WO2023051721A1 - 一种聚乳酸产业用纤维纺丝牵伸卷绕装置及联合机 - Google Patents

一种聚乳酸产业用纤维纺丝牵伸卷绕装置及联合机 Download PDF

Info

Publication number
WO2023051721A1
WO2023051721A1 PCT/CN2022/122719 CN2022122719W WO2023051721A1 WO 2023051721 A1 WO2023051721 A1 WO 2023051721A1 CN 2022122719 W CN2022122719 W CN 2022122719W WO 2023051721 A1 WO2023051721 A1 WO 2023051721A1
Authority
WO
WIPO (PCT)
Prior art keywords
spinning
pair
temperature
heat
setting
Prior art date
Application number
PCT/CN2022/122719
Other languages
English (en)
French (fr)
Inventor
满晓东
邱军先
徐凯
毛育博
李雅迪
任玉国
侯伯
张宝成
焦海
武彦
孙睿鑫
张磊
董雨
Original Assignee
北京中丽制机工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202122406535.7U external-priority patent/CN216192925U/zh
Priority claimed from CN202111160423.6A external-priority patent/CN113737301A/zh
Priority claimed from CN202122406547.XU external-priority patent/CN216192918U/zh
Priority claimed from CN202111163325.8A external-priority patent/CN113699602A/zh
Application filed by 北京中丽制机工程技术有限公司 filed Critical 北京中丽制机工程技术有限公司
Publication of WO2023051721A1 publication Critical patent/WO2023051721A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/04Melting filament-forming substances
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/02Heat treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D13/00Complete machines for producing artificial threads
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D4/00Spinnerette packs; Cleaning thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/12Stretch-spinning methods
    • D01D5/16Stretch-spinning methods using rollers, or like mechanical devices, e.g. snubbing pins

