WO2023053183A1 - Operation method for inhalation device, program, and inhalation device - Google Patents

Operation method for inhalation device, program, and inhalation device Download PDF

Info

Publication number
WO2023053183A1
WO2023053183A1 PCT/JP2021/035595 JP2021035595W WO2023053183A1 WO 2023053183 A1 WO2023053183 A1 WO 2023053183A1 JP 2021035595 W JP2021035595 W JP 2021035595W WO 2023053183 A1 WO2023053183 A1 WO 2023053183A1
Authority
WO
WIPO (PCT)
Prior art keywords
puff
time
interval
value
puffing
Prior art date
Application number
PCT/JP2021/035595
Other languages
French (fr)
Japanese (ja)
Inventor
泰弘 小野
秀二郎 田中
稔 北原
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to JP2023550771A priority Critical patent/JPWO2023053183A1/ja
Priority to CN202180102872.7A priority patent/CN118159160A/en
Priority to PCT/JP2021/035595 priority patent/WO2023053183A1/en
Publication of WO2023053183A1 publication Critical patent/WO2023053183A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/53Monitoring, e.g. fault detection

Definitions

  • the present disclosure relates to a method of operating a suction device, a program, and a suction device.
  • Suction devices that generate substances that are sucked by users are widespread.
  • suction devices are electronic cigarettes and nebulizers.
  • Such a suction device uses a base material containing an aerosol source for generating an aerosol, a flavor source for imparting a flavor component to the generated aerosol, etc., and produces an aerosol imparted with a flavor component. Generate. A user can enjoy the flavor by inhaling the flavor component-applied aerosol generated by the suction device.
  • the aspiration device supplies power to the heater to raise the temperature of the heater, thereby controlling the heating operation so as to atomize the source of the inhalation component.
  • a method of grasping the consumption of the attraction component source or determining the depletion of the attraction component source by using various data such as the temperature of the heater, the amount of power supply, and the electrical resistance acquired in connection with such a heating operation are known.
  • the present disclosure has been made in view of the above, and the purpose thereof is to further improve the quality of the experience using a suction device (hereinafter sometimes referred to as “suction experience”). It is to provide a possible mechanism. For this reason, one of the objects of the present disclosure is to provide a mechanism capable of appropriately grasping the state of consumption of the suction component source in the suction device in use, while taking into consideration the tendency of the suction operation by the user.
  • an appropriate cumulative detection time can be estimated, and the accuracy of estimating the remaining level of the flavor source and/or the aerosol source can be improved.
  • the measurement of the time interval resumes from the puff interval value obtained for the second puff operation. may be adjusted. This makes it possible to estimate a more appropriate cumulative detection time, and further improve the accuracy of estimating the remaining level of the flavor source and/or the aerosol source.
  • the first time may be 0.5 seconds. This makes it possible to efficiently estimate the remaining capacity level.
  • the step of estimating the residual level of the attractive component source may include determining that the attractive component source is depleted if the cumulative sensing time reaches a second predetermined time. This makes it possible to realize appropriate life detection.
  • the method may include a step of notifying the suction device of the shortage of the remaining amount in response to the determination that the suction component source has the insufficient amount of the remaining amount. This makes it possible to realize a suitable lifespan notification.
  • the time correction model may be defined to include maintaining the corrected detection time at the third time when the value of the detection time is a predetermined third time. This makes it possible to generate a more appropriate time correction model and further improve the accuracy of estimating the remaining level of the inhaled component source.
  • the time correction model may be defined to include decreasing the detection time if the value of the detection time is less than the third time. This makes it possible to generate a more appropriate time correction model and further improve the accuracy of estimating the remaining level of the inhaled component source.
  • the third time may be 2.4 seconds. This makes it possible to generate a more appropriate time correction model and further improve the accuracy of estimating the remaining level of the inhaled component source.
  • the time correction model adds an adjustment time calculated based on the puffing interval to the measured sensing time value when the puffing interval value is less than a fourth time.
  • a fourth time may be defined to include increasing the specified detection time. This makes it possible to generate a more appropriate time correction model and further improve the accuracy of estimating the remaining level of the inhaled component source.
  • a step of initializing a puff interval value for the second puff operation to the fourth time may be included when the second puff operation is the first puff operation. This makes it possible to apply the appropriate time correction model more effectively.
  • the fourth time may be 10 seconds. This makes it possible to generate a more appropriate time correction model and further improve the accuracy of estimating the remaining level of the inhaled component source.
  • a suction device includes a sensor for detecting a series of puffing actions by a user and a control unit for operating the suction device, in order to acquire the value of the puff action interval regarding the first puffing action detected by the sensor. and measuring the time interval between the first puffing action and the immediately preceding second puffing action to obtain the value of the puffing period during which the first puffing action lasts.
  • a controller for estimating a remaining level of an inhalant component source based on the cumulative sensed time, wherein the puff interval value for the first puff operation is the puff obtained for the second puff operation; It is obtained by adjusting the time interval measurement according to the value of the operating period.
  • suction device it is possible to estimate an appropriate cumulative detection time and improve the accuracy of estimating the remaining level of the flavor source and/or the aerosol source. In addition, it is possible to realize appropriate remaining amount grasping and notification.
  • a mechanism is provided that can further improve the quality of the experience using the suction device.
  • FIG. 10 is a schematic block diagram of the structure of a suction device. It is a schematic block diagram of the structure of a suction device. 10 is a schematic graph showing an example of the relationship between the number of puffs and the puff operation period; 1 is a schematic graph showing an example of atomization characteristics 1 of an aerosol source; 2 is a schematic graph showing an example of atomization characteristics 2 of an aerosol source; 1a is a schematic graph showing an example of atomization characteristics 1a of an aerosol source; 1 is a schematic graph showing an example of a time correction model 1A ID corresponding to atomization characteristics 1a; It is the schematic graph which showed the example of the time correction model 1A based on the atomization characteristic 1a.
  • 2a is a schematic graph showing an example of atomization characteristics 2a of an aerosol source; It is the schematic graph which showed the example of the time correction model 2A corresponding to the atomization characteristic 2a.
  • 4 is a schematic graph showing an example of a time correction model MD based on atomization characteristics 1a, 2a;
  • 1 is a schematic block diagram of an example of a configuration of a suction device according to an embodiment;
  • FIG. 1 is a schematic flow diagram of an example of a method of operating a suction device according to an embodiment;
  • FIG. 10 is a schematic flow diagram of an example of a process of estimating a remaining amount level based on accumulation of puff operation detection time;
  • FIG. 10 is a schematic flow diagram relating to an example of processing for correcting the detection time of the puff action;
  • FIG. 10 is a schematic flow diagram of an example of processing for initial setting of puff interval values;
  • FIG. 4 is a schematic conceptual diagram showing an example of a series of detected puff motions;
  • FIG. 11 is a schematic flow diagram of an example of timer adjustment processing according to a modification;
  • FIG. 11 is a schematic graph showing an example of a time correction model MD' according to a modification;
  • FIG. 11 is a schematic flow diagram of an example of a process for correcting the detection time of a puff action according to a modification;
  • embodiments of the present disclosure include, but are not limited to electronic cigarettes and nebulizers.
  • Embodiments of the present disclosure may include various inhalation devices for generating an aerosol or flavored aerosol for inhalation by a user.
  • the inhalant component produced can also include non-visible vapors other than aerosols.
  • the sucking action by the user will be referred to as “puffing action” or simply “puffing”
  • one or both of the aerosol source and flavor source will be referred to as "sucking component source”.
  • FIG. 1A is a schematic block diagram of the configuration of a suction device 100A according to each embodiment of the present disclosure.
  • FIG. 1A schematically and conceptually shows each component included in the suction device 100A, and does not show the exact arrangement, shape, size, positional relationship, etc. of each component and the suction device 100A.
  • the suction device 100A includes a first member 102 and a second member 104.
  • first member 102 may be a power supply unit and may include controller 106 , notification 108 , battery 110 , sensor 112 and memory 114 .
  • the second member 104 may be a cartridge and may include a reservoir 116 , an atomizing portion 118 , an air intake channel 120 , an aerosol channel 121 and a mouthpiece 122 .
  • first member 102 may be contained within the second member 104 .
  • Some of the components contained within second member 104 may be contained within first member 102 .
  • the second member 104 may be configured to be detachable from the first member 102 .
  • all components contained within first member 102 and second member 104 may be contained within the same housing instead of first member 102 and second member 104 .
  • a power supply unit which is the first member 102 , includes a notification section 108 , a battery 110 , a sensor 112 and a memory 114 and is electrically connected to the control section 106 .
  • the notification unit 108 may include a light-emitting element such as an LED, a display, a speaker, a vibrator, and the like.
  • the notification unit 108 preferably notifies the user in various manners by light emission, display, vocalization, vibration, etc., or a combination thereof, as necessary.
  • the remaining level and/or replacement time of the suction component source contained in the reservoir 116 of the second member 104 can be communicated in various manners.
  • the battery 110 supplies power to each component of the suction device 100A such as the notification unit 108, the sensor 112, the memory 114, and the atomization unit 118.
  • battery 110 powers atomizer 118 to atomize the aerosol source in response to the user's puff action.
  • the battery 110 can be connected to an external power supply (for example, a USB (Universal Serial Bus) connectable charger) via a predetermined port (not shown) provided in the first member 102 .
  • an external power supply for example, a USB (Universal Serial Bus) connectable charger
  • the battery 110 may be removed from the power supply unit 102 or the suction device 100A, or may be replaced with a new battery 110. It may also be possible to replace the battery 110 with a new battery 110 by replacing the entire power supply unit with a new power supply unit.
  • the sensor 112 is composed of various sensors.
  • sensor 112 may include a suction sensor, such as a microphone condenser, to accurately detect puffing by the user.
  • Sensor 112 may also include a pressure sensor that detects pressure fluctuations in air intake channel 120 and/or aerosol channel 121 or a flow sensor that detects flow rate.
  • Sensors 112 may include weight sensors that sense the weight of components such as reservoir 116 .
  • the sensor 112 may also be configured to detect the height of the liquid level within the reservoir 116 .
  • the sensor 112 may also be configured to detect the state of charge (SOC) of the battery 110, the discharge state of the battery 110, the current integration value, the voltage, and the like.
  • the current integrated value may be obtained by a current integration method, an SOC-OCV (Open Circuit Voltage) method, or the like.
  • Sensor 112 may also include a temperature sensor that measures the temperature of controller 106 .
  • the sensor 112 may also be an operation button or the like that can be operated by the user.
  • the control unit 106 may be an electronic circuit module configured as a microprocessor or microcomputer. Controller 106 may be configured to control the operation of suction device 100A according to computer-executable instructions stored in memory 114 . Also, the control unit 106 may be configured to have a timer and timer-measure (that is, count) a desired period based on a clock. In one example, the controller 106 may timer-measure the action period during which the puff action is detected by the suction sensor and the action interval between consecutive puff actions.
  • the control unit 106 reads data from the memory 114 as necessary, uses it for controlling the suction device 100A, and stores the data in the memory 114 as necessary. In addition, the control unit 106 reads data from the memory 114 as necessary, uses it for controlling the suction device 100A, and stores the data in the memory 114 as necessary.
  • the memory 114 is a storage medium such as ROM (Read Only Memory), RAM (Random Access Memory), and flash memory.
  • the memory 114 may store setting data and the like necessary for controlling the suction device 100A and/or the power supply unit 102, and may be used mainly by the control unit 106. good.
  • the memory 114 stores various information such as the control method of the notification unit 108 (modes such as light emission, vocalization, vibration, etc.), values detected by the sensor 112, information on the attached cartridge, heating history of the atomization unit 118, and the like. data may be stored.
  • the reservoir 116 holds an aerosol source, which is the source of the inhaled component.
  • the reservoir 116 is made of a fibrous or porous material, and holds the aerosol source as a liquid in the interstices between the fibers or the pores of the porous material.
  • the fibrous or porous material for example, cotton, glass fiber, tobacco raw material, or the like can be used.
  • Reservoir 116 may be configured as a tank that contains liquid. Aerosol sources are, for example, polyhydric alcohols such as glycerin and propylene glycol, liquids such as water.
  • the aerosol source may also contain a drug for patient inhalation.
  • the aerosol source may include tobacco materials or extracts derived from tobacco materials that release flavor and taste components upon heating.
  • Reservoir 116 may have a configuration that allows it to be replenished with a spent aerosol source. Alternatively, reservoir 116 may be configured such that reservoir 116 itself can be replaced when the aerosol source is exhausted.
  • the aerosol source is not limited to liquids and may be solids. If the aerosol source is solid, the reservoir 116 may be, for example, a hollow container without fibrous or porous materials.
  • the atomization unit 118 is configured to generate an aerosol from an aerosol source. More specifically, atomizer 118 generates aerosol by atomizing or vaporizing an aerosol source. When the inhaler 100A is a medical inhaler such as a nebulizer, the atomization unit 118 generates an aerosol by atomizing or vaporizing an aerosol source containing a medicine.
  • the atomization unit 118 receives power from the battery 110 and heats the aerosol source to generate aerosol.
  • a wick (not shown) may be provided to connect reservoir 116 and atomization section 118 .
  • a portion of the wick leads into the interior of reservoir 116 and contacts the aerosol source.
  • Another part of the wick extends to the atomization section 118 .
  • the aerosol source is transported from reservoir 116 to atomization section 118 by the capillary effect of the wick.
  • atomization unit 118 includes a heater electrically connected to battery 110 .
  • a heater is placed in contact with or in close proximity to the wick.
  • controller 106 controls the heater of atomizer 118 to heat the aerosol source carried through the wick, thereby atomizing the aerosol source.
  • Another example of the atomizer 118 may be an ultrasonic atomizer that atomizes the aerosol source through ultrasonic vibrations.
  • An air intake channel 120 is connected to the atomizing section 118, and the air intake channel 120 leads to the outside of the suction device 100A.
  • the aerosol generated in atomizing section 118 is mixed with air taken in through air intake channel 120 .
  • the aerosol/air mixture is delivered to aerosol channel 121 as indicated by arrow 124 .
  • the aerosol flow path 121 has a tubular structure for transporting the mixed fluid of the aerosol and air generated in the atomizing section 118 to the mouthpiece section 122 .
  • the suction port 122 is positioned at the end of the aerosol channel 121 and configured to open the aerosol channel 121 to the outside of the suction device 100A. The user takes in the air containing the aerosol into the oral cavity by holding the mouthpiece 122 and sucking.
  • FIG. 1B is a schematic block diagram of the configuration of a suction device 100B according to each embodiment of the present disclosure.
  • the suction device 100B includes a third member 126 in addition to the configuration of the suction device 100A of FIG. 1A.
  • Third member 126 may be a capsule and may contain flavor source 128 .
  • the flavor source 128 may include flavor components contained in tobacco.
  • aerosol channel 121 extends through second member 104 and third member 126 .
  • the mouthpiece 122 is provided on a third member 126 .
  • the flavor source 128 is a component for imparting flavor to the aerosol. Flavor source 128 is arranged in the middle of aerosol channel 121 . A mixed fluid of aerosol and air generated by the atomizing section 118 (hereinafter the mixed fluid may be simply referred to as an aerosol) flows through the aerosol flow path 121 to the mouthpiece section 122 . Thus, the flavor source 128 is located downstream of the atomizer 118 with respect to the aerosol flow. In other words, the flavor source 128 is positioned closer to the mouthpiece 122 in the aerosol flow path 121 than the atomization section 118 is.
  • the aerosol generated by the atomization section 118 reaches the mouthpiece section 122 after passing through the flavor source 128 .
  • the flavor and taste components contained in the flavor source 128 are imparted to the aerosol.
  • the flavor source 128 may be derived from tobacco, such as shredded tobacco or a processed product obtained by molding tobacco raw materials into granules, sheets, or powder.
  • the flavor source 128 may also be non-tobacco-derived, made from plants other than tobacco (for example, mint, herbs, etc.).
  • flavor source 128 includes a nicotine component.
  • Flavor source 128 may contain a perfume ingredient such as menthol.
  • the reservoir 116 may also contain substances containing flavoring components.
  • the inhalation device 100B may be configured to hold a tobacco-derived flavorant in the flavor source 128 and a non-tobacco-derived flavorant in the reservoir 116 .
  • the user can take air containing flavored aerosol into the oral cavity by holding the mouthpiece 122 and sucking.
  • suction device 100 The operations of the suction devices 100A and 100B (hereinafter sometimes collectively referred to as “suction device 100”) according to the embodiment of the present disclosure are controlled by the control unit 106 in various ways. A method of operating a suction device and a suction device according to embodiments of the present disclosure are described in detail below.
  • the remaining level (or consumption level) of the encapsulated aerosol source and/or flavor source 128 may be appropriately tracked. At that time, it is preferable to grasp the remaining amount level (or the consumption level) more appropriately by considering the tendency and characteristics of the user's puffing operation. Furthermore, when it is determined that the remaining amount has run out, it is preferable to prompt the user to replace the cartridge and/or capsule. As an example for appropriately grasping the remaining amount level, the control unit 106 preferably uses the accumulated time required for the user to perform the puffing action, based on whether the accumulated time reaches a predetermined threshold. is.
  • controller 106 will detect when the cumulative time of puffing reaches a predetermined upper limit after the cartridge is installed (memory reset to 0 seconds). , may determine that the aerosol source has been exhausted.
  • the predetermined upper limit is, for example, 1,000 seconds.
  • the flavor source held in the capsule is also removed when the cumulative time of the puff operation reaches a predetermined upper limit after the capsule is attached (the memory is reset to 0 seconds). may be determined to have been exhausted.
  • the predetermined upper limit is, for example, 100 seconds. Then, when it is determined that the aerosol source and/or flavor source has been exhausted, the user may be notified to replace the cartridge and/or capsule holding them.
  • the amount of cartridges and/or capsules consumed is substantially proportional to the cumulative value of the puffing period while the suction device 100 stably accepts puffing actions in accordance with a series of puffing actions by the user. is based on Given this, the consumption of the aerosol source and/or the flavor source can be defined as a parameter of cumulative time, making it easier to measure.
  • FIG. 2 is a schematic graph showing an example of the relationship between the number of puffs, the puffing period, and the cumulative puffing period regarding the consumption of the flavor source held in the capsule.
  • the horizontal axis indicates the number of puffs (times) after attaching a new capsule.
  • the left vertical axis indicates the puff action period (seconds) per puff action, and the right vertical axis indicates the accumulated puff action period (seconds).
  • the bar graph shows the puff duration (seconds) measured for each puff count
  • the line graph shows the cumulative puff duration (seconds).
  • the duration of one puff operation is approximately in the range of 0.3 seconds to 2.4 seconds, and 65 puff operations are required until the cumulative puff operation duration (seconds) reaches 100 seconds. are doing.
  • the predetermined upper limit threshold for the cumulative time of puffing is set to 100 seconds for the capsule, it may be determined that the flavor source has been exhausted in response to the 65th puffing.
  • the consumption level is calculated based on the value of the accumulated puff operation period. For example, if the value of the cumulative puff action period up to the 32nd puff action is 50 seconds, the consumption level should be estimated to be 50% (50 seconds/100 seconds ⁇ 100).
  • the upper limit threshold value of the cumulative time of the puff action being 100 seconds means that the total amount of aerosol that has passed through the flavor source after the aerosol source has been atomized by the cumulative puff action of 100 seconds is equal to the flavor source. is sufficient to reach the end of life.
  • that the flavor source reaches the end of its life means that the aerosol source is consumed and the atomized aerosol cannot be imparted with sufficient flavor.
  • FIGS. 3 and 4 are schematic graphs showing the aerosol source atomization characteristics with respect to a user's puffing action using the inhalation device 100.
  • the graph shown in FIG. 3 relates to the atomization phenomenon of the inhaler 100 using the sample flavor source, and shows an example of the relationship between the puff operation period per puff operation and the amount of atomization.
  • the horizontal axis indicates the puff operation period (seconds) per puff operation. Specifically, the puff operation period is a period from the start of the puff operation to the end of the puff operation.
  • the vertical axis indicates the amount of atomization per puff action, that is, the consumption of the aerosol source (mg/puff action).
  • the atomization amount is the amount obtained by subtracting the weight of the aerosol source at the end of the puff action from the weight of the aerosol source at the start of the puff action.
  • the puff operation period on the horizontal axis detects the start and end of the puff operation with the suction sensor, and measures the continuous period from the start of the puff operation to the end of the puff operation with a timer.
  • Data can be obtained by
  • the atomization amount on the vertical axis can be obtained by measuring the weight of the aerosol source at the start of the puff operation and at the end of the puff operation, for example, by a weight sensor, and calculating the difference.
  • FIG. 3 13 sample points measured in the atomization phenomenon are plotted. Also shown are the actual atomization curve (solid line) and the theoretical atomization straight line (dashed line) based on these 13 sample points.
  • a theoretical atomization line is created by connecting the origin and the sample point furthest from the origin (2.4 seconds with the longest puff action period). This is based on the idea that the atomization amount increases in proportion to the suction time in the puffing operation.
  • the actual atomization curve is not proportional to the puff action period and the actual amount of atomization.
  • the actual amount of atomization is less than the theoretical amount of atomization. More specifically, the difference between the two increases with time (difference 1) until the puff action period is about 1 second, and then decreases with time (difference 2). This is because, in the atomization phenomenon of the suction device 100, a certain rising time is required from the start of heating of the heater at the start of the puff operation until the temperature reaches a suitable temperature for atomization. It depends.
  • the graph shown in FIG. 4 illustrates the atomization phenomenon of the inhalation device 100 using the sample flavor source, the actuation interval between two consecutive puffs, and the mist atomized through two consecutive puffs.
  • 4 shows an example of the relationship with quantification.
  • the horizontal axis indicates the puff interval (seconds) between two consecutive puffs.
  • the puff operation interval is a period from the end of the first puff operation to the start of the second puff operation.
  • the vertical axis indicates the atomized amount of the aerosol source atomized through two consecutive puffs, ie consumption (mg/2 puffs).
  • the atomization amount of the aerosol source is the amount obtained by subtracting the weight of the aerosol source at the end of the second puff operation from the weight of the aerosol source at the start of the first puff operation.
  • the puff operation interval is the time between the start of the puff operation and the end of the puff operation detected by the suction sensor, and the interval from the end of the first puff operation to the start of the second puff operation.
  • Data can be obtained by measuring time with a timer.
  • the atomization amount can be obtained by measuring the weight of the aerosol source at the start of the first puff operation and the weight of the aerosol source at the end of the second puff operation, for example, by a weight sensor, and calculating the difference. can be done.
  • the atomization amount is greater than in the stable state where the puff operation interval is 10 seconds or longer.
  • Atomization characteristic 1 is specified based on the relationship between the sample operation period of the puff operation and the atomization amount (Fig. 3).
  • the actual atomization of the aerosol source is less than the theoretical atomization.
  • the puffing period is less than about 1 second, the difference between the theoretical value and the measured value increases as the puffing period increases.
  • the puffing period is about 1 second or longer, the difference between the theoretical value and the measured value decreases as the puffing period increases.
  • the actual puff operation period value is applied to the estimation of the remaining amount level as it is, an atomization amount larger than the actual amount may be estimated, so the puff operation period value is corrected somewhat smaller. should be used to estimate the residual level of the aerosol source.
  • the actual atomization amount of the aerosol source is smaller than the theoretical atomization amount. That is, for inhalation device 100B in which cartridge 104 and capsule 126 are separate elements, the actual amount of aerosol that passes through the flavor source held in capsule 126 is less than the theoretical amount of aerosol. That is, by adopting a configuration in which the remaining amount of the flavor source is estimated by correcting the value of the puff operation period to a small value, the accuracy of estimating the remaining amount of the aerosol source and the remaining amount of the flavor source can be further improved. .
  • Atomization characteristic 2 is specified based on the relationship between the sample operation interval between two consecutive puff operations and the atomization amount of the aerosol source (Fig. 4).
  • the puff operation interval is about 10 seconds or less
  • a negative correlation occurs between the puff operation interval and the atomization amount of the aerosol source. do. That is, when the puff operation interval is 10 seconds or less, if the actual puff operation period value is applied as it is to estimate the remaining amount level, an atomization amount smaller than the actual amount may be estimated. That is, the value of the puff duration should be corrected somewhat higher to estimate the remaining level of the aerosol source.
  • the puff operation interval is 10 seconds or less (or less than 10 seconds)
  • the actual puff operation period value is directly applied to the estimation of the remaining amount level
  • the atomization amount will be smaller than the actual amount. It can also be estimated. That is, in the case where the cartridge 104 and the capsule 126 of the inhaler 100B are separate elements, the amount of aerosol passing through the flavor source held in the capsule 126 may be underestimated. Therefore, by correcting the value of the puff operation period to some extent and adopting a configuration for estimating the remaining level of the flavor source, it is possible to further improve the accuracy of estimating the remaining amount of the aerosol source and the remaining amount of the flavor source. can.
  • the suction device 100 Based on the atomization characteristics 1 and 2 of the aerosol source in the puff action, the suction device 100 according to the present embodiment dynamically corrects the detection time, which is the duration of the detected puff action. through which the fuel level is accurately estimated. In other words, it is possible to estimate a more accurate puffing duration or a cumulative puffing duration compared to the detection time of the puffing that is actually detected, and to achieve an estimation of the appropriate remaining level of the flavor source and/or the aerosol source. do. This makes it possible to realize appropriate consumption level estimation, replacement determination, and notification of cartridges and/or capsules.
  • Time correction model defined based on atomization characteristics Referring to FIGS. 5 to 9, time correction for correcting the detection time of the detected puff action according to the atomization characteristics 1a and 2a of the aerosol source. A method of generating each of the models 1A, 2A, and MD will be described.
  • the atomization characteristics 1a and 2a of the aerosol source are defined with further considerations for the atomization characteristics 1 and 2 described above.
  • 5 and 7 are schematic diagrams for explaining the atomization characteristics 1a and 2a of the aerosol source, respectively.
  • FIGS. 6A and 6B are schematic diagrams for explaining the time correction models 1A ID and 1A based on the atomization characteristics 1a of the aerosol source, respectively.
  • FIG. 8 is a schematic diagram for explaining the time correction model 2A based on the atomization characteristics 2a of the aerosol source.
  • FIG. 9 is a schematic diagram for explaining the time correction model MD based on the atomization characteristics 1a and 2a of the aerosol source.
  • FIG. 1 is a graph showing the atomization line with a polygonal line, and constitutes the atomization characteristic 1a.
  • the value of the atomized amount at the sample point is obtained by measuring the atomized amount of the aerosol source a plurality of times during each predetermined puff operation period by experiment, and calculating the average of the values.
  • the actual atomization amount of the aerosol source is smaller than the theoretical atomization amount.
  • the atomization amount may be estimated larger than the actual amount, resulting in a large amount of aerosol compared to the estimate.
  • the maximum value of the puff operation period is also set to 2.4 seconds. 2.4 seconds is the most efficient consumption of the aerosol source in the suction device.
  • this value is only an example, and it is preferable to set an ideal value that maximizes the consumption efficiency of the aerosol source according to the device characteristics and/or design of the suction device.
  • FIG. 6A shows an example of a time correction model 1A ID based on the atomization properties 1a of an aerosol source.
  • the time correction model 1A ID corresponds to the experimental atomization characteristic 1a shown in FIG. 5, ie it is an ideal time correction model.
  • the horizontal axis (x-axis) indicates the puff operation period (seconds)
  • the vertical axis (y-axis) indicates the corrected puff operation period (seconds) with respect to the puff operation period.
  • the post-correction puff operation period is set at 2.4 seconds, which is the ideal value for the highest consumption efficiency of the aerosol source, according to the atomization characteristic 1a in FIG. It is better to decide according to the relative atomization ratio.
  • the atomization amount when the puff operation period is 2.4 seconds is A 2.4 mg
  • the atomization amount when the puff operation period is 1.2 seconds is A 1.2 mg.
  • the corrected puff operation period (y) is calculated by 2.4 ⁇ A 1.2 /A 2.4 It's good.
  • FIG. 6B shows an example of the time correction model 1A based on the atomization characteristics 1a.
  • the time correction model 1A is theoretically defined by a formula while FIG. 6A is the ideal time correction model 1A ID .
  • the horizontal axis (x-axis) indicates the puff operation period (seconds)
  • the vertical axis (y-axis) indicates the corrected puff operation period (seconds) with respect to the puff operation period.
  • the time correction model 1A in FIG. 6B is a model based on the puff action period.
  • the value of the corrected puffing period (y) is maintained at 2.4 seconds in the range of 0 ⁇ x ⁇ 2.4.
  • a function is defined that correlates with the time correction model 1A ID of 6A.
  • the value of the puff operation period (x) is corrected so that the value of the post-correction puff operation period (y) is decreased. That is, the value of the puff operation period (x) can be appropriately corrected so as to approach the ideal time correction model 1A ID (broken line).
  • the constant T10 is preferably set to a value less than 1.0.
  • Device characteristics herein may include, but are not limited to, cartridge characteristics, heater heating characteristics, loss characteristics due to attachment of the aerosol source within the mouthpiece and/or capsule.
  • FIG. 7 is similar to the aerosol source atomization profile 2 shown in FIG. is a graph showing an actual atomization line using a polygonal line, which constitutes an atomization characteristic 2a.
  • the atomization value at a sample point was experimentally determined by measuring the atomization of the aerosol source at each 2 second puffing interval. The puffing interval is measured by a sensor and a timer. In FIG. 7, the puff operation period is fixed at 2.4 seconds and measured.
  • the atomization amount of the aerosol source with respect to the puff operation interval is largely due to device characteristics, and individual differences are large. Therefore, in the example of FIG. 7, the values measured using three individuals (individuals 1 to 3) are individually plotted. Again, according to the atomization characteristic 2 of the aerosol source (FIG. 4), the reference value for the puff interval between two consecutive puffs is 10 seconds. Ten seconds is the value at which the amount of atomization of the aerosol source consumed is stable for the puffing interval.
  • suitable values determined experimentally should be set according to the device characteristics and/or settings of the suction apparatus.
  • FIG. 8 shows an example of a time correction model 2A based on the atomization characteristics 2a of the aerosol source in FIG.
  • the horizontal axis (v-axis) represents the puff interval (seconds) between two consecutive puff operations
  • the vertical axis (w-axis) represents the corrected differential puff operation period (seconds) relative to the puff operation period. is shown.
  • FIG. 8 shows only two data groups of individuals 1 and 2 shown in the atomization characteristic 2a of FIG. 7 (dotted line and broken line), and the data group of individual 3 is omitted.
  • a time correction model 2A is defined for the data group of each individual (solid line).
  • the post-correction differential puff action period (seconds) of each individual is set to a predetermined puff action as shown in FIG. It may be determined according to the relative atomization rate for each interval. For example, in the atomization characteristic 2a of the individual 2 in FIG. 7, the atomization amount when the puff operation period is 10 seconds is B 10 mg, and the atomization amount when the puff operation period is 2 seconds is B 2 mg. and In this case, in FIG. 8, the post-correction differential puff operation period with respect to the puff operation interval of 2 seconds is preferably calculated by 10 ⁇ (B 10 ⁇ B 2 )/B 10 . Note that if the value of the puff operation interval is greater than 10 seconds, the post-correction differential puff operation period is preferably set to zero.
  • the time correction model 2A of FIG. 8 is for calculating the post-correction difference puff operation period calculated based on the puff operation interval as the adjustment time based on the value of the puff operation interval between two consecutive puff operations. is. More specifically, the time correction model 2A based on the atomization characteristic 2a divides the vw plane (first quadrant) of FIG. It is better to define it as a linear function to classify.
  • the slope p ( ⁇ 0) is a constant determined in advance by an arbitrary method based on a data group of a plurality of individuals, and set in the memory 114 .
  • the time correction model 2A By applying the time correction model 2A based on the atomization characteristic 2a in this way, it is possible to determine the adjustment time, which is the post-correction differential puff operation period (w), for the value of the puff operation interval (v).
  • the time correction model MD By combining the time correction model 2A with the time correction model 1A described above, the time correction model MD based on the atomization characteristics 1a and 2a, which will be described below, is defined.
  • FIG. 9 shows an example of a time correction model MD based on such atomization characteristics 1a and 2a.
  • the time correction model MD is defined by combining the time correction model 2A with the time correction model 1A described above. That is, the time correction model MD is defined by adding the corrected differential puff action period in the time correction model 2A to the value of the corrected puff action period (y) in the time correction model 1A.
  • the horizontal axis (x-axis) indicates the puff operation period (seconds)
  • the vertical axis (y-axis) indicates the corrected puff operation period (seconds) with respect to the puff operation period.
  • the value of the puff operation period (x) is 2.4 seconds
  • the value of the corrected differential puff operation period (w) calculated based on the puff operation interval (v) according to the time correction model 2A is added to the puffing period of 2.4 seconds as adjustment time b.
  • the function of the time correction model 2A for calculating the value of the post-correction puff operation period (y) is defined.
  • the puffing interval (v) is denoted by t int .
  • p and T 10 are preset constants, so ultimately the function C 30 (x,t int ) of the time correction model MD is a function of puff duration x and puff interval t int can be expressed as
  • the corrected puffing period y can be calculated from the puffing period x, the puffing interval tint , and the constants p and T10 . can. That is, in response to the sensor 212 detecting the puffing action of the suction device 100 by the user, the detection time, which is the puffing action period during which the detected puffing action continues, is measured. Measure the time interval between movements to obtain the puff movement interval. By substituting these values for the puffing period x and the puffing interval t int in Equation 5, the corrected puffing period can be obtained.
  • the constants p and T10 are preferably set appropriately at the time of design, for example, according to the device characteristics and/or design of the suction device 100 .
  • the control unit 206 cooperates with the sensor 212 and the memory 214 to control various operations related to estimation of the remaining level of the flavor source and/or the aerosol source.
  • Examples of functional blocks of the control unit 206 include a puff detection time measurement unit 206a, a puff operation interval measurement unit 206b, a detection time correction unit 206c, a detection time accumulation unit 206d, an attraction component source remaining amount level estimation unit 206e, and a notification instruction unit. 206f.
  • Examples of functional blocks of sensor 212 include puff detector 212a and output 212b.
  • Examples of information stored in memory 214 include time information such as cartridge maximum consumption time information 214a, capsule maximum consumption time information 214b, time correction model information 214c, and cumulative detection time information 214d.
  • the puff detection time measurement unit 206a measures the detection time (period) of the puff action detected by the puff detection unit 212a. Specifically, the puff detection time measurement unit 206a may continuously measure the period from the start of the puff operation detected by the puff detection unit 212a to the end thereof using a timer. Based on the measured sensing time, a value for the puffing duration is obtained. Especially in this embodiment, the detection time is further corrected.
  • the puff operation interval measurement unit 206b measures the time interval between two consecutive puff operations. Specifically, the puff operation interval measurement unit 206b measures the interval from the end of the first puff operation out of two consecutive puff operations detected by the puff detection unit 212a to the start of the second puff operation. The time between is continuously measured by a timer. A puffing interval is obtained based on the measured time interval.
  • the detection time correction unit 206c corrects the detection time of the puff action according to the time correction model MD defined based on the atomization characteristics 1a and 2a of the aerosol source in the puff action.
  • the time correction model MD is associated with the puff interval and the puff duration.
  • the detection time accumulator 206d accumulates the corrected puff operation detection time to calculate the cumulative detection time.
  • the suction component source remaining amount level estimation unit 206e estimates the remaining amount level of the flavor source and/or the aerosol source based on the accumulated detection time. Further, when the cumulative detection time reaches a predetermined threshold time, it is determined that the remaining amount of the flavor source and/or the aerosol source is insufficient.
  • the notification instruction unit 206f instructs the notification unit 108 to perform a notification operation according to the estimation result of the remaining amount level of the flavor source and/or the aerosol source. In particular, when the attraction component source remaining amount level estimating unit 206e determines that the remaining amount is insufficient, the notifying unit 108 is notified of the remaining amount shortage accordingly.
  • the puff detection unit 212a also detects a series of puffing and/or non-puffing actions by the user, for example, using a suction sensor such as a microphone condenser. Also, the output unit 212 b outputs various information detected by the sensor 212 to the control unit 206 or stores the information in the memory 214 .
  • cartridge maximum consumption time information 214a is time information (eg, 1,000 seconds) corresponding to the maximum consumption of the aerosol source and/or flavor source held in reservoir 116 of the cartridge. be.
  • the maximum capsule consumption time information 214b is time information (for example, 100 seconds) corresponding to the maximum consumption of the flavor source 128 held in the capsule of the suction device 100B. These may be preset, for example during the design of the cartridge and capsule. Also, in the flavor source 128 held in the capsule, it is preferable to set a different value for each type.
  • the time correction model information 214c includes information on the aforementioned aerosol source atomization characteristics 1a, 2a and information on the time correction model MD based on the aerosol source atomization characteristics 1a, 2a.
  • the time correction model information 214c includes the function C 30 (x,t int ) of the time correction model 2A shown in Equation 5 above, and the constants p and T 10 used in the calculation.
  • the cumulative detection time information 214d is information on the cumulative detection time accumulated by the detection time accumulation unit 206d, and is updated each time the user performs a puff action.
  • each value of the puff action period measured in a series of puff actions and the interval between two successive puff actions may be associated with each puff action and stored sequentially.
  • FIGS. 11 to 14 are examples of processing flows in which the control unit 206 controls the operation of the suction device 100 according to this embodiment.
  • FIG. 11 is an example of an overall processing flow regarding control operations by the control unit 206 .
  • FIG. 12 is an example of a processing flow relating to remaining amount level estimation processing based on accumulation of puffing detection time, among the processing flows shown in FIG. 11 .
  • FIG. 13 is an example of a processing flow regarding correction processing of the detection time of the puff motion among the processing flows shown in FIG. 12 .
  • FIG. 14 is an example of a processing flow regarding initial setting processing of the value of the puff operation interval.
  • each processing step shown here is merely an example, and without being limited to this, arbitrary other processing steps may be included, or some processing steps may be omitted. Also, the order of each processing step shown here is merely an example, and is not limited to this, and may be in any order, or may be executed in parallel in some cases.
  • the suction device 100 When the processing flow of FIG. 11 is started, the suction device 100 is powered on, and the user uses the suction device 100 to perform a series of puffing operations. Alternatively, the suction device 100 wakes up from the sleep state, and the user uses the suction device 100 to perform a series of puffing operations.
  • the puff operation interval measurement unit 206b starts measuring the time until the user performs the "first" puff operation. Note that the “first time” puffing operation means the first puffing operation after the power of the suction device 100 is turned on or after the suction device 100 recovers from the sleep state.
  • step S11 the control unit 206 causes the puff detection unit 212a of the sensor to detect a series of puff actions (including the first puff action) by the user. Specifically, here, it is determined whether or not the puff operation is detected by the puff detection unit 212a.
  • step S12 the puff operation interval measurement unit 206b stops measuring the time interval between puff operations that are being executed. That is, the time interval between a sensed puff action and the immediately preceding puff action (ie, two consecutive puff actions) is measured to obtain a puff interval value.
  • the value of the puff action interval associated with the first puff action may be set to the measurement time between steps S10 and S12 described above (described later in FIG. 14).
  • the puff detection time measurement unit 206a measures the detection time of the detected puff action. Specifically, in step S13, the puff detection time measurement unit 206a starts measuring the detection time of the puff operation. When the puff detection unit 212a detects the end of the puff operation in step S14, the puff detection time measuring unit 206a stops measuring the detection time of the puff operation in step S15. In other words, the detection time is measured to obtain the value of the puffing period during which the puffing continues.
  • the control unit 200 preferably performs the heating operation with the heater while the user's puffing operation is being detected.
  • the control of the heating operation is interlocked with the measurement of the detection time of the puffing operation. Specifically, when the start of the puffing operation is detected, the heating operation by the heater is started, and measurement of the detection time of the puffing operation is started (step S13). Then, when the end of the puffing operation is detected, the heating operation by the heater is ended and the measurement of the detection time of the puffing operation is stopped (step S15).
  • step S16 the control unit 206 executes processing for estimating the remaining amount level based on the accumulation of the detection time (described later in FIGS. 12 and 13).
  • step S17 timer adjustment processing is executed in the puff detection time measurement unit 206a and the puff operation interval measurement unit 206b for the next puff operation to be detected. For example, it is preferable to reset both the value of the detection time counted by the puff detection time measurement unit 206a and the value of the puff operation interval counted by the puff operation interval measurement unit 206b to zero.
  • step S18 the puff operation interval measurement unit 206b starts measurement and returns to step S11.
  • the time interval between puff actions is measured until the next puff action is detected.
  • the measurement of the time interval between puffing operations is preferably triggered by detection of the end of the puffing operation in step S14 and started in step S18.
  • detection of the start of the puffing operation in step S11 be used as a trigger to stop in step S12. That is, the time interval between puffing operations can be referred to as a non-puffing period.
  • steps S11 to S18 is repeated at least during a series of puff actions by the user.
  • the cycle may be repeated until the suction device 100 is powered off or until the suction device 100 transitions to the sleep state.
  • step S16 the processing flow for estimating the remaining amount level based on accumulating the detection time will be further described with reference to FIGS.
  • the puffing interval measurement unit 206b acquires the value of the puffing interval.
  • the value of the puffing interval is obtained through step S18 (or step S10) and step S12 described above.
  • the puff detection time measurement unit 206a acquires the value of the puff operation period.
  • the value of the puff action period is the detection time of the puff action measured through steps S13 to S15 described above.
  • the detection time correction unit 206c corrects the detection time of the puff action using the time correction model MD (FIG. 9) associated with the puff action period and the puff action interval.
  • the time correction model MD is defined based on the atomization characteristics 1a and 2a of the aerosol source in the suction device 100, and is stored in the memory 214 as time correction model information 214c.
  • step S163a the correction of the detection time of the puff action is first performed in step S163a by determining whether the puff action interval t int obtained in step S161 of FIG. 12 is smaller than 10 seconds. judge.
  • This determination process is associated with the atomization characteristics 2 and 2a of the aerosol source shown in FIGS. 4 and 7 and with the time correction model 2A based on the atomization characteristics 2a shown in FIG. .
  • the puff interval t int is 10 seconds or more (S163a: No)
  • step S164 the detection time accumulator 206d calculates the cumulative detection time by accumulating the detection time corrected in step S163.
  • the cumulative sensing time is stored in memory 214 as part of the cumulative sensing time information 214d for the flavor source and/or aerosol source each time it is updated.
  • the inhaled component remaining amount level estimation unit 206e estimates the remaining amount level of the flavor source and/or the aerosol source based on the cumulative detection time calculated in step S164.
  • the remaining amount level may be calculated as a puff time (seconds) during which the puff operation is permitted in the future, or may be calculated as a percentage (%) of the puff time. Further, it may be determined that the remaining amount of the flavor source and/or the aerosol source is insufficient when the cumulative detection time reaches a predetermined threshold time.
  • the predetermined threshold time is pre-stored in the memory 214 as part of the maximum capsule consumption time information 214b (eg, 100 seconds) and/or as part of the maximum cartridge consumption time information 214a (eg, 1,000 seconds). .
  • the notification instruction unit 206f instructs the notification unit 108 to notify the remaining amount level estimated in step S165.
  • the notification unit 108 it is preferable to notify the user in various ways by lighting an LED, displaying on a display, speaking from a speaker, vibrating with a vibrator, or any combination thereof.
  • the target for estimation of the remaining amount level can be flexibly set according to the structure of the suction devices 100A and 100B. Specifically, in both the capsule 126 and the cartridge 104, it is only necessary to convert the amount of the inhalant source into time information and store it as the capsule maximum consumption time information 214b and/or the cartridge maximum consumption time information 214a. During the operation of estimating the remaining amount level, the control unit 206 only needs to handle such time information, which is efficient.
  • the value of the detection time of the puff action is appropriately corrected through the time correction model MD.
  • the detection time is more realistic, that is, the actual amount of aerosol source consumption and the amount of aerosol that actually passed through the flavor source (in other words, the amount of flavor actually imparted by the flavor source).
  • detection time can be calculated. This makes it possible to further improve the accuracy when estimating the remaining amount level.
  • FIG. 14 is an example of a processing flow regarding initial setting of the value of the puff operation interval.
  • step S10 the measurement of the time of the first puff action is started in step S10 at the start of the processing flow of FIG. It was decided that the time until it is stopped can be set.
  • examples of the first puffing operation include the puffing operation performed immediately after the suction device 100 is powered on and the puffing operation performed immediately after the suction device 100 recovers from the sleep state.
  • the sleep state is a state to which a transition is made in order to save power when the user's puffing operation is not detected for a predetermined period of time even when the power is on. In this case, in order for the user to perform the puffing operation, the suction device 100 must be recovered from the sleep state.
  • step S101 the control unit 206 determines whether the power of the suction device 100 has been turned on from the off state. When it is determined that the suction device 100 has been powered on, it may optionally be verified that no puff interval value is already present in memory.
  • step S102 the value of the puff operation interval is set to a predetermined initial value for the puff operation that will be performed soon by the user (step S11), thereby associating it with the first puff operation.
  • step S102 When the initial value is set to the value of the first puff operation interval in step S102, then the process proceeds to step S10 described above, and measurement of the puff operation interval may be started.
  • the initial values set in step S102 in the memory may be updated with the measured values acquired in steps S10 to S12. Alternatively, the initial value may not be updated with the measured value, or either the initial value or the measured value may be selected (for example, the larger value may be selected).
  • the above-described step S10 may be skipped so as not to start.
  • the initial value should be set to 10 seconds.
  • the post-correction differential puff operation period (adjustment time) is 0 (Equation 2). That is, by initializing the value of the puff operation interval to 10 seconds in conformity with the value described with reference to FIG.
  • the adjusted time calculated in relation to the portion of the time correction model 2A can be zero.
  • the puff detection unit 212a needs to detect a puff operation with a weak suction force, but depending on its detection performance, it may not be able to detect this properly.
  • the puff detection unit 212a can only partially detect the puff operation and detect it as an intermittent puff operation. sometimes.
  • a single puffing action may be divided into extremely short puffing periods to be detected. In other words, in the case of a puffing operation with a weak suction force, although one puffing operation was originally performed, it is detected as a plurality of puffing operations separated into puffing operations having extremely short puffing operation periods. Sometimes.
  • this modified example takes into consideration the case where the puff detection unit 212a cannot appropriately detect the puff operation due to reasons such as the user's weak suction force. Specific examples are shown below.
  • a set of each value of the time interval between the previous puff action and the detection time of the puff action is represented by [time interval from the previous puff action, puff motion detection time].
  • FIG. 15 is an exemplary conceptual diagram showing the user's puff motion with weak suction force detected by the puff detection unit 212a, together with the time interval and detection time.
  • puff motion #n ⁇ 1 is detected by puff detection unit 212a
  • puff motion #n of [5.42, 0.16] is detected, and immediately thereafter [0.21, 1.18] puff motion #n+1 is detected.
  • the detection time for puffing #n is 0.16 seconds, which can be said to be an extremely short puffing period. It should be noted that a user's puffing motion is typically over a period of time greater than about 1 second, and the value of 0.16 seconds is assumed to be less than the T10 used in Equation 5.
  • the detection time of puff operation #n+1 following puff operation #n is 1.18 seconds, and the time interval between puff operation #n and puff operation #n+1 is 0.21 seconds. Therefore, according to the above embodiment, the post-correction puff operation period (y) of puff operation #n+1 based on the time correction model MD is calculated using Equation 5 as follows.
  • the time interval between the puff operation #n+1 and the immediately preceding puff operation #n is not the measured 0.21 second itself, but the measured 0.21 second and the puff operation #n. and 5.42 seconds which is the time interval between puff operation #n ⁇ 1. That is, in this modified example, the total value of 5.63 seconds (0.21+5.42 seconds) is adopted as the value of the puff operation interval of puff operation #n+1, and the total value is used in Equation 5. .
  • the detection time of puff operation #n+1 of 1.18 seconds is corrected to 1.32 seconds according to the time correction model MD. ing.
  • the time correction model 2A forming part of the time correction model MD is defined so that the post-correction puff operation period becomes shorter as the value of the puff operation interval increases. That is, the numerical value of 1.32 seconds is less corrected for the puff operation period than the value of 1.57 seconds when the puff operation interval is 0.21 seconds.
  • such relaxation of the degree of correction is as follows. It can be said that it is an appropriate countermeasure.
  • the detection time of the puff operation can be corrected more appropriately, thereby further correcting the puff operation.
  • a corrected puff operation period can be calculated. That is, according to this modified example, it is possible to estimate the appropriate remaining level of the flavor source and/or the aerosol source.
  • FIG. 16 is an example of a process flow for adjusting the time interval measurement according to the puff duration value obtained for the immediately preceding puff.
  • the time interval between puff operation #n+1 and puff operation #n immediately preceding it is measured, and the value of the puff operation interval for puff operation #n+1 is obtained based at least on this time interval.
  • the value of the puff operation interval for puff operation #n+1 is the puff operation period value (0.16 in the example of FIG. seconds).
  • step S16 particularly in step S161 of FIG. 12, the value of the puff operation interval is obtained as 5.42 seconds as in the example of FIG. It is obtained as 0.16 seconds (the value of the detection time of the puff action is also 0.16 seconds).
  • step S21 the puff detection time measurement unit 206a resets the count of the timer.
  • the puff detection time measuring unit 206a resets the value of the detection time of the puff operation, and prepares for the next puff operation.
  • step S22 it is determined whether or not the value of the puff operation period that has already been acquired for puff operation #n is smaller than 0.5 seconds. It should be understood by those skilled in the art that the value of 0.5 seconds is an example and not a limitation. If the puff duration value of puff action #n is less than 0.5 seconds (step S22: Yes), the measurement of the time interval between puff action #n and the next puff action #n+1 is is resumed from the value of the puff operation interval that has already been acquired (step S18). In other words, the interrupted measurement of the time interval is restarted and the counting is continued without resetting the count of the timer when the measurement was performed in the puff operation #n.
  • step S23 the count of the timer that was measured in puff operation #n is reset. Then, measurement of the time interval between puff operation #n and next puff operation #n+1 is started from 0 second (step S18).
  • the value of the puff operation period of puff operation #n is 0.16 seconds, which is smaller than 0.5 seconds (step S22: Yes). That is, the measurement of the time interval between puff action #n and the next puff action #n+1 is the value of the time interval between puff action #n ⁇ 1 and puff action #n, which is the previous 5.42 seconds. is restarted from 5.42 seconds without resetting (to 0 seconds) (step S18).
  • the time interval measured between the puff operation #n+1 and the puff operation #n is not appropriate. Then, when such a determination is made, an appropriate value may be obtained as the puff operation interval so as to adjust the measurement of the time interval and not reset the count of the timer. On the other hand, if it is not determined that the time interval measured between puff operation #n+1 and puff operation #n is not appropriate, then all that is necessary is to reset the timer count and measure time from zero. That is, acquisition of the puff operation interval is efficient because it is only necessary to control resetting of the timer count and does not require additional processing load.
  • a constant T10 is introduced in the time correction model MD based on the atomization characteristics 1a and 2a of the aerosol source, and the value of the puff operation period (x) is T10 or less.
  • the corrected puff operation period (y) is set to 0 (Equation 3 and FIG. 9).
  • Constant T10 may be set to any value up to, for example, approximately 1.0 seconds. Considering that puffing durations of less than 1.0 seconds are rare and difficult to imagine in normal puffing operations by the user, this is true even for puffing durations of less than 1.0 seconds. This is based on the inventor's consideration that time correction is not necessary. Specifically, it is as follows.
  • the corrected puff operation period (y) is set to 0 when T10 is less than 1.0. is not uniformly set to 0, but is set to a predetermined constant somewhat larger than 0.
  • the value of the cumulative detection time calculated by the detection time accumulator 206d is accumulated. Become. In other words, the value of such cumulative detection time can be appropriately used to detect device failure, and the life of the device can be extended.
  • the corrected detection time is It is better to uniformly update the value to the constant value.
  • FIG. 17 shows an example of a further time correction model MD' based on the atomization characteristics 1a and 2a of the aerosol source according to this modified example.
  • the horizontal axis (x-axis) indicates the puff operation period (seconds)
  • the vertical axis (y-axis) indicates the corrected puff operation period (seconds) with respect to the puff operation period.
  • the time correction model MD′ further includes a function to uniformly update the value to q when the puff operation period after correction is 0 ⁇ y ⁇ q among the time correction models MD shown in FIG. stipulated.
  • the constant q is preferably obtained experimentally in consideration of the device characteristics of the suction device 100 and set in the memory 214 .
  • FIG. 18 is an example of a detailed processing flow regarding the correction processing S163' of the detection time of the puff motion according to this modification, and is applied to step S16 of FIG. 11 in the above embodiment.
  • This processing flow is executed by the detection time correction unit 206c. Note that the processing contents of steps S163a, S163b, and S163c in the puff operation detection time correction processing S163' are the same as those of the same reference numerals shown in FIG.
  • step S164 if the value of t10_crt is larger than the constant q (S163d: No), the value of t10_crt is set as it is to the post-correction puff operation period, and the next cumulative detection time is calculated (step S164). output to
  • the value is uniformly updated to q, so that the suction device 100 can supply the controller 206 with Arithmetic processing load can be reduced, and device abnormalities can be detected.
  • the suction device 100 is configured to accurately estimate the fuel level through dynamically correcting the detection time, which is the duration of the detected puffing action. In other words, it is possible to estimate a more accurate puffing duration or a cumulative puffing duration compared to the detection time of the puffing that is actually detected, and to achieve an estimation of the appropriate remaining level of the flavor source and/or the aerosol source. do. This makes it possible to realize appropriate consumption level estimation, replacement determination, and notification of cartridges and/or capsules.
  • a series of processes by each device described in this specification may be implemented using software, hardware, or a combination of software and hardware.
  • Programs constituting software are stored in advance in computer-readable recording media (non-transitory media) provided inside or outside each device, for example.
  • Each program is read into the RAM when executed by a computer that controls each suction device described in this specification, for example, and is executed by a processor such as a CPU.
  • the recording medium is, for example, a magnetic disk, an optical disk, a magneto-optical disk, a flash memory, or the like.
  • the computer program may be distributed, for example, via a network without using a recording medium.
  • a method of operating a suction device comprising: causing the sensor to detect a series of puffing actions by the user; measuring (S10, S18-S12, S161) the time interval between the first puff and the immediately preceding second puff to obtain a puff interval value for the first puff; measuring the detection time of the first puffing action in order to obtain the value of the puffing period during which the first puffing action continues (S13 to S15, S162); correcting the detection time using a time correction model associated with the puff interval and the puff duration (S16, S163); accumulating the corrected detection time to calculate the cumulative detection time (S16, S164); estimating a remaining level of the source of inhaled components based on the cumulative detection time (S16, S165);
  • the puff interval value for the first puff action is obtained by adjusting the time interval measurement according to the puff duration value obtained for the second puff action (S17, S161, S21 ⁇ S23), a method.
  • the time correction model is defined to include maintaining the corrected sensing time at the third time when the value of the sensing time is a predetermined third time.
  • the method, wherein the time correction model is defined to include decreasing the sensing time if the sensing time value is less than the third time.
  • the method of (6) or (7), wherein the third time is 2.4 seconds.
  • the time correction model adds an adjustment time calculated based on the puffing interval to the measured sensing time value when the puffing interval value is less than a fourth time. a method defined to include increasing the detected detection time.
  • a control unit (206) for operating the suction device comprising: measuring 206b the time interval between the first puff and the immediately preceding second puff to obtain a puff interval value for the first puff detected by the sensor; measuring 206a the sensing time of the first puffing action to obtain a puffing duration value over which the first puffing action lasts; correcting (206c) the sensing time using a time correction model associated with the puff interval and the puff duration; calculating the accumulated detection time by accumulating the corrected detection time (206d); estimating (206e) a remaining level of an inhalant component source based on the cumulative sensing time; a control unit;
  • the puff interval value for the first puff action is obtained by adjusting the time interval measurement according to the puff duration value obtained for the second puff action (S17, S161, S21 ⁇ S23), suction device.
  • the control unit causes the notification unit to notify the shortage of the remaining amount (206f) in response to the fact that the suction component source is determined to have an insufficient amount of the remaining amount.
  • the time correction model adds an adjustment time calculated based on the puffing interval to the measured sensing time value when the puffing interval value is less than a third time. an aspiration device, defined to include increasing a specified detection time.
  • control unit further comprises The suction device is configured to set a value of the puffing interval for the second puffing operation to the third time when the second puffing operation is the first puffing operation (S101, S102). (20) The suction device of (18) or (19), wherein the third time is 10 seconds.

