of the conduit 9l and one end of the conduit 9m.
  • One end of the conduit 9l is connected to the other end of the conduit 9k and one end of the conduit 9m.
  • the other end of the pipeline 9l is connected to the downstream side of the fifth expansion valve 65 in the path of the pipeline 9b.
  • Line 9 l passes through first expansion valve 61 , heat exchanger 7 and second expansion valve 62 .
  • the first heat medium flows from one end to the other end of the pipeline 9l through the first expansion valve 61, the heat exchanger 7, and the second expansion valve 62 in this order.
  • One end of the conduit 9m is connected to the other end of the conduit 9k and one end of the conduit 9l.
  • the other end of the pipeline 9m is connected to the other end of the pipeline 9h and one end of the pipeline 9i.
  • the pipeline 9m passes through the fourth expansion valve 64 and the second heat exchanger 74 for air conditioning.
  • the first heat medium flows from one end to the other end of the pipeline 9m through the fourth expansion valve 64 and the second air conditioning heat exchanger 74 in this order.
  • first detour 9 o One end of the pipeline (first detour) 9 o is connected to the pipeline 9 l on the upstream side of the first expansion valve 61 .
  • the other end of the pipeline 9o is connected to the pipeline 9l on the downstream side of the first expansion valve 61 . That is, the pipeline 9o is a detour that branches off from the pipeline 9l, bypasses the first expansion valve 61, and rejoins the pipeline 9l.
  • the conduit 9l passes through the on-off valve 8a.
  • the accumulator 71 is arranged upstream of the compressor 72 .
  • the accumulator 71 separates the first heat medium into gas and liquid.
  • the accumulator 71 supplies only the gas-phase first heat medium to the compressor 72 and suppresses the intake of the liquid-phase first heat medium into the compressor 72 .
  • the compressor 72 compresses the passing first heat medium to raise the temperature.
  • the compressor 72 discharges the high pressure gas phase first heat medium to the downstream side.
  • Compressor 72 is electrically driven by power supplied from battery 6 .
  • the first radiator 77 has a fan and releases the heat of the first heat medium to the outside air to cool the first heat medium.
  • the first radiator 77 is a heat exchanger that exchanges heat between the first heat medium and the air outside the vehicle compartment.
  • the first to fifth expansion valves 61 to 65 expand the first heat medium to lower the temperature of the first heat medium. Further, the first to fifth expansion valves 61 to 65 can be completely opened to allow passage of the first heat medium without a large pressure change, or completely closed to restrict the passage of the first heat medium. can also The opening of the first to fifth expansion valves 61 to 65 is adjusted by the controller 60 to adjust the pressure and temperature of the downstream first heat medium. Even when the expansion valve is completely opened, the heat medium undergoes a slight pressure drop when passing through the expansion valve.
  • the first air-conditioning heat exchanger 73 exchanges heat between the first heat medium whose temperature has been raised by passing through the compressor 72 and the air. That is, the first air-conditioning heat exchanger 73 exchanges heat between the first heat medium and the air. As a result, the first air-conditioning heat exchanger 73 warms the air in the air flow passage 86f sent from the blower 85 in the blower section 80 .
  • the second air-conditioning heat exchanger 74 exchanges heat between the first heat medium whose temperature has decreased after passing through the fourth expansion valve and the air. That is, the second air-conditioning heat exchanger 74 exchanges heat between the first heat medium and the air. Thereby, the second air-conditioning heat exchanger 74 cools or dehumidifies the air in the air flow passage 86f sent from the blower 85 in the blower section 80 .
  • the blower section 80 has a duct 86 and a blower 85 .
  • an air flow passage 86f is provided inside the duct 86.
  • the air flow passage 86f is a path for supplying air outside the vehicle to the inside of the vehicle.
  • the air flow passage 86f is also a path for taking in the air inside the vehicle and supplying it to the inside of the vehicle again.
  • An air intake port 86a is provided at one end of the air flow passage 86f for allowing air outside or inside the vehicle to flow into the air flow passage 86f.
  • a blowout port 86b for discharging the air in the air flow passage 86f into the vehicle is provided on the other end side of the air flow passage 86f.
  • a fan 85, a second air-conditioning heat exchanger 74, and a first air-conditioning heat exchanger 73 are arranged in this order from the intake port 86a side toward the blowout port 86b side. .
  • the blower 85 circulates air from one end side of the air circulation passage 86f toward the other end side. That is, the second air-conditioning heat exchanger 74 and the first air-conditioning heat exchanger 73 are arranged in the blowing flow path of the blower 85 .
  • the second air conditioning heat exchanger 74 cools and dehumidifies the air sent by the blower 85 .
  • the first air conditioning heat exchanger 73 heats the air sent by the blower 85 .
  • the air flow passage 86f is provided with a bypass flow passage 86c that bypasses the first air-conditioning heat exchanger 73 and allows air to flow. Further, on the upstream side of the bypass flow passage 86c, there is an air mix damper 86d that adjusts the proportion of the air that has passed through the second air conditioning heat exchanger 74 and is heated by the first air conditioning heat exchanger 73. is provided. The air mix damper 86d is connected to and controlled by the controller 60 .
  • the cooling unit 1b includes a second circuit C2, a motor 2, a power control device 4, an inverter 3, a second radiator 5, and a battery 6.
  • a second heat medium flows through the second circuit C2.
  • a motor 2, a power controller 4, an inverter 3, a second radiator 5, and a battery 6 are arranged in the path of the second circuit C2.
  • the second circuit C2 has a plurality of pipelines 11 to 19, a first switching section 31, a second switching section 32, a third switching section 33, a first pump 41, and a second pump 42. .
  • the first pump 41 and the second pump 42 unidirectionally pump the second heat medium in the arranged pipelines.
  • a plurality of pipelines are connected to each other to form a loop through which the second heat medium flows.
  • the switching units 31 to 33 are connected to the control unit 60, and switch the pipeline through which the second heat medium passes by switching open or closed.
  • the switching units 31 to 33 are arranged at a portion where three or more pipelines merge, and connect any two pipelines out of the plurality of connected pipelines.
  • the switching units 31 to 33 are referred to as the first switching unit 31, the second switching unit 32, and the third switching unit 33 when they are distinguished from each other.
  • the first switching section 31 is a four-way valve.
  • the first switching unit 31 has four connection ports A, B, C, and D.
  • the first switching unit 31 allows two sets of two connection ports among the four connection ports A, B, C, and D to communicate with each other.
  • a conduit 19 is connected to the connection port A.
  • a conduit 18 is connected to the connection port C.
  • Both ends of the pipeline 12 are connected to the connection ports B and D, respectively.
  • the first switching unit 31 can switch between two connection states (first connection state and second connection state).
  • first connection state the first switching unit 31 causes the connection ports A and C and the connection ports B and D to communicate with each other.
  • the first switching unit 31 in the first connection state communicates both ends of the pipeline 12 while allowing the pipeline 18 and the pipeline 19 to communicate with each other.
  • first connection state the first switching unit 31 causes the connection ports A and B and the connection ports C and D to communicate with each other.
  • the first switching unit 31 in the second connection state allows the conduit 18 and one end of the conduit 12 to communicate with each other, and allows the conduit 19 and the other end of the conduit 12 to communicate with each other.
  • the second switching section 32 has a first valve 32a, a second valve 32b, a first connecting pipe line 32c, and a second connecting pipe line 32d.
  • the first connecting pipeline 32 c extends across the connecting portion of the pipelines 11 and 16 and the connecting portion of the pipelines 19 and 17 .
  • the second connecting pipeline 32 d extends across the connecting portion of the pipelines 15 and 16 and the connecting portion of the pipelines 18 and 17 .
  • the first valve 32a is a three-way valve.
  • the first valve 32a is arranged at the connecting portion of the first connecting pipeline 32c, the pipeline 19, and the pipeline 17. As shown in FIG.
  • the first valve 32 a allows either one of the first connecting pipeline 32 c and the pipeline 17 to communicate with the pipeline 19 . Thereby, the first valve 32 a causes the second heat medium flowing through the pipeline 19 to flow to either the first connecting pipeline 32 c or the pipeline 17 .
  • the second valve 32b is a two-way valve.
  • a second valve 32 b is arranged in the path of the conduit 16 .
  • the second valve 32b can switch between an open state in which the second heat medium flows through the conduit 16 and a closed state in which the flow of the second heat medium is stopped.
  • the second valve 32b of this embodiment is a solenoid valve controlled by the controller 60 .
  • the third switching section 33 is a three-way valve.
  • the third switching portion 33 is arranged at the connecting portion of the pipeline 11 , the pipeline 13 , and the pipeline 14 .
  • the third switching unit 33 allows either the pipeline 13 or the pipeline 14 to communicate with the pipeline 11 . Thereby, the third switching unit 33 causes the second heat medium flowing through the pipeline 11 to flow through either the pipeline 13 or the pipeline 14 .
  • One end of the pipeline 11 is connected to the pipeline 16 and the first connecting pipeline 32c.
  • the other end of conduit 11 is connected to conduit 13 and conduit 14 .
  • Line 11 passes through first pump 41 , power controller 4 , inverter 3 and motor 2 .
  • the first pump 41 pressure-feeds the second heat medium from one end side to the other end side of the pipeline 11 .
  • conduit 12 One end of the conduit 12 is connected to the connection port D of the first switching section 31 .
  • the other end of the conduit 12 is connected to the connection port B of the first switching section 31 .
  • Line 12 passes through second pump 42 and battery 6 .
  • the second pump 42 pressure-feeds the second heat medium from one end side to the other end side of the pipeline 12 .
  • conduit 13 One end of the conduit 13 is connected to the conduits 11 and 14 via the third switching section 33 .
  • the other end of conduit 13 is connected to conduit 14 and conduit 15 .
  • a conduit 13 passes through the second radiator 5 .
  • the second heat medium passing through pipe 13 is cooled by second radiator 5 .
  • conduit 14 One end of the conduit 14 is connected to the conduits 11 and 13 via the third switching section 33 .
  • the other end of conduit 14 is connected to conduit 13 and conduit 15 . That is, the pipeline 14 is connected to both ends of the pipeline 13 .
  • One of line 13 and line 14 bypasses the other.
  • conduit 15 One end of the conduit 15 is connected to the conduits 13 and 14 .
  • the other end of pipeline 15 is connected to pipeline 16 and second connecting pipeline 32d.
  • One end of the pipeline 16 is connected to the pipeline 15 and the second connecting pipeline 32d.
  • the other end of conduit 16 is connected to conduit 11 and first connecting conduit 32c.
  • One end of the pipeline 17 is connected to the pipeline 19 and the first connecting pipeline 32c.
  • the other end of the pipeline 17 is connected to the pipeline 18 and the second connecting pipeline 32d.
  • One end of the pipeline 18 is connected to the pipeline 17 and the second connecting pipeline 32d.
  • the other end of the conduit 18 is connected to the connection port C of the first switching section 31 .
  • conduit 19 One end of the conduit 19 is connected to the connection port A of the first switching section 31 .
  • the other end of the pipeline 19 is connected to the pipeline 17 and the first connecting pipeline 32c via the first valve 32a.
  • Line 19 passes through heat exchanger 7 .
  • the motor 2 is a motor-generator that has both a function as an electric motor and a function as a generator.
  • the motor 2 is connected to wheels of the vehicle via a speed reduction mechanism (not shown).
  • the motor 2 is driven by alternating current supplied from the inverter 3 to rotate the wheels. Thereby, the motor 2 drives the vehicle. Also, the motor 2 regenerates the rotation of the wheels to generate alternating current.
  • the generated electric power is stored in the battery 6 through the inverter 3 . Oil is stored in the housing of the motor 2 for cooling and lubricating each part of the motor.
  • the inverter 3 converts the direct current of the battery 6 into alternating current. Inverter 3 is electrically connected to motor 2 . The AC current converted by the inverter 3 is supplied to the motor 2 . That is, the inverter 3 converts the DC current supplied from the battery 6 into AC current and supplies the AC current to the motor 2 .
  • the power control device 4 is also called an IPS (Integrated Power System).
  • the power control device 4 has an AC/DC conversion circuit and a DC/DC conversion circuit.
  • the AC/DC conversion circuit converts an alternating current supplied from an external power source into a direct current and supplies the direct current to the battery 6 . That is, the power control device 4 converts alternating current supplied from the external power supply into direct current in the AC/DC conversion circuit and supplies the direct current to the battery 6 .
  • the DC/DC conversion circuit converts the DC current supplied from the battery 6 into DC currents of different voltages, and supplies the DC currents to the control unit 60 and the like.
  • the battery 6 supplies power to the motor 2 via the inverter 3 . Also, the battery 6 is charged with electric power generated by the motor 2 . Battery 6 may be charged by an external power source. Battery 6 is, for example, a lithium ion battery. The battery 6 may be of other forms as long as it is a secondary battery that can be repeatedly charged and discharged.
  • the second radiator 5 has a fan and releases the heat of the second heat medium to the outside air to cool the second heat medium. That is, the second radiator 5 is an exchanger that exchanges heat with the outside air.
  • the vehicle temperature control device 1 of this embodiment has a cooling mode, a normal heating mode, a hot gas heating mode, a battery heating mode, and a battery cooling mode. Each mode can be switched to each other by switching the open/close valve 8A. Note that the vehicle temperature control device 1 may have other modes that can be configured by switching the open/close valve 8A.
  • FIG. 2 is a schematic diagram of the vehicle temperature control device 1 in the cooling mode.
  • the first heat medium absorbs heat from the air flowing through the air flow passage 86f in the second air conditioning heat exchanger 74 and radiates it to the outside of the vehicle in the first radiator 77 . That is, the first heat medium transfers heat from inside the vehicle to outside the vehicle. Thereby, the first heat medium cools the air inside the vehicle.
  • the cooling mode first circuit C1 has a cooling loop Lc.
  • the cooling loop Lc includes an accumulator 71, a compressor 72, a first air conditioning heat exchanger 73, a third expansion valve 63, a first radiator 77, a fourth expansion valve 64, and a second air conditioning heat exchanger. 74, to circulate the first heat medium.
  • the loop formed in the second circuit C2 is not limited.
  • the vehicle temperature control device 1 is set to the cooling mode by switching the opening/closing valve 8A and the first to fifth expansion valves 61 to 65 as follows. That is, the vehicle temperature control device 1 in the cooling mode closes the open/close valve 8a, closes the open/close valve 8b, and closes the open/close valve 8c. Further, the vehicle temperature control device 1 in the cooling mode completely closes the first expansion valve 61, completely closes the second expansion valve 62, completely opens the third expansion valve 63, and completely closes the third expansion valve 63. 4 expansion valve 64 is adjusted to reduce the pressure of the first heat medium passing therethrough, and the fifth expansion valve 65 is completely closed.
  • the air mix damper 86d of the blower section 80 closes the flow path port on the blowout port 86b side and opens the bypass flow path. Thereby, the air blower 80 sends the air cooled by the second air-conditioning heat exchanger 74 into the vehicle interior without passing through the first air-conditioning heat exchanger 73 .
  • the high-pressure vapor-phase first heat medium discharged from the compressor 72 releases heat in the process of passing through the first air-conditioning heat exchanger 73 and the first radiator 77 and liquefies. do.
  • the high-pressure liquid-phase first heat medium is decompressed by passing through the fourth expansion valve 64, vaporized in the second air-conditioning heat exchanger 74, and absorbs heat from the air in the air flow passage 86f. Further, the low-pressure vapor-phase first heat medium is sucked into the compressor 72 again through the accumulator 71 .
  • FIG. 3 is a schematic diagram of the vehicle temperature control device 1 in the normal heating mode.
  • the first heat medium absorbs heat from the outside air through the first radiator 77 and radiates heat into the air flow passage 86f through the first heat exchanger 73 for air conditioning. That is, the first heat medium transfers heat from outside the vehicle to inside the vehicle. Thereby, the first heat medium heats the air inside the vehicle.
  • the first circuit C1 in normal heating mode has a heating loop Lh.
  • the heating loop Lh passes through the accumulator 71, the compressor 72, the first air-conditioning heat exchanger 73, the third expansion valve 63, and the first radiator 77 in this order to circulate the first heat medium.
  • the loop formed in the second circuit C2 is not limited.
  • the vehicle temperature control device 1 is set to the normal heating mode by switching the opening/closing valve 8A and the first to fifth expansion valves 61 to 65 as follows. That is, the vehicle temperature control device 1 in the normal heating mode closes the on-off valve 8a, closes the on-off valve 8b, and opens the on-off valve 8c. Furthermore, the vehicle temperature control device 1 in the normal heating mode completely closes the first expansion valve 61, completely closes the second expansion valve 62, and adjusts the opening degree of the third expansion valve 63. The pressure of the passing first heat medium is reduced, the fourth expansion valve 64 is completely closed, and the fifth expansion valve 65 is completely closed.
  • the air mix damper 86d of the air blowing section 80 opens the flow path port on the blowout port 86b side. Thereby, the air blower 80 sends the air heated by the first air-conditioning heat exchanger 73 into the passenger compartment.
  • the compressor 72 When the compressor 72 is operated in the normal heating mode, the high-pressure vapor-phase first heat medium discharged from the compressor 72 radiates heat and liquefies while passing through the first air-conditioning heat exchanger 73 .
  • the first heat medium in the high-pressure liquid phase is decompressed by passing through the third expansion valve 63, vaporized in the first radiator 77, and absorbs heat from outside air. Further, the low-pressure vapor-phase first heat medium is sucked into the compressor 72 again through the accumulator 71 .
  • the dehumidification heating mode may be selected when dehumidification is performed along with heating of the passenger compartment.
  • the on-off valve 8c is closed, the on-off valve 8b is opened, the third expansion valve 63 is completely closed, and the fourth expansion valve 64 is opened while adjusting the degree of opening.
  • the pressure of the passing first heat medium is reduced.
  • the first heat medium does not evaporate in the first radiator 77, but evaporates when passing through the second air-conditioning heat exchanger 74, absorbs heat from the air in the air flow passage 86f, and causes condensation. It dehumidifies the air.
  • FIG. 4 is a schematic diagram of the vehicle temperature control device 1 in the hot gas heating mode.
  • the first heat medium takes out heat from the compressor 72, receives heat from the second circuit C2 in the heat exchanger 7, and receives heat from the second air conditioning heat exchanger 74.
  • the inside of the vehicle is heated by dissipating heat to the air in the air circulation passage 86f.
  • the hot gas heating mode is selected when the outside air temperature is extremely low and it is difficult for the first radiator 77 to absorb heat.
  • the first circuit C1 in the hot gas heating mode has a first hot gas loop L1 and a heat storage loop L1a that simultaneously circulate the first heat medium.
  • the first hot gas loop L1 passes through the accumulator 71, the compressor 72, the first air conditioning heat exchanger 73, the first expansion valve 61, the heat exchanger 7, and the second expansion valve 62 in this order. Circulate the first heat medium.
  • the heat storage loop L1a passes through the accumulator 71, the compressor 72, and the fifth expansion valve 65 in this order to circulate the first heat medium.
  • the second circuit C2 in hot gas heating mode has a motor heat dissipation loop P1.
  • the motor heat dissipation loop P1 passes through the first pump 41, the power controller 4, the inverter 3, the motor 2, and the heat exchanger 7 to circulate the second heat medium.
  • heat from the motor 2, the inverter 3, and the power control device 4 is transferred to the second heat medium. Further, this heat is transferred in the heat exchanger 7 to the first heat medium of the first circuit C1.
  • the vehicle temperature control device 1 is set to the hot gas heating mode by switching the opening/closing valve 8A and the first to fifth expansion valves 61 to 65 as follows. That is, the vehicle temperature control device 1 in the hot gas heating mode closes the on-off valve 8a, opens the on-off valve 8b, and closes the on-off valve 8c. Furthermore, the vehicle temperature control device 1 in the hot gas heating mode adjusts the degree of opening of the first expansion valve 61 to reduce the pressure of the passing first heat medium, completely open the second expansion valve 62, and The third expansion valve 63 is completely closed, the fourth expansion valve 64 is completely closed, and the opening of the fifth expansion valve 65 is adjusted to reduce the pressure of the first heat medium passing through.
  • the vehicle temperature control device 1 configures the motor heat radiation loop P1 in the second circuit C2 by switching the switching units 31 to 33 as follows. That is, the first switching unit 31 allows the pipeline 18 and the pipeline 19 to communicate with each other.
  • the second switching unit 32 allows the conduit 19, the first connecting conduit 32c, and the conduit 11 to communicate with each other, and the conduit 15, the second connecting conduit 32d, and the conduit 18 to communicate with each other.
  • the third switching unit 33 connects the pipeline 11 and the pipeline 14 and closes the pipeline 13 .
  • the air mix damper 86d of the air blower 80 opens the flow path port on the blower port 86b side. Thereby, the air blower 80 sends the air heated by the first air-conditioning heat exchanger 73 into the passenger compartment.
  • an accumulator 71 and a compressor 72 are arranged in the pipeline 9a that is a common portion of the first hot gas loop L1 and the heat storage loop L1a.
  • the first heat medium discharged from the compressor 72 branches and flows through the pipeline 9d and the pipeline 9b.
  • the first heat medium that has flowed through the pipeline 9 d circulates through the first hot gas loop L 1 and returns to the accumulator 71 .
  • the first heat medium that has flowed through the pipeline 9 b circulates through the heat storage loop L 1 a and returns to the accumulator 71 . That is, the first heat medium branched and flowed into the pipeline 9 d and the pipeline 9 b is sucked into the accumulator 71 and the compressor 72 after being joined on the upstream side of the accumulator 71 .
  • the high-pressure gas-phase first heat medium discharged from the compressor 72 is decompressed by passing through the fifth expansion valve 65 to become a low-pressure gas-phase, and passes through the accumulator 71 to the compressor again. Inhaled at 72.
  • the first heat medium circulating in the heat storage loop L1a stores the energy of the compressor 72 as heat. That is, the heat storage loop L1a is a loop that extracts heat from the compressor 72 and stores the heat. According to this embodiment, the temperature of the first heat medium can be increased by circulating the first heat medium in the heat storage loop L1a.
  • the high-pressure vapor-phase first heat medium discharged from the compressor 72 releases heat and liquefies while passing through the first air-conditioning heat exchanger 73.
  • the first heat medium in the high-pressure liquid phase is decompressed by passing through the first expansion valve 61, vaporized in the heat exchanger 7, and absorbs heat from the second heat medium in the second circuit C2. Further, the low-pressure vapor-phase first heat medium is sucked into the compressor 72 again through the completely opened second expansion valve 62 and the accumulator 71 .
  • the first heat medium circulating in the first hot gas loop L1 releases heat in the first air conditioning heat exchanger 73 and liquefies, and in the heat exchanger 7 absorbs heat from the second heat medium in the second circuit C2 and evaporates. do.
  • the temperature of the first heat medium does not rise and vaporization of the first heat medium does not proceed easily. In this case, there is a possibility that the gas-phase first heat medium cannot be sufficiently supplied from the accumulator 71 to the compressor 72 .
  • the vehicle temperature control device 1 in the hot gas heating mode circulates the first heat medium in the heat storage loop L1a together with the first hot gas loop L1. Therefore, the first heat medium circulating through the first hot gas loop L1 and the heat storage loop L1a is mixed and sucked into the compressor 72 via the accumulator 71 . Therefore, the first heat medium whose temperature is sufficiently high and whose vaporization has progressed flows into the accumulator 71 .
  • the function of the compressor 72 is sufficiently exerted to supply the high-temperature and high-pressure first heat medium to the first air-conditioning heat exchanger 73. The vehicle interior can be heated even at low temperatures.
  • the first heat medium in the first hot gas loop L1 is the first expansion valve 61 downstream of and upstream of the accumulator 71 through the heat exchanger 7 .
  • the heat exchanger 7 exchanges heat between the first heat medium of the first circuit C1 and the second heat medium of the second circuit C2. That is, the first heat medium in the first hot gas loop L1 receives heat from the second heat medium in the heat exchanger 7 .
  • the vehicle temperature control device 1 of the present embodiment in the first hot gas loop L1, the first heat medium in the low-pressure liquid phase pressure-reduced by the first expansion valve 61 is supplied with the second heat of the second circuit. It can receive heat from a medium. As a result, the vehicle temperature control device 1 can efficiently use the heat of the second circuit C2 in the first circuit C1 to advance the vaporization of the first heat medium flowing into the accumulator 71 .
  • the heat exchanger 7 as the heat absorbing section is arranged in the path of the first hot gas loop L1.
  • the heat storage loop L1a can receive thermal energy from the compressor 72.
  • the first hot gas loop L1 may be a loop that does not pass through the heat exchanger 7 .