Definitions

  • the disclosure relates to the technical field of spinning production, in particular to a polylactic acid industrial fiber spinning, drawing and winding device and a combination machine.
  • Bio-based polylactic acid tows are relatively fragile compared to petroleum synthetic fibers. In order to avoid damage due to strong deflection and entanglement and to avoid different physical properties, certain limit values must not be exceeded when deflecting the filaments.
  • the present disclosure provides a polylactic acid industrial fiber spinning, drawing and winding device and a combined machine.
  • a polylactic acid industrial fiber spinning, drawing and winding device which includes a double-face oiling mechanism, a cutting and sucking yarn, a pre-netting device and a spinning roller arranged in sequence according to the production process, and the drawing
  • the stretching and winding device is equipped with a spinning device.
  • the tow from the spinning device passes through the double-face oiling mechanism, the cutting and sucking yarn and the pre-netting device until it is sent to the splitting roller.
  • the drafting and winding device and the spinning device are configured It is arranged in parallel, so that the tow between the spinning device and the split roller is arranged in the vertical direction and is tangent to the split roller.
  • a polylactic acid industrial fiber spinning, drawing and winding machine including a spinning device and a drafting and winding device, and the spinning device includes screw extruders arranged in sequence according to the production process Machine, extrusion head, melt conveying pipeline, spinning box, spinning assembly, slow cooler, monomer suction parts, combined cooling mechanism and tunnel parts
  • drafting and winding devices include double-sided Oiling mechanism, cutting and sucking yarn, pre-netting device, splitting roller, the first pair of low-temperature hot rollers, the second pair of high-temperature drafting hot rollers, the third pair of high-temperature drafting hot rollers, the fourth pair of drafting and setting hot rollers, The fifth sizing hot roller group, the sixth loosening guide plate, the porcelain guide wire hook, the main netter and the winding machine; the tow passes through the double-face oiling mechanism, the cutting and suction yarn and the pre-netter in turn from the shaft part until it is conveyed To the split roller, the draft winder and the
  • the beneficial effects of the present disclosure are as follows:
  • the present disclosure provides a polylactic acid industrial fiber spinning, drawing and winding device, the tow enters the drawing and winding device through the spinning device, and the present disclosure combines the spinning device and the drafting and winding device together
  • the arrangement of the equipment adopts a parallel configuration, specifically, the tow passes through the double-face oiling mechanism, the cutting and sucking yarn, and the pre-netting device in sequence from the spinning device until it is sent to the splitting roller, so that the distance between the spinning device and the splitting roller
  • the tow is arranged in the vertical direction and is tangent to the splitting roller.
  • the tow will not be deflected after it is drawn out from the spinning device and enters the drafting and winding device, so as to avoid the high deflection causing friction and damaging the filament.
  • Beams are especially used in the production of polylactic acid industrial fiber FDY spinning.
  • Fig. 1 shows the front view of the polylactic acid industrial fiber spinning, drafting and winding device and the spinning device according to Embodiment 1 of the present disclosure
  • Fig. 2 is a side view of the structure shown in Fig. 1;
  • Fig. 3 is a partial structural schematic diagram of the drafting and winding device in Fig. 1;
  • Fig. 4 is a side view of the structure shown in Fig. 3;
  • Fig. 5 is a side view of the fifth sizing heat roller group in Fig. 1;
  • Fig. 6 is a front view of the fifth sizing heat roller group in Fig. 1 using an inductive heating source
  • Fig. 7 is a front view of the steam heating source used in the fifth sizing hot roller group in Fig. 1;
  • Fig. 8 is the front view of adopting the hot air heating source in the fifth sizing heat roller group in Fig. 1;
  • Fig. 9 shows the front view of the polylactic acid industrial fiber spinning, drawing and winding machine according to Embodiment 3 of the present disclosure
  • Figure 10 is a side view of the structure shown in Figure 9;
  • Fig. 11 is a top view of the screw extruder, extrusion head, melt conveying pipeline and spinning box in Fig. 9;
  • Fig. 12 is a side view of the fifth sizing heat roller group in Fig. 9;
  • Fig. 13 is a front view of the fifth sizing heat roller group in Fig. 9 using an inductive heating source
  • Fig. 14 is the front view of the steam heating source used in the fifth sizing hot roller group in Fig. 9;
  • Fig. 15 is a front view of the fifth sizing heat roller group adopting hot air heating source in Fig. 9;
  • Figure 16 is a schematic diagram of the overall structure of a screw extruder provided in Embodiment 5.
  • Fig. 17 is a schematic diagram of the local structure at A in Fig. 16;
  • Fig. 18 is a cross-sectional comparison diagram of G1-G1, G2-G2, and G3-G3 in Fig. 17;
  • Fig. 19 is a partial enlarged view of place B in Fig. 16;
  • Fig. 20 is a schematic diagram of another possible implementation manner of Fig. 19;
  • Fig. 21 is a schematic diagram of another possible implementation of Fig. 19;
  • Fig. 22 is a partial enlarged view at C in Fig. 16;
  • Figure 23 is a partial enlarged view at D in Figure 16;
  • Figure 24 is a partial enlarged view at E-E in Figure 16;
  • Figure 25 is a schematic diagram of the overall structure of a spinning box provided in Embodiment 6;
  • Figure 26 is a horizontal sectional view of the structure shown in Figure 25;
  • Figure 27 is a vertical sectional view of the structure shown in Figure 25;
  • Figure 28 is a partial enlarged view at F in Figure 27;
  • Figure 29 is a schematic cross-sectional view at J-J in Figure 28;
  • Figure 30 is a schematic structural view of a spinning assembly provided in Embodiment 7.
  • Figure 31 is a schematic structural view of the raised state of the outer ring blowing part in a combined cooling mechanism provided in Embodiment 8;
  • Figure 32 is a side view of the structure shown in Figure 31;
  • Fig. 33 is a structural schematic diagram of the falling state of the outer ring blowing part in the combined cooling mechanism shown in Fig. 31;
  • Figure 34 is a side view of the structure shown in Figure 32;
  • Figure 35 is a front view of a double-faced oiling mechanism provided in Embodiment 10 when it is in a spinning state;
  • Fig. 36 is the front view when the structure shown in Fig. 35 is in the threading state
  • Figure 37 is a top view of a plurality of structures shown in Figure 35 in a spinning state
  • Figure 38 is a top view of the structure shown in Figure 37 when it is in a spinning state
  • Fig. 39 is a front view of another double-face oiling mechanism provided by Embodiment 11.
  • Figure 40 is a top view of a plurality of structures shown in Figure 39 in a spinning state
  • Fig. 41 is a kind of top view when the structure shown in Fig. 40 is in the threading state;
  • Fig. 42 is another top view of the structure shown in Fig. 40 when it is in a spinning state.
  • this embodiment discloses a polylactic acid industrial fiber spinning, drafting and winding device 200, which includes a double-faced oiling mechanism 11, a cutting and suction filament 12, and a pre-netting device arranged in sequence according to the production process 13 and spinning roller 14.
  • the drafting and winding device 200 is combined with the spinning device 100 to form a combined machine. From the spinning device 100, the filaments pass through the double oiling mechanism 11, the shearing and sucking yarn 12, and the pre-netting device 13 in sequence until they are sent to the splitting roller 14, and the drafting and winding device 200 and the spinning device 100 are arranged in parallel.
  • the spinning device 100 and the drafting and winding device 200 are configured in parallel in terms of equipment arrangement, so that the filament bundle between the spinning device 100 and the splitting roll 14 is arranged vertically and tangent to the splitting roll 14 .
  • the tow will not be deflected after entering the drafting and winding device 200 after being drawn out from the spinning device 100, so as to avoid the high deflection causing friction and damage to the tow, especially used in polylactic acid industrial fiber FDY In spinning production.
  • the selection of split rolls 14 includes tensioned split rolls or feed rolls.
  • the splitting roller 14 is selected as a pair of tension splitting rollers, it is conducive to space arrangement and cost saving.
  • the wire dividing roller 14 is selected as the feeding roller, the wire has a certain grip, which is convenient for dividing the wire.
  • the drafting and winding device 200 includes a double-face oiling mechanism 11, a cutting and sucking wire 12, a pre-netting device 13, a splitting roller 14, a second A pair of low-temperature hot rolls 15, a second pair of high-temperature drafting hot rolls 16, a third pair of high-temperature drafting hot rolls 17, a fourth pair of drafting and setting hot rolls 18, and a fifth pair of setting hot rolls 19.
  • polylactic acid is heated to a certain temperature, the molecular structure of the fiber changes, and then the shape is set. Due to the characteristics of the polylactic acid fiber, the shape of the polylactic acid industrial fiber spinning is not perfect, which lies in the higher setting length , The requirements of setting time.
  • the fifth sizing heat roll group 19 comprises heat-insulating cover box 19-5, heating source and at least four heat-setting rolls, and heat-insulating cover box 19-5 is provided with supply tow 19-7
  • the threading silk path 19-6 and the silk path 19-8, at least four heat-setting rollers are set in sequence according to the production process and are all arranged in the heat-preservation cover box 19-5, and the heating source is used to heat the heat-preservation cover box
  • the tow 19-7 within 19-5 is heated in an environment of 70-120°C.
  • the above-mentioned fifth sizing hot roll group 19 is replaced by a traditional pair of sizing rolls.
  • the heat sizing rolls are installed in a limited space. Increase the path and increase the spinning process, which is beneficial to the strict requirements on the setting length and setting time when spinning polylactic acid, and can make the setting effect more sufficient.
  • the speed of each heat setting roller of the fifth shaping heat roller group 19 can be adjusted separately, which is beneficial to control the setting step.
  • the fifth sizing hot roller group 19 needs to ensure that the tow 19-7 enters the heat preservation cover box 19-5 with the upward direction, and is output downward, so the quantity of the heat setting rolls in the heat preservation cover box 19-5 is controlled at 4
  • One is better, and 6, 8, etc. schemes can also be set.
  • the fifth heat setting roller group 19 includes four heat setting rollers, which are respectively the first heat setting roller 19-1 and the second heat setting roller arranged in sequence according to the production process. 19-2.
  • the tow 19-7 passes through the wire-feeding path 19-6 and winds around the first heat-setting roller 19-1 and the fourth heat-setting roller in turn.
  • the first heat-setting roller 19-1 is arranged higher than the second heat-setting roller 19-2, the height of the third heat-setting roller 19-3 is equal to that of the first heat-setting roller 19-1, and the fourth heat-setting roller The height of the setting roller 19-4 is equal to that of the second heat setting roller 19-2.
  • the heating source includes an induction heating source, a steam heating source, or a hot air heating source.
  • the heating source includes an inductive heating source
  • it is used to heat-set the polylactic acid industrial fiber spinning with a setting temperature in the first preset range
  • the heat-setting rollers are all set as induction heating and setting hot rollers.
  • Inductive heating for setting is relatively uniform in heating, but it consumes a lot of electricity and costs high. It is used for bio-based polylactic acid industrial filaments with high setting temperature, which has relatively high requirements for various indicators.
  • the heating source includes a steam heating source
  • it is used to thermally set the polylactic acid industrial fiber spinning whose setting temperature is in the second preset range
  • the lower part of the side wall of the heat preservation cover box 19-5 is provided with Steam inlet 19-5a
  • the side wall height of insulation cover box 19-5 is provided with steam outlet 19-5b
  • steam inlet 19-5a and steam outlet 19-5b are offered at the relative both sides of insulation cover box 19-5
  • steam The heating source is used to deliver hot steam to the heat-preservation cover box 19-5, specifically through the steam inlet 19-5a to input the heat-preservation cover box 19-5, and output from the steam outlet 19-5b after the tow 19-7 is heat-set.
  • the heating source includes a hot air heating source
  • it is used to thermally set the polylactic acid industrial fiber spinning with a setting temperature in the third preset range, and a plurality of heating plates are arranged in the heat preservation cover box 19-5 19-9, the heating plate 19-9 is arranged at intervals with the heat-setting roller, and the heating plate 19-9 is arranged close to the tow 19-7 in the thermal insulation cover box 19-5.
  • Carry out heating setting by heating plate 19-9 can carry out temperature control.
  • the first preset range, the second preset range, and the third preset range decrease in turn. , and both are greater than or equal to 70°C and less than or equal to 120°C. According to the reduction of the setting temperature, the induction heating source, steam heating source or hot air heating source are selected in turn.
  • the first preset range is greater than 110°C and less than or equal to 120°C
  • the second preset range is greater than 90°C and less than or equal to 110°C
  • the third preset range is greater than or equal to 70°C and less than or equal to 90°C. °C.
  • induction heating is used for polylactic acid industrial filaments with a setting temperature of 110°C to 120°C.
  • steam heating is used for setting.
  • the polylactic acid industrial filament with a setting temperature of 70°C to 90°C is set by hot air.
  • the heating plate 19 - 9 in hot air heating and setting, includes another type that is arranged at the entrance of the heat preservation cover box 19 - 5 and between subsequent heat setting rollers. Because at the entrance position, namely the regional temperature change behind the silk path 19-6 is relatively large, the heating plate 19-9 at the entrance is set by adopting the tow 19-7, and the section of the corresponding heating plate 19-9 is U. shape settings.
  • the follow-up heating plate 19-9 is arranged between two heat-setting rollers, which is conducive to the space arrangement in the heat-insulating cover box 19-5, and is conducive to the smaller specification setting of the heat-insulating cover box 19-5.
  • the drafting and winding device 200 also includes a sixth slack guide plate 20 and a porcelain guide wire hook that are sequentially arranged after the fifth shaping hot roller group 19 according to the production process. 21.
  • the sixth slack guide plate 20 plays the role of relaxation and tension elimination. After the tow is wound on the sixth slack guide plate 20, it is sent to the main network device 22 for knotting through the porcelain guide wire hook 21. After the tow is knotted, it is Transfer to winding machine 23 to complete winding.
  • the polylactic acid industrial fiber spinning, drawing and winding device 200 of this embodiment can produce 4-16 different kinds of bio-based polylactic acid industrial filaments.
  • the present embodiment divides the spinning roller 14, the first pair of low-temperature hot rollers 15, the second pair of high-temperature drafting hot rollers 16, and the third pair of hot rollers.
  • the specific parameters of the high-temperature drafting hot roller 17 , the fourth pair of drafting and shaping hot rollers 18 and the fifth shaping hot roller group 19 are set.
  • the spinning roller 14 is wound with the filament bundle once, the heating temperature of the spinning roller 14 is zero, and the spinning speed is 550-650 m/min in an unheated state.
  • the first pair of low-temperature hot rollers 15 are wound by tow for 6.5 to 7.5 turns, the heating temperature of the first pair of low-temperature hot rollers 15 is 65-90°C, and the spinning speed is 605m/min. Roller 15 maintains a speed ratio of 1:1.01.
  • the second pair of high-temperature drafting hot rollers 16 are wound by the tow for 6.5 to 7.5 turns.
  • the heating temperature of the second pair of high-temperature drafting hot rollers 16 is 100-140°C, and the spinning speed is 1950m/min.
  • the first pair of low-temperature hot rollers 15 is 2.5-3.5 times with the draft ratio of the second pair of high-temperature drafting hot rolls 16.
  • the third pair of high-temperature drafting hot rollers 17 are wound by the tow for 6.5 to 7.5 turns.
  • the heating temperature of the third pair of high-temperature drafting hot rollers 17 is 110-150°C, and the spinning speed is 3500m/min.
  • the second pair of high-temperature drafting hot rollers 17 The drafting ratio of the hot roller 16 and the third pair of high-temperature drawing hot rollers 17 is 1.5-2 times.
  • the fourth pair of drafting and setting hot rollers 18 is wound by the tow for 6.5 to 7.5 turns.
  • the heating temperature of the fourth pair of drafting and shaping hot rollers 18 is 110-150°C, and the spinning speed is 3900m/min.
  • the third pair of high temperature drafting The drafting ratio of the hot roller 17 and the fourth pair of drafting and setting hot rollers 18 is 1.1-1.3 times.
  • the heating temperature of the fifth sizing hot roller group 19 is 70-120° C., the spinning speed is 4250 m/min, and the draft ratio of the fourth pair of drafting sizing hot rollers 18 and the fifth sizing hot roller group 19 is 1.02-1.05 times.
  • the heating temperature of the sixth slack guide plate 20 is zero, which is a non-heating state.
  • the roller shell surfaces of the fifth sizing hot roller group 19 and the sixth relaxation guide disc 20 can all be ceramics.
  • this embodiment provides a polylactic acid industrial fiber spinning, drawing and winding combined machine, including a spinning device 100 and a drafting and winding device 200, and the spinning device includes sequentially arranged according to the production process
  • the stretching and winding device 200 includes a double-side oiling mechanism 11, a cutting and sucking yarn 12, a pre-netting device 13, a spinning roller 14, a first pair of low-temperature hot rollers 15, and a second pair of high-temperature drafting hot rollers, which are arranged in sequence according to the production process. 16.
  • the tow will not be deflected after entering the drafting and winding device 200 after being drawn out from the spinning device 100, so as to avoid the high deflection causing friction and damage to the tow, especially used in polylactic acid industrial fiber FDY In spinning production.
  • split rolls 14 may include tensioned split rolls or feed rolls.
  • splitting roller 14 is selected as a pair of tension splitting rollers, it is conducive to space arrangement and cost saving.
  • wire dividing roller 14 is selected as the feeding roller, the wire has a certain grip, which is convenient for dividing the wire.
  • polylactic acid is heated to a certain temperature, the molecular structure of the fiber changes, and then the shape is set. Due to the characteristics of the polylactic acid fiber, the shape of the polylactic acid industrial fiber spinning is not perfect, which lies in the higher setting length , The requirements of setting time.
  • the fifth sizing heat roller group 19 can comprise heat preservation cover box 19-5, heating source and at least four heat setting rollers, and heat preservation cover box 19-5 is provided with supply tow 19-5.
  • the thread-in wire path 19-6 and the wire-out path 19-8, at least four heat-setting rollers are arranged in turn according to the production process and are all installed in the heat-preservation cover box 19-5.
  • the tow 19-7 in the box 19-5 is heated in an environment of 70-120°C.
  • the fifth sizing hot roller group 19 needs to ensure that the tow 19-7 enters the heat preservation cover box 19-5 with the upward direction, and is output downward, so the quantity of the heat setting rolls in the heat preservation cover box 19-5 is controlled at 4
  • One is better, and 6, 8, etc. schemes can also be set.
  • the fifth heat setting roller group 19 may include four heat setting rollers, which are respectively the first heat setting roller 19-1 and the second heat setting roller 19-1 arranged in sequence according to the production process.
  • Roller 19-2, the third heat-setting roller 19-3 and the fourth heat-setting roller 19-4, the tow 19-7 passes through the wire-feeding path 19-6 and winds through the first heat-setting roller 19-1, The second heat-setting roller 19-2, the third heat-setting roller 19-3 and the fourth heat-setting roller 19-4, until they pass through the wire outlet path 19-8.
  • the first heat-setting roller 19-1 is arranged higher than the second heat-setting roller 19-2, the height of the third heat-setting roller 19-3 is equal to that of the first heat-setting roller 19-1, and the fourth heat-setting roller The height of the setting roller 19-4 is equal to that of the second heat setting roller 19-2.
  • the heating source may include an induction heating source, a steam heating source, or a hot air heating source.
  • the heating source includes an inductive heating source, it is used for thermal setting of polylactic acid industrial fiber spinning with a setting temperature in the first preset range, and the heat setting rollers are all set as induction heating and setting hot rollers.
  • Inductive heating for setting is relatively uniform in heating, but it consumes a lot of electricity and costs high. It is used for bio-based polylactic acid industrial filaments with high setting temperature, which has relatively high requirements for various indicators.
  • the heating source when the heating source includes a steam heating source, it is used to thermally set the polylactic acid industrial fiber spinning whose setting temperature is in the second preset range, and the lower side wall of the heat preservation cover box 19-5 is provided with a Steam inlet 19-5a, the side wall height of insulation cover box 19-5 is provided with steam outlet 19-5b, and steam inlet 19-5a and steam outlet 19-5b are offered at the relative both sides of insulation cover box 19-5, steam The heating source is used to deliver hot steam to the heat-preservation cover box 19-5, specifically through the steam inlet 19-5a to input the heat-preservation cover box 19-5, and output from the steam outlet 19-5b after the tow 19-7 is heat-set.