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)

Abstract

The present invention provides an operation method for an inhalation device by which it is possible to suitably ascertain the state of consumption of an inhalation component source in the inhalation device during use, while taking into consideration tendencies regarding inhalation actions by a user. Said method includes: a step for causing a sensor to detect a series of puff actions by the user; a step for measuring the time interval between a first puff action and an immediately preceding second puff action in order to acquire the value of a puff action interval pertaining to the first puff action; a step for measuring a detection time, which is a puff action period during which the first puff action continues; a step for using a time correction model associated with the puff action interval and the puff action period to correct the detection time; a step for cumulatively adding the corrected detection time and calculating a cumulative detection time; and a step for estimating the residual amount level of the inhalation component source on the basis of the cumulative detection time. The value of the puff action interval pertaining to the first puff action is acquired by adjusting the measurement of the time interval in accordance with the value of the puff action period that has been acquired pertaining to the second puff action.

Description

吸引装置の動作方法、プログラム、及び吸引装置Suction device operation method, program, and suction device
 本開示は、吸引装置の動作方法、プログラム、及び吸引装置に関する。 The present disclosure relates to a method of operating a suction device, a program, and a suction device.
 ユーザに吸引される物質を生成する吸引装置が広く普及している。吸引装置の一例は、電子タバコ及びネブライザである。このような吸引装置は、例えば、エアロゾルを生成するためのエアロゾル源、及び生成されたエアロゾルに香味成分を付与するための香味源等を含む基材を用いて、香味成分が付与されたエアロゾルを生成する。ユーザは、吸引装置により生成された、香味成分が付与されたエアロゾルを吸引することで、香味を味わうことができる。 Suction devices that generate substances that are sucked by users are widespread. Examples of suction devices are electronic cigarettes and nebulizers. Such a suction device, for example, uses a base material containing an aerosol source for generating an aerosol, a flavor source for imparting a flavor component to the generated aerosol, etc., and produces an aerosol imparted with a flavor component. Generate. A user can enjoy the flavor by inhaling the flavor component-applied aerosol generated by the suction device.
 ユーザが吸引装置を使用して吸引を行う際、吸引装置は、ヒータに電力を供給してヒータの温度を上昇させることにより、吸引成分源を霧化させるように加熱動作の制御を実行する。このような加熱動作に関連して取得されるヒータの温度、給電量、電気抵抗等の各種データを用いて、吸引成分源の消費量を把握し、或いは吸引成分源の枯渇を判定する手法が知られている。 When the user inhales using the aspiration device, the aspiration device supplies power to the heater to raise the temperature of the heater, thereby controlling the heating operation so as to atomize the source of the inhalation component. There is a method of grasping the consumption of the attraction component source or determining the depletion of the attraction component source by using various data such as the temperature of the heater, the amount of power supply, and the electrical resistance acquired in connection with such a heating operation. Are known.
特表2014-501105号公報Japanese Patent Publication No. 2014-501105 特表2015-531600号公報Special Table 2015-531600 特表2017-538410号公報Japanese Patent Publication No. 2017-538410 特表2016-525367号公報Japanese Patent Publication No. 2016-525367 特表2019-500896号公報Japanese Patent Application Publication No. 2019-500896 特表2014-501107号公報Japanese translation of PCT publication No. 2014-501107 国際公開第2021/002392号WO2021/002392
 吸引装置を用いてユーザに提供される体験の質は更に向上されることが望ましい。 It is desirable to further improve the quality of experience provided to users using suction devices.
 そこで、本開示は、上記に鑑みてなされたものであり、その目的とするところは、吸引装置を用いた体験(以下、「吸引体験」ということもある。)の質をより向上させることが可能な仕組みを提供することにある。そのために、本開示は、ユーザによる吸引動作の傾向を考慮しつつ、使用中の吸引装置内の吸引成分源の消費の状況を適切に把握可能な仕組みを提供することを目的の1つとする。 Therefore, the present disclosure has been made in view of the above, and the purpose thereof is to further improve the quality of the experience using a suction device (hereinafter sometimes referred to as “suction experience”). It is to provide a possible mechanism. For this reason, one of the objects of the present disclosure is to provide a mechanism capable of appropriately grasping the state of consumption of the suction component source in the suction device in use, while taking into consideration the tendency of the suction operation by the user.
 上記課題を解決するために、本開示のある観点によれば、吸引装置の動作方法が提供される。かかる方法は、ユーザによる一連のパフ動作をセンサに検知させるステップと、第1パフ動作に関するパフ動作間隔の値を取得するために、前記第1パフ動作と直前の第2パフ動作との間の時間間隔を測定するステップと、前記第1パフ動作が継続しているパフ動作期間の値を取得するために、第1パフ動作の検知時間を測定するステップと、前記パフ動作間隔及び前記パフ動作期間に関連付けられる時間補正モデルを用いて、前記検知時間を補正するステップと、前記補正された検知時間を累積して、累積検知時間を算出するステップと、前記累積検知時間に基づいて吸引成分源の残量レベルを推定するステップと、を含み、前記第1パフ動作に関する前記パフ動作間隔の値は、前記第2パフ動作に関して取得済みのパフ動作期間の値に応じて前記時間間隔の測定を調整することで取得される。 In order to solve the above problems, according to one aspect of the present disclosure, a method for operating a suction device is provided. Such a method includes the steps of causing a sensor to detect a series of puffs by a user; measuring a time interval; measuring a detection time of a first puffing action to obtain a value of a puffing duration during which the first puffing action lasts; correcting the sensing time using a time correction model associated with a period; accumulating the corrected sensing time to calculate a cumulative sensing time; and based on the cumulative sensing time, wherein the puff interval value for the first puff operation is determined by measuring the time interval according to a puff duration value obtained for the second puff operation. Obtained by adjusting.
 かかる方法によれば、適切な累積検知時間を見積もることができ、香味源及び/又はエアロゾル源の残量レベルの推定の精度を向上させることができる。また、適切な残量把握及び通知を実現することができる。 According to this method, an appropriate cumulative detection time can be estimated, and the accuracy of estimating the remaining level of the flavor source and/or the aerosol source can be improved. In addition, it is possible to realize appropriate remaining amount grasping and notification.
 前記第2パフ動作に関する前記パフ動作期間の値が所定の第1時間より小さい場合に、前記時間間隔の測定が、前記第2パフ動作に関して取得済みの前記パフ動作間隔の値から再開するように調整されてよい。これにより、更に適切な累積検知時間を見積もることができ、香味源及び/又はエアロゾル源の残量レベルの推定の精度を更に向上させることができる。 If the puff duration value for the second puff operation is less than a predetermined first time, the measurement of the time interval resumes from the puff interval value obtained for the second puff operation. may be adjusted. This makes it possible to estimate a more appropriate cumulative detection time, and further improve the accuracy of estimating the remaining level of the flavor source and/or the aerosol source.
 前記第1時間が0.5秒としてよい。これにより、効率的な残量レベルの推定を実現することができる。 The first time may be 0.5 seconds. This makes it possible to efficiently estimate the remaining capacity level.
 前記吸引成分源の残量レベルを推定する前記ステップが、前記累積検知時間が所定の第2時間に達した場合に、前記吸引成分源が残量不足であると判定することを含んでよい。これにより、適切な寿命検知を実現することができる。 The step of estimating the residual level of the attractive component source may include determining that the attractive component source is depleted if the cumulative sensing time reaches a second predetermined time. This makes it possible to realize appropriate life detection.
 更に、前記吸引成分源が残量不足であると判定されたことに応じて、前記吸引装置に前記残量不足を通知させるステップを含んでよい。これにより、適切な寿命通知を実現することができる。 Further, the method may include a step of notifying the suction device of the shortage of the remaining amount in response to the determination that the suction component source has the insufficient amount of the remaining amount. This makes it possible to realize a suitable lifespan notification.
 前記時間補正モデルは、前記検知時間の値が所定の第3時間である場合に前記補正される検知時間を、前記第3時間に維持することを含むように規定されてよい。これにより、更に適切な時間補正モデルを生成して、吸引成分源の残量レベルの推定の精度を更に向上させることができる。 The time correction model may be defined to include maintaining the corrected detection time at the third time when the value of the detection time is a predetermined third time. This makes it possible to generate a more appropriate time correction model and further improve the accuracy of estimating the remaining level of the inhaled component source.
 前記時間補正モデルは、前記検知時間の値が前記第3時間より小さい場合に、前記検知時間を減少させることを含むように規定されてよい。これにより、更に適切な時間補正モデルを生成して、吸引成分源の残量レベルの推定の精度を更に向上させることができる。 The time correction model may be defined to include decreasing the detection time if the value of the detection time is less than the third time. This makes it possible to generate a more appropriate time correction model and further improve the accuracy of estimating the remaining level of the inhaled component source.
 前記第3時間が2.4秒としてよい。これにより、更に適切な時間補正モデルを生成して、吸引成分源の残量レベルの推定の精度を更に向上させることができる。 The third time may be 2.4 seconds. This makes it possible to generate a more appropriate time correction model and further improve the accuracy of estimating the remaining level of the inhaled component source.
 前記時間補正モデルは、前記パフ動作間隔の値が第4時間より小さい場合に、前記パフ動作間隔に基づいて算出される調整時間を前記測定された検知時間の値に加算することにより、前記測定された検知時間を増加させることを含むように規定されてよい。これにより、更に適切な時間補正モデルを生成して、吸引成分源の残量レベルの推定の精度を更に向上させることができる。 The time correction model adds an adjustment time calculated based on the puffing interval to the measured sensing time value when the puffing interval value is less than a fourth time. may be defined to include increasing the specified detection time. This makes it possible to generate a more appropriate time correction model and further improve the accuracy of estimating the remaining level of the inhaled component source.
 前記第2パフ動作が初回のパフ動作である場合に、前記第2パフ動作に関するパフ動作間隔の値を前記第4時間に初期設定するステップを含んでよい。これにより、適切な時間補正モデルの適用を更に効果的にすることができる。 A step of initializing a puff interval value for the second puff operation to the fourth time may be included when the second puff operation is the first puff operation. This makes it possible to apply the appropriate time correction model more effectively.
 前記第4時間が10秒としてよい。これにより、更に適切な時間補正モデルを生成して、吸引成分源の残量レベルの推定の精度を更に向上させることができる。 The fourth time may be 10 seconds. This makes it possible to generate a more appropriate time correction model and further improve the accuracy of estimating the remaining level of the inhaled component source.
 本開示の別の観点によれば、前述の方法を前記吸引装置に実行させるためのプログラムが提供される。 According to another aspect of the present disclosure, there is provided a program for causing the suction device to execute the method described above.
 本開示の更なる別の観点によれば、吸引装置が提供される。かかる吸引装置は、ユーザによる一連のパフ動作を検知するセンサと、前記吸引装置を動作させるための制御部であって、前記センサが検知した第1パフ動作に関するパフ動作間隔の値を取得するために、前記第1パフ動作と直前の第2パフ動作との間の時間間隔を測定し、前記第1パフ動作が継続しているパフ動作期間の値を取得するために、第1パフ動作の検知時間を測定し、前記パフ動作間隔及び前記パフ動作期間に関連付けられる時間補正モデルを用いて、前記検知時間を補正し、前記補正された検知時間を累積して、累積検知時間を算出し、前記累積検知時間に基づいて、吸引成分源の残量レベルを推定する、制御部と、を備え、前記第1パフ動作に関する前記パフ動作間隔の値は、前記第2パフ動作に関して取得済みのパフ動作期間の値に応じて前記時間間隔の測定を調整することで取得される。 According to yet another aspect of the present disclosure, a suction device is provided. Such a suction device includes a sensor for detecting a series of puffing actions by a user and a control unit for operating the suction device, in order to acquire the value of the puff action interval regarding the first puffing action detected by the sensor. and measuring the time interval between the first puffing action and the immediately preceding second puffing action to obtain the value of the puffing period during which the first puffing action lasts. measuring the sensing time, correcting the sensing time using a time correction model associated with the puffing interval and the puffing duration, and accumulating the corrected sensing time to calculate a cumulative sensing time; a controller for estimating a remaining level of an inhalant component source based on the cumulative sensed time, wherein the puff interval value for the first puff operation is the puff obtained for the second puff operation; It is obtained by adjusting the time interval measurement according to the value of the operating period.
 かかる吸引装置によれば、適切な累積検知時間を見積もることができ、香味源及び/又はエアロゾル源の残量レベルの推定の精度を向上させることができる。また、適切な残量把握及び通知を実現することができる。 According to such a suction device, it is possible to estimate an appropriate cumulative detection time and improve the accuracy of estimating the remaining level of the flavor source and/or the aerosol source. In addition, it is possible to realize appropriate remaining amount grasping and notification.
 以上説明したように本開示によれば、吸引装置を用いた体験の質をより向上させることが可能な仕組みが提供される。 As described above, according to the present disclosure, a mechanism is provided that can further improve the quality of the experience using the suction device.
吸引装置の構成の概略ブロック図である。It is a schematic block diagram of the structure of a suction device. 吸引装置の構成の概略ブロック図である。It is a schematic block diagram of the structure of a suction device. パフ回数とパフ動作期間の関係の例を示した概略グラフである。10 is a schematic graph showing an example of the relationship between the number of puffs and the puff operation period; エアロゾル源の霧化特性1の例を示した概略グラフである。1 is a schematic graph showing an example of atomization characteristics 1 of an aerosol source; エアロゾル源の霧化特性2の例を示した概略グラフである。2 is a schematic graph showing an example of atomization characteristics 2 of an aerosol source; エアロゾル源の霧化特性1aの例を示した概略グラフである。1a is a schematic graph showing an example of atomization characteristics 1a of an aerosol source; 霧化特性1aに対応する時間補正モデル1AIDの例を示した概略グラフである。1 is a schematic graph showing an example of a time correction model 1A ID corresponding to atomization characteristics 1a; 霧化特性1aに基づく時間補正モデル1Aの例を示した概略グラフである。It is the schematic graph which showed the example of the time correction model 1A based on the atomization characteristic 1a. エアロゾル源の霧化特性2aの例を示した概略グラフである。2a is a schematic graph showing an example of atomization characteristics 2a of an aerosol source; 霧化特性2aに対応する時間補正モデル2Aの例を示した概略グラフである。It is the schematic graph which showed the example of the time correction model 2A corresponding to the atomization characteristic 2a. 霧化特性1a,2aに基づく時間補正モデルMDの例を示した概略グラフである。4 is a schematic graph showing an example of a time correction model MD based on atomization characteristics 1a, 2a; 実施形態に係る吸引装置の構成の例の概略ブロック図である。1 is a schematic block diagram of an example of a configuration of a suction device according to an embodiment; FIG. 実施形態に係る吸引装置の動作方法の例の概略フロー図である。1 is a schematic flow diagram of an example of a method of operating a suction device according to an embodiment; FIG. パフ動作の検知時間の累積に基づく残量レベルの推定の処理の例に関する概略フロー図である。FIG. 10 is a schematic flow diagram of an example of a process of estimating a remaining amount level based on accumulation of puff operation detection time; パフ動作の検知時間の補正の処理の例に関する概略フロー図である。FIG. 10 is a schematic flow diagram relating to an example of processing for correcting the detection time of the puff action; パフ動作間隔の値の初期設定の処理の例に関する概略フロー図である。FIG. 10 is a schematic flow diagram of an example of processing for initial setting of puff interval values; 検知される一連のパフ動作の例を示した概略概念図である。FIG. 4 is a schematic conceptual diagram showing an example of a series of detected puff motions; 変更例に係るタイマの調整の処理の例に関する概略フロー図である。FIG. 11 is a schematic flow diagram of an example of timer adjustment processing according to a modification; 変更例に係る時間補正モデルMD’の例を示した概略グラフである。FIG. 11 is a schematic graph showing an example of a time correction model MD' according to a modification; FIG. 変更例に係るパフ動作の検知時間の補正処理の例に関する概略フロー図である。FIG. 11 is a schematic flow diagram of an example of a process for correcting the detection time of a puff action according to a modification;
 以下、図面を参照しながら本開示の各実施形態について詳しく説明する。なお、本開示の実施形態は、電子たばこやネブライザを含むが、これらに限定されない。本開示の実施形態は、ユーザが吸引するエアロゾル又は香味が付与されたエアロゾルを生成するための様々な吸引装置を含み得る。また、生成される吸引成分は、エアロゾル以外にも、不可視の蒸気も含み得る。なお、以下において、ユーザによる吸引動作のことを「パフ動作」又は単に「パフ」と称し、また、エアロゾル源及び香味源の一方又は双方を「吸引成分源」と称することとする。 Hereinafter, each embodiment of the present disclosure will be described in detail with reference to the drawings. It should be noted that embodiments of the present disclosure include, but are not limited to electronic cigarettes and nebulizers. Embodiments of the present disclosure may include various inhalation devices for generating an aerosol or flavored aerosol for inhalation by a user. The inhalant component produced can also include non-visible vapors other than aerosols. Hereinafter, the sucking action by the user will be referred to as "puffing action" or simply "puffing", and one or both of the aerosol source and flavor source will be referred to as "sucking component source".
<<1.吸引装置の構成例>>
 図1Aは、本開示の各実施形態に係る吸引装置100Aの構成の概略的なブロック図である。図1Aは、吸引装置100Aが備える各コンポーネントを概略的且つ概念的に示すものであり、各コンポーネント及び吸引装置100Aの厳密な配置、形状、寸法、位置関係等を示すものではない。
<<1. Configuration example of suction device >>
FIG. 1A is a schematic block diagram of the configuration of a suction device 100A according to each embodiment of the present disclosure. FIG. 1A schematically and conceptually shows each component included in the suction device 100A, and does not show the exact arrangement, shape, size, positional relationship, etc. of each component and the suction device 100A.
 図1Aに示されるように、吸引装置100Aは、第1の部材102及び第2の部材104を備える。図示されるように、一例では、第1の部材102は、電源ユニットとしてよく、制御部106、通知部108、バッテリ110、センサ112、及びメモリ114を含んでもよい。また、一例では、第2の部材104は、カートリッジとしてよく、リザーバ116、霧化部118、空気取込流路120、エアロゾル流路121及び吸口部122を含んでもよい。 As shown in FIG. 1A, the suction device 100A includes a first member 102 and a second member 104. As shown in FIG. As shown, in one example, first member 102 may be a power supply unit and may include controller 106 , notification 108 , battery 110 , sensor 112 and memory 114 . Also, in one example, the second member 104 may be a cartridge and may include a reservoir 116 , an atomizing portion 118 , an air intake channel 120 , an aerosol channel 121 and a mouthpiece 122 .
 第1の部材102内に含まれるコンポーネントの一部は、第2の部材104内に含まれてもよい。第2の部材104内に含まれるコンポーネントの一部は、第1の部材102内に含まれてもよい。第2の部材104は、第1の部材102に対して着脱可能に構成されてもよい。或いは、第1の部材102及び第2の部材104内に含まれるすべてのコンポーネントが、第1の部材102及び第2の部材104に代えて、同一の筐体内に含まれてもよい。 Some of the components contained within the first member 102 may be contained within the second member 104 . Some of the components contained within second member 104 may be contained within first member 102 . The second member 104 may be configured to be detachable from the first member 102 . Alternatively, all components contained within first member 102 and second member 104 may be contained within the same housing instead of first member 102 and second member 104 .
 第1の部材102である電源ユニットは、通知部108、バッテリ110、センサ112及びメモリ114を備え、制御部106に電気的に接続される。このうち通知部108は、LED等の発光素子、ディスプレイ、スピーカ、バイブレータ等を含んでもよい。通知部108は、必要に応じて、発光、表示、発声、振動等、及びこれらの組み合わせによって、ユーザに対して様々な態様の通知を行うのがよい。一例では、第2の部材104のリザーバ116に収容された吸引成分源の残量レベル及び/又は交換時期を様々な態様で通知するのがよい。 A power supply unit, which is the first member 102 , includes a notification section 108 , a battery 110 , a sensor 112 and a memory 114 and is electrically connected to the control section 106 . Among them, the notification unit 108 may include a light-emitting element such as an LED, a display, a speaker, a vibrator, and the like. The notification unit 108 preferably notifies the user in various manners by light emission, display, vocalization, vibration, etc., or a combination thereof, as necessary. In one example, the remaining level and/or replacement time of the suction component source contained in the reservoir 116 of the second member 104 can be communicated in various manners.
 バッテリ110は、通知部108、センサ112、メモリ114、霧化部118等の吸引装置100Aの各コンポーネントに電力を供給する。特に、バッテリ110は、ユーザのパフ動作に応じてエアロゾル源を霧化させるように、霧化部118に電力を給電する。バッテリ110は、第1の部材102が具備する所定のポート(図示せず)を介して外部電源(例えば、USB(Universal Serial Bus)接続可能な充電器)に接続することができる。 The battery 110 supplies power to each component of the suction device 100A such as the notification unit 108, the sensor 112, the memory 114, and the atomization unit 118. In particular, battery 110 powers atomizer 118 to atomize the aerosol source in response to the user's puff action. The battery 110 can be connected to an external power supply (for example, a USB (Universal Serial Bus) connectable charger) via a predetermined port (not shown) provided in the first member 102 .
 なお、バッテリ110のみを電源ユニット102又は吸引装置100Aから取り外すことができてもよく、新しいバッテリ110と交換することができてもよい。また、電源ユニット全体を新しい電源ユニットと交換することによってバッテリ110を新しいバッテリ110と交換することができてもよい。 It should be noted that only the battery 110 may be removed from the power supply unit 102 or the suction device 100A, or may be replaced with a new battery 110. It may also be possible to replace the battery 110 with a new battery 110 by replacing the entire power supply unit with a new power supply unit.
 センサ112は種々のセンサから構成される。例えば、センサ112には、ユーザによるパフ動作を正確に検知するために、マイクロフォン・コンデンサのような吸引センサが含まれてもよい。また、センサ112は、空気取込流路120及び/又はエアロゾル流路121内の圧力の変動を検知する圧力センサ又は流量を検知する流量センサを含んでもよい。センサ112は、リザーバ116等のコンポーネントの重量を検知する重量センサを含んでもよい。 The sensor 112 is composed of various sensors. For example, sensor 112 may include a suction sensor, such as a microphone condenser, to accurately detect puffing by the user. Sensor 112 may also include a pressure sensor that detects pressure fluctuations in air intake channel 120 and/or aerosol channel 121 or a flow sensor that detects flow rate. Sensors 112 may include weight sensors that sense the weight of components such as reservoir 116 .
 センサ112はまた、リザーバ116内の液面の高さを検知するように構成されてもよい。センサ112はまた、バッテリ110のSOC(State of Charge,充電状態)、バッテリ110の放電状態、電流積算値、電圧等を検知するように構成されてもよい。電流積算値は、電流積算法やSOC-OCV(Open Circuit Voltage,開回路電圧)法等によって求めてもよい。センサ112はまた、制御部106の温度を測定する温度センサを含んでもよい。センサ112はまた、ユーザが操作可能な操作ボタン等であってもよい。 The sensor 112 may also be configured to detect the height of the liquid level within the reservoir 116 . The sensor 112 may also be configured to detect the state of charge (SOC) of the battery 110, the discharge state of the battery 110, the current integration value, the voltage, and the like. The current integrated value may be obtained by a current integration method, an SOC-OCV (Open Circuit Voltage) method, or the like. Sensor 112 may also include a temperature sensor that measures the temperature of controller 106 . The sensor 112 may also be an operation button or the like that can be operated by the user.
 制御部106は、マイクロプロセッサ又はマイクロコンピュータとして構成された電子回路モジュールであってもよい。制御部106は、メモリ114に格納されたコンピュータ実行可能命令に従って吸引装置100Aの動作を制御するように構成されてもよい。また、制御部106はタイマを備え、クロックに基づいて所望の期間をタイマ測定(つまり、カウント)するように構成されてもよい。一例では、制御部106は、吸引センサによってパフ動作が検知されている間の動作期間、及び連続するパフ動作の間の動作間隔をタイマ測定してもよい。 The control unit 106 may be an electronic circuit module configured as a microprocessor or microcomputer. Controller 106 may be configured to control the operation of suction device 100A according to computer-executable instructions stored in memory 114 . Also, the control unit 106 may be configured to have a timer and timer-measure (that is, count) a desired period based on a clock. In one example, the controller 106 may timer-measure the action period during which the puff action is detected by the suction sensor and the action interval between consecutive puff actions.
 制御部106は、必要に応じてメモリ114からデータを読み出して吸引装置100Aの制御に利用し、必要に応じてデータをメモリ114に格納する。また、制御部106は、必要に応じてメモリ114からデータを読み出して吸引装置100Aの制御に利用し、必要に応じてデータをメモリ114に格納する。 The control unit 106 reads data from the memory 114 as necessary, uses it for controlling the suction device 100A, and stores the data in the memory 114 as necessary. In addition, the control unit 106 reads data from the memory 114 as necessary, uses it for controlling the suction device 100A, and stores the data in the memory 114 as necessary.
 メモリ114は、ROM(Read Only Memory)、RAM(Random Access Memory)、フラッシュメモリ等の記憶媒体である。メモリ114には、上記のようなコンピュータ実行可能命令のほか、吸引装置100A及び/又は電源ユニット102の制御に必要な設定データ等が格納されてもよく、主に制御部106によって使用されてもよい。例えば、メモリ114は、通知部108の制御方法(発光、発声、振動等の態様等)、センサ112により検知された値、取り付けられたカートリッジの情報、霧化部118の加熱履歴等の様々なデータを格納してもよい。 The memory 114 is a storage medium such as ROM (Read Only Memory), RAM (Random Access Memory), and flash memory. In addition to the computer-executable instructions as described above, the memory 114 may store setting data and the like necessary for controlling the suction device 100A and/or the power supply unit 102, and may be used mainly by the control unit 106. good. For example, the memory 114 stores various information such as the control method of the notification unit 108 (modes such as light emission, vocalization, vibration, etc.), values detected by the sensor 112, information on the attached cartridge, heating history of the atomization unit 118, and the like. data may be stored.
 第2の部材104であるカートリッジに関し、リザーバ116は、吸引成分源であるエアロゾル源を保持する。例えば、リザーバ116は、繊維状又は多孔質性の素材から構成され、繊維間の隙間や多孔質材料の細孔に液体としてのエアロゾル源を保持する。繊維状又は多孔質性の素材には、例えばコットンやガラス繊維、又はたばこ原料等を用いることができる。リザーバ116は、液体を収容するタンクとして構成されてもよい。エアロゾル源は、例えば、グリセリンやプロピレングリコールといった多価アルコール、水等の液体である。 Regarding the second member 104, the cartridge, the reservoir 116 holds an aerosol source, which is the source of the inhaled component. For example, the reservoir 116 is made of a fibrous or porous material, and holds the aerosol source as a liquid in the interstices between the fibers or the pores of the porous material. For the fibrous or porous material, for example, cotton, glass fiber, tobacco raw material, or the like can be used. Reservoir 116 may be configured as a tank that contains liquid. Aerosol sources are, for example, polyhydric alcohols such as glycerin and propylene glycol, liquids such as water.
 吸引装置100Aがネブライザ等の医療用吸入器である場合、エアロゾル源はまた、患者が吸入するための薬剤を含んでもよい。別の例として、エアロゾル源は、加熱することによって香喫味成分を放出するたばこ原料やたばこ原料由来の抽出物を含んでいてもよい。リザーバ116は、消費されたエアロゾル源を補充することができる構成を有してもよい。或いは、リザーバ116は、エアロゾル源が消費された際にリザーバ116自体を交換することができるように構成されてもよい。また、エアロゾル源は液体に限られるものではなく、固体でもよい。エアロゾル源が固体である場合のリザーバ116は、例えば繊維状又は多孔質性の素材を用いない空洞の容器であってもよい。 If the suction device 100A is a medical inhaler such as a nebulizer, the aerosol source may also contain a drug for patient inhalation. As another example, the aerosol source may include tobacco materials or extracts derived from tobacco materials that release flavor and taste components upon heating. Reservoir 116 may have a configuration that allows it to be replenished with a spent aerosol source. Alternatively, reservoir 116 may be configured such that reservoir 116 itself can be replaced when the aerosol source is exhausted. Also, the aerosol source is not limited to liquids and may be solids. If the aerosol source is solid, the reservoir 116 may be, for example, a hollow container without fibrous or porous materials.
 霧化部118は、エアロゾル源からエアロゾルを生成するように構成される。より詳しくは、霧化部118は、エアロゾル源を霧化又は気化することにより、エアロゾルを生成する。吸引装置100Aがネブライザ等の医療用吸入器である場合には、霧化部118は、薬剤を含んだエアロゾル源を霧化又は気化することにより、エアロゾルを生成する。 The atomization unit 118 is configured to generate an aerosol from an aerosol source. More specifically, atomizer 118 generates aerosol by atomizing or vaporizing an aerosol source. When the inhaler 100A is a medical inhaler such as a nebulizer, the atomization unit 118 generates an aerosol by atomizing or vaporizing an aerosol source containing a medicine.
 センサ112によってパフ動作が検知されると、霧化部118は、バッテリ110からの給電を受け、エアロゾル源を加熱することによりエアロゾルを生成する。例えば、ウィック(図示せず)が、リザーバ116と霧化部118とを連結するように設けられてもよい。この場合、ウィックの一部はリザーバ116の内部に通じ、エアロゾル源と接触する。ウィックの他の一部は霧化部118へ延びる。エアロゾル源は、ウィックの毛細管効果によってリザーバ116から霧化部118へと運ばれる。 When the puffing action is detected by the sensor 112, the atomization unit 118 receives power from the battery 110 and heats the aerosol source to generate aerosol. For example, a wick (not shown) may be provided to connect reservoir 116 and atomization section 118 . In this case, a portion of the wick leads into the interior of reservoir 116 and contacts the aerosol source. Another part of the wick extends to the atomization section 118 . The aerosol source is transported from reservoir 116 to atomization section 118 by the capillary effect of the wick.