  • the opening degrees of the first expansion valve 61 and the fifth expansion valve 65 by adjusting the opening degrees of the first expansion valve 61 and the fifth expansion valve 65, the first heat medium circulating through the first hot gas loop L1 and the heat storage loop L1a is You can adjust the flow ratio. Therefore, when the opening degree of the first expansion valve 61 is set to 0 (that is, when the first expansion valve 61 is completely closed), the first heat medium circulates only through the heat storage loop L1a. On the other hand, when the opening degree of the fifth expansion valve 65 is set to 0 (that is, the fifth expansion valve 65 is completely closed), the first heat medium circulates only through the first hot gas loop L1.
  • the first heat medium when the temperature and pressure of the first heat medium on the upstream side of the accumulator 71 are low, the first heat medium is circulated only through the heat storage loop L1a to sufficiently increase the temperature and pressure of the first heat medium. Later, the first heat medium may also flow through the first hot gas loop L1. Furthermore, as the temperature and pressure of the first heat medium increase sufficiently, the flow rate of the first heat medium circulating through the first hot gas loop L1 is gradually increased, and finally, the first heat in the heat storage loop L1a Circulation of the medium may be stopped.
  • the pipeline 9a of the first circuit C1 is provided with a sensor S that measures the pressure or temperature in the pipeline 9a.
  • Sensor S is a temperature sensor or a pressure sensor.
  • the sensor S is connected to the controller 60 .
  • the sensor S of this embodiment is provided at the inlet of the accumulator 71 and measures the pressure or temperature of the first heat medium flowing into the accumulator 71 . Note that the temperature and pressure of the first heat medium hardly change before and after passing through the accumulator 71 . Sensor S is therefore considered to measure the pressure or temperature of the first heat transfer medium entering compressor 72 . Note that the sensor S may be provided at the suction port of the compressor 72 .
  • the controller 60 determines the ratio of the first heat medium circulating through the first hot gas loop L1 and the heat storage loop L1a based on the measurement result of the sensor S. More specifically, the first circuit C1 is the control unit 60, and when the pressure or temperature of the first heat medium flowing into the compressor 72 is low, the ratio of the first heat medium circulating through the heat storage loop L1a is increased. . As a result, the pressure or temperature of the first heat medium flowing into the compressor 72 can be prevented from becoming too low, and the function of the compressor 72 can be sufficiently exhibited.
  • the first circuit C1 has a hot gas heating mode in which the first heat medium is simultaneously circulated through the first hot gas loop L1 and the heat storage loop L1a, and a first heat medium through the heating loop Lh. It is possible to switch between normal heating mode with circulation. Therefore, when the outside air temperature is extremely low and it is difficult for the first radiator 77 to absorb heat from the outside air, the hot gas heating mode can be selected to stably heat the vehicle interior.
  • FIG. 5 is a schematic diagram of the vehicle temperature control device 1 in the battery heating mode.
  • the battery heating mode is a mode in which the battery 6 is heated using the heat of hot gas.
  • the first heat medium extracts heat from the compressor 72 in the vehicle temperature control device 1 in the battery heating mode. This heat moves to the second heat medium in the heat exchanger 7 and heats the battery 6 in the second circuit C2.
  • the battery heating mode is selected when the temperature of the battery drops and there is concern that the characteristics of the battery will deteriorate.
  • the first circuit C1 in the battery heating mode has a second hot gas loop L2 and a heat storage loop L1a that simultaneously circulate the first heat medium.
  • the second hot gas loop L2 passes through the accumulator 71, the compressor 72, the first air conditioning heat exchanger 73, the heat exchanger 7, and the second expansion valve 62 in this order to circulate the first heat medium.
  • the heat storage loop L1a passes through the accumulator 71, the compressor 72, and the fifth expansion valve 65 in this order to circulate the first heat medium.
  • the second hot gas loop L2 bypasses the first expansion valve 61 and allows the first heat medium to pass through the pipeline 9o, and adjusts the opening degree of the second expansion valve 62. It is the same as the first hot gas loop L1. That is, in the battery heating mode, the first expansion valve 61 is completely closed and the on-off valve 8a is opened instead. As a result, the first heat medium in the second hot gas loop L2 bypasses the first expansion valve 61 and passes through the pipeline 9o. In the battery heating mode, the second expansion valve 62 reduces the pressure of the passing first heat medium instead of the first expansion valve 61 to adjust the pressure of the first heat medium.
  • the second circuit C2 in battery heating mode has a battery loop P3.
  • the battery loop P3 passes through the battery 6 and the heat exchanger 7 to circulate the second heat medium.
  • the heat exchanger 7 receives heat from the first heat medium circulating through the second hot gas loop L2 of the first circuit C1 and the second heat medium circulating through the battery loop P3 of the second circuit C2. to heat. Thereby, the battery 6 in the battery loop P3 is heated.
  • the vehicle temperature control device 1 is set to the battery heating mode by switching the opening/closing valve 8A and the first to fifth expansion valves 61 to 65 as follows. That is, the vehicle temperature control device 1 in the battery heating mode opens the on-off valve 8a, opens the on-off valve 8b, and closes the on-off valve 8c. Further, the vehicle temperature control device 1 in the battery heating mode completely closes the first expansion valve 61, adjusts the opening degree in the second expansion valve 62, reduces the pressure of the first heat medium passing through, The first expansion valve 63 is completely closed, the fourth expansion valve 64 is completely closed, and the opening of the fifth expansion valve 65 is adjusted to reduce the pressure of the first heat medium passing through.
  • the vehicle temperature control device 1 configures the battery loop P3 in the second circuit C2 by switching the first switching section 31 and the second switching section 32 as follows. That is, the first switching unit 31 allows the conduit 18 and one end of the conduit 12 to communicate, and the other end of the conduit 12 and the conduit 19 to communicate.
  • the second switching unit 32 allows the pipeline 19, the pipeline 17, and the pipeline 18 to communicate with each other.
  • the air mix damper 86d of the air blower 80 closes the flow passage port on the blowout port 86b side. This suppresses heat exchange between the first heat medium and the air in the first air-conditioning heat exchanger 73 .
  • an accumulator 71 and a compressor 72 are arranged in the pipeline 9a that is a common portion of the second hot gas loop L2 and the heat storage loop L1a.
  • the first heat medium discharged from the compressor 72 branches and flows through the pipeline 9d and the pipeline 9b.
  • the first heat medium that has flowed through the pipeline 9 d circulates through the second hot gas loop L 2 and returns to the accumulator 71 .
  • the first heat medium that has flowed through the pipeline 9 b circulates through the heat storage loop L 1 a and returns to the accumulator 71 . That is, the first heat medium branched and flowed into the pipeline 9 d and the pipeline 9 b is sucked into the accumulator 71 and the compressor 72 after being joined on the upstream side of the accumulator 71 .
  • the heat storage loop L1a In the heat storage loop L1a, the high-pressure gas-phase first heat medium discharged from the compressor 72 is decompressed by passing through the fifth expansion valve 65 to become a low-pressure gas-phase, and passes through the accumulator 71 to the compressor again. Inhaled at 72. In the first circuit C1 in the battery heating mode, the heat storage loop L1a extracts and stores heat from the compressor 72 to raise the temperature of the first heat medium.
  • the high-pressure vapor-phase first heat medium discharged from the compressor 72 does not exchange heat when passing through the first heat exchanger 73 for air conditioning.
  • heat exchange in the first air-conditioning heat exchanger 73 is suppressed by the action of the air mix damper 86d, so the first heat medium is less likely to be cooled in the first air-conditioning heat exchanger 73. Therefore, the first heat medium discharged from the compressor 72 passes through the first air conditioning heat exchanger 73 while maintaining a high temperature in the second hot gas loop L2.
  • the first heat medium bypasses the first expansion valve 61 and reaches the heat exchanger 7. Therefore, the first heat medium is not decompressed by the first expansion valve 61 . Further, as described above, the first heat medium is not cooled by the first air-conditioning heat exchanger 73 . Therefore, the first heat medium discharged from the compressor reaches the heat exchanger 7 while maintaining the high temperature gas phase.
  • the first heat medium in the high-pressure gas phase absorbs heat in the heat exchanger 7, the temperature drops, and part of it liquefies.
  • the heat absorbed from the first heat medium in the heat exchanger 7 moves to the second heat medium in the second circuit C2.
  • the first heat medium partially liquefied after passing through the heat exchanger 7 is depressurized by passing through the second expansion valve 62, and liquefaction progresses. Further, the low-pressure vapor-phase first heat medium is sucked into the compressor 72 again through the accumulator 71 .
  • the second heat medium circulates through a battery loop P3 passing through the battery 6.
  • the second heat medium transfers the heat received from the first circuit C1 in the heat exchanger 7 to the battery 6 to heat the battery 6 .
  • the performance of the battery 6 may deteriorate when the temperature is too low.
  • the heat exchanger 7 can be used to transfer heat from the first heat medium of the first circuit C1 to the battery 6 of the second circuit C2 to heat the battery. Thereby, the performance of the battery 6 can be stabilized, and the reliability of the battery 6 can be improved.
  • FIG. 11 is a schematic diagram of a first circuit C1M of a comparative form for explaining the effects of this embodiment.
  • the first circuit C1M of the comparative form does not have the line 9o and the second expansion valve 62 compared to the above-described embodiments.
  • the first heat medium in the battery heating mode of the first circuit C1M of the comparative embodiment is decompressed by the first expansion valve 61, passes through the heat exchanger 7, transfers heat to the second heat medium, Go back to 72.
  • the first heat medium in the battery heating mode of the first circuit C1 of the present embodiment passes through the heat exchanger 7 to transfer heat to the second heat medium, and then is decompressed by the second expansion valve 62. and then returns to the compressor 72 .
  • FIG. 6 is a Mollier diagram showing cycles when the first circuit C1M of the comparative example and the first circuit C1 of the embodiment are operated in the battery heating mode.
  • the first heat medium repeats step M1, step M2, step M3, step M4, and step M5 in this order.
  • the first heat medium is compressed by the compressor 72 in step M1.
  • step M ⁇ b>2 the pressure of the first heat medium is reduced due to pressure loss caused by line resistance between the compressor 72 and the first expansion valve 61 .
  • the pressure of the first heat medium is reduced by the first expansion valve 61 in step M3. Note that even when the opening degree of the first expansion valve 61 is set to 100%, the pressure of the first heat medium passing through the first expansion valve 61 cannot be avoided due to its structure.
  • the first heat medium transfers heat to the heat exchanger 7 in step M4.
  • step M5 the pressure of the first heat medium is reduced due to pressure loss due to pipeline resistance between the heat exchanger 7 and the compressor 72 .
  • the first heat medium repeats step A1, step A2, step A3, step A4, and step A5 in this order.
  • the first heat medium is compressed by the compressor 72 in step A1.
  • step A ⁇ b>2 the pressure of the first heat medium is reduced due to pressure loss caused by line resistance between the compressor 72 and the heat exchanger 7 .
  • the first heat medium transfers heat to the heat exchanger 7 in step A3.
  • the pressure of the first heat medium is reduced by the second expansion valve 62 in step A4.
  • step A5 the pressure of the first heat medium is reduced due to the pressure loss caused by the pipeline resistance between the second expansion valve 62 and the compressor 72.
  • the first heat medium in the cycle of the comparative form transfers heat to the heat exchanger 7 in step M4.
  • the first heat medium of the cycle of the embodiment transfers heat to the heat exchanger 7 in step A3.
  • the pressure of the first heat medium is higher in process A3 of the cycle of the embodiment, and therefore the temperature is also higher. Therefore, the cycle of the embodiment can send the first heat medium to the heat exchanger 7 at a higher temperature and pressure than the cycle of the comparative form, and can give more heat to the second heat medium.
  • the pipeline 9o that can bypass the first expansion valve 61 is provided.
  • a heat medium can be sent to the heat exchanger 7 .
  • the battery 6 can be efficiently heated via the second heat medium.
  • a second expansion valve 62 is provided in preparation for the case where the first expansion valve 61 is detoured. Therefore, when the first heat medium bypasses the first expansion valve 61, such as in the battery heating mode, the first heat medium is sufficiently decompressed by passing through the second expansion valve 62 and sucked into the compressor 72. can be made Thereby, the load on the compressor 72 can be reduced.
  • FIG. 7 is a schematic diagram of the vehicle temperature control device 1 in the battery cooling mode.
  • the battery cooling mode is a mode for cooling the battery 6 .
  • the first heat medium receives the heat of the battery 6 from the second circuit C2 in the heat exchanger 7 and releases the received heat to the air in the first air conditioning heat exchanger 73 and the first radiator 77. .
  • the first circuit C1 in battery cooling mode has a heat receiving loop Lbc.
  • the heat receiving loop Lbc includes an accumulator 71, a compressor 72, a first air conditioning heat exchanger 73, a third expansion valve 63, a first radiator 77, a first expansion valve 61, a heat exchanger 7, and a first heat exchanger 73. 2 expansion valves 62 in order to circulate the first heat medium.
  • the second circuit C2 in battery cooling mode has a battery loop P3.
  • the battery loop P3 passes through the battery 6 and the heat exchanger 7 to circulate the second heat medium.
  • the heat exchanger 7 transfers heat to the first heat medium circulating through the heat receiving loop Lbc of the first circuit C1 and cools the second heat medium circulating through the battery loop P3 of the second circuit C2. do. This cools the battery 6 in the battery loop P3.
  • the vehicle temperature control device 1 is set to the battery cooling mode by switching the on-off valve 8A and the first to fifth expansion valves 61 to 65 as follows. That is, the vehicle temperature control device 1 in the battery cooling mode closes the open/close valve 8a, closes the open/close valve 8b, and closes the open/close valve 8c. Furthermore, the vehicle temperature control device 1 in the battery cooling mode adjusts the degree of opening of the first expansion valve 61 to reduce the pressure of the first heat medium passing therethrough, completely opens the second expansion valve 62, and opens the third expansion valve 62 completely. The first expansion valve 63 is completely opened, the fourth expansion valve 64 is completely closed, and the fifth expansion valve 65 is completely closed.
  • the vehicle temperature control device 1 configures the battery loop P3 in the second circuit C2 by switching the first switching section 31 and the second switching section 32 as follows. That is, the first switching unit 31 allows the conduit 18 and one end of the conduit 12 to communicate, and the other end of the conduit 12 and the conduit 19 to communicate.
  • the second switching unit 32 allows the conduits 19 , 17 and 18 to communicate with each other, and allows the conduits 15 , 16 and 11 to communicate with each other.
  • the high-pressure vapor-phase first heat medium discharged from the compressor 72 radiates heat while passing through the first air-conditioning heat exchanger 73 and the first radiator 77 . liquefy.
  • the first heat medium in the high-pressure liquid phase is decompressed by passing through the first expansion valve 61, is partially vaporized in the heat exchanger 7, and absorbs heat from the second heat medium in the second circuit C2. Further, the low-pressure vapor-phase first heat medium is sucked into the compressor 72 again through the completely opened second expansion valve 62 and the accumulator 71 .
  • the performance of the battery 6 may deteriorate when the temperature is too high. Also, from the viewpoint of safety, it is required to cool the battery 6 so that the temperature of the battery 6 does not become too high. According to the battery cooling mode of this embodiment, the battery 6 can be efficiently cooled, and the reliability of the battery 6 can be improved.
  • the heat exchanger 7 allows the first circuit C1 and the second The direction of heat exchange with circuit C2 can be switched.
  • the battery 6 can be heated and cooled by one heat exchanger 7, and compared with the case where heat exchangers for heating and cooling are provided, respectively, the temperature control device for the vehicle 1 can be configured at low cost.
  • the circulation efficiency of the circuit, etc. may decrease, resulting in an inefficient system as a whole.
  • the first heat medium passes through the compressor 72, the first expansion valve 61, and the heat exchanger 7 in this order in the first circuit C1, and the first circuit C1 is the first expansion valve 61 can be bypassed (first detour) 9o.
  • the first circuit C1 passes the first heat medium through the conduit 9o to bypass the first expansion valve 61, thereby heating the high-temperature and high-pressure first heat medium. It can flow into the exchanger 7 .
  • the battery cooling mode FIG.
  • the first circuit C1 passes the first heat medium through the first expansion valve 61 to reduce the pressure, thereby allowing the low-temperature, low-pressure first heat medium to flow into the heat exchanger 7. be able to. That is, according to the vehicle temperature control device 1 of the present embodiment, it is possible to efficiently heat and cool the battery 6 using one heat exchanger 7 .
  • the second expansion valve 62 is arranged downstream of the heat exchanger 7 in preparation for bypassing the first expansion valve 61.
  • the vehicle temperature control device 1 of the present embodiment is arranged downstream of the heat exchanger 7 and upstream of the compressor 72 in the first circuit C1, and serves as a second expansion device for expanding the first heat medium.
  • a valve 62 is provided. Therefore, in the first circuit C1 of the present embodiment, when bypassing the first expansion valve 61, the first heat medium is decompressed by the second expansion valve 62 instead of the first expansion valve 61, It can be sent to an accumulator 71 and a compressor 72 .
  • the pressure of the first heat medium sucked into the compressor 72 becomes too high. can be suppressed, and the load on the compressor 72 can be reduced.
  • control unit 60 controls the degree of opening of the first expansion valve 61 and the second expansion valve 62 and the opening/closing of the opening/closing valve 8a.
  • the control unit 60 adjusts the degree of opening of the second expansion valve 62 to adjust the pressure of the first heat medium sucked into the compressor 72. to adjust.
  • the load on the compressor 72 can be reduced.
  • the control unit 60 causes the second expansion valve 62 to open when the first heat medium passes through the first expansion valve 61 (that is, when the on-off valve 8a is closed). Fully open.
  • the control unit 60 performs such control, thereby minimizing the pressure drop in the second expansion valve 62 and providing the vehicle temperature control device 1 with high efficiency as a whole. .
  • the control unit 60 bypasses the first radiator 77 in the first circuit C1 because the first heat medium is not cooled by the first radiator 77 in the battery heating mode (FIG. 5).
  • the pipeline 9g functions as a detour that bypasses the first radiator 77 in the first pipeline. That is, the first circuit C1 has a conduit 9g that can bypass the first radiator 77.
  • the controller 60 causes the first heat medium to bypass the first radiator 77 and pass through the pipeline 9g.
  • the first circuit C1 in the battery heating mode can supply the first heat medium to the heat exchanger 7 while maintaining the temperature of the first heat medium.
  • the control unit 60 cools the first heat medium with the first radiator 77 and then passes it through the first expansion valve 61 and the heat exchanger 7 .
  • the control unit 60 allows the first heat medium to pass through the first radiator 77 when the first heat medium passes through the first expansion valve 61 .
  • the first circuit C ⁇ b>1 in the battery cooling mode can cool the first heat medium with the first radiator 77 and supply the low-temperature first heat medium to the heat exchanger 7 .
  • FIG. 8 is a schematic diagram of a first circuit C1b of Modification 1 that can be employed in this embodiment.
  • the first circuit C1b of this modified example differs from the above-described embodiment in that an expansion valve (corresponding to the second expansion valve 62) is not provided in the pipeline 9l.
  • FIG. 8 shows loops corresponding to the battery heating mode (the second hot gas loop L2 and the heat storage loop L1a), the first circuit C1b can also configure loops for other modes. .
  • the first expansion valve 62 when bypassing the first expansion valve 61, the first expansion valve 62 is used instead of the first expansion valve 61 to heat the first heat medium. is decompressed. As a result, the pressure of the first heat medium sucked into the compressor 72 is reduced to protect the compressor 72 .
  • the first circuit C1 does not necessarily require the second expansion valve 62.
  • the first circuit C1b of this modified example no expansion valve is provided in the pipeline 9 between the heat exchanger 7 and the compressor 72. Thereby, the first circuit C1b can be simplified, and the first circuit C1b can be configured at low cost.
  • the cycle of the battery heating mode of the first circuit C1b of this modified example is the cycle excluding step A4 from FIG. 6(b).
  • the pressure loss in the pipeline 9 between the heat exchanger 7 and the compressor 72 is large, the pressure reduction in step A5 is sufficiently large, and the battery heating mode cycle can be performed without step A4. .
  • the first heat medium passes through both the first expansion valve 61 and the second expansion valve 62 in the battery cooling mode of the first circuit C1 of the embodiment.
  • the opening degree of the second expansion valve 62 is fully opened, the passing first heat medium is inevitably slightly decompressed.
  • the pressure reduction in the second expansion valve 62 in the battery cooling mode deteriorates the efficiency of the first circuit C1.
  • FIG. 9 is a schematic diagram of a first circuit C1c of Modification 2 that can be employed in this embodiment.
  • the first circuit C1c of this modified example has the second expansion valve 6 in the pipeline 9l as compared with the above-described embodiment. 2 in that it has a pipeline (second detour) 9p.
  • FIG. 9 shows a loop (heat receiving loop Lbc) corresponding to the battery heating mode, the first circuit C1c can also configure loops for other modes.
  • One end of the pipeline 9p is connected to the pipeline 9l on the upstream side of the second expansion valve 62.
  • the other end of the pipeline 9p is connected to the pipeline 9l on the downstream side of the second expansion valve 62 . That is, the pipeline 9p is a detour that branches off from the pipeline 9l, bypasses the second expansion valve 62, and joins the pipeline 9l again.
  • the conduit 9l passes through the on-off valve 8d.
  • the control unit 60 when the first heat medium passes through the first expansion valve 61 (that is, when the opening/closing valve 8a is closed), the control unit 60 bypasses the second expansion valve 62 to The first heat medium is passed through 9p.
  • the control unit 60 performs such control, thereby suppressing pressure drop in the second expansion valve 62 and providing the vehicle temperature control device 1 with high efficiency as a whole.
  • the first circuit C1c of this modification preferably constitutes a loop that bypasses the second expansion valve 62 even when switched to the hot gas heating mode (see FIG. 4).
  • the pressure of the first heat medium sucked into the compressor 72 can be prevented from becoming too low, and a highly efficient cycle can be realized.
  • control unit 60 closes the first expansion valve 61 and opens the opening/closing valve 8a so that the first heat medium bypasses the first expansion valve 61 and passes through the pipeline 9o. 8 d is closed to allow the first heat medium to pass through the second expansion valve 62 .
  • the control unit 60 adjusts the opening degree of the second expansion valve 62 to adjust the pressure of the first heat medium sucked into the compressor 72 . By performing such control in the control unit 60, the load on the compressor 72 can be reduced.
  • FIG. 10 is a Mollier diagram showing a cycle when the first circuits C1 and C1c of the embodiment and modification 2 are operated in the battery cooling mode.
  • the modified first circuit C1c bypasses the second expansion valve 62 in battery cooling mode compared to the first circuit C1 of the embodiment. Therefore, by comparing the embodiment and Modification 2 in FIG. 6, the influence of the presence or absence of the second expansion valve 62 on the cycle can be confirmed.
  • the first heat medium repeats step a1, step a2, step a3, step a4, step a5, and step a6 in this order.
  • the first heat medium is compressed by the compressor 72 in step a1.
  • the first heat medium is cooled by the first radiator 77 in step a2.
  • the pressure of the first heat medium is reduced by the first expansion valve 61.
  • FIG. The first heat medium absorbs heat from the heat exchanger 7 in step a4.
  • the pressure of the first heat medium is reduced by the second expansion valve 62.
  • the pressure of the first heat medium is reduced due to the pressure loss caused by the pipeline resistance between the heat exchanger 7 and the compressor 72.
  • the first heat medium repeats Step c1, Step c2, Step c3, Step c4, and Step c5 in this order.
  • the first heat medium is compressed by the compressor 72 in step c1.
  • the first heat medium is cooled by the first radiator 77 in step c2.
  • the pressure of the first heat medium is reduced by the first expansion valve 61.
  • the first heat medium absorbs heat from the heat exchanger 7 in step c4.
  • the pressure of the first heat medium is reduced due to pressure loss caused by line resistance between the heat exchanger 7 and the compressor 72 .
  • the cycle of modification 2 does not cause pressure reduction (step a5) associated with passing through the second expansion valve 62 . Therefore, it is possible to prevent the pressure of the first heat medium sucked into the compressor 72 from becoming too low, and the first circuit C1c having high efficiency as a whole can be configured.
  • the first circuit C1c of Modification 2 has been described here, since the first circuit C1b of Modification 1 also does not have the second expansion valve 62, the same circuit as in Modification 2 is used in the battery cooling mode.
  • the first heat medium can be circulated in an efficient cycle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