  • a steam heating source when the heating source includes a steam heating source, it is used to thermally set the polylactic acid industrial fiber spinning whose setting temperature is in the second preset range, and the lower side wall of the heat preservation cover box 19-5 is provided with a Steam inlet 19-5a, the side wall height of insulation cover box 19-5
  • the heating source includes a hot air heating source
  • it is used to thermally set the polylactic acid industrial fiber spinning with a setting temperature in the third preset range, and a plurality of heating plates are arranged in the heat preservation cover box 19-5 19-9, the heating plate 19-9 is arranged at intervals with the heat-setting roller, and the heating plate 19-9 is arranged close to the tow 19-7 in the thermal insulation cover box 19-5.
  • Carry out heating setting by heating plate 19-9 can carry out temperature control.
  • the first preset range, the second preset range, and the third preset range decrease in turn. , and both are greater than or equal to 70°C and less than or equal to 120°C. According to the reduction of the setting temperature, the induction heating source, steam heating source or hot air heating source are selected in turn.
  • the first preset range is greater than 110°C and less than or equal to 120°C
  • the second preset range is greater than 90°C and less than or equal to 110°C
  • the third preset range is greater than or equal to 70°C and less than or equal to 90°C. °C.
  • induction heating is used for polylactic acid industrial filaments with a setting temperature of 110°C to 120°C.
  • steam heating is used for setting.
  • the polylactic acid industrial filament with a setting temperature of 70°C to 90°C is set by hot air.
  • the heating plate 19-9 in the hot air heating and setting, includes the heating plate 19-9 arranged at the entrance of the heat preservation cover box 19-5, and between the subsequent heat setting rollers. Another type of heating plate 19-9. Because at the entrance position, namely the regional temperature change behind the silk path 19-6 is relatively large, the heating plate 19-9 at the entrance is set by adopting the tow 19-7, and the section of the corresponding heating plate 19-9 is U. shape settings. The follow-up heating plate 19-9 is arranged between two heat-setting rollers, which is conducive to the space arrangement in the heat-insulating cover box 19-5, and is conducive to the smaller specification setting of the heat-insulating cover box 19-5.
  • the drafting and winding device 200 may also include a sixth slack guide plate 20 , a porcelain guide wire hook 21 , Main networker 22 and winder 23.
  • the sixth slack guide plate 20 plays the role of relaxation and tension elimination. After the tow is wound on the sixth slack guide plate 20, it is sent to the main network device 22 for knotting through the porcelain guide wire hook 21. After the tow is knotted, it is Transfer to winding machine 23 to complete winding.
  • the polylactic acid industrial fiber spinning, drawing and winding machine of this embodiment can produce 4-16 different types of bio-based polylactic acid industrial filaments.
  • a polylactic acid industrial fiber spinning, drawing and winding combined machine based on Embodiment 3 divides the spinning roller 14, the first pair of low-temperature hot rollers 15, the second pair of high-temperature drafting hot rollers 16, and the third pair of hot rollers.
  • the specific parameters of the high-temperature drafting hot roller 17 , the fourth pair of drafting and shaping hot rollers 18 and the fifth shaping hot roller group 19 are set.
  • the spinning roller 14 is wound with the filament bundle once, the heating temperature of the spinning roller 14 is zero, and the spinning speed is 550-650 m/min in an unheated state.
  • the first pair of low-temperature hot rollers 15 are wound by tow for 6.5 to 7.5 turns, the heating temperature of the first pair of low-temperature hot rollers 15 is 65-90°C, and the spinning speed is 605m/min. Roller 15 maintains a speed ratio of 1:1.01.
  • the second pair of high-temperature drafting hot rollers 16 are wound by the tow for 6.5 to 7.5 turns.
  • the heating temperature of the second pair of high-temperature drafting hot rollers 16 is 100-140°C, and the spinning speed is 1950m/min.
  • the first pair of low-temperature hot rollers 15 is 2.5-3.5 times with the draft ratio of the second pair of high-temperature drafting hot rolls 16.
  • the third pair of high-temperature drafting hot rollers 17 are wound by the tow for 6.5 to 7.5 turns.
  • the heating temperature of the third pair of high-temperature drafting hot rollers 17 is 110-150°C, and the spinning speed is 3500m/min.
  • the second pair of high-temperature drafting hot rollers 17 The drafting ratio of the hot roller 16 and the third pair of high-temperature drafting hot rollers 17 is 1.5-2 times.
  • the fourth pair of drafting and setting hot rollers 18 is wound by the tow for 6.5 to 7.5 turns.
  • the heating temperature of the fourth pair of drafting and shaping hot rollers 18 is 110-150°C, and the spinning speed is 3900m/min.
  • the third pair of high temperature drafting The drafting ratio of the hot roller 17 and the fourth pair of drafting and setting hot rollers 18 is 1.1-1.3 times.
  • the heating temperature of the fifth sizing hot roller group 19 is 70-120° C.
  • the spinning speed is 4250 m/min
  • the draft ratio of the fourth pair of drafting sizing hot rollers 18 and the fifth sizing hot roller group 19 is 1.02-1.05 times.
  • the heating temperature of the sixth slack guide plate 20 is zero, which is a non-heating state.
  • the roller shell surfaces of the fifth sizing heat roller group 19 and the sixth relaxation guide disc 20 can be ceramics.
  • this embodiment discloses a screw extruder, including a screw sleeve 1-a and a threaded screw extruder. Be located at the screw rod 1-b of screw sleeve 1-a, screw rod 1-b can comprise the feeding section 1-5d that arranges successively, compression section (such as the first compression section 1-5c and the second compression section in Fig.
  • Section 1-5b presents, and can also be in other forms) and metering section 1-5a
  • screw sleeve 1-a includes gas collection chamber 1-3g and exhaust hole 1-3d, and gas collection chamber 1-3g is used in compression section and metering
  • the exhaust hole 1-3d communicates with the gas collection chamber 1-3g, wherein the screw sleeve 1-a is equipped with an on-off valve 1- to open and close the exhaust hole 1-3d 3.
  • the screw sleeve 1-a is equipped with an external heater to provide heat
  • the screw 1-b can include a feed section 1-5d, a compression section and a metering section 1-5a arranged in sequence, and the polylactic acid raw material enters the feed section 1-5d
  • the solid material gradually rises step by step with the temperature, and at the same time, it becomes a molten melt under the shear heat between the raw materials, and the solid material is fully melted to the liquid phase by the compression shear in the compression section.
  • the bio-based polylactic acid raw material is heated, a small part of the raw material structure is unstable and undergoes chemical changes, and hydrolysis occurs, and the gas produced has a serious impact on subsequent spinning.
  • the gas is discharged through the gas collection chamber 1-3g at the end of the compression section. Collect and control the on-off valve 1-3 to discharge the gas produced by hydrolysis from the exhaust hole 1-3d, and remove the gas in time when the melt enters the metering section 1-5a, thereby overcoming the impact of hydrolysis gas on spinning Serious adverse effects of yarn, improve the unfavorable situation of broken ends, and ensure the quality and efficiency of subsequent spinning.
  • the screw sleeve 1-a may include a butt first screw sleeve 1-1 and a second screw sleeve 1-4, and the screw rod 1-b passes through the first screw sleeve.
  • the first screw sleeve 1-1 is provided with an exhaust hole 1-3d and is equipped with an on-off valve 1-3, the first screw sleeve 1-1 is close to the second screw sleeve
  • the inner wall of one end of 1-4 is recessed, and the middle of the first screw sleeve 1-1 and the second screw sleeve 1-4 is provided with a sealing gasket 1-3f, and/or the second screw sleeve 1-4 is close to the first screw sleeve 1
  • the inner wall at one end of -1 is recessed, and the first screw sleeve 1-1, the sealing gasket 1-3f, the second screw sleeve 1-4 and the screw rod 1-b together form a gas collection chamber 1-3g.
  • the gas collection chamber 1-3g is formed by arranging the screw sleeve 1-a in the form of a combination of the first screw sleeve 1-1 and the second screw sleeve 1-4.
  • the first screw sleeve 1-1 and the second screw sleeve 1-4 are provided with a sealing gasket 1-3f, which means that the sealing gasket 1-3f is arranged between the first screw sleeve 1-1 and the second screw sleeve 1.
  • the first screw sleeve 1-1 and the second screw sleeve 1-4 can be connected by bolts, and the sealing gasket 1-3f can be used to ensure the airtightness of the gas collection chamber 1-3g.
  • the inner wall of the above-mentioned and/or second screw sleeve 1-4 close to the first screw sleeve 1-1 is recessed, which means that the inner wall of the first screw sleeve 1-1 close to the second screw sleeve 1-4
  • the inner wall of the second screw sleeve 1-4 close to the first screw sleeve 1-1 can be recessed to cooperate with the part of the gas collection chamber 1-3g; it can also be separated from the first screw sleeve 1-4 1
  • the inner wall of one end close to the second threaded sleeve 1-4 is recessed, or the inner wall of one end of the second threaded sleeve 1-4 close to the first threaded sleeve 1-1 is recessed separately from other possible implementations.
  • the feeding section 1-5d is set as a single-flight screw 1-b to complete feeding; the compression section is set as a double-flight screw 1-b to reduce the shear heat of the compression section, thereby reducing the compression section overheating phenomenon.
  • the compression section may include a first compression section 1-5c and a second compression section 1-5b, the first compression section 1-5c and the second compression section 1 -5b is arranged as a double flight screw 1-b, and the screw 1-b may include a feed section 1-5d, a first compression section 1-5c, a second compression section 1-5b and a metering section 1-5a arranged in sequence;
  • the groove depths of the first compression section 1-5c and the second compression section 1-5b gradually decrease, and the variation degree of the groove depth of the second compression section 1-5b is smaller than that of the first compression section 1 -5c degree of variation in groove depth.
  • the groove depth of the first compression section 1-5c gradually decreases, and the depth of the groove varies greatly, so that the solid phase material is fully melted to the liquid phase by the compression shear; and then passes through the second compression section 1-5b, and the second compression section 1
  • the groove depth of -5b decreases gradually, and the degree of variation of the groove depth is small.
  • the solid phase material is further melted into a liquid, and on the other hand, there is a relative space for the gas produced after hydrolysis to store.
  • the variation degree of the above-mentioned groove depth refers to the variation of the groove depth corresponding to the unit length along the material conveying direction in the screw extruder.
  • the larger and smaller changes in the above-mentioned groove depth refer to the relative terms of the two.
  • the screw sleeve 1-a may include an electric contact pressure gauge 1-2, and the measuring end of the electric contact pressure gauge 1-2 is connected to the gas collection chamber 1-3g.
  • the gas collection chamber 1-3g is used to collect the gas produced by the hydrolysis of the material, and the gas pressure generated when reaching a certain volume is reflected in the electric contact pressure gauge 1-2, and the electric contact pressure gauge 1-2 is used to assist the opening and closing of the valve 1-3 action.
  • the threaded sleeve 1-a may include a base 1-c disposed on the outer edge, and the exhaust hole 1-3d is L-shaped and disposed inside the base 1-c , the two ends of the exhaust hole 1-3d are respectively connected with the gas collection chamber 1-3g and the outside atmosphere, and the on-off valve 1-3 is installed on the base 1-c.
  • the on-off valve 1-3 can include a valve body 1-3b, a stuffing seal 1-3c, a valve stem 1-3a and a bushing 1-3e.
  • the valve body 1-3b is partly set in the base 1-c, and the other part protrudes
  • the base 1-c is set (as shown in Figure 19, the valve body 1-3b is partly set inside the base 1-c, and the other part is exposed on the base 1-c), and the valve stem 1-3a is movably mounted on the valve body 1-3b is set on the base 1-c in the part of the valve body 1-3b, so that the valve stem 1-3a is also movably installed in the base 1-c.
  • the stuffing seal 1-3c is set inside the base 1-c, and is set between the base 1-c and the valve stem 1-3a, so as to seal the gap area between the base 1-c and the valve stem 1-3a, so that When the gas is discharged, it is discharged from the exhaust hole 1-3d.
  • the end of the valve stem 1-3a is provided with an arc surface to close or connect the L-shaped bend of the exhaust hole 1-3d.
  • the bushing 1-3e is arranged at the L-shaped bend of the exhaust hole 1-3d of the base 1-c, and the bushing 1-3e is configured to abut against the arc surface of the end of the valve stem 1-3a, so as to -3a Ensure good sealing performance when closing the vent hole 1-3d.
  • the blockage or conduction of the exhaust hole 1-3d is realized by manipulating the position of the valve stem 1-3a.
  • the gas in the gas collection chamber 1-3g is exhausted by opening the exhaust hole 1-3d under the instruction of the combined electric contact pressure gauge 1-2.
  • the on-off valve 1-3 can be set by a manual needle valve 1-3i.
  • the on-off valve 1-3 can be set with an electric needle valve 1-3j, and the electric needle valve 1-3j can be controlled in combination with the electric contact pressure gauge 1-2 The setting is on.
  • one end of the exhaust hole 1-3d is directly communicated with the outside atmosphere.
  • an electric vacuum pump 1-3h can be added at the end of the exhaust hole 1-3d to quickly exhaust the gas by pumping.
  • the electric vacuum pump 1-3h can also be combined with the electric contact pressure gauge 1-2 to control the electric vacuum pump 1-3h to automatically start exhausting under the preset gas pressure.
  • the metering section 1-5a may sequentially include a first double-thread structure 1-5a3, a diamond-shaped separated structure 1-5a2,
  • the second double-thread structure 1-5a1 is set, and the diamond-shaped separate structure 1-5a2 is set as an integral milling diamond or diamond-shaped pin.
  • the upper row of figures in FIG. 18 shows an integral milled diamond-shaped structure, and the lower row of figures in FIG. 18 shows a diamond-shaped separated structure 1-5a2 processed by diamond-shaped pins. The mixing and homogenization of the melt is further promoted through the setting of the diamond-shaped separation structure 1-5a2.
  • the screw 1-b of the first double thread structure 1-5a3 part is laid along a spiral circular distribution with a plurality of grooved V-shaped grooves 1-5a3-1 ⁇ 4, and the groove length is set to the entire The first double-threaded structure 1-5a3, in order to achieve the beneficial effect of reducing the temperature of the melt and the unevenness of the intrinsic viscosity.
  • the diameter of the diamond-shaped separation structures 1-5a2 gradually decreases, and the density of the diamond-shaped arrangement gradually decreases.
  • the diameter of the diamond-shaped separation structure 1-5a2 is gradually reduced to ensure that the material does not flow back, and the shear heat is gradually reduced;
  • G3-G3, G2-G2, G1 in Figure 18 -G1 screenshots compare the number of rhombuses in a circle in turn, showing that the density of rhombus arrangement gradually decreases, the initial density is higher for stirring, and the subsequent density is lower for reducing shear heat.
  • the length of the feed section 1-5d of the single thread is set to 9D to 11D
  • the length of the compression section of the double thread is controlled to be 10D to 11D
  • the length of the metering section 1-5a is set to 9D to 15D.
  • the length of the first double-thread structure 1-5a3 is set to 4D to 10D
  • the length of the diamond-shaped split structure 1-5a2 is 3D
  • the length of the second double-thread structure 1-5a1 is 2D.
  • the aspect ratio of the screw 1-b is controlled to be (28-34):1.
  • the temperature of the screw extruder is controlled in zones from 160° C.
  • the pressure of the screw extruder after filtration is controlled to be 80-120 kg/cm 2 .
  • the flight of the feeding section 1-5d is of equal diameter and single pitch
  • the flight of the second double-screw structure 1-5a1 is of equal distance and height, which are fully melted so that the output melt is uniform and stable.
  • the pressure at the extrusion outlet of the solid body is convenient for subsequent spinning to realize quantitative, constant pressure and constant temperature extrusion from the machine head in the mixing and extrusion section.
  • this embodiment discloses a spinning box 4, including a metering pump 4 -13, pump plate 4-14, pump seat 4-16, box pipe 4-18, melt gasket 4-15a and anti-corrosion gasket 4-15b, metering pump 4-13, pump plate 4-14 and
  • the pump base 4-16 is connected sequentially, and the box pipeline 4-18 includes the pump plate 4-14 and the pump base 4-16 connected, the pump plate 4-14, the melt sealing gasket 4-15a, the corrosion-resistant sealing gasket 4-15b and
  • the pump bases 4-16 are stacked in sequence, and the melt sealing gasket 4-15a and the anti-corrosion sealing gasket 4-15b are all provided with the casing pipeline 4-18 for connecting the pump plate 4-14 and the pump base 4-16. through hole.
  • the molten raw material enters the spinning box 4 through the melt conveying pipeline 3, and specifically advances along the box body pipeline 4-18 in the spinning box 4, including sequentially passing through the pump seat 4-16, the pump plate 4- 14.
  • the metering pump 4-13 passes through the pump plate 4-14 and the pump base 4-16 again, and is transported to the spinning assembly 6 of the lower box 4-1 to form a tow and enter the subsequent process.
  • the raw material melt is transported between the pump plate 4-14 and the pump base 4-16, specifically along the part of the box pipe 4-18 connecting the pump plate 4-14 and the pump base 4-16, correspondingly, in Corresponding through holes are provided in the pump plate 4-14 and the pump seat 4-16 for the raw material melt to flow through.
  • a gasket 4-15 is provided between the pump plate 4-14 and the pump seat 4-16 to enhance the sealing of the melt flow between the pump plate 4-14 and the pump seat 4-16.
  • the gasket 4-15 is generally a melt gasket 4-15a, as shown in Figure 27 and Figure 28.
  • the pump plate 4-14 is fixedly connected to the pump base 4-16, for example, by screws, so that the melt gasket 4 -15a is squeezed to seal.
  • this program also adds a gasket 4-15 setting, specifically, a layer of anti-corrosion protection is provided between the melt gasket 4-15a and the pump seat 4-16.
  • Corrosion sealing gasket 4-15b, forming pump plate 4-14, melt sealing gasket 4-15a, anti-corrosion sealing gasket 4-15b and pump seat 4-16 are stacked in sequence, and correspondingly communicated with pump plate 4-14 and pump seat
  • the box pipe 4-18 of 4-16 is arranged through the melt sealing gasket 4-15a and the anti-corrosion sealing gasket 4-15b.
  • the anti-corrosion gasket 4-15b improves the corrosion of the surface of the pump base 4-16 caused by the weak acidity of the raw material liquid, protects the smoothness of the surface of the pump base 4-16, and ensures the good sealing performance of the melt gasket 4-15a, thereby improving Unfavorable situations such as sealing defects, material leakage, and insufficient raw material melt supply caused by the corrosion of the pump seat 4-16 are conducive to the production of spinning materials that are weakly acidic to the raw material melt, such as polylactic acid industrial fibers. spinning.
  • the spinning box 4 disclosed in this embodiment includes two pump seats 4-16, and the pump seats 4-16 correspond to the pump plate 4-14, metering pump 4-13, spinning assembly 6 and Corresponding pipeline settings. Because the function of the metering pump 4-13 is to continuously and accurately supply the melt to the spinning assembly 6 under high pressure, there is a requirement for high-precision metering accuracy.
  • the metering pump transmission part 5 of the metering pump 4-13 is shown in Figure 9. As shown, it is driven by a permanent magnet synchronous motor directly coupled with a cycloidal pin gear reducer, frequency conversion speed regulation, each pump is driven independently, the transmission shaft can be retracted, and the transmission shaft is equipped with a universal coupling and a safety pin protection device.
  • the spinning box 4 may include a heat distribution block 4-12, and the heat distribution block 4-12 is arranged between the metering pump 4-13 and the shell of the spinning box 4, and the heat distribution
  • the block 4-12 encloses the setting of the metering pump 4-13 to improve the thermal insulation effect of the metering pump 4-13.
  • the anti-corrosion gasket 4-15b is made of a corrosion-resistant flexible material, and the corrosion-resistant flexible material includes copper or aluminum, and the anti-corrosion gasket 4-15b is provided in the form of a copper pad or an aluminum pad accordingly.
  • the pump plate 4-14 and the pump base 4-16 are connected by high-temperature-resistant standard parts.
  • the high-temperature-resistant standard parts include screws made of 35CrMoA, and the high-temperature-resistant standard parts make disassembly and replacement easy.
  • the spinning box 4 can also include a component connection plate 4-17, which is arranged in the lower box body 4-1, and the component connection plate 4-17 is used for The spin pack 6 is connected.
  • the box pipeline 4-18 includes a melt distribution output channel 4-18a that communicates with the pump base 4-16 and the component connecting plate 4-17, and the melt distribution output channel 4-18a in the spinning box 4 can be optionally arranged in the form of a pipe fitting .
  • the melt distribution output channel 4-18a may include a first melt distribution output channel 4-18a1 and a second melt distribution output channel 4-18a2, and one end of the first melt distribution output channel 4-18a1 is connected to the pump base 4 -16 connected, one end of the second melt distribution output channel 4-18a2 communicates with the component connecting plate 4-17, wherein, the other end of the first melt distribution output channel 4-18a1 is connected with the second melt distribution output channel
  • the other end of 4-18a2 is sealed and connected by a detachable connector.
  • the pump base 4-16 and the assembly connecting plate 4-17 are connected through a plurality of steel pipes used as melt distribution pipes by welding, so that the pump base 4-16, the assembly base and the steel pipe are connected to form a An inseparable whole, such a spinning box 4 has a single function and no interchangeability, and because the pump base 4-16, the component connecting plate 4-17 and the steel pipe are integrated into one, the steel pipe has many bends, so it is easy to Cause pipeline blockage, not easy to clean up again, even if adopt cleaning tool also to be difficult to clean up.