 一例では、霧化部118は、バッテリ110に電気的に接続されたヒータを備える。ヒータは、ウィックと接触又は近接するように配置される。パフ動作が検知されると、制御部106は、霧化部118のヒータを制御し、ウィックを通じて運ばれたエアロゾル源を加熱することによって当該エアロゾル源を霧化する。霧化部118の別の例は、エアロゾル源を超音波振動によって霧化する超音波式霧化器であってもよい。 In one example, atomization unit 118 includes a heater electrically connected to battery 110 . A heater is placed in contact with or in close proximity to the wick. When a puffing action is detected, controller 106 controls the heater of atomizer 118 to heat the aerosol source carried through the wick, thereby atomizing the aerosol source. Another example of the atomizer 118 may be an ultrasonic atomizer that atomizes the aerosol source through ultrasonic vibrations.
 霧化部118には空気取込流路120が接続され、空気取込流路120は吸引装置100Aの外部へ通じている。霧化部118において生成されたエアロゾルは、空気取込流路120を介して取り込まれた空気と混合される。エアロゾルと空気の混合流体は、矢印124で示されるように、エアロゾル流路121へと送り出される。エアロゾル流路121は、霧化部118において生成されたエアロゾルと空気との混合流体を吸口部122まで輸送するための管状構造を有する。 An air intake channel 120 is connected to the atomizing section 118, and the air intake channel 120 leads to the outside of the suction device 100A. The aerosol generated in atomizing section 118 is mixed with air taken in through air intake channel 120 . The aerosol/air mixture is delivered to aerosol channel 121 as indicated by arrow 124 . The aerosol flow path 121 has a tubular structure for transporting the mixed fluid of the aerosol and air generated in the atomizing section 118 to the mouthpiece section 122 .
 吸口部122は、エアロゾル流路121の終端に位置し、エアロゾル流路121を吸引装置100Aの外部に対して開放するように構成される。ユーザは、吸口部122を咥えて吸引することにより、エアロゾルを含んだ空気を口腔内へ取り込む。 The suction port 122 is positioned at the end of the aerosol channel 121 and configured to open the aerosol channel 121 to the outside of the suction device 100A. The user takes in the air containing the aerosol into the oral cavity by holding the mouthpiece 122 and sucking.
 図1Bは、本開示の各実施形態に係る吸引装置100Bの構成の概略的なブロック図である。図1Bに示されるように、吸引装置100Bは、図1Aの吸引装置100Aが備える構成に加えて、第3の部材126を備える。第3の部材126は、カプセルとしてよく、香味源128を含んでもよい。一例では、吸引装置100Bが電子たばこである場合、香味源128は、たばこに含まれる香喫味成分を含んでもよい。図示されるように、エアロゾル流路121は、第2の部材104及び第3の部材126にわたって延在する。吸口部122は、第3の部材126に備えられる。 FIG. 1B is a schematic block diagram of the configuration of a suction device 100B according to each embodiment of the present disclosure. As shown in FIG. 1B, the suction device 100B includes a third member 126 in addition to the configuration of the suction device 100A of FIG. 1A. Third member 126 may be a capsule and may contain flavor source 128 . In one example, if the inhalation device 100B is an electronic cigarette, the flavor source 128 may include flavor components contained in tobacco. As shown, aerosol channel 121 extends through second member 104 and third member 126 . The mouthpiece 122 is provided on a third member 126 .
 香味源128は、エアロゾルに香味を付与するためのコンポーネントである。香味源128は、エアロゾル流路121の途中に配置される。霧化部118によって生成されたエアロゾルと空気との混合流体(以下、混合流体を単にエアロゾルと呼称する場合もある。)は、エアロゾル流路121を通って吸口部122まで流れる。このように、香味源128は、エアロゾルの流れに関して霧化部118よりも下流に設けられている。換言すれば、霧化部118よりも香味源128の方が、エアロゾル流路121の中で吸口部122に近い側に位置する。 The flavor source 128 is a component for imparting flavor to the aerosol. Flavor source 128 is arranged in the middle of aerosol channel 121 . A mixed fluid of aerosol and air generated by the atomizing section 118 (hereinafter the mixed fluid may be simply referred to as an aerosol) flows through the aerosol flow path 121 to the mouthpiece section 122 . Thus, the flavor source 128 is located downstream of the atomizer 118 with respect to the aerosol flow. In other words, the flavor source 128 is positioned closer to the mouthpiece 122 in the aerosol flow path 121 than the atomization section 118 is.
 したがって、霧化部118によって生成されたエアロゾルは、香味源128を通過してから吸口部122へ達する。エアロゾルが香味源128を通過する際、香味源128に含まれる香喫味成分がエアロゾルに付与される。一例では、吸引装置100Bが電子たばこである場合、香味源128は、刻みたばこ又はたばこ原料を粒状、シート状もしくは粉末状に成形した加工物等、たばこ由来のものであってもよい。 Therefore, the aerosol generated by the atomization section 118 reaches the mouthpiece section 122 after passing through the flavor source 128 . As the aerosol passes through the flavor source 128, the flavor and taste components contained in the flavor source 128 are imparted to the aerosol. As an example, if the inhalation device 100B is an electronic cigarette, the flavor source 128 may be derived from tobacco, such as shredded tobacco or a processed product obtained by molding tobacco raw materials into granules, sheets, or powder.
 香味源128はまた、たばこ以外の植物(例えばミントやハーブ等)から作られた非たばこ由来のものであってもよい。一例では、香味源128は、ニコチン成分を含む。香味源128は、メントール等の香料成分を含有してもよい。香味源128に加えて、リザーバ116も香喫味成分を含んだ物質を有してもよい。例えば、吸引装置100Bは、香味源128にたばこ由来の香味物質を保持し、リザーバ116には非たばこ由来の香味物質を含むように構成されてもよい。 The flavor source 128 may also be non-tobacco-derived, made from plants other than tobacco (for example, mint, herbs, etc.). In one example, flavor source 128 includes a nicotine component. Flavor source 128 may contain a perfume ingredient such as menthol. In addition to the flavor source 128, the reservoir 116 may also contain substances containing flavoring components. For example, the inhalation device 100B may be configured to hold a tobacco-derived flavorant in the flavor source 128 and a non-tobacco-derived flavorant in the reservoir 116 .
 このようにして、ユーザは、吸口部122を咥えて吸引することにより、香味が付与されたエアロゾルを含んだ空気を口腔内へ取り込むことができる。 In this way, the user can take air containing flavored aerosol into the oral cavity by holding the mouthpiece 122 and sucking.
<<2.技術的特徴>>
 本開示の実施形態に係る吸引装置100A及び100B(以下、まとめて「吸引装置100」と称することがある。)は、制御部106によって、様々な方法でその動作が制御される。以下に、本開示の実施形態による吸引装置を動作させる方法及び当該吸引装置について詳しく説明する。
<<2. Technical features>>
The operations of the suction devices 100A and 100B (hereinafter sometimes collectively referred to as “suction device 100”) according to the embodiment of the present disclosure are controlled by the control unit 106 in various ways. A method of operating a suction device and a suction device according to embodiments of the present disclosure are described in detail below.
(1)吸引成分源の残量レベルの基本推定手法
 ユーザに快適な吸引体験を提供して、ユーザに十分な香味成分が付与されたエアロゾルを継続して提供するために、リザーバ116及び/又はカプセルに格納されたエアロゾル源及び/又は香味源128の残量レベル(又は消費レベル)を適切に把握するのがよい。その際、特にユーザによるパフ動作の傾向や特性を考慮することにより、残量レベル(又は消費レベル)を更に適切に把握するのがよい。更には、残量がなくなったと判定した場合に、カートリッジ及び/又はカプセルの交換をユーザに促すのがよい。残量レベルを適切に把握するための例として、制御部106は、ユーザがパフ動作を行うのに要した累積時間を用いて、当該累積時間が所定の閾値に達しているかに基づくことが好適である。
(1) Basic method for estimating the remaining level of the inhalant source The remaining level (or consumption level) of the encapsulated aerosol source and/or flavor source 128 may be appropriately tracked. At that time, it is preferable to grasp the remaining amount level (or the consumption level) more appropriately by considering the tendency and characteristics of the user's puffing operation. Furthermore, when it is determined that the remaining amount has run out, it is preferable to prompt the user to replace the cartridge and/or capsule. As an example for appropriately grasping the remaining amount level, the control unit 106 preferably uses the accumulated time required for the user to perform the puffing action, based on whether the accumulated time reaches a predetermined threshold. is.
 例えば、カートリッジに保持された、リザーバ116内のエアロゾル源について、制御部106は、カートリッジを取り付け(メモリが0秒にリセットされ)た後、パフ動作の累積時間が所定の上限に達したときに、エアロゾル源を使い果たしたと判定してもよい。カートリッジに関し、当該所定の上限は、例えば1,000秒である。吸引装置100Bにおいては、カプセルに保持される香味源についても同様に、カプセルを取り付け(メモリが0秒にリセットされ)た後、パフ動作の累積時間が所定の上限に達したときに、香味源を使い果たしたと判定してもよい。カプセルに関し、当該所定の上限は、例えば100秒である。そして、エアロゾル源及び/又は香味源を使い果たしたと判定される場合には、これらを保持しているカートリッジ及び/又はカプセルの交換をユーザに促すように通知するのがよい。 For example, for an aerosol source in reservoir 116 that is held in a cartridge, controller 106 will detect when the cumulative time of puffing reaches a predetermined upper limit after the cartridge is installed (memory reset to 0 seconds). , may determine that the aerosol source has been exhausted. For cartridges, the predetermined upper limit is, for example, 1,000 seconds. In the inhaler 100B, the flavor source held in the capsule is also removed when the cumulative time of the puff operation reaches a predetermined upper limit after the capsule is attached (the memory is reset to 0 seconds). may be determined to have been exhausted. For capsules, the predetermined upper limit is, for example, 100 seconds. Then, when it is determined that the aerosol source and/or flavor source has been exhausted, the user may be notified to replace the cartridge and/or capsule holding them.
 これらは、ユーザによる一連のパフ動作に伴い吸引装置100が安定的にパフ動作を受け付けている間は、カートリッジ及び/又はカプセルの消費量がパフ動作期間の累積値に実質的に比例するという思想に基づいている。このことを前提とすれば、エアロゾル源及び/又は香味源の消費量を、累積時間をパラメータとして規定することができ、測定が容易となる。 These are based on the idea that the amount of cartridges and/or capsules consumed is substantially proportional to the cumulative value of the puffing period while the suction device 100 stably accepts puffing actions in accordance with a series of puffing actions by the user. is based on Given this, the consumption of the aerosol source and/or the flavor source can be defined as a parameter of cumulative time, making it easier to measure.
 図2は、カプセルに保持される香味源の消費に関する、パフ回数と、パフ動作期間及び累積パフ動作期間との関係の例を示した概略グラフである。横軸は、新規のカプセルを装着した後のパフ回数(回目)を示している。また、左の縦軸は、1回のパフ動作あたりのパフ動作期間(秒)を示し、右の縦軸は、累積パフ動作期間(秒)を示している。更に、棒グラフがパフ回数ごとに測定されるパフ動作期間(秒)を示し、折れ線グラフが累積パフ動作期間(秒)を示している。 FIG. 2 is a schematic graph showing an example of the relationship between the number of puffs, the puffing period, and the cumulative puffing period regarding the consumption of the flavor source held in the capsule. The horizontal axis indicates the number of puffs (times) after attaching a new capsule. The left vertical axis indicates the puff action period (seconds) per puff action, and the right vertical axis indicates the accumulated puff action period (seconds). Furthermore, the bar graph shows the puff duration (seconds) measured for each puff count, and the line graph shows the cumulative puff duration (seconds).
 図示された例では、1回あたりのパフ動作期間は概ね0.3秒乃至2.4秒の範囲にあり、累積パフ動作期間(秒)が100秒となるまでに65回のパフ動作を要している。つまり、カプセルに関し、パフ動作の累積時間に関する所定の上限の閾値を100秒としていた場合には、65回目のパフ動作に応じて、香味源を使い果たしたと判定されるのがよい。また、累計パフ動作期間の値に基づいて消耗レベルが算出されるのがよい。例えば、32回目のパフ動作までの累計パフ動作期間の値が50秒であれば、消耗レベルは50%(50秒/100秒×100)と推定されるのがよい。なお、吸引装置100Bの場合に、パフ動作の累積時間の上限閾値が100秒であるとは、累積100秒のパフ動作によってエアロゾル源が霧化され香味源を通過したエアロゾルの総量が、香味源が寿命に達するに足る量であるということである。ここで、香味源が寿命に達するとは、エアロゾル源が消費され霧化されたエアロゾルに、十分な香味を付与できない状態になることを意味する。 In the illustrated example, the duration of one puff operation is approximately in the range of 0.3 seconds to 2.4 seconds, and 65 puff operations are required until the cumulative puff operation duration (seconds) reaches 100 seconds. are doing. In other words, if the predetermined upper limit threshold for the cumulative time of puffing is set to 100 seconds for the capsule, it may be determined that the flavor source has been exhausted in response to the 65th puffing. Further, it is preferable that the consumption level is calculated based on the value of the accumulated puff operation period. For example, if the value of the cumulative puff action period up to the 32nd puff action is 50 seconds, the consumption level should be estimated to be 50% (50 seconds/100 seconds×100). Note that, in the case of the suction device 100B, the upper limit threshold value of the cumulative time of the puff action being 100 seconds means that the total amount of aerosol that has passed through the flavor source after the aerosol source has been atomized by the cumulative puff action of 100 seconds is equal to the flavor source. is sufficient to reach the end of life. Here, that the flavor source reaches the end of its life means that the aerosol source is consumed and the atomized aerosol cannot be imparted with sufficient flavor.
 以下において、発明者が得た深い知見に基づき、前述の残量レベルの基本推定手法よりも、より精度が高い手法が提案される。発明者による実験によれば、累積パフ動作期間を残量レベルに関連付けて推定する手法を用いる場合、エアロゾル源の霧化特性に基づいてパフ動作期間の値を補正する制御手法を組み込むことにより、推定精度を更に向上できることが判明している。 In the following, based on the deep knowledge that the inventors have obtained, a method with higher accuracy than the above-mentioned basic method of estimating the remaining amount level is proposed. According to experiments by the inventors, when using the method of estimating the cumulative puff operation period in relation to the remaining amount level, by incorporating a control method that corrects the value of the puff operation period based on the atomization characteristics of the aerosol source, It has been found that the estimation accuracy can be further improved.
(2)エアロゾル源の霧化特性
 図3及び図4は、吸引装置100を使用したユーザのパフ動作に関する、エアロゾル源の霧化特性を示す概略グラフである。これらのグラフに基づくことにより、吸引装置100の霧化現象におけるエアロゾル源の基礎的な霧化特性を特定することができる。
(2) Aerosol Source Atomization Characteristics FIGS. 3 and 4 are schematic graphs showing the aerosol source atomization characteristics with respect to a user's puffing action using the inhalation device 100. FIG. Based on these graphs, the fundamental atomization characteristics of the aerosol source in the atomization phenomenon of the suction device 100 can be identified.
 図3に示されるグラフは、サンプル香味源を用いた吸引装置100の霧化現象に関し、1回のパフ動作あたりのパフ動作期間と霧化量との関係の例を示している。横軸は、1回のパフ動作あたりのパフ動作期間(秒)を示している。具体的には、パフ動作期間は、パフ動作開始時から終了時までの間の期間である。縦軸は、1回のパフ動作あたりの霧化量、つまりエアロゾル源の消費量(mg/パフ動作)を示している。具体的には、当該霧化量は、パフ動作開始時のエアロゾル源の重量から、パフ動作終了時のエアロゾル源の重量を差し引いた量である。 The graph shown in FIG. 3 relates to the atomization phenomenon of the inhaler 100 using the sample flavor source, and shows an example of the relationship between the puff operation period per puff operation and the amount of atomization. The horizontal axis indicates the puff operation period (seconds) per puff operation. Specifically, the puff operation period is a period from the start of the puff operation to the end of the puff operation. The vertical axis indicates the amount of atomization per puff action, that is, the consumption of the aerosol source (mg/puff action). Specifically, the atomization amount is the amount obtained by subtracting the weight of the aerosol source at the end of the puff action from the weight of the aerosol source at the start of the puff action.
 より詳細には、横軸のパフ動作期間は、吸引センサによってパフ動作開始時とパフ動作終了時とを検知し、パフ動作開始時から終了時までの間の継続的な期間をタイマで測定することによりデータを取得することができる。また、縦軸の霧化量は、パフ動作開始時とパフ動作終了時とのエアロゾル源の重量を、例えば重量センサで測定し、その差分を算出することよってデータを取得することができる。 More specifically, the puff operation period on the horizontal axis detects the start and end of the puff operation with the suction sensor, and measures the continuous period from the start of the puff operation to the end of the puff operation with a timer. Data can be obtained by The atomization amount on the vertical axis can be obtained by measuring the weight of the aerosol source at the start of the puff operation and at the end of the puff operation, for example, by a weight sensor, and calculating the difference.
 図3には、霧化現象において測定された13個のサンプル点がプロットされている。また、これら13個のサンプル点に基づく実際の霧化曲線(実線)と、理論上の霧化直線(破線)とが示されている。理論上の霧化直線は、原点と、原点から最も離れた(パフ動作期間が最も大きい2.4秒の)サンプル点とを結ぶことで作成されている。これは、パフ動作において霧化量は吸引時間に比例して増加するとの思想に基づいている。 In FIG. 3, 13 sample points measured in the atomization phenomenon are plotted. Also shown are the actual atomization curve (solid line) and the theoretical atomization straight line (dashed line) based on these 13 sample points. A theoretical atomization line is created by connecting the origin and the sample point furthest from the origin (2.4 seconds with the longest puff action period). This is based on the idea that the atomization amount increases in proportion to the suction time in the puffing operation.
 図示されるように、実際の霧化曲線と理論上の霧化直線とを比較すると、両者には乖離が見られる。具体的には、実際の霧化曲線は、理論上の霧化直線とは異なり、パフ動作期間と実際の霧化量とは比例していない。特に、パフ動作期間が約2.4秒までに関しては、少なくとも、実際の霧化量は理論上の霧化量よりも小さい。更に詳細には、両者の間の差分は、パフ動作期間が約1秒までは時間と共に増加し(差分1)、その後は時間と共に減少している(差分2)。これは、吸引装置100の霧化現象において、パフ動作の開始時にヒータの加熱を開始してから霧化可能な好適温度に達するまでの間に、一定の立ち上がり時間を要していること等に因る。 As shown in the figure, when comparing the actual atomization curve and the theoretical atomization straight line, there is a discrepancy between the two. Specifically, unlike the theoretical atomization line, the actual atomization curve is not proportional to the puff action period and the actual amount of atomization. In particular, at least for puffing durations up to about 2.4 seconds, the actual amount of atomization is less than the theoretical amount of atomization. More specifically, the difference between the two increases with time (difference 1) until the puff action period is about 1 second, and then decreases with time (difference 2). This is because, in the atomization phenomenon of the suction device 100, a certain rising time is required from the start of heating of the heater at the start of the puff operation until the temperature reaches a suitable temperature for atomization. It depends.
 図4に示されるグラフは、サンプル香味源を用いた吸引装置100の霧化現象に関する、連続する2回のパフ動作の間の動作間隔と、連続する2回のパフ動作を通じて霧化された霧化量との関係の例を示している。横軸は、連続する2回のパフ動作間のパフ動作間隔(秒)を示している。具体的には、パフ動作間隔は、1回目のパフ動作終了時から、その次の2回目のパフ動作開始時までの期間である。縦軸は、連続する2回のパフ動作を通じて霧化されたエアロゾル源の霧化量、つまり、消費量(mg/2パフ動作)を示している。具体的には、エアロゾル源の霧化量は、1回目のパフ動作開始時のエアロゾル源の重量から、2回目のパフ動作終了時のエアロゾル源の重量を差し引いた量である。 The graph shown in FIG. 4 illustrates the atomization phenomenon of the inhalation device 100 using the sample flavor source, the actuation interval between two consecutive puffs, and the mist atomized through two consecutive puffs. 4 shows an example of the relationship with quantification. The horizontal axis indicates the puff interval (seconds) between two consecutive puffs. Specifically, the puff operation interval is a period from the end of the first puff operation to the start of the second puff operation. The vertical axis indicates the atomized amount of the aerosol source atomized through two consecutive puffs, ie consumption (mg/2 puffs). Specifically, the atomization amount of the aerosol source is the amount obtained by subtracting the weight of the aerosol source at the end of the second puff operation from the weight of the aerosol source at the start of the first puff operation.
 より詳細には、パフ動作間隔は、吸引センサによってパフ動作開始時とパフ動作終了時とを検知し、1回目のパフ動作終了時から、その次の2回目のパフ動作開始時までの間の時間をタイマで測定することよって、データを取得することができる。また、霧化量は、1回目のパフ動作開始時と2回目のパフ動作終了時とのエアロゾル源の重量とを、例えば重量センサによって測定し、その差分を算出することよってデータを取得することができる。 More specifically, the puff operation interval is the time between the start of the puff operation and the end of the puff operation detected by the suction sensor, and the interval from the end of the first puff operation to the start of the second puff operation. Data can be obtained by measuring time with a timer. In addition, the atomization amount can be obtained by measuring the weight of the aerosol source at the start of the first puff operation and the weight of the aerosol source at the end of the second puff operation, for example, by a weight sensor, and calculating the difference. can be done.
 図4には、霧化現象において測定された9個のサンプル点がプロットされている。そして、パフ動作間隔が約10秒以下である7個のデータに関し、パフ動作間隔を説明変数に、霧化量を目的変数にした線形回帰による回帰直線が示されている。図示されるように、ここでは負の相関が生じていることが理解される。つまり、実際の霧化現象では、パフ動作間隔が短いほど、霧化されるエアロゾル源の霧化量も大きくなっている(約8.8mg~約9.3mg)。他方、パフ動作間隔が約10秒より大きい場合は、エアロゾル源の霧化量は概ね一定であり、安定している(約8.1mg:点線)。これは、吸引装置100の霧化現象において、パフ動作間隔が10秒以下と短い場合は、直前のパフ動作で加熱されたヒータが十分に冷却されておらず余熱が残存するので、直後のパフ動作の開始時に、ヒータの立ち上がり時間が通常よりも早くなること等に因る。これにより、パフ動作間隔が10秒以降となる安定状態と比べて、霧化量が大きくなる。  9 sample points measured in the atomization phenomenon are plotted in FIG. For seven pieces of data with a puffing interval of about 10 seconds or less, a regression line is shown by linear regression using the puffing interval as an explanatory variable and the atomization amount as an objective variable. As illustrated, it is understood that a negative correlation occurs here. In other words, in the actual atomization phenomenon, the shorter the puff operation interval, the larger the atomized amount of the aerosol source to be atomized (approximately 8.8 mg to approximately 9.3 mg). On the other hand, when the puff interval is greater than about 10 seconds, the atomized amount of the aerosol source is generally constant and stable (about 8.1 mg: dashed line). This is because, in the atomization phenomenon of the suction device 100, if the puff operation interval is as short as 10 seconds or less, the heater heated by the immediately preceding puff operation is not sufficiently cooled and residual heat remains. This is due to, for example, the rise time of the heater being earlier than usual at the start of operation. As a result, the atomization amount is greater than in the stable state where the puff operation interval is 10 seconds or longer.
 このように、エアロゾル源の霧化現象に関し、エアロゾル源の2つの霧化特性を予め特定して、残量レベルの推定の制御に反映するのがよい。具体的には、当該2つの霧化特性に基づいてパフ動作期間の値を補正する制御手法を組み込むことにより、エアロゾル源の残量及び/又は香味源の残量の推定精度を更に高めることができる。以下に、エアロゾル源の2つの霧化特性(霧化特性1,2)を纏めておく。 In this way, regarding the atomization phenomenon of the aerosol source, it is preferable to specify the two atomization characteristics of the aerosol source in advance and reflect them in the control of the estimation of the remaining amount level. Specifically, by incorporating a control technique that corrects the value of the puff operation period based on the two atomization characteristics, the accuracy of estimating the remaining amount of aerosol source and/or the remaining amount of flavor source can be further improved. can. Two atomization properties of the aerosol source (atomization properties 1 and 2) are summarized below.
〔霧化特性1〕 霧化特性1は、パフ動作のサンプル動作期間と霧化量との関係に基づいて特定される(図3)。ここでは、実際のエアロゾル源の霧化量は理論上の霧化量よりも小さい。また、パフ動作期間が約1秒以下の場合、パフ動作期間の大きさと共に理論値と測定値との差分が増加する。その一方で、パフ動作期間が約1秒以上の場合は、パフ動作期間の大きさと共に理論値と測定値との差分が減少する。何れの場合も、実際のパフ動作期間の値をそのまま残量レベルの推定に適用すると、実際よりも大きい霧化量が見積られることになり得るので、パフ動作期間の値を幾らか小さく補正して、エアロゾル源の残量レベルを推定するのがよい。 [Atomization characteristic 1] Atomization characteristic 1 is specified based on the relationship between the sample operation period of the puff operation and the atomization amount (Fig. 3). Here, the actual atomization of the aerosol source is less than the theoretical atomization. Also, when the puffing period is less than about 1 second, the difference between the theoretical value and the measured value increases as the puffing period increases. On the other hand, when the puffing period is about 1 second or longer, the difference between the theoretical value and the measured value decreases as the puffing period increases. In either case, if the actual puff operation period value is applied to the estimation of the remaining amount level as it is, an atomization amount larger than the actual amount may be estimated, so the puff operation period value is corrected somewhat smaller. should be used to estimate the residual level of the aerosol source.
 同様に、前述のとおり、実際のエアロゾル源の霧化量は理論上の霧化量よりも小さい。つまり、カートリッジ104とカプセル126とが別要素である吸引装置100Bの場合に関し、カプセル126に保持される香味源を通過する実際のエアロゾルの量は理論上のエアロゾル量よりも小さい。すなわち、パフ動作期間の値を幾らか小さく補正して香味源の残量レベルを推定する構成を採用することにより、エアロゾル源の残量及び香味源の残量の推定精度を更に高めることができる。 Similarly, as mentioned above, the actual atomization amount of the aerosol source is smaller than the theoretical atomization amount. That is, for inhalation device 100B in which cartridge 104 and capsule 126 are separate elements, the actual amount of aerosol that passes through the flavor source held in capsule 126 is less than the theoretical amount of aerosol. That is, by adopting a configuration in which the remaining amount of the flavor source is estimated by correcting the value of the puff operation period to a small value, the accuracy of estimating the remaining amount of the aerosol source and the remaining amount of the flavor source can be further improved. .
〔霧化特性2〕 霧化特性2は、連続する2回のパフ動作間のサンプル動作間隔とエアロゾル源の霧化量との関係に基づいて特定される(図4)。ここでは、パフ動作間隔が約10秒以下の場合、パフ動作間隔とエアロゾル源の霧化量との間に負の相関が生じるので、パフ動作間隔が大きくなると、エアロゾル源の霧化量が減少する。つまり、パフ動作間隔が10秒以下の場合、実際のパフ動作期間の値をそのまま残量レベルの推定に適用すると、実際よりも小さい霧化量が見積られることにもなり得る。すなわち、パフ動作期間の値を幾らか大きく補正して、エアロゾル源の残量レベルを推定するのがよい。 [Atomization characteristic 2] Atomization characteristic 2 is specified based on the relationship between the sample operation interval between two consecutive puff operations and the atomization amount of the aerosol source (Fig. 4). Here, when the puff operation interval is about 10 seconds or less, a negative correlation occurs between the puff operation interval and the atomization amount of the aerosol source. do. That is, when the puff operation interval is 10 seconds or less, if the actual puff operation period value is applied as it is to estimate the remaining amount level, an atomization amount smaller than the actual amount may be estimated. That is, the value of the puff duration should be corrected somewhat higher to estimate the remaining level of the aerosol source.
 同様に、前述のとおり、パフ動作間隔が10秒以下(又は10秒より小さい)の場合、実際のパフ動作期間の値をそのまま残量レベルの推定に適用すると、実際よりも小さい霧化量が見積られることにもなり得る。つまり、吸引装置100Bのカートリッジ104とカプセル126が別要素の場合に関し、カプセル126に保持される香味源を通過するエアロゾルの量が実際よりも小さく見積られることにもなり得る。そこで、パフ動作期間の値を幾らか大きく補正して、香味源の残量レベルを推定する構成を採用することにより、エアロゾル源の残量及び香味源の残量の推定精度を更に高めることができる。 Similarly, as described above, when the puff operation interval is 10 seconds or less (or less than 10 seconds), if the actual puff operation period value is directly applied to the estimation of the remaining amount level, the atomization amount will be smaller than the actual amount. It can also be estimated. That is, in the case where the cartridge 104 and the capsule 126 of the inhaler 100B are separate elements, the amount of aerosol passing through the flavor source held in the capsule 126 may be underestimated. Therefore, by correcting the value of the puff operation period to some extent and adopting a configuration for estimating the remaining level of the flavor source, it is possible to further improve the accuracy of estimating the remaining amount of the aerosol source and the remaining amount of the flavor source. can.
 パフ動作におけるエアロゾル源の霧化特性1,2を基礎とすることにより、本実施形態に係る吸引装置100は、検知されたパフ動作が継続している時間である検知時間を動的に補正することを通じて、残量レベルを正確に推定するように構成される。つまり、実際に検知されたパフ動作の検知時間と比べて、更に正確なパフ動作期間や累積パフ動作期間を見積もることができ、香味源及び/又はエアロゾル源について適切な残量レベルの推定を実現する。これにより、カートリッジ及び/又はカプセルの適切な消耗レベル推定、交換判断、及び通知を実現することができる。 Based on the atomization characteristics 1 and 2 of the aerosol source in the puff action, the suction device 100 according to the present embodiment dynamically corrects the detection time, which is the duration of the detected puff action. through which the fuel level is accurately estimated. In other words, it is possible to estimate a more accurate puffing duration or a cumulative puffing duration compared to the detection time of the puffing that is actually detected, and to achieve an estimation of the appropriate remaining level of the flavor source and/or the aerosol source. do. This makes it possible to realize appropriate consumption level estimation, replacement determination, and notification of cartridges and/or capsules.
(3)霧化特性に基づいて定義される時間補正モデル
 図5乃至図9を参照して、エアロゾル源の霧化特性1a,2aにしたがって、検知されたパフ動作の検知時間を補正する時間補正モデル1A,2A,MDのそれぞれの生成手法について説明する。エアロゾル源の霧化特性1a,2aは、前述の霧化特性1,2に対し、更に考察を加えて定義されたものである。図5及び図7は、エアロゾル源の霧化特性1a,2aをそれぞれ説明するための概略図である。図6A及び図6Bは、エアロゾル源の霧化特性1aに基づく時間補正モデル1AID,1Aをそれぞれ説明するための概略図である。図8は、エアロゾル源の霧化特性2aに基づく時間補正モデル2Aを説明するための概略図である。図9は、エアロゾル源の霧化特性1a,2aに基づく時間補正モデルMDを説明するための概略図である
(3) Time correction model defined based on atomization characteristics Referring to FIGS. 5 to 9, time correction for correcting the detection time of the detected puff action according to the atomization characteristics 1a and 2a of the aerosol source. A method of generating each of the models 1A, 2A, and MD will be described. The atomization characteristics 1a and 2a of the aerosol source are defined with further considerations for the atomization characteristics 1 and 2 described above. 5 and 7 are schematic diagrams for explaining the atomization characteristics 1a and 2a of the aerosol source, respectively. FIGS. 6A and 6B are schematic diagrams for explaining the time correction models 1A ID and 1A based on the atomization characteristics 1a of the aerosol source, respectively. FIG. 8 is a schematic diagram for explaining the time correction model 2A based on the atomization characteristics 2a of the aerosol source. FIG. 9 is a schematic diagram for explaining the time correction model MD based on the atomization characteristics 1a and 2a of the aerosol source.
〔霧化特性1aに基づく時間補正モデル1A〕