A temperature adjustment device for a vehicle according to an aspect of the present invention comprises: a first circuit through which a first heat medium flows; a second circuit through which a second heat medium flows; a compressor that is disposed in the first circuit and that compresses the first heat medium; a first expansion valve that is disposed in the first circuit and that causes the first heat medium to expand; a battery disposed in the second circuit; and a heat exchanger that is disposed in the first and second circuits and that exchanges heat between the first and second heat media. The first heat medium sequentially passes through the compressor, the first expansion valve, and the heat exchanger in the first circuit. The first circuit has a first bypass that enables bypassing of the first expansion valve.

Description

車両用温調装置Vehicle temperature controller
 本発明は、車両用温調装置に関する。 The present invention relates to a vehicle temperature control device.
 電気自動車又はハイブリッド自動車に搭載されるバッテリは、外気温や駆動状態に応じて加熱および冷却され最適な温度が保たれる。特許文献1には、冷却水回路を介してバッテリを冷却および加熱することができる冷媒回路が開示されている。 The batteries installed in electric vehicles or hybrid vehicles are heated and cooled according to the outside temperature and driving conditions to maintain the optimum temperature. Patent Literature 1 discloses a refrigerant circuit capable of cooling and heating a battery via a cooling water circuit.
米国特許出願公開第2019/0070924号明細書U.S. Patent Application Publication No. 2019/0070924
 従来の冷却回路では、冷媒を加熱する熱交換器と冷媒を冷却する熱交換器とがそれぞれ配置されていた。このため、冷媒回路の構成要素の点数が増加してコスト増の要因となっていた。 In conventional cooling circuits, a heat exchanger that heats the refrigerant and a heat exchanger that cools the refrigerant are arranged separately. As a result, the number of constituent elements of the refrigerant circuit increases, leading to an increase in cost.
 本発明の一つの態様は、構成要素の点数を減らして安価に構成しつつ、効率的にバッテリを加熱および冷却できる車両用温調装置の提供を目的の一つとする。 An object of one aspect of the present invention is to provide a temperature control device for a vehicle that can efficiently heat and cool a battery while reducing the number of components and constructing it at a low cost.
 本発明の車両用温調装置の一つの態様は、第1熱媒体が流れる第1回路と、第2熱媒体が流れる第2回路と、第1回路に配置され第1熱媒体を圧縮する圧縮機と、第1回路に配置され第1熱媒体を膨張させる第1の膨張弁と、第2回路に配置されるバッテリと、第1回路および第2回路に配置され第1熱媒体と第2熱媒体との間で熱交換を行う熱交換器と、を備える。第1熱媒体は、第1回路において、圧縮機、第1の膨張弁、および熱交換器の順で通過する。第1回路は、第1の膨張弁を迂回可能な第1迂回路を有する。 One aspect of the vehicle temperature control device of the present invention includes a first circuit through which a first heat medium flows, a second circuit through which a second heat medium flows, and a compressor arranged in the first circuit for compressing the first heat medium. a first expansion valve arranged in the first circuit for expanding the first heat medium; a battery arranged in the second circuit; the first heat medium and the second heat medium arranged in the first circuit and the second circuit; and a heat exchanger that exchanges heat with a heat medium. The first heat medium passes through the compressor, the first expansion valve, and the heat exchanger in that order in the first circuit. The first circuit has a first detour that can bypass the first expansion valve.
 本発明の一つの態様によれば、構成要素の点数を減らして安価に構成しつつ、効率的にバッテリを加熱および冷却できる車両用温調装置が提供される。 According to one aspect of the present invention, there is provided a temperature control device for a vehicle that can efficiently heat and cool a battery while reducing the number of constituent elements and constructing it at a low cost.
図1は、一実施形態の車両用温調装置の概略図である。FIG. 1 is a schematic diagram of a vehicle temperature control device according to one embodiment. 図2は、一実施形態の車両用温調装置の冷房モードを示す概略図である。FIG. 2 is a schematic diagram showing a cooling mode of the vehicle temperature control device of one embodiment. 図3は、一実施形態の車両用温調装置の通常暖房モードを示す概略図である。FIG. 3 is a schematic diagram showing a normal heating mode of the vehicle temperature control device of one embodiment. 図4は、一実施形態の車両用温調装置のホットガス暖房モードを示す概略図である。FIG. 4 is a schematic diagram showing a hot gas heating mode of the vehicle temperature control device of one embodiment. 図5は、一実施形態の車両用温調装置のバッテリ加熱モードを示す概略図である。FIG. 5 is a schematic diagram showing a battery heating mode of the vehicle temperature control device of one embodiment. 図6は、比較形態および実施形態の第1回路をバッテリ加熱モードで動作させた場合のサイクルを表すモリエル線図である。FIG. 6 is a Mollier diagram showing cycles when the first circuits of the comparative example and the embodiment are operated in the battery heating mode. 図7は、一実施形態の車両用温調装置のバッテリ冷却モードを示す概略図である。FIG. 7 is a schematic diagram showing a battery cooling mode of the vehicle temperature control device of one embodiment. 図8は、変形例1の第1回路の概略図である。FIG. 8 is a schematic diagram of a first circuit of Modification 1. FIG. 図9は、変形例2の第1回路の概略図である。FIG. 9 is a schematic diagram of a first circuit of Modification 2. FIG. 図10は、一実施形態および変形例2の第1回路をバッテリ冷却モードで動作させた場合のサイクルを表すモリエル線図である。FIG. 10 is a Mollier diagram showing a cycle when the first circuit of the embodiment and modification 2 is operated in the battery cooling mode. 図11は、比較形態の第1回路の概略図である。FIG. 11 is a schematic diagram of a first circuit in a comparative form.
 以下、図面を参照しながら、本発明の実施形態に係る温調装置について説明する。なお、以下の図面においては、各構成をわかりやすくするために、実際の構造と各構造における縮尺や数などを異ならせる場合がある。 A temperature control device according to an embodiment of the present invention will be described below with reference to the drawings. Note that, in the drawings below, in order to make each configuration easier to understand, the actual structure and the scale and number of each structure may be different.
 図1は、一実施形態の車両用温調装置1の概略図である。
 車両用温調装置1は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHV)、等、モータを動力源とする車両に搭載される。
FIG. 1 is a schematic diagram of a vehicle temperature control device 1 of one embodiment.
A vehicle temperature control device 1 is mounted on a vehicle using a motor as a power source, such as an electric vehicle (EV), a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHV), or the like.
 車両用温調装置1は、第1回路C1と、アキュムレータ71と、圧縮機72と、第1空調用熱交換器73と、第2空調用熱交換器74と、第1のラジエータ(ラジエータ)77と、送風部80と、第1の膨張弁61と、第2の膨張弁62と、第3の膨張弁63と、第4の膨張弁64と、第5の膨張弁65と、第2回路C2と、モータ2と、電力制御装置4と、インバータ3と、第2のラジエータ5と、バッテリ6と、熱交換器7と、制御部60と、を有する。 The vehicle temperature control device 1 includes a first circuit C1, an accumulator 71, a compressor 72, a first air conditioning heat exchanger 73, a second air conditioning heat exchanger 74, and a first radiator (radiator). 77, a blowing unit 80, a first expansion valve 61, a second expansion valve 62, a third expansion valve 63, a fourth expansion valve 64, a fifth expansion valve 65, a second It has a circuit C<b>2 , a motor 2 , a power control device 4 , an inverter 3 , a second radiator 5 , a battery 6 , a heat exchanger 7 and a controller 60 .
 車両用温調装置1の各部は、制御部60と、温調部1aと、冷却部1bと、接続部1cと、に分類される。 Each part of the vehicle temperature control device 1 is classified into a control part 60, a temperature control part 1a, a cooling part 1b, and a connection part 1c.
 車両用温調装置1は、温調部1aにおいて車両の居住空間の気温を調整する。一方で、車両用温調装置1は、冷却部1bにおいても車両の駆動部(モータ2、インバータ3、および電力制御装置4など)を冷却する。車両用温調装置1は、接続部1cにおいて、温調部1aと冷却部1bとの間の熱交換を行う。したがって、車両用温調装置1は、冷却部1bにおいて車両の駆動部から回収した廃熱を温調部1aにおいて、居住空間の暖房に利用できる。制御部60は、温調部1aおよび冷却部1bを制御する。 The vehicle temperature control device 1 adjusts the temperature of the vehicle's living space in the temperature control unit 1a. On the other hand, the vehicle temperature control device 1 cools the vehicle drive units (the motor 2, the inverter 3, the power control device 4, etc.) in the cooling unit 1b as well. The vehicle temperature control device 1 performs heat exchange between the temperature control part 1a and the cooling part 1b at the connection part 1c. Therefore, in the vehicle temperature control device 1, the waste heat recovered from the driving part of the vehicle in the cooling part 1b can be used for heating the living space in the temperature control part 1a. The control unit 60 controls the temperature control unit 1a and the cooling unit 1b.
 (制御部)
 制御部60は、第1回路C1と、圧縮機72と、第1のラジエータ77と、送風部80と、第1の膨張弁61と、第2の膨張弁62と、第3の膨張弁63と、第4の膨張弁64と、第5の膨張弁65と、第2回路C2と、第2のラジエータ5と、に接続され、これらを制御する。
(control part)
The control unit 60 includes a first circuit C1, a compressor 72, a first radiator 77, a blower unit 80, a first expansion valve 61, a second expansion valve 62, and a third expansion valve 63. , the fourth expansion valve 64, the fifth expansion valve 65, the second circuit C2, and the second radiator 5 to control them.
 (接続部)
 接続部1cは、温調部1aおよび冷却部1bを接続する。接続部1cは、熱交換器7を有する。熱交換器7は、温調部1aの第1回路C1を流れる第1熱媒体と、冷却部1bの第2回路C2を流れる第2熱媒体と、の間で熱交換を行う。
(connection part)
The connection portion 1c connects the temperature control portion 1a and the cooling portion 1b. The connecting portion 1 c has a heat exchanger 7 . The heat exchanger 7 exchanges heat between the first heat medium flowing through the first circuit C1 of the temperature control section 1a and the second heat medium flowing through the second circuit C2 of the cooling section 1b.
 (温調部)
 温調部1aは、第1回路C1と、アキュムレータ71と、圧縮機72と、第1空調用熱交換器(空調用熱交換器)73と、第2空調用熱交換器74と、第1のラジエータ(ラジエータ)77と、第1の膨張弁61と、第2の膨張弁62と、第3の膨張弁63と、第4の膨張弁64と、第5の膨張弁65と、送風部80と、を有する。
(Temperature control part)
The temperature control unit 1a includes a first circuit C1, an accumulator 71, a compressor 72, a first air conditioning heat exchanger (air conditioning heat exchanger) 73, a second air conditioning heat exchanger 74, a first A radiator (radiator) 77, a first expansion valve 61, a second expansion valve 62, a third expansion valve 63, a fourth expansion valve 64, a fifth expansion valve 65, and a blower section 80 and
 第1回路C1には、第1熱媒体が流れる。第1回路C1の経路中には、アキュムレータ71、圧縮機72、第1空調用熱交換器73、第2空調用熱交換器74、第1のラジエータ77、第1の膨張弁61、第2の膨張弁62、第3の膨張弁63、第4の膨張弁64、および第5の膨張弁65が配置される。 A first heat medium flows through the first circuit C1. The path of the first circuit C1 includes an accumulator 71, a compressor 72, a first air conditioning heat exchanger 73, a second air conditioning heat exchanger 74, a first radiator 77, a first expansion valve 61, a second expansion valve 62, a third expansion valve 63, a fourth expansion valve 64, and a fifth expansion valve 65 are arranged.
 第1回路C1は、ヒートポンプ装置である。第1回路C1は、複数の管路9と、複数の開閉バルブ8Aと、複数のチャッキバルブ8Bと、を有する。複数の管路9は、互いに連結されて第1熱媒体を流すループを構成する。複数の管路9には、12個の管路9a、9b、9d、9f、9g、9h、9i、9j、9k、9l、9m、9oが含まれる。
 なお、本明細書において、ループとは、熱媒体を循環させるループ状の経路を意味する。
The first circuit C1 is a heat pump device. The first circuit C1 has a plurality of pipelines 9, a plurality of on-off valves 8A, and a plurality of check valves 8B. A plurality of pipelines 9 are connected to each other to form a loop through which the first heat medium flows. The plurality of conduits 9 includes twelve conduits 9a, 9b, 9d, 9f, 9g, 9h, 9i, 9j, 9k, 9l, 9m, and 9o.
In this specification, a loop means a loop-shaped path through which a heat medium is circulated.
 開閉バルブ8Aは、制御部60に接続される。開閉バルブ8Aは、管路の経路中に配置される。開閉バルブ8Aは、配置される管路の開放と閉塞とを切り替え可能である。第1回路C1は、開閉バルブ8Aおよび第1~第5の膨張弁61~65の制御によって、構成されるループが切り替えられる。複数の開閉バルブ8Aには、3個の開閉バルブ8a、8b、8cが含まれる。 The opening/closing valve 8A is connected to the control section 60. The on-off valve 8A is arranged in the path of the pipeline. The opening/closing valve 8A can switch between opening and closing of the arranged pipeline. In the first circuit C1, the loop formed is switched by controlling the on-off valve 8A and the first to fifth expansion valves 61-65. The multiple on-off valves 8A include three on-off valves 8a, 8b, and 8c.
 チャッキバルブ8Bは、管路の経路中に配置される。チャッキバルブ8Bは、配置される管路の上流側の一端から下流側の他端に向かう第1熱媒体の流動を許容し、他端から一端に向かう流動を許容しない。複数のチャッキバルブ8Bには、2個のチャッキバルブ8g、8hが含まれる。 The check valve 8B is arranged in the path of the pipeline. The check valve 8B permits the flow of the first heat medium from one end on the upstream side of the arranged pipe line toward the other end on the downstream side, and does not permit the flow from the other end to the one end. The multiple check valves 8B include two check valves 8g and 8h.
 次に、それぞれの管路9の構成について具体的に説明する。なお、それぞれの管路9の説明において、「一端」とは第1熱媒体の流動方向の上流側端部を示し、「他端」とは第1熱媒体の流動方向の下流側端部を示す。 Next, the configuration of each conduit 9 will be specifically described. In the description of each pipe line 9, "one end" indicates the upstream end in the flow direction of the first heat medium, and "the other end" indicates the downstream end in the flow direction of the first heat medium. show.
 管路9aの一端は、管路9bの他端および管路9lの他端に接続される。管路の9aの他端は、管路9bの一端および管路9dの一端に接続される。管路9aは、アキュムレータ71および圧縮機72を通過する。第1熱媒体は、管路9aの一端から他端に向かってアキュムレータ71、圧縮機72の順で流れる。 One end of the conduit 9a is connected to the other end of the conduit 9b and the other end of the conduit 9l. The other end of the conduit 9a is connected to one end of the conduit 9b and one end of the conduit 9d. Line 9 a passes through accumulator 71 and compressor 72 . The first heat medium flows through the accumulator 71 and the compressor 72 in this order from one end to the other end of the pipeline 9a.
 管路9bの一端は、管路9aの他端および管路9dの一端に接続される。管路9bの他端は、管路9aの一端および管路9lの他端に接続される。すなわち、管路9aと管路9bとは両端部が互いに繋がりループを構成する。 One end of the conduit 9b is connected to the other end of the conduit 9a and one end of the conduit 9d. The other end of the conduit 9b is connected to one end of the conduit 9a and the other end of the conduit 9l. That is, both ends of the pipeline 9a and the pipeline 9b are connected to each other to form a loop.
 管路9dの一端は、管路9aの他端および管路9bの一端に接続される。管路9dの他端は、管路9gの一端および管路9fの一端に接続される。管路9dは、第1空調用熱交換器73を通過する。 One end of the conduit 9d is connected to the other end of the conduit 9a and one end of the conduit 9b. The other end of the conduit 9d is connected to one end of the conduit 9g and one end of the conduit 9f. The pipeline 9d passes through the first heat exchanger 73 for air conditioning.
 管路9fの一端は、管路9dの他端および管路9gの一端に接続される。管路9fの他端は、管路9jの一端および管路9hの一端に接続される。管路9fは、第3の膨張弁63および第1のラジエータ77を通過する。第1熱媒体は、管路9fの一端から他端に向かって第3の膨張弁63、第1のラジエータ77の順で流れる。 One end of the conduit 9f is connected to the other end of the conduit 9d and one end of the conduit 9g. The other end of the conduit 9f is connected to one end of the conduit 9j and one end of the conduit 9h. Line 9 f passes through third expansion valve 63 and first radiator 77 . The first heat medium flows through the third expansion valve 63 and the first radiator 77 in this order from one end to the other end of the pipeline 9f.
 管路(第3迂回路)9gの一端は、管路9dの他端および管路9fの一端に接続される。管路9gの他端は、管路9jの他端および管路9kの一端に接続される。 One end of the pipeline (third detour) 9g is connected to the other end of the pipeline 9d and one end of the pipeline 9f. The other end of the conduit 9g is connected to the other end of the conduit 9j and one end of the conduit 9k.
 管路9hの一端は、管路9fの他端および管路9jの一端に接続される。管路9hの他端は、管路9iの一端および管路9mの他端に接続される。管路9hは、開閉バルブ8cを通過する。 One end of the conduit 9h is connected to the other end of the conduit 9f and one end of the conduit 9j. The other end of the pipeline 9h is connected to one end of the pipeline 9i and the other end of the pipeline 9m. The conduit 9h passes through the on-off valve 8c.
 管路9iの一端は、管路9hの他端および管路9mの他端に接続される。管路9iの他端は、管路9bの経路中であって第5の膨張弁65の下流側に接続される。管路9iは、チャッキバルブ8gを通過する。チャッキバルブ8gは、管路9iの一端から他端に向かう第1熱媒体の流れを許容し、他端から一端に向かう第1熱媒体の流れを制限する。 One end of the conduit 9i is connected to the other end of the conduit 9h and the other end of the conduit 9m. The other end of the pipeline 9i is connected to the downstream side of the fifth expansion valve 65 in the path of the pipeline 9b. The conduit 9i passes through a check valve 8g. The check valve 8g allows the flow of the first heat medium from one end to the other end of the pipeline 9i, and restricts the flow of the first heat medium from the other end to the one end.
 管路9jの一端は、管路9fの他端および管路9hの一端に接続される。管路9jの他端は、管路9gの他端および管路9kの一端に接続される。管路9jは、チャッキバルブ8hを通過する。チャッキバルブ8hは、管路9jの一端から他端に向かう第1熱媒体の流れを許容し、他端から一端に向かう第1熱媒体の流れを制限する。 One end of the conduit 9j is connected to the other end of the conduit 9f and one end of the conduit 9h. The other end of the conduit 9j is connected to the other end of the conduit 9g and one end of the conduit 9k. The conduit 9j passes through the check valve 8h. The check valve 8h permits the flow of the first heat medium from one end to the other end of the pipeline 9j and restricts the flow of the first heat medium from the other end to the one end.
 管路9kの一端は、管路9gの他端および管路9jの他端に接続される。管路9kの他端は、管路9lの一端および管路9mの一端に接続される。 One end of the conduit 9k is connected to the other end of the conduit 9g and the other end of the conduit 9j. The other end of the conduit 9k is connected to one end of the conduit 9l and one end of the conduit 9m.
 管路9lの一端は、管路9kの他端および管路9mの一端に接続される。管路9lの他端は、管路9bの経路中であって第5の膨張弁65の下流側に接続される。管路9lは、第1の膨張弁61、熱交換器7、および第2の膨張弁62を通過する。第1熱媒体は、管路9lの一端から他端に向かって第1の膨張弁61、熱交換器7、第2の膨張弁62の順で流れる。 One end of the conduit 9l is connected to the other end of the conduit 9k and one end of the conduit 9m. The other end of the pipeline 9l is connected to the downstream side of the fifth expansion valve 65 in the path of the pipeline 9b. Line 9 l passes through first expansion valve 61 , heat exchanger 7 and second expansion valve 62 . The first heat medium flows from one end to the other end of the pipeline 9l through the first expansion valve 61, the heat exchanger 7, and the second expansion valve 62 in this order.
 管路9mの一端は、管路9kの他端および管路9lの一端に接続される。管路9mの他端は、管路9hの他端および管路9iの一端に接続される。管路9mは、第4の膨張弁64および第2空調用熱交換器74を通過する。第1熱媒体は、管路9mの一端から他端に向かって第4の膨張弁64、第2空調用熱交換器74の順で流れる。 One end of the conduit 9m is connected to the other end of the conduit 9k and one end of the conduit 9l. The other end of the pipeline 9m is connected to the other end of the pipeline 9h and one end of the pipeline 9i. The pipeline 9m passes through the fourth expansion valve 64 and the second heat exchanger 74 for air conditioning. The first heat medium flows from one end to the other end of the pipeline 9m through the fourth expansion valve 64 and the second air conditioning heat exchanger 74 in this order.
 管路(第1迂回路)9oの一端は、第1の膨張弁61の上流側で管路9lに接続される。また、管路9oの他端は、第1の膨張弁61の下流側で管路9lに接続される。すなわち、管路9oは、管路9lから分岐して、第1の膨張弁61を迂回し、再び管路9lに合流する迂回路である。管路9lは、開閉バルブ8aを通過する。 One end of the pipeline (first detour) 9 o is connected to the pipeline 9 l on the upstream side of the first expansion valve 61 . The other end of the pipeline 9o is connected to the pipeline 9l on the downstream side of the first expansion valve 61 . That is, the pipeline 9o is a detour that branches off from the pipeline 9l, bypasses the first expansion valve 61, and rejoins the pipeline 9l. The conduit 9l passes through the on-off valve 8a.
 アキュムレータ71は、圧縮機72の上流側に配置される。アキュムレータ71は、第1熱媒体を気液分離する。アキュムレータ71は、気相の第1熱媒体のみを圧縮機72に供給し、液相の第1熱媒体が圧縮機72に吸入されることを抑制する。 The accumulator 71 is arranged upstream of the compressor 72 . The accumulator 71 separates the first heat medium into gas and liquid. The accumulator 71 supplies only the gas-phase first heat medium to the compressor 72 and suppresses the intake of the liquid-phase first heat medium into the compressor 72 .
 圧縮機72は、通過する第1熱媒体を圧縮して温度を上昇させる。圧縮機72は、下流側に高圧かつ気相の第1熱媒体を吐出する。圧縮機72は、バッテリ6から供給される電力によって電気駆動される。 The compressor 72 compresses the passing first heat medium to raise the temperature. The compressor 72 discharges the high pressure gas phase first heat medium to the downstream side. Compressor 72 is electrically driven by power supplied from battery 6 .
 第1のラジエータ77は、ファンを有し第1熱媒体の熱を外気に放出することで第1熱媒体を冷却する。第1のラジエータ77は、第1熱媒体と車室外の空気との間で熱換を
行う熱交換器である。
The first radiator 77 has a fan and releases the heat of the first heat medium to the outside air to cool the first heat medium. The first radiator 77 is a heat exchanger that exchanges heat between the first heat medium and the air outside the vehicle compartment.
 第1~第5の膨張弁61~65は、第1熱媒体を膨張させて第1熱媒体の温度を低下させる。さらに、第1~第5の膨張弁61~65は、完全に開放して大きな圧力変化を伴わず第1熱媒体を通過させること、完全に閉塞して第1熱媒体の通過を制限することもできる。第1~第5の膨張弁61~65は、は、制御部60によって開度調節されており、下流側の第1熱媒体の圧力および温度を調整する。なお、膨張弁が完全に開放する場合においても、膨張弁の通過時の熱媒体には若干の圧力低下が生じる。 The first to fifth expansion valves 61 to 65 expand the first heat medium to lower the temperature of the first heat medium. Further, the first to fifth expansion valves 61 to 65 can be completely opened to allow passage of the first heat medium without a large pressure change, or completely closed to restrict the passage of the first heat medium. can also The opening of the first to fifth expansion valves 61 to 65 is adjusted by the controller 60 to adjust the pressure and temperature of the downstream first heat medium. Even when the expansion valve is completely opened, the heat medium undergoes a slight pressure drop when passing through the expansion valve.
 第1空調用熱交換器73は、圧縮機72を通過して温度が高められた第1熱媒体と空気との間で熱交換を行う。すなわち、第1空調用熱交換器73は、第1熱媒体と空気との間で熱交換を行う。これにより、第1空調用熱交換器73は、送風部80において送風機85から送られた空気流通路86f内の空気を温める。 The first air-conditioning heat exchanger 73 exchanges heat between the first heat medium whose temperature has been raised by passing through the compressor 72 and the air. That is, the first air-conditioning heat exchanger 73 exchanges heat between the first heat medium and the air. As a result, the first air-conditioning heat exchanger 73 warms the air in the air flow passage 86f sent from the blower 85 in the blower section 80 .