  • the first section of the melt distribution output channel 4-18a1 and the second section of the melt distribution output channel 4 -18a2 is disassembled to meet the requirements of interchangeability and expand the scope of application; the detachable arrangement of the two sections is also conducive to separate cleaning when clogged, and it is convenient to clean up the melt distribution output channel 4-18a. It can be understood that the two-section detachable connection of the melt distribution output channel 4-18a also needs to ensure the tightness of the two-section connection.
  • the spinning box 4 may include an upper box 4-2 and a lower box 4-1, and the upper box 4-2 is installed on the lower box 4 On -1, the metering pump 4-13, the pump plate 4-14 and the pump base 4-16 are installed in the upper box 4-2 in sequence along the vertical direction, the spinning box 4 cooperates with the melt delivery pipeline 3, and the box pipeline 4-18 also includes connecting the melt conveying pipeline 3 and the pump base 4-16.
  • the spinning box 4 is arranged in combination of the upper box body 4-2 and the lower box body 4-1, which is conducive to rationally arranging components, reducing the volume of the box body, and facilitating the assembly process.
  • the upper box 4-2 is heated by a heater, and the upper box 4-2 is provided with a metal filler 4-9, and the metal filler 4-9 is used to replace the conventional joint. Benzene vapor transfers heat to achieve temperature uniformity.
  • the heater includes the basic heater 4-4 of the upper box, the auxiliary heater 4-5 of the upper box and the adjustment heater 4-6 of the upper box, so that one or more groups of different heating modes can be used specifically, and fast Heating, heat preservation, temperature adjustment and other beneficial effects.
  • the lower box body 4-1 is provided with a heat transfer oil inlet 4-7 and a heat transfer oil outlet 4-8, and the heat transfer oil inlet 4-7, the heat transfer oil outlet 4-8 and the configured container type heat transfer oil boiler Connected, equipped with pumping accordingly.
  • the heating and temperature control of the upper box body 4-2 and the lower box body 4-1 are independently controlled and interrelated.
  • the upper box 4-2 includes an upper box temperature measuring element 4-10
  • the lower box 4-1 includes a lower box temperature measuring element 4-11, respectively detecting the temperature of the upper box
  • the metal filler 4-9 in the body 4-2, the heat conduction oil in the lower casing 4-1 Furthermore, an intelligent temperature control system can be used, which can reduce energy consumption and is conducive to environmental protection, timely feedback data, adjust heating power, and realize intelligent temperature control, and then the temperature control accuracy can be ⁇ 1°C.
  • the spinning box 4 includes a spinning box melt pressure measuring element 4-3, and the spinning box melt pressure measuring element 4-3 is installed on the upper box body 4-2. If the initial pressure of the spinning assembly 6 is greater than 9Mpa during normal spinning, the melt pressure measuring element 4-3 of the spinning box provides data support for normal spinning.
  • the temperature inside the upper box 4-2 is controlled at 210°C to 225°C, and the temperature inside the upper box 4-2 is relatively lower, mainly to protect the melt during the conveying process. It is in a dormant state at low temperature, reducing the degradation and hydrolysis of materials; when in use, the lower box 4-1 controls the temperature from 225°C to 245°C, allowing the melt to increase fluidity in the spinning assembly 6 after passing through the assembly connecting plate 4-17, Mix more fully to achieve a more uniform effect of component pressure and reduce the unevenness of the tow.
  • this embodiment discloses a spinning assembly 6, including an assembly body 6-5, gland 6-2, melt distributor 6-3, multi-layer filter 6-10, spinneret 6-4, ball layer 6-8, filter layer 6-9 and distribution plate 6-11 , the gland 6-2, the melt distribution body 6-3, the multi-layer filter screen 6-10 and the spinneret 6-4 are sequentially arranged in the inner channel of the component body 6-5 along the flow direction of the melt, and the ball layer 6- 8.
  • the filter layer 6-9 and the distribution plate 6-11 are sequentially arranged in the inner channel of the melt distribution body 6-3 along the melt flow direction, and the ball layer 6-8 includes the ball layer placed on the filter layer 6-9. Multiple balls.
  • the assembly body 6-5 is used as the main casing of the spinning assembly 6, and the assembly body 6-5 is provided with an inner passage, and the gland 6-2, the melt Distributor 6-3, multi-layer filter screen 6-10, spinneret 6-4, and gland 6-2 install the remaining components in the assembly body 6-5.
  • the melt distribution body 6-3 is also provided with an inner channel, and the melt distribution body 6-3 is provided with a ball layer 6-8, a filter layer 6-9 and a distribution plate 6-11 in sequence in the inner channel. As shown in Fig. 30, the melt distribution body 6-3 and the distribution plate 6-11 can be integrally arranged.
  • the spinning assembly 6 adopts the balls of the ball layer 6-8 to replace the known sea sand, and adopts ball filtration to improve the unfavorable phenomenon of raw material and sea sand agglomeration, prolong The use time is shortened, and it is beneficial for the materials to be mixed more fully in the melt distribution body 6-3, and the uniformity of the melt is improved.
  • the filter layer 6-9 is set as a sintered metal plate, made of sintered material, and the ball layer 6-8 is used to cooperate with the sintered metal plate to replace the known sea sand and multi-layer filter screen 6-10, and the sintered metal
  • the filter area and volume of the plate are about 50% more than the multi-layer filter screen 6-10.
  • the spinning assembly 6 of the present embodiment adopts ball filtration to prevent the raw material and sea sand from agglomerating quickly, and allow the material to flow in the melt distribution body 6-10.
  • the mixing in the 3 cavities is more sufficient, which prolongs the use time, improves the uniform heat transfer of the filter assembly, and improves the uniformity of the melt.
  • the balls in this embodiment can be made of stainless steel to form stainless steel balls.
  • the balls can also be made of other metal materials.
  • the spinning assembly 6 further includes a locking nut 6-1, the outer peripheral edge of the locking nut 6-1 is threadedly connected with the inner side of the assembly body 6-5, and the locking nut 6- The inner peripheral edge of 1 abuts against the bottom side and the outer peripheral edge of the gland 6-2.
  • a limit portion is provided on the inner side of the assembly body 6-5 away from the lock nut 6-1, and the limit portion is concave-convexly matched with the spinneret plate 6-4 to hold the spinneret Plate 6-4 is confined within assembly body 6-5.
  • the side of the assembly body 6-5 away from the lock nut 6-1 is concavo-convexly matched with the spinneret 6-4.
  • the inner edge of the assembly body 6-5 protrudes inward and is provided with a limiter, which can be ring-shaped Formally arranged, the peripheral edge of the spinneret 6-4 is arranged in a step shape, and the spinneret 6-4 is limited in the inner channel of the assembly body 6-5 by the limiting part. Especially in the state where the lock nut 6-1 is installed, the limiting portion is in close contact with the spinneret 6-4.
  • the gland 6-2 is provided with an internal thread, and the internal thread is configured to be connected with the component connection plate 4-17 in the spinning box, so as to realize the connection between the spinning component 6 and the spinning The box is fixedly connected.
  • the spinning pack 6 includes a first seal 6-6 disposed between the gland 6-2 and the pack connecting plate 4-17. It can be understood that, on the basis that the gland 6-2 is provided with a path channel for the melt to pass through, the first sealing member 6-6 can be ring-shaped, arranged around the path channel, and arranged on the gland 6-2 Between the assembly connection plate 4-17, there is a gap between the sealing gland 6-2 and the assembly connection plate 4-17.
  • the spinning assembly 6 includes a second sealing member 6-7, and the second sealing member 6-7 is arranged at the junction of the gland 6-2 and the melt distribution body 6-3 place. The second sealing member 6-7 can be embedded to seal the joint surface of the gland 6-2 and the melt distribution body 6-3.
  • the gland 6-2, the melt distribution body 6-3, the multi-layer filter screen 6-10 and the spinneret 6-4 are vertically arranged sequentially, the ball layer 6-8, the filter layer 6-9 and distribution plates 6-11 are vertically arranged sequentially, and the entire spinning assembly 6 is vertically arranged in the spinning device.
  • the cooling mechanism 9 includes an outer ring blowing part 9-1, a lifting part 9-2 and a side blowing part 9-3 arranged in sequence.
  • the lifting part 9-2 includes a telescopic hose 9-2a and a lifting power part 9-2b.
  • the top end of the hose 9-2a communicates with the outer ring blowing part 9-1, the bottom end communicates with the side blowing part 9-3, and the lifting power part 9-2b is arranged on the outer ring blowing part 9-1 and the side blowing part 9-3 In the middle of , the combined cooling mechanism 9 and the spinning assembly 6 are detachably arranged, and the lifting power part 9-2b is configured to drive the outer ring blowing part 9-1 close to or away from the spinning assembly 6.
  • the polylactic acid tow that comes down from the spinning assembly 6 passes through the combined cooling mechanism 9, and then passes through the outer ring blowing part 9-1, the telescopic hose 9-2a of the lifting part 9-2, and the side blowing Part 9-3 until entering the next step, in the normal spinning process, the lifting power part 9-2b lifts the outer ring blowing part 9-1 to the middle of the spinning assembly 6 to form a tight spinning channel.
  • the lifting power part 9-2b moves to move the outer ring blowing part 9-1 down.
  • the outer ring blowing part 9-1 is relatively separated from the spinning assembly 6, so that the original tight spinning channel is opened up, leaving an operating space for cleaning the spinneret, which is convenient for regular cleaning of the spinneret surface. Cleaning is conducive to the quality and normal operation of spinning, and is conducive to improving the overall spinning efficiency.
  • the lifting part 9-2 further includes a vertical motion guide rail 9-2c, and the vertical motion guide rail 9-2c is arranged in the middle of the outer ring blowing part 9-1 and the side blowing part 9-3 .
  • the vertical motion guide rail 9-2c includes a guide rod vertically installed on the side blowing part 9-3 and a guide block fixed on the outer ring blowing part 9-1 , the guide rod is installed on the guide block. The positioning of the guide rod by the guide block is beneficial to the movement stability of the outer ring blowing part 9-1 and the telescopic hose 9-2a.
  • the lifting power part 9-2b includes a cylinder, the cylinder seat of which is fixed on the side blowing part 9-3, and the piston rod of the cylinder is against the outer ring blowing part 9-3. 1 bottom side.
  • the lifting power member 9-2b may also be in the form of an oil cylinder, a motor, or the like.
  • the outer ring blowing part 9-1 includes an outer ring blowing up bellows 9-1a, an outer ring blowing down bellows 9-1b, an outer ring blower 9-1c, an outer ring Blowing air part 9-1d and outer ring blowing air duct 9-1e, outer ring blowing up bellows 9-1a are stacked on outer ring blowing down bellows 9-1b, outer ring blowing barrel 9-1c is internally arranged in outer ring
  • the upper bellows 9-1a, the outer ring blowing air guide parts 9-1d are set in the outer ring blowing down bellows 9-1b, the outer ring blower 9-1c is arranged on the outer ring blowing air guide parts 9-1d, and the outer ring blowing air parts 9-1d
  • the air guide 9-1d is provided with an inner channel for the filaments to pass through, and the filaments ejected from the spinning assembly 6 are configured to pass through the inner cavity of the outer ring blow
  • One end of the outer ring blowing air duct 9-1e is set as an air inlet, and the other end is connected to the air guide surface of the outer ring blowing air guide 9-1d, so as to guide the air into the outer ring and blow it to the bellows 9-1a and the outer ring for blowing
  • air holes are arranged on the tube surface of the outer ring hair dryer 9-1c.
  • the air supply system can provide stable and clean hot air to the outer ring blowing part 9-1, specifically through the air inlet of the outer ring blowing into the air duct 9-1e, and along the outer ring blowing into the air duct 9-1e Lead to the wind guide surface of the outer ring blowing wind guide part 9-1d, the wind guide surface of the outer ring blowing wind guide part 9-1d can further guide the incoming wind into the outer ring and blow it into the bellows 9-1a, and blow it into the outer ring blower 9-1c, and further enter the wind through the air holes on the surface of the outer ring hair dryer 9-1c and enter the cylinder, and the tow in the cylinder is slowly cooled by the hot air. It should be pointed out that the height of the outer ring hair dryer 9-1c can be selected according to actual needs.
  • the cylinder surface of the outer ring hair dryer 9-1c is made of sintered metal mesh, and the cylinder surface is covered with non-woven fabric. Made of sintered metal mesh that forms voids through which heated air can pass.
  • the cylindrical surface of the outer ring hair dryer 9-1c is provided in the form of a porous plate, and the cylindrical surface is covered with non-woven fabric.
  • the setting of the perforated plate belongs to directly offering some air holes at the outer ring hair dryer 9-1c.
  • the above-mentioned perforated plate or sintered metal mesh is made to play a damping role, which is beneficial to ensure uniform wind speed and stable wind pressure, so that the tow is slowly cooled under the surround of hot air.
  • the wind temperature provided by the outer ring blowing part 9-1 along the tow and the wind temperature provided by the side blowing part 9-3 form a gradient relationship from high to bottom;
  • the wind speed provided by -1 and the wind speed provided by the side blowing part 9-3 form a gradient relationship from slow to fast.
  • gradient refers to the change of wind temperature in a gradually decreasing relationship along the trend, and the change of wind speed in a gradually increasing relationship.
  • the slow cooling and heat preservation treatment is added to the silk before it enters the blowing cooling, so that a slow cooling device 7 is provided in the combined machine, and a heater is set in the slow cooling device 7 to keep the silk warm, and the single suction unit 8 will subsequently Suction treatment of monomers, oligomers, etc. to ensure the quality of tow.
  • the slow cooler 7 provides a hot air environment of 180-210°C, so that the biomass polylactic acid melt is temporarily kept in the hot air of 180-210°C for a period of time without rapid cooling.
  • Outer ring blowing part 9-1 in the combination cooling mechanism 9 adopts the hot blast of 25-35 °C.
  • Side blowing can be selected to provide stable and clean cooling air by the air conditioning system.
  • the side blowing part 9-3 in the cooling mechanism 9 is combined to provide air temperature (19-22°C) ⁇ 1°C, air duct pressure 800pa, and wind speed unevenness ⁇ ⁇ 5 %, relative humidity 85 ⁇ 5%, cooling wind with wind speed 0.5-0.8m/s.
  • the side air cooling when the side air cooling is not ideal, it will have a greater impact on the physical indicators of the tow. If the temperature of the side blowing is too low, the outer layer of the fiber will solidify rapidly due to the sudden cooling of the fiber, but the inner core of the fiber is still in a molten state, so that the fiber will form a sheath-core fiber, and the sheath-core fiber will become stiff and stiff, and the subsequent The draft ratio will be significantly reduced and the strength will be reduced; on the contrary, if the temperature of the side blowing cooling device is too high, due to the incomplete cooling of the fibers, the wool will increase during the production process, and even the single fiber will easily occur during the spinning and winding process. Mutual adhesion phenomenon.
  • the combined machine can ensure the quality of tow fibers by setting the above-mentioned suitable side blowing temperature.
  • the present embodiment provides a double-face oiling mechanism, including multiple pairs of oil nozzles 11-3, each pair of oil nozzles 11-3 includes two oil nozzles 11-3 respectively located on both radial sides of the tow to be oiled 11-4, Each pair of oil nozzles 11-3 is arranged to be close to each other in the plan view direction to form a spinning state, and to be separated from each other in the plan view direction to form a spinning state.
  • the tow 11-4 to be oiled is oiled through multiple pairs of oil nozzles 11-3, each pair of oil nozzles 11-3 oils a tow 11-4, and each pair of oil nozzles 11-3 includes Two oil nozzles 11-3, the two oil nozzles 11-3 are respectively located on both sides of the tow 11-4, the oil nozzles 11-3 are set to be movable, so that the oil nozzles 11-3 can be in different positions to form a
  • the spinning state of oiling the tow 11-4 and the threading state when the tow 11-4 is threaded and hung are convenient for actual operation.
  • the function of evenly spraying oil to the tow 11-4 can increase the cohesion between the monofilaments in the tow 11-4, improve the stretching and reduce the fuzz, and increase the full volume rate of the finished product, especially suitable for the polylactic acid industry Drawn and wound with filament fibers.
  • the two oil nozzles 11-3 to which each pair of oil nozzles 11-3 belong among the multiple pairs of oil nozzles 11-3 are arranged alternately in the height direction, and then can be formed as shown in Figure 29 In the spinning state shown, the two oil nozzles 11-3 have overlapping areas in the direction of the top view, so as to hang the spinning and carry out oiling on both sides of the oil nozzles 11-3.
  • the double oiling mechanism further includes a first mounting plate 11-5a, a cylinder 11-1, a bottom plate 11-8 and a first guide wire hook 11-6a
  • the second A mounting plate 11-5a is fixedly connected to the oil nozzle 11-3
  • one end of the cylinder push rod 11-2 of the cylinder 11-1 is fixedly connected to the first mounting plate 11-5a
  • the cylinder 11-1 is fixedly mounted on the bottom plate 11-8.
  • the bottom end of the first mounting plate 11-5a is placed against the bottom plate 11-8
  • the first wire guide hook 11-6a is fixedly installed on the first mounting plate 11-5a
  • the first wire guide hook 11-6a is set on the oil nozzle The bottom side of 11-3.
  • the cylinder push rod 11-2 is extended to form the spinning state shown in Figure 35; the cylinder push rod 11-2 is retracted to drive the first mounting plate 11-5a and the first mounting plate 11-5a fixedly connected to the first mounting plate 11-5a.
  • a guide wire hook 11-6a is retracted to separate each pair of oil nipples 11-3 to form a threading channel in the middle.
  • the cylinder 11-1 is equipped with an electrical control system, and the cylinder push rod 11-2 is electrically controlled to extend, retract or maintain a stationary state.
  • the cylinder 11-1 may be replaced by power components such as an electric motor and an oil cylinder.
  • the air cylinder 11-1 is used, which has the advantage of cleaning the medium.
  • the double oiling mechanism further includes a first oil receiving box 11-7a, and the first oil receiving box 11-7a is fixedly installed on the first mounting plate 11-5a, And the first oil receiving box 11-7a is disposed on the bottom side of the oil nozzle 11-3.
  • the top of the first oil receiving box 11-7a is provided with an opening to recover the oil dropped from the oil nozzle 11-3 during spinning.
  • the first oil receiving box 11-7a is also provided with a recovery pipeline to recover the oil in a unified manner.
  • all the oil nozzles 11-3 located on the same radial side of the tow to be oiled 11-4 are fixedly installed on the same first mounting plate 11-5a, so as to facilitate The movement of the grease nipples 11-3 on the same side of all tows 11-4 is uniformly controlled.
  • the double-faced oiling mechanism has the advantages of uniform oil spraying, clean oil return, no chain transmission to eliminate noise pollution, noise-absorbing transmission, compact structure, and the oil nozzle 11-3 is more refined than the oil tanker and easy to maintain. .
  • the double-faced oiling mechanism includes multiple pairs of oil nozzles 11-3, and each pair of oil nozzles 11-3 includes two oil nozzles 11 located on both radial sides of the tow to be oiled 11-4. -3, each pair of oil nozzles 11-3 is arranged to be close to each other in the plan view direction to form a spinning state, and to be separated from each other in the plan view direction to form a spinning state.
  • This embodiment provides another possible implementation of the double-face oiling mechanism.
  • the double-face oiling mechanism further includes a rotating shaft 11-9, which is fixedly connected to the oil nozzle 11-3, and the rotating shaft 11-9 is configured to drive the oil nozzle 11 -3 turns.
  • the oil nozzle 11-3 moves by rotating, respectively forming the spinning state as shown in FIG. 40 and the spinning state as shown in FIG. 41 or 42 .
  • the double-face oiling mechanism further includes a second mounting plate 11-5b, a second oil receiving box 11-7b, and a second guide wire hook 11-6b.
  • the second mounting plate 11 -5b is fixedly connected with the oil nozzle 11-3
  • the second oil receiving box 11-7b is fixedly connected with the second mounting plate 11-5b
  • the second oil receiving box 11-7b is arranged on the bottom side of the oil nozzle 11-3
  • the second The guide wire hook 11-6b is fixedly connected with the second mounting plate 11-5b.
  • the oil is collected through the second oil receiving box 11-7b, and the installation position of the second oil receiving box 11-7b and the second guide wire hook 11-6b is provided through the second mounting plate 11-5b, and the rotating shaft 11-9 moves At the same time, the second mounting plate 11-5b, the second oil receiving box 11-7b, the second guide wire hook 11-6b and the oil nozzle 11-3 all move with the rotating shaft 11-9.
  • the rotating shaft 11-9 includes a damping rotating shaft 11-9, which is set by the damping rotating shaft 11-9, and is manually operated to the spinning-in state during spinning-in, and then turns back to the spinning state during spinning.
  • the double-faced oiling mechanism has the advantages of uniform oil spraying, clean oil return, no chain transmission to eliminate noise pollution, noise-absorbing transmission, compact structure, and the oil nozzle 11-3 is more refined than the oil tanker and easy to maintain. .
  • the oil nipples 11-3 in the left row may not be moved during threading, and the oil nozzles 11-3 in the right row are all rotated at a certain angle, such as 15° to 30°.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