 前述のエアロゾル源の霧化特性1に基づき、霧化特性1aが更に定義される。図5は、図3に示されるエアロゾル源の霧化特性1と同様、パフ動作期間と、エアロゾル源(及び/又は香味源)の霧化量との13個のサンプル点を用いて実際の霧化線を折れ線で示したグラフであり、霧化特性1aを構成する。サンプル点における霧化量の値は、実験により、所定のパフ動作期間ごとに、複数回にわたりエアロゾル源の霧化量を測定して、その平均を算出したものである。
[Time Correction Model 1A Based on Atomization Characteristics 1a]
Based on the atomization property 1 of the aerosol source described above, the atomization property 1a is further defined. Similar to the aerosol source atomization profile 1 shown in FIG. 3, FIG. It is a graph showing the atomization line with a polygonal line, and constitutes the atomization characteristic 1a. The value of the atomized amount at the sample point is obtained by measuring the atomized amount of the aerosol source a plurality of times during each predetermined puff operation period by experiment, and calculating the average of the values.
 前述の霧化特性1で考察したように、実際のエアロゾル源の霧化量は理論上の霧化量よりも小さい。つまり、実際のパフ動作期間の値をそのまま残量レベルの推定に適用して理想値で計算すると、実際よりも大きく霧化量が見積られることになり得、見積もりに対して多くの量のエアロゾル源が余ってしまうことがある。すなわち、パフ動作期間の値を幾らか小さく補正した上で、残量レベルの推定に用いるのがよい。なお、エアロゾル源の霧化特性1(図3)にしたがい、ここでも、パフ動作期間の最大値を2.4秒としている。2.4秒は、吸引装置においてエアロゾル源の消費効率が最も高い値である。しかしながら、この値は一例に過ぎず、吸引装置のデバイス特性及び/又は設計にしたがいエアロゾル源の消費効率が最も高い理想値を設定するのがよい。 As discussed in atomization characteristic 1 above, the actual atomization amount of the aerosol source is smaller than the theoretical atomization amount. In other words, if the actual value of the puff operation period is applied as it is to estimate the remaining amount level and the ideal value is calculated, the atomization amount may be estimated larger than the actual amount, resulting in a large amount of aerosol compared to the estimate. You may run out of sources. That is, it is preferable to correct the value of the puff operation period to be somewhat smaller and then use it for estimation of the remaining amount level. According to the atomization characteristic 1 (FIG. 3) of the aerosol source, the maximum value of the puff operation period is also set to 2.4 seconds. 2.4 seconds is the most efficient consumption of the aerosol source in the suction device. However, this value is only an example, and it is preferable to set an ideal value that maximizes the consumption efficiency of the aerosol source according to the device characteristics and/or design of the suction device.
 図6Aは、エアロゾル源の霧化特性1aに基づく時間補正モデル1AIDの例を示している。時間補正モデル1AIDは、図5に示された、実験による霧化特性1aに対応しており、つまり、理想的な時間補正モデルである。図6Aのグラフでは、横軸(x軸)はパフ動作期間(秒)を、縦軸(y軸)はパフ動作期間に対する補正後パフ動作期間(秒)を示している。 FIG. 6A shows an example of a time correction model 1A ID based on the atomization properties 1a of an aerosol source. The time correction model 1A ID corresponds to the experimental atomization characteristic 1a shown in FIG. 5, ie it is an ideal time correction model. In the graph of FIG. 6A, the horizontal axis (x-axis) indicates the puff operation period (seconds), and the vertical axis (y-axis) indicates the corrected puff operation period (seconds) with respect to the puff operation period.
 具体的には、補正後パフ動作期間は、図5の霧化特性1aにしたがい、エアロゾル源の消費効率が最も高い理想値である2.4秒を基準にして、所定のパフ動作期間ごとの相対的な霧化量の比率にしたがって決定するのがよい。例えば、図5の霧化特性1aにおいて、パフ動作期間が2.4秒であるときの霧化量をA2.4mgとし、パフ動作期間1.2秒であるときの霧化量をA1.2 mgとする。この場合、図6Aにおいて、例えばパフ動作期間(x)が1.2秒であるときの補正後パフ動作期間(y)は、2.4×A1.2/A2.4で算出されるのがよい。 Specifically, the post-correction puff operation period is set at 2.4 seconds, which is the ideal value for the highest consumption efficiency of the aerosol source, according to the atomization characteristic 1a in FIG. It is better to decide according to the relative atomization ratio. For example, in the atomization characteristic 1a of FIG. 5, the atomization amount when the puff operation period is 2.4 seconds is A 2.4 mg, and the atomization amount when the puff operation period is 1.2 seconds is A 1.2 mg. In this case, in FIG. 6A, for example, when the puff operation period (x) is 1.2 seconds, the corrected puff operation period (y) is calculated by 2.4×A 1.2 /A 2.4 It's good.
 図6Bは、霧化特性1aに基づく時間補正モデル1Aの例を示している。時間補正モデル1Aは、図6Aが理想的な時間補正モデル1AIDであるのに対し、理論的に数式で規定される。図6Bのグラフでは、図6Aと同様、横軸(x軸)はパフ動作期間(秒)を、縦軸(y軸)はパフ動作期間に対する補正後パフ動作期間(秒)を示している。つまり、図6Bの時間補正モデル1Aは、パフ動作期間に基づくモデルである。そして、パフ動作期間(x)が2.4秒であるときに補正後パフ動作期間(y)の値を2.4秒に維持するように、0<x≦2.4の範囲で、図6Aの時間補正モデル1AIDと相関する関数が規定される。 FIG. 6B shows an example of the time correction model 1A based on the atomization characteristics 1a. The time correction model 1A is theoretically defined by a formula while FIG. 6A is the ideal time correction model 1A ID . In the graph of FIG. 6B, as in FIG. 6A, the horizontal axis (x-axis) indicates the puff operation period (seconds), and the vertical axis (y-axis) indicates the corrected puff operation period (seconds) with respect to the puff operation period. In other words, the time correction model 1A in FIG. 6B is a model based on the puff action period. Then, when the puffing period (x) is 2.4 seconds, the value of the corrected puffing period (y) is maintained at 2.4 seconds in the range of 0<x≦2.4. A function is defined that correlates with the time correction model 1A ID of 6A.
 具体的には、図6Bに示すように、x=T10のときにy=0となる定数T10を導入する。これにより、時間補正モデル1Aの関数y=C10(x)は、
・0<x≦T10の場合、
 y=0
・T10<x≦2.4の場合、
 y=m(x-T10)  (但し、m>1)
という、パフ動作期間(x)に基づく2つの線形関数で表される(数式1)。ここで、傾きm(>1)は、m=2.4/(2.4-T10)の式で予め決定され、メモリ114に設定される。
Specifically, as shown in FIG. 6B, a constant T10 is introduced such that y=0 when x= T10 . As a result, the function y=C 10 (x) of the time correction model 1A is
・If 0<x≦T 10 ,
y=0
・If T 10 < x ≤ 2.4,
y=m(x−T 10 ) (where m>1)
are represented by two linear functions based on the puff operation period (x) (Equation 1). Here, the slope m (>1) is determined in advance by the formula m=2.4/(2.4−T 10 ) and set in the memory 114 .
 このようにパフ動作期間に基づく時間補正モデル1Aを適用することにより、パフ動作期間(x)の値に対し、補正後パフ動作期間(y)の値が減少するように補正が行われる。すなわち、パフ動作期間(x)の値を、理想的な時間補正モデル1AID(破線)に近づくように適宜補正することができる。なお、定数T10は1.0未満の値とするのがよい。具体的には、吸引装置100のデバイス特性も考慮して実験的に取得し、メモリ114に設定するのがよい。ここでのデバイス特性とは、これに限定されないが、カートリッジ特性、ヒータ加熱特性、マウスピース及び/又はカプセル内にエアロゾル源が付着することによる損失特性を含むのがよい。 By applying the time correction model 1A based on the puff operation period in this way, the value of the puff operation period (x) is corrected so that the value of the post-correction puff operation period (y) is decreased. That is, the value of the puff operation period (x) can be appropriately corrected so as to approach the ideal time correction model 1A ID (broken line). Note that the constant T10 is preferably set to a value less than 1.0. Specifically, it is preferable to experimentally acquire the device characteristics of the suction device 100 and set them in the memory 114 . Device characteristics herein may include, but are not limited to, cartridge characteristics, heater heating characteristics, loss characteristics due to attachment of the aerosol source within the mouthpiece and/or capsule.
 ここで、パフ動作期間(x)の値がT10の近辺では、時間補正モデル1Aによる補正後パフ動作期間(y)の値が時間補正モデル1AID(点線)によるものよりも小さくなる。しかしながら、発明者による実験によれば、ユーザによるパフ動作において1.0秒未満となるようなパフ動作期間は稀であり想定しにくいことが判明している。つまり、T10が1.0未満の値で設定されるのであれば、補正による影響はそもそも想定する必要もない(後述)。 Here, when the value of the puff action period (x) is around T10 , the value of the puff action period (y) after correction by the time correction model 1A is smaller than that by the time correction model 1A ID (dotted line). However, according to experiments by the inventors, it has been found that a puffing period of less than 1.0 second is rare and difficult to imagine. In other words, if T10 is set to a value less than 1.0, there is no need to assume the influence of the correction in the first place (described later).
〔霧化特性2aに基づく時間補正モデル2A〕
 前述のエアロゾル源の霧化特性2に基づき、霧化特性2aが更に定義される。図7は、図4に示されるエアロゾル源の霧化特性2と同様、所定の連続する2回のパフ動作間隔とエアロゾル源(及び/又は香味源)の霧化量との5個のサンプル点を用いて実際の霧化線を折れ線で示したグラフであり、霧化特性2aを構成する。サンプル点における霧化量の値は、実験により、2秒のパフ動作間隔ごとに、エアロゾル源の霧化量を測定したものである。パフ動作間隔は、センサ及びタイマによって測定される。なお、図7において、パフ動作期間は2.4秒に固定して測定している。
[Time Correction Model 2A Based on Atomization Characteristics 2a]
Based on the atomization properties 2 of the aerosol source described above, the atomization properties 2a are further defined. FIG. 7 is similar to the aerosol source atomization profile 2 shown in FIG. is a graph showing an actual atomization line using a polygonal line, which constitutes an atomization characteristic 2a. The atomization value at a sample point was experimentally determined by measuring the atomization of the aerosol source at each 2 second puffing interval. The puffing interval is measured by a sensor and a timer. In FIG. 7, the puff operation period is fixed at 2.4 seconds and measured.
 ここで、パフ動作間隔に対するエアロゾル源の霧化量は、デバイス特性に因るところも大きく、個体差が大きい。そこで、図7の例では、3個の個体(個体1乃至個体3)を用いて測定したものを個別にプロットしている。また、エアロゾル源の霧化特性2(図4)にしたがい、ここでも、連続する2つのパフ動作の間のパフ動作間隔の基準値を10秒としている。10秒は、パフ動作間隔に対し、消費されるエアロゾル源の霧化量が安定する値である。しかしながら、これは一例に過ぎず、吸引装置のデバイス特性及び/又は設定にしたがい、実験により決定される好適な値を設定するのがよい。 Here, the atomization amount of the aerosol source with respect to the puff operation interval is largely due to device characteristics, and individual differences are large. Therefore, in the example of FIG. 7, the values measured using three individuals (individuals 1 to 3) are individually plotted. Again, according to the atomization characteristic 2 of the aerosol source (FIG. 4), the reference value for the puff interval between two consecutive puffs is 10 seconds. Ten seconds is the value at which the amount of atomization of the aerosol source consumed is stable for the puffing interval. However, this is only an example, and suitable values determined experimentally should be set according to the device characteristics and/or settings of the suction apparatus.
 前述の霧化特性2で考察したように、パフ動作間隔の値が約10秒より小さい場合、パフ動作間隔とエアロゾル源(及び/又は香味源)の霧化量との間には負の相関が生じる。つまり、パフ動作間隔が大きくなると、エアロゾル源の霧化量が減少することになる。具体的には、パフ動作間隔の値が10秒より小さい場合、実際のパフ動作期間の値をそのまま残量レベルの推定に適用すると、実際よりも小さい霧化量が見積られることにもなり得、見積もりに対してエアロゾル源が不足してしまうことがある。すなわち、パフ動作期間の値を幾らか大きく補正した上で、残量レベルの推定に用いるのがよい。 As discussed in Atomization Feature 2 above, there is a negative correlation between the puff interval and the amount of atomization of the aerosol source (and/or flavor source) for puff interval values of less than about 10 seconds. occurs. That is, as the puff interval increases, the atomization amount of the aerosol source decreases. Specifically, when the value of the puff operation interval is less than 10 seconds, if the actual puff operation period value is applied as it is to estimate the remaining amount level, an atomization amount smaller than the actual amount may be estimated. , there may be a shortage of aerosol sources for estimates. In other words, it is preferable to correct the value of the puff operation period to be somewhat large and then use it for estimating the remaining amount level.
 図8は、図7のエアロゾル源の霧化特性2aに基づく時間補正モデル2Aの例を示している。図8のグラフでは、横軸(v軸)は連続する2つのパフ動作の間のパフ動作間隔(秒)を、縦軸(w軸)はパフ動作期間に対する補正後差分パフ動作期間(秒)を示している。なお、図8では簡単のため、図7の霧化特性2aに示される個体1,2の2つのみのデータ群を示しており(点線及び破線)、個体3のデータ群は省略している。これら各個体のデータ群に対して、時間補正モデル2Aが規定される(実線)。 FIG. 8 shows an example of a time correction model 2A based on the atomization characteristics 2a of the aerosol source in FIG. In the graph of FIG. 8, the horizontal axis (v-axis) represents the puff interval (seconds) between two consecutive puff operations, and the vertical axis (w-axis) represents the corrected differential puff operation period (seconds) relative to the puff operation period. is shown. For simplicity, FIG. 8 shows only two data groups of individuals 1 and 2 shown in the atomization characteristic 2a of FIG. 7 (dotted line and broken line), and the data group of individual 3 is omitted. . A time correction model 2A is defined for the data group of each individual (solid line).
 具体的には、サンプル点である各個体の補正後差分パフ動作期間(秒)は、パフ動作間隔の値が10秒であることを基準として、図7に示されるような、所定のパフ動作間隔ごとの相対的な霧化量の比率にしたがって決定されるのがよい。例えば、図7の個体2の霧化特性2aにおいて、パフ動作期間が10秒であるときの霧化量をB10mgとし、パフ動作期間が2秒であるときの霧化量をB mgとする。この場合は、図8において、2秒のパフ動作間隔に対する補正後差分パフ動作期間は、10×(B10-B)/B10で算出されるのがよい。なお、パフ動作間隔の値が10秒より大きい場合には、補正後差分パフ動作期間は0に設定されるのがよい。 Specifically, the post-correction differential puff action period (seconds) of each individual, which is a sample point, is set to a predetermined puff action as shown in FIG. It may be determined according to the relative atomization rate for each interval. For example, in the atomization characteristic 2a of the individual 2 in FIG. 7, the atomization amount when the puff operation period is 10 seconds is B 10 mg, and the atomization amount when the puff operation period is 2 seconds is B 2 mg. and In this case, in FIG. 8, the post-correction differential puff operation period with respect to the puff operation interval of 2 seconds is preferably calculated by 10×(B 10 −B 2 )/B 10 . Note that if the value of the puff operation interval is greater than 10 seconds, the post-correction differential puff operation period is preferably set to zero.
 図8の時間補正モデル2Aは、連続する2つのパフ動作の間のパフ動作間隔の値に基づき、パフ動作間隔に基づいて算出される補正後差分パフ動作期間を調整時間として算出するためのものである。より詳しくは、霧化特性2aに基づく時間補正モデル2Aは、図8のvw平面(第1象限)において、複数の個体の全サンプル点(データ群)を包含する領域とそれ以外の領域とを分類する線形関数として規定するのがよい。具体的には、時間補正モデル2Aの関数w=C20(v)は、v=10のときにw=0となるように規定され、
・0<v≦10の場合、
 w=p(v-10)  (但し、p<0)
・10<vの場合、
 w=0
という、パフ動作間隔に基づく2つの線形関数で表される(数式2)。ここで、傾きp(<0)は、複数の個体のデータ群に基づき任意の手法で予め決定される定数であり、メモリ114に設定される。
The time correction model 2A of FIG. 8 is for calculating the post-correction difference puff operation period calculated based on the puff operation interval as the adjustment time based on the value of the puff operation interval between two consecutive puff operations. is. More specifically, the time correction model 2A based on the atomization characteristic 2a divides the vw plane (first quadrant) of FIG. It is better to define it as a linear function to classify. Specifically, the function w=C 20 (v) of the time correction model 2A is defined so that w=0 when v=10,
・If 0<v≦10,
w=p(v−10) (where p<0)
・If 10<v,
w = 0
is represented by two linear functions based on the puff operation interval (Equation 2). Here, the slope p (<0) is a constant determined in advance by an arbitrary method based on a data group of a plurality of individuals, and set in the memory 114 .
 このように霧化特性2aに基づく時間補正モデル2Aを適用することより、パフ動作間隔(v)の値に対し、補正後差分パフ動作期間(w)である調整時間を決定することができる。そして、時間補正モデル2Aを前述の時間補正モデル1Aと組み合わせることにより、次に説明する、霧化特性1a,2aに基づく時間補正モデルMDが規定される。 By applying the time correction model 2A based on the atomization characteristic 2a in this way, it is possible to determine the adjustment time, which is the post-correction differential puff operation period (w), for the value of the puff operation interval (v). By combining the time correction model 2A with the time correction model 1A described above, the time correction model MD based on the atomization characteristics 1a and 2a, which will be described below, is defined.
〔霧化特性1a,2aに基づく時間補正モデルMD〕
 図9は、このような霧化特性1a,2aに基づく時間補正モデルMDの例を示している。時間補正モデルMDは、時間補正モデル2Aを前述の時間補正モデル1Aと組み合わせることで定義される。つまり、時間補正モデル1Aにおける補正後パフ動作期間(y)の値に対し、更に、時間補正モデル2Aにおける補正後差分パフ動作期間が加算されることで時間補正モデルMDが定義される。
[Time correction model MD based on atomization characteristics 1a and 2a]
FIG. 9 shows an example of a time correction model MD based on such atomization characteristics 1a and 2a. The time correction model MD is defined by combining the time correction model 2A with the time correction model 1A described above. That is, the time correction model MD is defined by adding the corrected differential puff action period in the time correction model 2A to the value of the corrected puff action period (y) in the time correction model 1A.
 図9のグラフは、図6Bと同様、横軸(x軸)はパフ動作期間(秒)を、縦軸(y軸)はパフ動作期間に対する補正後パフ動作期間(秒)を示している。ここでは、パフ動作期間(x)の値が2.4秒であるときに、時間補正モデル2Aにしたがいパフ動作間隔(v)に基づいて算出される補正後差分パフ動作期間(w)の値を、調整時間bとして、2.4秒のパフ動作期間に加算する。これにより、補正後パフ動作期間(y)の値を増加するように補正することができる。このようにして、補正後パフ動作期間(y)の値を算出する時間補正モデル2Aの関数が規定される。以下では、パフ動作間隔(v)をtintで表す。 In the graph of FIG. 9, as in FIG. 6B, the horizontal axis (x-axis) indicates the puff operation period (seconds), and the vertical axis (y-axis) indicates the corrected puff operation period (seconds) with respect to the puff operation period. Here, when the value of the puff operation period (x) is 2.4 seconds, the value of the corrected differential puff operation period (w) calculated based on the puff operation interval (v) according to the time correction model 2A is added to the puffing period of 2.4 seconds as adjustment time b. Thereby, it is possible to correct so as to increase the value of the post-correction puff operation period (y). Thus, the function of the time correction model 2A for calculating the value of the post-correction puff operation period (y) is defined. In the following, the puffing interval (v) is denoted by t int .
 具体的には、霧化特性1a,2aに基づく時間補正モデルMDの関数C30(x,tint)は、
・0<x≦T10の場合、
 y=0
・T10<x≦2.4の場合、
 y=n(x-T10
という、パフ動作期間に基づく2つの線形関数で表される(数式3)。
Specifically, the function C 30 (x,t int ) of the time correction model MD based on the atomization characteristics 1a and 2a is
・If 0<x≦T 10 ,
y=0
・If T 10 < x ≤ 2.4,
y=n(x−T 10 )
are represented by two linear functions based on the puff operation period (Equation 3).
 ここで、x=2.4のときにy=2.4+bであるので、傾きnは、数式2及び数式3に基づき、
 n=(2.4+b)/(2.4-T10
  =(2.4+p(tint-10))/(2.4-T10
の式で表される(数式4)。
Here, y = 2.4 + b when x = 2.4, so the slope n is based on equations 2 and 3,
n=(2.4+b)/(2.4−T 10 )
=(2.4+p(t int −10))/(2.4−T 10 )
(Equation 4).
 そして、数式4を数式3に代入すると、時間補正モデルMDの関数C30(x,tint)は、
・0<x≦T10の場合、
 y=0
・T10<x≦2.4の場合、
 y=((2.4+p(tint-10))/(2.4-T10))×(x-T10
となる(数式5)。前述のように、p及びT10は予め設定されている定数なので、最終的に、時間補正モデルMDの関数C30(x,tint)は、パフ動作期間x及びパフ動作間隔tintの関数として表すことができる。
Substituting Equation 4 into Equation 3, the function C 30 (x,t int ) of the time correction model MD is
・If 0<x≦T 10 ,
y=0
・If T 10 < x ≤ 2.4,
y=((2.4+p(t int −10))/(2.4−T 10 ))×(x−T 10 )
(Formula 5). As mentioned above, p and T 10 are preset constants, so ultimately the function C 30 (x,t int ) of the time correction model MD is a function of puff duration x and puff interval t int can be expressed as
 このようにして、エアロゾル源の霧化特性1a,2aに基づいて時間補正モデルMDが規定される。これにより、最終的には、数式5に示されるように、補正後パフ動作期間yは、パフ動作期間x及びパフ動作間隔tintと、定数p及びT10の各値とから算出することができる。つまり、ユーザによる吸引装置100のパフ動作をセンサ212が検知したのに応じて、当該検知されたパフ動作が継続しているパフ動作期間である検知時間を測定し、また、連続する2つのパフ動作の間の時間間隔を測定してパフ動作間隔を取得する。そして、これらの値を、数式5のパフ動作期間x及びパフ動作間隔tintに代入すれば補正後パフ動作期間が求まる。なお、定数p及びT10は、吸引装置100のデバイス特性及び/又は設計にしたがい、例えば設計時に適宜設定されるのがよい。 In this way a time correction model MD is defined based on the atomization properties 1a, 2a of the aerosol source. Ultimately, as shown in Equation 5, the corrected puffing period y can be calculated from the puffing period x, the puffing interval tint , and the constants p and T10 . can. That is, in response to the sensor 212 detecting the puffing action of the suction device 100 by the user, the detection time, which is the puffing action period during which the detected puffing action continues, is measured. Measure the time interval between movements to obtain the puff movement interval. By substituting these values for the puffing period x and the puffing interval t int in Equation 5, the corrected puffing period can be obtained. Note that the constants p and T10 are preferably set appropriately at the time of design, for example, according to the device characteristics and/or design of the suction device 100 .
(4)吸引装置による吸引成分源の残量レベルの推定に係る機能ブロック図
 図10は、本実施形態に係る吸引装置100(特に、これに具備される電源ユニット202)に関し、制御部106(206)及びセンサ212によって実装される主要な機能ブロックの例、並びにメモリ114(214)に格納される主要な情報の例を示す。
(4) Functional block diagram relating to estimation of remaining amount level of suction component source by suction device FIG. 206) and sensors 212, as well as examples of the main information stored in memory 114 (214).
 制御部206は、センサ212及びメモリ214と協働して、香味源及び/又はエアロゾル源の残量レベルの推定に関する各種動作を制御する。制御部206の機能ブロックの例は、パフ検知時間測定部206a、パフ動作間隔測定部206b、検知時間補正部206c、検知時間累積部206d、吸引成分源残量レベル推定部206e、及び通知指示部206fを含む。センサ212の機能ブロックの例は、パフ検知部212a及び出力部212bを含む。メモリ214に格納される情報の例は、カートリッジ最大消費時間情報214a、カプセル最大消費時間情報214b、時間補正モデル情報214c、及び累積検知時間情報214d等の時間情報を含む。 The control unit 206 cooperates with the sensor 212 and the memory 214 to control various operations related to estimation of the remaining level of the flavor source and/or the aerosol source. Examples of functional blocks of the control unit 206 include a puff detection time measurement unit 206a, a puff operation interval measurement unit 206b, a detection time correction unit 206c, a detection time accumulation unit 206d, an attraction component source remaining amount level estimation unit 206e, and a notification instruction unit. 206f. Examples of functional blocks of sensor 212 include puff detector 212a and output 212b. Examples of information stored in memory 214 include time information such as cartridge maximum consumption time information 214a, capsule maximum consumption time information 214b, time correction model information 214c, and cumulative detection time information 214d.
 パフ検知時間測定部206aは、パフ検知部212aで検知されたパフ動作の検知時間(期間)を測定する。具体的には、パフ検知時間測定部206aは、パフ検知部212aで検知されたパフ動作開始時から終了時までの間の期間を継続的にタイマで測定すればよい。測定された検知時間に基づいて、パフ動作期間の値が取得される。本実施形態では特に、検知時間は更に補正される。 The puff detection time measurement unit 206a measures the detection time (period) of the puff action detected by the puff detection unit 212a. Specifically, the puff detection time measurement unit 206a may continuously measure the period from the start of the puff operation detected by the puff detection unit 212a to the end thereof using a timer. Based on the measured sensing time, a value for the puffing duration is obtained. Especially in this embodiment, the detection time is further corrected.
 パフ動作間隔測定部206bは、連続する2回のパフ動作の間の時間間隔を測定する。具体的には、パフ動作間隔測定部206bは、パフ検知部212aで検知された連続する2回のパフ動作のうち1回目のパフ動作終了時から、その次の2回目のパフ動作開始時までの間の時間を継続的にタイマで測定すればよい。測定された時間間隔に基づいて、パフ動作間隔が取得される。 The puff operation interval measurement unit 206b measures the time interval between two consecutive puff operations. Specifically, the puff operation interval measurement unit 206b measures the interval from the end of the first puff operation out of two consecutive puff operations detected by the puff detection unit 212a to the start of the second puff operation. The time between is continuously measured by a timer. A puffing interval is obtained based on the measured time interval.
 検知時間補正部206cは、パフ動作におけるエアロゾル源の霧化特性1a,2aに基づいて規定される時間補正モデルMDにしたがい、パフ動作の検知時間を補正する。前述のとおり、時間補正モデルMDは、パフ動作間隔及びパフ動作期間に関連付けられる。 The detection time correction unit 206c corrects the detection time of the puff action according to the time correction model MD defined based on the atomization characteristics 1a and 2a of the aerosol source in the puff action. As mentioned above, the time correction model MD is associated with the puff interval and the puff duration.
 検知時間累積部206dは、補正されたパフ動作の検知時間を累積して、累積検知時間を算出する。 The detection time accumulator 206d accumulates the corrected puff operation detection time to calculate the cumulative detection time.
 吸引成分源残量レベル推定部206eは、累積された検知時間に基づいて、香味源及び/又はエアロゾル源の残量レベルを推定する。また、累積検知時間が所定の閾値時間に達した場合に、香味源及び/又はエアロゾル源が残量不足であると判定する。 The suction component source remaining amount level estimation unit 206e estimates the remaining amount level of the flavor source and/or the aerosol source based on the accumulated detection time. Further, when the cumulative detection time reaches a predetermined threshold time, it is determined that the remaining amount of the flavor source and/or the aerosol source is insufficient.
 通知指示部206fは、香味源及び/又はエアロゾル源の残量レベルの推定の結果に応じて通知部108に通知動作を行うよう指示する。特に、吸引成分源残量レベル推定部206eが残量不足であると判定した場合には、これに応じて、通知部108に残量不足を通知させる。 The notification instruction unit 206f instructs the notification unit 108 to perform a notification operation according to the estimation result of the remaining amount level of the flavor source and/or the aerosol source. In particular, when the attraction component source remaining amount level estimating unit 206e determines that the remaining amount is insufficient, the notifying unit 108 is notified of the remaining amount shortage accordingly.
 また、パフ検知部212aは、例えば、マイクロフォン・コンデンサのような吸引センサを使用して、ユーザによる一連のパフ動作、及び/又は非パフ動作を検知する。また、出力部212bは、センサ212によって検知された各種情報を制御部206に出力するか、或いはメモリ214に格納する。 The puff detection unit 212a also detects a series of puffing and/or non-puffing actions by the user, for example, using a suction sensor such as a microphone condenser. Also, the output unit 212 b outputs various information detected by the sensor 212 to the control unit 206 or stores the information in the memory 214 .
 メモリ214に格納される情報に関し、カートリッジ最大消費時間情報214aは、カートリッジのリザーバ116に保持されるエアロゾル源及び/又は香味源の最大消費量に対応する時間情報(例えば、1,000秒)である。 Regarding the information stored in memory 214, cartridge maximum consumption time information 214a is time information (eg, 1,000 seconds) corresponding to the maximum consumption of the aerosol source and/or flavor source held in reservoir 116 of the cartridge. be.
 カプセル最大消費時間情報214bは、吸引装置100Bのカプセルに保持される香味源128の最大消費量に対応する時間情報(例えば、100秒)である。これらは、例えばカートリッジ及びカプセルの設計時にて予め設定されるのがよい。また、カプセルに保持される香味源128においては、その種別ごとに異なる値に設定されるのがよい。 The maximum capsule consumption time information 214b is time information (for example, 100 seconds) corresponding to the maximum consumption of the flavor source 128 held in the capsule of the suction device 100B. These may be preset, for example during the design of the cartridge and capsule. Also, in the flavor source 128 held in the capsule, it is preferable to set a different value for each type.
 時間補正モデル情報214cは、前述のエアロゾル源の霧化特性1a,2aに関する情報、及びエアロゾル源の霧化特性1a,2aに基づく時間補正モデルMDに関する情報を含む。例えば、時間補正モデル情報214cは、上記数式5に示された時間補正モデル2Aの関数C30(x,tint)と、計算に使用される定数p及びT10の情報とを含む。 The time correction model information 214c includes information on the aforementioned aerosol source atomization characteristics 1a, 2a and information on the time correction model MD based on the aerosol source atomization characteristics 1a, 2a. For example, the time correction model information 214c includes the function C 30 (x,t int ) of the time correction model 2A shown in Equation 5 above, and the constants p and T 10 used in the calculation.
 累積検知時間情報214dは、検知時間累積部206dで累積された累積検知時間の情報であり、ユーザによるパフ動作の都度、更新される。 The cumulative detection time information 214d is information on the cumulative detection time accumulated by the detection time accumulation unit 206d, and is updated each time the user performs a puff action.
 なお、一連のパフ動作において測定されるパフ動作期間と、連続する2回のパフ動作間隔との各値が、各パフ動作に関連付けて順次格納されてもよい。 It should be noted that each value of the puff action period measured in a series of puff actions and the interval between two successive puff actions may be associated with each puff action and stored sequentially.
(5)制御装置の動作を制御するための処理フロー
 図11乃至図14は、本実施形態に係る吸引装置100の動作を制御部206が制御する処理フローの例である。図11は、制御部206による制御動作に関する全体の処理フローの例である。図12は、図11に示された処理フローのうち、パフ動作の検知時間の累積に基づく残量レベルの推定処理に関する処理フローの例である。図13は、図12に示された処理フローのうち、パフ動作の検知時間の補正処理に関する処理フローの例である。図14は、パフ動作間隔の値の初期設定処理に関する処理フローの例である。
(5) Processing Flow for Controlling Operation of Control Device FIGS. 11 to 14 are examples of processing flows in which the control unit 206 controls the operation of the suction device 100 according to this embodiment. FIG. 11 is an example of an overall processing flow regarding control operations by the control unit 206 . FIG. 12 is an example of a processing flow relating to remaining amount level estimation processing based on accumulation of puffing detection time, among the processing flows shown in FIG. 11 . FIG. 13 is an example of a processing flow regarding correction processing of the detection time of the puff motion among the processing flows shown in FIG. 12 . FIG. 14 is an example of a processing flow regarding initial setting processing of the value of the puff operation interval.