 第2空調用熱交換器74は、第4の膨張弁を通過して温度が低下した第1熱媒体と空気との間で熱交換を行う。すなわち、第2空調用熱交換器74は、第1熱媒体と空気との間で熱交換を行う。これにより、第2空調用熱交換器74は、送風部80において送風機85から送られた空気流通路86f内の空気を冷やす、又は除湿する。 The second air-conditioning heat exchanger 74 exchanges heat between the first heat medium whose temperature has decreased after passing through the fourth expansion valve and the air. That is, the second air-conditioning heat exchanger 74 exchanges heat between the first heat medium and the air. Thereby, the second air-conditioning heat exchanger 74 cools or dehumidifies the air in the air flow passage 86f sent from the blower 85 in the blower section 80 .
 送風部80は、ダクト86と送風機85とを有する。ダクト86の内部には、空気流通路86fが設けられる。空気流通路86fは、車外の空気を車内に供給する経路である。また、空気流通路86fは、車内の空気を取り込んで再び車内に供給する経路でもある。空気流通路86fの一端側には、車外又は車内の空気を空気流通路86fに流入させる吸気口86aが設けられる。また、空気流通路86fの他端側には、空気流通路86fの空気を車内に排気する吹出口86bが設けられる。 The blower section 80 has a duct 86 and a blower 85 . Inside the duct 86, an air flow passage 86f is provided. The air flow passage 86f is a path for supplying air outside the vehicle to the inside of the vehicle. The air flow passage 86f is also a path for taking in the air inside the vehicle and supplying it to the inside of the vehicle again. An air intake port 86a is provided at one end of the air flow passage 86f for allowing air outside or inside the vehicle to flow into the air flow passage 86f. A blowout port 86b for discharging the air in the air flow passage 86f into the vehicle is provided on the other end side of the air flow passage 86f.
 空気流通路86fの内部には、吸気口86a側から吹出口86b側に向かって送風機85、第2空調用熱交換器74、および第1空調用熱交換器73が、この順で配置される。送風機85は、空気流通路86fの一端側から他端側に向かって空気を流通させる。すなわち、第2空調用熱交換器74、および第1空調用熱交換器73は、送風機85の送風流路中に配置される。第2空調用熱交換器74は、送風機85によって送られる空気を冷却および除湿する。一方で、第1空調用熱交換器73は、送風機85によって送られる空気を加熱する。 Inside the air flow passage 86f, a fan 85, a second air-conditioning heat exchanger 74, and a first air-conditioning heat exchanger 73 are arranged in this order from the intake port 86a side toward the blowout port 86b side. . The blower 85 circulates air from one end side of the air circulation passage 86f toward the other end side. That is, the second air-conditioning heat exchanger 74 and the first air-conditioning heat exchanger 73 are arranged in the blowing flow path of the blower 85 . The second air conditioning heat exchanger 74 cools and dehumidifies the air sent by the blower 85 . On the other hand, the first air conditioning heat exchanger 73 heats the air sent by the blower 85 .
 空気流通路86fには、第1空調用熱交換器73を迂回して空気を流すバイパス流通路86cが設けられる。また、バイパス流通路86cの上流側には、第2空調用熱交換器74を通過した空気のうち、第1空調用熱交換器73によって加熱される空気の割合を調整するエアミックスダンパ86dが設けられている。エアミックスダンパ86dは、制御部60に接続され制御される。 The air flow passage 86f is provided with a bypass flow passage 86c that bypasses the first air-conditioning heat exchanger 73 and allows air to flow. Further, on the upstream side of the bypass flow passage 86c, there is an air mix damper 86d that adjusts the proportion of the air that has passed through the second air conditioning heat exchanger 74 and is heated by the first air conditioning heat exchanger 73. is provided. The air mix damper 86d is connected to and controlled by the controller 60 .
 (冷却部)
 冷却部1bは、第2回路C2と、モータ2と、電力制御装置4と、インバータ3と、第2のラジエータ5と、バッテリ6と、を備える。
(cooling part)
The cooling unit 1b includes a second circuit C2, a motor 2, a power control device 4, an inverter 3, a second radiator 5, and a battery 6.
 第2回路C2には、第2熱媒体が流れる。第2回路C2の経路中には、モータ2、電力制御装置4、インバータ3、第2のラジエータ5、およびバッテリ6が配置される。第2回路C2は、複数の管路11~19と、第1切替部31と、第2切替部32と、第3切替部33と、第1ポンプ41と、第2ポンプ42と、を有する。第1ポンプ41および第2ポンプ42は、配置される管路の第2熱媒体を一方向に圧送する。複数の管路は、互いに連結されて第2熱媒体を流すループを構成する。 A second heat medium flows through the second circuit C2. A motor 2, a power controller 4, an inverter 3, a second radiator 5, and a battery 6 are arranged in the path of the second circuit C2. The second circuit C2 has a plurality of pipelines 11 to 19, a first switching section 31, a second switching section 32, a third switching section 33, a first pump 41, and a second pump 42. . The first pump 41 and the second pump 42 unidirectionally pump the second heat medium in the arranged pipelines. A plurality of pipelines are connected to each other to form a loop through which the second heat medium flows.
 切替部31~33は、制御部60に接続され、開放又は閉塞を切り替えることで、第2熱媒体が通過する管路を切り替える。切替部31~33は、3つ以上の管路が合流する部分に配置され、接続された複数の管路のうち何れか2つの管路を連通させる。以下の説明において、複数の切替部31~33を互いに区別する場合、これらを第1切替部31、第2切替部32、および第3切替部33と呼ぶ。 The switching units 31 to 33 are connected to the control unit 60, and switch the pipeline through which the second heat medium passes by switching open or closed. The switching units 31 to 33 are arranged at a portion where three or more pipelines merge, and connect any two pipelines out of the plurality of connected pipelines. In the following description, the switching units 31 to 33 are referred to as the first switching unit 31, the second switching unit 32, and the third switching unit 33 when they are distinguished from each other.
 第1切替部31は、四方弁である。第1切替部31は、4つの接続口A、B、C、Dを有する。第1切替部31は、4つの接続口A、B、C、Dのうち2つずつ二組の接続口同士を互いに連通させる。接続口Aには、管路19が接続される。接続口Cには、管路18が接続される。接続口B、Dには、管路12の両端部がそれぞれ接続される。 The first switching section 31 is a four-way valve. The first switching unit 31 has four connection ports A, B, C, and D. The first switching unit 31 allows two sets of two connection ports among the four connection ports A, B, C, and D to communicate with each other. A conduit 19 is connected to the connection port A. A conduit 18 is connected to the connection port C. As shown in FIG. Both ends of the pipeline 12 are connected to the connection ports B and D, respectively.
 第1切替部31は、2つの接続状態(第1接続状態および第2接続状態)の何れかに切り替え可能である。第1切替部31は、第1接続状態において、接続口A、C、および接続口B、Dをそれぞれ連通させる。第1接続状態の第1切替部31は、管路18と管路19とを連通させつつ管路12の両端部を連通させる。第1切替部31は、第1接続状態において、接続口A、B、および接続口C、Dをそれぞれ連通させる。第2接続状態の第1切替部31は、管路18と管路12の一端とを連通させつつ管路19と管路12の他端とを連通させる。 The first switching unit 31 can switch between two connection states (first connection state and second connection state). In the first connection state, the first switching unit 31 causes the connection ports A and C and the connection ports B and D to communicate with each other. The first switching unit 31 in the first connection state communicates both ends of the pipeline 12 while allowing the pipeline 18 and the pipeline 19 to communicate with each other. In the first connection state, the first switching unit 31 causes the connection ports A and B and the connection ports C and D to communicate with each other. The first switching unit 31 in the second connection state allows the conduit 18 and one end of the conduit 12 to communicate with each other, and allows the conduit 19 and the other end of the conduit 12 to communicate with each other.
 第2切替部32は、第1バルブ32a、第2バルブ32b、第1連結管路32c、および第2連結管路32dを有する。第1連結管路32cは、管路11および管路16の接続部と、管路19および管路17の接続部と、の間に跨って延びる。また、第2連結管路32dは、管路15および管路16の接続部と、管路18および管路17の接続部と、の間に跨って延びる。 The second switching section 32 has a first valve 32a, a second valve 32b, a first connecting pipe line 32c, and a second connecting pipe line 32d. The first connecting pipeline 32 c extends across the connecting portion of the pipelines 11 and 16 and the connecting portion of the pipelines 19 and 17 . In addition, the second connecting pipeline 32 d extends across the connecting portion of the pipelines 15 and 16 and the connecting portion of the pipelines 18 and 17 .
 第1バルブ32aは、三方弁である。第1バルブ32aは、第1連結管路32c、管路19、および管路17の接続部に配置される。第1バルブ32aは、第1連結管路32c、および管路17の何れか一方を管路19と連通させる。これにより、第1バルブ32aは、管路19を流れる第2熱媒体を第1連結管路32c又は管路17の何れか一方に流す。 The first valve 32a is a three-way valve. The first valve 32a is arranged at the connecting portion of the first connecting pipeline 32c, the pipeline 19, and the pipeline 17. As shown in FIG. The first valve 32 a allows either one of the first connecting pipeline 32 c and the pipeline 17 to communicate with the pipeline 19 . Thereby, the first valve 32 a causes the second heat medium flowing through the pipeline 19 to flow to either the first connecting pipeline 32 c or the pipeline 17 .
 第2バルブ32bは、二方弁である。第2バルブ32bは、管路16の経路中に配置される。第2バルブ32bは、管路16に第2熱媒体が流れる開放状態と、第2熱媒体の流れを停止させる閉塞状態とを切り替え可能である。本実施形態の第2バルブ32bは、制御部60によって制御されるソレノイドバルブである。 The second valve 32b is a two-way valve. A second valve 32 b is arranged in the path of the conduit 16 . The second valve 32b can switch between an open state in which the second heat medium flows through the conduit 16 and a closed state in which the flow of the second heat medium is stopped. The second valve 32b of this embodiment is a solenoid valve controlled by the controller 60 .
 第3切替部33は、三方弁である。第3切替部33は、管路11、管路13、および管路14の接続部に配置される。第3切替部33は、管路13又は管路14の何れか一方を管路11と連通させる。これにより、第3切替部33は、管路11を流れる第2熱媒体を管路13又は管路14の何れか一方に流す。 The third switching section 33 is a three-way valve. The third switching portion 33 is arranged at the connecting portion of the pipeline 11 , the pipeline 13 , and the pipeline 14 . The third switching unit 33 allows either the pipeline 13 or the pipeline 14 to communicate with the pipeline 11 . Thereby, the third switching unit 33 causes the second heat medium flowing through the pipeline 11 to flow through either the pipeline 13 or the pipeline 14 .
 次に、それぞれの管路11~19の構成について具体的に説明する。
 なお、管路11~19のうち一部の管路は、構成されるループによって内部を流れる第2熱媒体の流動方向が変わる。このため、それぞれの管路11~19の説明において、管路の「一端」および「他端」とは、単に管路の両端部のうち何れかであることを表すものであって、必ずしも第2熱媒体の流動方向を示すものではない。
Next, the configuration of each of the conduits 11-19 will be specifically described.
Some of the pipes 11 to 19 change the flow direction of the second heat medium flowing therein due to the loops formed. Therefore, in the description of each of the pipelines 11 to 19, "one end" and "the other end" of the pipeline simply indicate either of the two ends of the pipeline, not necessarily the first end. 2 It does not indicate the flow direction of the heat transfer medium.
 管路11の一端は、管路16および第1連結管路32cに接続される。管路11の他端は、管路13および管路14に接続される。管路11は、第1ポンプ41と電力制御装置4とインバータ3とモータ2とを通過する。第1ポンプ41は、管路11において一端側から他端側に向かって第2熱媒体を圧送する。 One end of the pipeline 11 is connected to the pipeline 16 and the first connecting pipeline 32c. The other end of conduit 11 is connected to conduit 13 and conduit 14 . Line 11 passes through first pump 41 , power controller 4 , inverter 3 and motor 2 . The first pump 41 pressure-feeds the second heat medium from one end side to the other end side of the pipeline 11 .
 管路12の一端は、第1切替部31の接続口Dに接続される。管路12の他端は、第1切替部31の接続口Bに接続される。管路12は、第2ポンプ42とバッテリ6を通過する。第2ポンプ42は、管路12において一端側から他端側に向かって第2熱媒体を圧送する。 One end of the conduit 12 is connected to the connection port D of the first switching section 31 . The other end of the conduit 12 is connected to the connection port B of the first switching section 31 . Line 12 passes through second pump 42 and battery 6 . The second pump 42 pressure-feeds the second heat medium from one end side to the other end side of the pipeline 12 .
 管路13の一端は、第3切替部33を介して、管路11および管路14に接続される。管路13の他端は、管路14および管路15に接続される。管路13は、第2のラジエータ5を通過する。管路13を通過する第2熱媒体は、第2のラジエータ5によって冷却される。 One end of the conduit 13 is connected to the conduits 11 and 14 via the third switching section 33 . The other end of conduit 13 is connected to conduit 14 and conduit 15 . A conduit 13 passes through the second radiator 5 . The second heat medium passing through pipe 13 is cooled by second radiator 5 .
 管路14の一端は、第3切替部33を介して、管路11および管路13に接続される。管路14の他端は、管路13および管路15に接続される。すなわち、管路14は、管路13の両端部に繋がる。管路13および管路14のうち一方は他方を迂回する。 One end of the conduit 14 is connected to the conduits 11 and 13 via the third switching section 33 . The other end of conduit 14 is connected to conduit 13 and conduit 15 . That is, the pipeline 14 is connected to both ends of the pipeline 13 . One of line 13 and line 14 bypasses the other.
 管路15の一端は、管路13および管路14に接続される。管路15の他端は、管路16および第2連結管路32dに接続される。 One end of the conduit 15 is connected to the conduits 13 and 14 . The other end of pipeline 15 is connected to pipeline 16 and second connecting pipeline 32d.
 管路16の一端は、管路15および第2連結管路32dに接続される。管路16の他端は、管路11および第1連結管路32cに接続される。 One end of the pipeline 16 is connected to the pipeline 15 and the second connecting pipeline 32d. The other end of conduit 16 is connected to conduit 11 and first connecting conduit 32c.
 管路17の一端は、管路19および第1連結管路32cに接続される。管路17の他端は、管路18および第2連結管路32dに接続される。 One end of the pipeline 17 is connected to the pipeline 19 and the first connecting pipeline 32c. The other end of the pipeline 17 is connected to the pipeline 18 and the second connecting pipeline 32d.
 管路18の一端は、管路17および第2連結管路32dに接続される。管路18の他端は、第1切替部31の接続口Cに接続される。 One end of the pipeline 18 is connected to the pipeline 17 and the second connecting pipeline 32d. The other end of the conduit 18 is connected to the connection port C of the first switching section 31 .
 管路19の一端は、第1切替部31の接続口Aに接続される。管路19の他端は、第1バルブ32aを介して管路17および第1連結管路32cに接続される。管路19は、熱交換器7を通過する。 One end of the conduit 19 is connected to the connection port A of the first switching section 31 . The other end of the pipeline 19 is connected to the pipeline 17 and the first connecting pipeline 32c via the first valve 32a. Line 19 passes through heat exchanger 7 .
 モータ2は、電動機としての機能と発電機としての機能とを兼ね備えた電動発電機である。モータ2は、図示略の減速機構を介して、車両の車輪に接続される。モータ2は、インバータ3から供給される交流電流により駆動し、車輪を回転させる。これにより、モータ2は、車両を駆動する。また、モータ2は、車輪の回転を回生し交流電流を発電する。発電された電力は、インバータ3を通じてバッテリ6に蓄えられる。モータ2のハウジング内には、モータの各部を冷却および潤滑させるオイルが貯留される。 The motor 2 is a motor-generator that has both a function as an electric motor and a function as a generator. The motor 2 is connected to wheels of the vehicle via a speed reduction mechanism (not shown). The motor 2 is driven by alternating current supplied from the inverter 3 to rotate the wheels. Thereby, the motor 2 drives the vehicle. Also, the motor 2 regenerates the rotation of the wheels to generate alternating current. The generated electric power is stored in the battery 6 through the inverter 3 . Oil is stored in the housing of the motor 2 for cooling and lubricating each part of the motor.
 インバータ3は、バッテリ6の直流電流を交流電流に変換する。インバータ3は、モータ2と電気的に接続される。インバータ3によって変換された交流電流は、モータ2に供給される。すなわち、インバータ3は、バッテリ6から供給される直流電流を交流電流に変換してモータ2に供給する。 The inverter 3 converts the direct current of the battery 6 into alternating current. Inverter 3 is electrically connected to motor 2 . The AC current converted by the inverter 3 is supplied to the motor 2 . That is, the inverter 3 converts the DC current supplied from the battery 6 into AC current and supplies the AC current to the motor 2 .
 電力制御装置4は、IPS(Integrated Power System)とも呼ばれる。電力制御装置4は、AC/DC変換回路およびDC/DC変換回路を有する。AC/DC変換回路は、外部電源から供給される交流電流を直流電流に変換しバッテリ6に供給する。すなわち、電力制御装置4は、AC/DC変換回路において、外部電源から供給される交流電流を直流電流に変換しバッテリ6に供給する。DC/DC変換回路は、バッテリ6から供給される直流電流を電圧の異なる直流電流に変換し、制御部60などに供給する。 The power control device 4 is also called an IPS (Integrated Power System). The power control device 4 has an AC/DC conversion circuit and a DC/DC conversion circuit. The AC/DC conversion circuit converts an alternating current supplied from an external power source into a direct current and supplies the direct current to the battery 6 . That is, the power control device 4 converts alternating current supplied from the external power supply into direct current in the AC/DC conversion circuit and supplies the direct current to the battery 6 . The DC/DC conversion circuit converts the DC current supplied from the battery 6 into DC currents of different voltages, and supplies the DC currents to the control unit 60 and the like.
 バッテリ6は、インバータ3を介してモータ2に電力を供給する。また、バッテリ6は、モータ2によって発電された電力を充電する。バッテリ6は、外部電源によって充填されていてもよい。バッテリ6は、例えば、リチウムイオン電池である。バッテリ6は、繰り返し充電および放電が可能な二次電池であれば、他の形態であってもよい。 The battery 6 supplies power to the motor 2 via the inverter 3 . Also, the battery 6 is charged with electric power generated by the motor 2 . Battery 6 may be charged by an external power source. Battery 6 is, for example, a lithium ion battery. The battery 6 may be of other forms as long as it is a secondary battery that can be repeatedly charged and discharged.
 第2のラジエータ5は、ファンを有し第2熱媒体の熱を外気に放出することで第2熱媒体を冷却する。すなわち、第2のラジエータ5は、外気との間の熱交換を行う交換器である。 The second radiator 5 has a fan and releases the heat of the second heat medium to the outside air to cool the second heat medium. That is, the second radiator 5 is an exchanger that exchanges heat with the outside air.
 (各モード)
 本実施形態の車両用温調装置1は、冷房モード、通常暖房モードと、ホットガス暖房モードと、バッテリ加熱モードと、バッテリ冷却モードと、を有する。各モードは、開閉バルブ8Aの切り替えによって互いに遷移可能である。なお、車両用温調装置1は、開閉バルブ8Aを切り替えることで構成し得る他のモードを有していてもよい。
(each mode)
The vehicle temperature control device 1 of this embodiment has a cooling mode, a normal heating mode, a hot gas heating mode, a battery heating mode, and a battery cooling mode. Each mode can be switched to each other by switching the open/close valve 8A. Note that the vehicle temperature control device 1 may have other modes that can be configured by switching the open/close valve 8A.
 (冷房モード)
 図2は、冷房モードの車両用温調装置1の概略図である。
 冷房モードの車両用温調装置1において第1熱媒体は、第2空調用熱交換器74で空気流通路86f内を流れる車内の空気から吸熱して第1のラジエータ77で車外に放熱する。すなわち、第1熱媒体は、車内から車外に熱を移送する。これにより、第1熱媒体は、車内の空気を冷却する。
(cooling mode)
FIG. 2 is a schematic diagram of the vehicle temperature control device 1 in the cooling mode.
In the vehicle temperature control device 1 in the cooling mode, the first heat medium absorbs heat from the air flowing through the air flow passage 86f in the second air conditioning heat exchanger 74 and radiates it to the outside of the vehicle in the first radiator 77 . That is, the first heat medium transfers heat from inside the vehicle to outside the vehicle. Thereby, the first heat medium cools the air inside the vehicle.
 冷房モードの第1回路C1は、冷房用ループLcを有する。冷房用ループLcは、アキュムレータ71、圧縮機72、第1空調用熱交換器73、第3の膨張弁63、第1のラジエータ77、第4の膨張弁64、および第2空調用熱交換器74、の順で通過して第1熱媒体を循環させる。 The cooling mode first circuit C1 has a cooling loop Lc. The cooling loop Lc includes an accumulator 71, a compressor 72, a first air conditioning heat exchanger 73, a third expansion valve 63, a first radiator 77, a fourth expansion valve 64, and a second air conditioning heat exchanger. 74, to circulate the first heat medium.
 なお、冷房モードにおいて、第1回路C1と第2回路C2との間に熱のやり取りは発生しない。したがって、冷房モードにおいて、第2回路C2に形成されるループは限定されない。 In the cooling mode, no heat is exchanged between the first circuit C1 and the second circuit C2. Therefore, in the cooling mode, the loop formed in the second circuit C2 is not limited.
 車両用温調装置1は、開閉バルブ8A、および第1~第5の膨張弁61~65を以下のように切り替えることで冷房モードとされる。すなわち、冷房モードの車両用温調装置1は、開閉バルブ8aを閉塞し、開閉バルブ8bを閉塞し、開閉バルブ8cを閉塞する。さらに、冷房モードの車両用温調装置1は、第1の膨張弁61を完全に閉塞し、第2の膨張弁62を完全に閉塞し、第3の膨張弁63を完全に開放し、第4の膨張弁64において開度を調整し通過する第1熱媒体を減圧させ、第5の膨張弁65を完全に閉塞する。 The vehicle temperature control device 1 is set to the cooling mode by switching the opening/closing valve 8A and the first to fifth expansion valves 61 to 65 as follows. That is, the vehicle temperature control device 1 in the cooling mode closes the open/close valve 8a, closes the open/close valve 8b, and closes the open/close valve 8c. Further, the vehicle temperature control device 1 in the cooling mode completely closes the first expansion valve 61, completely closes the second expansion valve 62, completely opens the third expansion valve 63, and completely closes the third expansion valve 63. 4 expansion valve 64 is adjusted to reduce the pressure of the first heat medium passing therethrough, and the fifth expansion valve 65 is completely closed.
 また、冷房モードにおいて、送風部80のエアミックスダンパ86dは、吹出口86b側の流路口を塞ぎ、バイパス流通路を開放する。これにより、送風部80は、第2空調用熱交換器74によって冷却された空気を、第1空調用熱交換器73を通過させることなく車室内に送る。 In addition, in the cooling mode, the air mix damper 86d of the blower section 80 closes the flow path port on the blowout port 86b side and opens the bypass flow path. Thereby, the air blower 80 sends the air cooled by the second air-conditioning heat exchanger 74 into the vehicle interior without passing through the first air-conditioning heat exchanger 73 .
 冷房モードにおいて圧縮機72を動作させると、圧縮機72から吐出された高圧気相の第1熱媒体は、第1空調用熱交換器73および第1のラジエータ77を通過する過程で放熱し液化する。高圧液相の第1熱媒体は、第4の膨張弁64を通過することで減圧され、さらに第2空調用熱交換器74において気化するとともに、空気流通路86f内の空気から吸熱する。さらに、低圧気相の第1熱媒体は、アキュムレータ71を経て再び圧縮機72吸入される。 When the compressor 72 is operated in the cooling mode, the high-pressure vapor-phase first heat medium discharged from the compressor 72 releases heat in the process of passing through the first air-conditioning heat exchanger 73 and the first radiator 77 and liquefies. do. The high-pressure liquid-phase first heat medium is decompressed by passing through the fourth expansion valve 64, vaporized in the second air-conditioning heat exchanger 74, and absorbs heat from the air in the air flow passage 86f. Further, the low-pressure vapor-phase first heat medium is sucked into the compressor 72 again through the accumulator 71 .
 (通常暖房モード)
 図3は、通常暖房モードの車両用温調装置1の概略図である。