本文公开了一种聚乳酸产业用纤维纺丝牵伸卷绕装置及联合机,包括按生产工艺依次设置的双面上油机构(11)、剪吸丝(12)、预网络器(13)和分丝辊(14),牵伸卷绕装置(200)配合有纺丝装置(100),丝束从纺丝装置(100)依次穿经双面上油机构(11)、剪吸丝(12)和预网络器(13)直至传送至分丝辊(14),牵伸卷绕装置(200)与纺丝装置(100)被配置为平行配置,以使纺丝装置(100)与分丝辊(14)之间的丝束沿垂直方向布置且与分丝辊(14)相切,丝束不发生偏转,避免较高的偏转而摩擦损伤丝束。

Description

一种聚乳酸产业用纤维纺丝牵伸卷绕装置及联合机
相关申请的交叉引用
本公开要求于2021年09月30日提交、申请号为202122406547.X且名称为“一种聚乳酸产业用纤维纺丝牵伸卷绕装置”;要求于2021年09月30日提交、申请号为202111163325.8且名称为“一种聚乳酸产业用纤维纺丝牵伸卷绕装置”;要求于2021年09月30日提交、申请号为202122406535.7且名称为“一种聚乳酸产业用纤维纺丝牵伸卷绕联合机”;要求于2021年09月30日提交、申请号为202111160423.6且名称为“一种聚乳酸产业用纤维纺丝牵伸卷绕联合机”的中国专利申请的优先权,其全部内容通过引用合并于此。
技术领域
本公开内容涉及纺丝生产技术领域,尤其涉及一种聚乳酸产业用纤维纺丝牵伸卷绕装置及联合机。
背景技术
现有的聚乳酸产业用纤维长丝纺丝牵伸卷绕设备大多是用其他类型设备改造而成,最大缺点就是产品质量和性能不稳定。
生物基聚乳酸丝束相对石油合成纤维来讲比较脆弱,为了避免由于强烈的偏转和缠绕引起损坏以及为了避免不同的物理特性,在丝线偏转时不允许超出确定的极限值。
发明内容
基于上述问题,本公开提供一种聚乳酸产业用纤维纺丝牵伸卷绕装置及联合机。
在本公开的一个方面,提供了一种聚乳酸产业用纤维纺丝牵伸卷绕装置,包括按生产工艺依次设置的双面上油机构、剪吸丝、预网络器和分丝辊,牵伸卷绕装置配合有纺丝装置,丝束从纺丝装置依次穿经双面上油机构、剪吸丝和预网络器直至传送至分丝辊,牵伸卷绕装置与纺丝装置被配置为平行配置,以使纺丝装置与分丝辊之间的丝束沿垂直方向布置且与分丝辊相切。
在本公开的另一方面,提供了一种聚乳酸产业用纤维纺丝牵伸卷绕联合机,包括纺丝装置和牵伸卷绕装置,纺丝装置包括按生产工艺依次设置的螺杆挤压机、挤出头、熔体输送管道、纺丝箱、纺丝组件、缓冷器、单体抽吸部件、组合冷却机构和甬道部件,牵伸卷绕装置包括按生产工艺依次设置的双面上油机构、剪吸丝、预网络器、分丝辊、第一对低温热辊、第二对高温牵伸热辊、第三对高温牵伸热辊、第四对牵伸定型热辊、第五定型热辊组、第六松弛导盘、瓷件导丝钩、主网络器和卷绕机;丝束从甬道部件依次穿经双面上油机构、剪吸丝和预网络器直至传送至分丝辊,牵伸卷绕装置与纺丝装置被配置为平行配置,以使纺丝装置与分丝辊之间的丝束沿垂直方向布置且与分丝辊相切。
本公开有益效果如下:本公开提供一种聚乳酸产业用纤维纺丝牵伸卷绕装置,丝束 经纺丝装置进入牵伸卷绕装置,本公开将纺丝装置与牵伸卷绕装置在设备布置上采用平行配置,具体为丝束从纺丝装置依次穿经双面上油机构、剪吸丝和预网络器直至传送至分丝辊,以使纺丝装置与分丝辊之间的丝束沿垂直方向布置且与分丝辊相切,这种平行布置下丝束从纺丝装置引出后进入牵伸卷绕装置后不发生偏转,从而避免较高的偏转带来摩擦而损伤丝束,尤其应用在在聚乳酸产业用纤维FDY纺丝的生产中。
附图说明
图1示出了依据本公开实施例一的聚乳酸产业用纤维纺丝牵伸卷绕装置以及与纺丝装置的主视图;
图2为图1所示结构的侧视图;
图3为图1中牵伸卷绕装置的局部结构示意图;
图4为图3所示结构的侧视图;
图5为图1中第五定型热辊组的侧视图;
图6为图1中第五定型热辊组采用电感加热源的主视图;
图7为图1中第五定型热辊组采用蒸汽加热源的主视图;
图8为图1中第五定型热辊组采用热风加热源的主视图;
图9示出了本公开实施例三的聚乳酸产业用纤维纺丝牵伸卷绕联合机的主视图;
图10为图9所示结构的侧视图;
图11为图9中螺杆挤压机、挤出头、熔体输送管道与纺丝箱的俯视图;
图12为图9中第五定型热辊组的侧视图;
图13为图9中第五定型热辊组采用电感加热源的主视图;
图14为图9中第五定型热辊组采用蒸汽加热源的主视图;
图15为图9中第五定型热辊组采用热风加热源的主视图;
图16为实施例五提供的一种螺杆挤压机的整体结构示意图;
图17为图16中A处的局部结构示意图;
图18为图17中G1-G1、G2-G2、G3-G3的截面对比示意图;
图19为图16中B处的局部放大图;
图20为图19的另一种可实施方式的示意图;
图21为图19的另一种可实施方式的示意图;
图22为图16中C处的局部放大图;
图23为图16中D处的局部放大图;
图24为图16中E-E处的局部放大图;
图25为实施例六提供的一种纺丝箱的整体结构示意图;
图26为图25所示结构的水平剖视图;
图27为图25所示结构的竖向剖视图;
图28为图27中F处的局部放大图;
图29为图28中J-J处的截面示意图;
图30为实施例七提供的一种纺丝组件的结构示意图;
图31为实施例八提供的一种组合冷却机构中外环吹部件升起状态的结构示意图;
图32为图31所示结构的侧视图;
图33为图31所示组合冷却机构中外环吹部件降落状态的结构示意图;
图34为图32所示结构的侧视图;
图35为实施例十提供的一种双面上油机构处于纺丝状态时的主视图;
图36为图35所示结构处于生头状态时的主视图;
图37为多个图35所示结构处于纺丝状态时的俯视图;
图38为图37所示结构处于生头状态时的俯视图;
图39为实施例十一提供的另一种双面上油机构的主视图;
图40为多个图39所示结构处于纺丝状态时的俯视图;
图41为图40所示结构处于生头状态时的一种俯视图;
图42为图40所示结构处于生头状态时的另一种俯视图。
具体实施方式
实施例一
请参照图1至图3,本实施例公开一种聚乳酸产业用纤维纺丝牵伸卷绕装置200,包括按生产工艺依次设置的双面上油机构11、剪吸丝12、预网络器13和分丝辊14。牵伸卷绕装置200配合有纺丝装置100,组合成联合机。丝束从纺丝装置100依次穿经双面上油机构11、剪吸丝12和预网络器13直至传送至分丝辊14,牵伸卷绕装置200与纺丝装置100被配置为平行配置,即将纺丝装置100与牵伸卷绕装置200在设备布置上采用平行配置,使得纺丝装置100与分丝辊14之间的丝束沿垂直方向布置且与分丝辊14相切。这种平行布置下丝束从纺丝装置100引出后进入牵伸卷绕装置200后不发生偏转,从而避免较高的偏转带来摩擦而损伤丝束,尤其应用在在聚乳酸产业用纤维FDY纺丝的生产中。
在一些实施方式中,分丝辊14的选型包括张力分丝对辊或喂入辊。分丝辊14选型为张力分丝对辊时有利于空间布置,有利于节省成本。分丝辊14选型为喂入辊时对丝有一定的握持,便于分丝。
在一些实施方式中,请参照图3和图4,牵伸卷绕装置200包括按生产工艺依次设置的双面上油机构11、剪吸丝12、预网络器13、分丝辊14、第一对低温热辊15、第二对高温牵伸热辊16、第三对高温牵伸热辊17、第四对牵伸定型热辊18以及第五定型热辊组19。
不同于其它类型纺丝如涤纶,聚乳酸被加热到一定温度,纤维分子结构发生变化,进而定型,由于聚乳酸纤维特性,聚乳酸产业用纤维纺丝的定型还不完善,在于更高定型长度、定型时间的要求。
请结合图6,在本实施例中,第五定型热辊组19包括保温罩箱19-5、加热源和至少四个热定型辊,保温罩箱19-5开设有供丝束19-7穿经的入丝丝道19-6和出丝丝道19-8,至少四个热定型辊按生产工艺依次设置且均内设于保温罩箱19-5,加热源用以对保温罩箱 19-5内的丝束19-7在70-120℃环境下加热。
上述具体将上述第五定型热辊组19替换传统的一对定型辊的方式,通过增加热定型辊的数量以及将热定型辊均设于保温罩箱19-5内,通过在有限的空间内增加路径,增加纺程,有利于纺制聚乳酸纺丝时对定型长度和定型时间的严苛要求,能够使得定型效果更加充分。
其中,第五定型热辊组19的各个热定型辊的速度可以分开调节,有利于对定型步骤进行调控。
其中,第五定型热辊组19需保证丝束19-7以向上方向进入保温罩箱19-5,并以朝下输出,因此保温罩箱19-5内的热定型辊的数量控制在4个较佳,也可设置6、8个等方案。
在一些实施方式中,请参照图5和图6,第五定型热辊组19包括四个热定型辊,分别为按生产工艺依次设置的第一热定型辊19-1、第二热定型辊19-2、第三热定型辊19-3和第四热定型辊19-4,丝束19-7穿经入丝丝道19-6并依次绕经第一热定型辊19-1、第二热定型辊19-2、第三热定型辊19-3和第四热定型辊19-4,直至穿经出丝丝道19-8。如图6所示,第一热定型辊19-1高于第二热定型辊19-2设置,第三热定型辊19-3与第一热定型辊19-1的高度相等,第四热定型辊19-4与第二热定型辊19-2的高度相等。
在一些实施方式中,加热源包括电感加热源、蒸汽加热源或热风加热源。
如图6所示,加热源包括电感加热源时,用于对定型温度在第一预设范围的聚乳酸产业用纤维纺丝进行热定型,热定型辊均呈电感加热定型热辊设置。电感加热定型相对受热比较均匀,但用电比较大,成本较高,用于定型温度较高的生物基聚乳酸产业用长丝,其对各项指标要求比较高。
如图7所示,加热源包括蒸汽加热源时,用于对定型温度在第二预设范围的聚乳酸产业用纤维纺丝进行热定型,保温罩箱19-5的侧壁低处开设有蒸汽进口19-5a,保温罩箱19-5的侧壁高处开设有蒸汽出口19-5b,蒸汽进口19-5a和蒸汽出口19-5b开设于保温罩箱19-5的相对两侧,蒸汽加热源以向保温罩箱19-5内输送热蒸汽,具体通过蒸汽进口19-5a输入保温罩箱19-5内,对丝束19-7热定型后从蒸汽出口19-5b输出。
如图8所示,加热源包括热风加热源时,用于对定型温度在第三预设范围的聚乳酸产业用纤维纺丝进行热定型,保温罩箱19-5内设有多个加热板19-9,加热板19-9与热定型辊间隔设置,加热板19-9靠近保温罩箱19-5内的丝束19-7设置。通过加热板19-9进行加热定型,可以进行温度控制。
由于聚乳酸纤维性质,其定型一般要求不超过120℃,并且不低于70℃,在一种可实施方案中,第一预设范围、第二预设范围、第三预设范围依次减小,且均大于等于70℃以及小于等于120℃,按照定型温度降低,依次选用电感加热源、蒸汽加热源或热风加热源设置。
在一些实施方式中,第一预设范围为大于110℃以及小于等于120℃,第二预设范围为大于90℃以及小于等于110℃,第三预设范围为大于等于70℃以及小于等于90℃。
在一些实施方式中,对定型温度在110℃至120℃的聚乳酸产业用长丝,采用电感加 热定型。
在一些实施方式中,对定型温度在95℃至105℃的聚乳酸产业用长丝,采用蒸汽加热定型。
在一些实施方式中,对定型温度在70℃至90℃的聚乳酸产业用长丝采用热风定型。
在一些实施方式中,如图8所示,在热风加热定型中,加热板19-9包括设于保温罩箱19-5内进口处,以及设置后续热定型辊之间的另一类。由于在进口位置,即入丝丝道19-6后的区域温度变化比较大,采用丝束19-7穿经该进口处的加热板19-9设置,相应加热板19-9的截面呈U形设置。后续的加热板19-9设于两个热定型辊之间,有利于在保温罩箱19-5内的空间布置,有利于保温罩箱19-5的规格较小设置。
在一些实施方式中,如图1和图3所示,牵伸卷绕装置200还包括于第五定型热辊组19后按生产工艺依次设置的第六松弛导盘20、瓷件导丝钩21、主网络器22和卷绕机23。第六松弛导盘20起到松弛、消除张力的作用,丝束在第六松弛导盘20缠绕后经瓷件导丝钩21,送至主网络器22进行打结,丝束打结后依次传送至卷绕机23完成卷绕。
本实施例的聚乳酸产业用纤维纺丝牵伸卷绕装置200可以生产4-16头不同品种的生物基聚乳酸产业用长丝。
实施例二
基于实施例一的一种聚乳酸产业用纤维纺丝牵伸卷绕装置200,本实施例对分丝辊14、第一对低温热辊15、第二对高温牵伸热辊16、第三对高温牵伸热辊17、第四对牵伸定型热辊18以及第五定型热辊组19的具体参数进行设置。
在一些实施方式中,分丝辊14经丝束缠绕1圈,分丝辊14的加热温度为零,为无加热状态纺速为550-650m/min。
第一对低温热辊15经丝束缠绕6.5圈~7.5圈,第一对低温热辊15的加热温度为65-90℃,纺速为605m/min,分丝辊14与第一对低温热辊15保持1:1.01的速比。
第二对高温牵伸热辊16经丝束缠绕6.5圈~7.5圈,第二对高温牵伸热辊16的加热温度为100-140℃,纺速为1950m/min,第一对低温热辊15与第二对高温牵伸热辊16的牵伸倍数为2.5-3.5倍。
第三对高温牵伸热辊17经丝束缠绕6.5圈~7.5圈,第三对高温牵伸热辊17的加热温度为110-150℃,纺速为3500m/min,第二对高温牵伸热辊16与第三对高温牵伸热辊17的牵伸倍数为1.5-2倍。
第四对牵伸定型热辊18经丝束缠绕6.5圈~7.5圈,第四对牵伸定型热辊18的加热温度为110-150℃,纺速为3900m/min,第三对高温牵伸热辊17与第四对牵伸定型热辊18的牵伸倍数为1.1-1.3倍。
第五定型热辊组19的加热温度为70-120℃,纺速为4250m/min,第四对牵伸定型热辊18与第五定型热辊组19的牵伸倍数为1.02-1.05倍。
在一些实施方式中,第六松弛导盘20的加热温度为零,为无加热状态。
在一些实施方式中,分丝辊14、第一对低温热辊15、第二对高温牵伸热辊16、第三对高温牵伸热辊17、第四对牵伸定型热辊18、第五定型热辊组19以及第六松弛导盘20 的辊壳表面可均为陶瓷设置。
实施例三
请参照图9至图11,本实施例提供一种聚乳酸产业用纤维纺丝牵伸卷绕联合机,包括纺丝装置100和牵伸卷绕装置200,纺丝装置包括按生产工艺依次设置的螺杆挤压机1、挤出头2、熔体输送管道3、纺丝箱4、纺丝组件6、缓冷器7、单体抽吸部件8、组合冷却机构9和甬道部件10,牵伸卷绕装置200包括按生产工艺依次设置的双面上油机构11、剪吸丝12、预网络器13、分丝辊14、第一对低温热辊15、第二对高温牵伸热辊16、第三对高温牵伸热辊17、第四对牵伸定型热辊18、第五定型热辊组19、第六松弛导盘20、瓷件导丝钩21、主网络器22和卷绕机23;丝束从甬道部件10依次穿经双面上油机构11、剪吸丝13和预网络器13直至传送至分丝辊14,牵伸卷绕装置200与纺丝装置100被配置为平行配置,以使纺丝装置100与分丝辊14之间的丝束沿垂直方向布置,且纺丝装置100与分丝辊14之间的丝束与分丝辊相切。
这种平行布置下丝束从纺丝装置100引出后进入牵伸卷绕装置200后不发生偏转,从而避免较高的偏转带来摩擦而损伤丝束,尤其应用在在聚乳酸产业用纤维FDY纺丝的生产中。
分丝辊14的选型可以包括张力分丝对辊或喂入辊。分丝辊14选型为张力分丝对辊时有利于空间布置,有利于节省成本。分丝辊14选型为喂入辊时对丝有一定的握持,便于分丝。
不同于其它类型纺丝如涤纶,聚乳酸被加热到一定温度,纤维分子结构发生变化,进而定型,由于聚乳酸纤维特性,聚乳酸产业用纤维纺丝的定型还不完善,在于更高定型长度、定型时间的要求。
请结合图13,在本实施例中,第五定型热辊组19可以包括保温罩箱19-5、加热源和至少四个热定型辊,保温罩箱19-5开设有供丝束19-7穿经的入丝丝道19-6和出丝丝道19-8,至少四个热定型辊按生产工艺依次设置且均内设于保温罩箱19-5,加热源用以对保温罩箱19-5内的丝束19-7在70-120℃环境下加热。
上述具体将上述第五定型热辊组19替换传统的一对定型辊的方案中,通过增加热定型辊的数量以及将热定型辊均设于保温罩箱19-5内,通过在有限的空间内增加路径,增加纺程,有利于纺制聚乳酸纺丝时对定型长度和定型时间的严苛要求,能够使得定型效果更加充分。其中,第五定型热辊组19的各个热定型辊的速度可以分开调节,有利于对定型步骤进行调控。其中,第五定型热辊组19需保证丝束19-7以向上方向进入保温罩箱19-5,并以朝下输出,因此保温罩箱19-5内的热定型辊的数量控制在4个较佳,也可设置6、8个等方案。
在一些实施方式中,请参照图12和图13,第五定型热辊组19可以包括四个热定型辊,分别为按生产工艺依次设置的第一热定型辊19-1、第二热定型辊19-2、第三热定型辊19-3和第四热定型辊19-4,丝束19-7穿经入丝丝道19-6并依次绕经第一热定型辊19-1、第二热定型辊19-2、第三热定型辊19-3和第四热定型辊19-4,直至穿经出丝丝道19-8。如图13所示,第一热定型辊19-1高于第二热定型辊19-2设置,第三热定型辊19-3与第 一热定型辊19-1的高度相等,第四热定型辊19-4与第二热定型辊19-2的高度相等。
在一些实施方式中,加热源可以包括电感加热源、蒸汽加热源或热风加热源。如图13所示,加热源包括电感加热源时,用于对定型温度在第一预设范围的聚乳酸产业用纤维纺丝进行热定型,热定型辊均呈电感加热定型热辊设置。电感加热定型相对受热比较均匀,但用电比较大,成本较高,用于定型温度较高的生物基聚乳酸产业用长丝,其对各项指标要求比较高。
如图14所示,加热源包括蒸汽加热源时,用于对定型温度在第二预设范围的聚乳酸产业用纤维纺丝进行热定型,保温罩箱19-5的侧壁低处开设有蒸汽进口19-5a,保温罩箱19-5的侧壁高处开设有蒸汽出口19-5b,蒸汽进口19-5a和蒸汽出口19-5b开设于保温罩箱19-5的相对两侧,蒸汽加热源以向保温罩箱19-5内输送热蒸汽,具体通过蒸汽进口19-5a输入保温罩箱19-5内,对丝束19-7热定型后从蒸汽出口19-5b输出。