 なお、ここに示される各処理ステップは例示に過ぎず、これに限定されずに任意の他の処理ステップが含まれてもよいし、一部の処理ステップが省略されてもよい。また、ここに示される各処理ステップの順序も例示に過ぎず、これに限定されずに任意の順序としてよく、或いは、並列的に実行されてよい場合もある。 It should be noted that each processing step shown here is merely an example, and without being limited to this, arbitrary other processing steps may be included, or some processing steps may be omitted. Also, the order of each processing step shown here is merely an example, and is not limited to this, and may be in any order, or may be executed in parallel in some cases.
 図11の処理フローが開始される際、吸引装置100の電源がオンされ、ユーザは吸引装置100を用いて一連のパフ動作を行う。或いは、吸引装置100がスリープ状態から復帰して、ユーザは吸引装置100を用いて一連のパフ動作を行う。最初にステップS10において、パフ動作間隔測定部206bは、ユーザによって「初回」のパフ動作が行われるまでの時間の測定を開始する。なお、パフ動作が「初回」であるとは、吸引装置100の電源がオンされた後、又は吸引装置100がスリープ状態から復帰した後に、最初に行われるパフ動作のことである。 When the processing flow of FIG. 11 is started, the suction device 100 is powered on, and the user uses the suction device 100 to perform a series of puffing operations. Alternatively, the suction device 100 wakes up from the sleep state, and the user uses the suction device 100 to perform a series of puffing operations. First, in step S10, the puff operation interval measurement unit 206b starts measuring the time until the user performs the "first" puff operation. Note that the “first time” puffing operation means the first puffing operation after the power of the suction device 100 is turned on or after the suction device 100 recovers from the sleep state.
 ステップS11において、制御部206は、センサのパフ検知部212aに、ユーザによる一連のパフ動作(初回のパフ動作を含む。)を検知させる。具体的には、ここでは、パフ動作がパフ検知部212aで検知されたかを判定する。 In step S11, the control unit 206 causes the puff detection unit 212a of the sensor to detect a series of puff actions (including the first puff action) by the user. Specifically, here, it is determined whether or not the puff operation is detected by the puff detection unit 212a.
 ステップS11でパフ動作が検知される場合(ステップS11:Yes)、ステップS12において、パフ動作間隔測定部206bは、実行中であるパフ動作間の時間間隔の測定を停止する。つまり、検知されたパフ動作とその直前のパフ動作(つまり、連続する2つのパフ動作)との間の時間間隔が測定され、これにより、パフ動作間隔の値が取得される。なお、初回のパフ動作に関連付けられるパフ動作間隔の値は、一例では、前述のステップS10とステップS12との間の測定時間が設定されてよい(図14において後述)。 If a puff operation is detected in step S11 (step S11: Yes), in step S12, the puff operation interval measurement unit 206b stops measuring the time interval between puff operations that are being executed. That is, the time interval between a sensed puff action and the immediately preceding puff action (ie, two consecutive puff actions) is measured to obtain a puff interval value. As an example, the value of the puff action interval associated with the first puff action may be set to the measurement time between steps S10 and S12 described above (described later in FIG. 14).
 引き続き、パフ検知時間測定部206aは、検知されたパフ動作の検知時間を測定する。具体的には、ステップS13において、パフ検知時間測定部206aはパフ動作の検知時間の測定を開始する。そして、ステップS14においてパフ検知部212aがパフ動作の終了を検知したのに応じて、ステップS15において、パフ検知時間測定部206aはパフ動作の検知時間の測定を停止する。つまり、検知時間が測定され、これにより、パフ動作が継続しているパフ動作期間の値が取得される。 Subsequently, the puff detection time measurement unit 206a measures the detection time of the detected puff action. Specifically, in step S13, the puff detection time measurement unit 206a starts measuring the detection time of the puff operation. When the puff detection unit 212a detects the end of the puff operation in step S14, the puff detection time measuring unit 206a stops measuring the detection time of the puff operation in step S15. In other words, the detection time is measured to obtain the value of the puffing period during which the puffing continues.
 なお、本実施形態では、制御部200は、ユーザによるパフ動作が検知されている間に、ヒータによる加熱動作を実行するのがよい。つまり、加熱動作の制御は、パフ動作の検知時間の測定と連動する。具体的には、パフ動作の開始が検知されると、ヒータによる加熱動作を開始すると共に、パフ動作の検知時間の測定を開始することになる(ステップS13)。そして、パフ動作の終了が検知されると、ヒータによる加熱動作を終了すると共に、パフ動作の検知時間の測定を停止することになる(ステップS15)。 Note that in the present embodiment, the control unit 200 preferably performs the heating operation with the heater while the user's puffing operation is being detected. In other words, the control of the heating operation is interlocked with the measurement of the detection time of the puffing operation. Specifically, when the start of the puffing operation is detected, the heating operation by the heater is started, and measurement of the detection time of the puffing operation is started (step S13). Then, when the end of the puffing operation is detected, the heating operation by the heater is ended and the measurement of the detection time of the puffing operation is stopped (step S15).
 次いで、ステップS16において、制御部206は、検知時間を累積することに基づく残量レベルの推定の処理を実行する(図12及び図13において後述)。 Next, in step S16, the control unit 206 executes processing for estimating the remaining amount level based on the accumulation of the detection time (described later in FIGS. 12 and 13).
 また、ステップS17において、次回検知されることになるパフ動作のために、パフ検知時間測定部206a及びパフ動作間隔測定部206bにおけるタイマの調整の処理を実行する。例えば、パフ検知時間測定部206aによってカウントされた検知時間の値と、パフ動作間隔測定部206bによってカウントされたパフ動作間隔の値とを何れも0にリセットするのがよい。 Also, in step S17, timer adjustment processing is executed in the puff detection time measurement unit 206a and the puff operation interval measurement unit 206b for the next puff operation to be detected. For example, it is preferable to reset both the value of the detection time counted by the puff detection time measurement unit 206a and the value of the puff operation interval counted by the puff operation interval measurement unit 206b to zero.
 引き続き、ステップS18において、パフ動作間隔測定部206bは測定を開始して、ステップS11に戻る。ここでは、次回パフ動作を検知するまでの間のパフ動作間の時間間隔を測定することになる。詳しくは、パフ動作間の時間間隔の測定は、ステップS14におけるパフ動作の終了の検知をトリガにして、ステップS18において開始するのがよい。そして、ステップS11におけるパフ動作の開始の検知をトリガにして、ステップS12において停止するのがよい。つまり、パフ動作間の時間間隔は、非パフ動作期間ということができる。 Subsequently, in step S18, the puff operation interval measurement unit 206b starts measurement and returns to step S11. Here, the time interval between puff actions is measured until the next puff action is detected. Specifically, the measurement of the time interval between puffing operations is preferably triggered by detection of the end of the puffing operation in step S14 and started in step S18. Then, it is preferable that detection of the start of the puffing operation in step S11 be used as a trigger to stop in step S12. That is, the time interval between puffing operations can be referred to as a non-puffing period.
 なお、ステップS11乃至ステップS18のサイクルは、少なくとも、ユーザによる一連のパフ動作の間は繰り返される。或いは、当該サイクルは、吸引装置100の電源がオフされるまでの間、又は吸引装置100がスリープ状態に遷移するまでの間、繰り返されてもよい。 Note that the cycle of steps S11 to S18 is repeated at least during a series of puff actions by the user. Alternatively, the cycle may be repeated until the suction device 100 is powered off or until the suction device 100 transitions to the sleep state.
 前述のステップS16に関し、図12及び図13を参照して、検知時間を累積することに基づく残量レベルの推定に関する処理フローについて更に説明する。ステップS16では、最初にステップS161において、パフ動作間隔測定部206bは、パフ動作間隔の値を取得する。パフ動作間隔の値は、前述のステップS18(又はステップS10)及びステップS12を通じて取得される。また、ステップS162において、パフ検知時間測定部206aは、パフ動作期間の値を取得する。パフ動作期間の値は、前述のステップS13乃至S15を通じて測定されるパフ動作の検知時間である。 Regarding step S16 described above, the processing flow for estimating the remaining amount level based on accumulating the detection time will be further described with reference to FIGS. In step S16, first, in step S161, the puffing interval measurement unit 206b acquires the value of the puffing interval. The value of the puffing interval is obtained through step S18 (or step S10) and step S12 described above. Also, in step S162, the puff detection time measurement unit 206a acquires the value of the puff operation period. The value of the puff action period is the detection time of the puff action measured through steps S13 to S15 described above.
 次いで、ステップS163において、検知時間補正部206cは、パフ動作期間及びパフ動作間隔に関連付けられた前述の時間補正モデルMD(図9)を用いて、パフ動作の検知時間を補正する。時間補正モデルMDは、吸引装置100におけるエアロゾル源の霧化特性1a,2aに基づいて規定され、時間補正モデル情報214cとしてメモリ214に格納されている。 Next, in step S163, the detection time correction unit 206c corrects the detection time of the puff action using the time correction model MD (FIG. 9) associated with the puff action period and the puff action interval. The time correction model MD is defined based on the atomization characteristics 1a and 2a of the aerosol source in the suction device 100, and is stored in the memory 214 as time correction model information 214c.
 詳しくは、図13の処理フローに示すように、パフ動作の検知時間の補正は、最初に、ステップS163aにおいて、図12のステップS161で取得済みのパフ動作間隔tintが10秒より小さいかについて判定する。当該判定処理は、図4及び図7に示されたエアロゾル源の霧化特性2,2aに関連付けられると共に、図8に示された霧化特性2aに基づく時間補正モデル2Aに関連付けられるものである。 Specifically, as shown in the processing flow of FIG. 13, the correction of the detection time of the puff action is first performed in step S163a by determining whether the puff action interval t int obtained in step S161 of FIG. 12 is smaller than 10 seconds. judge. This determination process is associated with the atomization characteristics 2 and 2a of the aerosol source shown in FIGS. 4 and 7 and with the time correction model 2A based on the atomization characteristics 2a shown in FIG. .
 ここで、実際のパフ動作の検知時間tに対する補正後の検知時間をt10_crtとする。パフ動作間隔tintが10秒より小さい場合(S163a:Yes)、補正後の検知時間は、ステップS163cにおいて、時間補正モデルMDとして規定された上記数式5に基づき、
 t10_crt=C30(t,tint
      =((2.4+p(tint-10))/(2.4-T10))×(t-T10
と算出され、次のステップS164のために出力される。
Here, the detection time after correction with respect to the detection time t of the actual puff operation is t10_crt . If the puff operation interval t int is less than 10 seconds (S163a: Yes), the detection time after correction is, in step S163c, based on Equation 5 defined as the time correction model MD,
t10_crt = C30 (t, tint )
= ((2.4+p(t int −10))/(2.4−T 10 ))×(t−T 10 )
is calculated and output for the next step S164.
 他方、パフ動作間隔tintが10秒以上である場合(S163a:No)、パフ動作間隔tintは、ステップS163bにおいて、数式2に基づいてtint=10と設定される。そして、補正後の検知時間は、次のステップS163cにおいて、数式5にtint=10として、
 t10_crt=C30(t,10)
      =(2.4/(2.4-T10))×(t-T10
と算出され、次のステップS164のために出力される。
On the other hand, if the puff interval t int is 10 seconds or more (S163a: No), the puff interval t int is set to t int =10 based on Equation 2 in step S163b. Then, in the next step S163c, the corrected detection time is obtained by setting t int =10 in Equation 5 as follows:
t10_crt = C30 (t,10)
= (2.4/(2.4- T10 )) x (t- T10 )
is calculated and output for the next step S164.
 図12に戻り、ステップS163に続き、ステップS164において、検知時間累積部206dは、ステップS163で補正された検知時間を累積することにより、累積検知時間を算出する。累計検知時間は、更新の都度、香味源及び/又はエアロゾル源に関する累計検知時間情報214dの一部としてメモリ214に格納される。 Returning to FIG. 12, following step S163, in step S164, the detection time accumulator 206d calculates the cumulative detection time by accumulating the detection time corrected in step S163. The cumulative sensing time is stored in memory 214 as part of the cumulative sensing time information 214d for the flavor source and/or aerosol source each time it is updated.
 次いで、ステップS165において、吸引成分残量レベル推定部206eは、ステップS164で算出された累積検知時間に基づいて、香味源及び/又はエアロゾル源の残量レベルを推定する。残量レベルは、今後パフ動作が許可されるパフ時間(秒)として算出されても、パフ時間の百分率(%)で算出されても任意の態様としてよい。また、累積検知時間が所定の閾値時間に達した場合に、香味源及び/又はエアロゾル源が残量不足であることを判定してもよい。所定の閾値時間は、カプセル最大消費時間情報214bの一部(例えば、100秒)及び/又はカートリッジ最大消費時間情報214aの一部(例えば、1,000秒)として予めメモリ214に格納されている。 Next, in step S165, the inhaled component remaining amount level estimation unit 206e estimates the remaining amount level of the flavor source and/or the aerosol source based on the cumulative detection time calculated in step S164. The remaining amount level may be calculated as a puff time (seconds) during which the puff operation is permitted in the future, or may be calculated as a percentage (%) of the puff time. Further, it may be determined that the remaining amount of the flavor source and/or the aerosol source is insufficient when the cumulative detection time reaches a predetermined threshold time. The predetermined threshold time is pre-stored in the memory 214 as part of the maximum capsule consumption time information 214b (eg, 100 seconds) and/or as part of the maximum cartridge consumption time information 214a (eg, 1,000 seconds). .
 最後に、ステップS166において、通知指示部206fは、ステップS165で推定された残量レベルを通知部108に通知するように指示する。例えば、LEDの点灯、ディスプレイでの表示、スピーカからの発声、バイブレータでの振動、及びこれらの任意の組み合わせによって、様々な態様の通知をユーザに対して行うのがよい。特に、ステップS165で香味源及び/又はエアロゾル源が残量不足であると判定された場合に、残量不足である旨を通知部108に通知させるのがよい。 Finally, in step S166, the notification instruction unit 206f instructs the notification unit 108 to notify the remaining amount level estimated in step S165. For example, it is preferable to notify the user in various ways by lighting an LED, displaying on a display, speaking from a speaker, vibrating with a vibrator, or any combination thereof. In particular, when it is determined in step S165 that the remaining amount of the flavor source and/or the aerosol source is insufficient, it is preferable to let the notification unit 108 notify that the remaining amount is insufficient.
 本実施形態では、残量レベルの推定の対象は、吸引装置100A,Bの構造に従って柔軟に設定することができる。具体的には、カプセル126でも、カートリッジ104でも、吸引成分源の量を時間情報に換算し、カプセル最大消費時間情報214b及び/又はカートリッジ最大消費時間情報214aとして格納さえすればよい。残量レベルの推定動作時には、制御部206はこのような時間情報だけを取り扱えばよいので、効率的である。 In this embodiment, the target for estimation of the remaining amount level can be flexibly set according to the structure of the suction devices 100A and 100B. Specifically, in both the capsule 126 and the cartridge 104, it is only necessary to convert the amount of the inhalant source into time information and store it as the capsule maximum consumption time information 214b and/or the cartridge maximum consumption time information 214a. During the operation of estimating the remaining amount level, the control unit 206 only needs to handle such time information, which is efficient.
 このように、本実施形態によれば、時間補正モデルMDを通じて、パフ動作の検知時間の値は適宜補正されることになる。つまり、より実態に沿った検知時間、すなわち、実際のエアロゾル源の消費量と、香味源を実際に通過したエアロゾルの量(言い換えれば、実際に香味源が付与した香味の量)とに更に則した検知時間を算出することができる。これにより、残量レベル推定時の精度を更に向上させることができる。 Thus, according to the present embodiment, the value of the detection time of the puff action is appropriately corrected through the time correction model MD. In other words, the detection time is more realistic, that is, the actual amount of aerosol source consumption and the amount of aerosol that actually passed through the flavor source (in other words, the amount of flavor actually imparted by the flavor source). detection time can be calculated. This makes it possible to further improve the accuracy when estimating the remaining amount level.
 本実施形態による処理フローの例について、更に図14を参照して補足する。図14は、パフ動作間隔の値の初期設定に関する処理フローの例である。 An example of the processing flow according to this embodiment will be supplemented with reference to FIG. FIG. 14 is an example of a processing flow regarding initial setting of the value of the puff operation interval.
 上記の説明では、初回のパフ動作に関連付けられるパフ動作間隔の値として、図11の処理フローの開始時にステップS10で初回のパフ動作の時間の測定が開始されてから、当該測定がステップS12で停止されるまでの間の時間が設定されてよいとした。 In the above description, as the value of the puff action interval associated with the first puff action, the measurement of the time of the first puff action is started in step S10 at the start of the processing flow of FIG. It was decided that the time until it is stopped can be set.
 前述のとおり、初回のパフ動作の例には、吸引装置100の電源がオンされた直後に行われるパフ動作と、吸引装置100がスリープ状態から復帰した直後に行われるパフ動作と、が含まれてよい。なお、スリープ状態とは、電源がオンされている場合でも、所定時間にわたりユーザによるパフ動作が検知されない場合に、節電のために遷移される状態である。この場合、ユーザがパフ動作を行うためには、吸引装置100をスリープ状態から復帰させる必要がある。 As described above, examples of the first puffing operation include the puffing operation performed immediately after the suction device 100 is powered on and the puffing operation performed immediately after the suction device 100 recovers from the sleep state. you can Note that the sleep state is a state to which a transition is made in order to save power when the user's puffing operation is not detected for a predetermined period of time even when the power is on. In this case, in order for the user to perform the puffing operation, the suction device 100 must be recovered from the sleep state.
 このような初回のパフ動作に関連付けられるパフ動作間隔の値に関して、上記に加えて又は上記に代えて、所定の初期値を用いて初期設定をしてもよい。図14は、その一例として、ここでは電源がオンされた場合を想定して、その直後に行われる初期設定の例を想定した処理フローを示す。当該初期設定は、パフ動作間隔測定部206bによって実行される。 In addition to or instead of the above, the value of the puff operation interval associated with such a first puff operation may be initialized using a predetermined initial value. As an example, FIG. 14 shows a processing flow assuming a case where the power is turned on and an example of initial setting performed immediately after that. The initial setting is performed by the puff operation interval measurement unit 206b.
 最初にステップS101において、制御部206は、吸引装置100の電源がオフの状態からオンされたかどうかを判定する。吸引装置100の電源がオンされたと判定される場合には、任意に、パフ動作間隔の値が未だメモリに存在していないことが確認されてもよい。次いで、ステップS102において、ユーザによって間もなく行われるパフ動作(ステップS11)に対し、そのパフ動作間隔の値を所定の初期値に設定し、これにより初回のパフ動作との関連付けを行う。 First, in step S101, the control unit 206 determines whether the power of the suction device 100 has been turned on from the off state. When it is determined that the suction device 100 has been powered on, it may optionally be verified that no puff interval value is already present in memory. Next, in step S102, the value of the puff operation interval is set to a predetermined initial value for the puff operation that will be performed soon by the user (step S11), thereby associating it with the first puff operation.
 ステップS102で初回のパフ動作間隔の値に初期値を設定すると、次いで、前述のステップS10に進み、パフ動作間隔の測定を開始してよい。この場合、メモリ上、ステップS102で設定済みの初期値を、ステップS10乃至S12で取得される測定値で更新してもよい。或いは、当該測定値で初期値を更新しないようにしても、又は、初期値若しくは測定値の何れか一方の値を選択する(例えば、値が大きい方を選択する)ようにしてもよい。更には、ステップS102で初回のパフ動作間隔の値に初期値を設定した場合には、前述のステップS10を開始しないようにスキップしてもよい。 When the initial value is set to the value of the first puff operation interval in step S102, then the process proceeds to step S10 described above, and measurement of the puff operation interval may be started. In this case, the initial values set in step S102 in the memory may be updated with the measured values acquired in steps S10 to S12. Alternatively, the initial value may not be updated with the measured value, or either the initial value or the measured value may be selected (for example, the larger value may be selected). Furthermore, if the initial value of the puff operation interval is set to the initial value in step S102, the above-described step S10 may be skipped so as not to start.
 ここで、初期値は10秒に設定されるのがよい。図8に関して説明したように、パフ動作間隔の値を10秒とすれば、補正後差分パフ動作期間(調整時間)は0となる(数式2)。つまり、パフ動作間隔の値を、図8で説明した値と整合させて10秒に初期設定することにより、初回のパフ動作間隔に対しては、時間補正モデルMDのうち霧化特性2aに基づく時間補正モデル2Aの部分に関連して算出される調整時間を0にすることができる。 Here, the initial value should be set to 10 seconds. As described with reference to FIG. 8, if the value of the puff operation interval is 10 seconds, the post-correction differential puff operation period (adjustment time) is 0 (Equation 2). That is, by initializing the value of the puff operation interval to 10 seconds in conformity with the value described with reference to FIG. The adjusted time calculated in relation to the portion of the time correction model 2A can be zero.
<<3.変更例>>
(1)第1変更例
 上記実施形態の説明では、図11のステップS18、ステップS10乃至S12、及び図12のステップS161において、パフ動作間隔測定部206bは、パフ動作とその直前のパフ動作(連続する2つのパフ動作)の間の時間間隔を測定し、その値を(そのまま)パフ動作間隔に設定するものとした。上記実施形態は、パフ動作がパフ検知部212aで正確に検知されている場合に特に有利である。これに加えて又はこれに代えて、本変更例では、更に、パフ動作に関して測定された時間間隔を適宜調整してパフ動作間隔の値を柔軟に設定することにより、時間補正モデルMDに基づく検知時間の適切な補正を実行可能とする。特に、パフ動作に関して設定されるパフ動作間隔の値は、直前のパフ動作に関して取得済みのパフ動作期間の値に応じて時間間隔の測定を調整することにより、取得される。
<<3. Change example >>
(1) First Modification In the description of the above embodiment, in steps S18 and S10 to S12 of FIG. 11 and step S161 of FIG. The time interval between two consecutive puffs) was measured and that value was set (as is) to the puff interval. The above embodiment is particularly advantageous when the puff action is accurately detected by the puff detector 212a. Additionally or alternatively, in this modification, the time interval measured for the puff action is adjusted accordingly to flexibly set the value of the puff action interval, thereby enabling detection based on the time correction model MD. Allows appropriate correction of time to be performed. In particular, the puff interval value set for a puff action is obtained by adjusting the time interval measurement according to the puff duration value obtained for the previous puff action.
 例えば、ユーザが一連のパフ動作を行う際、ユーザのパフ動作上の嗜好や癖等により、ユーザの吸引力が弱い傾向となる場合がある。この場合、パフ検知部212aは、吸引力の弱いパフ動作を検知する必要がある一方、その検知性能次第では、これを適切に検知できないこともある。また、吸引力の弱いパフ動作をパフ検知部212aが検知できているような場合でも、パフ検知部212aは、当該パフ動作を部分的にしか検知できておらず、断続的なパフ動作として検知することもある。その結果、1回のパフ動作が、極端に短いパフ動作期間に分割されてパフ動作が検知されることになり得る。つまり、吸引力の弱いパフ動作の場合、本来は1回のパフ動作が行われたにも拘わらず、極端に短いパフ動作期間を有するパフ動作に分離された複数回数のパフ動作として検知されることがある。 For example, when the user performs a series of puffing actions, there are cases where the user's suction power tends to be weak due to the user's preferences and habits in the puffing action. In this case, the puff detection unit 212a needs to detect a puff operation with a weak suction force, but depending on its detection performance, it may not be able to detect this properly. In addition, even if the puff detection unit 212a can detect a puff operation with a weak suction force, the puff detection unit 212a can only partially detect the puff operation and detect it as an intermittent puff operation. sometimes. As a result, a single puffing action may be divided into extremely short puffing periods to be detected. In other words, in the case of a puffing operation with a weak suction force, although one puffing operation was originally performed, it is detected as a plurality of puffing operations separated into puffing operations having extremely short puffing operation periods. Sometimes.
 そこで、本変更例は、ユーザの吸引力が弱い等の理由によりパフ検知部212aがパフ動作を適切に検知できない場合に対処することを考慮している。以下にその具体例を示す。なお、以下の説明においては、あるパフ動作について、直前のパフ動作との間の時間間隔と、そのパフ動作の検知時間との各値の組を、[直前のパフ動作との時間間隔,パフ動作の検知時間]のように表記している。 Therefore, this modified example takes into consideration the case where the puff detection unit 212a cannot appropriately detect the puff operation due to reasons such as the user's weak suction force. Specific examples are shown below. In the following description, for a certain puff action, a set of each value of the time interval between the previous puff action and the detection time of the puff action is represented by [time interval from the previous puff action, puff motion detection time].
 図15は、パフ検知部212aによって検知された、ユーザによる吸引力が弱いパフ動作を、その時間間隔及び検知時間と共に示した例示の概念図である。図15には、パフ検知部212aによってパフ動作#n-1が検知された後に、[5.42,0.16]のパフ動作#nが検知され、更に、その直後に[0.21,1.18]のパフ動作#n+1が検知されていることが示されている。 FIG. 15 is an exemplary conceptual diagram showing the user's puff motion with weak suction force detected by the puff detection unit 212a, together with the time interval and detection time. In FIG. 15, after puff motion #n−1 is detected by puff detection unit 212a, puff motion #n of [5.42, 0.16] is detected, and immediately thereafter [0.21, 1.18] puff motion #n+1 is detected.
 図示されるように、パフ動作#nの検知時間は0.16秒であり、極端に短いパフ動作期間の値といえる。なお、ユーザのパフ動作は約1秒よりも長い期間にわたるのが通常であり、0.16秒という値は、数式5で用いられるT10より小さいものと想定される。この場合、上記実施形態における時間補正モデルMDに基づけば、パフ動作#nの補正後パフ動作期間は0に設定されることになる(y=0)。すなわち、時間補正モデルMDによる補正処理の結果、パフ動作#nは実質的に行われなかったものとみなされ、パフ動作の累計検知時間には計上されないことになる。 As shown, the detection time for puffing #n is 0.16 seconds, which can be said to be an extremely short puffing period. It should be noted that a user's puffing motion is typically over a period of time greater than about 1 second, and the value of 0.16 seconds is assumed to be less than the T10 used in Equation 5. In this case, based on the time correction model MD in the above embodiment, the post-correction puff operation period of puff operation #n is set to 0 (y=0). That is, as a result of the correction process by the time correction model MD, the puffing action #n is regarded as not being substantially performed, and is not counted in the cumulative detection time of the puffing action.
 他方、パフ動作#nの次のパフ動作#n+1の検知時間は1.18秒であり、また、パフ動作#nとパフ動作#n+1との間の時間間隔は0.21秒である。そこで、上記実施形態によれば、時間補正モデルMDに基づくパフ動作#n+1の補正後パフ動作期間(y)は、数式5を用いて次のように算出される。
 y=((2.4+p×(tint-10))/(2.4-T10))×(x-T10
  =((2.4+(-0.1)×(0.21-10)/(2.4-0.2))×(1.18-0.2)
  =1.57
(なお、ここでは、定数p=-0.1及び定数T10=0.2として計算しているが、定数p及び定数T10の値は一例にすぎず、これらに限定されないことが理解される。)
On the other hand, the detection time of puff operation #n+1 following puff operation #n is 1.18 seconds, and the time interval between puff operation #n and puff operation #n+1 is 0.21 seconds. Therefore, according to the above embodiment, the post-correction puff operation period (y) of puff operation #n+1 based on the time correction model MD is calculated using Equation 5 as follows.
y=((2.4+p×(t int −10))/(2.4−T 10 ))×(x−T 10 )
= ((2.4+(-0.1)*(0.21-10)/(2.4-0.2))*(1.18-0.2)
= 1.57
(It should be noted that here, the calculation is performed with the constant p = -0.1 and the constant T 10 = 0.2, but it is understood that the values of the constant p and the constant T 10 are only examples and are not limited to these. (
 上記の計算によれば、パフ動作#n+1の検知時間である1.18秒は、時間補正モデルMDに従って1.57秒に補正されていることが理解される。 According to the above calculation, it is understood that 1.18 seconds, which is the detection time of puff operation #n+1, is corrected to 1.57 seconds according to the time correction model MD.
 上記の計算は、前述の実施形態の説明に従い、パフ動作間隔の値に、現在のパフ動作#n+1と直前のパフ動作#nとの時間間隔である0.21秒がそのまま採用されている。他方、この例では、パフ動作#nの検知時間が0.16秒と極端に短いので、本来は1回のパフ動作であったのを、パフ動作#nとパフ動作#n+1の2回に分割してパフ検知部212aが検知したものと想定している。 In the above calculation, 0.21 seconds, which is the time interval between the current puff operation #n+1 and the immediately preceding puff operation #n, is adopted as the value of the puff operation interval according to the description of the previous embodiment. On the other hand, in this example, since the detection time of puff operation #n is extremely short at 0.16 seconds, the original puff operation was performed once, but it is changed to two operations, puff operation #n and puff operation #n+1. It is assumed that the puff detection unit 212a divides and detects.
 そこで、本変更例では、パフ動作#n+1とその直前のパフ動作#nとの時間間隔を、測定された0.21秒そのものとするのではなく、当該0.21秒と、パフ動作#nとパフ動作#n-1との時間間隔である5.42秒とを合計した値で取得する。つまり、本変更例では、パフ動作#n+1のパフ動作間隔の値には、合計値である5.63秒(0.21+5.42秒)が採用されて、当該合計値が数式5で用いられる。 Therefore, in this modified example, the time interval between the puff operation #n+1 and the immediately preceding puff operation #n is not the measured 0.21 second itself, but the measured 0.21 second and the puff operation #n. and 5.42 seconds which is the time interval between puff operation #n−1. That is, in this modified example, the total value of 5.63 seconds (0.21+5.42 seconds) is adopted as the value of the puff operation interval of puff operation #n+1, and the total value is used in Equation 5. .
 具体的には、本変更例において、時間補正モデルMDに基づくパフ動作#n+1の補正後パフ動作期間(y)は次のように算出される。
 y=((2.4+p×(tint-10))/(2.4-T10))×(x-T10
  =((2.4+(-0.1)×(5.63-10)/(2.4-0.2))×(1.18-0.2)
  =1.32
Specifically, in this modified example, the post-correction puff operation period (y) of the puff operation #n+1 based on the time correction model MD is calculated as follows.
y=((2.4+p×(t int −10))/(2.4−T 10 ))×(x−T 10 )
= ((2.4+(-0.1)*(5.63-10)/(2.4-0.2))*(1.18-0.2)
= 1.32
 上記の計算によれば、パフ動作間隔の値を5.63秒として取得することで、パフ動作#n+1の検知時間である1.18秒は、時間補正モデルMDに従って1.32秒に補正されている。 According to the above calculation, by obtaining the value of the puff operation interval as 5.63 seconds, the detection time of puff operation #n+1 of 1.18 seconds is corrected to 1.32 seconds according to the time correction model MD. ing.
 図8に示されたように、時間補正モデルMDの一部を構成する時間補正モデル2Aは、パフ動作間隔の値を大きくすると、補正後パフ動作期間が小さくなるように規定されている。つまり、当該1.32秒という数値は、パフ動作間隔の値を0.21秒とした場合の1.57秒と比べて、パフ動作期間の補正の程度が緩和されている。このような補正の程度の緩和は、パフ動作#nとパフ動作#n+1が本来は1回のパフ動作であったものが、パフ検知部212aによって分割して検知されたという事情に鑑みれば、適切な対処であると言える。 As shown in FIG. 8, the time correction model 2A forming part of the time correction model MD is defined so that the post-correction puff operation period becomes shorter as the value of the puff operation interval increases. That is, the numerical value of 1.32 seconds is less corrected for the puff operation period than the value of 1.57 seconds when the puff operation interval is 0.21 seconds. In light of the fact that the puff operation #n and the puff operation #n+1 were originally one puff operation, but were separately detected by the puff detection unit 212a, such relaxation of the degree of correction is as follows. It can be said that it is an appropriate countermeasure.