 通常暖房モードの車両用温調装置1において第1熱媒体は、第1のラジエータ77で外気から吸熱して第1空調用熱交換器73で空気流通路86f内に放熱する。すなわち、第1熱媒体は、車外から車内に熱を移送する。これにより、第1熱媒体は、車内の空気を加熱する。
(Normal heating mode)
FIG. 3 is a schematic diagram of the vehicle temperature control device 1 in the normal heating mode.
In the vehicle temperature control device 1 in the normal heating mode, the first heat medium absorbs heat from the outside air through the first radiator 77 and radiates heat into the air flow passage 86f through the first heat exchanger 73 for air conditioning. That is, the first heat medium transfers heat from outside the vehicle to inside the vehicle. Thereby, the first heat medium heats the air inside the vehicle.
 通常暖房モードの第1回路C1は、暖房用ループLhを有する。暖房用ループLhは、アキュムレータ71、圧縮機72、第1空調用熱交換器73、第3の膨張弁63、および第1のラジエータ77、の順で通過して第1熱媒体を循環させる。 The first circuit C1 in normal heating mode has a heating loop Lh. The heating loop Lh passes through the accumulator 71, the compressor 72, the first air-conditioning heat exchanger 73, the third expansion valve 63, and the first radiator 77 in this order to circulate the first heat medium.
 なお、通常暖房モードにおいて、第1回路C1と第2回路C2との間に熱のやり取りは発生しない。したがって、通常暖房モードにおいて、第2回路C2に形成されるループは限定されない。 Note that heat is not exchanged between the first circuit C1 and the second circuit C2 in the normal heating mode. Therefore, in the normal heating mode, the loop formed in the second circuit C2 is not limited.
 車両用温調装置1は、開閉バルブ8A、および第1~第5の膨張弁61~65を以下のように切り替えることで通常暖房モードとされる。すなわち、通常暖房モードの車両用温調装置1は、開閉バルブ8aを閉塞し、開閉バルブ8bを閉塞し、開閉バルブ8cを開放する。さらに、通常暖房モードの車両用温調装置1は、第1の膨張弁61を完全に閉塞し、第2の膨張弁62を完全に閉塞し、第3の膨張弁63において開度を調整し通過する第1熱媒体を減圧させ、第4の膨張弁64を完全に閉塞し、第5の膨張弁65を完全に閉塞する。 The vehicle temperature control device 1 is set to the normal heating mode by switching the opening/closing valve 8A and the first to fifth expansion valves 61 to 65 as follows. That is, the vehicle temperature control device 1 in the normal heating mode closes the on-off valve 8a, closes the on-off valve 8b, and opens the on-off valve 8c. Furthermore, the vehicle temperature control device 1 in the normal heating mode completely closes the first expansion valve 61, completely closes the second expansion valve 62, and adjusts the opening degree of the third expansion valve 63. The pressure of the passing first heat medium is reduced, the fourth expansion valve 64 is completely closed, and the fifth expansion valve 65 is completely closed.
 また、通常暖房モードにおいて、送風部80のエアミックスダンパ86dは、吹出口86b側の流路口を開放させる。これにより、送風部80は、第1空調用熱交換器73によって加熱された空気を車室内に送る。 In addition, in the normal heating mode, the air mix damper 86d of the air blowing section 80 opens the flow path port on the blowout port 86b side. Thereby, the air blower 80 sends the air heated by the first air-conditioning heat exchanger 73 into the passenger compartment.
 通常暖房モードにおいて圧縮機72を動作させると、圧縮機72から吐出された高圧気相の第1熱媒体は、第1空調用熱交換器73を通過する過程で放熱し液化する。高圧液相の第1熱媒体は、第3の膨張弁63を通過することで減圧され、さらに第1のラジエータ77において気化するとともに外気から吸熱する。さらに、低圧気相の第1熱媒体は、アキュムレータ71を経て再び圧縮機72吸入される。 When the compressor 72 is operated in the normal heating mode, the high-pressure vapor-phase first heat medium discharged from the compressor 72 radiates heat and liquefies while passing through the first air-conditioning heat exchanger 73 . The first heat medium in the high-pressure liquid phase is decompressed by passing through the third expansion valve 63, vaporized in the first radiator 77, and absorbs heat from outside air. Further, the low-pressure vapor-phase first heat medium is sucked into the compressor 72 again through the accumulator 71 .
 なお、図示を省略するが、車室内の暖房とともに除湿を行う場合には、除湿暖房モードを選択してもよい。この場合、通常暖房モードから、開閉バルブ8cを閉塞し、開閉バルブ8bを開放し、第3の膨張弁63を完全に閉塞し、第4の膨張弁64において開度を調整しながら開放して通過する第1熱媒体を減圧させる。これにより、第1熱媒体は、第1のラジエータ77で気化することなく、第2空調用熱交換器74を通過する際に気化して空気流通路86f内の空気から吸熱し結露を生じさせることで空気を除湿する。 Although illustration is omitted, the dehumidification heating mode may be selected when dehumidification is performed along with heating of the passenger compartment. In this case, from the normal heating mode, the on-off valve 8c is closed, the on-off valve 8b is opened, the third expansion valve 63 is completely closed, and the fourth expansion valve 64 is opened while adjusting the degree of opening. The pressure of the passing first heat medium is reduced. As a result, the first heat medium does not evaporate in the first radiator 77, but evaporates when passing through the second air-conditioning heat exchanger 74, absorbs heat from the air in the air flow passage 86f, and causes condensation. It dehumidifies the air.
 (ホットガス暖房モード)
 図4は、ホットガス暖房モードの車両用温調装置1の概略図である。
 ホットガス暖房モードの車両用温調装置1において第1熱媒体は、圧縮機72から熱を取り出すとともに、熱交換器7において第2回路C2から熱を受け取り、第2空調用熱交換器74で空気流通路86f内の空気に放熱することで車内を暖房する。ホットガス暖房モードは、外気温が極端に低く、第1のラジエータ77での吸熱が難しい場合に選択される。
(hot gas heating mode)
FIG. 4 is a schematic diagram of the vehicle temperature control device 1 in the hot gas heating mode.
In the vehicle temperature control device 1 in the hot gas heating mode, the first heat medium takes out heat from the compressor 72, receives heat from the second circuit C2 in the heat exchanger 7, and receives heat from the second air conditioning heat exchanger 74. The inside of the vehicle is heated by dissipating heat to the air in the air circulation passage 86f. The hot gas heating mode is selected when the outside air temperature is extremely low and it is difficult for the first radiator 77 to absorb heat.
 ホットガス暖房モードの第1回路C1は、第1熱媒体を同時に循環させる第1ホットガス用ループL1および蓄熱用ループL1aを有する。第1ホットガス用ループL1は、アキュムレータ71、圧縮機72、第1空調用熱交換器73、第1の膨張弁61、および熱交換器7、第2の膨張弁62の順で通過して第1熱媒体を循環させる。蓄熱用ループL1aは、アキュムレータ71、圧縮機72、および第5の膨張弁65、の順で通過して第1熱媒体を循環させる。 The first circuit C1 in the hot gas heating mode has a first hot gas loop L1 and a heat storage loop L1a that simultaneously circulate the first heat medium. The first hot gas loop L1 passes through the accumulator 71, the compressor 72, the first air conditioning heat exchanger 73, the first expansion valve 61, the heat exchanger 7, and the second expansion valve 62 in this order. Circulate the first heat medium. The heat storage loop L1a passes through the accumulator 71, the compressor 72, and the fifth expansion valve 65 in this order to circulate the first heat medium.
 ホットガス暖房モードの第2回路C2は、モータ放熱ループP1を有する。モータ放熱ループP1は、第1ポンプ41、電力制御装置4、インバータ3、モータ2、および熱交換器7を通過して第2熱媒体を循環させる。モータ放熱ループP1において、モータ2、インバータ3、および電力制御装置4の熱は、第2熱媒体に移動する。さらにこの熱は、熱交換器7において、第1回路C1の第1熱媒体に移動する。 The second circuit C2 in hot gas heating mode has a motor heat dissipation loop P1. The motor heat dissipation loop P1 passes through the first pump 41, the power controller 4, the inverter 3, the motor 2, and the heat exchanger 7 to circulate the second heat medium. In the motor heat dissipation loop P1, heat from the motor 2, the inverter 3, and the power control device 4 is transferred to the second heat medium. Further, this heat is transferred in the heat exchanger 7 to the first heat medium of the first circuit C1.
 車両用温調装置1は、開閉バルブ8A、および第1~第5の膨張弁61~65を以下のように切り替えることでホットガス暖房モードとされる。すなわち、ホットガス暖房モードの車両用温調装置1は、開閉バルブ8aを閉塞し、開閉バルブ8bを開放し、開閉バルブ8cを閉塞する。さらに、ホットガス暖房モードの車両用温調装置1は、第1の膨張弁61において開度を調整し通過する第1熱媒体を減圧させ、第2の膨張弁62を完全に開放し、第3の膨張弁63を完全に閉塞し、第4の膨張弁64を完全に閉塞し、第5の膨張弁65において開度を調整し通過する第1熱媒体を減圧させる。 The vehicle temperature control device 1 is set to the hot gas heating mode by switching the opening/closing valve 8A and the first to fifth expansion valves 61 to 65 as follows. That is, the vehicle temperature control device 1 in the hot gas heating mode closes the on-off valve 8a, opens the on-off valve 8b, and closes the on-off valve 8c. Furthermore, the vehicle temperature control device 1 in the hot gas heating mode adjusts the degree of opening of the first expansion valve 61 to reduce the pressure of the passing first heat medium, completely open the second expansion valve 62, and The third expansion valve 63 is completely closed, the fourth expansion valve 64 is completely closed, and the opening of the fifth expansion valve 65 is adjusted to reduce the pressure of the first heat medium passing through.
 さらに、車両用温調装置1は、切替部31~33を以下のように切り替えることで第2回路C2にモータ放熱ループP1を構成する。すなわち、第1切替部31は、管路18と管路19とを連通させる。第2切替部32は、管路19と第1連結管路32cと管路11とを連通させ、管路15と第2連結管路32dと管路18とを連通させる。第3切替部33は、管路11と管路14とを連通させ、管路13を閉塞させる。 Furthermore, the vehicle temperature control device 1 configures the motor heat radiation loop P1 in the second circuit C2 by switching the switching units 31 to 33 as follows. That is, the first switching unit 31 allows the pipeline 18 and the pipeline 19 to communicate with each other. The second switching unit 32 allows the conduit 19, the first connecting conduit 32c, and the conduit 11 to communicate with each other, and the conduit 15, the second connecting conduit 32d, and the conduit 18 to communicate with each other. The third switching unit 33 connects the pipeline 11 and the pipeline 14 and closes the pipeline 13 .
 ホットガス暖房モードにおいて、送風部80のエアミックスダンパ86dは、吹出口86b側の流路口を開放させる。これにより、送風部80は、第1空調用熱交換器73によって加熱された空気を車室内に送る。 In the hot gas heating mode, the air mix damper 86d of the air blower 80 opens the flow path port on the blower port 86b side. Thereby, the air blower 80 sends the air heated by the first air-conditioning heat exchanger 73 into the passenger compartment.
 ホットガス暖房モードにおいて、第1ホットガス用ループL1と蓄熱用ループL1aとの共通部分である管路9aには、アキュムレータ71および圧縮機72が配置される。圧縮機72から吐出された第1熱媒体は、管路9dと管路9bとに分岐して流れる。管路9dに流れた第1熱媒体は、第1ホットガス用ループL1を循環しアキュムレータ71に戻る。管路9bに流れた第1熱媒体は、蓄熱用ループL1aを循環しアキュムレータ71に戻る。すなわち、管路9dと管路9bとに分岐して流れた第1熱媒体は、アキュムレータ71の上流側で合流した後に、アキュムレータ71および圧縮機72に吸入される。 In the hot gas heating mode, an accumulator 71 and a compressor 72 are arranged in the pipeline 9a that is a common portion of the first hot gas loop L1 and the heat storage loop L1a. The first heat medium discharged from the compressor 72 branches and flows through the pipeline 9d and the pipeline 9b. The first heat medium that has flowed through the pipeline 9 d circulates through the first hot gas loop L 1 and returns to the accumulator 71 . The first heat medium that has flowed through the pipeline 9 b circulates through the heat storage loop L 1 a and returns to the accumulator 71 . That is, the first heat medium branched and flowed into the pipeline 9 d and the pipeline 9 b is sucked into the accumulator 71 and the compressor 72 after being joined on the upstream side of the accumulator 71 .
 蓄熱用ループL1aにおいて、圧縮機72から吐出された高圧気相の第1熱媒体は、第5の膨張弁65を通過することで減圧されて低圧気相とされ、アキュムレータ71を経て再び圧縮機72に吸入される。 In the heat storage loop L1a, the high-pressure gas-phase first heat medium discharged from the compressor 72 is decompressed by passing through the fifth expansion valve 65 to become a low-pressure gas-phase, and passes through the accumulator 71 to the compressor again. Inhaled at 72.
 蓄熱用ループL1aにおいて、第1熱媒体は、第5の膨張弁65で減圧されるものの放熱を行うことがない。このため、蓄熱用ループL1aを循環する第1熱媒体は、圧縮機72のエネルギを熱として蓄える。すなわち、蓄熱用ループL1aは、圧縮機72から熱を取り出して蓄えるループである。本実施形態によれば、第1熱媒体を蓄熱用ループL1aで循環させることで、第1熱媒体の温度を高めることができる。 In the heat storage loop L1a, although the pressure of the first heat medium is reduced by the fifth expansion valve 65, it does not radiate heat. Therefore, the first heat medium circulating in the heat storage loop L1a stores the energy of the compressor 72 as heat. That is, the heat storage loop L1a is a loop that extracts heat from the compressor 72 and stores the heat. According to this embodiment, the temperature of the first heat medium can be increased by circulating the first heat medium in the heat storage loop L1a.
 第1ホットガス用ループL1において、圧縮機72から吐出された高圧気相の第1熱媒体は、第1空調用熱交換器73を通過する過程で放熱し液化する。高圧液相の第1熱媒体は、第1の膨張弁61を通過することで減圧され、熱交換器7において気化するとともに第2回路C2の第2熱媒体から吸熱する。さらに、低圧気相の第1熱媒体は、完全に開放された第2の膨張弁62とアキュムレータ71とを経て再び圧縮機72吸入される。 In the first hot gas loop L1, the high-pressure vapor-phase first heat medium discharged from the compressor 72 releases heat and liquefies while passing through the first air-conditioning heat exchanger 73. The first heat medium in the high-pressure liquid phase is decompressed by passing through the first expansion valve 61, vaporized in the heat exchanger 7, and absorbs heat from the second heat medium in the second circuit C2. Further, the low-pressure vapor-phase first heat medium is sucked into the compressor 72 again through the completely opened second expansion valve 62 and the accumulator 71 .
 第1ホットガス用ループL1を循環する第1熱媒体は、第1空調用熱交換器73で放熱して液化し、熱交換器7において第2回路C2の第2熱媒体から吸熱して気化する。しかしながら、第2回路C2から十分な吸熱を得ることができない場合に、第1熱媒体の温度が高まらず第1熱媒体の気化が進みにくい。この場合、アキュムレータ71から圧縮機72に、気相の第1熱媒体を十分に供給できなくなる虞がある。 The first heat medium circulating in the first hot gas loop L1 releases heat in the first air conditioning heat exchanger 73 and liquefies, and in the heat exchanger 7 absorbs heat from the second heat medium in the second circuit C2 and evaporates. do. However, when sufficient heat absorption cannot be obtained from the second circuit C2, the temperature of the first heat medium does not rise and vaporization of the first heat medium does not proceed easily. In this case, there is a possibility that the gas-phase first heat medium cannot be sufficiently supplied from the accumulator 71 to the compressor 72 .
 本実施形態によれば、ホットガス暖房モードの車両用温調装置1は、第1ホットガス用ループL1とともに蓄熱用ループL1aにおいて第1熱媒体を循環させる。このため、アキュムレータ71を介して圧縮機72には、第1ホットガス用ループL1と蓄熱用ループL1aとをそれぞれ循環する第1熱媒体が混合して吸入される。このため、アキュムレータ71には、温度が十分に高く気化が進んだ第1熱媒体が流入する。本実施形態の車両用温調装置1によれば、圧縮機72の機能を十分に発揮させ高温高圧の第1熱媒体を第1空調用熱交換器73に供給することで、外気温が極低温の場合でも車室内の暖房を行うことができる。 According to this embodiment, the vehicle temperature control device 1 in the hot gas heating mode circulates the first heat medium in the heat storage loop L1a together with the first hot gas loop L1. Therefore, the first heat medium circulating through the first hot gas loop L1 and the heat storage loop L1a is mixed and sucked into the compressor 72 via the accumulator 71 . Therefore, the first heat medium whose temperature is sufficiently high and whose vaporization has progressed flows into the accumulator 71 . According to the vehicle temperature control device 1 of the present embodiment, the function of the compressor 72 is sufficiently exerted to supply the high-temperature and high-pressure first heat medium to the first air-conditioning heat exchanger 73. The vehicle interior can be heated even at low temperatures.
 本実施形態において、第1ホットガス用ループL1の第1熱媒体は、第1の膨張弁61
の下流側かつアキュムレータ71の上流側で熱交換器7を通過する。熱交換器7は、第1回路C1の第1熱媒体と第2回路C2の第2熱媒体との間で熱交換を行う。すなわち、第1ホットガス用ループL1の第1熱媒体は、熱交換器7において第2熱媒体から熱を受け取る。
In this embodiment, the first heat medium in the first hot gas loop L1 is the first expansion valve 61
downstream of and upstream of the accumulator 71 through the heat exchanger 7 . The heat exchanger 7 exchanges heat between the first heat medium of the first circuit C1 and the second heat medium of the second circuit C2. That is, the first heat medium in the first hot gas loop L1 receives heat from the second heat medium in the heat exchanger 7 .
 本実施形態の車両用温調装置1によれば、第1ホットガス用ループL1において、第1の膨張弁61で減圧された低圧液相の第1熱媒体に、第2回路の第2熱媒体から熱を受け取らせることができる。これにより車両用温調装置1は、第2回路C2の熱を第1回路C1で効率的に利用して、アキュムレータ71に流入する第1熱媒体の気化を進行させることができる。 According to the vehicle temperature control device 1 of the present embodiment, in the first hot gas loop L1, the first heat medium in the low-pressure liquid phase pressure-reduced by the first expansion valve 61 is supplied with the second heat of the second circuit. It can receive heat from a medium. As a result, the vehicle temperature control device 1 can efficiently use the heat of the second circuit C2 in the first circuit C1 to advance the vaporization of the first heat medium flowing into the accumulator 71 .
 本実施形態では、第1ホットガス用ループL1の経路中に、吸熱部としての熱交換器7が配置される場合について説明した。しかしながら、ホットガス暖房モードの第1回路C1は、第1ホットガス用ループL1とともに蓄熱用ループL1aを有していれば、蓄熱用ループL1aにおいて圧縮機72から熱エネルギを受け取ることができるため、第1ホットガス用ループL1が熱交換器7を通過しないループであってもよい。 In the present embodiment, a case has been described in which the heat exchanger 7 as the heat absorbing section is arranged in the path of the first hot gas loop L1. However, if the first circuit C1 in the hot gas heating mode has the heat storage loop L1a together with the first hot gas loop L1, the heat storage loop L1a can receive thermal energy from the compressor 72. The first hot gas loop L1 may be a loop that does not pass through the heat exchanger 7 .
 なお、ホットガス暖房モードでは、第1の膨張弁61および第5の膨張弁65の開度を調整することで、第1ホットガス用ループL1および蓄熱用ループL1aを循環する第1熱媒体の流量の比率を調整できる。したがって、第1の膨張弁61の開度を0にする場合(すなわち、第1の膨張弁61を完全に閉塞する場合)、第1熱媒体は、蓄熱用ループL1aのみを循環する。一方で、第5の膨張弁65の開度を0にする場合(すなわち、第5の膨張弁65を完全に閉塞)、第1熱媒体は、第1ホットガス用ループL1のみを循環する。 In the hot gas heating mode, by adjusting the opening degrees of the first expansion valve 61 and the fifth expansion valve 65, the first heat medium circulating through the first hot gas loop L1 and the heat storage loop L1a is You can adjust the flow ratio. Therefore, when the opening degree of the first expansion valve 61 is set to 0 (that is, when the first expansion valve 61 is completely closed), the first heat medium circulates only through the heat storage loop L1a. On the other hand, when the opening degree of the fifth expansion valve 65 is set to 0 (that is, the fifth expansion valve 65 is completely closed), the first heat medium circulates only through the first hot gas loop L1.
 本実施形態において、アキュムレータ71の上流側の第1熱媒体の温度および圧力が低い場合、蓄熱用ループL1aのみに第1熱媒体を循環させて第1熱媒体の温度および圧力が十分に高まった後に、第1ホットガス用ループL1にも第1熱媒体を流すようにしてもよい。さらに、第1熱媒体の温度および圧力が十分に高まるに従い、第1ホットガス用ループL1を循環させる第1熱媒体の流量を徐々に高め、最終的に、蓄熱用ループL1aでの第1熱媒体の循環を停止させてもよい。 In the present embodiment, when the temperature and pressure of the first heat medium on the upstream side of the accumulator 71 are low, the first heat medium is circulated only through the heat storage loop L1a to sufficiently increase the temperature and pressure of the first heat medium. Later, the first heat medium may also flow through the first hot gas loop L1. Furthermore, as the temperature and pressure of the first heat medium increase sufficiently, the flow rate of the first heat medium circulating through the first hot gas loop L1 is gradually increased, and finally, the first heat in the heat storage loop L1a Circulation of the medium may be stopped.
 第1回路C1の管路9aには、管路9a内の圧力又は温度を測定するセンサSが設けられる。センサSは、温度センサ又は圧力センサである。センサSは、制御部60に接続される。本実施形態のセンサSは、アキュムレータ71の流入口に設けられ、アキュムレータ71に流入する第1熱媒体の圧力又は温度を測定する。なお、アキュムレータ71の通過前後で第1熱媒体の温度および圧力はほとんど変化しない。したがって、センサSは、圧縮機72に流入する第1熱媒体の圧力又は温度を測定すると見做される。なお、センサSは、圧縮機72の吸入口に設けられていてもよい。 The pipeline 9a of the first circuit C1 is provided with a sensor S that measures the pressure or temperature in the pipeline 9a. Sensor S is a temperature sensor or a pressure sensor. The sensor S is connected to the controller 60 . The sensor S of this embodiment is provided at the inlet of the accumulator 71 and measures the pressure or temperature of the first heat medium flowing into the accumulator 71 . Note that the temperature and pressure of the first heat medium hardly change before and after passing through the accumulator 71 . Sensor S is therefore considered to measure the pressure or temperature of the first heat transfer medium entering compressor 72 . Note that the sensor S may be provided at the suction port of the compressor 72 .
 第1回路C1は、制御部60において、センサSの測定結果を基に、第1ホットガス用ループL1と蓄熱用ループL1aとをそれぞれ循環する第1熱媒体の比率を決める。より具体的には、第1回路C1は制御部60で、圧縮機72に流入する第1熱媒体の圧力又は温度が低い場合に、蓄熱用ループL1aを循環する第1熱媒体の比率を高める。これにより、圧縮機72に流入する第1熱媒体の圧力又は温度が低くなりすぎることを抑制して、圧縮機72の機能を十分に発揮させることができる。 In the first circuit C1, the controller 60 determines the ratio of the first heat medium circulating through the first hot gas loop L1 and the heat storage loop L1a based on the measurement result of the sensor S. More specifically, the first circuit C1 is the control unit 60, and when the pressure or temperature of the first heat medium flowing into the compressor 72 is low, the ratio of the first heat medium circulating through the heat storage loop L1a is increased. . As a result, the pressure or temperature of the first heat medium flowing into the compressor 72 can be prevented from becoming too low, and the function of the compressor 72 can be sufficiently exhibited.
 本実施形態によれば、第1回路C1は、第1ホットガス用ループL1および蓄熱用ループL1aに第1熱媒体を同時に循環させるホットガス暖房モードと、暖房用ループLhに第1熱媒体を循環させる通常暖房モードと、の間を切り替え可能である。このため、外気温が著しく低く第1のラジエータ77における外気からの吸熱が難しい場合に、ホットガス暖房モードを選択することで車室内を安定的に暖房できる。 According to the present embodiment, the first circuit C1 has a hot gas heating mode in which the first heat medium is simultaneously circulated through the first hot gas loop L1 and the heat storage loop L1a, and a first heat medium through the heating loop Lh. It is possible to switch between normal heating mode with circulation. Therefore, when the outside air temperature is extremely low and it is difficult for the first radiator 77 to absorb heat from the outside air, the hot gas heating mode can be selected to stably heat the vehicle interior.
 (バッテリ加熱モード)
 図5は、バッテリ加熱モードの車両用温調装置1の概略図である。
 バッテリ加熱モードは、ホットガスの熱を利用して、バッテリ6を加熱するモードである。バッテリ加熱モードの車両用温調装置1において第1熱媒体は、圧縮機72から熱を取り出す。この熱は、熱交換器7において第2熱媒体に移動し、さらに、第2回路C2においてバッテリ6を加熱する。バッテリ加熱モードは、バッテリの温度が低下してバッテリの特性悪化が懸念される場合に選択される。
(battery heating mode)