如图15所示,加热源包括热风加热源时,用于对定型温度在第三预设范围的聚乳酸产业用纤维纺丝进行热定型,保温罩箱19-5内设有多个加热板19-9,加热板19-9与热定型辊间隔设置,加热板19-9靠近保温罩箱19-5内的丝束19-7设置。通过加热板19-9进行加热定型,可以进行温度控制。
由于聚乳酸纤维性质,其定型一般要求不超过120℃,并且不低于70℃,在一种可实施方案中,第一预设范围、第二预设范围、第三预设范围依次减小,且均大于等于70℃以及小于等于120℃,按照定型温度降低,依次选用电感加热源、蒸汽加热源或热风加热源设置。在一些实施方式中,第一预设范围为大于110℃以及小于等于120℃,第二预设范围为大于90℃以及小于等于110℃,第三预设范围为大于等于70℃以及小于等于90℃。在一些实施方式中,对定型温度在110℃至120℃的聚乳酸产业用长丝,采用电感加热定型。在一些实施方式中,对定型温度在95℃至105℃的聚乳酸产业用长丝,采用蒸汽加热定型。在一些实施方式中,对定型温度在70℃至90℃的聚乳酸产业用长丝采用热风定型。
在一些实施方式中,如图15所示,在热风加热定型中,加热板19-9包括设于保温罩箱19-5内进口处的加热板19-9,以及设置后续热定型辊之间的另一类加热板19-9。由于在进口位置,即入丝丝道19-6后的区域温度变化比较大,采用丝束19-7穿经该进口处的加热板19-9设置,相应加热板19-9的截面呈U形设置。后续的加热板19-9设于两个热定型辊之间,有利于在保温罩箱19-5内的空间布置,有利于保温罩箱19-5的规格较小设置。
在一些实施方式中,如图9所示,牵伸卷绕装置200还可以包括于第五定型热辊组19后按生产工艺依次设置的第六松弛导盘20、瓷件导丝钩21、主网络器22和卷绕机23。第六松弛导盘20起到松弛、消除张力的作用,丝束在第六松弛导盘20缠绕后经瓷件导丝钩21,送至主网络器22进行打结,丝束打结后依次传送至卷绕机23完成卷绕。
本实施例的聚乳酸产业用纤维纺丝牵伸卷绕联合机可以生产4-16头不同品种的生物基聚乳酸产业用长丝。
实施例四
基于实施例三的一种聚乳酸产业用纤维纺丝牵伸卷绕联合机,本实施例对分丝辊14、 第一对低温热辊15、第二对高温牵伸热辊16、第三对高温牵伸热辊17、第四对牵伸定型热辊18以及第五定型热辊组19的具体参数进行设置。在一些实施方式中,分丝辊14经丝束缠绕1圈,分丝辊14的加热温度为零,为无加热状态纺速为550-650m/min。第一对低温热辊15经丝束缠绕6.5圈~7.5圈,第一对低温热辊15的加热温度为65-90℃,纺速为605m/min,分丝辊14与第一对低温热辊15保持1:1.01的速比。第二对高温牵伸热辊16经丝束缠绕6.5圈~7.5圈,第二对高温牵伸热辊16的加热温度为100-140℃,纺速为1950m/min,第一对低温热辊15与第二对高温牵伸热辊16的牵伸倍数为2.5-3.5倍。第三对高温牵伸热辊17经丝束缠绕6.5圈~7.5圈,第三对高温牵伸热辊17的加热温度为110-150℃,纺速为3500m/min,第二对高温牵伸热辊16与第三对高温牵伸热辊17的牵伸倍数为1.5-2倍。第四对牵伸定型热辊18经丝束缠绕6.5圈~7.5圈,第四对牵伸定型热辊18的加热温度为110-150℃,纺速为3900m/min,第三对高温牵伸热辊17与第四对牵伸定型热辊18的牵伸倍数为1.1-1.3倍。第五定型热辊组19的加热温度为70-120℃,纺速为4250m/min,第四对牵伸定型热辊18与第五定型热辊组19的牵伸倍数为1.02-1.05倍。
在一些实施方式中,第六松弛导盘20的加热温度为零,为无加热状态。
在一些实施方式中,分丝辊14、第一对低温热辊15、第二对高温牵伸热辊16、第三对高温牵伸热辊17、第四对牵伸定型热辊18、第五定型热辊组19以及第六松弛导盘20的辊壳表面可均为陶瓷设置。
实施例五
基于实施例三或实施例四的聚乳酸产业用纤维纺丝牵伸卷绕联合机,请参照图16和图19,本实施例公开一种螺杆挤压机,包括螺套1-a和穿设于螺套1-a的螺杆1-b,螺杆1-b可以包括依次设置的进料段1-5d、压缩段(如图16中压缩段以第一压缩段1-5c和第二压缩段1-5b呈现,也可呈其它形式)和计量段1-5a,螺套1-a包括气体收集室1-3g和排气孔1-3d,气体收集室1-3g于压缩段与计量段1-5a的交界处的内壁上,排气孔1-3d与气体收集室1-3g连通,其中,螺套1-a安装有以启闭排气孔1-3d的开闭阀1-3。
螺套1-a外配置有外部加热器以提供热量,螺杆1-b可以包括依次设置的进料段1-5d、压缩段和计量段1-5a,聚乳酸原料进入进料段1-5d时逐渐由固体随着温度一步一步升高,同时在原料间的剪切热作用下变为熔融态熔体,在压缩段使固体物料受压缩剪切充分熔融至液相。生物基聚乳酸原料在受热情况时,小部分原料结构不稳发生化学变化,出现水解现象,产生的气体对后续纺丝造成严重影响,通过位于压缩段末端处的气体收集室1-3g对气体进行收集,经开闭阀1-3控制,以将水解产生的气体从排气孔1-3d集中排出,在熔体进入计量段1-5a时及时除去了气体,从而克服了水解气体对纺丝的严重不利影响,改善了断头不利情形,保障了后续纺丝质量和纺丝效率。
在一些实施方式中,如图16和图19所示,螺套1-a可以包括对接的第一螺套1-1和第二螺套1-4,螺杆1-b穿设于第一螺套1-1和第二螺套1-4,第一螺套1-1设有排气孔1-3d并安装有开闭阀1-3,第一螺套1-1靠近第二螺套1-4的一端内壁凹设,第一螺套1-1与第二螺套1-4的中间设有密封垫1-3f,和/或第二螺套1-4靠近第一螺套1-1的一端内壁凹设,第一螺套1-1、密封垫1-3f、第二螺套1-4与螺杆1-b共同围合形成气体收集室1-3g。
通过将螺套1-a设置成第一螺套1-1和第二螺套1-4组合的形式,以便组装形成气体收集室1-3g。其中,第一螺套1-1与第二螺套1-4的中间设有密封垫1-3f,指的是密封垫1-3f设于第一螺套1-1与第二螺套1-4的对接面处,第一螺套1-1与第二螺套1-4可通过螺栓连接,通过密封垫1-3f以保证气体收集室1-3g的密封性。
其中,上述和/或第二螺套1-4靠近第一螺套1-1的一端内壁凹设,指的是,在第一螺套1-1靠近第二螺套1-4的一端内壁凹设的基础上,第二螺套1-4靠近第一螺套1-1的一端内壁既可以凹设,配合形成气体收集室1-3g的部分;也可以单独于第一螺套1-1靠近第二螺套1-4的一端内壁凹设,或者单独于第二螺套1-4靠近第一螺套1-1的一端内壁凹设的其它可实施方式。
在一些实施方式中,进料段1-5d呈单螺纹螺杆1-b设置,以完成进料;压缩段呈双螺纹螺杆1-b设置,以减小压缩段的剪切热,进而减小压缩段的超温现象。
在一些实施方式中,请参照图16、图22和图23,压缩段可以包括第一压缩段1-5c和第二压缩段1-5b,第一压缩段1-5c和第二压缩段1-5b呈双螺纹螺杆1-b设置,螺杆1-b可以包括依次设置的进料段1-5d、第一压缩段1-5c、第二压缩段1-5b和计量段1-5a;沿螺杆挤压机内物料输送方向,第一压缩段1-5c与第二压缩段1-5b的槽深逐渐减小,且第二压缩段1-5b的槽深变化程度小于第一压缩段1-5c的槽深变化程度。
第一压缩段1-5c的槽深逐渐减小,槽深变化程度较大,使固相物料受压缩剪切充分熔融至液相;再经第二压缩段1-5b,第二压缩段1-5b的槽深逐渐减小,槽深变化程度较小,一方面进一步使固相物料充分熔融为液体,另一方面给水解后产生的气体有一个相对空间存储。其中,上述槽深变化程度指的是沿螺杆挤压机内物料输送方向的单位长度所对应的槽深变化量大小。上述槽深变化程度较大、较小指的是两者相对而言。
在一些实施方式中,如图16所示,螺套1-a可以包括电接点压力表1-2,电接点压力表1-2的测量端与气体收集室1-3g导通。气体收集室1-3g以收集物料水解产生的气体,达到一定体积时所产生的气体压力反应在电接点压力表1-2,通过电接点压力表1-2来辅助开闭阀1-3的动作。
在一些实施方式中,如图16和图19所示,螺套1-a可以包括设于外缘的基座1-c,排气孔1-3d呈L形内设于基座1-c,排气孔1-3d的两端分别与气体收集室1-3g、外界大气导通,开闭阀1-3安装于基座1-c。开闭阀1-3可以包括阀体1-3b、填料密封1-3c、阀杆1-3a和衬套1-3e,阀体1-3b部分内设于基座1-c、另部分突出基座1-c设置(如图19所示,阀体1-3b部分设于基座1-c内部,另部分裸露于基座1-c),阀杆1-3a活动穿设于阀体1-3b,在阀体1-3b部分内设于基座1-c,从而阀杆1-3a也活动穿设于基座1-c内。填料密封1-3c内设于基座1-c,且设于基座1-c与阀杆1-3a之间,以密封基座1-c与阀杆1-3a的间隙区域,以使气体排出时均从排气孔1-3d排出。阀杆1-3a的端部呈弧面设置,以封闭或导通排气孔1-3d的L形弯折处。衬套1-3e设于基座1-c的排气孔1-3dL形弯折处,衬套1-3e被配置与阀杆1-3a的端部弧面抵接,以在阀杆1-3a封闭排气孔1-3d时保证密封性良好。
上述通过操作阀杆1-3a的位置,来实现对排气孔1-3d的封堵或导通。在一些实施方式中,在结合电接点压力表1-2的示数指示下,通过打开排气孔1-3d将气体收集室1-3g 的气体进行排出。
在一种可实施方式中,如图20所示,开闭阀1-3可采用手动针型阀1-3i设置。在一种可实施方式中,如图21所示,开闭阀1-3可采用电动针型阀1-3j设置,此时可结合电接点压力表1-2控制电动针型阀1-3j定值开启。在一种可实施方式中,如图19所示,排气孔1-3d一端与外界大气直接导通。在一种可实施方式中,如图20和图21所示,可于排气孔1-3d的端部增设电动真空泵1-3h,通过泵送快速排出气体。电动真空泵1-3h还可结合电接点压力表1-2,控制电动真空泵1-3h在预设气体压力下自动启动排气。
在一些实施方式中,如图17和图18所示,沿螺杆挤压机内物料输送方向,计量段1-5a可以依次包括第一双螺纹结构1-5a3、菱形分离式结构1-5a2、第二双螺纹结构1-5a1设置,菱形分离式结构1-5a2呈一体铣削式菱形或菱形销钉加工设置。其中图18中的上排图形展示了一体铣削式菱形的结构,图18中的下排图形展示了由菱形销钉加工而成的菱形分离式结构1-5a2。通过菱形分离式结构1-5a2设置,进一步促进熔体的混炼和均化。
在一些实施方式中,如图24所示,第一双螺纹结构1-5a3部分的螺杆1-b沿螺旋环形分布铺设多条带沟V型槽1-5a3-1~4,槽长设置整个第一双螺纹结构1-5a3,以达到减小熔体的温度和特性粘度的不匀率的有益效果。
在一些实施方式中,如图17和图18所示,沿螺杆挤压机内物料输送方向,菱形分离式结构1-5a2的直径逐渐减小、菱形布置密度逐渐减小。其中通过图18中的横向虚线,展示有菱形分离式结构1-5a2的直径逐渐减小,保障物料不回流,以及逐渐降低剪切热;通过图18中的G3-G3、G2-G2、G1-G1截图依次对比一圈的菱形数量,展示有菱形布置密度逐渐减小,开始密度较大有利于搅拌,后续密度较小有利于降低剪切热。通过此设计无流通死角,没有原料滞留,不会产生物料碳化现象,有利于纺丝流程的连续运行。
在一种可实施方式中,单螺纹的进料段1-5d长度设为9D至11D,双螺纹的压缩段长度控制为10D至11D,计量段1-5a的长度设置9D至15D。在一种可实施方式中,第一双螺纹结构1-5a3的长度设置为4D至10D,菱形分离式结构1-5a2的长度3D,第二双螺纹结构1-5a1的长度2D。在一种可实施方式中,螺杆1-b长径比控制为(28-34):1。在一种可实施方式中,螺杆挤压机的温度分区控制为160℃至240℃,螺杆挤压机滤后控制压力为80-120kg/cm2。在一种可实施方式中,进料段1-5d螺棱为等径单螺距,第二双螺纹结构1-5a1螺棱为等距等高,充分熔融以使输出的熔体均匀,稳定熔体挤压出口的压力,便于后续纺丝在混炼挤出段实现定量,定压,定温地从机头挤出。
实施例六
基于实施例三、实施例四或实施例五的聚乳酸产业用纤维纺丝牵伸卷绕联合机,请参照图25至图29,本实施例公开一种纺丝箱4,包括计量泵4-13、泵板4-14、泵座4-16、箱体管道4-18、熔体密封垫4-15a和防腐蚀密封垫4-15b,计量泵4-13、泵板4-14和泵座4-16依次连接,箱体管道4-18包括连通泵板4-14和泵座4-16,泵板4-14、熔体密封垫4-15a、防腐蚀密封垫4-15b和泵座4-16依次层叠设置,熔体密封垫4-15a和防腐蚀密封垫4-15b均设有供连通泵板4-14和泵座4-16的箱体管道4-18穿设的通孔。
结合图9,熔融状的原料经熔体输送管道3进入纺丝箱4,具体沿纺丝箱4内的箱 体管道4-18前进,包括依次穿经泵座4-16、泵板4-14、计量泵4-13继而再次穿经泵板4-14、泵座4-16,输送至下箱体4-1的纺丝组件6,以形成丝束进入后续工艺。其中,原料熔体于泵板4-14与泵座4-16之间输送,具体为沿着连通泵板4-14与泵座4-16的部分箱体管道4-18,相应地,在泵板4-14、泵座4-16内设有相应通孔以供原料熔体流经。
可以理解的是,在泵板4-14与泵座4-16之间设置密封垫4-15,以加强泵板4-14与泵座4-16之间熔体流经的密封性。密封垫4-15一般为熔体密封垫4-15a,具体如图27和图28所示,在泵板4-14与泵座4-16固定连接例如通过螺钉固定,使熔体密封垫4-15a受挤压从而起到密封作用。本方案在选择熔体密封垫4-15a的基础上,还增加了一种密封垫4-15设置,具体为在熔体密封垫4-15a与泵座4-16之间再设置一层防腐蚀密封垫4-15b,形成泵板4-14、熔体密封垫4-15a、防腐蚀密封垫4-15b和泵座4-16依次层叠设置,相应地连通泵板4-14和泵座4-16的箱体管道4-18穿过熔体密封垫4-15a和防腐蚀密封垫4-15b设置。
通过上述防腐蚀密封垫4-15b改善原料液态弱酸性而对泵座4-16表面的腐蚀,保护泵座4-16表面的平整,保障熔体密封垫4-15a的良好密封性,从而改善由于泵座4-16腐蚀而引起的密封缺陷、漏料、原料熔体供应不足而导致断头等不利情形,有利于对原料熔体呈弱酸性的材质纺丝的生产,例如聚乳酸产业用纤维纺丝。
如图29所示,展示有中间大管道以供原料熔体从泵座4-16流经泵板4-14,经计量泵4-13作用后,将分成多根管道,如图29中的四周的4个小管道所示,原料熔体穿进泵板4-14和泵座4-16,直至进入与小管道一一对应的纺丝组件6中,组件连接板4-17的底侧沿长度方向分布有多个纺丝组件6,每一个纺丝组件6有一个入口。
如图26所示,本实施例公开的纺丝箱4包括设置两个泵座4-16,泵座4-16分别对应有泵板4-14、计量泵4-13、纺丝组件6及相应管道设置。因为计量泵4-13的作用是将熔体利用高压连续准确地供给纺丝组件6,因此有高精密计量准确性的要求,有关计量泵4-13的计量泵传动部件5,如图9所示,是由永磁同步电机直联摆线针齿减速器驱动、变频调速,每个泵分别独立传动,传动轴可以伸缩,传动轴设有万向联轴节和安全销保护装置。
在一些实施方式中,如图27所示,纺丝箱4可以包括热量分配块4-12,热量分配块4-12设于计量泵4-13与纺丝箱4的外壳之间,热量分配块4-12围合计量泵4-13设置,提高对计量泵4-13的保温效果。
在一些实施方式中,防腐蚀密封垫4-15b由耐腐蚀柔性材料制成,耐腐蚀柔性材料包括铜或铝,防腐蚀密封垫4-15b相应以铜垫、铝垫形式设置。在一些实施方式中,泵板4-14和泵座4-16通过耐高温标准件连接,耐高温标准件包括35CrMoA材质制成的螺钉,采用耐高温标准件使得拆装和更换方便。
在一些实施方式中,如图27所示,纺丝箱4还可以包括组件连接板4-17,组件连接板4-17内设于下箱体4-1,组件连接板4-17用与纺丝组件6连接。箱体管道4-18包括连通泵座4-16与组件连接板4-17的熔体分配输出通道4-18a,于纺丝箱4内熔体分配输出通道4-18a可选呈管件形式设置。熔体分配输出通道4-18a可以包括第一节熔体分配输出 通道4-18a1和第二节熔体分配输出通道4-18a2,第一节熔体分配输出通道4-18a1一端与泵座4-16连通,第二节熔体分配输出通道4-18a2一端与组件连接板4-17连通,其中,第一节熔体分配输出通道4-18a1的另一端与第二节熔体分配输出通道4-18a2的另一端通过可拆装连接件密封连接。
相较于相关技术中纺丝箱4是将泵座4-16和组件连接板4-17通过多个作为熔体分配管道的钢管焊接连通,使得泵座4-16、组件座和钢管连成一个不可分开的整体,这样的纺丝箱4功能单一且无互换性,又由于泵座4-16、组件连接板4-17和钢管连成一体,钢管的弯曲处较多,所以,容易造成管道堵塞,又不容易清理,即使采用清理工具也很难清理干净。
而通过本实施例的熔体分配输出通道4-18a的两节可拆卸连接布置,在可选情形中可将第一节熔体分配输出通道4-18a1和第二节熔体分配输出通道4-18a2拆开来,满足了互换性的要求,扩展了应用范围;两节可拆卸布置还有利于堵塞时分开进行清理,便于将熔体分配输出通道4-18a清理干净。可以理解的是,熔体分配输出通道4-18a的两节可拆卸连接,还需要保证两节连接的密封性。
在一些实施方式中,如图9、图25和图27所示,纺丝箱4可以包括上箱体4-2和下箱体4-1,上箱体4-2安装于下箱体4-1上,计量泵4-13、泵板4-14和泵座4-16沿竖向依次安装于上箱体4-2内,纺丝箱4与熔体输送管道3配合,箱体管道4-18还包括连通熔体输送管道3与泵座4-16。将纺丝箱4呈上箱体4-2和下箱体4-1组合设置,有利于合理布置元件、减小箱体体积,有利于组装过程。