 すなわち、本変更例を適用することにより、吸引力が弱いパフ動作をパフ検知部212aが正確に検知されないような場合でも、パフ動作の検知時間を更に適切に補正し、これにより、更に正確な補正後パフ動作期間を算出することができる。すなわち、本変更例によれば、香味源及び/又はエアロゾル源について適切な残量レベルの推定を実現することができる。 That is, by applying this modified example, even when the puff detection unit 212a cannot accurately detect a puff operation with a weak suction force, the detection time of the puff operation can be corrected more appropriately, thereby further correcting the puff operation. A corrected puff operation period can be calculated. That is, according to this modified example, it is possible to estimate the appropriate remaining level of the flavor source and/or the aerosol source.
 本変更例におけるパフ動作間隔の値の取得について、処理フローに基づいて以下に詳細に説明する。図16は、直前のパフ動作に関して取得済みのパフ動作期間の値に応じて時間間隔の測定を調整するための処理フローの一例である。  Acquisition of the value of the puff operation interval in this modified example will be described in detail below based on the processing flow. FIG. 16 is an example of a process flow for adjusting the time interval measurement according to the puff duration value obtained for the immediately preceding puff. 
 本変更例では、パフ動作#n+1とその直前のパフ動作#nとの時間間隔が測定され、当該時間間隔に少なくとも基づいて、パフ動作#n+1に関するパフ動作間隔の値が取得される。特に、図15の具体例でも説明したように、パフ動作#n+1に関するパフ動作間隔の値は、直前のパフ動作#nに関して取得済みのパフ動作期間の値(図13の例では、0.16秒)に応じて時間間隔の測定を調整することで取得される。 In this modified example, the time interval between puff operation #n+1 and puff operation #n immediately preceding it is measured, and the value of the puff operation interval for puff operation #n+1 is obtained based at least on this time interval. In particular, as described in the specific example of FIG. 15, the value of the puff operation interval for puff operation #n+1 is the puff operation period value (0.16 in the example of FIG. seconds).
 図16の処理フローは、時間間隔の測定の調整を実現するために、図11のステップS17のタイマ調整の処理に適用される。ここでは、図11のステップS17に至るまでに、ステップS14においてパフ動作#nの終了が検知され、また、ステップS15においてパフ動作#nの検知時間の測定が停止されているものとする。その結果、ステップS16のうち、特に図12のステップS161では、図15の例のようにパフ動作間隔の値が5.42秒として取得され、また、ステップS162では、同じくパフ動作期間の値が0.16秒として取得されている(パフ動作の検知時間の値も0.16秒である。)。 The processing flow of FIG. 16 is applied to the timer adjustment processing in step S17 of FIG. 11 in order to adjust the time interval measurement. Here, it is assumed that the end of puffing operation #n is detected in step S14 and measurement of the detection time of puffing operation #n is stopped in step S15 before reaching step S17 in FIG. As a result, in step S16, particularly in step S161 of FIG. 12, the value of the puff operation interval is obtained as 5.42 seconds as in the example of FIG. It is obtained as 0.16 seconds (the value of the detection time of the puff action is also 0.16 seconds).
 最初に、ステップS21において、パフ検知時間測定部206aは、タイマのカウントをリセットする。つまり、パフ検知時間測定部206aはパフ動作の検知時間の値をリセットして、次回パフ動作があった際のカウントに備える。 First, in step S21, the puff detection time measurement unit 206a resets the count of the timer. In other words, the puff detection time measuring unit 206a resets the value of the detection time of the puff operation, and prepares for the next puff operation.
 次いで、ステップS22において、パフ動作#nに関して取得済みのパフ動作期間の値が0.5秒より小さいかについて判定する。なお、0.5秒の値は例示であり、これに限定されないことが当業者には理解される。パフ動作#nのパフ動作期間の値が0.5秒より小さい場合(ステップS22:Yes)、パフ動作#nと次のパフ動作#n+1との間の時間間隔の測定は、パフ動作#nに関して取得済みのパフ動作間隔の値から再開される(ステップS18)。つまり、パフ動作#nで測定した際のタイマのカウントがリセットされることなく、中断されていた時間間隔の測定が再開されて、カウントが継続される。 Next, in step S22, it is determined whether or not the value of the puff operation period that has already been acquired for puff operation #n is smaller than 0.5 seconds. It should be understood by those skilled in the art that the value of 0.5 seconds is an example and not a limitation. If the puff duration value of puff action #n is less than 0.5 seconds (step S22: Yes), the measurement of the time interval between puff action #n and the next puff action #n+1 is is resumed from the value of the puff operation interval that has already been acquired (step S18). In other words, the interrupted measurement of the time interval is restarted and the counting is continued without resetting the count of the timer when the measurement was performed in the puff operation #n.
 他方、パフ動作#nのパフ動作期間の値が0.5秒以上の場合(ステップS22:No)、ステップS23において、パフ動作#nで測定した際のタイマのカウントをリセットする。その上で、パフ動作#nと次のパフ動作#n+1との間の時間間隔の測定は0秒から開始される(ステップS18)。 On the other hand, if the value of the puff operation period of puff operation #n is 0.5 seconds or more (step S22: No), in step S23, the count of the timer that was measured in puff operation #n is reset. Then, measurement of the time interval between puff operation #n and next puff operation #n+1 is started from 0 second (step S18).
 図15の例では、パフ動作#nのパフ動作期間の値は0.16秒であり、0.5秒より小さい(ステップS22:Yes)。つまり、パフ動作#nと次のパフ動作#n+1との間の時間間隔の測定は、パフ動作#n-1とパフ動作#nとの間の時間間隔の値である直前の5.42秒を(0秒に)リセットすることなく、そのまま5.42秒から再開される(ステップS18)。その結果、次のパフ動作#n+1の開始が検知されて(ステップS11)時間間隔の測定が停止される際には(S12)、測定される時間間隔は、上記5.42秒から、実際の時間間隔である0.21秒だけ進んだ5.63秒を示している。つまり、パフ動作#nと次のパフ動作#n+1との間の時間間隔tintは、5.63秒(=5.42秒+0.21秒)として取得される。 In the example of FIG. 15, the value of the puff operation period of puff operation #n is 0.16 seconds, which is smaller than 0.5 seconds (step S22: Yes). That is, the measurement of the time interval between puff action #n and the next puff action #n+1 is the value of the time interval between puff action #n−1 and puff action #n, which is the previous 5.42 seconds. is restarted from 5.42 seconds without resetting (to 0 seconds) (step S18). As a result, when the start of the next puff operation #n+1 is detected (step S11) and the measurement of the time interval is stopped (S12), the measured time interval changes from 5.42 seconds to the actual time interval. It shows 5.63 seconds advanced by 0.21 seconds which is the time interval. That is, the time interval t int between puff operation #n and next puff operation #n+1 is obtained as 5.63 seconds (=5.42 seconds+0.21 seconds).
 すなわち、本変更例を適用することにより、吸引力が弱いパフ動作をパフ検知部212aが必ずしも正確に検知されないような場合でも、時間間隔の測定を調整することにより、パフ動作間隔として適切な値を取得することができる。これにより、パフ動作の検知時間を更に適切に補正することができ、つまり、更に正確な補正後パフ動作期間を算出することができる。すなわち、本変更例は、吸引力が弱いパフ動作に対して特に有用である。 That is, by applying this modified example, even if the puff detection unit 212a does not necessarily accurately detect a puff operation with a weak suction force, an appropriate value can be obtained as the puff operation interval by adjusting the measurement of the time interval. can be obtained. This makes it possible to more appropriately correct the detection time of the puffing action, that is, to calculate a more accurate puffing action period after correction. That is, this modification is particularly useful for puffing operations with weak suction force.
 また、本変更例は、吸引力が弱いパフ動作に対し、検知時間が極端に短く分割されて検知されるような場合、パフ動作#n+1とパフ動作#nとの間で測定される時間間隔が適切でないことを判定可能とする。そして、このように判定された場合は、時間間隔の測定を調整してタイマのカウントをリセットしないように、パフ動作間隔として適切な値を取得すればよい。他方、パフ動作#n+1とパフ動作#nとの間で測定される時間間隔が適切でないことが判定されない場合には、タイマのカウントをリセットして0から時間を測定すればよいだけである。すなわち、パフ動作間隔の取得は、タイマのカウントのリセットの制御のみを行えばよく、処理上の追加の負荷を要することないので、効率的である。 In addition, in this modified example, when the detection time is divided extremely short for a puff operation with a weak suction force, the time interval measured between the puff operation #n+1 and the puff operation #n is not appropriate. Then, when such a determination is made, an appropriate value may be obtained as the puff operation interval so as to adjust the measurement of the time interval and not reset the count of the timer. On the other hand, if it is not determined that the time interval measured between puff operation #n+1 and puff operation #n is not appropriate, then all that is necessary is to reset the timer count and measure time from zero. That is, acquisition of the puff operation interval is efficient because it is only necessary to control resetting of the timer count and does not require additional processing load.
(2)第2変更例
 上記実施形態の説明では、エアロゾル源の霧化特性1a,2a基づく時間補正モデルMDにおいて、定数T10を導入し、パフ動作期間(x)の値がT10以下の場合に、補正後パフ動作期間(y)が0となるようにした(数式3及び図9)。定数T10は、例えば、約1.0秒までの任意の数値で設定されるのがよい。これは、ユーザによる通常のパフ動作では、例えば1.0秒未満のようなパフ動作期間は稀であり想定しにくいことに鑑みて、1.0秒未満のようなパフ動作期間に対してまで時間補正することもないとの発明者の考察に基づく。具体的には以下のとおりである。
(2) Second Modification In the description of the above embodiment, a constant T10 is introduced in the time correction model MD based on the atomization characteristics 1a and 2a of the aerosol source, and the value of the puff operation period (x) is T10 or less. , the corrected puff operation period (y) is set to 0 (Equation 3 and FIG. 9). Constant T10 may be set to any value up to, for example, approximately 1.0 seconds. Considering that puffing durations of less than 1.0 seconds are rare and difficult to imagine in normal puffing operations by the user, this is true even for puffing durations of less than 1.0 seconds. This is based on the inventor's consideration that time correction is not necessary. Specifically, it is as follows.
 仮に、1.0秒未満のようなパフ動作期間に対しても時間補正のための計算処理を都度実行させるとした場合、制御部206における演算処理のためのコストに見合わないことが想定される。より詳しくは、このような時間補正のための処理を実装するには、時間補正のためのアルゴリズムを格納するために、メモリ214の容量の確保が必要となる。その一方で、1.0秒未満のようなパフ動作が想定しにくい以上、このような実装は、演算処理のためのコストが大きすぎて釣り合わないことが想定される。また、1.0秒未満のようなパフ動作においては、そもそも、吸引成分源の消費量が十分少なく、これを考慮する必要もないことが想定される。 Assuming that calculation processing for time correction is executed each time even for a puff operation period of less than 1.0 second, it is assumed that the cost for the calculation processing in the control unit 206 is not worth it. be. More specifically, in order to implement such processing for time correction, it is necessary to secure the capacity of memory 214 in order to store the algorithm for time correction. On the other hand, as long as it is difficult to assume a puff operation of less than 1.0 second, it is assumed that such an implementation would be too costly for computational processing to justify. Also, in a puffing action of less than 1.0 second, it is assumed that the consumption of the suction component source is sufficiently small in the first place that there is no need to consider this.
 T10が1.0未満の値の場合に補正後パフ動作期間(y)を0とするのが上記実施形態であるのに対し、本変更例では、補正後パフ動作期間(y)の値を一律に0とするのではなく、0より幾らか大きい所定の定数に設定している。これにより、仮にデバイス不良が生じたことにより、パフ動作期間が1.0秒未満しか受け付けることができなくなった場合でも、検知時間累積部206dが算出する累積検知時間の値が累積されることになる。すなわち、このような累積検知時間の値をデバイス不良の検出に適切に利用することができ、デバイスの寿命を長期化させることができる。 In the above embodiment, the corrected puff operation period (y) is set to 0 when T10 is less than 1.0. is not uniformly set to 0, but is set to a predetermined constant somewhat larger than 0. As a result, even if a puff operation period of less than 1.0 seconds cannot be accepted due to a device failure, the value of the cumulative detection time calculated by the detection time accumulator 206d is accumulated. Become. In other words, the value of such cumulative detection time can be appropriately used to detect device failure, and the life of the device can be extended.
 そこで、本変更例では、上記実施形態の時間補正モデルMDによって補正されたパフ動作期間(検知時間)に対し、更に、その値が所定の定数以下である場合には、補正後の検知時間の値を一律にその定数の値に更新するのがよい。 Therefore, in this modified example, when the puff operation period (detection time) corrected by the time correction model MD of the above embodiment is equal to or less than a predetermined constant, the corrected detection time is It is better to uniformly update the value to the constant value.
 図17は、本変更例による、エアロゾル源の霧化特性1a,2aに基づく更なる時間補正モデルMD’の例を示している。図17のグラフでは、図9と同様、横軸(x軸)はパフ動作期間(秒)を、縦軸(y軸)はパフ動作期間に対する補正後パフ動作期間(秒)を示している。時間補正モデルMD’は、図9に示される時間補正モデルMDのうち、補正後パフ動作期間が0<y≦qである場合に、その値を一律にqに更新するにように更に関数を規定している。なお、定数qは吸引装置100のデバイス特性も考慮して実験的に取得し、メモリ214に設定するのがよい。 FIG. 17 shows an example of a further time correction model MD' based on the atomization characteristics 1a and 2a of the aerosol source according to this modified example. In the graph of FIG. 17, as in FIG. 9, the horizontal axis (x-axis) indicates the puff operation period (seconds), and the vertical axis (y-axis) indicates the corrected puff operation period (seconds) with respect to the puff operation period. The time correction model MD′ further includes a function to uniformly update the value to q when the puff operation period after correction is 0<y≦q among the time correction models MD shown in FIG. stipulated. Note that the constant q is preferably obtained experimentally in consideration of the device characteristics of the suction device 100 and set in the memory 214 .
 図18は、本変更例による、パフ動作の検知時間の補正処理S163’に関する詳細な処理フローの例であり、上記実施形態における図11のステップS16に適用される。本処理フローは検知時間補正部206cによって実行される。なお、パフ動作の検知時間の補正処理S163’のうち、ステップS163a,S163b,S163cの処理内容は、図13に示される同符号と同様であるので、ここでの説明は省略する。 FIG. 18 is an example of a detailed processing flow regarding the correction processing S163' of the detection time of the puff motion according to this modification, and is applied to step S16 of FIG. 11 in the above embodiment. This processing flow is executed by the detection time correction unit 206c. Note that the processing contents of steps S163a, S163b, and S163c in the puff operation detection time correction processing S163' are the same as those of the same reference numerals shown in FIG.
 本変更例では、更に、ステップS163dにおいて、ステップS163cでの出力t10_crt=C30(t,tint)に対し、更に、当該t10_crtの値が定数q以下であるかを判定する。t10_crtの値が定数q以下である場合(S163d:Yes)は、ステップS163eにおいて、t10_crtの値はqに更新され、次の累積検知時間の算出の処理(ステップS164)のために出力される。他方、t10_crtの値が定数qより大きい場合(S163d:No)は、そのままt10_crtの値が補正後パフ動作期間に設定されて、次の累積検知時間の算出の処理(ステップS164)のために出力される。 In this modified example, in step S163d, it is further determined whether the value of t10_crt is equal to or less than a constant q with respect to the output t10_crt = C30 (t, tint ) in step S163c. If the value of t10_crt is equal to or less than the constant q (S163d: Yes), the value of t10_crt is updated to q in step S163e, and is output for the next cumulative detection time calculation process (step S164). be. On the other hand, if the value of t10_crt is larger than the constant q (S163d: No), the value of t10_crt is set as it is to the post-correction puff operation period, and the next cumulative detection time is calculated (step S164). output to
 このように、本変更例によれば、算出された補正後パフ動作期間が所定の定数以下である場合に、その値を一律にqに更新することにより、吸引装置100において制御部206への演算処理の負荷を減らすことができ、更に、デバイス異常を検知することができる。 As described above, according to this modification, when the calculated corrected puff operation period is equal to or less than a predetermined constant, the value is uniformly updated to q, so that the suction device 100 can supply the controller 206 with Arithmetic processing load can be reduced, and device abnormalities can be detected.
<<4.補足>>
 以上、添付図面を参照しながら本開示の好適な実施形態について、幾らかの変更例と共に詳細に説明した。本開示に係る吸引装置100は、検知されたパフ動作が継続している時間である検知時間を動的に補正することを通じて、残量レベルを正確に推定するように構成される。つまり、実際に検知されたパフ動作の検知時間と比べて、更に正確なパフ動作期間や累積パフ動作期間を見積もることができ、香味源及び/又はエアロゾル源について適切な残量レベルの推定を実現する。これにより、カートリッジ及び/又はカプセルの適切な消耗レベル推定、交換判断、及び通知を実現することができる。
<<4. Supplement >>
The preferred embodiments of the present disclosure, along with some modifications, have been described in detail above with reference to the accompanying drawings. The suction device 100 according to the present disclosure is configured to accurately estimate the fuel level through dynamically correcting the detection time, which is the duration of the detected puffing action. In other words, it is possible to estimate a more accurate puffing duration or a cumulative puffing duration compared to the detection time of the puffing that is actually detected, and to achieve an estimation of the appropriate remaining level of the flavor source and/or the aerosol source. do. This makes it possible to realize appropriate consumption level estimation, replacement determination, and notification of cartridges and/or capsules.
 特に、吸引力が弱いパフ動作をセンサが正確に検知されないような場合でも、パフ動作の検知時間を適切に補正し、更に正確な補正後のパフ動作期間を算出することができる。これにより、香味源及び/又はエアロゾル源について更に適切な残量レベルの推定を実現することができる。 In particular, even if the sensor does not accurately detect a puffing action with a weak suction force, it is possible to appropriately correct the detection time of the puffing action and to calculate a more accurate post-correction puffing period. This makes it possible to achieve a more appropriate residual level estimation for the flavor source and/or the aerosol source.
 以上、本開示の実施形態が説明されたが、これらは例示にすぎず、本開示の範囲を限定するものではないことが理解されるべきである。本開示の趣旨及び範囲から逸脱することなく、実施形態の変更、追加、改良などを適宜行うことができることが理解されるべきである。本開示の範囲は、上述した実施形態のいずれによっても限定されるべきではなく、特許請求の範囲及びその均等物によってのみ規定されるべきである。 Although the embodiments of the present disclosure have been described above, it should be understood that they are merely examples and do not limit the scope of the present disclosure. It should be understood that modifications, additions, improvements, etc., may be made to the embodiments from time to time without departing from the spirit and scope of this disclosure. The scope of the present disclosure should not be limited by any of the above-described embodiments, but should be defined only by the claims and their equivalents.
 なお、本明細書において説明した各装置による一連の処理は、ソフトウェア、ハードウェア、及びソフトウェアとハードウェアとの組合せのいずれを用いて実現されてもよい。ソフトウェアを構成するプログラムは、例えば、各装置の内部又は外部に設けられるコンピュータ可読記録媒体(非一時的な媒体:non-transitory media)に予め格納される。そして、各プログラムは、例えば、本明細書において説明した各吸引装置を制御するコンピュータによる実行時にRAMに読み込まれ、CPUなどのプロセッサにより実行される。記録媒体は、例えば、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリ等である。また、コンピュータプログラムは、記録媒体を用いずに、例えばネットワークを介して配信されてもよい。 A series of processes by each device described in this specification may be implemented using software, hardware, or a combination of software and hardware. Programs constituting software are stored in advance in computer-readable recording media (non-transitory media) provided inside or outside each device, for example. Each program is read into the RAM when executed by a computer that controls each suction device described in this specification, for example, and is executed by a processor such as a CPU. The recording medium is, for example, a magnetic disk, an optical disk, a magneto-optical disk, a flash memory, or the like. Also, the computer program may be distributed, for example, via a network without using a recording medium.
 なお、以下のような構成も本発明の技術的範囲に属する。
(1)
 吸引装置の動作方法であって、
 ユーザによる一連のパフ動作をセンサに検知させるステップと、
 第1パフ動作に関するパフ動作間隔の値を取得するために、前記第1パフ動作と直前の第2パフ動作との間の時間間隔を測定するステップ(S10,S18~S12,S161)と、
 前記第1パフ動作が継続しているパフ動作期間の値を取得するために、前記第1パフ動作の検知時間を測定するステップ(S13~S15,S162)と、
 前記パフ動作間隔及び前記パフ動作期間に関連付けられる時間補正モデルを用いて、前記検知時間を補正するステップ(S16,S163)と、
 前記補正された検知時間を累積して、累積検知時間を算出するステップ(S16,S164)と、
 前記累積検知時間に基づいて吸引成分源の残量レベルを推定するステップ(S16,S165)と、を含み、
 前記第1パフ動作に関する前記パフ動作間隔の値は、前記第2パフ動作に関して取得済みのパフ動作期間の値に応じて前記時間間隔の測定を調整することで取得される(S17,S161,S21~S23)、方法。
(2)
 前記(1)の方法において、前記第2パフ動作に関する前記パフ動作期間の値が所定の第1時間より小さい場合に(S22:Yes)、前記時間間隔の測定が、前記第2パフ動作に関して取得済みの前記パフ動作間隔の値から再開するように調整される、方法。
(3)
 前記(2)の方法において、前記第1時間が0.5秒である(S22)、方法。
(4)
 前記(1)から(3)の何れかの方法において、
 前記吸引成分源の残量レベルを推定する前記ステップが、前記累積検知時間が所定の第2時間に達した場合に、前記吸引成分源が残量不足であると判定することを含む、方法。
(5)
 前記(4)の方法であって、更に、
 前記吸引成分源が残量不足であると判定されたことに応じて、前記吸引装置に前記残量不足を通知させるステップ(S166)を含む、方法。
(6)
 前記(1)から(5)の何れかの方法において、
 前記時間補正モデルは、前記検知時間の値が所定の第3時間である場合に前記補正される検知時間を、前記第3時間に維持することを含むように規定される、方法。
(7)
 前記(6)の方法において、
 前記時間補正モデルは、前記検知時間の値が前記第3時間より小さい場合に、前記検知時間を減少させることを含むように規定される、方法。
(8)
 前記(6)又は(7)の方法において、前記第3時間が2.4秒である、方法。
(9)
 前記(1)から(8)の何れかの方法において、
 前記時間補正モデルは、前記パフ動作間隔の値が第4時間より小さい場合に、前記パフ動作間隔に基づいて算出される調整時間を前記測定された検知時間の値に加算することにより、前記測定された検知時間を増加させることを含むように規定される、方法。
(10)
 前記(9)の方法であって、更に、
 前記第2パフ動作が初回のパフ動作である場合に、前記第2パフ動作に関するパフ動作間隔の値を前記第4時間に初期設定するステップ(S101,S102)を含む、方法。
(11)
 前記(9)又は(10)の方法において、前記第4時間が10秒である、方法。
(12)
 前記(1)から(11)の何れかの方法を前記吸引装置に実行させるためのプログラム。
(13)
 吸引装置であって、
 ユーザによる一連のパフ動作を検知するセンサと、
 前記吸引装置を動作させるための制御部(206)であって、
  前記センサが検知した第1パフ動作に関するパフ動作間隔の値を取得するために、前記第1パフ動作と直前の第2パフ動作との間の時間間隔を測定し(206b)、
  前記第1パフ動作が継続しているパフ動作期間の値を取得するために、前記第1パフ動作の検知時間を測定し(206a)、
  前記パフ動作間隔及び前記パフ動作期間に関連付けられる時間補正モデルを用いて、前記検知時間を補正し(206c)、
  前記補正された検知時間を累積して、累積検知時間を算出し(206d)、
  前記累積検知時間に基づいて、吸引成分源の残量レベルを推定する(206e)、
 制御部と、を備え、
 前記第1パフ動作に関する前記パフ動作間隔の値は、前記第2パフ動作に関して取得済みのパフ動作期間の値に応じて前記時間間隔の測定を調整することで取得される(S17,S161,S21~S23)、吸引装置。
(14)
 前記(13)の吸引装置において、
 前記第2パフ動作に関する前記パフ動作期間の値が所定の第1時間より小さい場合に(S22:Yes)、前記時間間隔の測定が、前記第2パフ動作に関して取得済みのパフ動作間隔の値から再開するように調整される、吸引装置。
(15)
 前記(14)の吸引装置において、前記第1時間が0.5秒である(S22)、吸引装置。
(16)
 前記(13)から(15)の何れかの吸引装置において、
 前記吸引成分源の残量レベルを推定することが、前記累積検知時間が所定の第2時間に達した場合に、前記吸引成分源が残量不足であると判定することを含む、吸引装置。
(17)
 前記(16)の吸引装置であって、更に、通知部を備え、
 前記制御部は、前記吸引成分源が残量不足であると判定されたことに応じて、前記通知部に前記残量不足を通知させる(206f)、吸引装置。
(18)
 前記(13)から(17)の何れかの吸引装置において、
 前記時間補正モデルは、前記パフ動作間隔の値が第3時間より小さい場合に、前記パフ動作間隔に基づいて算出される調整時間を前記測定された検知時間の値に加算することにより、前記測定された検知時間を増加させることを含むように規定される、吸引装置。
(19)
 前記(18)の吸引装置であって、前記制御部が、更に、
 前記第2パフ動作が初回のパフ動作である場合に、前記第2パフ動作に関するパフ動作間隔の値を前記第3時間に設定するように構成される(S101,S102)、吸引装置。
(20)
 前記(18)又は(19)の吸引装置において、前記第3時間が10秒である、吸引装置。
The following configuration also belongs to the technical scope of the present invention.
(1)
A method of operating a suction device, comprising:
causing the sensor to detect a series of puffing actions by the user;
measuring (S10, S18-S12, S161) the time interval between the first puff and the immediately preceding second puff to obtain a puff interval value for the first puff;
measuring the detection time of the first puffing action in order to obtain the value of the puffing period during which the first puffing action continues (S13 to S15, S162);
correcting the detection time using a time correction model associated with the puff interval and the puff duration (S16, S163);
accumulating the corrected detection time to calculate the cumulative detection time (S16, S164);
estimating a remaining level of the source of inhaled components based on the cumulative detection time (S16, S165);
The puff interval value for the first puff action is obtained by adjusting the time interval measurement according to the puff duration value obtained for the second puff action (S17, S161, S21 ~S23), a method.
(2)
In the method of (1), if the value of the puff action period for the second puff action is smaller than a predetermined first time (S22: Yes), the measurement of the time interval is obtained for the second puff action. adjusted to restart from the value of said puffing interval that has already been set.
(3)
The method of (2), wherein the first time is 0.5 seconds (S22).
(4)
In any one of the methods (1) to (3),
The method, wherein the step of estimating the residual level of the attractive component source includes determining that the attractive component source is depleted if the cumulative sensing time reaches a second predetermined time.
(5)
The method of (4) above, further comprising:
responsive to determining that the suction component source is depleted, causing the suction device to notify the depletion (S166).
(6)
In any one of the methods (1) to (5),
The method, wherein the time correction model is defined to include maintaining the corrected sensing time at the third time when the value of the sensing time is a predetermined third time.
(7)
In the method of (6) above,
The method, wherein the time correction model is defined to include decreasing the sensing time if the sensing time value is less than the third time.
(8)
The method of (6) or (7), wherein the third time is 2.4 seconds.
(9)
In any one of the methods (1) to (8),
The time correction model adds an adjustment time calculated based on the puffing interval to the measured sensing time value when the puffing interval value is less than a fourth time. a method defined to include increasing the detected detection time.
(10)
The method of (9) above, further comprising:
and initializing a puff interval value for the second puff operation to the fourth time (S101, S102), if the second puff operation is the first puff operation.
(11)
The method of (9) or (10), wherein the fourth time is 10 seconds.
(12)
A program for causing the suction device to perform any one of the methods (1) to (11).
(13)
a suction device,
a sensor that detects a series of puffing actions by a user;
A control unit (206) for operating the suction device, comprising:
measuring 206b the time interval between the first puff and the immediately preceding second puff to obtain a puff interval value for the first puff detected by the sensor;
measuring 206a the sensing time of the first puffing action to obtain a puffing duration value over which the first puffing action lasts;
correcting (206c) the sensing time using a time correction model associated with the puff interval and the puff duration;
calculating the accumulated detection time by accumulating the corrected detection time (206d);
estimating (206e) a remaining level of an inhalant component source based on the cumulative sensing time;
a control unit;
The puff interval value for the first puff action is obtained by adjusting the time interval measurement according to the puff duration value obtained for the second puff action (S17, S161, S21 ~S23), suction device.
(14)
In the suction device of (13) above,
If the puffing duration value for the second puffing operation is less than a predetermined first time (S22: Yes), the measurement of the time interval is based on the obtained puffing interval value for the second puffing operation. A suction device adjusted to restart.
(15)
In the suction device of (14) above, the first time is 0.5 seconds (S22).
(16)
In the suction device according to any one of (13) to (15),
The aspiration device, wherein estimating a residual level of the suction component source includes determining that the suction component source is depleted if the cumulative sensing time reaches a second predetermined time.
(17)
The suction device according to (16), further comprising a notification unit,
The control unit causes the notification unit to notify the shortage of the remaining amount (206f) in response to the fact that the suction component source is determined to have an insufficient amount of the remaining amount.
(18)
In the suction device according to any one of (13) to (17),
The time correction model adds an adjustment time calculated based on the puffing interval to the measured sensing time value when the puffing interval value is less than a third time. an aspiration device, defined to include increasing a specified detection time.
(19)
In the suction device according to (18) above, the control unit further comprises
The suction device is configured to set a value of the puffing interval for the second puffing operation to the third time when the second puffing operation is the first puffing operation (S101, S102).
(20)
The suction device of (18) or (19), wherein the third time is 10 seconds.
100A,100B,100…吸引装置、102…第1の部材(電源ユニット)、104…第2の部材(カートリッジ)、106,206…制御部、108…通知部、110…バッテリ、112,212…センサ、114,214…メモリ、116…リザーバ、118…霧化部、120…空気取込流路、121…エアロゾル流路、122…吸口部、126…第3の部材(カプセル)、128…香味源、
206a…パフ検知時間測定部、206b・・・パフ動作間隔測定部、206c・・・検知時間補正部、206d・・・検知時間累積部、206e・・・吸引成分源残量レベル推定部、206f・・・通知指示部、
212a・・・パフ検知部、212b・・・出力部、
214a・・・カートリッジ最大消費時間情報、214b・・・カプセル最大消費時間情報、214c・・・時間補正モデル情報、214d・・・累積検知時間情報
Reference Signs List 100A, 100B, 100 suction device 102 first member (power supply unit) 104 second member (cartridge) 106, 206 control unit 108 notification unit 110 battery 112, 212 Sensor 114, 214 Memory 116 Reservoir 118 Atomization part 120 Air intake channel 121 Aerosol channel 122 Mouthpiece 126 Third member (capsule) 128 Flavor source,
206a... Puff detection time measuring unit 206b... Puff operation interval measuring unit 206c... Detection time correcting unit 206d... Detection time accumulating unit 206e... Suction component source remaining amount level estimating unit 206f ... notification indicator,
212a... puff detection section, 212b... output section,
214a Cartridge maximum consumption time information 214b Capsule maximum consumption time information 214c Time correction model information 214d Cumulative detection time information