FIG. 5 is a schematic diagram of the vehicle temperature control device 1 in the battery heating mode.
The battery heating mode is a mode in which the battery 6 is heated using the heat of hot gas. The first heat medium extracts heat from the compressor 72 in the vehicle temperature control device 1 in the battery heating mode. This heat moves to the second heat medium in the heat exchanger 7 and heats the battery 6 in the second circuit C2. The battery heating mode is selected when the temperature of the battery drops and there is concern that the characteristics of the battery will deteriorate.
 バッテリ加熱モードの第1回路C1は、第1熱媒体を同時に循環させる第2ホットガス用ループL2および蓄熱用ループL1aを有する。第2ホットガス用ループL2は、アキュムレータ71、圧縮機72、第1空調用熱交換器73、および熱交換器7、第2の膨張弁62の順で通過して第1熱媒体を循環させる。蓄熱用ループL1aは、アキュムレータ71、圧縮機72、および第5の膨張弁65、の順で通過して第1熱媒体を循環させる。 The first circuit C1 in the battery heating mode has a second hot gas loop L2 and a heat storage loop L1a that simultaneously circulate the first heat medium. The second hot gas loop L2 passes through the accumulator 71, the compressor 72, the first air conditioning heat exchanger 73, the heat exchanger 7, and the second expansion valve 62 in this order to circulate the first heat medium. . The heat storage loop L1a passes through the accumulator 71, the compressor 72, and the fifth expansion valve 65 in this order to circulate the first heat medium.
 第2ホットガス用ループL2は、第1の膨張弁61を迂回させて管路9oに第1の熱媒体を通過させる点、および第2の膨張弁62の開度を調整する点以外は、第1ホットガス用ループL1と同様である。すなわち、バッテリ加熱モードにおいて、第1の膨張弁61は、完全に閉塞され、代わりに開閉バルブ8aが開放される。これにより、第2ホットガス用ループL2の第1熱媒体は、第1の膨張弁61を迂回して管路9oを通過する。また、バッテリ加熱モードにおいて、第2の膨張弁62は、第1の膨張弁61に代わって、通過する第1の熱媒体を減圧し第1の熱媒体の圧力を調整する。 The second hot gas loop L2 bypasses the first expansion valve 61 and allows the first heat medium to pass through the pipeline 9o, and adjusts the opening degree of the second expansion valve 62. It is the same as the first hot gas loop L1. That is, in the battery heating mode, the first expansion valve 61 is completely closed and the on-off valve 8a is opened instead. As a result, the first heat medium in the second hot gas loop L2 bypasses the first expansion valve 61 and passes through the pipeline 9o. In the battery heating mode, the second expansion valve 62 reduces the pressure of the passing first heat medium instead of the first expansion valve 61 to adjust the pressure of the first heat medium.
 バッテリ加熱モードの第2回路C2は、バッテリループP3を有する。バッテリループP3は、バッテリ6、熱交換器7を通過して第2熱媒体を循環させる。バッテリ加熱モードにおいて、熱交換器7は、第1回路C1の第2ホットガス用ループL2を循環する第1熱媒体から熱を受け取り、第2回路C2のバッテリループP3を循環する第2熱媒体を加熱する。これにより、バッテリループP3中のバッテリ6が、加熱される。 The second circuit C2 in battery heating mode has a battery loop P3. The battery loop P3 passes through the battery 6 and the heat exchanger 7 to circulate the second heat medium. In the battery heating mode, the heat exchanger 7 receives heat from the first heat medium circulating through the second hot gas loop L2 of the first circuit C1 and the second heat medium circulating through the battery loop P3 of the second circuit C2. to heat. Thereby, the battery 6 in the battery loop P3 is heated.
 車両用温調装置1は、開閉バルブ8A、および第1~第5の膨張弁61~65を以下のように切り替えることでバッテリ加熱モードとされる。すなわち、バッテリ加熱モードの車両用温調装置1は、開閉バルブ8aを開放し、開閉バルブ8bを開放し、開閉バルブ8cを閉塞する。さらに、バッテリ加熱モードの車両用温調装置1は、第1の膨張弁61を完全に閉塞し、第2の膨張弁62において開度を調整し通過する第1熱媒体を減圧させ、第3の膨張弁63を完全に閉塞し、第4の膨張弁64を完全に閉塞させ、第5の膨張弁65において開度を調整し通過する第1熱媒体を減圧させる。 The vehicle temperature control device 1 is set to the battery heating mode by switching the opening/closing valve 8A and the first to fifth expansion valves 61 to 65 as follows. That is, the vehicle temperature control device 1 in the battery heating mode opens the on-off valve 8a, opens the on-off valve 8b, and closes the on-off valve 8c. Further, the vehicle temperature control device 1 in the battery heating mode completely closes the first expansion valve 61, adjusts the opening degree in the second expansion valve 62, reduces the pressure of the first heat medium passing through, The first expansion valve 63 is completely closed, the fourth expansion valve 64 is completely closed, and the opening of the fifth expansion valve 65 is adjusted to reduce the pressure of the first heat medium passing through.
 さらに、車両用温調装置1は、第1切替部31および第2切替部32を以下のように切り替えることで第2回路C2にバッテリループP3を構成する。すなわち、第1切替部31は、管路18と管路12の一端とを連通させ、管路12の他端と管路19とを連通させる。第2切替部32は、管路19と管路17と管路18を連通させる。 Furthermore, the vehicle temperature control device 1 configures the battery loop P3 in the second circuit C2 by switching the first switching section 31 and the second switching section 32 as follows. That is, the first switching unit 31 allows the conduit 18 and one end of the conduit 12 to communicate, and the other end of the conduit 12 and the conduit 19 to communicate. The second switching unit 32 allows the pipeline 19, the pipeline 17, and the pipeline 18 to communicate with each other.
 また、バッテリ加熱モードにおいて、送風部80のエアミックスダンパ86dは、吹出口86b側の流路口を塞ぐ。これにより、第1空調用熱交換器73における第1熱媒体と空気との熱交換は抑制される。 In addition, in the battery heating mode, the air mix damper 86d of the air blower 80 closes the flow passage port on the blowout port 86b side. This suppresses heat exchange between the first heat medium and the air in the first air-conditioning heat exchanger 73 .
 バッテリ加熱モードにおいて、第2ホットガス用ループL2と蓄熱用ループL1aとの共通部分である管路9aには、アキュムレータ71および圧縮機72が配置される。圧縮機72から吐出された第1熱媒体は、管路9dと管路9bとに分岐して流れる。管路9dに流れた第1熱媒体は、第2ホットガス用ループL2を循環しアキュムレータ71に戻る。管路9bに流れた第1熱媒体は、蓄熱用ループL1aを循環しアキュムレータ71に戻る。すなわち、管路9dと管路9bとに分岐して流れた第1熱媒体は、アキュムレータ71の上流側で合流した後に、アキュムレータ71および圧縮機72に吸入される。 In the battery heating mode, an accumulator 71 and a compressor 72 are arranged in the pipeline 9a that is a common portion of the second hot gas loop L2 and the heat storage loop L1a. The first heat medium discharged from the compressor 72 branches and flows through the pipeline 9d and the pipeline 9b. The first heat medium that has flowed through the pipeline 9 d circulates through the second hot gas loop L 2 and returns to the accumulator 71 . The first heat medium that has flowed through the pipeline 9 b circulates through the heat storage loop L 1 a and returns to the accumulator 71 . That is, the first heat medium branched and flowed into the pipeline 9 d and the pipeline 9 b is sucked into the accumulator 71 and the compressor 72 after being joined on the upstream side of the accumulator 71 .
 蓄熱用ループL1aにおいて、圧縮機72から吐出された高圧気相の第1熱媒体は、第5の膨張弁65を通過することで減圧されて低圧気相とされ、アキュムレータ71を経て再び圧縮機72に吸入される。バッテリ加熱モードの第1回路C1において、蓄熱用ループL1aは、圧縮機72から熱を取り出して蓄え、第1熱媒体の温度を高める。 In the heat storage loop L1a, the high-pressure gas-phase first heat medium discharged from the compressor 72 is decompressed by passing through the fifth expansion valve 65 to become a low-pressure gas-phase, and passes through the accumulator 71 to the compressor again. Inhaled at 72. In the first circuit C1 in the battery heating mode, the heat storage loop L1a extracts and stores heat from the compressor 72 to raise the temperature of the first heat medium.
 第2ホットガス用ループL2において、圧縮機72から吐出された高圧気相の第1熱媒体は、第1空調用熱交換器73を通過する際に熱交換を行わない。バッテリ加熱モードでは、エアミックスダンパ86dの働きにより、第1空調用熱交換器73での熱交換が抑制されるため、第1熱媒体は第1空調用熱交換器73で冷却され難い。したがって、圧縮機72から吐出された第1熱媒体は、第2ホットガス用ループL2において高温を保ったまま第1空調用熱交換器73を通過する。 In the second hot gas loop L2, the high-pressure vapor-phase first heat medium discharged from the compressor 72 does not exchange heat when passing through the first heat exchanger 73 for air conditioning. In the battery heating mode, heat exchange in the first air-conditioning heat exchanger 73 is suppressed by the action of the air mix damper 86d, so the first heat medium is less likely to be cooled in the first air-conditioning heat exchanger 73. Therefore, the first heat medium discharged from the compressor 72 passes through the first air conditioning heat exchanger 73 while maintaining a high temperature in the second hot gas loop L2.
 第2ホットガス用ループL2において、第1熱媒体は第1の膨張弁61を迂回して熱交換器7に達する。このため、第1熱媒体は、第1の膨張弁61において減圧されることがない。また、上述したように、第1熱媒体は、第1空調用熱交換器73で冷却されることがない。したがって、圧縮機から吐出された第1の熱媒体は、高温気相を保ったまま熱交換器7に達する。 In the second hot gas loop L2, the first heat medium bypasses the first expansion valve 61 and reaches the heat exchanger 7. Therefore, the first heat medium is not decompressed by the first expansion valve 61 . Further, as described above, the first heat medium is not cooled by the first air-conditioning heat exchanger 73 . Therefore, the first heat medium discharged from the compressor reaches the heat exchanger 7 while maintaining the high temperature gas phase.
 高圧気相の第1熱媒体は、熱交換器7において吸熱されて温度が下がり一部が液化する。熱交換器7で第1熱媒体から吸収された熱は、第2回路C2の第2熱媒体に移動する。 The first heat medium in the high-pressure gas phase absorbs heat in the heat exchanger 7, the temperature drops, and part of it liquefies. The heat absorbed from the first heat medium in the heat exchanger 7 moves to the second heat medium in the second circuit C2.
 熱交換器7を通過して一部が液化した第1熱媒体は、第2の膨張弁62を通過することで減圧され、液化が進む。さらに、低圧気相の第1熱媒体は、アキュムレータ71を経て再び圧縮機72吸入される。 The first heat medium partially liquefied after passing through the heat exchanger 7 is depressurized by passing through the second expansion valve 62, and liquefaction progresses. Further, the low-pressure vapor-phase first heat medium is sucked into the compressor 72 again through the accumulator 71 .
 第2回路C2において、第2熱媒体は、バッテリ6を通過するバッテリループP3を循
環する。第2熱媒体は、熱交換器7において第1回路C1から受け取った熱をバッテリ6に伝えてバッテリ6を加熱する。
In the second circuit C2, the second heat medium circulates through a battery loop P3 passing through the battery 6. The second heat medium transfers the heat received from the first circuit C1 in the heat exchanger 7 to the battery 6 to heat the battery 6 .
 バッテリ6は、温度が低すぎる場合に性能が低下する場合がある。本実施形態のバッテリ加熱モードによれば、熱交換器7を用いて、第1回路C1の第1熱媒体から第2回路C2のバッテリ6に熱を移動してバッテリを加熱できる。これにより、バッテリ6の性能を安定させることができ、バッテリ6の信頼性を高めることができる。 The performance of the battery 6 may deteriorate when the temperature is too low. According to the battery heating mode of the present embodiment, the heat exchanger 7 can be used to transfer heat from the first heat medium of the first circuit C1 to the battery 6 of the second circuit C2 to heat the battery. Thereby, the performance of the battery 6 can be stabilized, and the reliability of the battery 6 can be improved.
 図11は、本実施形態の効果を説明するための比較形態の第1回路C1Mの概略図である。
 比較形態の第1回路C1Mは、上述の実施形態と比較して、管路9o、および第2の膨張弁62を有していない。
FIG. 11 is a schematic diagram of a first circuit C1M of a comparative form for explaining the effects of this embodiment.
The first circuit C1M of the comparative form does not have the line 9o and the second expansion valve 62 compared to the above-described embodiments.
 比較形態の第1回路C1Mのバッテリ加熱モードの第1熱媒体は、第1の膨張弁61で減圧された後に熱交換器7を通過して第2熱媒体に熱を移動させ、さらに圧縮機72に戻る。これに対し、本実施形態の第1回路C1のバッテリ加熱モードの第1熱媒体は、熱交換器7を通過し第2熱媒体に熱を移動させた後に、第2の膨張弁62で減圧され、さらに圧縮機72に戻る。 The first heat medium in the battery heating mode of the first circuit C1M of the comparative embodiment is decompressed by the first expansion valve 61, passes through the heat exchanger 7, transfers heat to the second heat medium, Go back to 72. On the other hand, the first heat medium in the battery heating mode of the first circuit C1 of the present embodiment passes through the heat exchanger 7 to transfer heat to the second heat medium, and then is decompressed by the second expansion valve 62. and then returns to the compressor 72 .
 図6は、比較形態の第1回路C1M、および実施形態の第1回路C1を、それぞれバッテリ加熱モードで動作させた場合のサイクルを表すモリエル線図である。 FIG. 6 is a Mollier diagram showing cycles when the first circuit C1M of the comparative example and the first circuit C1 of the embodiment are operated in the battery heating mode.
 図6(a)に示す比較形態のバッテリ加熱モードのサイクルにおいて、第1熱媒体は、工程M1、工程M2、工程M3、工程M4、および工程M5をこの順で繰り返す。
 工程M1で、第1熱媒体は、圧縮機72によって圧縮される。
 工程M2で、第1熱媒体は、圧縮機72と第1の膨張弁61との間の管路抵抗に伴う圧力損失により減圧される。
 工程M3で、第1熱媒体は、第1の膨張弁61により減圧される。なお、第1の膨張弁
61は、開度を100%にする場合であっても、構造上、通過する第1熱媒体の減圧は免れない。
 工程M4で、第1熱媒体は、熱交換器7に熱を移動させる。
 工程M5で、第1熱媒体は、熱交換器7と圧縮機72との間の管路抵抗に伴う圧力損失により減圧される。
In the battery heating mode cycle of the comparative embodiment shown in FIG. 6A, the first heat medium repeats step M1, step M2, step M3, step M4, and step M5 in this order.
The first heat medium is compressed by the compressor 72 in step M1.
In step M<b>2 , the pressure of the first heat medium is reduced due to pressure loss caused by line resistance between the compressor 72 and the first expansion valve 61 .
The pressure of the first heat medium is reduced by the first expansion valve 61 in step M3. Note that even when the opening degree of the first expansion valve 61 is set to 100%, the pressure of the first heat medium passing through the first expansion valve 61 cannot be avoided due to its structure.
The first heat medium transfers heat to the heat exchanger 7 in step M4.
In step M5, the pressure of the first heat medium is reduced due to pressure loss due to pipeline resistance between the heat exchanger 7 and the compressor 72 .
 図6(b)に示す本実施形態のバッテリ加熱モードのサイクルにおいて、第1熱媒体は、工程A1、工程A2、工程A3、工程A4、および工程A5をこの順で繰り返す。
 工程A1で、第1熱媒体は、圧縮機72によって圧縮される。
 工程A2で、第1熱媒体は、圧縮機72と熱交換器7との間の管路抵抗に伴う圧力損失
により減圧される。
 工程A3で、第1熱媒体は、熱交換器7に熱を移動させる。
 工程A4で、第1熱媒体は、第2の膨張弁62により減圧される。
 工程A5で、第1熱媒体は、第2の膨張弁62と圧縮機72との間の管路抵抗に伴う圧力損失により減圧される。
In the battery heating mode cycle of this embodiment shown in FIG. 6B, the first heat medium repeats step A1, step A2, step A3, step A4, and step A5 in this order.
The first heat medium is compressed by the compressor 72 in step A1.
In step A<b>2 , the pressure of the first heat medium is reduced due to pressure loss caused by line resistance between the compressor 72 and the heat exchanger 7 .
The first heat medium transfers heat to the heat exchanger 7 in step A3.
The pressure of the first heat medium is reduced by the second expansion valve 62 in step A4.
In step A5, the pressure of the first heat medium is reduced due to the pressure loss caused by the pipeline resistance between the second expansion valve 62 and the compressor 72.
 比較形態のサイクルの第1熱媒体は、工程M4で熱交換器7に熱を移動させる。一方で、実施形態のサイクルの第1熱媒体は、工程A3で熱交換器7に熱を移動させる。工程M4と工程A3とを比較すると、実施形態のサイクルの工程A3の方が、第1熱媒体の圧力が高く、したがって温度も高い。このため、実施形態のサイクルは、比較形態のサイクルよりも、第1熱媒体を高温高圧で熱交換器7に送ることができ、第2熱媒体により多くの熱を与えることができる。 The first heat medium in the cycle of the comparative form transfers heat to the heat exchanger 7 in step M4. On the other hand, the first heat medium of the cycle of the embodiment transfers heat to the heat exchanger 7 in step A3. Comparing process M4 and process A3, the pressure of the first heat medium is higher in process A3 of the cycle of the embodiment, and therefore the temperature is also higher. Therefore, the cycle of the embodiment can send the first heat medium to the heat exchanger 7 at a higher temperature and pressure than the cycle of the comparative form, and can give more heat to the second heat medium.
 本実施形態の第1回路C1によれば、第1膨張弁61を迂回可能な管路9oが設けられるため、バッテリ加熱モードにおいて、第1膨張弁61を迂回させることで、高温高圧の第1熱媒体を熱交換器7に送ることができる。これにより、バッテリ加熱モードにおいて、第2熱媒体を介しバッテリ6を効率的に加熱することができる。 According to the first circuit C1 of the present embodiment, the pipeline 9o that can bypass the first expansion valve 61 is provided. A heat medium can be sent to the heat exchanger 7 . Thereby, in the battery heating mode, the battery 6 can be efficiently heated via the second heat medium.
 また、後段で説明するように、本実施形態の第1回路C1によれば、第1膨張弁61を迂回させた場合に備えて、熱交換器7の下流側かつ圧縮機72の上流側に、第2膨張弁62が設けられる。このため、バッテリ加熱モードなど、第1熱媒体が第1膨張弁61を迂回する場合に、第1熱媒体が第2膨張弁62を通過することで十分に減圧した状態で圧縮機72に吸入させることができる。これにより、圧縮機72の負荷を軽減できる。 Further, as will be described later, according to the first circuit C1 of the present embodiment, in preparation for the case where the first expansion valve 61 is detoured, a , a second expansion valve 62 is provided. Therefore, when the first heat medium bypasses the first expansion valve 61, such as in the battery heating mode, the first heat medium is sufficiently decompressed by passing through the second expansion valve 62 and sucked into the compressor 72. can be made Thereby, the load on the compressor 72 can be reduced.
 (バッテリ冷却モード)
 図7は、バッテリ冷却モードの車両用温調装置1の概略図である。
 バッテリ冷却モードは、バッテリ6を冷却するモードである。バッテリ冷却モードにおいて第1熱媒体は、熱交換器7で第2回路C2からバッテリ6の熱を受け取り、受け取った熱を第1空調用熱交換器73および第1のラジエータ77で空気に放出する。
(battery cooling mode)
FIG. 7 is a schematic diagram of the vehicle temperature control device 1 in the battery cooling mode.
The battery cooling mode is a mode for cooling the battery 6 . In the battery cooling mode, the first heat medium receives the heat of the battery 6 from the second circuit C2 in the heat exchanger 7 and releases the received heat to the air in the first air conditioning heat exchanger 73 and the first radiator 77. .
 バッテリ冷却モードの第1回路C1は、熱受け取り用ループLbcを有する。熱受け取り用ループLbcは、アキュムレータ71、圧縮機72、第1空調用熱交換器73、第3の膨張弁63、第1のラジエータ77、第1の膨張弁61、熱交換器7、および第2の膨張弁62の順で通過して第1熱媒体を循環させる。 The first circuit C1 in battery cooling mode has a heat receiving loop Lbc. The heat receiving loop Lbc includes an accumulator 71, a compressor 72, a first air conditioning heat exchanger 73, a third expansion valve 63, a first radiator 77, a first expansion valve 61, a heat exchanger 7, and a first heat exchanger 73. 2 expansion valves 62 in order to circulate the first heat medium.
 バッテリ冷却モードの第2回路C2は、バッテリループP3を有する。バッテリループP3は、バッテリ6、および熱交換器7を通過して第2熱媒体を循環させる。バッテリ冷却モードにおいて、熱交換器7は、第1回路C1の熱受け取り用ループLbcを循環する第1熱媒体に熱を受け渡し、第2回路C2のバッテリループP3を循環する第2熱媒体を冷却する。これにより、バッテリループP3中のバッテリ6は冷却される。 The second circuit C2 in battery cooling mode has a battery loop P3. The battery loop P3 passes through the battery 6 and the heat exchanger 7 to circulate the second heat medium. In the battery cooling mode, the heat exchanger 7 transfers heat to the first heat medium circulating through the heat receiving loop Lbc of the first circuit C1 and cools the second heat medium circulating through the battery loop P3 of the second circuit C2. do. This cools the battery 6 in the battery loop P3.
 車両用温調装置1は、開閉バルブ8A、および第1~第5の膨張弁61~65を以下のように切り替えることでバッテリ冷却モードとされる。すなわち、バッテリ冷却モードの車両用温調装置1は、開閉バルブ8aを閉塞し、開閉バルブ8bを閉塞し、開閉バルブ8cを閉塞する。さらに、バッテリ冷却モードの車両用温調装置1は、第1の膨張弁61において開度を調整し通過する第1熱媒体を減圧させ、第2の膨張弁62を完全に開放し、第3の膨張弁63を完全に開放し、第4の膨張弁64を完全に閉塞し、第5の膨張弁65を完全に閉塞する。 The vehicle temperature control device 1 is set to the battery cooling mode by switching the on-off valve 8A and the first to fifth expansion valves 61 to 65 as follows. That is, the vehicle temperature control device 1 in the battery cooling mode closes the open/close valve 8a, closes the open/close valve 8b, and closes the open/close valve 8c. Furthermore, the vehicle temperature control device 1 in the battery cooling mode adjusts the degree of opening of the first expansion valve 61 to reduce the pressure of the first heat medium passing therethrough, completely opens the second expansion valve 62, and opens the third expansion valve 62 completely. The first expansion valve 63 is completely opened, the fourth expansion valve 64 is completely closed, and the fifth expansion valve 65 is completely closed.
 さらに、車両用温調装置1は、第1切替部31および第2切替部32を以下のように切り替えることで第2回路C2にバッテリループP3を構成する。すなわち、第1切替部31は、管路18と管路12の一端とを連通させ、管路12の他端と管路19とを連通させる。第2切替部32は、管路19と管路17と管路18を連通させ、管路15と管路16と管路11とを連通させる。 Furthermore, the vehicle temperature control device 1 configures the battery loop P3 in the second circuit C2 by switching the first switching section 31 and the second switching section 32 as follows. That is, the first switching unit 31 allows the conduit 18 and one end of the conduit 12 to communicate, and the other end of the conduit 12 and the conduit 19 to communicate. The second switching unit 32 allows the conduits 19 , 17 and 18 to communicate with each other, and allows the conduits 15 , 16 and 11 to communicate with each other.
 バッテリ冷却モードにおいて圧縮機72を動作させると、圧縮機72から吐出された高圧気相の第1熱媒体は、第1空調用熱交換器73および第1のラジエータ77を通過する過程で放熱し液化する。高圧液相の第1熱媒体は、第1の膨張弁61を通過することで減圧され、さらに熱交換器7において一部が気化するとともに第2回路C2の第2熱媒体から吸熱する。さらに、低圧気相の第1熱媒体は、完全に開放された第2の膨張弁62とアキュムレータ71とを経て再び圧縮機72吸入される。 When the compressor 72 is operated in the battery cooling mode, the high-pressure vapor-phase first heat medium discharged from the compressor 72 radiates heat while passing through the first air-conditioning heat exchanger 73 and the first radiator 77 . liquefy. The first heat medium in the high-pressure liquid phase is decompressed by passing through the first expansion valve 61, is partially vaporized in the heat exchanger 7, and absorbs heat from the second heat medium in the second circuit C2. Further, the low-pressure vapor-phase first heat medium is sucked into the compressor 72 again through the completely opened second expansion valve 62 and the accumulator 71 .
 バッテリ6は、温度が高すぎる場合に性能が低下する場合がある。また、安全性の観点からも、バッテリ6の温度が高くなりすぎないようにバッテリ6を冷却することが求まられている。本実施形態のバッテリ冷却モードによれば、バッテリ6を効率的に冷却することができ、バッテリ6の信頼性を高めることができる。 The performance of the battery 6 may deteriorate when the temperature is too high. Also, from the viewpoint of safety, it is required to cool the battery 6 so that the temperature of the battery 6 does not become too high. According to the battery cooling mode of this embodiment, the battery 6 can be efficiently cooled, and the reliability of the battery 6 can be improved.