在一些实施方式中,如图25所示,上箱体4-2采用加热器加热,上箱体4-2内设有金属填充物4-9,用金属填充物4-9替代常规的联苯蒸汽传递热量来达到温度均匀的效果。加热器包括上箱体基本加热器4-4、上箱体辅助加热器4-5和上箱体调节加热器4-6,从而可以具体采用一组或多组的不同加热模式,可实现快速加热、保温、调节温度等有益效果。
如图25所示,下箱体4-1设有导热油进口4-7和导热油出口4-8,导热油进口4-7、导热油出口4-8与所配置的集装箱式导热油锅炉连通,相应配置有泵送。通过上箱体4-2、下箱体4-1的设置,配合各自的加热方式,使上箱体4-2与下箱体4-1的加热和控温是单独控制又相互关联。
在一些实施方式中,如图27所示,上箱体4-2包括上箱体测温元件4-10,下箱体4-1包括下箱体测温元件4-11,分别检测上箱体4-2内的金属填充物4-9、下箱体4-1内的导热油。进而可采用智能温控系统,可以降低能耗,有利于环保,及时反馈数据,调整加热功率,实现智能控温,进而可控温精度±1℃。
在一些实施方式中,纺丝箱4包括纺丝箱熔体压力测量元件4-3,纺丝箱熔体压力测量元件4-3安装于上箱体4-2。如正常纺丝时纺丝组件6起始压力要大于9Mpa,通过纺丝箱熔体压力测量元件4-3为正常纺丝提供数据支撑。
在一些实施方式中,纺丝箱4在使用状态时上箱体4-2内控制温度210℃至225℃,上箱体4-2内温度相对要低一些,主要保护熔体在输送过程中处于低温休眠状态,减少物料的降解和水解;在使用状态时下箱体4-1控制温度225℃至245℃,让熔体经过组件连接 板4-17后在纺丝组件6中增加流动性,更加充分地混合,达到组件起压更加均匀的效果,减少丝束的各项不匀率。
实施例七
请参照图30,基于实施例三、实施例四、实施例五或实施例六的聚乳酸产业用纤维纺丝牵伸卷绕联合机,本实施例公开一种纺丝组件6,包括组件体6-5、压盖6-2、熔体分配体6-3、多层过滤网6-10、喷丝板6-4、滚珠层6-8、过滤层6-9和分配板6-11,压盖6-2、熔体分配体6-3、多层过滤网6-10和喷丝板6-4沿熔体流向依次设置于组件体6-5的内通道中,滚珠层6-8、过滤层6-9和分配板6-11沿熔体流向依次按层依次设置于熔体分配体6-3的内通道中,滚珠层6-8包括置于过滤层6-9上的多个滚珠。
在一些实施方式中,组件体6-5作为纺丝组件6的主要壳体,组件体6-5设有内通道,并于组件体6-5内通道依次布置压盖6-2、熔体分配体6-3、多层过滤网6-10和喷丝板6-4,压盖6-2将其余部件安装于组件体6-5内。熔体分配体6-3亦设有内通道,熔体分配体6-3于内通道依次设有滚珠层6-8、过滤层6-9和分配板6-11。如图30所示,熔体分配体6-3与分配板6-11可呈一体设置。
当处于工作状态时,熔体穿过压盖6-2,依次经过滚珠层6-8、过滤层6-9和分配板6-11、多层过滤网6-10和喷丝板6-4,并于喷丝板6-4以丝束方式输出,本纺丝组件6采用滚珠层6-8的滚珠代替公知的海沙,采用滚珠过滤,改善原料与海沙结块的不利现象,延长了使用时间,且有利于物料在熔体分配体6-3内混合地更加充分,提高了熔体的均匀性。
在一些实施方式中,过滤层6-9呈烧结金属板设置,由烧结材料制成,采用滚珠层6-8配合烧结金属板,替代公知的海沙及多层过滤网6-10,烧结金属板的过滤面积和体积比多层过滤网6-10多50%左右,本实施例的纺丝组件6采用滚珠过滤,防止原料与海沙很快结块,让物料在熔体分配体6-3腔内混合更加充分,延长了使用时间,提高了过滤组件传热均匀,提高熔体的均匀性。本实施例的滚珠可采用不锈钢材料制成,形成不锈钢珠。滚珠也可以采用其它金属材料制成。
在一些实施方式中,如图30所示,纺丝组件6还包括锁紧螺母6-1,锁紧螺母6-1的外周缘与组件体6-5的内侧螺纹连接,锁紧螺母6-1的内周缘与底侧和压盖6-2的外周缘抵接。当锁紧螺母6-1旋紧时,锁紧螺母6-1与组件体6-5连接紧密,并将压盖6-2紧密抵在组件体6-5的内通道中,进而在另一端的喷丝板6-4被堵在组件体6-5的内通道时,能够形成压盖6-2、熔体分配体6-3、多层过滤网6-10和喷丝板6-4依次抵紧的状态,并将之稳固地安装于组件体6-5内。
在一些实施方式中,如图30所示,组件体6-5的内侧远离锁紧螺母6-1的一侧设有限位部,限位部与喷丝板6-4凹凸配合以将喷丝板6-4限位于组件体6-5内。通过组件体6-5远离锁紧螺母6-1的一侧与喷丝板6-4凹凸配合,具体为组件体6-5的内缘向内突出设有限位部,限位部可以环状形式设置,喷丝板6-4的周缘相应呈台阶状布置,通过限位部将喷丝板6-4限位在组件体6-5的内通道中。特别是在安装锁紧螺母6-1的状态下,限位部与喷丝板6-4相接紧密。
在一些实施方式中,如图30所示,压盖6-2设有内螺纹,内螺纹被配置与纺丝箱内的组件连接板4-17连接,从而实现将纺丝组件6与纺丝箱固定连接。
在一些实施方式中,如图30所示,纺丝组件6包括第一密封件6-6,第一密封件6-6设于压盖6-2与组件连接板4-17之间。可以理解的是,在压盖6-2设有供熔体穿过的路径通道的基础上,第一密封件6-6可呈环形、环绕该路径通道布置,并且布置于压盖6-2与组件连接板4-17之间,起到密封压盖6-2与组件连接板4-17的缝隙。在一些实施方式中,如图30所示,纺丝组件6包括第二密封件6-7,第二密封件6-7设于压盖6-2与熔体分配体6-3的相接处。第二密封件6-7可采用嵌设的方式,将压盖6-2与熔体分配体6-3的相接面进行密封。
在一种可实施方式中,压盖6-2、熔体分配体6-3、多层过滤网6-10和喷丝板6-4沿竖向依次设置,滚珠层6-8、过滤层6-9和分配板6-11沿竖向依次设置,整个纺丝组件6沿竖向布置于纺丝装置中。
实施例八
请参照图31至图34,基于实施例三、实施例四、实施例五、实施例六或实施例七的聚乳酸产业用纤维纺丝牵伸卷绕联合机,本实施例提供一种组合冷却机构9,包括依次设置的外环吹部件9-1、升降部件9-2和侧吹风部件9-3,升降部件9-2包括伸缩软管9-2a和升降动力件9-2b,伸缩软管9-2a的顶端与外环吹部件9-1连通、底端与侧吹风部件9-3连通,升降动力件9-2b设于外环吹部件9-1与侧吹风部件9-3的中间,组合冷却机构9与纺丝组件6可分离式设置,升降动力件9-2b被配置为驱动外环吹部件9-1靠近或远离纺丝组件6。
在一些实施方式中,从纺丝组件6下来的聚乳酸材质丝束直至经过组合冷却机构9,依次经过外环吹部件9-1、升降部件9-2的伸缩软管9-2a以及侧吹风部件9-3直至进入下一步,在正常纺丝过程中,升降动力件9-2b将外环吹部件9-1顶起至与纺丝组件6的中间形成紧密的纺丝通道,当在聚乳酸纤维纺丝一段时间生产而于喷丝板面堆积熔体残留物时,升降动力件9-2b动作以将外环吹部件9-1下移,具体对比参照图31和图33、以及图32和图34,外环吹部件9-1与纺丝组件6相对分离,从而原先紧密的纺丝通道被敞开一个口子,留出有操作空间供清板使用,便于对喷丝板面进行定期清理,有利于纺丝的质量和正常进行,有利于提高整体的纺丝效率。
在一些实施方式中,如图32所示,升降部件9-2还包括垂直运动导轨9-2c,垂直运动导轨9-2c设于外环吹部件9-1与侧吹风部件9-3的中间。通过设置导轨,有利于外环吹部件9-1和伸缩软管9-2a的运动稳定性。在一些实施方式中,如图32和图34所示,垂直运动导轨9-2c包括竖直地安装于侧吹风部件9-3上的导杆以及固定于外环吹部件9-1的导块,导杆穿设于导块。通过导块对导杆的限位,有利于外环吹部件9-1和伸缩软管9-2a的运动稳定性。
在一些实施方式中,如图32和图34所示,升降动力件9-2b包括气缸,气缸的缸座固定于侧吹风部件9-3上,气缸的活塞杆抵住外环吹部件9-1的底侧。在其他可实施方式中,升降动力件9-2b还可以采用油缸、电机等形式。
在一些实施方式中,如图31和图32所示,外环吹部件9-1包括外环吹上风箱9-1a、外环吹下风箱9-1b、外环吹风筒9-1c、外环吹导风件9-1d和外环吹进风道9-1e,外环吹上风箱9-1a叠设于外环吹下风箱9-1b上,外环吹风筒9-1c内设于外环吹上风箱9-1a,外环吹导风件9-1d内设于外环吹下风箱9-1b,外环吹风筒9-1c设于外环吹导风件9-1d上,外环吹导风件9-1d内设有供丝束穿经的内通道,从纺丝组件6喷出的丝束被配置为依次穿经外环吹风筒9-1c的内腔、外环吹导风件9-1d的内通道、伸缩软管9-2a和侧吹风部件9-3。外环吹进风道9-1e一端呈进风口设置,另一端导通至外环吹导风件9-1d的导风面,以将进风导入外环吹上风箱9-1a和外环吹风筒9-1c的中间,外环吹风筒9-1c的筒面布置有风孔。
在一些实施方式中,可由供风系统向外环吹部件9-1提供稳定、清洁的热风,具体经外环吹进风道9-1e的进风口,沿外环吹进风道9-1e导至外环吹导风件9-1d的导风面,外环吹导风件9-1d的导风面能够进一步将进风导入外环吹上风箱9-1a内、且在外环吹风筒9-1c之外,并进一步进风穿经外环吹风筒9-1c筒面的风孔进入筒内,经过筒内的丝束在热空气包围下被缓慢地冷却。需要指出的是,外环吹风筒9-1c可根据实际需要而选择不同高度。
在一些实施方式中,外环吹风筒9-1c的筒面包括由烧结金属网制成,并于筒面覆盖设有无纺布。由烧结金属网作为材质制成,能够形成空隙,供热空气经过。在另一种可实施方式中,外环吹风筒9-1c的筒面包括呈多孔板设置,并于筒面覆盖设有无纺布。多孔板的设置属于直接在外环吹风筒9-1c开设若干风孔。上述多孔板或者烧结金属网制成起到阻尼作用,有利于保证风速均匀和风压稳定,以使丝束在热空气包围下被缓慢地冷却。
在一些实施方式中,沿丝束走向外环吹部件9-1提供的风温和侧吹风部件9-3提供的风温彼此形成由高至底的梯度关系;沿丝束走向外环吹部件9-1提供的风速和侧吹风部件9-3提供的风速批次形成由慢至快的梯度关系。上述“梯度”指的是沿走向风温呈一段一段逐渐降低的关系变化,风速呈一段一段逐渐增加的关系变化。通过对风温和风速的设置,以对丝束进行良好的冷却。
实施例九
基于实施例三、实施例四、实施例五、实施例六或实施例七的聚乳酸产业用纤维纺丝牵伸卷绕联合机,以及实施例八提供的组合冷却机构9;请参照图31至图34,沿丝束的走向包括依次设置的纺丝组件6、缓冷器7、单体抽吸部件8和组合冷却机构9,纺丝组件6、缓冷器7与单体抽吸部件8相对固定设置,组合冷却机构9的外环吹部件9-1与单体抽吸部件8可分离式设置,组合冷却机构9的升降动力件9-2b以驱动外环吹部件9-1靠近或远离单体抽吸部件8。
纺制生物质聚乳酸时,喷出的熔体中含有单体、低聚物等会挥发出来,如果生物基聚乳酸丝束立即冷却,丝束的流动性和拉伸性能变差,容易断丝。加上由于初生纤维的结构要求内外均一,同时为了防止生物质聚乳酸熔体的突然冷却,造成大分子键的交缠,影响成品丝的强度,为保证纺丝质量需要在喷丝板下来的丝在进到吹风冷却前增加缓冷保温处理,从而在联合机中设有缓冷器7,在缓冷器7内设加热器对丝进行保温,并在后续 通过单体抽吸部件8将单体、低聚物等抽吸处理,保证丝束质量。
在一些实施方式中,缓冷器7以提供180-210℃的热空气环境,以使生物质聚乳酸熔体暂时在180-210℃的热空气中保留一段时间而不至于迅速冷却。组合冷却机构9中的外环吹部件9-1采用25-35℃的热风。侧吹风可选择由空调系统提供稳定、清洁的冷却风。在纺制聚乳酸产业用长丝纤维时,组合冷却机构9中的侧吹风部件9-3以提供风温(19-22℃)±1℃、风道压力800pa、风速不匀率≤±5%、相对湿度85±5%、风速0.5-0.8m/s的冷却风。
需要理解的是,当侧吹风冷却不理想,会对丝束的物理指标产生较大的影响。如果侧吹风的温度过低,因纤维骤冷而出现纤维外层迅速凝固但纤维内芯依然处于熔体状态的情形,使纤维形成皮芯纤维,皮芯纤维因发僵、发硬,后道牵伸倍数会显著降低并且强力下降;反之,如果侧吹风冷却装置温度过高,因纤维冷却不彻底,在生产过程中毛丝增多,甚至在纺丝卷绕过程中易发生单根纤维之间相互粘连现象。本联合机通过提供设置上述合适的侧吹风温度,能够保障丝束纤维质量。
实施例十
基于实施例三、实施例四、实施例五、实施例六、实施例七、实施例八或实施例九的聚乳酸产业用纤维纺丝牵伸卷绕联合机,请参照图35至图38,本实施例提供一种双面上油机构,包括多对油嘴11-3,每对油嘴11-3包括分别位于待上油丝束11-4径向两侧的两个油嘴11-3,每对油嘴11-3被配置在俯视方向上相互靠近以形成纺丝状态,以及在俯视方向上相互远离以形成生头状态。
在一些实施方式中,通过多对油嘴11-3对待上油丝束11-4进行上油,每对油嘴11-3对一根丝束11-4进行上油,每对油嘴11-3包括两个油嘴11-3,该两个油嘴11-3分别位于丝束11-4的两侧,油嘴11-3被设置为可移动,从而可以通过油嘴11-3处于不同的位置,形成用于对丝束11-4上油的纺丝状态、以及用于丝束11-4生头挂丝时的生头状态,便于实际操作。
通过油嘴11-3分别对待上油丝束11-4的两侧,达到给丝束11-4两面上油的目的,达到可增加聚乳酸纤维的集束性,抗静电性,减少纤维拉伸的阻力,对丝束11-4均匀喷油的功能可以增加丝束11-4中单丝之间的抱合性,改善拉伸从而减少毛丝,提高成品的满卷率,尤其适用于聚乳酸产业用长丝纤维牵伸卷绕。
在一些实施方式中,如图35和图36所示,多对油嘴11-3中每对油嘴11-3所属的两个油嘴11-3在高度方向上交错设置,进而可形成如图29所示的纺丝状态,在俯视方向上两个油嘴11-3有重叠区域,以将纺丝挂住、进行油嘴11-3充分双面上油。
在一些实施方式中,如图35和图36所示,双面上油机构还包括第一安装板11-5a、气缸11-1、底板11-8和第一导丝钩11-6a,第一安装板11-5a与油嘴11-3固定连接,气缸11-1的气缸推杆11-2一端与第一安装板11-5a固定连接,气缸11-1固定安装于底板11-8上,第一安装板11-5a的底端抵放于底板11-8上,第一导丝钩11-6a固定安装于第一安装板11-5a,且第一导丝钩11-6a设于油嘴11-3的底侧。气缸推杆11-2伸长,以形成图35所示的纺丝状态;气缸推杆11-2缩回,带动第一安装板11-5a以及与第一安装板11-5a固定 连接的第一导丝钩11-6a回撤,将每对油嘴11-3分开,形成中间的生头通道。其中,气缸11-1配置有电气控制系统,对气缸推杆11-2进行电气控制伸长、缩回或维持不动状态。在其他可实施方式中,气缸11-1可以用电机、油缸等动力件来替换。采用气缸11-1,其具有清洁介质的优点。
在一些实施方式中,如图35和图36所示,双面上油机构还包括第一接油盒11-7a,第一接油盒11-7a固定安装于第一安装板11-5a,且第一接油盒11-7a设于油嘴11-3的底侧。第一接油盒11-7a的顶部呈开口设置,以将纺丝时从油嘴11-3落下的油液进行回收。第一接油盒11-7a另设有回收管路,以将油液统一回收。
在一些实施方式中,如图37和图38所示,位于待上油丝束11-4径向同一侧的所有油嘴11-3均固定安装于同一块第一安装板11-5a,以便于对所有丝束11-4同一侧的油嘴11-3的移动进行统一控制。
根据本公开的一些实施方式的双面上油机构,具有喷油均匀,回油干净,无链条传动消除了噪音污染,消声传动,结构紧凑,油嘴11-3精致比油轮好维修方便的优点。
实施例十一
基于实施例十的双面上油机构,双面上油机构包括多对油嘴11-3,每对油嘴11-3包括分别位于待上油丝束11-4径向两侧的两个油嘴11-3,每对油嘴11-3被配置在俯视方向上相互靠近以形成纺丝状态,以及在俯视方向上相互远离以形成生头状态。本实施例提供双面上油机构的另一种可实施方式。在一些实施方式中,如图39和图40所示,双面上油机构还包括转轴11-9,转轴11-9与油嘴11-3固定连接,且转轴11-9被配置为带动油嘴11-3转动。在本实施例中油嘴11-3通过转动的方式进行移动,分别形成如图40所示的纺丝状态,以及如图41或图42的生头状态。
在一些实施方式中,如图39所示,双面上油机构还包括第二安装板11-5b、第二接油盒11-7b和第二导丝钩11-6b,第二安装板11-5b与油嘴11-3固定连接,第二接油盒11-7b与第二安装板11-5b固定连接,且第二接油盒11-7b设于油嘴11-3的底侧,第二导丝钩11-6b与第二安装板11-5b固定连接。通过第二接油盒11-7b对油液进行收集,通过第二安装板11-5b提供第二接油盒11-7b和第二导丝钩11-6b的安装位置,转轴11-9动作时第二安装板11-5b、第二接油盒11-7b、第二导丝钩11-6b和油嘴11-3均随转轴11-9移动。
在一些实施方式中,转轴11-9包括阻尼转轴11-9,采用阻尼转轴11-9设置,生头时手动操作到生头状态,纺丝时再转回到纺丝状态。
根据本公开的一些实施方式的双面上油机构,具有喷油均匀,回油干净,无链条传动消除了噪音污染,消声传动,结构紧凑,油嘴11-3精致比油轮好维修方便的优点。
在一种可实施的生头方式中,如图41所示,生头时左列油嘴11-3可以不动,右列油嘴11-3都转动一定角度,例如15°至30°,此时将每根丝束11-4分别先挂到左列油嘴11-3处,然后把下排油嘴11-3转回到原位置,即如图40所示的,把丝束11-4再分别挂到右列油嘴11-3上,完成生头挂丝。在一种可实施的生头方式中,如图42所示,生头时将左列、右列的油嘴11-3均转动一定角度,例如15°至30°,此时将每根丝束11-4分别挂到左列、右列的油嘴11-3处,然后把左列、右列的油嘴11-3转回到原位置,完成生头挂 丝。
以上所举实施例为本公开的较佳实施方式,仅用来方便说明本公开,并非对本公开作任何形式上的限制,任何所述技术领域中具有通常知识者,若在不脱离本公开所提技术特征的范围内,利用本公开所揭示技术内容所作出局部更动或修饰的等效实施例,并且未脱离本公开的技术特征内容,均仍属于本公开技术特征的范围内。