Claims (13)

  1.  吸引装置の動作方法であって、
     ユーザによる一連のパフ動作をセンサに検知させるステップと、
     第1パフ動作に関するパフ動作間隔の値を取得するために、前記第1パフ動作と直前の第2パフ動作との間の時間間隔を測定するステップと、
     前記第1パフ動作が継続しているパフ動作期間の値を取得するために、前記第1パフ動作の検知時間を測定するステップと、
     前記パフ動作間隔及び前記パフ動作期間に関連付けられる時間補正モデルを用いて、前記検知時間を補正するステップと、
     前記補正された検知時間を累積して、累積検知時間を算出するステップと、
     前記累積検知時間に基づいて吸引成分源の残量レベルを推定するステップと、を含み、
     前記第1パフ動作に関する前記パフ動作間隔の値は、前記第2パフ動作に関して取得済みのパフ動作期間の値に応じて前記時間間隔の測定を調整することで取得される、方法。
    A method of operating a suction device, comprising:
    causing the sensor to detect a series of puffing actions by the user;
    measuring the time interval between the first puff and the immediately preceding second puff to obtain a puff interval value for the first puff;
    measuring the detection time of the first puffing action to obtain a value of the puffing period during which the first puffing action lasts;
    correcting the sensing time using a time correction model associated with the puff interval and the puff duration;
    accumulating the corrected detection time to calculate a cumulative detection time;
    estimating a residual level of an inhalant source based on the cumulative sensing time;
    The method, wherein the puff interval value for the first puff action is obtained by adjusting the time interval measurement according to a puff duration value obtained for the second puff action.
  2.  請求項1に記載の方法において、前記第2パフ動作に関する前記パフ動作期間の値が所定の第1時間より小さい場合に、前記時間間隔の測定が、前記第2パフ動作に関して取得済みの前記パフ動作間隔の値から再開するように調整される、方法。 2. The method of claim 1, wherein the time interval measurement determines the obtained puff duration for the second puff operation if the puff duration value for the second puff operation is less than a predetermined first time. A method that is adjusted to restart from the value of the action interval.
  3.  請求項2に記載の方法において、前記第1時間が0.5秒である、方法。 The method according to claim 2, wherein said first time is 0.5 seconds.
  4.  請求項1から3の何れか一項に記載の方法において、
     前記吸引成分源の残量レベルを推定する前記ステップが、前記累積検知時間が所定の第2時間に達した場合に、前記吸引成分源が残量不足であると判定することを含む、方法。
    A method according to any one of claims 1 to 3, wherein
    The method, wherein the step of estimating the residual level of the attractive component source includes determining that the attractive component source is depleted if the cumulative sensing time reaches a second predetermined time.
  5.  請求項4に記載の方法であって、更に、
     前記吸引成分源が残量不足であると判定されたことに応じて、前記吸引装置に前記残量不足を通知させるステップを含む、方法。
    5. The method of claim 4, further comprising:
    responsive to determining that the suction component source is depleted, causing the aspiration device to notify the depletion.
  6.  請求項1から5の何れか一項に記載の方法において、
     前記時間補正モデルは、前記検知時間の値が所定の第3時間である場合に前記補正される検知時間を、前記第3時間に維持することを含むように規定される、方法。
    6. A method according to any one of claims 1 to 5,
    The method, wherein the time correction model is defined to include maintaining the corrected sensing time at the third time when the value of the sensing time is a predetermined third time.
  7.  請求項6に記載の方法において、
     前記時間補正モデルは、前記検知時間の値が前記第3時間より小さい場合に、前記検知時間を減少させることを含むように規定される、方法。
    7. The method of claim 6, wherein
    The method, wherein the time correction model is defined to include decreasing the sensing time if the sensing time value is less than the third time.
  8.  請求項6又は7に記載の方法において、前記第3時間が2.4秒である、方法。 The method according to claim 6 or 7, wherein said third time is 2.4 seconds.
  9.  請求項1から8の何れか一項に記載の方法において、
     前記時間補正モデルは、前記パフ動作間隔の値が第4時間より小さい場合に、前記パフ動作間隔に基づいて算出される調整時間を前記測定された検知時間の値に加算することにより、前記測定された検知時間を増加させることを含むように規定される、方法。
    9. A method according to any one of claims 1 to 8,
    The time correction model adds an adjustment time calculated based on the puffing interval to the measured sensing time value when the puffing interval value is less than a fourth time. a method defined to include increasing the detected detection time.
  10.  請求項9に記載の方法であって、更に、
     前記第2パフ動作が初回のパフ動作である場合に、前記第2パフ動作に関するパフ動作間隔の値を前記第4時間に初期設定するステップを含む、方法。
    10. The method of claim 9, further comprising:
    and initializing a puff interval value for the second puff to the fourth time if the second puff is a first puff.
  11.  請求項9又は10記載の方法において、前記第4時間が10秒である、方法。 The method according to claim 9 or 10, wherein said fourth time is 10 seconds.
  12.  請求項1から11の何れか一項に記載の方法を前記吸引装置に実行させるためのプログラム。 A program for causing the suction device to execute the method according to any one of claims 1 to 11.
  13.  吸引装置であって、
     ユーザによる一連のパフ動作を検知するセンサと、
     前記吸引装置を動作させるための制御部であって、
      前記センサが検知した第1パフ動作に関するパフ動作間隔の値を取得するために、前記第1パフ動作と直前の第2パフ動作との間の時間間隔を測定し、
      前記第1パフ動作が継続しているパフ動作期間の値を取得するために、前記第1パフ動作の検知時間を測定し、
      前記パフ動作間隔及び前記パフ動作期間に関連付けられる時間補正モデルを用いて、前記検知時間を補正し、
      前記補正された検知時間を累積して、累積検知時間を算出し、
      前記累積検知時間に基づいて、吸引成分源の残量レベルを推定する、
     制御部と、を備え、
     前記第1パフ動作に関する前記パフ動作間隔の値は、前記第2パフ動作に関して取得済みのパフ動作期間の値に応じて前記時間間隔の測定を調整することで取得される、吸引装置。
    a suction device,
    a sensor that detects a series of puffing actions by a user;
    A control unit for operating the suction device,
    measuring the time interval between the first puff and the immediately preceding second puff to obtain a puff interval value for the first puff detected by the sensor;
    measuring the detection time of the first puff action to obtain a value of the puff action period during which the first puff action continues;
    correcting the sensing time using a time correction model associated with the puff interval and the puff duration;
    accumulating the corrected detection time to calculate the cumulative detection time;
    estimating a remaining level of an inhalant source based on the cumulative sensing time;
    a control unit;
    The aspiration device, wherein the puffing interval value for the first puffing is obtained by adjusting the time interval measurement according to a puffing duration value obtained for the second puffing.
PCT/JP2021/035595 2021-09-28 2021-09-28 Operation method for inhalation device, program, and inhalation device WO2023053183A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023550771A JPWO2023053183A1 (en) 2021-09-28 2021-09-28
CN202180102872.7A CN118159160A (en) 2021-09-28 2021-09-28 Suction device operation method, program, and suction device
PCT/JP2021/035595 WO2023053183A1 (en) 2021-09-28 2021-09-28 Operation method for inhalation device, program, and inhalation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/035595 WO2023053183A1 (en) 2021-09-28 2021-09-28 Operation method for inhalation device, program, and inhalation device