 本実施形態によれば、第1~第5の膨張弁61~65、および開閉バルブ8Aを制御して通過する管路9を切り替えることで、熱交換器7による、第1回路C1と第2回路C2との間の熱交換の方向を切り替えることができる。本実施形態によれば、1つの熱交換器7によってバッテリ6の加熱と冷却とを行うことができ、加熱用および冷却用の熱交換器をそれぞれ設ける場合と比較して、車両用温調装置1を安価に構成できる。 According to the present embodiment, by controlling the first to fifth expansion valves 61 to 65 and the opening/closing valve 8A to switch the pipeline 9 passing through, the heat exchanger 7 allows the first circuit C1 and the second The direction of heat exchange with circuit C2 can be switched. According to the present embodiment, the battery 6 can be heated and cooled by one heat exchanger 7, and compared with the case where heat exchangers for heating and cooling are provided, respectively, the temperature control device for the vehicle 1 can be configured at low cost.
 一方で、1つの熱交換器7による熱交換の方向を切り替える構成を採用する場合、回路の循環効率などが低下し、全体として効率の悪いシステムとなる虞がある。本実施形態では、第1熱媒体は、第1回路C1において、圧縮機72、第1の膨張弁61、および熱交換器7の順で通過し、第1回路C1は、第1の膨張弁61を迂回可能な管路(第1迂回路)9oを有する。これにより、第1回路C1は、バッテリ加熱モード(図5)において、第1熱媒体を管路9oに通して第1の膨張弁61を迂回させることで、高温高圧の第1熱媒体を熱交換器7へ流入させることができる。さらに、第1回路C1は、バッテリ冷却モード(図7)において、第1熱媒体を第1の膨張弁61に通し減圧することで、低温低圧の第1熱媒体を熱交換器7へ流入させることができる。すなわち、本実施形態の車両用温調装置1によれば、1つの熱交換器7を用いて、効率的にバッテリ6の加熱および冷却を行うことができる。 On the other hand, when adopting a configuration in which the direction of heat exchange is switched by one heat exchanger 7, the circulation efficiency of the circuit, etc. may decrease, resulting in an inefficient system as a whole. In this embodiment, the first heat medium passes through the compressor 72, the first expansion valve 61, and the heat exchanger 7 in this order in the first circuit C1, and the first circuit C1 is the first expansion valve 61 can be bypassed (first detour) 9o. As a result, in the battery heating mode (FIG. 5), the first circuit C1 passes the first heat medium through the conduit 9o to bypass the first expansion valve 61, thereby heating the high-temperature and high-pressure first heat medium. It can flow into the exchanger 7 . Furthermore, in the battery cooling mode (FIG. 7), the first circuit C1 passes the first heat medium through the first expansion valve 61 to reduce the pressure, thereby allowing the low-temperature, low-pressure first heat medium to flow into the heat exchanger 7. be able to. That is, according to the vehicle temperature control device 1 of the present embodiment, it is possible to efficiently heat and cool the battery 6 using one heat exchanger 7 .
 図5に示すように、本実施形態の第1回路C1では、第1の膨張弁61を迂回する場合に備えて、熱交換器7の下流側に第2の膨張弁62を配置する構成を有する。すなわち、本実施形態の車両用温調装置1は、第1回路C1において、熱交換器7の下流側、かつ圧縮機72の上流側に配置され、第1熱媒体を膨張させる第2の膨張弁62を備える。このため、本実施形態の第1回路C1では、第1の膨張弁61を迂回する場合に、第1の膨張弁61に代わり、第2の膨張弁62によって第1熱媒体を減圧して、アキュムレータ71、および圧縮機72に送ることができる。このため、第1熱媒体が、第1の膨張弁61を通過しない場合(すなわち、管路9oを通過する場合)にも、圧縮機72に吸入される第1熱媒体の圧力が高くなりすぎることを抑制でき、圧縮機72の負荷を低減できる。 As shown in FIG. 5, in the first circuit C1 of the present embodiment, the second expansion valve 62 is arranged downstream of the heat exchanger 7 in preparation for bypassing the first expansion valve 61. have. That is, the vehicle temperature control device 1 of the present embodiment is arranged downstream of the heat exchanger 7 and upstream of the compressor 72 in the first circuit C1, and serves as a second expansion device for expanding the first heat medium. A valve 62 is provided. Therefore, in the first circuit C1 of the present embodiment, when bypassing the first expansion valve 61, the first heat medium is decompressed by the second expansion valve 62 instead of the first expansion valve 61, It can be sent to an accumulator 71 and a compressor 72 . Therefore, even when the first heat medium does not pass through the first expansion valve 61 (that is, when it passes through the pipeline 9o), the pressure of the first heat medium sucked into the compressor 72 becomes too high. can be suppressed, and the load on the compressor 72 can be reduced.
 なお、上述したように、第1の膨張弁61、および第2の膨張弁62の開度、並びに開閉バルブ8aの開閉は、制御部60によって制御される。制御部60は、第1の膨張弁61を閉塞し開閉バルブ8aを開放する場合に、第2の膨張弁62の開度を調整して、圧縮機72に吸入される第1熱媒体の圧力を調整する。制御部60においてこのような制御を行うことで、圧縮機72の負荷を低減できる。 As described above, the control unit 60 controls the degree of opening of the first expansion valve 61 and the second expansion valve 62 and the opening/closing of the opening/closing valve 8a. When closing the first expansion valve 61 and opening the on-off valve 8a, the control unit 60 adjusts the degree of opening of the second expansion valve 62 to adjust the pressure of the first heat medium sucked into the compressor 72. to adjust. By performing such control in the control unit 60, the load on the compressor 72 can be reduced.
 また、図7に示すように、制御部60は、第1熱媒体が第1の膨張弁61を通過する場合(すなわち、開閉バルブ8aを閉塞する場合)に、第2の膨張弁62の開度を全開にする。このような制御を行うことで、圧縮機72に吸入される第1熱媒体の圧力が低くなりすぎることを抑制することができる。圧縮機72に吸入される第1熱媒体の圧力が低くなりすぎると、圧縮機72における第1熱媒体の圧縮量を多くする必要が生じ、圧縮機72から吐出される第1熱媒体の流量が低下する。これにより、熱交換器7を通過する第1熱媒体の流量も低下し、熱交換器7の熱交換効率が低下する虞がある。本実施形態によれば、制御部60がこのような制御を行うことで、第2の膨張弁62における圧力低下を最低限のものとし、全体として高効率な車両用温調装置1を提供できる。 Further, as shown in FIG. 7, the control unit 60 causes the second expansion valve 62 to open when the first heat medium passes through the first expansion valve 61 (that is, when the on-off valve 8a is closed). Fully open. By performing such control, it is possible to prevent the pressure of the first heat medium sucked into the compressor 72 from becoming too low. If the pressure of the first heat medium sucked into the compressor 72 becomes too low, it becomes necessary to increase the compression amount of the first heat medium in the compressor 72, and the flow rate of the first heat medium discharged from the compressor 72 becomes decreases. As a result, the flow rate of the first heat medium passing through the heat exchanger 7 is also reduced, and the heat exchange efficiency of the heat exchanger 7 may be reduced. According to the present embodiment, the control unit 60 performs such control, thereby minimizing the pressure drop in the second expansion valve 62 and providing the vehicle temperature control device 1 with high efficiency as a whole. .
 加えて、制御部60は、バッテリ加熱モード(図5)において、第1熱媒体が第1のラジエータ77で冷却されないために、第1回路C1において第1のラジエータ77を迂回させる。ここで、管路9gは、第1管路において第1のラジエータ77を迂回させる迂回路として機能する。すなわち、第1回路C1は、第1のラジエータ77を迂回可能な管路9gを有する。制御部60は、第1熱媒体が第1の膨張弁61を迂回し管路9oを通過する場合に、第1のラジエータ77を迂回し管路9gに第1熱媒体を通過させる。これにより、バッテリ加熱モードの第1回路C1は、第1熱媒体の温度を維持したまま熱交換器7に第1熱媒体を供給できる。 In addition, the control unit 60 bypasses the first radiator 77 in the first circuit C1 because the first heat medium is not cooled by the first radiator 77 in the battery heating mode (FIG. 5). Here, the pipeline 9g functions as a detour that bypasses the first radiator 77 in the first pipeline. That is, the first circuit C1 has a conduit 9g that can bypass the first radiator 77. As shown in FIG. When the first heat medium bypasses the first expansion valve 61 and passes through the pipeline 9o, the controller 60 causes the first heat medium to bypass the first radiator 77 and pass through the pipeline 9g. Thereby, the first circuit C1 in the battery heating mode can supply the first heat medium to the heat exchanger 7 while maintaining the temperature of the first heat medium.
 さらに、制御部60は、バッテリ冷却モード(図7)において、第1熱媒体を第1のラジエータ77で冷却した後に第1の膨張弁61および熱交換器7を通過させる。制御部60は、第1熱媒体が第1の膨張弁61を通過する場合に、第1のラジエータ77に第1熱媒体を通過させる。これにより、バッテリ冷却モードの第1回路C1は、第1熱媒体を第1のラジエータ77で冷却し、低温の第1熱媒体を熱交換器7に供給できる。 Furthermore, in the battery cooling mode ( FIG. 7 ), the control unit 60 cools the first heat medium with the first radiator 77 and then passes it through the first expansion valve 61 and the heat exchanger 7 . The control unit 60 allows the first heat medium to pass through the first radiator 77 when the first heat medium passes through the first expansion valve 61 . Thereby, the first circuit C<b>1 in the battery cooling mode can cool the first heat medium with the first radiator 77 and supply the low-temperature first heat medium to the heat exchanger 7 .
 (変形例1)
 図8は、本実施形態に採用可能な変形例1の第1回路C1bの概略図である。ここでは、上述の実施形態と同一態様の構成要素について、同一符号を付し、その説明を省略する。
 本変形例の第1回路C1bは、上述の実施形態と比較して、管路9lに膨張弁(第2の
膨張弁62に相当)を設けない点が異なる。
 なお、図8には、バッテリ加熱モードに対応するループ(第2ホットガス用ループL2、および蓄熱用ループL1a)を図示するが、第1回路C1bは他のモードのループを構成することもできる。
(Modification 1)
FIG. 8 is a schematic diagram of a first circuit C1b of Modification 1 that can be employed in this embodiment. Here, the same reference numerals are assigned to the same components as in the above-described embodiment, and the description thereof will be omitted.
The first circuit C1b of this modified example differs from the above-described embodiment in that an expansion valve (corresponding to the second expansion valve 62) is not provided in the pipeline 9l.
Although FIG. 8 shows loops corresponding to the battery heating mode (the second hot gas loop L2 and the heat storage loop L1a), the first circuit C1b can also configure loops for other modes. .
 図5に示すように、上述の実施形態の第1回路C1では、第1の膨張弁61を迂回する場合に、第1の膨張弁61に代わり、第2の膨張弁62によって第1熱媒体を減圧する。これにより、圧縮機72に吸入される第1熱媒体の圧力を低減し圧縮機72の保護を図っていた。しかしながら、熱交換器7から圧縮機72までの管路9が十分に長い場合や、複雑に屈曲する場合などの熱交換器7から圧縮機72までの間の管路9の圧力損失が大きい場合には、第1回路C1は必ずしも第2の膨張弁62を必要としない。 As shown in FIG. 5, in the first circuit C1 of the above-described embodiment, when bypassing the first expansion valve 61, the first expansion valve 62 is used instead of the first expansion valve 61 to heat the first heat medium. is decompressed. As a result, the pressure of the first heat medium sucked into the compressor 72 is reduced to protect the compressor 72 . However, when the pipeline 9 from the heat exchanger 7 to the compressor 72 is sufficiently long, or when the pressure loss in the pipeline 9 between the heat exchanger 7 and the compressor 72 is large, such as when it is bent in a complicated manner. , the first circuit C1 does not necessarily require the second expansion valve 62.
 図8に示すように、本変形例の第1回路C1bは、熱交換器7から圧縮機72までの間の管路9に膨張弁が設けられていない。これにより、第1回路C1bを簡素化することができ、第1回路C1bを安価に構成できる。 As shown in FIG. 8, in the first circuit C1b of this modified example, no expansion valve is provided in the pipeline 9 between the heat exchanger 7 and the compressor 72. Thereby, the first circuit C1b can be simplified, and the first circuit C1b can be configured at low cost.
 なお、本変形例の第1回路C1bのバッテリ加熱モードのサイクルは、図6(b)から工程A4を除いたサイクルとなる。熱交換器7から圧縮機72までの間の管路9の圧力損失が大きい場合には工程A5での減圧が十分に大きくなり、工程A4を行うことなくバッテリ加熱モードのサイクルを回すことができる。 It should be noted that the cycle of the battery heating mode of the first circuit C1b of this modified example is the cycle excluding step A4 from FIG. 6(b). When the pressure loss in the pipeline 9 between the heat exchanger 7 and the compressor 72 is large, the pressure reduction in step A5 is sufficiently large, and the battery heating mode cycle can be performed without step A4. .
 また、図7に示すように、実施形態の第1回路C1のバッテリ冷却モードにおいて、第1熱媒体は第1の膨張弁61と第2の膨張弁62とを共に通過する。第2の膨張弁62は、開度が全開にされるが、通過する第1熱媒体の若干の減圧は免れない。バッテリ冷却モードにおける第2の膨張弁62における減圧は、第1回路C1の効率を悪化させてしまう。 Also, as shown in FIG. 7, the first heat medium passes through both the first expansion valve 61 and the second expansion valve 62 in the battery cooling mode of the first circuit C1 of the embodiment. Although the opening degree of the second expansion valve 62 is fully opened, the passing first heat medium is inevitably slightly decompressed. The pressure reduction in the second expansion valve 62 in the battery cooling mode deteriorates the efficiency of the first circuit C1.
 これに対し、図8に示す本変形例の第1回路C1bでは、第2の膨張弁62に相当する膨張弁を有さないために、バッテリ冷却モードにおいて第1熱媒体を不要に減圧することがなく、効率的な第1回路C1bを構成できる。 On the other hand, in the first circuit C1b of this modified example shown in FIG. 8, since the expansion valve corresponding to the second expansion valve 62 is not provided, the first heat medium is unnecessarily decompressed in the battery cooling mode. Therefore, an efficient first circuit C1b can be configured.
 (変形例2)
 図9は、本実施形態に採用可能な変形例2の第1回路C1cの概略図である。ここでは、上述の実施形態と同一態様の構成要素について、同一符号を付し、その説明を省略する。
 本変形例の第1回路C1cは、上述の実施形態と比較して、管路9lに第2の膨張弁6
2を迂回可能な管路(第2迂回路)9pを有する点が異なる。
 なお、図9には、バッテリ加熱モードに対応するループ(熱受け取り用ループLbc)を図示するが、第1回路C1cは他のモードのループを構成することもできる。
(Modification 2)
FIG. 9 is a schematic diagram of a first circuit C1c of Modification 2 that can be employed in this embodiment. Here, the same reference numerals are assigned to the same components as in the above-described embodiment, and the description thereof will be omitted.
The first circuit C1c of this modified example has the second expansion valve 6 in the pipeline 9l as compared with the above-described embodiment.
2 in that it has a pipeline (second detour) 9p.
Although FIG. 9 shows a loop (heat receiving loop Lbc) corresponding to the battery heating mode, the first circuit C1c can also configure loops for other modes.
 管路9pの一端は、第2の膨張弁62の上流側で管路9lに接続される。また、管路9pの他端は、第2の膨張弁62の下流側で管路9lに接続される。すなわち、管路9pは、管路9lから分岐して、第2の膨張弁62を迂回し、再び管路9lに合流する迂回路である。管路9lは、開閉バルブ8dを通過する。本変形例によれば、第1回路C1cが第2の膨張弁62を迂回する管路9pを有するため、必要に応じて第2の膨張弁62を迂回させたループを構成することができ、第1熱媒体の不要な減圧を抑制し効率的な第1回路C1cを構成できる。 One end of the pipeline 9p is connected to the pipeline 9l on the upstream side of the second expansion valve 62. The other end of the pipeline 9p is connected to the pipeline 9l on the downstream side of the second expansion valve 62 . That is, the pipeline 9p is a detour that branches off from the pipeline 9l, bypasses the second expansion valve 62, and joins the pipeline 9l again. The conduit 9l passes through the on-off valve 8d. According to this modification, since the first circuit C1c has the pipeline 9p that bypasses the second expansion valve 62, a loop that bypasses the second expansion valve 62 can be configured as necessary. An efficient first circuit C1c can be configured by suppressing unnecessary pressure reduction of the first heat medium.
 本変形例において、制御部60は、第1熱媒体が第1の膨張弁61を通過する場合(すなわち、開閉バルブ8aを閉塞する場合)に、第2の膨張弁62を迂回させて管路9pに第1熱媒体を通過させる。このような、制御を行うことで、圧縮機72に吸入される第1熱媒体の圧力が低くなりすぎることを抑制することができる。圧縮機72に吸入される第1熱媒体の圧力が低くなりすぎると、圧縮機72における第1熱媒体の圧縮量を多くする必要が生じ、圧縮機72から吐出される第1熱媒体の流量が低下する。これにより、熱交換器7を通過する第1熱媒体の流量も低下し、熱交換器7の熱交換効率が低下する虞がある。本変形例によれば、制御部60がこのような制御を行うことで、第2の膨張弁62における圧力低下を抑制し、全体として高効率な車両用温調装置1を提供できる。 In this modification, when the first heat medium passes through the first expansion valve 61 (that is, when the opening/closing valve 8a is closed), the control unit 60 bypasses the second expansion valve 62 to The first heat medium is passed through 9p. By performing such control, it is possible to prevent the pressure of the first heat medium sucked into the compressor 72 from becoming too low. If the pressure of the first heat medium sucked into the compressor 72 becomes too low, it becomes necessary to increase the compression amount of the first heat medium in the compressor 72, and the flow rate of the first heat medium discharged from the compressor 72 becomes decreases. As a result, the flow rate of the first heat medium passing through the heat exchanger 7 is also reduced, and the heat exchange efficiency of the heat exchanger 7 may be reduced. According to this modification, the control unit 60 performs such control, thereby suppressing pressure drop in the second expansion valve 62 and providing the vehicle temperature control device 1 with high efficiency as a whole.
 なお、本変形例の第1回路C1cは、ホットガス暖房モード(図4参照)に切り替えられた場合においても、第2の膨張弁62を迂回させたループを構成することが好ましい。これにより、バッテリ冷却モードと同様に、圧縮機72に吸入される第1熱媒体の圧力が低くなりすぎることを抑制し、高効率なサイクルを実現できる。 It should be noted that the first circuit C1c of this modification preferably constitutes a loop that bypasses the second expansion valve 62 even when switched to the hot gas heating mode (see FIG. 4). As a result, similarly to the battery cooling mode, the pressure of the first heat medium sucked into the compressor 72 can be prevented from becoming too low, and a highly efficient cycle can be realized.
 さらに、制御部60は、第1の膨張弁61を閉塞し開閉バルブ8aを開放することで第1熱媒体が第1の膨張弁61を迂回して管路9oを通過する場合に、開閉バルブ8dを閉塞して第2の膨張弁62に第1熱媒体を通過させる。制御部60は、第2の膨張弁62の開度を調整して、圧縮機72に吸入される第1熱媒体の圧力を調整する。制御部60においてこのような制御を行うことで、圧縮機72の負荷を低減できる。 Furthermore, the control unit 60 closes the first expansion valve 61 and opens the opening/closing valve 8a so that the first heat medium bypasses the first expansion valve 61 and passes through the pipeline 9o. 8 d is closed to allow the first heat medium to pass through the second expansion valve 62 . The control unit 60 adjusts the opening degree of the second expansion valve 62 to adjust the pressure of the first heat medium sucked into the compressor 72 . By performing such control in the control unit 60, the load on the compressor 72 can be reduced.
 図10は、実施形態および変形例2の第1回路C1、C1cをバッテリ冷却モードで動
作させた場合のサイクルを表すモリエル線図である。変形例の第1回路C1cは、実施形態の第1回路C1と比較して、バッテリ冷却モードで第2の膨張弁62を迂回する。このため、図6において実施形態と変形例2を比較することで、第2の膨張弁62の有無がサイクルに与える影響を確認できる。
FIG. 10 is a Mollier diagram showing a cycle when the first circuits C1 and C1c of the embodiment and modification 2 are operated in the battery cooling mode. The modified first circuit C1c bypasses the second expansion valve 62 in battery cooling mode compared to the first circuit C1 of the embodiment. Therefore, by comparing the embodiment and Modification 2 in FIG. 6, the influence of the presence or absence of the second expansion valve 62 on the cycle can be confirmed.
 図10(a)に示す実施形態のバッテリ冷却モードのサイクルにおいて、第1熱媒体は、工程a1、工程a2、工程a3、工程a4、工程a5、および工程a6をこの順で繰り返す。
 工程a1で、第1熱媒体は、圧縮機72によって圧縮される。
 工程a2で、第1熱媒体は、第1のラジエータ77によって冷却される。
 工程a3で、第1熱媒体は、第1の膨張弁61により減圧される。
 工程a4で、第1熱媒体は、熱交換器7から吸熱する。
 工程a5で、第1熱媒体は、第2の膨張弁62により減圧される。なお、第2の膨張弁62は、開度を100%にする場合であっても構造上、通過する第1熱媒体の減圧は免れない。
 工程a6で、第1熱媒体は、熱交換器7と圧縮機72との間の管路抵抗に伴う圧力損失により減圧される。
In the battery cooling mode cycle of the embodiment shown in FIG. 10(a), the first heat medium repeats step a1, step a2, step a3, step a4, step a5, and step a6 in this order.
The first heat medium is compressed by the compressor 72 in step a1.
The first heat medium is cooled by the first radiator 77 in step a2.
In step a3, the pressure of the first heat medium is reduced by the first expansion valve 61. FIG.
The first heat medium absorbs heat from the heat exchanger 7 in step a4.
At step a5, the pressure of the first heat medium is reduced by the second expansion valve 62. FIG. Even if the second expansion valve 62 is opened at 100%, the pressure of the first heat medium passing through the second expansion valve 62 cannot be avoided due to its structure.
In step a6, the pressure of the first heat medium is reduced due to the pressure loss caused by the pipeline resistance between the heat exchanger 7 and the compressor 72.
 図10(b)に示す変形例2のバッテリ冷却モードのサイクルにおいて、第1熱媒体は、工程c1、工程c2、工程c3、工程c4、および工程c5をこの順で繰り返す。
 工程c1で、第1熱媒体は、圧縮機72によって圧縮される。
 工程c2で、第1熱媒体は、第1のラジエータ77によって冷却される。
 工程c3で、第1熱媒体は、第1の膨張弁61により減圧される。
 工程c4で、第1熱媒体は、熱交換器7から吸熱する。
 工程c5で、第1熱媒体は、熱交換器7と圧縮機72との間の管路抵抗に伴う圧力損失により減圧される。
In the battery cooling mode cycle of Modification 2 shown in FIG. 10B, the first heat medium repeats Step c1, Step c2, Step c3, Step c4, and Step c5 in this order.
The first heat medium is compressed by the compressor 72 in step c1.
The first heat medium is cooled by the first radiator 77 in step c2.
At step c3, the pressure of the first heat medium is reduced by the first expansion valve 61. As shown in FIG.
The first heat medium absorbs heat from the heat exchanger 7 in step c4.
In step c5, the pressure of the first heat medium is reduced due to pressure loss caused by line resistance between the heat exchanger 7 and the compressor 72 .
 変形例2のサイクルは、実施形態のサイクルと比較して、第2の膨張弁62の通過に伴う減圧(工程a5)が発生しない。このため、圧縮機72に吸入される第1熱媒体の圧力が低くなりすぎることを抑制でき、全体として高効率な第1回路C1cを構成できる。 Compared to the cycle of the embodiment, the cycle of modification 2 does not cause pressure reduction (step a5) associated with passing through the second expansion valve 62 . Therefore, it is possible to prevent the pressure of the first heat medium sucked into the compressor 72 from becoming too low, and the first circuit C1c having high efficiency as a whole can be configured.
 なお、ここでは、変形例2の第1回路C1cについて説明したが、変形例1の第1回路C1bも第2の膨張弁62を有していないので、バッテリ冷却モードにおいて変形例2と同様の効率的なサイクルで第1熱媒体を循環させることができる。 Although the first circuit C1c of Modification 2 has been described here, since the first circuit C1b of Modification 1 also does not have the second expansion valve 62, the same circuit as in Modification 2 is used in the battery cooling mode. The first heat medium can be circulated in an efficient cycle.
 以上に、本発明の実施形態およびその変形例を説明したが、実施形態および変形例おける各構成およびそれらの組み合わせなどは一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換およびその他の変更が可能である。また、本発明は実施形態によって限定されることはない。 The embodiments of the present invention and their modifications have been described above, but each configuration and combination thereof in the embodiments and modifications are examples, and additions of configurations, Omissions, substitutions and other changes are possible. Moreover, the present invention is not limited by the embodiments.
 1…車両用温調装置、6…バッテリ、7…熱交換器、9g…管路(第3迂回路)、9o…管路(第1迂回路)、9p…管路(第2迂回路)、60…制御部、61…第1の膨張弁、62…第2の膨張弁、72…圧縮機、77…第1のラジエータ(ラジエータ)、C1,C1b,C1c,C1M…第1回路、C2…第2回路