Claims (20)

  1. 一种聚乳酸产业用纤维纺丝牵伸卷绕装置,包括按生产工艺依次设置的双面上油机构、剪吸丝、预网络器和分丝辊,所述牵伸卷绕装置配合有纺丝装置,丝束从所述纺丝装置依次穿经所述双面上油机构、所述剪吸丝和所述预网络器直至传送至所述分丝辊;
    所述牵伸卷绕装置与所述纺丝装置被配置为平行配置,以使所述纺丝装置与所述分丝辊之间的所述丝束沿垂直方向布置且与所述分丝辊相切。
  2. 如权利要求1所述的聚乳酸产业用纤维纺丝牵伸卷绕装置,其中,所述分丝辊的选型包括张力分丝对辊或喂入辊。
  3. 如权利要求1所述的聚乳酸产业用纤维纺丝牵伸卷绕装置,还包括按生产工艺依次设置的所述双面上油机构、所述剪吸丝、所述预网络器、所述分丝辊、第一对低温热辊、第二对高温牵伸热辊、第三对高温牵伸热辊、第四对牵伸定型热辊以及第五定型热辊组;
    所述第五定型热辊组包括:
    保温罩箱,所述保温罩箱开设有供所述丝束穿经的入丝丝道和出丝丝道,
    至少四个热定型辊,按生产工艺依次设置,且,均内设于所述保温罩箱;
    加热源,用以对所述保温罩箱内的丝束在70-120℃环境下加热。
  4. 如权利要求3所述的聚乳酸产业用纤维纺丝牵伸卷绕装置,其中,所述第五定型热辊组包括四个所述热定型辊,分别为按生产工艺依次设置的第一热定型辊、第二热定型辊、第三热定型辊和第四热定型辊,所述丝束穿经所述入丝丝道并依次绕经所述第一热定型辊、第二热定型辊、第三热定型辊和第四热定型辊,直至穿经所述出丝丝道;
    所述第一热定型辊高于所述第二热定型辊设置,所述第三热定型辊与所述第一热定型辊的高度相等,所述第四热定型辊与所述第二热定型辊的高度相等。
  5. 如权利要求3或4所述的聚乳酸产业用纤维纺丝牵伸卷绕装置,其中,所述加热源包括电感加热源、蒸汽加热源或热风加热源;
    所述加热源包括所述电感加热源时,用于对定型温度在第一预设范围的所述聚乳酸产业用纤维纺丝进行热定型,所述热定型辊均呈电感加热定型热辊设置;
    所述加热源包括所述蒸汽加热源时,用于对定型温度在第二预设范围的所述聚乳酸产业用纤维纺丝进行热定型,所述保温罩箱的侧壁低处开设有蒸汽进口,所述保温罩箱的侧壁高处开设有蒸汽出口,所述蒸汽进口和所述蒸汽出口开设于所述保温罩箱的相对两侧,所述蒸汽加热源以向所述保温罩箱内输送热蒸汽;
    所述加热源包括所述热风加热源时,用于对定型温度在第三预设范围的所述聚乳酸产业用纤维纺丝进行热定型,所述保温罩箱内设有多个加热板,所述加热板与所述热定型辊间隔设置,所述加热板靠近所述保温罩箱内的丝束设置;
    所述第一预设范围、所述第二预设范围、所述第三预设范围依次减小,且均大于等于70℃以及小于等于120℃。
  6. 如权利要求5所述的聚乳酸产业用纤维纺丝牵伸卷绕装置,其中,所述第一预设范围为大于110℃以及小于等于120℃;
    所述第二预设范围为大于90℃以及小于等于110℃;
    所述第三预设范围为大于等于70℃以及小于等于90℃。
  7. 如权利要求3所述的聚乳酸产业用纤维纺丝牵伸卷绕装置,还包括于所述第五定型热辊组后按生产工艺依次设置的第六松弛导盘、瓷件导丝钩、主网络器和卷绕机。
  8. 如权利要求3所述的聚乳酸产业用纤维纺丝牵伸卷绕装置,其中,所述分丝辊经所述丝束缠绕1圈,所述分丝辊的加热温度为零,纺速为550-650m/min;
    所述第一对低温热辊经所述丝束缠绕6.5圈~7.5圈,所述第一对低温热辊的加热温度为65-90℃,纺速为605m/min,所述分丝辊与所述第一对低温热辊保持1:1.01的速比;
    所述第二对高温牵伸热辊经所述丝束缠绕6.5圈~7.5圈,所述第二对高温牵伸热辊的加热温度为100-140℃,纺速为1950m/min,所述第一对低温热辊与所述第二对高温牵伸热辊的牵伸倍数为2.5-3.5倍;
    所述第三对高温牵伸热辊经所述丝束缠绕6.5圈~7.5圈,所述第三对高温牵伸热辊的加热温度为110-150℃,纺速为3500m/min,所述第二对高温牵伸热辊与所述第三对高温牵伸热辊的牵伸倍数为1.5-2倍;
    所述第四对牵伸定型热辊经所述丝束缠绕6.5圈~7.5圈,所述第四对牵伸定型热辊的加热温度为110-150℃,纺速为3900m/min,所述第三对高温牵伸热辊与所述第四对牵伸定型热辊的牵伸倍数为1.1-1.3倍;
    所述第五定型热辊组的加热温度为70-120℃,纺速为4250m/min,所述第四对牵伸定型热辊与所述第五定型热辊组的牵伸倍数为1.02-1.05倍。
  9. 如权利要求7所述的聚乳酸产业用纤维纺丝牵伸卷绕装置,其中,所述第六松弛导盘的加热温度为零,所述第六松弛导盘的辊壳表面为陶瓷设置。
  10. 如权利要求8所述的聚乳酸产业用纤维纺丝牵伸卷绕装置,其中,所述分丝辊、所述第一对低温热辊、所述第二对高温牵伸热辊、所述第三对高温牵伸热辊、所述第四对牵伸定型热辊以及所述第五定型热辊组的辊壳表面均为陶瓷设置。
  11. 一种聚乳酸产业用纤维纺丝牵伸卷绕联合机,其特征在于,包括纺丝装置和牵伸卷绕装置,所述纺丝装置包括按生产工艺依次设置的螺杆挤压机、挤出头、熔体输送管道、纺丝箱、纺丝组件、缓冷器、单体抽吸部件、组合冷却机构和甬道部件,所述牵伸卷绕装置包括按生产工艺依次设置的双面上油机构、剪吸丝、预网络器、分丝辊、第一对低温热辊、第二对高温牵伸热辊、第三对高温牵伸热辊、第四对牵伸定型热辊、第五定型热辊组、第六松弛导盘、瓷件导丝钩、主网络器和卷绕机;
    丝束从所述甬道部件依次穿经所述双面上油机构、所述剪吸丝和所述预网络器直至传送至所述分丝辊,所述牵伸卷绕装置与所述纺丝装置被配置为平行配置,以使所述纺丝装置与所述分丝辊之间的所述丝束沿垂直方向布置且与所述分丝辊相切。
  12. 如权利要求11所述的聚乳酸产业用纤维纺丝牵伸卷绕联合机,其中,所述第五定型热辊组包括:
    保温罩箱,所述保温罩箱开设有供所述丝束穿经的入丝丝道和出丝丝道,
    至少四个热定型辊,按生产工艺依次设置,且,均内设于所述保温罩箱;以及
    加热源,用以对所述保温罩箱内的丝束在70-120℃环境下加热。
  13. 如权利要求12所述的聚乳酸产业用纤维纺丝牵伸卷绕联合机,其中,所述加热源包括电感加热源、蒸汽加热源或热风加热源;
    所述加热源包括所述电感加热源时,用于对定型温度在第一预设范围的所述聚乳酸产业用纤维纺丝进行热定型,所述热定型辊均呈电感加热定型热辊设置;
    所述加热源包括所述蒸汽加热源时,用于对定型温度在第二预设范围的所述聚乳酸产业用纤维纺丝进行热定型,所述保温罩箱的侧壁低处开设有蒸汽进口,所述保温罩箱的侧壁高处开设有蒸汽出口,所述蒸汽进口和所述蒸汽出口开设于所述保温罩箱的相对两侧,所述蒸汽加热源以向所述保温罩箱内输送热蒸汽;
    所述加热源包括所述热风加热源时,用于对定型温度在第三预设范围的所述聚乳酸产业用纤维纺丝进行热定型,所述保温罩箱内设有多个加热板,所述加热板与所述热定型辊间隔设置,所述加热板靠近所述保温罩箱内的丝束设置;
    所述第一预设范围、所述第二预设范围、所述第三预设范围依次减小,且均大于等于70℃以及小于等于120℃。
  14. 如权利要求12所述的聚乳酸产业用纤维纺丝牵伸卷绕联合机,其中,所述分丝辊经所述丝束缠绕1圈,所述分丝辊的加热温度为零,纺速为550-650m/min;
    所述第一对低温热辊经所述丝束缠绕6.5圈~7.5圈,所述第一对低温热辊的加热温度为65-90℃,纺速为605m/min,所述分丝辊与所述第一对低温热辊保持1:1.01的速比;
    所述第二对高温牵伸热辊经所述丝束缠绕6.5圈~7.5圈,所述第二对高温牵伸热辊的加热温度为100-140℃,纺速为1950m/min,所述第一对低温热辊与所述第二对高温牵伸热辊的牵伸倍数为2.5-3.5倍;
    所述第三对高温牵伸热辊经所述丝束缠绕6.5圈~7.5圈,所述第三对高温牵伸热辊的加热温度为110-150℃,纺速为3500m/min,所述第二对高温牵伸热辊与所述第三对高温牵伸热辊的牵伸倍数为1.5-2倍;
    所述第四对牵伸定型热辊经所述丝束缠绕6.5圈~7.5圈,所述第四对牵伸定型热辊的加热温度为110-150℃,纺速为3900m/min,所述第三对高温牵伸热辊与所述第四对牵伸定型热辊的牵伸倍数为1.1-1.3倍;
    所述第五定型热辊组的加热温度为70-120℃,纺速为4250m/min,所述第四对牵伸定型热辊与所述第五定型热辊组的牵伸倍数为1.02-1.05倍。
  15. 如权利要求11所述的聚乳酸产业用纤维纺丝牵伸卷绕联合机,其中,所述螺杆挤压机包括螺套和穿设于所述螺套的螺杆,所述螺杆包括依次设置的进料段、压缩段和计量段,所述螺套包括:
    位于所述压缩段与所述计量段的交界处的内壁上开设的气体收集室;以及
    与所述气体收集室连通的排气孔;
    其中,所述螺套安装有以启闭所述排气孔的开闭阀。
  16. 如权利要求11所述的聚乳酸产业用纤维纺丝牵伸卷绕联合机,其中,所述纺丝箱包括:
    依次连接的计量泵、泵板和泵座;
    箱体管道,所述箱体管道包括连通所述泵板和所述泵座;以及
    熔体密封垫和防腐蚀密封垫,所述泵板、所述熔体密封垫、所述防腐蚀密封垫和所述泵座依次层叠设置,所述熔体密封垫和所述防腐蚀密封垫均设有供连通所述泵板和所述泵座的所述箱体管道穿设的通孔。
  17. 如权利要求11所述的聚乳酸产业用纤维纺丝牵伸卷绕联合机,其中,所述纺丝组件包括:
    组件体;
    压盖、熔体分配体、多层过滤网和喷丝板,沿熔体流向依次设置于所述组件体的内通道中;以及
    滚珠层、过滤层和分配板,沿熔体流向依次按层依次设置于所述熔体分配体的内通道中,所述滚珠层包括置于所述过滤层上的多个滚珠。
  18. 如权利要求11所述的聚乳酸产业用纤维纺丝牵伸卷绕联合机,其中,所述组合冷却机构包括依次设置的外环吹部件、升降部件和侧吹风部件,所述升降部件包括伸缩软管和升降动力件,所述伸缩软管的顶端与所述外环吹部件连通、底端与所述侧吹风部件连通,所述升降动力件设于所述外环吹部件与所述侧吹风部件的中间;
    所述组合冷却机构与纺丝组件可分离式设置,所述升降动力件被配置为驱动所述外环吹部件靠近或远离所述纺丝组件。
  19. 如权利要求18所述的聚乳酸产业用纤维纺丝牵伸卷绕联合机,其中,所述纺丝组件、所述缓冷器与所述单体抽吸部件相对固定设置,所述组合冷却机构的所述外环吹部件与所述单体抽吸部件可分离式设置,所述组合冷却机构的所述升降动力件以驱动所述外环吹部件靠近或远离所述单体抽吸部件。
  20. 如权利要求11所述的聚乳酸产业用纤维纺丝牵伸卷绕联合机,其中,所述双面上油机构包括多对油嘴,每对所述油嘴包括分别位于待上油丝束径向两侧的两个油嘴,每对所述油嘴被配置在俯视方向上相互靠近以形成纺丝状态,以及在俯视方向上相互远离以形成生头状态。
PCT/CN2022/122719 2021-09-30 2022-09-29 一种聚乳酸产业用纤维纺丝牵伸卷绕装置及联合机 WO2023051721A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202111163325.8 2021-09-30
CN202111160423.6 2021-09-30
CN202122406535.7U CN216192925U (zh) 2021-09-30 2021-09-30 一种聚乳酸产业用纤维纺丝牵伸卷绕联合机
CN202122406547.X 2021-09-30
CN202111160423.6A CN113737301A (zh) 2021-09-30 2021-09-30 一种聚乳酸产业用纤维纺丝牵伸卷绕联合机
CN202122406547.XU CN216192918U (zh) 2021-09-30 2021-09-30 一种聚乳酸产业用纤维纺丝牵伸卷绕装置
CN202122406535.7 2021-09-30
CN202111163325.8A CN113699602A (zh) 2021-09-30 2021-09-30 一种聚乳酸产业用纤维纺丝牵伸卷绕装置

Publications (1)

Publication Number Publication Date
WO2023051721A1 true WO2023051721A1 (zh) 2023-04-06

Family

ID=85781370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122719 WO2023051721A1 (zh) 2021-09-30 2022-09-29 一种聚乳酸产业用纤维纺丝牵伸卷绕装置及联合机

Country Status (1)

Country Link
WO (1) WO2023051721A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6383432B1 (en) * 1999-01-22 2002-05-07 Chisso Corporation High-speed apparatus and method for producing thermoplastic synthetic fibers
CN201817591U (zh) * 2010-08-16 2011-05-04 河南瑞贝卡发制品股份有限公司 一种发丝生产用热定型机
CN106801262A (zh) * 2015-11-26 2017-06-06 中国纺织科学研究院 一种牵伸导丝热箱及应用方法
CN108642583A (zh) * 2018-05-23 2018-10-12 北京中丽制机工程技术有限公司 一种纺丝牵伸联合机以及纺丝机用单体抽吸装置
CN110067033A (zh) * 2019-05-27 2019-07-30 北京中丽制机工程技术有限公司 一种锦纶66高强纤维的生产方法以及锦纶66高强纤维
CN113699602A (zh) * 2021-09-30 2021-11-26 北京中丽制机工程技术有限公司 一种聚乳酸产业用纤维纺丝牵伸卷绕装置
CN113737301A (zh) * 2021-09-30 2021-12-03 北京中丽制机工程技术有限公司 一种聚乳酸产业用纤维纺丝牵伸卷绕联合机
CN115012050A (zh) * 2022-06-24 2022-09-06 宁波禾素纤维有限公司 一种phbv与pla共混生物基纤维生产工艺

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6383432B1 (en) * 1999-01-22 2002-05-07 Chisso Corporation High-speed apparatus and method for producing thermoplastic synthetic fibers
CN201817591U (zh) * 2010-08-16 2011-05-04 河南瑞贝卡发制品股份有限公司 一种发丝生产用热定型机
CN106801262A (zh) * 2015-11-26 2017-06-06 中国纺织科学研究院 一种牵伸导丝热箱及应用方法
CN108642583A (zh) * 2018-05-23 2018-10-12 北京中丽制机工程技术有限公司 一种纺丝牵伸联合机以及纺丝机用单体抽吸装置
CN110067033A (zh) * 2019-05-27 2019-07-30 北京中丽制机工程技术有限公司 一种锦纶66高强纤维的生产方法以及锦纶66高强纤维
CN113699602A (zh) * 2021-09-30 2021-11-26 北京中丽制机工程技术有限公司 一种聚乳酸产业用纤维纺丝牵伸卷绕装置
CN113737301A (zh) * 2021-09-30 2021-12-03 北京中丽制机工程技术有限公司 一种聚乳酸产业用纤维纺丝牵伸卷绕联合机
CN115012050A (zh) * 2022-06-24 2022-09-06 宁波禾素纤维有限公司 一种phbv与pla共混生物基纤维生产工艺

Similar Documents

Publication Publication Date Title
CN113737301A (zh) 一种聚乳酸产业用纤维纺丝牵伸卷绕联合机
CN108642583B (zh) 一种纺丝牵伸联合机以及纺丝机用单体抽吸装置
TWI496965B (zh) 用以熔紡、拉伸及捲取一多絲線以形成一fdy絲之方法及執行該方法之裝置
CN109137109A (zh) 一种多h形粗旦多孔poy丝的生产设备及其制备方法
CN108642584B (zh) 一种分纤母丝纺牵联合机
CN205934590U (zh) 一种使无纺织布光滑细腻的生产设备
WO2023051721A1 (zh) 一种聚乳酸产业用纤维纺丝牵伸卷绕装置及联合机
CN101065521A (zh) 熔融纺造细的非织造纤维的熔喷法及实施该方法的装置
CN108642585A (zh) 一种fdy长丝纺牵联合机
CN115012050A (zh) 一种phbv与pla共混生物基纤维生产工艺
CN213804087U (zh) 纺丝机的油嘴式丝束上油装置及相应熔体纺丝机
CN113638068A (zh) 一种产业用生物基聚酰胺纺丝牵伸卷绕联合机
CN111394853B (zh) 一种再生多丽竹节丝生产工艺
CN113502548A (zh) 一种单组份涤纶热熔丝设备及其工艺
CN216192925U (zh) 一种聚乳酸产业用纤维纺丝牵伸卷绕联合机
CN104120498B (zh) 一种牵伸/干燥丝用装置
CN114775077A (zh) 一种生物基复合单丝纺丝卷绕装置
CN217499517U (zh) 一种高纤度海岛复合长丝fdy多级牵伸试验机装置
CN111534872A (zh) 一种新型复合仿毛纤维的制备方法
CN105908275A (zh) 利用细旦高强型纺丝设备生产细旦低收缩涤纶工业纤维的方法
CN102199799A (zh) 聚酯工业丝活化丝生产上油系统和上油方法
CN110409031A (zh) 一种微纳米纤维多层结构包芯纱纺纱装置及其生产工艺
CN112680854B (zh) 一种生产bcf和idy的多功能纺丝设备
CN216663318U (zh) 一种产业用生物基聚酰胺纺丝牵伸卷绕联合机
WO2023056894A1 (zh) 一种产业用生物基聚酰胺纺丝牵伸卷绕装置及联合机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875102

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022875102

Country of ref document: EP

Effective date: 20240430