Publications (1)

Publication Number Publication Date
WO2023053183A1 true WO2023053183A1 (en) 2023-04-06

Family

ID=85781482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035595 WO2023053183A1 (en) 2021-09-28 2021-09-28 Operation method for inhalation device, program, and inhalation device

Country Status (3)

Country Link
JP (1) JPWO2023053183A1 (en)
CN (1) CN118159160A (en)
WO (1) WO2023053183A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014501107A (en) 2010-12-24 2014-01-20 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Aerosol generation system with means to handle consumption of liquid temperament
JP2014501105A (en) 2010-12-24 2014-01-20 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Aerosol generation system with liquid substrate reduction determination means
JP2015531600A (en) 2012-09-11 2015-11-05 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Apparatus and method for limiting temperature by controlling an electric heater
JP2016525367A (en) 2013-07-30 2016-08-25 スマート チップ マイクロエレクトロニック シーオー.リミテッド Electronic smoking device and scented steam generator
JP2017192393A (en) * 2014-05-02 2017-10-26 日本たばこ産業株式会社 Non-burning type flavor sucker, and computer-readable media
JP2017538410A (en) 2014-12-05 2017-12-28 ジュール・ラブズ・インコーポレイテッドJuul Labs, Inc. Adjusted dose control
KR20180070443A (en) * 2016-12-16 2018-06-26 주식회사 케이티앤지 Method and apparatus for providing adaptive feedback through puff recognition
WO2018224823A1 (en) * 2017-06-09 2018-12-13 Nicoventures Holdings Limited Electronic aerosol provision system
JP2019500896A (en) 2015-11-17 2019-01-17 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Aerosol generation system with self-starting electric heater
WO2021002392A1 (en) 2019-07-03 2021-01-07 日本たばこ産業株式会社 Method for operating power supply unit for suction device, power supply unit for suction device, and computer-readable medium
JP2021509259A (en) * 2018-11-12 2021-03-25 ケイティー アンド ジー コーポレイション Aerosol generator and how to control it
JP2021509276A (en) * 2018-11-16 2021-03-25 ケイティー アンド ジー コーポレイション Aerosol generator and aerosol generator control method and equipment

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014501107A (en) 2010-12-24 2014-01-20 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Aerosol generation system with means to handle consumption of liquid temperament
JP2014501105A (en) 2010-12-24 2014-01-20 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Aerosol generation system with liquid substrate reduction determination means
JP2015531600A (en) 2012-09-11 2015-11-05 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Apparatus and method for limiting temperature by controlling an electric heater
JP2016525367A (en) 2013-07-30 2016-08-25 スマート チップ マイクロエレクトロニック シーオー.リミテッド Electronic smoking device and scented steam generator
JP2017192393A (en) * 2014-05-02 2017-10-26 日本たばこ産業株式会社 Non-burning type flavor sucker, and computer-readable media
JP2017538410A (en) 2014-12-05 2017-12-28 ジュール・ラブズ・インコーポレイテッドJuul Labs, Inc. Adjusted dose control
JP2019500896A (en) 2015-11-17 2019-01-17 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Aerosol generation system with self-starting electric heater
KR20180070443A (en) * 2016-12-16 2018-06-26 주식회사 케이티앤지 Method and apparatus for providing adaptive feedback through puff recognition
WO2018224823A1 (en) * 2017-06-09 2018-12-13 Nicoventures Holdings Limited Electronic aerosol provision system
JP2021509259A (en) * 2018-11-12 2021-03-25 ケイティー アンド ジー コーポレイション Aerosol generator and how to control it
JP2021509276A (en) * 2018-11-16 2021-03-25 ケイティー アンド ジー コーポレイション Aerosol generator and aerosol generator control method and equipment
WO2021002392A1 (en) 2019-07-03 2021-01-07 日本たばこ産業株式会社 Method for operating power supply unit for suction device, power supply unit for suction device, and computer-readable medium

Also Published As

Publication number Publication date
CN118159160A (en) 2024-06-07
JPWO2023053183A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
JP6462965B2 (en) Suction device and method and program for operating the same
KR102490039B1 (en) Inhalation device and method and program for operating same
CN108135271B (en) Non-combustion type fragrance inhaler and atomization assembly
JP6462966B2 (en) Suction device and method and program for operating the same
KR102443306B1 (en) Aerosol generating device and method and program for operating the same
EA036912B1 (en) Flavor inhaler, cartridge, and flavor unit
KR102425243B1 (en) Aerosol generating device and method and program for operating the same
RU2749257C1 (en) Aerosol generating apparatus, method for activation of apparatus and computer-readable data storage medium containing program for implementation thereof (variants)
EP3977869A1 (en) Power supply unit for aerosol generation device
JP7253052B2 (en) Method of operating suction device power supply unit, suction device power supply unit and computer readable medium
JP6639720B1 (en) Power supply unit provided in suction device, suction device, and method of operating power supply unit
JP6932854B2 (en) Aerosol generator and method and program to operate it
JP7500152B2 (en) Aerosol Delivery System
JP7244664B2 (en) Battery unit, information processing method, and program
WO2023053183A1 (en) Operation method for inhalation device, program, and inhalation device
JP6660457B2 (en) Suction device and method and program for operating the same
JP7245311B2 (en) suction device
TWI773697B (en) Aerosol generating device, and method and computer program product for operating the aerosol generating device
JP2020137528A (en) Suction apparatus and method and program for making the same operate
JP6994115B2 (en) Aerosol generator and method and program to operate it
WO2023188102A1 (en) Aerosol generating device, control method, and program
TWI774701B (en) Aerosol generating device, and method and computer program product for operating the aerosol generating device
WO2024115607A1 (en) System comprising an aerosol provision system
JP2023533292A (en) Aerosol delivery system
CN118042953A (en) Aerosol generating system and method of aerosol generation with adaptive power control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21959234

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023550771

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021959234

Country of ref document: EP

Effective date: 20240429