 
DESCRIPTION OF SYMBOLS 1... Temperature control apparatus for vehicles, 6... Battery, 7... Heat exchanger, 9g... Pipe (third detour), 9o... Pipe (first detour), 9p... Pipe (second detour) , 60... control unit, 61... first expansion valve, 62... second expansion valve, 72... compressor, 77... first radiator (radiator), C1, C1b, C1c, C1M... first circuit, C2 …Second circuit

Claims (5)

  1.  第1熱媒体が流れる第1回路と、
     第2熱媒体が流れる第2回路と、
     前記第1回路に配置され前記第1熱媒体を圧縮する圧縮機と、
     前記第1回路に配置され前記第1熱媒体を膨張させる第1の膨張弁と、
     前記第2回路に配置されるバッテリと、
     前記第1回路および前記第2回路に配置され前記第1熱媒体と前記第2熱媒体との間で熱交換を行う熱交換器と、を備え、
     前記第1熱媒体は、前記第1回路において、前記圧縮機、前記第1の膨張弁、および前記熱交換器の順で通過し、
     前記第1回路は、前記第1の膨張弁を迂回可能な第1迂回路を有する、
    車両用温調装置。
    a first circuit through which the first heat medium flows;
    a second circuit through which the second heat medium flows;
    a compressor arranged in the first circuit for compressing the first heat medium;
    a first expansion valve arranged in the first circuit and configured to expand the first heat medium;
    a battery arranged in the second circuit;
    a heat exchanger arranged in the first circuit and the second circuit for exchanging heat between the first heat medium and the second heat medium,
    the first heat medium passes through the compressor, the first expansion valve, and the heat exchanger in that order in the first circuit;
    The first circuit has a first detour that can bypass the first expansion valve,
    Vehicle temperature controller.
  2.  前記第1回路において、前記熱交換器の下流側、かつ前記圧縮機の上流側に配置され、
    前記第1熱媒体を膨張させる第2の膨張弁を備える、
    請求項1に記載の車両用温調装置。
    arranged downstream of the heat exchanger and upstream of the compressor in the first circuit;
    comprising a second expansion valve that expands the first heat medium,
    The vehicle temperature control device according to claim 1 .
  3.  前記第1回路を制御する制御部を備え、
     前記制御部は、前記第1熱媒体が前記第1の膨張弁を通過する場合に、前記第2の膨張弁の開度を全開にする、
    請求項2に記載の車両用温調装置。
    A control unit that controls the first circuit,
    The control unit fully opens the opening of the second expansion valve when the first heat medium passes through the first expansion valve.
    The vehicle temperature control device according to claim 2 .
  4.  前記第1回路を制御する制御部を備え、
     前記第1回路は、前記第2の膨張弁を迂回可能な第2迂回路を有し、
     前記制御部は、
      前記第1熱媒体が前記第1の膨張弁を通過する場合に、前記第2迂回路に前記第1熱媒体を通過させ、
      前記第1熱媒体が前記第1迂回路を通過する場合に、前記第2の膨張弁に前記第1熱媒体を通過させる、
    請求項2に記載の車両用温調装置。
    A control unit that controls the first circuit,
    The first circuit has a second detour that can bypass the second expansion valve,
    The control unit
    allowing the first heat medium to pass through the second detour when the first heat medium passes through the first expansion valve;
    allowing the first heat medium to pass through the second expansion valve when the first heat medium passes through the first detour;
    The vehicle temperature control device according to claim 2 .
  5.  前記第1回路を制御する制御部と、
     前記第1熱媒体の熱を外気に放出するラジエータと、を備え、
     前記第1回路は、前記ラジエータを迂回可能な第3迂回路を有し、
     前記制御部は、
      前記第1熱媒体が前記第1迂回路を通過する場合に、前記第3迂回路に前記第1熱媒体を通過させる、
    請求項1~4の何れか一項に記載の車両用温調装置。

     
    a control unit that controls the first circuit;
    a radiator that releases the heat of the first heat medium to the outside,
    The first circuit has a third detour that can bypass the radiator,
    The control unit
    allowing the first heat medium to pass through the third detour when the first heat medium passes through the first detour;
    The vehicle temperature control device according to any one of claims 1 to 4.

PCT/JP2022/023535 2021-09-30 2022-06-10 Temperature adjustment device for vehicle WO2023053587A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-160437 2021-09-30
JP2021160437 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023053587A1 true WO2023053587A1 (en) 2023-04-06

Family

ID=85780545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023535 WO2023053587A1 (en) 2021-09-30 2022-06-10 Temperature adjustment device for vehicle

Country Status (1)

Country Link
WO (1) WO2023053587A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017056A (en) * 2010-07-09 2012-01-26 Nippon Soken Inc Temperature adjustment system for vehicle
JP2017229223A (en) * 2016-06-20 2017-12-28 現代自動車株式会社Hyundai Motor Company Vehicular heat pump system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017056A (en) * 2010-07-09 2012-01-26 Nippon Soken Inc Temperature adjustment system for vehicle
JP2017229223A (en) * 2016-06-20 2017-12-28 現代自動車株式会社Hyundai Motor Company Vehicular heat pump system

Similar Documents

Publication Publication Date Title
JP6596774B2 (en) Vehicle with electric motor
JP7185469B2 (en) vehicle thermal management system
KR101846924B1 (en) Heat pump system for vehicle
JP5860361B2 (en) Thermal management system for electric vehicles
JP5440426B2 (en) Temperature control system for vehicles
JP5755490B2 (en) Cooling system
WO2022201568A1 (en) Temperature adjustment device for vehicle
WO2015136768A1 (en) In-vehicle temperature adjusting device, vehicle air-conditioning device, and battery temperature adjsuting device
JP6304578B2 (en) Air conditioner for vehicles
JP6108322B2 (en) Air conditioner for vehicles
JP2013217631A (en) Refrigeration cycle device
WO2017163594A1 (en) Air conditioner for vehicle
KR20120024273A (en) Heat pump system for vehicle
CN115023359A (en) System for air-conditioning the air of a passenger compartment and for heat transfer through components of a drive train of a motor vehicle and method for operating the system
JP2018111339A (en) Air conditioner for electrically driven vehicle
KR20180114388A (en) Air conditioner for vehicle
WO2023053587A1 (en) Temperature adjustment device for vehicle
WO2021049339A1 (en) Heat exchange module
JP2018122653A (en) Air conditioner for electrically-driven vehicle
JP2023098078A (en) Vehicular temperature regulator and control method of vehicular temperature regulator
JP2023098107A (en) Vehicular temperature regulator and control method for vehicular temperature regulator
WO2021261320A1 (en) Vehicle cooling device
WO2022107384A1 (en) Temperature regulating device
WO2024075715A1 (en) Vehicle temperature control system
WO2024009577A1 (en) System for adjusting temperature of battery, and vehicular system for managing heat

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875466

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE